xref: /freebsd/sys/dev/msk/if_msk.c (revision d940309d8031453f693814d105395736aadd2f15)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /*
96  * Device driver for the Marvell Yukon II Ethernet controller.
97  * Due to lack of documentation, this driver is based on the code from
98  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
99  */
100 
101 #include <sys/cdefs.h>
102 __FBSDID("$FreeBSD$");
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/module.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/queue.h>
115 #include <sys/sysctl.h>
116 
117 #include <net/bpf.h>
118 #include <net/ethernet.h>
119 #include <net/if.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/if_types.h>
124 #include <net/if_vlan_var.h>
125 
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/tcp.h>
130 #include <netinet/udp.h>
131 
132 #include <machine/bus.h>
133 #include <machine/in_cksum.h>
134 #include <machine/resource.h>
135 #include <sys/rman.h>
136 
137 #include <dev/mii/mii.h>
138 #include <dev/mii/miivar.h>
139 
140 #include <dev/pci/pcireg.h>
141 #include <dev/pci/pcivar.h>
142 
143 #include <dev/msk/if_mskreg.h>
144 
145 MODULE_DEPEND(msk, pci, 1, 1, 1);
146 MODULE_DEPEND(msk, ether, 1, 1, 1);
147 MODULE_DEPEND(msk, miibus, 1, 1, 1);
148 
149 /* "device miibus" required.  See GENERIC if you get errors here. */
150 #include "miibus_if.h"
151 
152 /* Tunables. */
153 static int msi_disable = 0;
154 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
155 static int legacy_intr = 0;
156 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
157 static int jumbo_disable = 0;
158 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
159 
160 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
161 
162 /*
163  * Devices supported by this driver.
164  */
165 static struct msk_product {
166 	uint16_t	msk_vendorid;
167 	uint16_t	msk_deviceid;
168 	const char	*msk_name;
169 } msk_products[] = {
170 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
171 	    "SK-9Sxx Gigabit Ethernet" },
172 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
173 	    "SK-9Exx Gigabit Ethernet"},
174 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
175 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
176 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
177 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
178 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
179 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
180 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
181 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
182 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
183 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
184 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
185 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
186 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
187 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
188 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
189 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
190 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
191 	    "Marvell Yukon 88E8035 Fast Ethernet" },
192 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
193 	    "Marvell Yukon 88E8036 Fast Ethernet" },
194 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
195 	    "Marvell Yukon 88E8038 Fast Ethernet" },
196 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
197 	    "Marvell Yukon 88E8039 Fast Ethernet" },
198 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
199 	    "Marvell Yukon 88E8040 Fast Ethernet" },
200 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
201 	    "Marvell Yukon 88E8040T Fast Ethernet" },
202 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
203 	    "Marvell Yukon 88E8042 Fast Ethernet" },
204 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
205 	    "Marvell Yukon 88E8048 Fast Ethernet" },
206 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
207 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
208 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
209 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
210 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
211 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
212 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
213 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
214 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
215 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
216 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
217 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
218 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
219 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
220 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
221 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
222 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
223 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
224 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
225 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
226 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
227 	    "D-Link 550SX Gigabit Ethernet" },
228 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560SX,
229 	    "D-Link 560SX Gigabit Ethernet" },
230 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
231 	    "D-Link 560T Gigabit Ethernet" }
232 };
233 
234 static const char *model_name[] = {
235 	"Yukon XL",
236         "Yukon EC Ultra",
237         "Yukon EX",
238         "Yukon EC",
239         "Yukon FE",
240         "Yukon FE+",
241         "Yukon Supreme",
242         "Yukon Ultra 2"
243 };
244 
245 static int mskc_probe(device_t);
246 static int mskc_attach(device_t);
247 static int mskc_detach(device_t);
248 static int mskc_shutdown(device_t);
249 static int mskc_setup_rambuffer(struct msk_softc *);
250 static int mskc_suspend(device_t);
251 static int mskc_resume(device_t);
252 static void mskc_reset(struct msk_softc *);
253 
254 static int msk_probe(device_t);
255 static int msk_attach(device_t);
256 static int msk_detach(device_t);
257 
258 static void msk_tick(void *);
259 static void msk_intr(void *);
260 static void msk_intr_phy(struct msk_if_softc *);
261 static void msk_intr_gmac(struct msk_if_softc *);
262 static __inline void msk_rxput(struct msk_if_softc *);
263 static int msk_handle_events(struct msk_softc *);
264 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
265 static void msk_intr_hwerr(struct msk_softc *);
266 #ifndef __NO_STRICT_ALIGNMENT
267 static __inline void msk_fixup_rx(struct mbuf *);
268 #endif
269 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
270 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
271 static void msk_txeof(struct msk_if_softc *, int);
272 static int msk_encap(struct msk_if_softc *, struct mbuf **);
273 static void msk_start(struct ifnet *);
274 static void msk_start_locked(struct ifnet *);
275 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
276 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
277 static void msk_set_rambuffer(struct msk_if_softc *);
278 static void msk_set_tx_stfwd(struct msk_if_softc *);
279 static void msk_init(void *);
280 static void msk_init_locked(struct msk_if_softc *);
281 static void msk_stop(struct msk_if_softc *);
282 static void msk_watchdog(struct msk_if_softc *);
283 static int msk_mediachange(struct ifnet *);
284 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
285 static void msk_phy_power(struct msk_softc *, int);
286 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
287 static int msk_status_dma_alloc(struct msk_softc *);
288 static void msk_status_dma_free(struct msk_softc *);
289 static int msk_txrx_dma_alloc(struct msk_if_softc *);
290 static int msk_rx_dma_jalloc(struct msk_if_softc *);
291 static void msk_txrx_dma_free(struct msk_if_softc *);
292 static void msk_rx_dma_jfree(struct msk_if_softc *);
293 static int msk_init_rx_ring(struct msk_if_softc *);
294 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
295 static void msk_init_tx_ring(struct msk_if_softc *);
296 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
297 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
298 static int msk_newbuf(struct msk_if_softc *, int);
299 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
300 
301 static int msk_phy_readreg(struct msk_if_softc *, int, int);
302 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
303 static int msk_miibus_readreg(device_t, int, int);
304 static int msk_miibus_writereg(device_t, int, int, int);
305 static void msk_miibus_statchg(device_t);
306 
307 static void msk_rxfilter(struct msk_if_softc *);
308 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
309 
310 static void msk_stats_clear(struct msk_if_softc *);
311 static void msk_stats_update(struct msk_if_softc *);
312 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
313 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
314 static void msk_sysctl_node(struct msk_if_softc *);
315 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
316 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
317 
318 static device_method_t mskc_methods[] = {
319 	/* Device interface */
320 	DEVMETHOD(device_probe,		mskc_probe),
321 	DEVMETHOD(device_attach,	mskc_attach),
322 	DEVMETHOD(device_detach,	mskc_detach),
323 	DEVMETHOD(device_suspend,	mskc_suspend),
324 	DEVMETHOD(device_resume,	mskc_resume),
325 	DEVMETHOD(device_shutdown,	mskc_shutdown),
326 
327 	/* bus interface */
328 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
329 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
330 
331 	{ NULL, NULL }
332 };
333 
334 static driver_t mskc_driver = {
335 	"mskc",
336 	mskc_methods,
337 	sizeof(struct msk_softc)
338 };
339 
340 static devclass_t mskc_devclass;
341 
342 static device_method_t msk_methods[] = {
343 	/* Device interface */
344 	DEVMETHOD(device_probe,		msk_probe),
345 	DEVMETHOD(device_attach,	msk_attach),
346 	DEVMETHOD(device_detach,	msk_detach),
347 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
348 
349 	/* bus interface */
350 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
351 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
352 
353 	/* MII interface */
354 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
355 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
356 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
357 
358 	{ NULL, NULL }
359 };
360 
361 static driver_t msk_driver = {
362 	"msk",
363 	msk_methods,
364 	sizeof(struct msk_if_softc)
365 };
366 
367 static devclass_t msk_devclass;
368 
369 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
370 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
371 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
372 
373 static struct resource_spec msk_res_spec_io[] = {
374 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
375 	{ -1,			0,		0 }
376 };
377 
378 static struct resource_spec msk_res_spec_mem[] = {
379 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
380 	{ -1,			0,		0 }
381 };
382 
383 static struct resource_spec msk_irq_spec_legacy[] = {
384 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
385 	{ -1,			0,		0 }
386 };
387 
388 static struct resource_spec msk_irq_spec_msi[] = {
389 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
390 	{ -1,			0,		0 }
391 };
392 
393 static int
394 msk_miibus_readreg(device_t dev, int phy, int reg)
395 {
396 	struct msk_if_softc *sc_if;
397 
398 	if (phy != PHY_ADDR_MARV)
399 		return (0);
400 
401 	sc_if = device_get_softc(dev);
402 
403 	return (msk_phy_readreg(sc_if, phy, reg));
404 }
405 
406 static int
407 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
408 {
409 	struct msk_softc *sc;
410 	int i, val;
411 
412 	sc = sc_if->msk_softc;
413 
414         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
415 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
416 
417 	for (i = 0; i < MSK_TIMEOUT; i++) {
418 		DELAY(1);
419 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
420 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
421 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
422 			break;
423 		}
424 	}
425 
426 	if (i == MSK_TIMEOUT) {
427 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
428 		val = 0;
429 	}
430 
431 	return (val);
432 }
433 
434 static int
435 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
436 {
437 	struct msk_if_softc *sc_if;
438 
439 	if (phy != PHY_ADDR_MARV)
440 		return (0);
441 
442 	sc_if = device_get_softc(dev);
443 
444 	return (msk_phy_writereg(sc_if, phy, reg, val));
445 }
446 
447 static int
448 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
449 {
450 	struct msk_softc *sc;
451 	int i;
452 
453 	sc = sc_if->msk_softc;
454 
455 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
456         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
457 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
458 	for (i = 0; i < MSK_TIMEOUT; i++) {
459 		DELAY(1);
460 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
461 		    GM_SMI_CT_BUSY) == 0)
462 			break;
463 	}
464 	if (i == MSK_TIMEOUT)
465 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
466 
467 	return (0);
468 }
469 
470 static void
471 msk_miibus_statchg(device_t dev)
472 {
473 	struct msk_softc *sc;
474 	struct msk_if_softc *sc_if;
475 	struct mii_data *mii;
476 	struct ifnet *ifp;
477 	uint32_t gmac;
478 
479 	sc_if = device_get_softc(dev);
480 	sc = sc_if->msk_softc;
481 
482 	MSK_IF_LOCK_ASSERT(sc_if);
483 
484 	mii = device_get_softc(sc_if->msk_miibus);
485 	ifp = sc_if->msk_ifp;
486 	if (mii == NULL || ifp == NULL ||
487 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
488 		return;
489 
490 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
491 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
492 	    (IFM_AVALID | IFM_ACTIVE)) {
493 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
494 		case IFM_10_T:
495 		case IFM_100_TX:
496 			sc_if->msk_flags |= MSK_FLAG_LINK;
497 			break;
498 		case IFM_1000_T:
499 		case IFM_1000_SX:
500 		case IFM_1000_LX:
501 		case IFM_1000_CX:
502 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
503 				sc_if->msk_flags |= MSK_FLAG_LINK;
504 			break;
505 		default:
506 			break;
507 		}
508 	}
509 
510 	if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) {
511 		/* Enable Tx FIFO Underrun. */
512 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
513 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
514 		/*
515 		 * Because mii(4) notify msk(4) that it detected link status
516 		 * change, there is no need to enable automatic
517 		 * speed/flow-control/duplex updates.
