xref: /freebsd/sys/dev/msk/if_msk.c (revision dd48af360fdbbb9552f9fc6de7abe50d68ad5331)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /*
96  * Device driver for the Marvell Yukon II Ethernet controller.
97  * Due to lack of documentation, this driver is based on the code from
98  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
99  */
100 
101 #include <sys/cdefs.h>
102 __FBSDID("$FreeBSD$");
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/module.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/queue.h>
115 #include <sys/sysctl.h>
116 
117 #include <net/bpf.h>
118 #include <net/ethernet.h>
119 #include <net/if.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/if_types.h>
124 #include <net/if_vlan_var.h>
125 
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/tcp.h>
130 #include <netinet/udp.h>
131 
132 #include <machine/bus.h>
133 #include <machine/in_cksum.h>
134 #include <machine/resource.h>
135 #include <sys/rman.h>
136 
137 #include <dev/mii/mii.h>
138 #include <dev/mii/miivar.h>
139 
140 #include <dev/pci/pcireg.h>
141 #include <dev/pci/pcivar.h>
142 
143 #include <dev/msk/if_mskreg.h>
144 
145 MODULE_DEPEND(msk, pci, 1, 1, 1);
146 MODULE_DEPEND(msk, ether, 1, 1, 1);
147 MODULE_DEPEND(msk, miibus, 1, 1, 1);
148 
149 /* "device miibus" required.  See GENERIC if you get errors here. */
150 #include "miibus_if.h"
151 
152 /* Tunables. */
153 static int msi_disable = 0;
154 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
155 static int legacy_intr = 0;
156 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
157 static int jumbo_disable = 0;
158 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
159 
160 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
161 
162 /*
163  * Devices supported by this driver.
164  */
165 static struct msk_product {
166 	uint16_t	msk_vendorid;
167 	uint16_t	msk_deviceid;
168 	const char	*msk_name;
169 } msk_products[] = {
170 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
171 	    "SK-9Sxx Gigabit Ethernet" },
172 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
173 	    "SK-9Exx Gigabit Ethernet"},
174 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
175 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
176 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
177 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
178 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
179 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
180 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
181 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
182 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
183 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
184 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
185 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
186 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
187 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
188 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
189 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
190 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
191 	    "Marvell Yukon 88E8035 Fast Ethernet" },
192 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
193 	    "Marvell Yukon 88E8036 Fast Ethernet" },
194 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
195 	    "Marvell Yukon 88E8038 Fast Ethernet" },
196 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
197 	    "Marvell Yukon 88E8039 Fast Ethernet" },
198 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
199 	    "Marvell Yukon 88E8040 Fast Ethernet" },
200 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
201 	    "Marvell Yukon 88E8040T Fast Ethernet" },
202 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
203 	    "Marvell Yukon 88E8042 Fast Ethernet" },
204 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
205 	    "Marvell Yukon 88E8048 Fast Ethernet" },
206 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
207 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
208 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
209 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
210 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
211 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
212 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
213 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
214 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
215 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
216 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
217 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
218 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
219 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
220 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
221 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
222 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
223 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
224 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
225 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
226 	{ VENDORID_MARVELL, DEVICEID_MRVL_4381,
227 	    "Marvell Yukon 88E8059 Gigabit Ethernet" },
228 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
229 	    "D-Link 550SX Gigabit Ethernet" },
230 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560SX,
231 	    "D-Link 560SX Gigabit Ethernet" },
232 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
233 	    "D-Link 560T Gigabit Ethernet" }
234 };
235 
236 static const char *model_name[] = {
237 	"Yukon XL",
238         "Yukon EC Ultra",
239         "Yukon EX",
240         "Yukon EC",
241         "Yukon FE",
242         "Yukon FE+",
243         "Yukon Supreme",
244         "Yukon Ultra 2",
245         "Yukon Unknown",
246         "Yukon Optima",
247 };
248 
249 static int mskc_probe(device_t);
250 static int mskc_attach(device_t);
251 static int mskc_detach(device_t);
252 static int mskc_shutdown(device_t);
253 static int mskc_setup_rambuffer(struct msk_softc *);
254 static int mskc_suspend(device_t);
255 static int mskc_resume(device_t);
256 static void mskc_reset(struct msk_softc *);
257 
258 static int msk_probe(device_t);
259 static int msk_attach(device_t);
260 static int msk_detach(device_t);
261 
262 static void msk_tick(void *);
263 static void msk_intr(void *);
264 static void msk_intr_phy(struct msk_if_softc *);
265 static void msk_intr_gmac(struct msk_if_softc *);
266 static __inline void msk_rxput(struct msk_if_softc *);
267 static int msk_handle_events(struct msk_softc *);
268 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
269 static void msk_intr_hwerr(struct msk_softc *);
270 #ifndef __NO_STRICT_ALIGNMENT
271 static __inline void msk_fixup_rx(struct mbuf *);
272 #endif
273 static __inline void msk_rxcsum(struct msk_if_softc *, uint32_t, struct mbuf *);
274 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
275 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
276 static void msk_txeof(struct msk_if_softc *, int);
277 static int msk_encap(struct msk_if_softc *, struct mbuf **);
278 static void msk_start(struct ifnet *);
279 static void msk_start_locked(struct ifnet *);
280 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
281 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
282 static void msk_set_rambuffer(struct msk_if_softc *);
283 static void msk_set_tx_stfwd(struct msk_if_softc *);
284 static void msk_init(void *);
285 static void msk_init_locked(struct msk_if_softc *);
286 static void msk_stop(struct msk_if_softc *);
287 static void msk_watchdog(struct msk_if_softc *);
288 static int msk_mediachange(struct ifnet *);
289 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
290 static void msk_phy_power(struct msk_softc *, int);
291 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
292 static int msk_status_dma_alloc(struct msk_softc *);
293 static void msk_status_dma_free(struct msk_softc *);
294 static int msk_txrx_dma_alloc(struct msk_if_softc *);
295 static int msk_rx_dma_jalloc(struct msk_if_softc *);
296 static void msk_txrx_dma_free(struct msk_if_softc *);
297 static void msk_rx_dma_jfree(struct msk_if_softc *);
298 static int msk_rx_fill(struct msk_if_softc *, int);
299 static int msk_init_rx_ring(struct msk_if_softc *);
300 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
301 static void msk_init_tx_ring(struct msk_if_softc *);
302 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
303 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
304 static int msk_newbuf(struct msk_if_softc *, int);
305 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
306 
307 static int msk_phy_readreg(struct msk_if_softc *, int, int);
308 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
309 static int msk_miibus_readreg(device_t, int, int);
310 static int msk_miibus_writereg(device_t, int, int, int);
311 static void msk_miibus_statchg(device_t);
312 
313 static void msk_rxfilter(struct msk_if_softc *);
314 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
315 
316 static void msk_stats_clear(struct msk_if_softc *);
317 static void msk_stats_update(struct msk_if_softc *);
318 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
319 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
320 static void msk_sysctl_node(struct msk_if_softc *);
321 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
322 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
323 
324 static device_method_t mskc_methods[] = {
325 	/* Device interface */
326 	DEVMETHOD(device_probe,		mskc_probe),
327 	DEVMETHOD(device_attach,	mskc_attach),
328 	DEVMETHOD(device_detach,	mskc_detach),
329 	DEVMETHOD(device_suspend,	mskc_suspend),
330 	DEVMETHOD(device_resume,	mskc_resume),
331 	DEVMETHOD(device_shutdown,	mskc_shutdown),
332 
333 	/* bus interface */
334 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
335 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
336 
337 	{ NULL, NULL }
338 };
339 
340 static driver_t mskc_driver = {
341 	"mskc",
342 	mskc_methods,
343 	sizeof(struct msk_softc)
344 };
345 
346 static devclass_t mskc_devclass;
347 
348 static device_method_t msk_methods[] = {
349 	/* Device interface */
350 	DEVMETHOD(device_probe,		msk_probe),
351 	DEVMETHOD(device_attach,	msk_attach),
352 	DEVMETHOD(device_detach,	msk_detach),
353 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
354 
355 	/* bus interface */
356 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
357 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
358 
359 	/* MII interface */
360 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
361 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
362 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
363 
364 	{ NULL, NULL }
365 };
366 
367 static driver_t msk_driver = {
368 	"msk",
369 	msk_methods,
370 	sizeof(struct msk_if_softc)
371 };
372 
373 static devclass_t msk_devclass;
374 
375 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
376 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
377 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
378 
379 static struct resource_spec msk_res_spec_io[] = {
380 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
381 	{ -1,			0,		0 }
382 };
383 
384 static struct resource_spec msk_res_spec_mem[] = {
385 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
386 	{ -1,			0,		0 }
387 };
388 
389 static struct resource_spec msk_irq_spec_legacy[] = {
390 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
391 	{ -1,			0,		0 }
392 };
393 
394 static struct resource_spec msk_irq_spec_msi[] = {
395 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
396 	{ -1,			0,		0 }
397 };
398 
399 static int
400 msk_miibus_readreg(device_t dev, int phy, int reg)
401 {
402 	struct msk_if_softc *sc_if;
403 
404 	if (phy != PHY_ADDR_MARV)
405 		return (0);
406 
407 	sc_if = device_get_softc(dev);
408 
409 	return (msk_phy_readreg(sc_if, phy, reg));
410 }
411 
412 static int
413 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
414 {
415 	struct msk_softc *sc;
416 	int i, val;
417 
418 	sc = sc_if->msk_softc;
419 
420         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
421 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
422 
423 	for (i = 0; i < MSK_TIMEOUT; i++) {
424 		DELAY(1);
425 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
426 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
427 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
428 			break;
429 		}
430 	}
431 
432 	if (i == MSK_TIMEOUT) {
433 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
434 		val = 0;
435 	}
436 
437 	return (val);
438 }
439 
440 static int
441 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
442 {
443 	struct msk_if_softc *sc_if;
444 
445 	if (phy != PHY_ADDR_MARV)
446 		return (0);
447 
448 	sc_if = device_get_softc(dev);
449 
450 	return (msk_phy_writereg(sc_if, phy, reg, val));
451 }
452 
453 static int
454 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
455 {
456 	struct msk_softc *sc;
457 	int i;
458 
459 	sc = sc_if->msk_softc;
460 
461 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
462         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
463 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
464 	for (i = 0; i < MSK_TIMEOUT; i++) {
465 		DELAY(1);
466 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
467 		    GM_SMI_CT_BUSY) == 0)
468 			break;
469 	}
470 	if (i == MSK_TIMEOUT)
471 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
472 
473 	return (0);
474 }
475 
476 static void
477 msk_miibus_statchg(device_t dev)
478 {
479 	struct msk_softc *sc;
480 	struct msk_if_softc *sc_if;
481 	struct mii_data *mii;
482 	struct ifnet *ifp;
483 	uint32_t gmac;
484 
485 	sc_if = device_get_softc(dev);
486 	sc = sc_if->msk_softc;
487 
488 	MSK_IF_LOCK_ASSERT(sc_if);
489 
490 	mii = device_get_softc(sc_if->msk_miibus);
491 	ifp = sc_if->msk_ifp;
492 	if (mii == NULL || ifp == NULL ||
493 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
494 		return;
495 
496 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
497 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
498 	    (IFM_AVALID | IFM_ACTIVE)) {
499 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
500 		case IFM_10_T:
501 		case IFM_100_TX:
502 			sc_if->msk_flags |= MSK_FLAG_LINK;
503 			break;
504 		case IFM_1000_T:
505 		case IFM_1000_SX:
506 		case IFM_1000_LX:
507 		case IFM_1000_CX:
508 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
509 				sc_if->msk_flags |= MSK_FLAG_LINK;
510 			break;
511 		default:
512 			break;
513 		}
514 	}
515 
516 	if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) {
517 		/* Enable Tx FIFO Underrun. */
518 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
519 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
520 		/*
521 		 * Because mii(4) notify msk(4) that it detected link status
522 		 * change, there is no need to enable automatic
523 		 * speed/flow-control/duplex updates.
524 		 */
525 		gmac = GM_GPCR_AU_ALL_DIS;
526 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
527 		case IFM_1000_SX:
528 		case IFM_1000_T:
529 			gmac |= GM_GPCR_SPEED_1000;
530 			break;
531 		case IFM_100_TX:
532 			gmac |= GM_GPCR_SPEED_100;
533 			break;
534 		case IFM_10_T:
535 			break;
536 		}
537 
538 		/* Disable Rx flow control. */
539 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLAG0) == 0)
540 			gmac |= GM_GPCR_FC_RX_DIS;
541 		/* Disable Tx flow control. */
542 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLAG1) == 0)
543 			gmac |= GM_GPCR_FC_TX_DIS;
544 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
545 			gmac |= GM_GPCR_DUP_FULL;
546 		else
547 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
548 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
549 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
550 		/* Read again to ensure writing. */
551 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
552 		gmac = GMC_PAUSE_OFF;
553 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
554 			if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLAG0) != 0)
555 				gmac = GMC_PAUSE_ON;
556 		}
557 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
558 
559 		/* Enable PHY interrupt for FIFO underrun/overflow. */
560 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
561 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
562 	} else {
563 		/*
564 		 * Link state changed to down.
565 		 * Disable PHY interrupts.
566 		 */
567 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
568 		/* Disable Rx/Tx MAC. */
569 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
570 		if ((GM_GPCR_RX_ENA | GM_GPCR_TX_ENA) != 0) {
571 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
572 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
573 			/* Read again to ensure writing. */
574 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
575 		}
576 	}
577 }
578 
579 static void
580 msk_rxfilter(struct msk_if_softc *sc_if)
581 {
582 	struct msk_softc *sc;
583 	struct ifnet *ifp;
584 	struct ifmultiaddr *ifma;
585 	uint32_t mchash[2];
586 	uint32_t crc;
587 	uint16_t mode;
588 
589 	sc = sc_if->msk_softc;
590 
591 	MSK_IF_LOCK_ASSERT(sc_if);
592 
593 	ifp = sc_if->msk_ifp;
594 
595 	bzero(mchash, sizeof(mchash));
596 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
597 	if ((ifp->if_flags & IFF_PROMISC) != 0)
598 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
599 	else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
600 		mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
601 		mchash[0] = 0xffff;
602 		mchash[1] = 0xffff;
603 	} else {
604 		mode |= GM_RXCR_UCF_ENA;
605 		if_maddr_rlock(ifp);
606 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
607 			if (ifma->ifma_addr->sa_family != AF_LINK)
608 				continue;
609 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
610 			    ifma->ifma_addr), ETHER_ADDR_LEN);
611 			/* Just want the 6 least significant bits. */
612 			crc &= 0x3f;
613 			/* Set the corresponding bit in the hash table. */
614 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
615 		}
616 		if_maddr_runlock(ifp);
617 		if (mchash[0] != 0 || mchash[1] != 0)
618 			mode |= GM_RXCR_MCF_ENA;
619 	}
620 
621 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
622 	    mchash[0] & 0xffff);
623 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
624 	    (mchash[0] >> 16) & 0xffff);
625 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
626 	    mchash[1] & 0xffff);
627 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
628 	    (mchash[1] >> 16) & 0xffff);
629 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
630 }
631 
632 static void
633 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
634 {
635 	struct msk_softc *sc;
636 
637 	sc = sc_if->msk_softc;
638 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
639 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
640 		    RX_VLAN_STRIP_ON);
641 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
642 		    TX_VLAN_TAG_ON);
643 	} else {
644 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
645 		    RX_VLAN_STRIP_OFF);
646 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
647 		    TX_VLAN_TAG_OFF);
648 	}
649 }
650 
651 static int
652 msk_rx_fill(struct msk_if_softc *sc_if, int jumbo)
653 {
654 	uint16_t idx;
655 	int i;
656 
657 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
658 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
659 		/* Wait until controller executes OP_TCPSTART command. */
660 		for (i = 10; i > 0; i--) {
661 			DELAY(10);
662 			idx = CSR_READ_2(sc_if->msk_softc,
663 			    Y2_PREF_Q_ADDR(sc_if->msk_rxq,
664 			    PREF_UNIT_GET_IDX_REG));
665 			if (idx != 0)
666 				break;
667 		}
668 		if (i == 0) {
669 			device_printf(sc_if->msk_if_dev,
670 			    "prefetch unit stuck?\n");
671 			return (ETIMEDOUT);
672 		}
673 		/*
674 		 * Fill consumed LE with free buffer. This can be done
675 		 * in Rx handler but we don't want to add special code
676 		 * in fast handler.
677 		 */
678 		if (jumbo > 0) {
679 			if (msk_jumbo_newbuf(sc_if, 0) != 0)
680 				return (ENOBUFS);
681 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
682 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
683 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
684 		} else {
685 			if (msk_newbuf(sc_if, 0) != 0)
686 				return (ENOBUFS);
687 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
688 			    sc_if->msk_cdata.msk_rx_ring_map,
689 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
690 		}
691 		sc_if->msk_cdata.msk_rx_prod = 0;
692 		CSR_WRITE_2(sc_if->msk_softc,
693 		    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
694 		    sc_if->msk_cdata.msk_rx_prod);
695 	}
696 	return (0);
697 }
698 
699 static int
700 msk_init_rx_ring(struct msk_if_softc *sc_if)
701 {
702 	struct msk_ring_data *rd;
703 	struct msk_rxdesc *rxd;
704 	int i, prod;
705 
706 	MSK_IF_LOCK_ASSERT(sc_if);
707 
708 	sc_if->msk_cdata.msk_rx_cons = 0;
709 	sc_if->msk_cdata.msk_rx_prod = 0;
710 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
711 
712 	rd = &sc_if->msk_rdata;
713 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
714 	prod = sc_if->msk_cdata.msk_rx_prod;
715 	i = 0;
716 	/* Have controller know how to compute Rx checksum. */
717 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
718 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
719 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
720 		rxd->rx_m = NULL;
721 		rxd->rx_le = &rd->msk_rx_ring[prod];
722 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
723 		    ETHER_HDR_LEN);
724 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
725 		MSK_INC(prod, MSK_RX_RING_CNT);
726 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
727 		i++;
728 	}
729 	for (; i < MSK_RX_RING_CNT; i++) {
730 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
731 		rxd->rx_m = NULL;
732 		rxd->rx_le = &rd->msk_rx_ring[prod];
733 		if (msk_newbuf(sc_if, prod) != 0)
734 			return (ENOBUFS);
735 		MSK_INC(prod, MSK_RX_RING_CNT);
736 	}
737 
738 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
739 	    sc_if->msk_cdata.msk_rx_ring_map,
740 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
741 
742 	/* Update prefetch unit. */
743 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
744 	CSR_WRITE_2(sc_if->msk_softc,
745 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
746 	    sc_if->msk_cdata.msk_rx_prod);
747 	if (msk_rx_fill(sc_if, 0) != 0)
748 		return (ENOBUFS);
749 	return (0);
750 }
751 
752 static int
753 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
754 {
755 	struct msk_ring_data *rd;
756 	struct msk_rxdesc *rxd;
757 	int i, prod;
758 
759 	MSK_IF_LOCK_ASSERT(sc_if);
760 
761 	sc_if->msk_cdata.msk_rx_cons = 0;
762 	sc_if->msk_cdata.msk_rx_prod = 0;
763 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
764 
765 	rd = &sc_if->msk_rdata;
766 	bzero(rd->msk_jumbo_rx_ring,
767 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
768 	prod = sc_if->msk_cdata.msk_rx_prod;
769 	i = 0;
770 	/* Have controller know how to compute Rx checksum. */
771 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
772 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
773 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
774 		rxd->rx_m = NULL;
775 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
776 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
777 		    ETHER_HDR_LEN);
778 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
779 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
780 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
781 		i++;
782 	}
783 	for (; i < MSK_JUMBO_RX_RING_CNT; i++) {
784 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
785 		rxd->rx_m = NULL;
786 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
787 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
788 			return (ENOBUFS);
789 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
790 	}
791 
792 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
793 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
794 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
795 
796 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
797 	CSR_WRITE_2(sc_if->msk_softc,
798 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
799 	    sc_if->msk_cdata.msk_rx_prod);
800 	if (msk_rx_fill(sc_if, 1) != 0)
801 		return (ENOBUFS);
802 	return (0);
803 }
804 
805 static void
806 msk_init_tx_ring(struct msk_if_softc *sc_if)
807 {
808 	struct msk_ring_data *rd;
809 	struct msk_txdesc *txd;
810 	int i;
811 
812 	sc_if->msk_cdata.msk_tso_mtu = 0;
813 	sc_if->msk_cdata.msk_last_csum = 0;
814 	sc_if->msk_cdata.msk_tx_prod = 0;
815 	sc_if->msk_cdata.msk_tx_cons = 0;
816 	sc_if->msk_cdata.msk_tx_cnt = 0;
817 
818 	rd = &sc_if->msk_rdata;
819 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
820 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
821 		txd = &sc_if->msk_cdata.msk_txdesc[i];
822 		txd->tx_m = NULL;
823 		txd->tx_le = &rd->msk_tx_ring[i];
824 	}
825 
826 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
827 	    sc_if->msk_cdata.msk_tx_ring_map,
828 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
829 }
830 
831 static __inline void
832 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
833 {
834 	struct msk_rx_desc *rx_le;
835 	struct msk_rxdesc *rxd;
836 	struct mbuf *m;
837 
838 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
839 	m = rxd->rx_m;
840 	rx_le = rxd->rx_le;
841 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
842 }
843 
844 static __inline void
845 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
846 {
847 	struct msk_rx_desc *rx_le;
848 	struct msk_rxdesc *rxd;
849 	struct mbuf *m;
850 
851 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
852 	m = rxd->rx_m;
853 	rx_le = rxd->rx_le;
854 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
855 }
856 
857 static int
858 msk_newbuf(struct msk_if_softc *sc_if, int idx)
859 {
860 	struct msk_rx_desc *rx_le;
861 	struct msk_rxdesc *rxd;
862 	struct mbuf *m;
863 	bus_dma_segment_t segs[1];
864 	bus_dmamap_t map;
865 	int nsegs;
866 
867 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
868 	if (m == NULL)
869 		return (ENOBUFS);
870 
871 	m->m_len = m->m_pkthdr.len = MCLBYTES;
872 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
873 		m_adj(m, ETHER_ALIGN);
874 #ifndef __NO_STRICT_ALIGNMENT
875 	else
876 		m_adj(m, MSK_RX_BUF_ALIGN);
877 #endif
878 
879 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
880 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
881 	    BUS_DMA_NOWAIT) != 0) {
882 		m_freem(m);
883 		return (ENOBUFS);
884 	}
885 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
886 
887 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
888 	if (rxd->rx_m != NULL) {
889 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
890 		    BUS_DMASYNC_POSTREAD);
891 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
892 	}
893 	map = rxd->rx_dmamap;
894 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
895 	sc_if->msk_cdata.msk_rx_sparemap = map;
896 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
897 	    BUS_DMASYNC_PREREAD);
898 	rxd->rx_m = m;
899 	rx_le = rxd->rx_le;
900 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
901 	rx_le->msk_control =
902 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
903 
904 	return (0);
905 }
906 
907 static int
908 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
909 {
910 	struct msk_rx_desc *rx_le;
911 	struct msk_rxdesc *rxd;
912 	struct mbuf *m;
913 	bus_dma_segment_t segs[1];
914 	bus_dmamap_t map;
915 	int nsegs;
916 
917 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
918 	if (m == NULL)
919 		return (ENOBUFS);
920 	if ((m->m_flags & M_EXT) == 0) {
921 		m_freem(m);
922 		return (ENOBUFS);
923 	}
924 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
925 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
926 		m_adj(m, ETHER_ALIGN);
927 #ifndef __NO_STRICT_ALIGNMENT
928 	else
929 		m_adj(m, MSK_RX_BUF_ALIGN);
930 #endif
931 
932 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
933 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
934 	    BUS_DMA_NOWAIT) != 0) {
935 		m_freem(m);
936 		return (ENOBUFS);
937 	}
938 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
939 
940 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
941 	if (rxd->rx_m != NULL) {
942 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
943 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
944 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
945 		    rxd->rx_dmamap);
946 	}
947 	map = rxd->rx_dmamap;
948 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
949 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
950 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
951 	    BUS_DMASYNC_PREREAD);
952 	rxd->rx_m = m;
953 	rx_le = rxd->rx_le;
954 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
955 	rx_le->msk_control =
956 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
957 
958 	return (0);
959 }
960 
961 /*
962  * Set media options.
963  */
964 static int
965 msk_mediachange(struct ifnet *ifp)
966 {
967 	struct msk_if_softc *sc_if;
968 	struct mii_data	*mii;
969 	int error;
970 
971 	sc_if = ifp->if_softc;
972 
973 	MSK_IF_LOCK(sc_if);
974 	mii = device_get_softc(sc_if->msk_miibus);
975 	error = mii_mediachg(mii);
976 	MSK_IF_UNLOCK(sc_if);
977 
978 	return (error);
979 }
980 
981 /*
982  * Report current media status.
983  */
984 static void
985 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
986 {
987 	struct msk_if_softc *sc_if;
988 	struct mii_data	*mii;
989 
990 	sc_if = ifp->if_softc;
991 	MSK_IF_LOCK(sc_if);
992 	if ((ifp->if_flags & IFF_UP) == 0) {
993 		MSK_IF_UNLOCK(sc_if);
994 		return;
995 	}
996 	mii = device_get_softc(sc_if->msk_miibus);
997 
998 	mii_pollstat(mii);
999 	MSK_IF_UNLOCK(sc_if);
1000 	ifmr->ifm_active = mii->mii_media_active;
1001 	ifmr->ifm_status = mii->mii_media_status;
1002 }
1003 
1004 static int
1005 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1006 {
1007 	struct msk_if_softc *sc_if;
1008 	struct ifreq *ifr;
1009 	struct mii_data	*mii;
1010 	int error, mask, reinit;
1011 
1012 	sc_if = ifp->if_softc;
1013 	ifr = (struct ifreq *)data;
1014 	error = 0;
1015 
1016 	switch(command) {
1017 	case SIOCSIFMTU:
1018 		MSK_IF_LOCK(sc_if);
1019 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
1020 			error = EINVAL;
1021 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1022  			if (ifr->ifr_mtu > ETHERMTU) {
1023 				if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
1024 					error = EINVAL;
1025 					MSK_IF_UNLOCK(sc_if);
1026 					break;
1027 				}
1028 				if ((sc_if->msk_flags &
1029 				    MSK_FLAG_JUMBO_NOCSUM) != 0) {
1030 					ifp->if_hwassist &=
1031 					    ~(MSK_CSUM_FEATURES | CSUM_TSO);
1032 					ifp->if_capenable &=
1033 					    ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1034 					VLAN_CAPABILITIES(ifp);
1035 				}
1036 			}
1037 			ifp->if_mtu = ifr->ifr_mtu;
1038 			msk_init_locked(sc_if);
1039 		}
1040 		MSK_IF_UNLOCK(sc_if);
1041 		break;
1042 	case SIOCSIFFLAGS:
1043 		MSK_IF_LOCK(sc_if);
1044 		if ((ifp->if_flags & IFF_UP) != 0) {
1045 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1046 			    ((ifp->if_flags ^ sc_if->msk_if_flags) &
1047 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1048 				msk_rxfilter(sc_if);
1049 			else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0)
1050 				msk_init_locked(sc_if);
1051 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1052 			msk_stop(sc_if);
1053 		sc_if->msk_if_flags = ifp->if_flags;
1054 		MSK_IF_UNLOCK(sc_if);
1055 		break;
1056 	case SIOCADDMULTI:
1057 	case SIOCDELMULTI:
1058 		MSK_IF_LOCK(sc_if);
1059 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1060 			msk_rxfilter(sc_if);
1061 		MSK_IF_UNLOCK(sc_if);
1062 		break;
1063 	case SIOCGIFMEDIA:
1064 	case SIOCSIFMEDIA:
1065 		mii = device_get_softc(sc_if->msk_miibus);
1066 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1067 		break;
1068 	case SIOCSIFCAP:
1069 		reinit = 0;
1070 		MSK_IF_LOCK(sc_if);
1071 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1072 		if ((mask & IFCAP_TXCSUM) != 0 &&
1073 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1074 			ifp->if_capenable ^= IFCAP_TXCSUM;
1075 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
1076 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
1077 			else
1078 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
1079 		}
1080 		if ((mask & IFCAP_RXCSUM) != 0 &&
1081 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
1082 			ifp->if_capenable ^= IFCAP_RXCSUM;
1083 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1084 				reinit = 1;
1085 		}
1086 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1087 		    (IFCAP_VLAN_HWCSUM & ifp->if_capabilities) != 0)
1088 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1089 		if ((mask & IFCAP_TSO4) != 0 &&
1090 		    (IFCAP_TSO4 & ifp->if_capabilities) != 0) {
1091 			ifp->if_capenable ^= IFCAP_TSO4;
1092 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1093 				ifp->if_hwassist |= CSUM_TSO;
1094 			else
1095 				ifp->if_hwassist &= ~CSUM_TSO;
1096 		}
1097 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1098 		    (IFCAP_VLAN_HWTSO & ifp->if_capabilities) != 0)
1099 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1100 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1101 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
1102 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1103 			if ((IFCAP_VLAN_HWTAGGING & ifp->if_capenable) == 0)
1104 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1105 			msk_setvlan(sc_if, ifp);
1106 		}
1107 		if (ifp->if_mtu > ETHERMTU &&
1108 		    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
1109 			ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
1110 			ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1111 		}
1112 		VLAN_CAPABILITIES(ifp);
1113 		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1114 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1115 			msk_init_locked(sc_if);
1116 		}
1117 		MSK_IF_UNLOCK(sc_if);
1118 		break;
1119 	default:
1120 		error = ether_ioctl(ifp, command, data);
1121 		break;
1122 	}
1123 
1124 	return (error);
1125 }
1126 
1127 static int
1128 mskc_probe(device_t dev)
1129 {
1130 	struct msk_product *mp;
1131 	uint16_t vendor, devid;
1132 	int i;
1133 
1134 	vendor = pci_get_vendor(dev);
1135 	devid = pci_get_device(dev);
1136 	mp = msk_products;
1137 	for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
1138 	    i++, mp++) {
1139 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1140 			device_set_desc(dev, mp->msk_name);
1141 			return (BUS_PROBE_DEFAULT);
1142 		}
1143 	}
1144 
1145 	return (ENXIO);
1146 }
1147 
1148 static int
1149 mskc_setup_rambuffer(struct msk_softc *sc)
1150 {
1151 	int next;
1152 	int i;
1153 
1154 	/* Get adapter SRAM size. */
1155 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1156 	if (bootverbose)
1157 		device_printf(sc->msk_dev,
1158 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1159 	if (sc->msk_ramsize == 0)
1160 		return (0);
1161 
1162 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1163 	/*
1164 	 * Give receiver 2/3 of memory and round down to the multiple
1165 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
1166 	 * of 1024.
1167 	 */
1168 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1169 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1170 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1171 		sc->msk_rxqstart[i] = next;
1172 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1173 		next = sc->msk_rxqend[i] + 1;
1174 		sc->msk_txqstart[i] = next;
1175 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1176 		next = sc->msk_txqend[i] + 1;
1177 		if (bootverbose) {
1178 			device_printf(sc->msk_dev,
1179 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1180 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1181 			    sc->msk_rxqend[i]);
1182 			device_printf(sc->msk_dev,
1183 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1184 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1185 			    sc->msk_txqend[i]);
1186 		}
1187 	}
1188 
1189 	return (0);
1190 }
1191 
1192 static void
1193 msk_phy_power(struct msk_softc *sc, int mode)
1194 {
1195 	uint32_t our, val;
1196 	int i;
1197 
1198 	switch (mode) {
1199 	case MSK_PHY_POWERUP:
1200 		/* Switch power to VCC (WA for VAUX problem). */
1201 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1202 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1203 		/* Disable Core Clock Division, set Clock Select to 0. */
1204 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1205 
1206 		val = 0;
1207 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1208 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1209 			/* Enable bits are inverted. */
1210 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1211 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1212 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1213 		}
1214 		/*
1215 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1216 		 */
1217 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1218 
1219 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1220 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1221 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1222 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1223 				/* Deassert Low Power for 1st PHY. */
1224 				val |= PCI_Y2_PHY1_COMA;
1225 				if (sc->msk_num_port > 1)
1226 					val |= PCI_Y2_PHY2_COMA;
1227 			}
1228 		}
1229 		/* Release PHY from PowerDown/COMA mode. */
1230 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1231 		switch (sc->msk_hw_id) {
1232 		case CHIP_ID_YUKON_EC_U:
1233 		case CHIP_ID_YUKON_EX:
1234 		case CHIP_ID_YUKON_FE_P:
1235 		case CHIP_ID_YUKON_UL_2:
1236 		case CHIP_ID_YUKON_OPT:
1237 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_OFF);
1238 
1239 			/* Enable all clocks. */
1240 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1241 			our = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1242 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1243 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1244 			/* Set all bits to 0 except bits 15..12. */
1245 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, our);
1246 			our = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1247 			our &= PCI_CTL_TIM_VMAIN_AV_MSK;
1248 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, our);
1249 			CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1250 			/*
1251 			 * Disable status race, workaround for
1252 			 * Yukon EC Ultra & Yukon EX.