518 		 */
519 		gmac = GM_GPCR_AU_ALL_DIS;
520 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
521 		case IFM_1000_SX:
522 		case IFM_1000_T:
523 			gmac |= GM_GPCR_SPEED_1000;
524 			break;
525 		case IFM_100_TX:
526 			gmac |= GM_GPCR_SPEED_100;
527 			break;
528 		case IFM_10_T:
529 			break;
530 		}
531 
532 		/* Disable Rx flow control. */
533 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLAG0) == 0)
534 			gmac |= GM_GPCR_FC_RX_DIS;
535 		/* Disable Tx flow control. */
536 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLAG1) == 0)
537 			gmac |= GM_GPCR_FC_TX_DIS;
538 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
539 			gmac |= GM_GPCR_DUP_FULL;
540 		else
541 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
542 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
543 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
544 		/* Read again to ensure writing. */
545 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
546 		gmac = GMC_PAUSE_OFF;
547 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
548 			if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLAG0) != 0)
549 				gmac = GMC_PAUSE_ON;
550 		}
551 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
552 
553 		/* Enable PHY interrupt for FIFO underrun/overflow. */
554 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
555 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
556 	} else {
557 		/*
558 		 * Link state changed to down.
559 		 * Disable PHY interrupts.
560 		 */
561 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
562 		/* Disable Rx/Tx MAC. */
563 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
564 		if ((GM_GPCR_RX_ENA | GM_GPCR_TX_ENA) != 0) {
565 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
566 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
567 			/* Read again to ensure writing. */
568 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
569 		}
570 	}
571 }
572 
573 static void
574 msk_rxfilter(struct msk_if_softc *sc_if)
575 {
576 	struct msk_softc *sc;
577 	struct ifnet *ifp;
578 	struct ifmultiaddr *ifma;
579 	uint32_t mchash[2];
580 	uint32_t crc;
581 	uint16_t mode;
582 
583 	sc = sc_if->msk_softc;
584 
585 	MSK_IF_LOCK_ASSERT(sc_if);
586 
587 	ifp = sc_if->msk_ifp;
588 
589 	bzero(mchash, sizeof(mchash));
590 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
591 	if ((ifp->if_flags & IFF_PROMISC) != 0)
592 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
593 	else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
594 		mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
595 		mchash[0] = 0xffff;
596 		mchash[1] = 0xffff;
597 	} else {
598 		mode |= GM_RXCR_UCF_ENA;
599 		if_maddr_rlock(ifp);
600 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
601 			if (ifma->ifma_addr->sa_family != AF_LINK)
602 				continue;
603 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
604 			    ifma->ifma_addr), ETHER_ADDR_LEN);
605 			/* Just want the 6 least significant bits. */
606 			crc &= 0x3f;
607 			/* Set the corresponding bit in the hash table. */
608 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
609 		}
610 		if_maddr_runlock(ifp);
611 		if (mchash[0] != 0 || mchash[1] != 0)
612 			mode |= GM_RXCR_MCF_ENA;
613 	}
614 
615 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
616 	    mchash[0] & 0xffff);
617 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
618 	    (mchash[0] >> 16) & 0xffff);
619 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
620 	    mchash[1] & 0xffff);
621 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
622 	    (mchash[1] >> 16) & 0xffff);
623 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
624 }
625 
626 static void
627 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
628 {
629 	struct msk_softc *sc;
630 
631 	sc = sc_if->msk_softc;
632 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
633 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
634 		    RX_VLAN_STRIP_ON);
635 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
636 		    TX_VLAN_TAG_ON);
637 	} else {
638 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
639 		    RX_VLAN_STRIP_OFF);
640 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
641 		    TX_VLAN_TAG_OFF);
642 	}
643 }
644 
645 static int
646 msk_init_rx_ring(struct msk_if_softc *sc_if)
647 {
648 	struct msk_ring_data *rd;
649 	struct msk_rxdesc *rxd;
650 	int i, prod;
651 
652 	MSK_IF_LOCK_ASSERT(sc_if);
653 
654 	sc_if->msk_cdata.msk_rx_cons = 0;
655 	sc_if->msk_cdata.msk_rx_prod = 0;
656 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
657 
658 	rd = &sc_if->msk_rdata;
659 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
660 	prod = sc_if->msk_cdata.msk_rx_prod;
661 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
662 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
663 		rxd->rx_m = NULL;
664 		rxd->rx_le = &rd->msk_rx_ring[prod];
665 		if (msk_newbuf(sc_if, prod) != 0)
666 			return (ENOBUFS);
667 		MSK_INC(prod, MSK_RX_RING_CNT);
668 	}
669 
670 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
671 	    sc_if->msk_cdata.msk_rx_ring_map,
672 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
673 
674 	/* Update prefetch unit. */
675 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
676 	CSR_WRITE_2(sc_if->msk_softc,
677 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
678 	    sc_if->msk_cdata.msk_rx_prod);
679 
680 	return (0);
681 }
682 
683 static int
684 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
685 {
686 	struct msk_ring_data *rd;
687 	struct msk_rxdesc *rxd;
688 	int i, prod;
689 
690 	MSK_IF_LOCK_ASSERT(sc_if);
691 
692 	sc_if->msk_cdata.msk_rx_cons = 0;
693 	sc_if->msk_cdata.msk_rx_prod = 0;
694 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
695 
696 	rd = &sc_if->msk_rdata;
697 	bzero(rd->msk_jumbo_rx_ring,
698 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
699 	prod = sc_if->msk_cdata.msk_rx_prod;
700 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
701 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
702 		rxd->rx_m = NULL;
703 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
704 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
705 			return (ENOBUFS);
706 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
707 	}
708 
709 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
710 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
711 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
712 
713 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
714 	CSR_WRITE_2(sc_if->msk_softc,
715 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
716 	    sc_if->msk_cdata.msk_rx_prod);
717 
718 	return (0);
719 }
720 
721 static void
722 msk_init_tx_ring(struct msk_if_softc *sc_if)
723 {
724 	struct msk_ring_data *rd;
725 	struct msk_txdesc *txd;
726 	int i;
727 
728 	sc_if->msk_cdata.msk_tso_mtu = 0;
729 	sc_if->msk_cdata.msk_last_csum = 0;
730 	sc_if->msk_cdata.msk_tx_prod = 0;
731 	sc_if->msk_cdata.msk_tx_cons = 0;
732 	sc_if->msk_cdata.msk_tx_cnt = 0;
733 
734 	rd = &sc_if->msk_rdata;
735 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
736 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
737 		txd = &sc_if->msk_cdata.msk_txdesc[i];
738 		txd->tx_m = NULL;
739 		txd->tx_le = &rd->msk_tx_ring[i];
740 	}
741 
742 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
743 	    sc_if->msk_cdata.msk_tx_ring_map,
744 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
745 }
746 
747 static __inline void
748 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
749 {
750 	struct msk_rx_desc *rx_le;
751 	struct msk_rxdesc *rxd;
752 	struct mbuf *m;
753 
754 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
755 	m = rxd->rx_m;
756 	rx_le = rxd->rx_le;
757 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
758 }
759 
760 static __inline void
761 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
762 {
763 	struct msk_rx_desc *rx_le;
764 	struct msk_rxdesc *rxd;
765 	struct mbuf *m;
766 
767 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
768 	m = rxd->rx_m;
769 	rx_le = rxd->rx_le;
770 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
771 }
772 
773 static int
774 msk_newbuf(struct msk_if_softc *sc_if, int idx)
775 {
776 	struct msk_rx_desc *rx_le;
777 	struct msk_rxdesc *rxd;
778 	struct mbuf *m;
779 	bus_dma_segment_t segs[1];
780 	bus_dmamap_t map;
781 	int nsegs;
782 
783 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
784 	if (m == NULL)
785 		return (ENOBUFS);
786 
787 	m->m_len = m->m_pkthdr.len = MCLBYTES;
788 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
789 		m_adj(m, ETHER_ALIGN);
790 #ifndef __NO_STRICT_ALIGNMENT
791 	else
792 		m_adj(m, MSK_RX_BUF_ALIGN);
793 #endif
794 
795 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
796 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
797 	    BUS_DMA_NOWAIT) != 0) {
798 		m_freem(m);
799 		return (ENOBUFS);
800 	}
801 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
802 
803 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
804 	if (rxd->rx_m != NULL) {
805 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
806 		    BUS_DMASYNC_POSTREAD);
807 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
808 	}
809 	map = rxd->rx_dmamap;
810 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
811 	sc_if->msk_cdata.msk_rx_sparemap = map;
812 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
813 	    BUS_DMASYNC_PREREAD);
814 	rxd->rx_m = m;
815 	rx_le = rxd->rx_le;
816 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
817 	rx_le->msk_control =
818 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
819 
820 	return (0);
821 }
822 
823 static int
824 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
825 {
826 	struct msk_rx_desc *rx_le;
827 	struct msk_rxdesc *rxd;
828 	struct mbuf *m;
829 	bus_dma_segment_t segs[1];
830 	bus_dmamap_t map;
831 	int nsegs;
832 
833 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
834 	if (m == NULL)
835 		return (ENOBUFS);
836 	if ((m->m_flags & M_EXT) == 0) {
837 		m_freem(m);
838 		return (ENOBUFS);
839 	}
840 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
841 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
842 		m_adj(m, ETHER_ALIGN);
843 #ifndef __NO_STRICT_ALIGNMENT
844 	else
845 		m_adj(m, MSK_RX_BUF_ALIGN);
846 #endif
847 
848 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
849 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
850 	    BUS_DMA_NOWAIT) != 0) {
851 		m_freem(m);
852 		return (ENOBUFS);
853 	}
854 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
855 
856 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
857 	if (rxd->rx_m != NULL) {
858 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
859 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
860 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
861 		    rxd->rx_dmamap);
862 	}
863 	map = rxd->rx_dmamap;
864 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
865 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
866 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
867 	    BUS_DMASYNC_PREREAD);
868 	rxd->rx_m = m;
869 	rx_le = rxd->rx_le;
870 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
871 	rx_le->msk_control =
872 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
873 
874 	return (0);
875 }
876 
877 /*
878  * Set media options.
879  */
880 static int
881 msk_mediachange(struct ifnet *ifp)
882 {
883 	struct msk_if_softc *sc_if;
884 	struct mii_data	*mii;
885 	int error;
886 
887 	sc_if = ifp->if_softc;
888 
889 	MSK_IF_LOCK(sc_if);
890 	mii = device_get_softc(sc_if->msk_miibus);
891 	error = mii_mediachg(mii);
892 	MSK_IF_UNLOCK(sc_if);
893 
894 	return (error);
895 }
896 
897 /*
898  * Report current media status.
899  */
900 static void
901 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
902 {
903 	struct msk_if_softc *sc_if;
904 	struct mii_data	*mii;
905 
906 	sc_if = ifp->if_softc;
907 	MSK_IF_LOCK(sc_if);
908 	if ((ifp->if_flags & IFF_UP) == 0) {
909 		MSK_IF_UNLOCK(sc_if);
910 		return;
911 	}
912 	mii = device_get_softc(sc_if->msk_miibus);
913 
914 	mii_pollstat(mii);
915 	MSK_IF_UNLOCK(sc_if);
916 	ifmr->ifm_active = mii->mii_media_active;
917 	ifmr->ifm_status = mii->mii_media_status;
918 }
919 
920 static int
921 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
922 {
923 	struct msk_if_softc *sc_if;
924 	struct ifreq *ifr;
925 	struct mii_data	*mii;
926 	int error, mask;
927 
928 	sc_if = ifp->if_softc;
929 	ifr = (struct ifreq *)data;
930 	error = 0;
931 
932 	switch(command) {
933 	case SIOCSIFMTU:
934 		MSK_IF_LOCK(sc_if);
935 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
936 			error = EINVAL;
937 		else if (ifp->if_mtu != ifr->ifr_mtu) {
938  			if (ifr->ifr_mtu > ETHERMTU) {
939 				if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
940 					error = EINVAL;
941 					MSK_IF_UNLOCK(sc_if);
942 					break;
943 				}
944 				if ((sc_if->msk_flags &
945 				    MSK_FLAG_JUMBO_NOCSUM) != 0) {
946 					ifp->if_hwassist &=
947 					    ~(MSK_CSUM_FEATURES | CSUM_TSO);
948 					ifp->if_capenable &=
949 					    ~(IFCAP_TSO4 | IFCAP_TXCSUM);
950 					VLAN_CAPABILITIES(ifp);
951 				}
952 			}
953 			ifp->if_mtu = ifr->ifr_mtu;
954 			msk_init_locked(sc_if);
955 		}
956 		MSK_IF_UNLOCK(sc_if);
957 		break;
958 	case SIOCSIFFLAGS:
959 		MSK_IF_LOCK(sc_if);
960 		if ((ifp->if_flags & IFF_UP) != 0) {
961 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
962 			    ((ifp->if_flags ^ sc_if->msk_if_flags) &
963 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
964 				msk_rxfilter(sc_if);
965 			else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0)
966 				msk_init_locked(sc_if);
967 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
968 			msk_stop(sc_if);
969 		sc_if->msk_if_flags = ifp->if_flags;
970 		MSK_IF_UNLOCK(sc_if);
971 		break;
972 	case SIOCADDMULTI:
973 	case SIOCDELMULTI:
974 		MSK_IF_LOCK(sc_if);
975 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
976 			msk_rxfilter(sc_if);
977 		MSK_IF_UNLOCK(sc_if);
978 		break;
979 	case SIOCGIFMEDIA:
980 	case SIOCSIFMEDIA:
981 		mii = device_get_softc(sc_if->msk_miibus);
982 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
983 		break;
984 	case SIOCSIFCAP:
985 		MSK_IF_LOCK(sc_if);
986 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
987 		if ((mask & IFCAP_TXCSUM) != 0 &&
988 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
989 			ifp->if_capenable ^= IFCAP_TXCSUM;
990 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
991 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
992 			else
993 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
994 		}
995 		if ((mask & IFCAP_RXCSUM) != 0 &&
996 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
997 			ifp->if_capenable ^= IFCAP_RXCSUM;
998 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
999 		    (IFCAP_VLAN_HWCSUM & ifp->if_capabilities) != 0)
1000 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1001 		if ((mask & IFCAP_TSO4) != 0 &&
1002 		    (IFCAP_TSO4 & ifp->if_capabilities) != 0) {
1003 			ifp->if_capenable ^= IFCAP_TSO4;
1004 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1005 				ifp->if_hwassist |= CSUM_TSO;
1006 			else
1007 				ifp->if_hwassist &= ~CSUM_TSO;
1008 		}
1009 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1010 		    (IFCAP_VLAN_HWTSO & ifp->if_capabilities) != 0)
1011 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1012 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1013 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
1014 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1015 			if ((IFCAP_VLAN_HWTAGGING & ifp->if_capenable) == 0)
1016 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1017 			msk_setvlan(sc_if, ifp);
1018 		}
1019 		if (ifp->if_mtu > ETHERMTU &&
1020 		    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
1021 			ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
1022 			ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1023 		}
1024 
1025 		VLAN_CAPABILITIES(ifp);
1026 		MSK_IF_UNLOCK(sc_if);
1027 		break;
1028 	default:
1029 		error = ether_ioctl(ifp, command, data);
1030 		break;
1031 	}
1032 
1033 	return (error);
1034 }
1035 
1036 static int
1037 mskc_probe(device_t dev)
1038 {
1039 	struct msk_product *mp;
1040 	uint16_t vendor, devid;
1041 	int i;
1042 
1043 	vendor = pci_get_vendor(dev);
1044 	devid = pci_get_device(dev);
1045 	mp = msk_products;
1046 	for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
1047 	    i++, mp++) {
1048 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1049 			device_set_desc(dev, mp->msk_name);
1050 			return (BUS_PROBE_DEFAULT);
1051 		}
1052 	}
1053 
1054 	return (ENXIO);
1055 }
1056 
1057 static int
1058 mskc_setup_rambuffer(struct msk_softc *sc)
1059 {
1060 	int next;
1061 	int i;
1062 
1063 	/* Get adapter SRAM size. */
1064 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1065 	if (bootverbose)
1066 		device_printf(sc->msk_dev,
1067 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1068 	if (sc->msk_ramsize == 0)
1069 		return (0);
1070 
1071 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1072 	/*
1073 	 * Give receiver 2/3 of memory and round down to the multiple
1074 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
1075 	 * of 1024.
1076 	 */
1077 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1078 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1079 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1080 		sc->msk_rxqstart[i] = next;
1081 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1082 		next = sc->msk_rxqend[i] + 1;
1083 		sc->msk_txqstart[i] = next;
1084 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1085 		next = sc->msk_txqend[i] + 1;
1086 		if (bootverbose) {
1087 			device_printf(sc->msk_dev,
1088 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1089 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1090 			    sc->msk_rxqend[i]);
1091 			device_printf(sc->msk_dev,
1092 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1093 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1094 			    sc->msk_txqend[i]);
1095 		}
1096 	}
1097 
1098 	return (0);
1099 }
1100 
1101 static void
1102 msk_phy_power(struct msk_softc *sc, int mode)
1103 {
1104 	uint32_t our, val;
1105 	int i;
1106 
1107 	switch (mode) {
1108 	case MSK_PHY_POWERUP:
1109 		/* Switch power to VCC (WA for VAUX problem). */
1110 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1111 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1112 		/* Disable Core Clock Division, set Clock Select to 0. */
1113 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1114 
1115 		val = 0;
1116 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1117 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1118 			/* Enable bits are inverted. */
1119 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1120 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1121 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1122 		}
1123 		/*
1124 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1125 		 */
1126 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1127 
1128 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1129 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1130 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1131 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1132 				/* Deassert Low Power for 1st PHY. */
1133 				val |= PCI_Y2_PHY1_COMA;
1134 				if (sc->msk_num_port > 1)
1135 					val |= PCI_Y2_PHY2_COMA;
1136 			}
1137 		}
1138 		/* Release PHY from PowerDown/COMA mode. */
1139 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1140 		switch (sc->msk_hw_id) {
1141 		case CHIP_ID_YUKON_EC_U:
1142 		case CHIP_ID_YUKON_EX:
1143 		case CHIP_ID_YUKON_FE_P:
1144 		case CHIP_ID_YUKON_UL_2:
1145 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_OFF);
1146 
1147 			/* Enable all clocks. */
1148 			pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1149 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1150 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1151 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1152 			/* Set all bits to 0 except bits 15..12. */
1153 			pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1154 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_5, 4);
1155 			our &= PCI_CTL_TIM_VMAIN_AV_MSK;
1156 			pci_write_config(sc->msk_dev, PCI_OUR_REG_5, our, 4);
1157 			pci_write_config(sc->msk_dev, PCI_CFG_REG_1, 0, 4);
1158 			/*
1159 			 * Disable status race, workaround for
1160 			 * Yukon EC Ultra & Yukon EX.
1161 			 */
1162 			val = CSR_READ_4(sc, B2_GP_IO);
1163 			val |= GLB_GPIO_STAT_RACE_DIS;
1164 			CSR_WRITE_4(sc, B2_GP_IO, val);
1165 			CSR_READ_4(sc, B2_GP_IO);
1166 			break;
1167 		default:
1168 			break;
1169 		}
1170 		for (i = 0; i < sc->msk_num_port; i++) {
1171 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1172 			    GMLC_RST_SET);
1173 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1174 			    GMLC_RST_CLR);
1175 		}
1176 		break;
1177 	case MSK_PHY_POWERDOWN:
1178 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1179 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1180 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1181 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1182 			val &= ~PCI_Y2_PHY1_COMA;
1183 			if (sc->msk_num_port > 1)
1184 				val &= ~PCI_Y2_PHY2_COMA;
1185 		}
1186 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1187 
1188 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1189 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1190 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1191 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1192 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1193 			/* Enable bits are inverted. */
1194 			val = 0;
1195 		}
1196 		/*
1197 		 * Disable PCI & Core Clock, disable clock gating for
1198 		 * both Links.
1199 		 */
1200 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1201 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1202 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1203 		break;
1204 	default:
1205 		break;
1206 	}
1207 }
1208 
1209 static void
1210 mskc_reset(struct msk_softc *sc)
1211 {
1212 	bus_addr_t addr;
1213 	uint16_t status;
1214 	uint32_t val;
1215 	int i;
1216 
1217 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1218 
1219 	/* Disable ASF. */
1220 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX) {
1221 		status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1222 		/* Clear AHB bridge & microcontroller reset. */
1223 		status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1224 		    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1225 		/* Clear ASF microcontroller state. */
1226 		status &= ~ Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1227 		CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1228 	} else
1229 		CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1230 	CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1231 
1232 	/*
1233 	 * Since we disabled ASF, S/W reset is required for Power Management.