1253 			 */
1254 			val = CSR_READ_4(sc, B2_GP_IO);
1255 			val |= GLB_GPIO_STAT_RACE_DIS;
1256 			CSR_WRITE_4(sc, B2_GP_IO, val);
1257 			CSR_READ_4(sc, B2_GP_IO);
1258 			break;
1259 		default:
1260 			break;
1261 		}
1262 		for (i = 0; i < sc->msk_num_port; i++) {
1263 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1264 			    GMLC_RST_SET);
1265 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1266 			    GMLC_RST_CLR);
1267 		}
1268 		break;
1269 	case MSK_PHY_POWERDOWN:
1270 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1271 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1272 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1273 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1274 			val &= ~PCI_Y2_PHY1_COMA;
1275 			if (sc->msk_num_port > 1)
1276 				val &= ~PCI_Y2_PHY2_COMA;
1277 		}
1278 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1279 
1280 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1281 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1282 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1283 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1284 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1285 			/* Enable bits are inverted. */
1286 			val = 0;
1287 		}
1288 		/*
1289 		 * Disable PCI & Core Clock, disable clock gating for
1290 		 * both Links.
1291 		 */
1292 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1293 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1294 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1295 		break;
1296 	default:
1297 		break;
1298 	}
1299 }
1300 
1301 static void
1302 mskc_reset(struct msk_softc *sc)
1303 {
1304 	bus_addr_t addr;
1305 	uint16_t status;
1306 	uint32_t val;
1307 	int i;
1308 
1309 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1310 
1311 	/* Disable ASF. */
1312 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX) {
1313 		status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1314 		/* Clear AHB bridge & microcontroller reset. */
1315 		status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1316 		    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1317 		/* Clear ASF microcontroller state. */
1318 		status &= ~ Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1319 		CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1320 	} else
1321 		CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1322 	CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1323 
1324 	/*
1325 	 * Since we disabled ASF, S/W reset is required for Power Management.
1326 	 */
1327 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1328 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1329 
1330 	/* Clear all error bits in the PCI status register. */
1331 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1332 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1333 
1334 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1335 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1336 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1337 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1338 
1339 	switch (sc->msk_bustype) {
1340 	case MSK_PEX_BUS:
1341 		/* Clear all PEX errors. */
1342 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1343 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1344 		if ((val & PEX_RX_OV) != 0) {
1345 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1346 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1347 		}
1348 		break;
1349 	case MSK_PCI_BUS:
1350 	case MSK_PCIX_BUS:
1351 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1352 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1353 		if (val == 0)
1354 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1355 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1356 			/* Set Cache Line Size opt. */
1357 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1358 			val |= PCI_CLS_OPT;
1359 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1360 		}
1361 		break;
1362 	}
1363 	/* Set PHY power state. */
1364 	msk_phy_power(sc, MSK_PHY_POWERUP);
1365 
1366 	/* Reset GPHY/GMAC Control */
1367 	for (i = 0; i < sc->msk_num_port; i++) {
1368 		/* GPHY Control reset. */
1369 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1370 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1371 		/* GMAC Control reset. */
1372 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1373 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1374 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1375 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX)
1376 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1377 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1378 			    GMC_BYP_RETR_ON);
1379 	}
1380 	if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) {
1381 		/* Disable PCIe PHY powerdown(reg 0x80, bit7). */
1382 		CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080);
1383 	}
1384 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1385 
1386 	/* LED On. */
1387 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1388 
1389 	/* Clear TWSI IRQ. */
1390 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1391 
1392 	/* Turn off hardware timer. */
1393 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1394 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1395 
1396 	/* Turn off descriptor polling. */
1397 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1398 
1399 	/* Turn off time stamps. */
1400 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1401 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1402 
1403 	/* Configure timeout values. */
1404 	for (i = 0; i < sc->msk_num_port; i++) {
1405 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1406 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1407 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1408 		    MSK_RI_TO_53);
1409 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1410 		    MSK_RI_TO_53);
1411 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1412 		    MSK_RI_TO_53);
1413 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1414 		    MSK_RI_TO_53);
1415 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1416 		    MSK_RI_TO_53);
1417 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1418 		    MSK_RI_TO_53);
1419 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1420 		    MSK_RI_TO_53);
1421 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1422 		    MSK_RI_TO_53);
1423 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1424 		    MSK_RI_TO_53);
1425 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1426 		    MSK_RI_TO_53);
1427 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1428 		    MSK_RI_TO_53);
1429 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1430 		    MSK_RI_TO_53);
1431 	}
1432 
1433 	/* Disable all interrupts. */
1434 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1435 	CSR_READ_4(sc, B0_HWE_IMSK);
1436 	CSR_WRITE_4(sc, B0_IMSK, 0);
1437 	CSR_READ_4(sc, B0_IMSK);
1438 
1439         /*
1440          * On dual port PCI-X card, there is an problem where status
1441          * can be received out of order due to split transactions.
1442          */
1443 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1444 		uint16_t pcix_cmd;
1445 
1446 		pcix_cmd = pci_read_config(sc->msk_dev,
1447 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1448 		/* Clear Max Outstanding Split Transactions. */
1449 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1450 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1451 		pci_write_config(sc->msk_dev,
1452 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1453 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1454         }
1455 	if (sc->msk_expcap != 0) {
1456 		/* Change Max. Read Request Size to 2048 bytes. */
1457 		if (pci_get_max_read_req(sc->msk_dev) == 512)
1458 			pci_set_max_read_req(sc->msk_dev, 2048);
1459 	}
1460 
1461 	/* Clear status list. */
1462 	bzero(sc->msk_stat_ring,
1463 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1464 	sc->msk_stat_cons = 0;
1465 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1466 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1467 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1468 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1469 	/* Set the status list base address. */
1470 	addr = sc->msk_stat_ring_paddr;
1471 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1472 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1473 	/* Set the status list last index. */
1474 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1475 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1476 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1477 		/* WA for dev. #4.3 */
1478 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1479 		/* WA for dev. #4.18 */
1480 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1481 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1482 	} else {
1483 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1484 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1485 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1486 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1487 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1488 		else
1489 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1490 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1491 	}
1492 	/*
1493 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1494 	 */
1495 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1496 
1497 	/* Enable status unit. */
1498 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1499 
1500 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1501 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1502 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1503 }
1504 
1505 static int
1506 msk_probe(device_t dev)
1507 {
1508 	struct msk_softc *sc;
1509 	char desc[100];
1510 
1511 	sc = device_get_softc(device_get_parent(dev));
1512 	/*
1513 	 * Not much to do here. We always know there will be
1514 	 * at least one GMAC present, and if there are two,
1515 	 * mskc_attach() will create a second device instance
1516 	 * for us.
1517 	 */
1518 	snprintf(desc, sizeof(desc),
1519 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1520 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1521 	    sc->msk_hw_rev);
1522 	device_set_desc_copy(dev, desc);
1523 
1524 	return (BUS_PROBE_DEFAULT);
1525 }
1526 
1527 static int
1528 msk_attach(device_t dev)
1529 {
1530 	struct msk_softc *sc;
1531 	struct msk_if_softc *sc_if;
1532 	struct ifnet *ifp;
1533 	struct msk_mii_data *mmd;
1534 	int i, port, error;
1535 	uint8_t eaddr[6];
1536 
1537 	if (dev == NULL)
1538 		return (EINVAL);
1539 
1540 	error = 0;
1541 	sc_if = device_get_softc(dev);
1542 	sc = device_get_softc(device_get_parent(dev));
1543 	mmd = device_get_ivars(dev);
1544 	port = mmd->port;
1545 
1546 	sc_if->msk_if_dev = dev;
1547 	sc_if->msk_port = port;
1548 	sc_if->msk_softc = sc;
1549 	sc_if->msk_flags = sc->msk_pflags;
1550 	sc->msk_if[port] = sc_if;
1551 	/* Setup Tx/Rx queue register offsets. */
1552 	if (port == MSK_PORT_A) {
1553 		sc_if->msk_txq = Q_XA1;
1554 		sc_if->msk_txsq = Q_XS1;
1555 		sc_if->msk_rxq = Q_R1;
1556 	} else {
1557 		sc_if->msk_txq = Q_XA2;
1558 		sc_if->msk_txsq = Q_XS2;
1559 		sc_if->msk_rxq = Q_R2;
1560 	}
1561 
1562 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1563 	msk_sysctl_node(sc_if);
1564 
1565 	if ((error = msk_txrx_dma_alloc(sc_if) != 0))
1566 		goto fail;
1567 	msk_rx_dma_jalloc(sc_if);
1568 
1569 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1570 	if (ifp == NULL) {
1571 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1572 		error = ENOSPC;
1573 		goto fail;
1574 	}
1575 	ifp->if_softc = sc_if;
1576 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1577 	ifp->if_mtu = ETHERMTU;
1578 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1579 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1580 	/*
1581 	 * Enable Rx checksum offloading if controller supports
1582 	 * new descriptor formant and controller is not Yukon XL.
1583 	 */
1584 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
1585 	    sc->msk_hw_id != CHIP_ID_YUKON_XL)
1586 		ifp->if_capabilities |= IFCAP_RXCSUM;
1587 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1588 	    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1589 		ifp->if_capabilities |= IFCAP_RXCSUM;
1590 	ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1591 	ifp->if_capenable = ifp->if_capabilities;
1592 	ifp->if_ioctl = msk_ioctl;
1593 	ifp->if_start = msk_start;
1594 	ifp->if_init = msk_init;
1595 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1596 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1597 	IFQ_SET_READY(&ifp->if_snd);
1598 	/*
1599 	 * Get station address for this interface. Note that
1600 	 * dual port cards actually come with three station
1601 	 * addresses: one for each port, plus an extra. The
1602 	 * extra one is used by the SysKonnect driver software
1603 	 * as a 'virtual' station address for when both ports
1604 	 * are operating in failover mode. Currently we don't
1605 	 * use this extra address.
1606 	 */
1607 	MSK_IF_LOCK(sc_if);
1608 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1609 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1610 
1611 	/*
1612 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1613 	 */
1614 	MSK_IF_UNLOCK(sc_if);
1615 	ether_ifattach(ifp, eaddr);
1616 	MSK_IF_LOCK(sc_if);
1617 
1618 	/* VLAN capability setup */
1619 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1620 	if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) {
1621 		/*
1622 		 * Due to Tx checksum offload hardware bugs, msk(4) manually
1623 		 * computes checksum for short frames. For VLAN tagged frames
1624 		 * this workaround does not work so disable checksum offload
1625 		 * for VLAN interface.
1626 		 */
1627         	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO;
1628 		/*
1629 		 * Enable Rx checksum offloading for VLAN taggedd frames
1630 		 * if controller support new descriptor format.
1631 		 */
1632 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1633 		    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1634 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1635 	}
1636 	ifp->if_capenable = ifp->if_capabilities;
1637 
1638 	/*
1639 	 * Tell the upper layer(s) we support long frames.
1640 	 * Must appear after the call to ether_ifattach() because
1641 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1642 	 */
1643         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1644 
1645 	/*
1646 	 * Do miibus setup.
1647 	 */
1648 	MSK_IF_UNLOCK(sc_if);
1649 	error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
1650 	    msk_mediastatus);
1651 	if (error != 0) {
1652 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1653 		ether_ifdetach(ifp);
1654 		error = ENXIO;
1655 		goto fail;
1656 	}
1657 
1658 fail:
1659 	if (error != 0) {
1660 		/* Access should be ok even though lock has been dropped */
1661 		sc->msk_if[port] = NULL;
1662 		msk_detach(dev);
1663 	}
1664 
1665 	return (error);
1666 }
1667 
1668 /*
1669  * Attach the interface. Allocate softc structures, do ifmedia
1670  * setup and ethernet/BPF attach.
1671  */
1672 static int
1673 mskc_attach(device_t dev)
1674 {
1675 	struct msk_softc *sc;
1676 	struct msk_mii_data *mmd;
1677 	int error, msic, msir, reg;
1678 
1679 	sc = device_get_softc(dev);
1680 	sc->msk_dev = dev;
1681 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1682 	    MTX_DEF);
1683 
1684 	/*
1685 	 * Map control/status registers.
1686 	 */
1687 	pci_enable_busmaster(dev);
1688 
1689 	/* Allocate I/O resource */
1690 #ifdef MSK_USEIOSPACE
1691 	sc->msk_res_spec = msk_res_spec_io;
1692 #else
1693 	sc->msk_res_spec = msk_res_spec_mem;
1694 #endif
1695 	sc->msk_irq_spec = msk_irq_spec_legacy;
1696 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1697 	if (error) {
1698 		if (sc->msk_res_spec == msk_res_spec_mem)
1699 			sc->msk_res_spec = msk_res_spec_io;
1700 		else
1701 			sc->msk_res_spec = msk_res_spec_mem;
1702 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1703 		if (error) {
1704 			device_printf(dev, "couldn't allocate %s resources\n",
1705 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1706 			    "I/O");
1707 			mtx_destroy(&sc->msk_mtx);
1708 			return (ENXIO);
1709 		}
1710 	}
1711 
1712 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1713 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1714 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1715 	/* Bail out if chip is not recognized. */
1716 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1717 	    sc->msk_hw_id > CHIP_ID_YUKON_OPT ||
1718 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR ||
1719 	    sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) {
1720 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1721 		    sc->msk_hw_id, sc->msk_hw_rev);
1722 		mtx_destroy(&sc->msk_mtx);
1723 		return (ENXIO);
1724 	}
1725 
1726 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1727 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1728 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1729 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1730 	    "max number of Rx events to process");
1731 
1732 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1733 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1734 	    "process_limit", &sc->msk_process_limit);
1735 	if (error == 0) {
1736 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1737 		    sc->msk_process_limit > MSK_PROC_MAX) {
1738 			device_printf(dev, "process_limit value out of range; "
1739 			    "using default: %d\n", MSK_PROC_DEFAULT);
1740 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1741 		}
1742 	}
1743 
1744 	sc->msk_int_holdoff = MSK_INT_HOLDOFF_DEFAULT;
1745 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
1746 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
1747 	    "int_holdoff", CTLFLAG_RW, &sc->msk_int_holdoff, 0,
1748 	    "Maximum number of time to delay interrupts");
1749 	resource_int_value(device_get_name(dev), device_get_unit(dev),
1750 	    "int_holdoff", &sc->msk_int_holdoff);
1751 
1752 	/* Soft reset. */
1753 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1754 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1755 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1756 	/* Check number of MACs. */
1757 	sc->msk_num_port = 1;
1758 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1759 	    CFG_DUAL_MAC_MSK) {
1760 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1761 			sc->msk_num_port++;
1762 	}
1763 
1764 	/* Check bus type. */
1765 	if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0) {
1766 		sc->msk_bustype = MSK_PEX_BUS;
1767 		sc->msk_expcap = reg;
1768 	} else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0) {
1769 		sc->msk_bustype = MSK_PCIX_BUS;
1770 		sc->msk_pcixcap = reg;
1771 	} else
1772 		sc->msk_bustype = MSK_PCI_BUS;
1773 
1774 	switch (sc->msk_hw_id) {
1775 	case CHIP_ID_YUKON_EC:
1776 		sc->msk_clock = 125;	/* 125 MHz */
1777 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1778 		break;
1779 	case CHIP_ID_YUKON_EC_U:
1780 		sc->msk_clock = 125;	/* 125 MHz */
1781 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM;
1782 		break;
1783 	case CHIP_ID_YUKON_EX:
1784 		sc->msk_clock = 125;	/* 125 MHz */
1785 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1786 		    MSK_FLAG_AUTOTX_CSUM;
1787 		/*
1788 		 * Yukon Extreme seems to have silicon bug for
1789 		 * automatic Tx checksum calculation capability.
1790 		 */
1791 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
1792 			sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM;
1793 		/*
1794 		 * Yukon Extreme A0 could not use store-and-forward
1795 		 * for jumbo frames, so disable Tx checksum
1796 		 * offloading for jumbo frames.
1797 		 */
1798 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
1799 			sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM;
1800 		break;
1801 	case CHIP_ID_YUKON_FE:
1802 		sc->msk_clock = 100;	/* 100 MHz */
1803 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1804 		break;
1805 	case CHIP_ID_YUKON_FE_P:
1806 		sc->msk_clock = 50;	/* 50 MHz */
1807 		sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 |
1808 		    MSK_FLAG_AUTOTX_CSUM;
1809 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1810 			/*
1811 			 * XXX
1812 			 * FE+ A0 has status LE writeback bug so msk(4)
1813 			 * does not rely on status word of received frame
1814 			 * in msk_rxeof() which in turn disables all
1815 			 * hardware assistance bits reported by the status
1816 			 * word as well as validity of the recevied frame.
1817 			 * Just pass received frames to upper stack with
1818 			 * minimal test and let upper stack handle them.