1234 	 */
1235 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1236 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1237 
1238 	/* Clear all error bits in the PCI status register. */
1239 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1240 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1241 
1242 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1243 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1244 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1245 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1246 
1247 	switch (sc->msk_bustype) {
1248 	case MSK_PEX_BUS:
1249 		/* Clear all PEX errors. */
1250 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1251 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1252 		if ((val & PEX_RX_OV) != 0) {
1253 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1254 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1255 		}
1256 		break;
1257 	case MSK_PCI_BUS:
1258 	case MSK_PCIX_BUS:
1259 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1260 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1261 		if (val == 0)
1262 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1263 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1264 			/* Set Cache Line Size opt. */
1265 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1266 			val |= PCI_CLS_OPT;
1267 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1268 		}
1269 		break;
1270 	}
1271 	/* Set PHY power state. */
1272 	msk_phy_power(sc, MSK_PHY_POWERUP);
1273 
1274 	/* Reset GPHY/GMAC Control */
1275 	for (i = 0; i < sc->msk_num_port; i++) {
1276 		/* GPHY Control reset. */
1277 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1278 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1279 		/* GMAC Control reset. */
1280 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1281 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1282 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1283 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX)
1284 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1285 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1286 			    GMC_BYP_RETR_ON);
1287 	}
1288 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1289 
1290 	/* LED On. */
1291 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1292 
1293 	/* Clear TWSI IRQ. */
1294 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1295 
1296 	/* Turn off hardware timer. */
1297 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1298 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1299 
1300 	/* Turn off descriptor polling. */
1301 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1302 
1303 	/* Turn off time stamps. */
1304 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1305 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1306 
1307 	/* Configure timeout values. */
1308 	for (i = 0; i < sc->msk_num_port; i++) {
1309 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1310 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1311 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1312 		    MSK_RI_TO_53);
1313 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1314 		    MSK_RI_TO_53);
1315 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1316 		    MSK_RI_TO_53);
1317 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1318 		    MSK_RI_TO_53);
1319 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1320 		    MSK_RI_TO_53);
1321 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1322 		    MSK_RI_TO_53);
1323 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1324 		    MSK_RI_TO_53);
1325 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1326 		    MSK_RI_TO_53);
1327 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1328 		    MSK_RI_TO_53);
1329 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1330 		    MSK_RI_TO_53);
1331 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1332 		    MSK_RI_TO_53);
1333 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1334 		    MSK_RI_TO_53);
1335 	}
1336 
1337 	/* Disable all interrupts. */
1338 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1339 	CSR_READ_4(sc, B0_HWE_IMSK);
1340 	CSR_WRITE_4(sc, B0_IMSK, 0);
1341 	CSR_READ_4(sc, B0_IMSK);
1342 
1343         /*
1344          * On dual port PCI-X card, there is an problem where status
1345          * can be received out of order due to split transactions.
1346          */
1347 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1348 		uint16_t pcix_cmd;
1349 
1350 		pcix_cmd = pci_read_config(sc->msk_dev,
1351 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1352 		/* Clear Max Outstanding Split Transactions. */
1353 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1354 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1355 		pci_write_config(sc->msk_dev,
1356 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1357 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1358         }
1359 	if (sc->msk_expcap != 0) {
1360 		/* Change Max. Read Request Size to 2048 bytes. */
1361 		if (pci_get_max_read_req(sc->msk_dev) == 512)
1362 			pci_set_max_read_req(sc->msk_dev, 2048);
1363 	}
1364 
1365 	/* Clear status list. */
1366 	bzero(sc->msk_stat_ring,
1367 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1368 	sc->msk_stat_cons = 0;
1369 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1370 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1371 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1372 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1373 	/* Set the status list base address. */
1374 	addr = sc->msk_stat_ring_paddr;
1375 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1376 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1377 	/* Set the status list last index. */
1378 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1379 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1380 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1381 		/* WA for dev. #4.3 */
1382 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1383 		/* WA for dev. #4.18 */
1384 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1385 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1386 	} else {
1387 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1388 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1389 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1390 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1391 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1392 		else
1393 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1394 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1395 	}
1396 	/*
1397 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1398 	 */
1399 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1400 
1401 	/* Enable status unit. */
1402 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1403 
1404 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1405 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1406 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1407 }
1408 
1409 static int
1410 msk_probe(device_t dev)
1411 {
1412 	struct msk_softc *sc;
1413 	char desc[100];
1414 
1415 	sc = device_get_softc(device_get_parent(dev));
1416 	/*
1417 	 * Not much to do here. We always know there will be
1418 	 * at least one GMAC present, and if there are two,
1419 	 * mskc_attach() will create a second device instance
1420 	 * for us.
1421 	 */
1422 	snprintf(desc, sizeof(desc),
1423 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1424 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1425 	    sc->msk_hw_rev);
1426 	device_set_desc_copy(dev, desc);
1427 
1428 	return (BUS_PROBE_DEFAULT);
1429 }
1430 
1431 static int
1432 msk_attach(device_t dev)
1433 {
1434 	struct msk_softc *sc;
1435 	struct msk_if_softc *sc_if;
1436 	struct ifnet *ifp;
1437 	struct msk_mii_data *mmd;
1438 	int i, port, error;
1439 	uint8_t eaddr[6];
1440 
1441 	if (dev == NULL)
1442 		return (EINVAL);
1443 
1444 	error = 0;
1445 	sc_if = device_get_softc(dev);
1446 	sc = device_get_softc(device_get_parent(dev));
1447 	mmd = device_get_ivars(dev);
1448 	port = mmd->port;
1449 
1450 	sc_if->msk_if_dev = dev;
1451 	sc_if->msk_port = port;
1452 	sc_if->msk_softc = sc;
1453 	sc_if->msk_flags = sc->msk_pflags;
1454 	sc->msk_if[port] = sc_if;
1455 	/* Setup Tx/Rx queue register offsets. */
1456 	if (port == MSK_PORT_A) {
1457 		sc_if->msk_txq = Q_XA1;
1458 		sc_if->msk_txsq = Q_XS1;
1459 		sc_if->msk_rxq = Q_R1;
1460 	} else {
1461 		sc_if->msk_txq = Q_XA2;
1462 		sc_if->msk_txsq = Q_XS2;
1463 		sc_if->msk_rxq = Q_R2;
1464 	}
1465 
1466 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1467 	msk_sysctl_node(sc_if);
1468 
1469 	if ((error = msk_txrx_dma_alloc(sc_if) != 0))
1470 		goto fail;
1471 	msk_rx_dma_jalloc(sc_if);
1472 
1473 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1474 	if (ifp == NULL) {
1475 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1476 		error = ENOSPC;
1477 		goto fail;
1478 	}
1479 	ifp->if_softc = sc_if;
1480 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1481 	ifp->if_mtu = ETHERMTU;
1482 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1483 	/*
1484 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1485 	 * has serious bug in Rx checksum offload for all Yukon II family
1486 	 * hardware. It seems there is a workaround to make it work somtimes.
1487 	 * However, the workaround also have to check OP code sequences to
1488 	 * verify whether the OP code is correct. Sometimes it should compute
1489 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1490 	 * checksum computed by hardware. If you have to compute checksum
1491 	 * with software to verify the hardware's checksum why have hardware
1492 	 * compute the checksum? I think there is no reason to spend time to
1493 	 * make Rx checksum offload work on Yukon II hardware.
1494 	 */
1495 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1496 	/*
1497 	 * Enable Rx checksum offloading if controller support new
1498 	 * descriptor format.
1499 	 */
1500 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1501 	    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1502 		ifp->if_capabilities |= IFCAP_RXCSUM;
1503 	ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1504 	ifp->if_capenable = ifp->if_capabilities;
1505 	ifp->if_ioctl = msk_ioctl;
1506 	ifp->if_start = msk_start;
1507 	ifp->if_init = msk_init;
1508 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1509 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1510 	IFQ_SET_READY(&ifp->if_snd);
1511 	/*
1512 	 * Get station address for this interface. Note that
1513 	 * dual port cards actually come with three station
1514 	 * addresses: one for each port, plus an extra. The
1515 	 * extra one is used by the SysKonnect driver software
1516 	 * as a 'virtual' station address for when both ports
1517 	 * are operating in failover mode. Currently we don't
1518 	 * use this extra address.
1519 	 */
1520 	MSK_IF_LOCK(sc_if);
1521 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1522 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1523 
1524 	/*
1525 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1526 	 */
1527 	MSK_IF_UNLOCK(sc_if);
1528 	ether_ifattach(ifp, eaddr);
1529 	MSK_IF_LOCK(sc_if);
1530 
1531 	/* VLAN capability setup */
1532 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1533 	if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) {
1534 		/*
1535 		 * Due to Tx checksum offload hardware bugs, msk(4) manually
1536 		 * computes checksum for short frames. For VLAN tagged frames
1537 		 * this workaround does not work so disable checksum offload
1538 		 * for VLAN interface.
1539 		 */
1540         	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO;
1541 		/*
1542 		 * Enable Rx checksum offloading for VLAN taggedd frames
1543 		 * if controller support new descriptor format.
1544 		 */
1545 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1546 		    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1547 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1548 	}
1549 	ifp->if_capenable = ifp->if_capabilities;
1550 
1551 	/*
1552 	 * Tell the upper layer(s) we support long frames.
1553 	 * Must appear after the call to ether_ifattach() because
1554 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1555 	 */
1556         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1557 
1558 	/*
1559 	 * Do miibus setup.
1560 	 */
1561 	MSK_IF_UNLOCK(sc_if);
1562 	error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
1563 	    msk_mediastatus);
1564 	if (error != 0) {
1565 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1566 		ether_ifdetach(ifp);
1567 		error = ENXIO;
1568 		goto fail;
1569 	}
1570 
1571 fail:
1572 	if (error != 0) {
1573 		/* Access should be ok even though lock has been dropped */
1574 		sc->msk_if[port] = NULL;
1575 		msk_detach(dev);
1576 	}
1577 
1578 	return (error);
1579 }
1580 
1581 /*
1582  * Attach the interface. Allocate softc structures, do ifmedia
1583  * setup and ethernet/BPF attach.
1584  */
1585 static int
1586 mskc_attach(device_t dev)
1587 {
1588 	struct msk_softc *sc;
1589 	struct msk_mii_data *mmd;
1590 	int error, msic, msir, reg;
1591 
1592 	sc = device_get_softc(dev);
1593 	sc->msk_dev = dev;
1594 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1595 	    MTX_DEF);
1596 
1597 	/*
1598 	 * Map control/status registers.
1599 	 */
1600 	pci_enable_busmaster(dev);
1601 
1602 	/* Allocate I/O resource */
1603 #ifdef MSK_USEIOSPACE
1604 	sc->msk_res_spec = msk_res_spec_io;
1605 #else
1606 	sc->msk_res_spec = msk_res_spec_mem;
1607 #endif
1608 	sc->msk_irq_spec = msk_irq_spec_legacy;
1609 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1610 	if (error) {
1611 		if (sc->msk_res_spec == msk_res_spec_mem)
1612 			sc->msk_res_spec = msk_res_spec_io;
1613 		else
1614 			sc->msk_res_spec = msk_res_spec_mem;
1615 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1616 		if (error) {
1617 			device_printf(dev, "couldn't allocate %s resources\n",
1618 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1619 			    "I/O");
1620 			mtx_destroy(&sc->msk_mtx);
1621 			return (ENXIO);
1622 		}
1623 	}
1624 
1625 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1626 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1627 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1628 	/* Bail out if chip is not recognized. */
1629 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1630 	    sc->msk_hw_id > CHIP_ID_YUKON_UL_2 ||
1631 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1632 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1633 		    sc->msk_hw_id, sc->msk_hw_rev);
1634 		mtx_destroy(&sc->msk_mtx);
1635 		return (ENXIO);
1636 	}
1637 
1638 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1639 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1640 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1641 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1642 	    "max number of Rx events to process");
1643 
1644 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1645 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1646 	    "process_limit", &sc->msk_process_limit);
1647 	if (error == 0) {
1648 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1649 		    sc->msk_process_limit > MSK_PROC_MAX) {
1650 			device_printf(dev, "process_limit value out of range; "
1651 			    "using default: %d\n", MSK_PROC_DEFAULT);
1652 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1653 		}
1654 	}
1655 
1656 	sc->msk_int_holdoff = MSK_INT_HOLDOFF_DEFAULT;
1657 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
1658 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
1659 	    "int_holdoff", CTLFLAG_RW, &sc->msk_int_holdoff, 0,
1660 	    "Maximum number of time to delay interrupts");
1661 	resource_int_value(device_get_name(dev), device_get_unit(dev),
1662 	    "int_holdoff", &sc->msk_int_holdoff);
1663 
1664 	/* Soft reset. */
1665 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1666 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1667 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1668 	/* Check number of MACs. */
1669 	sc->msk_num_port = 1;
1670 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1671 	    CFG_DUAL_MAC_MSK) {
1672 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1673 			sc->msk_num_port++;
1674 	}
1675 
1676 	/* Check bus type. */
1677 	if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0) {
1678 		sc->msk_bustype = MSK_PEX_BUS;
1679 		sc->msk_expcap = reg;
1680 	} else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0) {
1681 		sc->msk_bustype = MSK_PCIX_BUS;
1682 		sc->msk_pcixcap = reg;
1683 	} else
1684 		sc->msk_bustype = MSK_PCI_BUS;
1685 
1686 	switch (sc->msk_hw_id) {
1687 	case CHIP_ID_YUKON_EC:
1688 		sc->msk_clock = 125;	/* 125 MHz */
1689 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1690 		break;
1691 	case CHIP_ID_YUKON_EC_U:
1692 		sc->msk_clock = 125;	/* 125 MHz */
1693 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM;
1694 		break;
1695 	case CHIP_ID_YUKON_EX:
1696 		sc->msk_clock = 125;	/* 125 MHz */
1697 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1698 		    MSK_FLAG_AUTOTX_CSUM;
1699 		/*
1700 		 * Yukon Extreme seems to have silicon bug for
1701 		 * automatic Tx checksum calculation capability.
1702 		 */
1703 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
1704 			sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM;
1705 		/*
1706 		 * Yukon Extreme A0 could not use store-and-forward
1707 		 * for jumbo frames, so disable Tx checksum
1708 		 * offloading for jumbo frames.
1709 		 */
1710 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
1711 			sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM;
1712 		break;
1713 	case CHIP_ID_YUKON_FE:
1714 		sc->msk_clock = 100;	/* 100 MHz */
1715 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1716 		break;
1717 	case CHIP_ID_YUKON_FE_P:
1718 		sc->msk_clock = 50;	/* 50 MHz */
1719 		sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 |
1720 		    MSK_FLAG_AUTOTX_CSUM;
1721 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1722 			/*
1723 			 * XXX
1724 			 * FE+ A0 has status LE writeback bug so msk(4)
1725 			 * does not rely on status word of received frame
1726 			 * in msk_rxeof() which in turn disables all
1727 			 * hardware assistance bits reported by the status
1728 			 * word as well as validity of the recevied frame.
1729 			 * Just pass received frames to upper stack with
1730 			 * minimal test and let upper stack handle them.
1731 			 */
1732 			sc->msk_pflags |= MSK_FLAG_NOHWVLAN |
1733 			    MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM;
1734 		}
1735 		break;
1736 	case CHIP_ID_YUKON_XL:
1737 		sc->msk_clock = 156;	/* 156 MHz */
1738 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1739 		break;
1740 	case CHIP_ID_YUKON_UL_2:
1741 		sc->msk_clock = 125;	/* 125 MHz */
1742 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1743 		break;
1744 	default:
1745 		sc->msk_clock = 156;	/* 156 MHz */
1746 		break;
1747 	}
1748 
1749 	/* Allocate IRQ resources. */
1750 	msic = pci_msi_count(dev);
1751 	if (bootverbose)
1752 		device_printf(dev, "MSI count : %d\n", msic);
1753 	if (legacy_intr != 0)
1754 		msi_disable = 1;
1755 	if (msi_disable == 0 && msic > 0) {
1756 		msir = 1;
1757 		if (pci_alloc_msi(dev, &msir) == 0) {
1758 			if (msir == 1) {
1759 				sc->msk_pflags |= MSK_FLAG_MSI;
1760 				sc->msk_irq_spec = msk_irq_spec_msi;
1761 			} else
1762 				pci_release_msi(dev);
1763 		}
1764 	}
1765 
1766 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1767 	if (error) {
1768 		device_printf(dev, "couldn't allocate IRQ resources\n");
1769 		goto fail;
1770 	}
1771 
1772 	if ((error = msk_status_dma_alloc(sc)) != 0)
1773 		goto fail;
1774 
1775 	/* Set base interrupt mask. */
1776 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1777 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1778 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1779 
1780 	/* Reset the adapter. */
1781 	mskc_reset(sc);
1782 
1783 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1784 		goto fail;
1785 
1786 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1787 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1788 		device_printf(dev, "failed to add child for PORT_A\n");
1789 		error = ENXIO;
1790 		goto fail;
1791 	}
1792 	mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1793 	if (mmd == NULL) {
1794 		device_printf(dev, "failed to allocate memory for "
1795 		    "ivars of PORT_A\n");
1796 		error = ENXIO;
1797 		goto fail;
1798 	}
1799 	mmd->port = MSK_PORT_A;
1800 	mmd->pmd = sc->msk_pmd;
1801 	 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S' || sc->msk_pmd == 'P')
1802 		mmd->mii_flags |= MIIF_HAVEFIBER;
1803 	device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd);
1804 
1805 	if (sc->msk_num_port > 1) {
1806 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1807 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1808 			device_printf(dev, "failed to add child for PORT_B\n");
1809 			error = ENXIO;
1810 			goto fail;
1811 		}
1812 		mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1813 		if (mmd == NULL) {
1814 			device_printf(dev, "failed to allocate memory for "
1815 			    "ivars of PORT_B\n");
1816 			error = ENXIO;
1817 			goto fail;
1818 		}
1819 		mmd->port = MSK_PORT_B;
1820 		mmd->pmd = sc->msk_pmd;
1821 	 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S' || sc->msk_pmd == 'P')
1822 			mmd->mii_flags |= MIIF_HAVEFIBER;
1823 		device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd);
1824 	}
1825 
1826 	error = bus_generic_attach(dev);
1827 	if (error) {
1828 		device_printf(dev, "failed to attach port(s)\n");
1829 		goto fail;
1830 	}
1831 
1832 	/* Hook interrupt last to avoid having to lock softc. */
1833 	error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1834 	    INTR_MPSAFE, NULL, msk_intr, sc, &sc->msk_intrhand);
1835 	if (error != 0) {
1836 		device_printf(dev, "couldn't set up interrupt handler\n");
1837 		goto fail;
1838 	}
1839 fail:
1840 	if (error != 0)
1841 		mskc_detach(dev);
1842 
1843 	return (error);
1844 }
1845 
1846 /*
1847  * Shutdown hardware and free up resources. This can be called any
1848  * time after the mutex has been initialized. It is called in both
1849  * the error case in attach and the normal detach case so it needs
1850  * to be careful about only freeing resources that have actually been
1851  * allocated.
1852  */
1853 static int
1854 msk_detach(device_t dev)
1855 {
1856 	struct msk_softc *sc;
1857 	struct msk_if_softc *sc_if;
1858 	struct ifnet *ifp;
1859 
1860 	sc_if = device_get_softc(dev);
1861 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
1862 	    ("msk mutex not initialized in msk_detach"));
1863 	MSK_IF_LOCK(sc_if);
1864 
1865 	ifp = sc_if->msk_ifp;
1866 	if (device_is_attached(dev)) {
1867 		/* XXX */
1868 		sc_if->msk_flags |= MSK_FLAG_DETACH;
1869 		msk_stop(sc_if);
1870 		/* Can't hold locks while calling detach. */
1871 		MSK_IF_UNLOCK(sc_if);
1872 		callout_drain(&sc_if->msk_tick_ch);
1873 		ether_ifdetach(ifp);
1874 		MSK_IF_LOCK(sc_if);
1875 	}
1876 
1877 	/*
1878 	 * We're generally called from mskc_detach() which is using
1879 	 * device_delete_child() to get to here. It's already trashed
1880 	 * miibus for us, so don't do it here or we'll panic.
1881 	 *
1882 	 * if (sc_if->msk_miibus != NULL) {
1883 	 * 	device_delete_child(dev, sc_if->msk_miibus);
1884 	 * 	sc_if->msk_miibus = NULL;
1885 	 * }
1886 	 */
1887 
1888 	msk_rx_dma_jfree(sc_if);
1889 	msk_txrx_dma_free(sc_if);
1890 	bus_generic_detach(dev);
1891 
1892 	if (ifp)
1893 		if_free(ifp);
1894 	sc = sc_if->msk_softc;
1895 	sc->msk_if[sc_if->msk_port] = NULL;
1896 	MSK_IF_UNLOCK(sc_if);
1897 
1898 	return (0);
1899 }
1900 
1901 static int
1902 mskc_detach(device_t dev)
1903 {
1904 	struct msk_softc *sc;
1905 
1906 	sc = device_get_softc(dev);
1907 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
1908 
1909 	if (device_is_alive(dev)) {
1910 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
1911 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
1912 			    M_DEVBUF);
1913 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
1914 		}
1915 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
1916 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
1917 			    M_DEVBUF);
1918 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
1919 		}
1920 		bus_generic_detach(dev);
1921 	}
1922 
1923 	/* Disable all interrupts. */
1924 	CSR_WRITE_4(sc, B0_IMSK, 0);
1925 	CSR_READ_4(sc, B0_IMSK);
1926 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1927 	CSR_READ_4(sc, B0_HWE_IMSK);
1928 
1929 	/* LED Off. */
1930 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1931 
1932 	/* Put hardware reset. */
1933 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1934 
1935 	msk_status_dma_free(sc);
1936 
1937 	if (sc->msk_intrhand) {
1938 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand);
1939 		sc->msk_intrhand = NULL;
1940 	}
1941 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1942 	if ((sc->msk_pflags & MSK_FLAG_MSI) != 0)
1943 		pci_release_msi(dev);
1944 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
1945 	mtx_destroy(&sc->msk_mtx);
1946 
1947 	return (0);
1948 }
1949 
1950 struct msk_dmamap_arg {
1951 	bus_addr_t	msk_busaddr;
1952 };
1953 
1954 static void
1955 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1956 {
1957 	struct msk_dmamap_arg *ctx;
1958 
1959 	if (error != 0)
1960 		return;
1961 	ctx = arg;
1962 	ctx->msk_busaddr = segs[0].ds_addr;
1963 }
1964 
1965 /* Create status DMA region. */
1966 static int
1967 msk_status_dma_alloc(struct msk_softc *sc)
1968 {
1969 	struct msk_dmamap_arg ctx;
1970 	int error;
1971 
1972 	error = bus_dma_tag_create(
1973 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
1974 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
1975 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1976 		    BUS_SPACE_MAXADDR,		/* highaddr */
1977 		    NULL, NULL,			/* filter, filterarg */
1978 		    MSK_STAT_RING_SZ,		/* maxsize */
1979 		    1,				/* nsegments */
1980 		    MSK_STAT_RING_SZ,		/* maxsegsize */
1981 		    0,				/* flags */
1982 		    NULL, NULL,			/* lockfunc, lockarg */
1983 		    &sc->msk_stat_tag);
1984 	if (error != 0) {
1985 		device_printf(sc->msk_dev,
1986 		    "failed to create status DMA tag\n");
1987 		return (error);
1988 	}
1989 
1990 	/* Allocate DMA'able memory and load the DMA map for status ring. */
1991 	error = bus_dmamem_alloc(sc->msk_stat_tag,
1992 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
1993 	    BUS_DMA_ZERO, &sc->msk_stat_map);
1994 	if (error != 0) {
1995 		device_printf(sc->msk_dev,
1996 		    "failed to allocate DMA'able memory for status ring\n");
1997 		return (error);
1998 	}
1999 
2000 	ctx.msk_busaddr = 0;
2001 	error = bus_dmamap_load(sc->msk_stat_tag,
2002 	    sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
2003 	    msk_dmamap_cb, &ctx, 0);
2004 	if (error != 0) {
2005 		device_printf(sc->msk_dev,
2006 		    "failed to load DMA'able memory for status ring\n");
2007 		return (error);
2008 	}
2009 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
2010 
2011 	return (0);
2012 }
2013 
2014 static void
2015 msk_status_dma_free(struct msk_softc *sc)
2016 {
2017 
2018 	/* Destroy status block. */
2019 	if (sc->msk_stat_tag) {
2020 		if (sc->msk_stat_map) {
2021 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
2022 			if (sc->msk_stat_ring) {
2023 				bus_dmamem_free(sc->msk_stat_tag,
2024 				    sc->msk_stat_ring, sc->msk_stat_map);
2025 				sc->msk_stat_ring = NULL;
2026 			}
2027 			sc->msk_stat_map = NULL;
2028 		}
2029 		bus_dma_tag_destroy(sc->msk_stat_tag);
2030 		sc->msk_stat_tag = NULL;
2031 	}
2032 }
2033 
2034 static int
2035 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2036 {
2037 	struct msk_dmamap_arg ctx;
2038 	struct msk_txdesc *txd;
2039 	struct msk_rxdesc *rxd;
2040 	bus_size_t rxalign;
2041 	int error, i;
2042 
2043 	/* Create parent DMA tag. */
2044 	/*
2045 	 * XXX
2046 	 * It seems that Yukon II supports full 64bits DMA operations. But
2047 	 * it needs two descriptors(list elements) for 64bits DMA operations.