1819 			 */
1820 			sc->msk_pflags |= MSK_FLAG_NOHWVLAN |
1821 			    MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM;
1822 		}
1823 		break;
1824 	case CHIP_ID_YUKON_XL:
1825 		sc->msk_clock = 156;	/* 156 MHz */
1826 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1827 		break;
1828 	case CHIP_ID_YUKON_UL_2:
1829 		sc->msk_clock = 125;	/* 125 MHz */
1830 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1831 		break;
1832 	case CHIP_ID_YUKON_OPT:
1833 		sc->msk_clock = 125;	/* 125 MHz */
1834 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2;
1835 		break;
1836 	default:
1837 		sc->msk_clock = 156;	/* 156 MHz */
1838 		break;
1839 	}
1840 
1841 	/* Allocate IRQ resources. */
1842 	msic = pci_msi_count(dev);
1843 	if (bootverbose)
1844 		device_printf(dev, "MSI count : %d\n", msic);
1845 	if (legacy_intr != 0)
1846 		msi_disable = 1;
1847 	if (msi_disable == 0 && msic > 0) {
1848 		msir = 1;
1849 		if (pci_alloc_msi(dev, &msir) == 0) {
1850 			if (msir == 1) {
1851 				sc->msk_pflags |= MSK_FLAG_MSI;
1852 				sc->msk_irq_spec = msk_irq_spec_msi;
1853 			} else
1854 				pci_release_msi(dev);
1855 		}
1856 	}
1857 
1858 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1859 	if (error) {
1860 		device_printf(dev, "couldn't allocate IRQ resources\n");
1861 		goto fail;
1862 	}
1863 
1864 	if ((error = msk_status_dma_alloc(sc)) != 0)
1865 		goto fail;
1866 
1867 	/* Set base interrupt mask. */
1868 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1869 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1870 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1871 
1872 	/* Reset the adapter. */
1873 	mskc_reset(sc);
1874 
1875 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1876 		goto fail;
1877 
1878 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1879 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1880 		device_printf(dev, "failed to add child for PORT_A\n");
1881 		error = ENXIO;
1882 		goto fail;
1883 	}
1884 	mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1885 	if (mmd == NULL) {
1886 		device_printf(dev, "failed to allocate memory for "
1887 		    "ivars of PORT_A\n");
1888 		error = ENXIO;
1889 		goto fail;
1890 	}
1891 	mmd->port = MSK_PORT_A;
1892 	mmd->pmd = sc->msk_pmd;
1893 	 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S' || sc->msk_pmd == 'P')
1894 		mmd->mii_flags |= MIIF_HAVEFIBER;
1895 	device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd);
1896 
1897 	if (sc->msk_num_port > 1) {
1898 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1899 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1900 			device_printf(dev, "failed to add child for PORT_B\n");
1901 			error = ENXIO;
1902 			goto fail;
1903 		}
1904 		mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1905 		if (mmd == NULL) {
1906 			device_printf(dev, "failed to allocate memory for "
1907 			    "ivars of PORT_B\n");
1908 			error = ENXIO;
1909 			goto fail;
1910 		}
1911 		mmd->port = MSK_PORT_B;
1912 		mmd->pmd = sc->msk_pmd;
1913 	 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S' || sc->msk_pmd == 'P')
1914 			mmd->mii_flags |= MIIF_HAVEFIBER;
1915 		device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd);
1916 	}
1917 
1918 	error = bus_generic_attach(dev);
1919 	if (error) {
1920 		device_printf(dev, "failed to attach port(s)\n");
1921 		goto fail;
1922 	}
1923 
1924 	/* Hook interrupt last to avoid having to lock softc. */
1925 	error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1926 	    INTR_MPSAFE, NULL, msk_intr, sc, &sc->msk_intrhand);
1927 	if (error != 0) {
1928 		device_printf(dev, "couldn't set up interrupt handler\n");
1929 		goto fail;
1930 	}
1931 fail:
1932 	if (error != 0)
1933 		mskc_detach(dev);
1934 
1935 	return (error);
1936 }
1937 
1938 /*
1939  * Shutdown hardware and free up resources. This can be called any
1940  * time after the mutex has been initialized. It is called in both
1941  * the error case in attach and the normal detach case so it needs
1942  * to be careful about only freeing resources that have actually been
1943  * allocated.
1944  */
1945 static int
1946 msk_detach(device_t dev)
1947 {
1948 	struct msk_softc *sc;
1949 	struct msk_if_softc *sc_if;
1950 	struct ifnet *ifp;
1951 
1952 	sc_if = device_get_softc(dev);
1953 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
1954 	    ("msk mutex not initialized in msk_detach"));
1955 	MSK_IF_LOCK(sc_if);
1956 
1957 	ifp = sc_if->msk_ifp;
1958 	if (device_is_attached(dev)) {
1959 		/* XXX */
1960 		sc_if->msk_flags |= MSK_FLAG_DETACH;
1961 		msk_stop(sc_if);
1962 		/* Can't hold locks while calling detach. */
1963 		MSK_IF_UNLOCK(sc_if);
1964 		callout_drain(&sc_if->msk_tick_ch);
1965 		ether_ifdetach(ifp);
1966 		MSK_IF_LOCK(sc_if);
1967 	}
1968 
1969 	/*
1970 	 * We're generally called from mskc_detach() which is using
1971 	 * device_delete_child() to get to here. It's already trashed
1972 	 * miibus for us, so don't do it here or we'll panic.
1973 	 *
1974 	 * if (sc_if->msk_miibus != NULL) {
1975 	 * 	device_delete_child(dev, sc_if->msk_miibus);
1976 	 * 	sc_if->msk_miibus = NULL;
1977 	 * }
1978 	 */
1979 
1980 	msk_rx_dma_jfree(sc_if);
1981 	msk_txrx_dma_free(sc_if);
1982 	bus_generic_detach(dev);
1983 
1984 	if (ifp)
1985 		if_free(ifp);
1986 	sc = sc_if->msk_softc;
1987 	sc->msk_if[sc_if->msk_port] = NULL;
1988 	MSK_IF_UNLOCK(sc_if);
1989 
1990 	return (0);
1991 }
1992 
1993 static int
1994 mskc_detach(device_t dev)
1995 {
1996 	struct msk_softc *sc;
1997 
1998 	sc = device_get_softc(dev);
1999 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
2000 
2001 	if (device_is_alive(dev)) {
2002 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
2003 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
2004 			    M_DEVBUF);
2005 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
2006 		}
2007 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
2008 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
2009 			    M_DEVBUF);
2010 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
2011 		}
2012 		bus_generic_detach(dev);
2013 	}
2014 
2015 	/* Disable all interrupts. */
2016 	CSR_WRITE_4(sc, B0_IMSK, 0);
2017 	CSR_READ_4(sc, B0_IMSK);
2018 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2019 	CSR_READ_4(sc, B0_HWE_IMSK);
2020 
2021 	/* LED Off. */
2022 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
2023 
2024 	/* Put hardware reset. */
2025 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2026 
2027 	msk_status_dma_free(sc);
2028 
2029 	if (sc->msk_intrhand) {
2030 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand);
2031 		sc->msk_intrhand = NULL;
2032 	}
2033 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
2034 	if ((sc->msk_pflags & MSK_FLAG_MSI) != 0)
2035 		pci_release_msi(dev);
2036 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
2037 	mtx_destroy(&sc->msk_mtx);
2038 
2039 	return (0);
2040 }
2041 
2042 struct msk_dmamap_arg {
2043 	bus_addr_t	msk_busaddr;
2044 };
2045 
2046 static void
2047 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2048 {
2049 	struct msk_dmamap_arg *ctx;
2050 
2051 	if (error != 0)
2052 		return;
2053 	ctx = arg;
2054 	ctx->msk_busaddr = segs[0].ds_addr;
2055 }
2056 
2057 /* Create status DMA region. */
2058 static int
2059 msk_status_dma_alloc(struct msk_softc *sc)
2060 {
2061 	struct msk_dmamap_arg ctx;
2062 	int error;
2063 
2064 	error = bus_dma_tag_create(
2065 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
2066 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
2067 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2068 		    BUS_SPACE_MAXADDR,		/* highaddr */
2069 		    NULL, NULL,			/* filter, filterarg */
2070 		    MSK_STAT_RING_SZ,		/* maxsize */
2071 		    1,				/* nsegments */
2072 		    MSK_STAT_RING_SZ,		/* maxsegsize */
2073 		    0,				/* flags */
2074 		    NULL, NULL,			/* lockfunc, lockarg */
2075 		    &sc->msk_stat_tag);
2076 	if (error != 0) {
2077 		device_printf(sc->msk_dev,
2078 		    "failed to create status DMA tag\n");
2079 		return (error);
2080 	}
2081 
2082 	/* Allocate DMA'able memory and load the DMA map for status ring. */
2083 	error = bus_dmamem_alloc(sc->msk_stat_tag,
2084 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
2085 	    BUS_DMA_ZERO, &sc->msk_stat_map);
2086 	if (error != 0) {
2087 		device_printf(sc->msk_dev,
2088 		    "failed to allocate DMA'able memory for status ring\n");
2089 		return (error);
2090 	}
2091 
2092 	ctx.msk_busaddr = 0;
2093 	error = bus_dmamap_load(sc->msk_stat_tag,
2094 	    sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
2095 	    msk_dmamap_cb, &ctx, 0);
2096 	if (error != 0) {
2097 		device_printf(sc->msk_dev,
2098 		    "failed to load DMA'able memory for status ring\n");
2099 		return (error);
2100 	}
2101 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
2102 
2103 	return (0);
2104 }
2105 
2106 static void
2107 msk_status_dma_free(struct msk_softc *sc)
2108 {
2109 
2110 	/* Destroy status block. */
2111 	if (sc->msk_stat_tag) {
2112 		if (sc->msk_stat_map) {
2113 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
2114 			if (sc->msk_stat_ring) {
2115 				bus_dmamem_free(sc->msk_stat_tag,
2116 				    sc->msk_stat_ring, sc->msk_stat_map);
2117 				sc->msk_stat_ring = NULL;
2118 			}
2119 			sc->msk_stat_map = NULL;
2120 		}
2121 		bus_dma_tag_destroy(sc->msk_stat_tag);
2122 		sc->msk_stat_tag = NULL;
2123 	}
2124 }
2125 
2126 static int
2127 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2128 {
2129 	struct msk_dmamap_arg ctx;
2130 	struct msk_txdesc *txd;
2131 	struct msk_rxdesc *rxd;
2132 	bus_size_t rxalign;
2133 	int error, i;
2134 
2135 	/* Create parent DMA tag. */
2136 	/*
2137 	 * XXX
2138 	 * It seems that Yukon II supports full 64bits DMA operations. But
2139 	 * it needs two descriptors(list elements) for 64bits DMA operations.
2140 	 * Since we don't know what DMA address mappings(32bits or 64bits)
2141 	 * would be used in advance for each mbufs, we limits its DMA space
2142 	 * to be in range of 32bits address space. Otherwise, we should check
2143 	 * what DMA address is used and chain another descriptor for the
2144 	 * 64bits DMA operation. This also means descriptor ring size is
2145 	 * variable. Limiting DMA address to be in 32bit address space greatly
2146 	 * simplyfies descriptor handling and possibly would increase
2147 	 * performance a bit due to efficient handling of descriptors.
2148 	 * Apart from harassing checksum offloading mechanisms, it seems
2149 	 * it's really bad idea to use a seperate descriptor for 64bit
2150 	 * DMA operation to save small descriptor memory. Anyway, I've
2151 	 * never seen these exotic scheme on ethernet interface hardware.
2152 	 */
2153 	error = bus_dma_tag_create(
2154 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2155 		    1, 0,			/* alignment, boundary */
2156 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2157 		    BUS_SPACE_MAXADDR,		/* highaddr */
2158 		    NULL, NULL,			/* filter, filterarg */
2159 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2160 		    0,				/* nsegments */
2161 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2162 		    0,				/* flags */
2163 		    NULL, NULL,			/* lockfunc, lockarg */
2164 		    &sc_if->msk_cdata.msk_parent_tag);
2165 	if (error != 0) {
2166 		device_printf(sc_if->msk_if_dev,
2167 		    "failed to create parent DMA tag\n");
2168 		goto fail;
2169 	}
2170 	/* Create tag for Tx ring. */
2171 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2172 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2173 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2174 		    BUS_SPACE_MAXADDR,		/* highaddr */
2175 		    NULL, NULL,			/* filter, filterarg */
2176 		    MSK_TX_RING_SZ,		/* maxsize */
2177 		    1,				/* nsegments */
2178 		    MSK_TX_RING_SZ,		/* maxsegsize */
2179 		    0,				/* flags */
2180 		    NULL, NULL,			/* lockfunc, lockarg */
2181 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2182 	if (error != 0) {
2183 		device_printf(sc_if->msk_if_dev,
2184 		    "failed to create Tx ring DMA tag\n");
2185 		goto fail;
2186 	}
2187 
2188 	/* Create tag for Rx ring. */
2189 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2190 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2191 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2192 		    BUS_SPACE_MAXADDR,		/* highaddr */
2193 		    NULL, NULL,			/* filter, filterarg */
2194 		    MSK_RX_RING_SZ,		/* maxsize */
2195 		    1,				/* nsegments */
2196 		    MSK_RX_RING_SZ,		/* maxsegsize */
2197 		    0,				/* flags */
2198 		    NULL, NULL,			/* lockfunc, lockarg */
2199 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2200 	if (error != 0) {
2201 		device_printf(sc_if->msk_if_dev,
2202 		    "failed to create Rx ring DMA tag\n");
2203 		goto fail;
2204 	}
2205 
2206 	/* Create tag for Tx buffers. */
2207 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2208 		    1, 0,			/* alignment, boundary */
2209 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2210 		    BUS_SPACE_MAXADDR,		/* highaddr */
2211 		    NULL, NULL,			/* filter, filterarg */
2212 		    MSK_TSO_MAXSIZE,		/* maxsize */
2213 		    MSK_MAXTXSEGS,		/* nsegments */
2214 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2215 		    0,				/* flags */
2216 		    NULL, NULL,			/* lockfunc, lockarg */
2217 		    &sc_if->msk_cdata.msk_tx_tag);
2218 	if (error != 0) {
2219 		device_printf(sc_if->msk_if_dev,
2220 		    "failed to create Tx DMA tag\n");
2221 		goto fail;
2222 	}
2223 
2224 	rxalign = 1;
2225 	/*
2226 	 * Workaround hardware hang which seems to happen when Rx buffer
2227 	 * is not aligned on multiple of FIFO word(8 bytes).
2228 	 */
2229 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2230 		rxalign = MSK_RX_BUF_ALIGN;
2231 	/* Create tag for Rx buffers. */
2232 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2233 		    rxalign, 0,			/* alignment, boundary */
2234 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2235 		    BUS_SPACE_MAXADDR,		/* highaddr */
2236 		    NULL, NULL,			/* filter, filterarg */
2237 		    MCLBYTES,			/* maxsize */
2238 		    1,				/* nsegments */
2239 		    MCLBYTES,			/* maxsegsize */
2240 		    0,				/* flags */
2241 		    NULL, NULL,			/* lockfunc, lockarg */
2242 		    &sc_if->msk_cdata.msk_rx_tag);
2243 	if (error != 0) {
2244 		device_printf(sc_if->msk_if_dev,
2245 		    "failed to create Rx DMA tag\n");
2246 		goto fail;
2247 	}
2248 
2249 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2250 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2251 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2252 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2253 	if (error != 0) {
2254 		device_printf(sc_if->msk_if_dev,
2255 		    "failed to allocate DMA'able memory for Tx ring\n");
2256 		goto fail;
2257 	}
2258 
2259 	ctx.msk_busaddr = 0;
2260 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2261 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2262 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2263 	if (error != 0) {
2264 		device_printf(sc_if->msk_if_dev,
2265 		    "failed to load DMA'able memory for Tx ring\n");
2266 		goto fail;
2267 	}
2268 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2269 
2270 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2271 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2272 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2273 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2274 	if (error != 0) {
2275 		device_printf(sc_if->msk_if_dev,
2276 		    "failed to allocate DMA'able memory for Rx ring\n");
2277 		goto fail;
2278 	}
2279 
2280 	ctx.msk_busaddr = 0;
2281 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2282 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2283 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2284 	if (error != 0) {
2285 		device_printf(sc_if->msk_if_dev,
2286 		    "failed to load DMA'able memory for Rx ring\n");
2287 		goto fail;
2288 	}
2289 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2290 
2291 	/* Create DMA maps for Tx buffers. */
2292 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2293 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2294 		txd->tx_m = NULL;
2295 		txd->tx_dmamap = NULL;
2296 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2297 		    &txd->tx_dmamap);
2298 		if (error != 0) {
2299 			device_printf(sc_if->msk_if_dev,
2300 			    "failed to create Tx dmamap\n");
2301 			goto fail;
2302 		}
2303 	}
2304 	/* Create DMA maps for Rx buffers. */
2305 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2306 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2307 		device_printf(sc_if->msk_if_dev,
2308 		    "failed to create spare Rx dmamap\n");
2309 		goto fail;
2310 	}
2311 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2312 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2313 		rxd->rx_m = NULL;
2314 		rxd->rx_dmamap = NULL;
2315 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2316 		    &rxd->rx_dmamap);
2317 		if (error != 0) {
2318 			device_printf(sc_if->msk_if_dev,
2319 			    "failed to create Rx dmamap\n");
2320 			goto fail;
2321 		}
2322 	}
2323 
2324 fail:
2325 	return (error);
2326 }
2327 
2328 static int
2329 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2330 {
2331 	struct msk_dmamap_arg ctx;
2332 	struct msk_rxdesc *jrxd;
2333 	bus_size_t rxalign;
2334 	int error, i;
2335 
2336 	if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
2337 		sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2338 		device_printf(sc_if->msk_if_dev,
2339 		    "disabling jumbo frame support\n");
2340 		return (0);
2341 	}
2342 	/* Create tag for jumbo Rx ring. */
2343 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2344 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2345 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2346 		    BUS_SPACE_MAXADDR,		/* highaddr */
2347 		    NULL, NULL,			/* filter, filterarg */
2348 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2349 		    1,				/* nsegments */
2350 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2351 		    0,				/* flags */
2352 		    NULL, NULL,			/* lockfunc, lockarg */
2353 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2354 	if (error != 0) {
2355 		device_printf(sc_if->msk_if_dev,
2356 		    "failed to create jumbo Rx ring DMA tag\n");
2357 		goto jumbo_fail;
2358 	}
2359 
2360 	rxalign = 1;
2361 	/*
2362 	 * Workaround hardware hang which seems to happen when Rx buffer
2363 	 * is not aligned on multiple of FIFO word(8 bytes).