2048 	 * Since we don't know what DMA address mappings(32bits or 64bits)
2049 	 * would be used in advance for each mbufs, we limits its DMA space
2050 	 * to be in range of 32bits address space. Otherwise, we should check
2051 	 * what DMA address is used and chain another descriptor for the
2052 	 * 64bits DMA operation. This also means descriptor ring size is
2053 	 * variable. Limiting DMA address to be in 32bit address space greatly
2054 	 * simplyfies descriptor handling and possibly would increase
2055 	 * performance a bit due to efficient handling of descriptors.
2056 	 * Apart from harassing checksum offloading mechanisms, it seems
2057 	 * it's really bad idea to use a seperate descriptor for 64bit
2058 	 * DMA operation to save small descriptor memory. Anyway, I've
2059 	 * never seen these exotic scheme on ethernet interface hardware.
2060 	 */
2061 	error = bus_dma_tag_create(
2062 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2063 		    1, 0,			/* alignment, boundary */
2064 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2065 		    BUS_SPACE_MAXADDR,		/* highaddr */
2066 		    NULL, NULL,			/* filter, filterarg */
2067 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2068 		    0,				/* nsegments */
2069 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2070 		    0,				/* flags */
2071 		    NULL, NULL,			/* lockfunc, lockarg */
2072 		    &sc_if->msk_cdata.msk_parent_tag);
2073 	if (error != 0) {
2074 		device_printf(sc_if->msk_if_dev,
2075 		    "failed to create parent DMA tag\n");
2076 		goto fail;
2077 	}
2078 	/* Create tag for Tx ring. */
2079 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2080 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2081 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2082 		    BUS_SPACE_MAXADDR,		/* highaddr */
2083 		    NULL, NULL,			/* filter, filterarg */
2084 		    MSK_TX_RING_SZ,		/* maxsize */
2085 		    1,				/* nsegments */
2086 		    MSK_TX_RING_SZ,		/* maxsegsize */
2087 		    0,				/* flags */
2088 		    NULL, NULL,			/* lockfunc, lockarg */
2089 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2090 	if (error != 0) {
2091 		device_printf(sc_if->msk_if_dev,
2092 		    "failed to create Tx ring DMA tag\n");
2093 		goto fail;
2094 	}
2095 
2096 	/* Create tag for Rx ring. */
2097 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2098 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2099 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2100 		    BUS_SPACE_MAXADDR,		/* highaddr */
2101 		    NULL, NULL,			/* filter, filterarg */
2102 		    MSK_RX_RING_SZ,		/* maxsize */
2103 		    1,				/* nsegments */
2104 		    MSK_RX_RING_SZ,		/* maxsegsize */
2105 		    0,				/* flags */
2106 		    NULL, NULL,			/* lockfunc, lockarg */
2107 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2108 	if (error != 0) {
2109 		device_printf(sc_if->msk_if_dev,
2110 		    "failed to create Rx ring DMA tag\n");
2111 		goto fail;
2112 	}
2113 
2114 	/* Create tag for Tx buffers. */
2115 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2116 		    1, 0,			/* alignment, boundary */
2117 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2118 		    BUS_SPACE_MAXADDR,		/* highaddr */
2119 		    NULL, NULL,			/* filter, filterarg */
2120 		    MSK_TSO_MAXSIZE,		/* maxsize */
2121 		    MSK_MAXTXSEGS,		/* nsegments */
2122 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2123 		    0,				/* flags */
2124 		    NULL, NULL,			/* lockfunc, lockarg */
2125 		    &sc_if->msk_cdata.msk_tx_tag);
2126 	if (error != 0) {
2127 		device_printf(sc_if->msk_if_dev,
2128 		    "failed to create Tx DMA tag\n");
2129 		goto fail;
2130 	}
2131 
2132 	rxalign = 1;
2133 	/*
2134 	 * Workaround hardware hang which seems to happen when Rx buffer
2135 	 * is not aligned on multiple of FIFO word(8 bytes).
2136 	 */
2137 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2138 		rxalign = MSK_RX_BUF_ALIGN;
2139 	/* Create tag for Rx buffers. */
2140 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2141 		    rxalign, 0,			/* alignment, boundary */
2142 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2143 		    BUS_SPACE_MAXADDR,		/* highaddr */
2144 		    NULL, NULL,			/* filter, filterarg */
2145 		    MCLBYTES,			/* maxsize */
2146 		    1,				/* nsegments */
2147 		    MCLBYTES,			/* maxsegsize */
2148 		    0,				/* flags */
2149 		    NULL, NULL,			/* lockfunc, lockarg */
2150 		    &sc_if->msk_cdata.msk_rx_tag);
2151 	if (error != 0) {
2152 		device_printf(sc_if->msk_if_dev,
2153 		    "failed to create Rx DMA tag\n");
2154 		goto fail;
2155 	}
2156 
2157 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2158 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2159 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2160 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2161 	if (error != 0) {
2162 		device_printf(sc_if->msk_if_dev,
2163 		    "failed to allocate DMA'able memory for Tx ring\n");
2164 		goto fail;
2165 	}
2166 
2167 	ctx.msk_busaddr = 0;
2168 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2169 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2170 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2171 	if (error != 0) {
2172 		device_printf(sc_if->msk_if_dev,
2173 		    "failed to load DMA'able memory for Tx ring\n");
2174 		goto fail;
2175 	}
2176 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2177 
2178 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2179 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2180 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2181 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2182 	if (error != 0) {
2183 		device_printf(sc_if->msk_if_dev,
2184 		    "failed to allocate DMA'able memory for Rx ring\n");
2185 		goto fail;
2186 	}
2187 
2188 	ctx.msk_busaddr = 0;
2189 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2190 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2191 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2192 	if (error != 0) {
2193 		device_printf(sc_if->msk_if_dev,
2194 		    "failed to load DMA'able memory for Rx ring\n");
2195 		goto fail;
2196 	}
2197 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2198 
2199 	/* Create DMA maps for Tx buffers. */
2200 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2201 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2202 		txd->tx_m = NULL;
2203 		txd->tx_dmamap = NULL;
2204 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2205 		    &txd->tx_dmamap);
2206 		if (error != 0) {
2207 			device_printf(sc_if->msk_if_dev,
2208 			    "failed to create Tx dmamap\n");
2209 			goto fail;
2210 		}
2211 	}
2212 	/* Create DMA maps for Rx buffers. */
2213 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2214 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2215 		device_printf(sc_if->msk_if_dev,
2216 		    "failed to create spare Rx dmamap\n");
2217 		goto fail;
2218 	}
2219 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2220 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2221 		rxd->rx_m = NULL;
2222 		rxd->rx_dmamap = NULL;
2223 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2224 		    &rxd->rx_dmamap);
2225 		if (error != 0) {
2226 			device_printf(sc_if->msk_if_dev,
2227 			    "failed to create Rx dmamap\n");
2228 			goto fail;
2229 		}
2230 	}
2231 
2232 fail:
2233 	return (error);
2234 }
2235 
2236 static int
2237 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2238 {
2239 	struct msk_dmamap_arg ctx;
2240 	struct msk_rxdesc *jrxd;
2241 	bus_size_t rxalign;
2242 	int error, i;
2243 
2244 	if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
2245 		sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2246 		device_printf(sc_if->msk_if_dev,
2247 		    "disabling jumbo frame support\n");
2248 		return (0);
2249 	}
2250 	/* Create tag for jumbo Rx ring. */
2251 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2252 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2253 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2254 		    BUS_SPACE_MAXADDR,		/* highaddr */
2255 		    NULL, NULL,			/* filter, filterarg */
2256 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2257 		    1,				/* nsegments */
2258 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2259 		    0,				/* flags */
2260 		    NULL, NULL,			/* lockfunc, lockarg */
2261 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2262 	if (error != 0) {
2263 		device_printf(sc_if->msk_if_dev,
2264 		    "failed to create jumbo Rx ring DMA tag\n");
2265 		goto jumbo_fail;
2266 	}
2267 
2268 	rxalign = 1;
2269 	/*
2270 	 * Workaround hardware hang which seems to happen when Rx buffer
2271 	 * is not aligned on multiple of FIFO word(8 bytes).
2272 	 */
2273 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2274 		rxalign = MSK_RX_BUF_ALIGN;
2275 	/* Create tag for jumbo Rx buffers. */
2276 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2277 		    rxalign, 0,			/* alignment, boundary */
2278 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2279 		    BUS_SPACE_MAXADDR,		/* highaddr */
2280 		    NULL, NULL,			/* filter, filterarg */
2281 		    MJUM9BYTES,			/* maxsize */
2282 		    1,				/* nsegments */
2283 		    MJUM9BYTES,			/* maxsegsize */
2284 		    0,				/* flags */
2285 		    NULL, NULL,			/* lockfunc, lockarg */
2286 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2287 	if (error != 0) {
2288 		device_printf(sc_if->msk_if_dev,
2289 		    "failed to create jumbo Rx DMA tag\n");
2290 		goto jumbo_fail;
2291 	}
2292 
2293 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2294 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2295 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2296 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2297 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2298 	if (error != 0) {
2299 		device_printf(sc_if->msk_if_dev,
2300 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2301 		goto jumbo_fail;
2302 	}
2303 
2304 	ctx.msk_busaddr = 0;
2305 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2306 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2307 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2308 	    msk_dmamap_cb, &ctx, 0);
2309 	if (error != 0) {
2310 		device_printf(sc_if->msk_if_dev,
2311 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2312 		goto jumbo_fail;
2313 	}
2314 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2315 
2316 	/* Create DMA maps for jumbo Rx buffers. */
2317 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2318 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2319 		device_printf(sc_if->msk_if_dev,
2320 		    "failed to create spare jumbo Rx dmamap\n");
2321 		goto jumbo_fail;
2322 	}
2323 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2324 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2325 		jrxd->rx_m = NULL;
2326 		jrxd->rx_dmamap = NULL;
2327 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2328 		    &jrxd->rx_dmamap);
2329 		if (error != 0) {
2330 			device_printf(sc_if->msk_if_dev,
2331 			    "failed to create jumbo Rx dmamap\n");
2332 			goto jumbo_fail;
2333 		}
2334 	}
2335 
2336 	return (0);
2337 
2338 jumbo_fail:
2339 	msk_rx_dma_jfree(sc_if);
2340 	device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2341 	    "due to resource shortage\n");
2342 	sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2343 	return (error);
2344 }
2345 
2346 static void
2347 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2348 {
2349 	struct msk_txdesc *txd;
2350 	struct msk_rxdesc *rxd;
2351 	int i;
2352 
2353 	/* Tx ring. */
2354 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2355 		if (sc_if->msk_cdata.msk_tx_ring_map)
2356 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2357 			    sc_if->msk_cdata.msk_tx_ring_map);
2358 		if (sc_if->msk_cdata.msk_tx_ring_map &&
2359 		    sc_if->msk_rdata.msk_tx_ring)
2360 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2361 			    sc_if->msk_rdata.msk_tx_ring,
2362 			    sc_if->msk_cdata.msk_tx_ring_map);
2363 		sc_if->msk_rdata.msk_tx_ring = NULL;
2364 		sc_if->msk_cdata.msk_tx_ring_map = NULL;
2365 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2366 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2367 	}
2368 	/* Rx ring. */
2369 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2370 		if (sc_if->msk_cdata.msk_rx_ring_map)
2371 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2372 			    sc_if->msk_cdata.msk_rx_ring_map);
2373 		if (sc_if->msk_cdata.msk_rx_ring_map &&
2374 		    sc_if->msk_rdata.msk_rx_ring)
2375 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2376 			    sc_if->msk_rdata.msk_rx_ring,
2377 			    sc_if->msk_cdata.msk_rx_ring_map);
2378 		sc_if->msk_rdata.msk_rx_ring = NULL;
2379 		sc_if->msk_cdata.msk_rx_ring_map = NULL;
2380 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2381 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2382 	}
2383 	/* Tx buffers. */
2384 	if (sc_if->msk_cdata.msk_tx_tag) {
2385 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2386 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2387 			if (txd->tx_dmamap) {
2388 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2389 				    txd->tx_dmamap);
2390 				txd->tx_dmamap = NULL;
2391 			}
2392 		}
2393 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2394 		sc_if->msk_cdata.msk_tx_tag = NULL;
2395 	}
2396 	/* Rx buffers. */
2397 	if (sc_if->msk_cdata.msk_rx_tag) {
2398 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2399 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2400 			if (rxd->rx_dmamap) {
2401 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2402 				    rxd->rx_dmamap);
2403 				rxd->rx_dmamap = NULL;
2404 			}
2405 		}
2406 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2407 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2408 			    sc_if->msk_cdata.msk_rx_sparemap);
2409 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2410 		}
2411 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2412 		sc_if->msk_cdata.msk_rx_tag = NULL;
2413 	}
2414 	if (sc_if->msk_cdata.msk_parent_tag) {
2415 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2416 		sc_if->msk_cdata.msk_parent_tag = NULL;
2417 	}
2418 }
2419 
2420 static void
2421 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2422 {
2423 	struct msk_rxdesc *jrxd;
2424 	int i;
2425 
2426 	/* Jumbo Rx ring. */
2427 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2428 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2429 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2430 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2431 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2432 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2433 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2434 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2435 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2436 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2437 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2438 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2439 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2440 	}
2441 	/* Jumbo Rx buffers. */
2442 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2443 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2444 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2445 			if (jrxd->rx_dmamap) {
2446 				bus_dmamap_destroy(
2447 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2448 				    jrxd->rx_dmamap);
2449 				jrxd->rx_dmamap = NULL;
2450 			}
2451 		}
2452 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2453 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2454 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2455 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2456 		}
2457 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2458 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2459 	}
2460 }
2461 
2462 static int
2463 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2464 {
2465 	struct msk_txdesc *txd, *txd_last;
2466 	struct msk_tx_desc *tx_le;
2467 	struct mbuf *m;
2468 	bus_dmamap_t map;
2469 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2470 	uint32_t control, csum, prod, si;
2471 	uint16_t offset, tcp_offset, tso_mtu;
2472 	int error, i, nseg, tso;
2473 
2474 	MSK_IF_LOCK_ASSERT(sc_if);
2475 
2476 	tcp_offset = offset = 0;
2477 	m = *m_head;
2478 	if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2479 	    (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) ||
2480 	    ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
2481 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) {
2482 		/*
2483 		 * Since mbuf has no protocol specific structure information
2484 		 * in it we have to inspect protocol information here to
2485 		 * setup TSO and checksum offload. I don't know why Marvell
2486 		 * made a such decision in chip design because other GigE
2487 		 * hardwares normally takes care of all these chores in
2488 		 * hardware. However, TSO performance of Yukon II is very
2489 		 * good such that it's worth to implement it.
2490 		 */
2491 		struct ether_header *eh;
2492 		struct ip *ip;
2493 		struct tcphdr *tcp;
2494 
2495 		if (M_WRITABLE(m) == 0) {
2496 			/* Get a writable copy. */
2497 			m = m_dup(*m_head, M_DONTWAIT);
2498 			m_freem(*m_head);
2499 			if (m == NULL) {
2500 				*m_head = NULL;
2501 				return (ENOBUFS);
2502 			}
2503 			*m_head = m;
2504 		}
2505 
2506 		offset = sizeof(struct ether_header);
2507 		m = m_pullup(m, offset);
2508 		if (m == NULL) {
2509 			*m_head = NULL;
2510 			return (ENOBUFS);
2511 		}
2512 		eh = mtod(m, struct ether_header *);
2513 		/* Check if hardware VLAN insertion is off. */
2514 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2515 			offset = sizeof(struct ether_vlan_header);
2516 			m = m_pullup(m, offset);
2517 			if (m == NULL) {
2518 				*m_head = NULL;
2519 				return (ENOBUFS);
2520 			}
2521 		}
2522 		m = m_pullup(m, offset + sizeof(struct ip));
2523 		if (m == NULL) {
2524 			*m_head = NULL;
2525 			return (ENOBUFS);
2526 		}
2527 		ip = (struct ip *)(mtod(m, char *) + offset);
2528 		offset += (ip->ip_hl << 2);
2529 		tcp_offset = offset;
2530 		/*
2531 		 * It seems that Yukon II has Tx checksum offload bug for
2532 		 * small TCP packets that's less than 60 bytes in size
2533 		 * (e.g. TCP window probe packet, pure ACK packet).
2534 		 * Common work around like padding with zeros to make the
2535 		 * frame minimum ethernet frame size didn't work at all.
2536 		 * Instead of disabling checksum offload completely we
2537 		 * resort to S/W checksum routine when we encounter short
2538 		 * TCP frames.
2539 		 * Short UDP packets appear to be handled correctly by
2540 		 * Yukon II. Also I assume this bug does not happen on
2541 		 * controllers that use newer descriptor format or
2542 		 * automatic Tx checksum calaulcation.