2364 	 */
2365 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2366 		rxalign = MSK_RX_BUF_ALIGN;
2367 	/* Create tag for jumbo Rx buffers. */
2368 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2369 		    rxalign, 0,			/* alignment, boundary */
2370 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2371 		    BUS_SPACE_MAXADDR,		/* highaddr */
2372 		    NULL, NULL,			/* filter, filterarg */
2373 		    MJUM9BYTES,			/* maxsize */
2374 		    1,				/* nsegments */
2375 		    MJUM9BYTES,			/* maxsegsize */
2376 		    0,				/* flags */
2377 		    NULL, NULL,			/* lockfunc, lockarg */
2378 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2379 	if (error != 0) {
2380 		device_printf(sc_if->msk_if_dev,
2381 		    "failed to create jumbo Rx DMA tag\n");
2382 		goto jumbo_fail;
2383 	}
2384 
2385 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2386 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2387 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2388 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2389 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2390 	if (error != 0) {
2391 		device_printf(sc_if->msk_if_dev,
2392 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2393 		goto jumbo_fail;
2394 	}
2395 
2396 	ctx.msk_busaddr = 0;
2397 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2398 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2399 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2400 	    msk_dmamap_cb, &ctx, 0);
2401 	if (error != 0) {
2402 		device_printf(sc_if->msk_if_dev,
2403 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2404 		goto jumbo_fail;
2405 	}
2406 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2407 
2408 	/* Create DMA maps for jumbo Rx buffers. */
2409 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2410 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2411 		device_printf(sc_if->msk_if_dev,
2412 		    "failed to create spare jumbo Rx dmamap\n");
2413 		goto jumbo_fail;
2414 	}
2415 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2416 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2417 		jrxd->rx_m = NULL;
2418 		jrxd->rx_dmamap = NULL;
2419 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2420 		    &jrxd->rx_dmamap);
2421 		if (error != 0) {
2422 			device_printf(sc_if->msk_if_dev,
2423 			    "failed to create jumbo Rx dmamap\n");
2424 			goto jumbo_fail;
2425 		}
2426 	}
2427 
2428 	return (0);
2429 
2430 jumbo_fail:
2431 	msk_rx_dma_jfree(sc_if);
2432 	device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2433 	    "due to resource shortage\n");
2434 	sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2435 	return (error);
2436 }
2437 
2438 static void
2439 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2440 {
2441 	struct msk_txdesc *txd;
2442 	struct msk_rxdesc *rxd;
2443 	int i;
2444 
2445 	/* Tx ring. */
2446 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2447 		if (sc_if->msk_cdata.msk_tx_ring_map)
2448 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2449 			    sc_if->msk_cdata.msk_tx_ring_map);
2450 		if (sc_if->msk_cdata.msk_tx_ring_map &&
2451 		    sc_if->msk_rdata.msk_tx_ring)
2452 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2453 			    sc_if->msk_rdata.msk_tx_ring,
2454 			    sc_if->msk_cdata.msk_tx_ring_map);
2455 		sc_if->msk_rdata.msk_tx_ring = NULL;
2456 		sc_if->msk_cdata.msk_tx_ring_map = NULL;
2457 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2458 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2459 	}
2460 	/* Rx ring. */
2461 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2462 		if (sc_if->msk_cdata.msk_rx_ring_map)
2463 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2464 			    sc_if->msk_cdata.msk_rx_ring_map);
2465 		if (sc_if->msk_cdata.msk_rx_ring_map &&
2466 		    sc_if->msk_rdata.msk_rx_ring)
2467 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2468 			    sc_if->msk_rdata.msk_rx_ring,
2469 			    sc_if->msk_cdata.msk_rx_ring_map);
2470 		sc_if->msk_rdata.msk_rx_ring = NULL;
2471 		sc_if->msk_cdata.msk_rx_ring_map = NULL;
2472 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2473 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2474 	}
2475 	/* Tx buffers. */
2476 	if (sc_if->msk_cdata.msk_tx_tag) {
2477 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2478 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2479 			if (txd->tx_dmamap) {
2480 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2481 				    txd->tx_dmamap);
2482 				txd->tx_dmamap = NULL;
2483 			}
2484 		}
2485 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2486 		sc_if->msk_cdata.msk_tx_tag = NULL;
2487 	}
2488 	/* Rx buffers. */
2489 	if (sc_if->msk_cdata.msk_rx_tag) {
2490 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2491 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2492 			if (rxd->rx_dmamap) {
2493 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2494 				    rxd->rx_dmamap);
2495 				rxd->rx_dmamap = NULL;
2496 			}
2497 		}
2498 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2499 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2500 			    sc_if->msk_cdata.msk_rx_sparemap);
2501 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2502 		}
2503 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2504 		sc_if->msk_cdata.msk_rx_tag = NULL;
2505 	}
2506 	if (sc_if->msk_cdata.msk_parent_tag) {
2507 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2508 		sc_if->msk_cdata.msk_parent_tag = NULL;
2509 	}
2510 }
2511 
2512 static void
2513 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2514 {
2515 	struct msk_rxdesc *jrxd;
2516 	int i;
2517 
2518 	/* Jumbo Rx ring. */
2519 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2520 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2521 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2522 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2523 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2524 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2525 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2526 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2527 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2528 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2529 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2530 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2531 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2532 	}
2533 	/* Jumbo Rx buffers. */
2534 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2535 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2536 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2537 			if (jrxd->rx_dmamap) {
2538 				bus_dmamap_destroy(
2539 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2540 				    jrxd->rx_dmamap);
2541 				jrxd->rx_dmamap = NULL;
2542 			}
2543 		}
2544 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2545 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2546 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2547 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2548 		}
2549 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2550 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2551 	}
2552 }
2553 
2554 static int
2555 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2556 {
2557 	struct msk_txdesc *txd, *txd_last;
2558 	struct msk_tx_desc *tx_le;
2559 	struct mbuf *m;
2560 	bus_dmamap_t map;
2561 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2562 	uint32_t control, csum, prod, si;
2563 	uint16_t offset, tcp_offset, tso_mtu;
2564 	int error, i, nseg, tso;
2565 
2566 	MSK_IF_LOCK_ASSERT(sc_if);
2567 
2568 	tcp_offset = offset = 0;
2569 	m = *m_head;
2570 	if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2571 	    (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) ||
2572 	    ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
2573 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) {
2574 		/*
2575 		 * Since mbuf has no protocol specific structure information
2576 		 * in it we have to inspect protocol information here to
2577 		 * setup TSO and checksum offload. I don't know why Marvell
2578 		 * made a such decision in chip design because other GigE
2579 		 * hardwares normally takes care of all these chores in
2580 		 * hardware. However, TSO performance of Yukon II is very
2581 		 * good such that it's worth to implement it.
2582 		 */
2583 		struct ether_header *eh;
2584 		struct ip *ip;
2585 		struct tcphdr *tcp;
2586 
2587 		if (M_WRITABLE(m) == 0) {
2588 			/* Get a writable copy. */
2589 			m = m_dup(*m_head, M_DONTWAIT);
2590 			m_freem(*m_head);
2591 			if (m == NULL) {
2592 				*m_head = NULL;
2593 				return (ENOBUFS);
2594 			}
2595 			*m_head = m;
2596 		}
2597 
2598 		offset = sizeof(struct ether_header);
2599 		m = m_pullup(m, offset);
2600 		if (m == NULL) {
2601 			*m_head = NULL;
2602 			return (ENOBUFS);
2603 		}
2604 		eh = mtod(m, struct ether_header *);
2605 		/* Check if hardware VLAN insertion is off. */
2606 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2607 			offset = sizeof(struct ether_vlan_header);
2608 			m = m_pullup(m, offset);
2609 			if (m == NULL) {
2610 				*m_head = NULL;
2611 				return (ENOBUFS);
2612 			}
2613 		}
2614 		m = m_pullup(m, offset + sizeof(struct ip));
2615 		if (m == NULL) {
2616 			*m_head = NULL;
2617 			return (ENOBUFS);
2618 		}
2619 		ip = (struct ip *)(mtod(m, char *) + offset);
2620 		offset += (ip->ip_hl << 2);
2621 		tcp_offset = offset;
2622 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2623 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2624 			if (m == NULL) {
2625 				*m_head = NULL;
2626 				return (ENOBUFS);
2627 			}
2628 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2629 			offset += (tcp->th_off << 2);
2630 		} else if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2631 		    (m->m_pkthdr.len < MSK_MIN_FRAMELEN) &&
2632 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2633 			/*
2634 			 * It seems that Yukon II has Tx checksum offload bug
2635 			 * for small TCP packets that's less than 60 bytes in
2636 			 * size (e.g. TCP window probe packet, pure ACK packet).
2637 			 * Common work around like padding with zeros to make
2638 			 * the frame minimum ethernet frame size didn't work at
2639 			 * all.
2640 			 * Instead of disabling checksum offload completely we
2641 			 * resort to S/W checksum routine when we encounter
2642 			 * short TCP frames.
2643 			 * Short UDP packets appear to be handled correctly by
2644 			 * Yukon II. Also I assume this bug does not happen on
2645 			 * controllers that use newer descriptor format or
2646 			 * automatic Tx checksum calaulcation.
2647 			 */
2648 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2649 			if (m == NULL) {
2650 				*m_head = NULL;
2651 				return (ENOBUFS);
2652 			}
2653 			*(uint16_t *)(m->m_data + offset +
2654 			    m->m_pkthdr.csum_data) = in_cksum_skip(m,
2655 			    m->m_pkthdr.len, offset);
2656 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2657 		}
2658 		*m_head = m;
2659 	}
2660 
2661 	prod = sc_if->msk_cdata.msk_tx_prod;
2662 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2663 	txd_last = txd;
2664 	map = txd->tx_dmamap;
2665 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2666 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2667 	if (error == EFBIG) {
2668 		m = m_collapse(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
2669 		if (m == NULL) {
2670 			m_freem(*m_head);
2671 			*m_head = NULL;
2672 			return (ENOBUFS);
2673 		}
2674 		*m_head = m;
2675 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2676 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2677 		if (error != 0) {
2678 			m_freem(*m_head);
2679 			*m_head = NULL;
2680 			return (error);
2681 		}
2682 	} else if (error != 0)
2683 		return (error);
2684 	if (nseg == 0) {
2685 		m_freem(*m_head);
2686 		*m_head = NULL;
2687 		return (EIO);
2688 	}
2689 
2690 	/* Check number of available descriptors. */
2691 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2692 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2693 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2694 		return (ENOBUFS);
2695 	}
2696 
2697 	control = 0;
2698 	tso = 0;
2699 	tx_le = NULL;
2700 
2701 	/* Check TSO support. */
2702 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2703 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2704 			tso_mtu = m->m_pkthdr.tso_segsz;
2705 		else
2706 			tso_mtu = offset + m->m_pkthdr.tso_segsz;
2707 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2708 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2709 			tx_le->msk_addr = htole32(tso_mtu);
2710 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2711 				tx_le->msk_control = htole32(OP_MSS | HW_OWNER);
2712 			else
2713 				tx_le->msk_control =
2714 				    htole32(OP_LRGLEN | HW_OWNER);
2715 			sc_if->msk_cdata.msk_tx_cnt++;
2716 			MSK_INC(prod, MSK_TX_RING_CNT);
2717 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2718 		}
2719 		tso++;
2720 	}
2721 	/* Check if we have a VLAN tag to insert. */
2722 	if ((m->m_flags & M_VLANTAG) != 0) {
2723 		if (tx_le == NULL) {
2724 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2725 			tx_le->msk_addr = htole32(0);
2726 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2727 			    htons(m->m_pkthdr.ether_vtag));
2728 			sc_if->msk_cdata.msk_tx_cnt++;
2729 			MSK_INC(prod, MSK_TX_RING_CNT);
2730 		} else {
2731 			tx_le->msk_control |= htole32(OP_VLAN |
2732 			    htons(m->m_pkthdr.ether_vtag));
2733 		}
2734 		control |= INS_VLAN;
2735 	}
2736 	/* Check if we have to handle checksum offload. */
2737 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2738 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0)
2739 			control |= CALSUM;
2740 		else {
2741 			control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2742 			if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2743 				control |= UDPTCP;
2744 			/* Checksum write position. */
2745 			csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff;
2746 			/* Checksum start position. */
2747 			csum |= (uint32_t)tcp_offset << 16;
2748 			if (csum != sc_if->msk_cdata.msk_last_csum) {
2749 				tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2750 				tx_le->msk_addr = htole32(csum);
2751 				tx_le->msk_control = htole32(1 << 16 |
2752 				    (OP_TCPLISW | HW_OWNER));
2753 				sc_if->msk_cdata.msk_tx_cnt++;
2754 				MSK_INC(prod, MSK_TX_RING_CNT);
2755 				sc_if->msk_cdata.msk_last_csum = csum;
2756 			}
2757 		}
2758 	}
2759 
2760 	si = prod;
2761 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2762 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2763 	if (tso == 0)
2764 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2765 		    OP_PACKET);
2766 	else
2767 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2768 		    OP_LARGESEND);
2769 	sc_if->msk_cdata.msk_tx_cnt++;
2770 	MSK_INC(prod, MSK_TX_RING_CNT);
2771 
2772 	for (i = 1; i < nseg; i++) {
2773 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2774 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2775 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2776 		    OP_BUFFER | HW_OWNER);
2777 		sc_if->msk_cdata.msk_tx_cnt++;
2778 		MSK_INC(prod, MSK_TX_RING_CNT);
2779 	}
2780 	/* Update producer index. */
2781 	sc_if->msk_cdata.msk_tx_prod = prod;
2782 
2783 	/* Set EOP on the last desciptor. */
2784 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2785 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2786 	tx_le->msk_control |= htole32(EOP);
2787 
2788 	/* Turn the first descriptor ownership to hardware. */
2789 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2790 	tx_le->msk_control |= htole32(HW_OWNER);
2791 
2792 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2793 	map = txd_last->tx_dmamap;
2794 	txd_last->tx_dmamap = txd->tx_dmamap;
2795 	txd->tx_dmamap = map;
2796 	txd->tx_m = m;
2797 
2798 	/* Sync descriptors. */
2799 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2800 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2801 	    sc_if->msk_cdata.msk_tx_ring_map,
2802 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2803 
2804 	return (0);
2805 }
2806 
2807 static void
2808 msk_start(struct ifnet *ifp)
2809 {
2810 	struct msk_if_softc *sc_if;
2811 
2812 	sc_if = ifp->if_softc;
2813 	MSK_IF_LOCK(sc_if);
2814 	msk_start_locked(ifp);
2815 	MSK_IF_UNLOCK(sc_if);
2816 }
2817 
2818 static void
2819 msk_start_locked(struct ifnet *ifp)
2820 {
2821 	struct msk_if_softc *sc_if;
2822 	struct mbuf *m_head;
2823 	int enq;
2824 
2825 	sc_if = ifp->if_softc;
2826 	MSK_IF_LOCK_ASSERT(sc_if);
2827 
2828 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2829 	    IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0)
2830 		return;
2831 
2832 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2833 	    sc_if->msk_cdata.msk_tx_cnt <
2834 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2835 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2836 		if (m_head == NULL)
2837 			break;
2838 		/*
2839 		 * Pack the data into the transmit ring. If we
2840 		 * don't have room, set the OACTIVE flag and wait
2841 		 * for the NIC to drain the ring.
2842 		 */
2843 		if (msk_encap(sc_if, &m_head) != 0) {
2844 			if (m_head == NULL)
2845 				break;
2846 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2847 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2848 			break;
2849 		}
2850 
2851 		enq++;
2852 		/*
2853 		 * If there's a BPF listener, bounce a copy of this frame
2854 		 * to him.
2855 		 */
2856 		ETHER_BPF_MTAP(ifp, m_head);
2857 	}
2858 
2859 	if (enq > 0) {
2860 		/* Transmit */
2861 		CSR_WRITE_2(sc_if->msk_softc,
2862 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2863 		    sc_if->msk_cdata.msk_tx_prod);
2864 
2865 		/* Set a timeout in case the chip goes out to lunch. */
2866 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2867 	}
2868 }
2869 
2870 static void
2871 msk_watchdog(struct msk_if_softc *sc_if)
2872 {
2873 	struct ifnet *ifp;
2874 
2875 	MSK_IF_LOCK_ASSERT(sc_if);
2876 
2877 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2878 		return;
2879 	ifp = sc_if->msk_ifp;
2880 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2881 		if (bootverbose)
2882 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2883 			   "(missed link)\n");
2884 		ifp->if_oerrors++;
2885 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2886 		msk_init_locked(sc_if);
2887 		return;
2888 	}
2889 
2890 	if_printf(ifp, "watchdog timeout\n");
2891 	ifp->if_oerrors++;
2892 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2893 	msk_init_locked(sc_if);
2894 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2895 		msk_start_locked(ifp);
2896 }
2897 
2898 static int
2899 mskc_shutdown(device_t dev)
2900 {
2901 	struct msk_softc *sc;
2902 	int i;
2903 
2904 	sc = device_get_softc(dev);
2905 	MSK_LOCK(sc);
2906 	for (i = 0; i < sc->msk_num_port; i++) {
2907 		if (sc->msk_if[i] != NULL)
2908 			msk_stop(sc->msk_if[i]);
2909 	}
2910 
2911 	/* Disable all interrupts. */
2912 	CSR_WRITE_4(sc, B0_IMSK, 0);
2913 	CSR_READ_4(sc, B0_IMSK);
2914 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2915 	CSR_READ_4(sc, B0_HWE_IMSK);
2916 
2917 	/* Put hardware reset. */
2918 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2919 
2920 	MSK_UNLOCK(sc);
2921 	return (0);
2922 }
2923 
2924 static int
2925 mskc_suspend(device_t dev)
2926 {
2927 	struct msk_softc *sc;
2928 	int i;
2929 
2930 	sc = device_get_softc(dev);
2931 
2932 	MSK_LOCK(sc);
2933 
2934 	for (i = 0; i < sc->msk_num_port; i++) {
2935 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2936 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
2937 		    IFF_DRV_RUNNING) != 0))
2938 			msk_stop(sc->msk_if[i]);
2939 	}
2940 
2941 	/* Disable all interrupts. */
2942 	CSR_WRITE_4(sc, B0_IMSK, 0);
2943 	CSR_READ_4(sc, B0_IMSK);
2944 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2945 	CSR_READ_4(sc, B0_HWE_IMSK);
2946 
2947 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
2948 
2949 	/* Put hardware reset. */
2950 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2951 	sc->msk_pflags |= MSK_FLAG_SUSPEND;
2952 
2953 	MSK_UNLOCK(sc);
2954 
2955 	return (0);
2956 }
2957 
2958 static int
2959 mskc_resume(device_t dev)
2960 {
2961 	struct msk_softc *sc;
2962 	int i;
2963 
2964 	sc = device_get_softc(dev);
2965 
2966 	MSK_LOCK(sc);
2967 
2968 	mskc_reset(sc);
2969 	for (i = 0; i < sc->msk_num_port; i++) {
2970 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2971 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) {
2972 			sc->msk_if[i]->msk_ifp->if_drv_flags &=
2973 			    ~IFF_DRV_RUNNING;
2974 			msk_init_locked(sc->msk_if[i]);
2975 		}
2976 	}
2977 	sc->msk_pflags &= ~MSK_FLAG_SUSPEND;
2978 
2979 	MSK_UNLOCK(sc);
2980 
2981 	return (0);
2982 }
2983 
2984 #ifndef __NO_STRICT_ALIGNMENT
2985 static __inline void
2986 msk_fixup_rx(struct mbuf *m)
2987 {
2988         int i;
2989         uint16_t *src, *dst;
2990 
2991 	src = mtod(m, uint16_t *);
2992 	dst = src - 3;
2993 
2994 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2995 		*dst++ = *src++;
2996 
2997 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
2998 }
2999 #endif
3000 
3001 static __inline void
3002 msk_rxcsum(struct msk_if_softc *sc_if, uint32_t control, struct mbuf *m)
3003 {
3004 	struct ether_header *eh;
3005 	struct ip *ip;
3006 	struct udphdr *uh;
3007 	int32_t hlen, len, pktlen, temp32;
3008 	uint16_t csum, *opts;
3009 
3010 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) {
3011 		if ((control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
3012 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3013 			if ((control & CSS_IPV4_CSUM_OK) != 0)
3014 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3015 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3016 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3017 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3018 				    CSUM_PSEUDO_HDR;
3019 				m->m_pkthdr.csum_data = 0xffff;
3020 			}
3021 		}
3022 		return;
3023 	}
3024 	/*
3025 	 * Marvell Yukon controllers that support OP_RXCHKS has known
3026 	 * to have various Rx checksum offloading bugs. These
3027 	 * controllers can be configured to compute simple checksum
3028 	 * at two different positions. So we can compute IP and TCP/UDP
3029 	 * checksum at the same time. We intentionally have controller
3030 	 * compute TCP/UDP checksum twice by specifying the same
3031 	 * checksum start position and compare the result. If the value
3032 	 * is different it would indicate the hardware logic was wrong.
3033 	 */
3034 	if ((sc_if->msk_csum & 0xFFFF) != (sc_if->msk_csum >> 16)) {
3035 		if (bootverbose)
3036 			device_printf(sc_if->msk_if_dev,
3037 			    "Rx checksum value mismatch!\n");
3038 		return;
3039 	}
3040 	pktlen = m->m_pkthdr.len;
3041 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
3042 		return;
3043 	eh = mtod(m, struct ether_header *);
3044 	if (eh->ether_type != htons(ETHERTYPE_IP))
3045 		return;
3046 	ip = (struct ip *)(eh + 1);
3047 	if (ip->ip_v != IPVERSION)
3048 		return;
3049 
3050 	hlen = ip->ip_hl << 2;
3051 	pktlen -= sizeof(struct ether_header);
3052 	if (hlen < sizeof(struct ip))
3053 		return;
3054 	if (ntohs(ip->ip_len) < hlen)
3055 		return;
3056 	if (ntohs(ip->ip_len) != pktlen)
3057 		return;
3058 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
3059 		return;	/* can't handle fragmented packet. */
3060 
3061 	switch (ip->ip_p) {
3062 	case IPPROTO_TCP:
3063 		if (pktlen < (hlen + sizeof(struct tcphdr)))
3064 			return;
3065 		break;
3066 	case IPPROTO_UDP:
3067 		if (pktlen < (hlen + sizeof(struct udphdr)))
3068 			return;
3069 		uh = (struct udphdr *)((caddr_t)ip + hlen);
3070 		if (uh->uh_sum == 0)
3071 			return; /* no checksum */
3072 		break;
3073 	default:
3074 		return;
3075 	}
3076 	csum = ntohs(sc_if->msk_csum & 0xFFFF);
3077 	/* Checksum fixup for IP options. */
3078 	len = hlen - sizeof(struct ip);
3079 	if (len > 0) {
3080 		opts = (uint16_t *)(ip + 1);
3081 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
3082 			temp32 = csum - *opts;
3083 			temp32 = (temp32 >> 16) + (temp32 & 65535);
3084 			csum = temp32 & 65535;
3085 		}
3086 	}
3087 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
3088 	m->m_pkthdr.csum_data = csum;
3089 }
3090 
3091 static void
3092 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3093     int len)
3094 {
3095 	struct mbuf *m;
3096 	struct ifnet *ifp;
3097 	struct msk_rxdesc *rxd;
3098 	int cons, rxlen;
3099 
3100 	ifp = sc_if->msk_ifp;
3101 
3102 	MSK_IF_LOCK_ASSERT(sc_if);
3103 
3104 	cons = sc_if->msk_cdata.msk_rx_cons;
3105 	do {
3106 		rxlen = status >> 16;
3107 		if ((status & GMR_FS_VLAN) != 0 &&
3108 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3109 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3110 		if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) {
3111 			/*
3112 			 * For controllers that returns bogus status code
3113 			 * just do minimal check and let upper stack
3114 			 * handle this frame.
3115 			 */
3116 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
3117 				ifp->if_ierrors++;
3118 				msk_discard_rxbuf(sc_if, cons);
3119 				break;
3120 			}
3121 		} else if (len > sc_if->msk_framesize ||
3122 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3123 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3124 			/* Don't count flow-control packet as errors. */
3125 			if ((status & GMR_FS_GOOD_FC) == 0)
3126 				ifp->if_ierrors++;
3127 			msk_discard_rxbuf(sc_if, cons);
3128 			break;
3129 		}
3130 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3131 		m = rxd->rx_m;
3132 		if (msk_newbuf(sc_if, cons) != 0) {
3133 			ifp->if_iqdrops++;
3134 			/* Reuse old buffer. */
3135 			msk_discard_rxbuf(sc_if, cons);
3136 			break;
3137 		}
3138 		m->m_pkthdr.rcvif = ifp;
3139 		m->m_pkthdr.len = m->m_len = len;
3140 #ifndef __NO_STRICT_ALIGNMENT
3141 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3142 			msk_fixup_rx(m);
3143 #endif
3144 		ifp->if_ipackets++;
3145 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3146 			msk_rxcsum(sc_if, control, m);
3147 		/* Check for VLAN tagged packets. */
3148 		if ((status & GMR_FS_VLAN) != 0 &&
3149 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3150 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3151 			m->m_flags |= M_VLANTAG;
3152 		}
3153 		MSK_IF_UNLOCK(sc_if);
3154 		(*ifp->if_input)(ifp, m);
3155 		MSK_IF_LOCK(sc_if);
3156 	} while (0);
3157 
3158 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3159 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3160 }
3161 
3162 static void
3163 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3164     int len)
3165 {
3166 	struct mbuf *m;
3167 	struct ifnet *ifp;
3168 	struct msk_rxdesc *jrxd;
3169 	int cons, rxlen;
3170 
3171 	ifp = sc_if->msk_ifp;
3172 
3173 	MSK_IF_LOCK_ASSERT(sc_if);
3174 
3175 	cons = sc_if->msk_cdata.msk_rx_cons;
3176 	do {
3177 		rxlen = status >> 16;
3178 		if ((status & GMR_FS_VLAN) != 0 &&
3179 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3180 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3181 		if (len > sc_if->msk_framesize ||
3182 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3183 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3184 			/* Don't count flow-control packet as errors. */
3185 			if ((status & GMR_FS_GOOD_FC) == 0)
3186 				ifp->if_ierrors++;
3187 			msk_discard_jumbo_rxbuf(sc_if, cons);
3188 			break;
3189 		}
3190 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3191 		m = jrxd->rx_m;
3192 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3193 			ifp->if_iqdrops++;
3194 			/* Reuse old buffer. */
3195 			msk_discard_jumbo_rxbuf(sc_if, cons);
3196 			break;
3197 		}
3198 		m->m_pkthdr.rcvif = ifp;
3199 		m->m_pkthdr.len = m->m_len = len;
3200 #ifndef __NO_STRICT_ALIGNMENT
3201 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3202 			msk_fixup_rx(m);
3203 #endif
3204 		ifp->if_ipackets++;
3205 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3206 			msk_rxcsum(sc_if, control, m);
3207 		/* Check for VLAN tagged packets. */
3208 		if ((status & GMR_FS_VLAN) != 0 &&
3209 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3210 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3211 			m->m_flags |= M_VLANTAG;
3212 		}
3213 		MSK_IF_UNLOCK(sc_if);
3214 		(*ifp->if_input)(ifp, m);
3215 		MSK_IF_LOCK(sc_if);
3216 	} while (0);
3217 
3218 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3219 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3220 }
3221 
3222 static void
3223 msk_txeof(struct msk_if_softc *sc_if, int idx)
3224 {
3225 	struct msk_txdesc *txd;
3226 	struct msk_tx_desc *cur_tx;
3227 	struct ifnet *ifp;
3228 	uint32_t control;
3229 	int cons, prog;
3230 
3231 	MSK_IF_LOCK_ASSERT(sc_if);
3232 
3233 	ifp = sc_if->msk_ifp;
3234 
3235 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3236 	    sc_if->msk_cdata.msk_tx_ring_map,
3237 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3238 	/*
3239 	 * Go through our tx ring and free mbufs for those
3240 	 * frames that have been sent.
3241 	 */
3242 	cons = sc_if->msk_cdata.msk_tx_cons;
3243 	prog = 0;
3244 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3245 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3246 			break;
3247 		prog++;
3248 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3249 		control = le32toh(cur_tx->msk_control);
3250 		sc_if->msk_cdata.msk_tx_cnt--;
3251 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3252 		if ((control & EOP) == 0)
3253 			continue;
3254 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3255 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3256 		    BUS_DMASYNC_POSTWRITE);
3257 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3258 
3259 		ifp->if_opackets++;
3260 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3261 		    __func__));
3262 		m_freem(txd->tx_m);
3263 		txd->tx_m = NULL;
3264 	}
3265 
3266 	if (prog > 0) {
3267 		sc_if->msk_cdata.msk_tx_cons = cons;
3268 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3269 			sc_if->msk_watchdog_timer = 0;
3270 		/* No need to sync LEs as we didn't update LEs. */
3271 	}
3272 }
3273 
3274 static void
3275 msk_tick(void *xsc_if)
3276 {
3277 	struct msk_if_softc *sc_if;
3278 	struct mii_data *mii;
3279 
3280 	sc_if = xsc_if;
3281 
3282 	MSK_IF_LOCK_ASSERT(sc_if);
3283 
3284 	mii = device_get_softc(sc_if->msk_miibus);
3285 
3286 	mii_tick(mii);
3287 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0)
3288 		msk_miibus_statchg(sc_if->msk_if_dev);
3289 	msk_handle_events(sc_if->msk_softc);
3290 	msk_watchdog(sc_if);
3291 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3292 }
3293 
3294 static void
3295 msk_intr_phy(struct msk_if_softc *sc_if)
3296 {
3297 	uint16_t status;
3298 
3299 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3300 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3301 	/* Handle FIFO Underrun/Overflow? */
3302 	if ((status & PHY_M_IS_FIFO_ERROR))
3303 		device_printf(sc_if->msk_if_dev,
3304 		    "PHY FIFO underrun/overflow.\n");
3305 }
3306 
3307 static void
3308 msk_intr_gmac(struct msk_if_softc *sc_if)
3309 {
3310 	struct msk_softc *sc;
3311 	uint8_t status;
3312 
3313 	sc = sc_if->msk_softc;
3314 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3315 
3316 	/* GMAC Rx FIFO overrun. */
3317 	if ((status & GM_IS_RX_FF_OR) != 0)
3318 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3319 		    GMF_CLI_RX_FO);
3320 	/* GMAC Tx FIFO underrun. */
3321 	if ((status & GM_IS_TX_FF_UR) != 0) {
3322 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3323 		    GMF_CLI_TX_FU);
3324 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3325 		/*
3326 		 * XXX
3327 		 * In case of Tx underrun, we may need to flush/reset
3328 		 * Tx MAC but that would also require resynchronization
3329 		 * with status LEs. Reintializing status LEs would
3330 		 * affect other port in dual MAC configuration so it
3331 		 * should be avoided as possible as we can.
3332 		 * Due to lack of documentation it's all vague guess but
3333 		 * it needs more investigation.
3334 		 */
3335 	}
3336 }
3337 
3338 static void
3339 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3340 {
3341 	struct msk_softc *sc;
3342 
3343 	sc = sc_if->msk_softc;
3344 	if ((status & Y2_IS_PAR_RD1) != 0) {
3345 		device_printf(sc_if->msk_if_dev,
3346 		    "RAM buffer read parity error\n");
3347 		/* Clear IRQ. */
3348 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3349 		    RI_CLR_RD_PERR);
3350 	}
3351 	if ((status & Y2_IS_PAR_WR1) != 0) {
3352 		device_printf(sc_if->msk_if_dev,
3353 		    "RAM buffer write parity error\n");
3354 		/* Clear IRQ. */
3355 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3356 		    RI_CLR_WR_PERR);
3357 	}
3358 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3359 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3360 		/* Clear IRQ. */
3361 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3362 		    GMF_CLI_TX_PE);
3363 	}
3364 	if ((status & Y2_IS_PAR_RX1) != 0) {
3365 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3366 		/* Clear IRQ. */
3367 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3368 	}
3369 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3370 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3371 		/* Clear IRQ. */
3372 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3373 	}
3374 }
3375 
3376 static void
3377 msk_intr_hwerr(struct msk_softc *sc)
3378 {
3379 	uint32_t status;
3380 	uint32_t tlphead[4];
3381 
3382 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3383 	/* Time Stamp timer overflow. */
3384 	if ((status & Y2_IS_TIST_OV) != 0)
3385 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3386 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3387 		/*
3388 		 * PCI Express Error occured which is not described in PEX
3389 		 * spec.
3390 		 * This error is also mapped either to Master Abort(
3391 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3392 		 * can only be cleared there.
3393                  */
3394 		device_printf(sc->msk_dev,
3395 		    "PCI Express protocol violation error\n");
3396 	}
3397 
3398 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3399 		uint16_t v16;
3400 
3401 		if ((status & Y2_IS_MST_ERR) != 0)
3402 			device_printf(sc->msk_dev,
3403 			    "unexpected IRQ Status error\n");
3404 		else
3405 			device_printf(sc->msk_dev,
3406 			    "unexpected IRQ Master error\n");
3407 		/* Reset all bits in the PCI status register. */
3408 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3409 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3410 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3411 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3412 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3413 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3414 	}
3415 
3416 	/* Check for PCI Express Uncorrectable Error. */
3417 	if ((status & Y2_IS_PCI_EXP) != 0) {
3418 		uint32_t v32;
3419 
3420 		/*
3421 		 * On PCI Express bus bridges are called root complexes (RC).
3422 		 * PCI Express errors are recognized by the root complex too,
3423 		 * which requests the system to handle the problem. After
3424 		 * error occurence it may be that no access to the adapter
3425 		 * may be performed any longer.
3426 		 */
3427 
3428 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3429 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3430 			/* Ignore unsupported request error. */
3431 			device_printf(sc->msk_dev,
3432 			    "Uncorrectable PCI Express error\n");
3433 		}
3434 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3435 			int i;
3436 
3437 			/* Get TLP header form Log Registers. */
3438 			for (i = 0; i < 4; i++)
3439 				tlphead[i] = CSR_PCI_READ_4(sc,
3440 				    PEX_HEADER_LOG + i * 4);
3441 			/* Check for vendor defined broadcast message. */
3442 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3443 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3444 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3445 				    sc->msk_intrhwemask);
3446 				CSR_READ_4(sc, B0_HWE_IMSK);
3447 			}
3448 		}
3449 		/* Clear the interrupt. */
3450 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3451 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3452 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3453 	}
3454 
3455 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3456 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3457 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3458 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3459 }
3460 
3461 static __inline void
3462 msk_rxput(struct msk_if_softc *sc_if)
3463 {
3464 	struct msk_softc *sc;
3465 
3466 	sc = sc_if->msk_softc;
3467 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3468 		bus_dmamap_sync(
3469 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3470 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3471 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3472 	else
3473 		bus_dmamap_sync(
3474 		    sc_if->msk_cdata.msk_rx_ring_tag,
3475 		    sc_if->msk_cdata.msk_rx_ring_map,
3476 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3477 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3478 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3479 }
3480 
3481 static int
3482 msk_handle_events(struct msk_softc *sc)
3483 {
3484 	struct msk_if_softc *sc_if;
3485 	int rxput[2];
3486 	struct msk_stat_desc *sd;
3487 	uint32_t control, status;
3488 	int cons, len, port, rxprog;
3489 
3490 	if (sc->msk_stat_cons == CSR_READ_2(sc, STAT_PUT_IDX))
3491 		return (0);
3492 
3493 	/* Sync status LEs. */
3494 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3495 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3496 
3497 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3498 	rxprog = 0;
3499 	cons = sc->msk_stat_cons;
3500 	for (;;) {
3501 		sd = &sc->msk_stat_ring[cons];
3502 		control = le32toh(sd->msk_control);
3503 		if ((control & HW_OWNER) == 0)
3504 			break;
3505 		control &= ~HW_OWNER;
3506 		sd->msk_control = htole32(control);
3507 		status = le32toh(sd->msk_status);
3508 		len = control & STLE_LEN_MASK;
3509 		port = (control >> 16) & 0x01;
3510 		sc_if = sc->msk_if[port];
3511 		if (sc_if == NULL) {
3512 			device_printf(sc->msk_dev, "invalid port opcode "
3513 			    "0x%08x\n", control & STLE_OP_MASK);
3514 			continue;
3515 		}
3516 
3517 		switch (control & STLE_OP_MASK) {
3518 		case OP_RXVLAN:
3519 			sc_if->msk_vtag = ntohs(len);
3520 			break;
3521 		case OP_RXCHKSVLAN:
3522 			sc_if->msk_vtag = ntohs(len);
3523 			/* FALLTHROUGH */
3524 		case OP_RXCHKS:
3525 			sc_if->msk_csum = status;
3526 			break;
3527 		case OP_RXSTAT:
3528 			if (sc_if->msk_framesize >
3529 			    (MCLBYTES - MSK_RX_BUF_ALIGN))
3530 				msk_jumbo_rxeof(sc_if, status, control, len);
3531 			else
3532 				msk_rxeof(sc_if, status, control, len);
3533 			rxprog++;
3534 			/*
3535 			 * Because there is no way to sync single Rx LE
3536 			 * put the DMA sync operation off until the end of
3537 			 * event processing.
3538 			 */
3539 			rxput[port]++;
3540 			/* Update prefetch unit if we've passed water mark. */
3541 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3542 				msk_rxput(sc_if);
3543 				rxput[port] = 0;
3544 			}
3545 			break;
3546 		case OP_TXINDEXLE:
3547 			if (sc->msk_if[MSK_PORT_A] != NULL)
3548 				msk_txeof(sc->msk_if[MSK_PORT_A],
3549 				    status & STLE_TXA1_MSKL);
3550 			if (sc->msk_if[MSK_PORT_B] != NULL)
3551 				msk_txeof(sc->msk_if[MSK_PORT_B],
3552 				    ((status & STLE_TXA2_MSKL) >>
3553 				    STLE_TXA2_SHIFTL) |
3554 				    ((len & STLE_TXA2_MSKH) <<
3555 				    STLE_TXA2_SHIFTH));
3556 			break;
3557 		default:
3558 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3559 			    control & STLE_OP_MASK);
3560 			break;
3561 		}
3562 		MSK_INC(cons, MSK_STAT_RING_CNT);
3563 		if (rxprog > sc->msk_process_limit)
3564 			break;
3565 	}
3566 
3567 	sc->msk_stat_cons = cons;
3568 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3569 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3570 
3571 	if (rxput[MSK_PORT_A] > 0)
3572 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3573 	if (rxput[MSK_PORT_B] > 0)
3574 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3575 
3576 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3577 }
3578 
3579 static void
3580 msk_intr(void *xsc)
3581 {
3582 	struct msk_softc *sc;
3583 	struct msk_if_softc *sc_if0, *sc_if1;
3584 	struct ifnet *ifp0, *ifp1;
3585 	uint32_t status;
3586 	int domore;
3587 
3588 	sc = xsc;
3589 	MSK_LOCK(sc);
3590 
3591 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3592 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3593 	if (status == 0 || status == 0xffffffff ||
3594 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3595 	    (status & sc->msk_intrmask) == 0) {
3596 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3597 		return;
3598 	}
3599 
3600 	sc_if0 = sc->msk_if[MSK_PORT_A];
3601 	sc_if1 = sc->msk_if[MSK_PORT_B];
3602 	ifp0 = ifp1 = NULL;
3603 	if (sc_if0 != NULL)
3604 		ifp0 = sc_if0->msk_ifp;
3605 	if (sc_if1 != NULL)
3606 		ifp1 = sc_if1->msk_ifp;
3607 
3608 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3609 		msk_intr_phy(sc_if0);
3610 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3611 		msk_intr_phy(sc_if1);
3612 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3613 		msk_intr_gmac(sc_if0);
3614 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3615 		msk_intr_gmac(sc_if1);
3616 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3617 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3618 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3619 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3620 		CSR_READ_4(sc, B0_IMSK);
3621 	}
3622         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3623 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3624 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3625 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3626 		CSR_READ_4(sc, B0_IMSK);
3627 	}
3628 	if ((status & Y2_IS_HW_ERR) != 0)
3629 		msk_intr_hwerr(sc);
3630 
3631 	domore = msk_handle_events(sc);
3632 	if ((status & Y2_IS_STAT_BMU) != 0 && domore == 0)
3633 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3634 
3635 	/* Reenable interrupts. */
3636 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3637 
3638 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3639 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3640 		msk_start_locked(ifp0);
3641 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3642 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3643 		msk_start_locked(ifp1);
3644 
3645 	MSK_UNLOCK(sc);
3646 }
3647 
3648 static void
3649 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3650 {
3651 	struct msk_softc *sc;
3652 	struct ifnet *ifp;
3653 
3654 	ifp = sc_if->msk_ifp;
3655 	sc = sc_if->msk_softc;
3656 	switch (sc->msk_hw_id) {
3657 	case CHIP_ID_YUKON_EX:
3658 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
3659 			goto yukon_ex_workaround;
3660 		if (ifp->if_mtu > ETHERMTU)
3661 			CSR_WRITE_4(sc,
3662 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3663 			    TX_JUMBO_ENA | TX_STFW_ENA);
3664 		else
3665 			CSR_WRITE_4(sc,
3666 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3667 			    TX_JUMBO_DIS | TX_STFW_ENA);
3668 		break;
3669 	default:
3670 yukon_ex_workaround:
3671 		if (ifp->if_mtu > ETHERMTU) {
3672 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3673 			CSR_WRITE_4(sc,
3674 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3675 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3676 			/* Disable Store & Forward mode for Tx. */
3677 			CSR_WRITE_4(sc,
3678 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3679 			    TX_JUMBO_ENA | TX_STFW_DIS);
3680 		} else {
3681 			/* Enable Store & Forward mode for Tx. */
3682 			CSR_WRITE_4(sc,
3683 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3684 			    TX_JUMBO_DIS | TX_STFW_ENA);
3685 		}
3686 		break;
3687 	}
3688 }
3689 
3690 static void
3691 msk_init(void *xsc)
3692 {
3693 	struct msk_if_softc *sc_if = xsc;
3694 
3695 	MSK_IF_LOCK(sc_if);
3696 	msk_init_locked(sc_if);
3697 	MSK_IF_UNLOCK(sc_if);
3698 }
3699 
3700 static void
3701 msk_init_locked(struct msk_if_softc *sc_if)
3702 {
3703 	struct msk_softc *sc;
3704 	struct ifnet *ifp;
3705 	struct mii_data	 *mii;
3706 	uint8_t *eaddr;
3707 	uint16_t gmac;
3708 	uint32_t reg;
3709 	int error;
3710 
3711 	MSK_IF_LOCK_ASSERT(sc_if);
3712 
3713 	ifp = sc_if->msk_ifp;
3714 	sc = sc_if->msk_softc;
3715 	mii = device_get_softc(sc_if->msk_miibus);
3716 
3717 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3718 		return;
3719 
3720 	error = 0;
3721 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3722 	msk_stop(sc_if);
3723 
3724 	if (ifp->if_mtu < ETHERMTU)
3725 		sc_if->msk_framesize = ETHERMTU;
3726 	else
3727 		sc_if->msk_framesize = ifp->if_mtu;
3728 	sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3729 	if (ifp->if_mtu > ETHERMTU &&
3730 	    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
3731 		ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3732 		ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3733 	}
3734 
3735  	/* GMAC Control reset. */
3736  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3737  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3738  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3739 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX)
3740 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3741 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3742 		    GMC_BYP_RETR_ON);
3743 
3744 	/*
3745 	 * Initialize GMAC first such that speed/duplex/flow-control
3746 	 * parameters are renegotiated when interface is brought up.
3747 	 */
3748 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3749 
3750 	/* Dummy read the Interrupt Source Register. */
3751 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3752 
3753 	/* Clear MIB stats. */
3754 	msk_stats_clear(sc_if);
3755 
3756 	/* Disable FCS. */
3757 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3758 
3759 	/* Setup Transmit Control Register. */
3760 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3761 
3762 	/* Setup Transmit Flow Control Register. */
3763 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3764 
3765 	/* Setup Transmit Parameter Register. */
3766 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3767 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3768 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3769 
3770 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3771 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3772 
3773 	if (ifp->if_mtu > ETHERMTU)
3774 		gmac |= GM_SMOD_JUMBO_ENA;
3775 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3776 
3777 	/* Set station address. */
3778 	eaddr = IF_LLADDR(ifp);
3779 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L,
3780 	    eaddr[0] | (eaddr[1] << 8));
3781 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M,
3782 	    eaddr[2] | (eaddr[3] << 8));
3783 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H,
3784 	    eaddr[4] | (eaddr[5] << 8));
3785 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L,
3786 	    eaddr[0] | (eaddr[1] << 8));
3787 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M,
3788 	    eaddr[2] | (eaddr[3] << 8));
3789 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H,
3790 	    eaddr[4] | (eaddr[5] << 8));
3791 
3792 	/* Disable interrupts for counter overflows. */
3793 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3794 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3795 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3796 
3797 	/* Configure Rx MAC FIFO. */
3798 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3799 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3800 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3801 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3802 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3803 		reg |= GMF_RX_OVER_ON;
3804 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3805 
3806 	/* Set receive filter. */
3807 	msk_rxfilter(sc_if);
3808 
3809 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3810 		/* Clear flush mask - HW bug. */
3811 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3812 	} else {
3813 		/* Flush Rx MAC FIFO on any flow control or error. */
3814 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3815 		    GMR_FS_ANY_ERR);
3816 	}
3817 
3818 	/*
3819 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3820 	 * due to hardware hang on receipt of pause frames.
3821 	 */
3822 	reg = RX_GMF_FL_THR_DEF + 1;
3823 	/* Another magic for Yukon FE+ - From Linux. */
3824 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3825 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3826 		reg = 0x178;
3827 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3828 
3829 	/* Configure Tx MAC FIFO. */
3830 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3831 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3832 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3833 
3834 	/* Configure hardware VLAN tag insertion/stripping. */
3835 	msk_setvlan(sc_if, ifp);
3836 
3837 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3838 		/* Set Rx Pause threshould. */
3839 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3840 		    MSK_ECU_LLPP);
3841 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3842 		    MSK_ECU_ULPP);
3843 		/* Configure store-and-forward for Tx. */
3844 		msk_set_tx_stfwd(sc_if);
3845 	}
3846 
3847  	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3848  	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3849  		/* Disable dynamic watermark - from Linux. */
3850  		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3851  		reg &= ~0x03;
3852  		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3853  	}
3854 
3855 	/*
3856 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3857 	 * arbiter as we don't use Sync Tx queue.
3858 	 */
3859 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3860 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3861 	/* Enable the RAM Interface Arbiter. */
3862 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3863 
3864 	/* Setup RAM buffer. */
3865 	msk_set_rambuffer(sc_if);
3866 
3867 	/* Disable Tx sync Queue. */
3868 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3869 
3870 	/* Setup Tx Queue Bus Memory Interface. */
3871 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3872 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3873 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3874 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3875 	switch (sc->msk_hw_id) {
3876 	case CHIP_ID_YUKON_EC_U:
3877 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3878 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3879 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3880 			    MSK_ECU_TXFF_LEV);
3881 		}
3882 		break;
3883 	case CHIP_ID_YUKON_EX:
3884 		/*
3885 		 * Yukon Extreme seems to have silicon bug for
3886 		 * automatic Tx checksum calculation capability.
3887 		 */
3888 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
3889 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3890 			    F_TX_CHK_AUTO_OFF);
3891 		break;
3892 	}
3893 
3894 	/* Setup Rx Queue Bus Memory Interface. */
3895 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3896 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3897 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3898 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3899         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3900 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3901 		/* MAC Rx RAM Read is controlled by hardware. */
3902                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3903 	}
3904 
3905 	msk_set_prefetch(sc, sc_if->msk_txq,
3906 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3907 	msk_init_tx_ring(sc_if);
3908 
3909 	/* Disable Rx checksum offload and RSS hash. */
3910 	reg = BMU_DIS_RX_RSS_HASH;
3911 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
3912 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0)
3913 		reg |= BMU_ENA_RX_CHKSUM;
3914 	else
3915 		reg |= BMU_DIS_RX_CHKSUM;
3916 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), reg);
3917 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
3918 		msk_set_prefetch(sc, sc_if->msk_rxq,
3919 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3920 		    MSK_JUMBO_RX_RING_CNT - 1);
3921 		error = msk_init_jumbo_rx_ring(sc_if);
3922 	 } else {
3923 		msk_set_prefetch(sc, sc_if->msk_rxq,
3924 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3925 		    MSK_RX_RING_CNT - 1);
3926 		error = msk_init_rx_ring(sc_if);
3927 	}
3928 	if (error != 0) {
3929 		device_printf(sc_if->msk_if_dev,
3930 		    "initialization failed: no memory for Rx buffers\n");
3931 		msk_stop(sc_if);
3932 		return;
3933 	}
3934 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX) {
3935 		/* Disable flushing of non-ASF packets. */
3936 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3937 		    GMF_RX_MACSEC_FLUSH_OFF);
3938 	}
3939 
3940 	/* Configure interrupt handling. */
3941 	if (sc_if->msk_port == MSK_PORT_A) {
3942 		sc->msk_intrmask |= Y2_IS_PORT_A;
3943 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3944 	} else {
3945 		sc->msk_intrmask |= Y2_IS_PORT_B;
3946 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3947 	}
3948 	/* Configure IRQ moderation mask. */
3949 	CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
3950 	if (sc->msk_int_holdoff > 0) {
3951 		/* Configure initial IRQ moderation timer value. */
3952 		CSR_WRITE_4(sc, B2_IRQM_INI,
3953 		    MSK_USECS(sc, sc->msk_int_holdoff));
3954 		CSR_WRITE_4(sc, B2_IRQM_VAL,
3955 		    MSK_USECS(sc, sc->msk_int_holdoff));
3956 		/* Start IRQ moderation. */
3957 		CSR_WRITE_1(sc, B2_IRQM_CTRL, TIM_START);
3958 	}
3959 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3960 	CSR_READ_4(sc, B0_HWE_IMSK);
3961 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3962 	CSR_READ_4(sc, B0_IMSK);
3963 
3964 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
3965 	mii_mediachg(mii);
3966 
3967 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3968 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3969 
3970 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3971 }
3972 
3973 static void
3974 msk_set_rambuffer(struct msk_if_softc *sc_if)
3975 {
3976 	struct msk_softc *sc;
3977 	int ltpp, utpp;
3978 
3979 	sc = sc_if->msk_softc;
3980 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3981 		return;
3982 
3983 	/* Setup Rx Queue. */
3984 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3985 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3986 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3987 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3988 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3989 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3990 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3991 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3992 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3993 
3994 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3995 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3996 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3997 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3998 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3999 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
4000 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
4001 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
4002 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
4003 
4004 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
4005 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
4006 
4007 	/* Setup Tx Queue. */
4008 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
4009 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
4010 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4011 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
4012 	    sc->msk_txqend[sc_if->msk_port] / 8);
4013 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
4014 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4015 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
4016 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4017 	/* Enable Store & Forward for Tx side. */
4018 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
4019 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
4020 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
4021 }
4022 
4023 static void
4024 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
4025     uint32_t count)
4026 {
4027 
4028 	/* Reset the prefetch unit. */
4029 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4030 	    PREF_UNIT_RST_SET);
4031 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4032 	    PREF_UNIT_RST_CLR);
4033 	/* Set LE base address. */
4034 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
4035 	    MSK_ADDR_LO(addr));
4036 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
4037 	    MSK_ADDR_HI(addr));
4038 	/* Set the list last index. */
4039 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
4040 	    count);
4041 	/* Turn on prefetch unit. */
4042 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4043 	    PREF_UNIT_OP_ON);
4044 	/* Dummy read to ensure write. */
4045 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
4046 }
4047 
4048 static void
4049 msk_stop(struct msk_if_softc *sc_if)
4050 {
4051 	struct msk_softc *sc;
4052 	struct msk_txdesc *txd;
4053 	struct msk_rxdesc *rxd;
4054 	struct msk_rxdesc *jrxd;
4055 	struct ifnet *ifp;
4056 	uint32_t val;
4057 	int i;
4058 
4059 	MSK_IF_LOCK_ASSERT(sc_if);
4060 	sc = sc_if->msk_softc;
4061 	ifp = sc_if->msk_ifp;
4062 
4063 	callout_stop(&sc_if->msk_tick_ch);
4064 	sc_if->msk_watchdog_timer = 0;
4065 
4066 	/* Disable interrupts. */
4067 	if (sc_if->msk_port == MSK_PORT_A) {
4068 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
4069 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
4070 	} else {
4071 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
4072 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
4073 	}
4074 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4075 	CSR_READ_4(sc, B0_HWE_IMSK);
4076 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4077 	CSR_READ_4(sc, B0_IMSK);
4078 
4079 	/* Disable Tx/Rx MAC. */
4080 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4081 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
4082 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
4083 	/* Read again to ensure writing. */
4084 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4085 	/* Update stats and clear counters. */
4086 	msk_stats_update(sc_if);
4087 
4088 	/* Stop Tx BMU. */
4089 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
4090 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4091 	for (i = 0; i < MSK_TIMEOUT; i++) {
4092 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
4093 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4094 			    BMU_STOP);
4095 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4096 		} else
4097 			break;
4098 		DELAY(1);
4099 	}
4100 	if (i == MSK_TIMEOUT)
4101 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
4102 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
4103 	    RB_RST_SET | RB_DIS_OP_MD);
4104 
4105 	/* Disable all GMAC interrupt. */
4106 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
4107 	/* Disable PHY interrupt. */
4108 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
4109 
4110 	/* Disable the RAM Interface Arbiter. */
4111 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
4112 
4113 	/* Reset the PCI FIFO of the async Tx queue */
4114 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4115 	    BMU_RST_SET | BMU_FIFO_RST);
4116 
4117 	/* Reset the Tx prefetch units. */
4118 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
4119 	    PREF_UNIT_RST_SET);
4120 
4121 	/* Reset the RAM Buffer async Tx queue. */
4122 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
4123 
4124 	/* Reset Tx MAC FIFO. */
4125 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
4126 	/* Set Pause Off. */
4127 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
4128 
4129 	/*
4130 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
4131 	 * reach the end of packet and since we can't make sure that we have
4132 	 * incoming data, we must reset the BMU while it is not during a DMA
4133 	 * transfer. Since it is possible that the Rx path is still active,
4134 	 * the Rx RAM buffer will be stopped first, so any possible incoming
4135 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
4136 	 * BMU is polled until any DMA in progress is ended and only then it
4137 	 * will be reset.
4138 	 */
4139 
4140 	/* Disable the RAM Buffer receive queue. */
4141 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4142 	for (i = 0; i < MSK_TIMEOUT; i++) {
4143 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4144 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4145 			break;
4146 		DELAY(1);
4147 	}
4148 	if (i == MSK_TIMEOUT)
4149 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4150 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4151 	    BMU_RST_SET | BMU_FIFO_RST);
4152 	/* Reset the Rx prefetch unit. */
4153 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4154 	    PREF_UNIT_RST_SET);
4155 	/* Reset the RAM Buffer receive queue. */
4156 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4157 	/* Reset Rx MAC FIFO. */
4158 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4159 
4160 	/* Free Rx and Tx mbufs still in the queues. */
4161 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4162 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4163 		if (rxd->rx_m != NULL) {
4164 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4165 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4166 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4167 			    rxd->rx_dmamap);
4168 			m_freem(rxd->rx_m);
4169 			rxd->rx_m = NULL;
4170 		}
4171 	}
4172 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4173 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4174 		if (jrxd->rx_m != NULL) {
4175 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4176 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4177 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4178 			    jrxd->rx_dmamap);
4179 			m_freem(jrxd->rx_m);
4180 			jrxd->rx_m = NULL;
4181 		}
4182 	}
4183 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4184 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4185 		if (txd->tx_m != NULL) {
4186 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4187 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4188 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4189 			    txd->tx_dmamap);
4190 			m_freem(txd->tx_m);
4191 			txd->tx_m = NULL;
4192 		}
4193 	}
4194 
4195 	/*
4196 	 * Mark the interface down.
4197 	 */
4198 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4199 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4200 }
4201 
4202 /*
4203  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
4204  * counter clears high 16 bits of the counter such that accessing
4205  * lower 16 bits should be the last operation.
4206  */
4207 #define	MSK_READ_MIB32(x, y)					\
4208 	(((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) +	\
4209 	(uint32_t)GMAC_READ_2(sc, x, y)
4210 #define	MSK_READ_MIB64(x, y)					\
4211 	(((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) +	\
4212 	(uint64_t)MSK_READ_MIB32(x, y)
4213 
4214 static void
4215 msk_stats_clear(struct msk_if_softc *sc_if)
4216 {
4217 	struct msk_softc *sc;
4218 	uint32_t reg;
4219 	uint16_t gmac;
4220 	int i;
4221 
4222 	MSK_IF_LOCK_ASSERT(sc_if);
4223 
4224 	sc = sc_if->msk_softc;
4225 	/* Set MIB Clear Counter Mode. */
4226 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4227 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4228 	/* Read all MIB Counters with Clear Mode set. */
4229 	for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t))
4230 		reg = MSK_READ_MIB32(sc_if->msk_port, i);
4231 	/* Clear MIB Clear Counter Mode. */
4232 	gmac &= ~GM_PAR_MIB_CLR;
4233 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4234 }
4235 
4236 static void
4237 msk_stats_update(struct msk_if_softc *sc_if)
4238 {
4239 	struct msk_softc *sc;
4240 	struct ifnet *ifp;
4241 	struct msk_hw_stats *stats;
4242 	uint16_t gmac;
4243 	uint32_t reg;
4244 
4245 	MSK_IF_LOCK_ASSERT(sc_if);
4246 
4247 	ifp = sc_if->msk_ifp;
4248 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4249 		return;
4250 	sc = sc_if->msk_softc;
4251 	stats = &sc_if->msk_stats;
4252 	/* Set MIB Clear Counter Mode. */
4253 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4254 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4255 
4256 	/* Rx stats. */
4257 	stats->rx_ucast_frames +=
4258 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4259 	stats->rx_bcast_frames +=
4260 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4261 	stats->rx_pause_frames +=
4262 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4263 	stats->rx_mcast_frames +=
4264 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4265 	stats->rx_crc_errs +=
4266 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4267 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1);
4268 	stats->rx_good_octets +=
4269 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4270 	stats->rx_bad_octets +=
4271 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4272 	stats->rx_runts +=
4273 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4274 	stats->rx_runt_errs +=
4275 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4276 	stats->rx_pkts_64 +=
4277 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4278 	stats->rx_pkts_65_127 +=
4279 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4280 	stats->rx_pkts_128_255 +=
4281 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4282 	stats->rx_pkts_256_511 +=
4283 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4284 	stats->rx_pkts_512_1023 +=
4285 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4286 	stats->rx_pkts_1024_1518 +=
4287 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4288 	stats->rx_pkts_1519_max +=
4289 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4290 	stats->rx_pkts_too_long +=
4291 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4292 	stats->rx_pkts_jabbers +=
4293 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4294 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2);
4295 	stats->rx_fifo_oflows +=
4296 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4297 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3);
4298 
4299 	/* Tx stats. */
4300 	stats->tx_ucast_frames +=
4301 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4302 	stats->tx_bcast_frames +=
4303 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4304 	stats->tx_pause_frames +=
4305 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4306 	stats->tx_mcast_frames +=
4307 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4308 	stats->tx_octets +=
4309 	    MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4310 	stats->tx_pkts_64 +=
4311 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4312 	stats->tx_pkts_65_127 +=
4313 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4314 	stats->tx_pkts_128_255 +=
4315 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4316 	stats->tx_pkts_256_511 +=
4317 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4318 	stats->tx_pkts_512_1023 +=
4319 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4320 	stats->tx_pkts_1024_1518 +=
4321 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4322 	stats->tx_pkts_1519_max +=
4323 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4324 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1);
4325 	stats->tx_colls +=
4326 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4327 	stats->tx_late_colls +=
4328 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4329 	stats->tx_excess_colls +=
4330 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4331 	stats->tx_multi_colls +=
4332 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4333 	stats->tx_single_colls +=
4334 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4335 	stats->tx_underflows +=
4336 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4337 	/* Clear MIB Clear Counter Mode. */
4338 	gmac &= ~GM_PAR_MIB_CLR;
4339 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4340 }
4341 
4342 static int
4343 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4344 {
4345 	struct msk_softc *sc;
4346 	struct msk_if_softc *sc_if;
4347 	uint32_t result, *stat;
4348 	int off;
4349 
4350 	sc_if = (struct msk_if_softc *)arg1;
4351 	sc = sc_if->msk_softc;
4352 	off = arg2;
4353 	stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4354 
4355 	MSK_IF_LOCK(sc_if);
4356 	result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4357 	result += *stat;
4358 	MSK_IF_UNLOCK(sc_if);
4359 
4360 	return (sysctl_handle_int(oidp, &result, 0, req));
4361 }
4362 
4363 static int
4364 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4365 {
4366 	struct msk_softc *sc;
4367 	struct msk_if_softc *sc_if;
4368 	uint64_t result, *stat;
4369 	int off;
4370 
4371 	sc_if = (struct msk_if_softc *)arg1;
4372 	sc = sc_if->msk_softc;
4373 	off = arg2;
4374 	stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4375 
4376 	MSK_IF_LOCK(sc_if);
4377 	result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4378 	result += *stat;
4379 	MSK_IF_UNLOCK(sc_if);
4380 
4381 	return (sysctl_handle_quad(oidp, &result, 0, req));
4382 }
4383 
4384 #undef MSK_READ_MIB32
4385 #undef MSK_READ_MIB64
4386 
4387 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) 				\
4388 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4389 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32,	\
4390 	    "IU", d)
4391 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) 				\
4392 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4393 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64,	\
4394 	    "Q", d)
4395 
4396 static void
4397 msk_sysctl_node(struct msk_if_softc *sc_if)
4398 {
4399 	struct sysctl_ctx_list *ctx;
4400 	struct sysctl_oid_list *child, *schild;
4401 	struct sysctl_oid *tree;
4402 
4403 	ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4404 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4405 
4406 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
4407 	    NULL, "MSK Statistics");
4408 	schild = child = SYSCTL_CHILDREN(tree);
4409 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
4410 	    NULL, "MSK RX Statistics");
4411 	child = SYSCTL_CHILDREN(tree);
4412 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4413 	    child, rx_ucast_frames, "Good unicast frames");
4414 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4415 	    child, rx_bcast_frames, "Good broadcast frames");
4416 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4417 	    child, rx_pause_frames, "Pause frames");
4418 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4419 	    child, rx_mcast_frames, "Multicast frames");
4420 	MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4421 	    child, rx_crc_errs, "CRC errors");
4422 	MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4423 	    child, rx_good_octets, "Good octets");
4424 	MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4425 	    child, rx_bad_octets, "Bad octets");
4426 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4427 	    child, rx_pkts_64, "64 bytes frames");
4428 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4429 	    child, rx_pkts_65_127, "65 to 127 bytes frames");
4430 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4431 	    child, rx_pkts_128_255, "128 to 255 bytes frames");
4432 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4433 	    child, rx_pkts_256_511, "256 to 511 bytes frames");
4434 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4435 	    child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4436 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4437 	    child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4438 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4439 	    child, rx_pkts_1519_max, "1519 to max frames");
4440 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4441 	    child, rx_pkts_too_long, "frames too long");
4442 	MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4443 	    child, rx_pkts_jabbers, "Jabber errors");
4444 	MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4445 	    child, rx_fifo_oflows, "FIFO overflows");
4446 
4447 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
4448 	    NULL, "MSK TX Statistics");
4449 	child = SYSCTL_CHILDREN(tree);
4450 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4451 	    child, tx_ucast_frames, "Unicast frames");
4452 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4453 	    child, tx_bcast_frames, "Broadcast frames");
4454 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4455 	    child, tx_pause_frames, "Pause frames");
4456 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4457 	    child, tx_mcast_frames, "Multicast frames");
4458 	MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4459 	    child, tx_octets, "Octets");
4460 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4461 	    child, tx_pkts_64, "64 bytes frames");
4462 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4463 	    child, tx_pkts_65_127, "65 to 127 bytes frames");
4464 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4465 	    child, tx_pkts_128_255, "128 to 255 bytes frames");
4466 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4467 	    child, tx_pkts_256_511, "256 to 511 bytes frames");
4468 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4469 	    child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4470 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4471 	    child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4472 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4473 	    child, tx_pkts_1519_max, "1519 to max frames");
4474 	MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4475 	    child, tx_colls, "Collisions");
4476 	MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4477 	    child, tx_late_colls, "Late collisions");
4478 	MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4479 	    child, tx_excess_colls, "Excessive collisions");
4480 	MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4481 	    child, tx_multi_colls, "Multiple collisions");
4482 	MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4483 	    child, tx_single_colls, "Single collisions");
4484 	MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4485 	    child, tx_underflows, "FIFO underflows");
4486 }
4487 
4488 #undef MSK_SYSCTL_STAT32
4489 #undef MSK_SYSCTL_STAT64
4490 
4491 static int
4492 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4493 {
4494 	int error, value;
4495 
4496 	if (!arg1)
4497 		return (EINVAL);
4498 	value = *(int *)arg1;
4499 	error = sysctl_handle_int(oidp, &value, 0, req);
4500 	if (error || !req->newptr)
4501 		return (error);
4502 	if (value < low || value > high)
4503 		return (EINVAL);
4504 	*(int *)arg1 = value;
4505 
4506 	return (0);
4507 }
4508 
4509 static int
4510 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4511 {
4512 
4513 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4514 	    MSK_PROC_MAX));
4515 }
4516