2543 		 */
2544 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2545 		    (m->m_pkthdr.len < MSK_MIN_FRAMELEN) &&
2546 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2547 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2548 			if (m == NULL) {
2549 				*m_head = NULL;
2550 				return (ENOBUFS);
2551 			}
2552 			*(uint16_t *)(m->m_data + offset +
2553 			    m->m_pkthdr.csum_data) = in_cksum_skip(m,
2554 			    m->m_pkthdr.len, offset);
2555 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2556 		}
2557 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2558 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2559 			if (m == NULL) {
2560 				*m_head = NULL;
2561 				return (ENOBUFS);
2562 			}
2563 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2564 			offset += (tcp->th_off << 2);
2565 		}
2566 		*m_head = m;
2567 	}
2568 
2569 	prod = sc_if->msk_cdata.msk_tx_prod;
2570 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2571 	txd_last = txd;
2572 	map = txd->tx_dmamap;
2573 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2574 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2575 	if (error == EFBIG) {
2576 		m = m_collapse(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
2577 		if (m == NULL) {
2578 			m_freem(*m_head);
2579 			*m_head = NULL;
2580 			return (ENOBUFS);
2581 		}
2582 		*m_head = m;
2583 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2584 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2585 		if (error != 0) {
2586 			m_freem(*m_head);
2587 			*m_head = NULL;
2588 			return (error);
2589 		}
2590 	} else if (error != 0)
2591 		return (error);
2592 	if (nseg == 0) {
2593 		m_freem(*m_head);
2594 		*m_head = NULL;
2595 		return (EIO);
2596 	}
2597 
2598 	/* Check number of available descriptors. */
2599 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2600 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2601 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2602 		return (ENOBUFS);
2603 	}
2604 
2605 	control = 0;
2606 	tso = 0;
2607 	tx_le = NULL;
2608 
2609 	/* Check TSO support. */
2610 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2611 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2612 			tso_mtu = m->m_pkthdr.tso_segsz;
2613 		else
2614 			tso_mtu = offset + m->m_pkthdr.tso_segsz;
2615 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2616 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2617 			tx_le->msk_addr = htole32(tso_mtu);
2618 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2619 				tx_le->msk_control = htole32(OP_MSS | HW_OWNER);
2620 			else
2621 				tx_le->msk_control =
2622 				    htole32(OP_LRGLEN | HW_OWNER);
2623 			sc_if->msk_cdata.msk_tx_cnt++;
2624 			MSK_INC(prod, MSK_TX_RING_CNT);
2625 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2626 		}
2627 		tso++;
2628 	}
2629 	/* Check if we have a VLAN tag to insert. */
2630 	if ((m->m_flags & M_VLANTAG) != 0) {
2631 		if (tx_le == NULL) {
2632 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2633 			tx_le->msk_addr = htole32(0);
2634 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2635 			    htons(m->m_pkthdr.ether_vtag));
2636 			sc_if->msk_cdata.msk_tx_cnt++;
2637 			MSK_INC(prod, MSK_TX_RING_CNT);
2638 		} else {
2639 			tx_le->msk_control |= htole32(OP_VLAN |
2640 			    htons(m->m_pkthdr.ether_vtag));
2641 		}
2642 		control |= INS_VLAN;
2643 	}
2644 	/* Check if we have to handle checksum offload. */
2645 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2646 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0)
2647 			control |= CALSUM;
2648 		else {
2649 			control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2650 			if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2651 				control |= UDPTCP;
2652 			/* Checksum write position. */
2653 			csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff;
2654 			/* Checksum start position. */
2655 			csum |= (uint32_t)tcp_offset << 16;
2656 			if (csum != sc_if->msk_cdata.msk_last_csum) {
2657 				tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2658 				tx_le->msk_addr = htole32(csum);
2659 				tx_le->msk_control = htole32(1 << 16 |
2660 				    (OP_TCPLISW | HW_OWNER));
2661 				sc_if->msk_cdata.msk_tx_cnt++;
2662 				MSK_INC(prod, MSK_TX_RING_CNT);
2663 				sc_if->msk_cdata.msk_last_csum = csum;
2664 			}
2665 		}
2666 	}
2667 
2668 	si = prod;
2669 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2670 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2671 	if (tso == 0)
2672 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2673 		    OP_PACKET);
2674 	else
2675 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2676 		    OP_LARGESEND);
2677 	sc_if->msk_cdata.msk_tx_cnt++;
2678 	MSK_INC(prod, MSK_TX_RING_CNT);
2679 
2680 	for (i = 1; i < nseg; i++) {
2681 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2682 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2683 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2684 		    OP_BUFFER | HW_OWNER);
2685 		sc_if->msk_cdata.msk_tx_cnt++;
2686 		MSK_INC(prod, MSK_TX_RING_CNT);
2687 	}
2688 	/* Update producer index. */
2689 	sc_if->msk_cdata.msk_tx_prod = prod;
2690 
2691 	/* Set EOP on the last desciptor. */
2692 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2693 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2694 	tx_le->msk_control |= htole32(EOP);
2695 
2696 	/* Turn the first descriptor ownership to hardware. */
2697 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2698 	tx_le->msk_control |= htole32(HW_OWNER);
2699 
2700 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2701 	map = txd_last->tx_dmamap;
2702 	txd_last->tx_dmamap = txd->tx_dmamap;
2703 	txd->tx_dmamap = map;
2704 	txd->tx_m = m;
2705 
2706 	/* Sync descriptors. */
2707 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2708 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2709 	    sc_if->msk_cdata.msk_tx_ring_map,
2710 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2711 
2712 	return (0);
2713 }
2714 
2715 static void
2716 msk_start(struct ifnet *ifp)
2717 {
2718 	struct msk_if_softc *sc_if;
2719 
2720 	sc_if = ifp->if_softc;
2721 	MSK_IF_LOCK(sc_if);
2722 	msk_start_locked(ifp);
2723 	MSK_IF_UNLOCK(sc_if);
2724 }
2725 
2726 static void
2727 msk_start_locked(struct ifnet *ifp)
2728 {
2729 	struct msk_if_softc *sc_if;
2730 	struct mbuf *m_head;
2731 	int enq;
2732 
2733 	sc_if = ifp->if_softc;
2734 	MSK_IF_LOCK_ASSERT(sc_if);
2735 
2736 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2737 	    IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0)
2738 		return;
2739 
2740 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2741 	    sc_if->msk_cdata.msk_tx_cnt <
2742 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2743 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2744 		if (m_head == NULL)
2745 			break;
2746 		/*
2747 		 * Pack the data into the transmit ring. If we
2748 		 * don't have room, set the OACTIVE flag and wait
2749 		 * for the NIC to drain the ring.
2750 		 */
2751 		if (msk_encap(sc_if, &m_head) != 0) {
2752 			if (m_head == NULL)
2753 				break;
2754 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2755 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2756 			break;
2757 		}
2758 
2759 		enq++;
2760 		/*
2761 		 * If there's a BPF listener, bounce a copy of this frame
2762 		 * to him.
2763 		 */
2764 		ETHER_BPF_MTAP(ifp, m_head);
2765 	}
2766 
2767 	if (enq > 0) {
2768 		/* Transmit */
2769 		CSR_WRITE_2(sc_if->msk_softc,
2770 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2771 		    sc_if->msk_cdata.msk_tx_prod);
2772 
2773 		/* Set a timeout in case the chip goes out to lunch. */
2774 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2775 	}
2776 }
2777 
2778 static void
2779 msk_watchdog(struct msk_if_softc *sc_if)
2780 {
2781 	struct ifnet *ifp;
2782 
2783 	MSK_IF_LOCK_ASSERT(sc_if);
2784 
2785 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2786 		return;
2787 	ifp = sc_if->msk_ifp;
2788 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2789 		if (bootverbose)
2790 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2791 			   "(missed link)\n");
2792 		ifp->if_oerrors++;
2793 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2794 		msk_init_locked(sc_if);
2795 		return;
2796 	}
2797 
2798 	if_printf(ifp, "watchdog timeout\n");
2799 	ifp->if_oerrors++;
2800 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2801 	msk_init_locked(sc_if);
2802 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2803 		msk_start_locked(ifp);
2804 }
2805 
2806 static int
2807 mskc_shutdown(device_t dev)
2808 {
2809 	struct msk_softc *sc;
2810 	int i;
2811 
2812 	sc = device_get_softc(dev);
2813 	MSK_LOCK(sc);
2814 	for (i = 0; i < sc->msk_num_port; i++) {
2815 		if (sc->msk_if[i] != NULL)
2816 			msk_stop(sc->msk_if[i]);
2817 	}
2818 
2819 	/* Disable all interrupts. */
2820 	CSR_WRITE_4(sc, B0_IMSK, 0);
2821 	CSR_READ_4(sc, B0_IMSK);
2822 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2823 	CSR_READ_4(sc, B0_HWE_IMSK);
2824 
2825 	/* Put hardware reset. */
2826 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2827 
2828 	MSK_UNLOCK(sc);
2829 	return (0);
2830 }
2831 
2832 static int
2833 mskc_suspend(device_t dev)
2834 {
2835 	struct msk_softc *sc;
2836 	int i;
2837 
2838 	sc = device_get_softc(dev);
2839 
2840 	MSK_LOCK(sc);
2841 
2842 	for (i = 0; i < sc->msk_num_port; i++) {
2843 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2844 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
2845 		    IFF_DRV_RUNNING) != 0))
2846 			msk_stop(sc->msk_if[i]);
2847 	}
2848 
2849 	/* Disable all interrupts. */
2850 	CSR_WRITE_4(sc, B0_IMSK, 0);
2851 	CSR_READ_4(sc, B0_IMSK);
2852 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2853 	CSR_READ_4(sc, B0_HWE_IMSK);
2854 
2855 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
2856 
2857 	/* Put hardware reset. */
2858 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2859 	sc->msk_pflags |= MSK_FLAG_SUSPEND;
2860 
2861 	MSK_UNLOCK(sc);
2862 
2863 	return (0);
2864 }
2865 
2866 static int
2867 mskc_resume(device_t dev)
2868 {
2869 	struct msk_softc *sc;
2870 	int i;
2871 
2872 	sc = device_get_softc(dev);
2873 
2874 	MSK_LOCK(sc);
2875 
2876 	mskc_reset(sc);
2877 	for (i = 0; i < sc->msk_num_port; i++) {
2878 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2879 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) {
2880 			sc->msk_if[i]->msk_ifp->if_drv_flags &=
2881 			    ~IFF_DRV_RUNNING;
2882 			msk_init_locked(sc->msk_if[i]);
2883 		}
2884 	}
2885 	sc->msk_pflags &= ~MSK_FLAG_SUSPEND;
2886 
2887 	MSK_UNLOCK(sc);
2888 
2889 	return (0);
2890 }
2891 
2892 #ifndef __NO_STRICT_ALIGNMENT
2893 static __inline void
2894 msk_fixup_rx(struct mbuf *m)
2895 {
2896         int i;
2897         uint16_t *src, *dst;
2898 
2899 	src = mtod(m, uint16_t *);
2900 	dst = src - 3;
2901 
2902 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2903 		*dst++ = *src++;
2904 
2905 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
2906 }
2907 #endif
2908 
2909 static void
2910 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
2911     int len)
2912 {
2913 	struct mbuf *m;
2914 	struct ifnet *ifp;
2915 	struct msk_rxdesc *rxd;
2916 	int cons, rxlen;
2917 
2918 	ifp = sc_if->msk_ifp;
2919 
2920 	MSK_IF_LOCK_ASSERT(sc_if);
2921 
2922 	cons = sc_if->msk_cdata.msk_rx_cons;
2923 	do {
2924 		rxlen = status >> 16;
2925 		if ((status & GMR_FS_VLAN) != 0 &&
2926 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2927 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2928 		if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) {
2929 			/*
2930 			 * For controllers that returns bogus status code
2931 			 * just do minimal check and let upper stack
2932 			 * handle this frame.
2933 			 */
2934 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
2935 				ifp->if_ierrors++;
2936 				msk_discard_rxbuf(sc_if, cons);
2937 				break;
2938 			}
2939 		} else if (len > sc_if->msk_framesize ||
2940 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2941 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2942 			/* Don't count flow-control packet as errors. */
2943 			if ((status & GMR_FS_GOOD_FC) == 0)
2944 				ifp->if_ierrors++;
2945 			msk_discard_rxbuf(sc_if, cons);
2946 			break;
2947 		}
2948 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2949 		m = rxd->rx_m;
2950 		if (msk_newbuf(sc_if, cons) != 0) {
2951 			ifp->if_iqdrops++;
2952 			/* Reuse old buffer. */
2953 			msk_discard_rxbuf(sc_if, cons);
2954 			break;
2955 		}
2956 		m->m_pkthdr.rcvif = ifp;
2957 		m->m_pkthdr.len = m->m_len = len;
2958 #ifndef __NO_STRICT_ALIGNMENT
2959 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2960 			msk_fixup_rx(m);
2961 #endif
2962 		ifp->if_ipackets++;
2963 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2964 		    (control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
2965 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2966 			if ((control & CSS_IPV4_CSUM_OK) != 0)
2967 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2968 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
2969 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
2970 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2971 				    CSUM_PSEUDO_HDR;
2972 				m->m_pkthdr.csum_data = 0xffff;
2973 			}
2974 		}
2975 		/* Check for VLAN tagged packets. */
2976 		if ((status & GMR_FS_VLAN) != 0 &&
2977 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2978 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2979 			m->m_flags |= M_VLANTAG;
2980 		}
2981 		MSK_IF_UNLOCK(sc_if);
2982 		(*ifp->if_input)(ifp, m);
2983 		MSK_IF_LOCK(sc_if);
2984 	} while (0);
2985 
2986 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
2987 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
2988 }
2989 
2990 static void
2991 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
2992     int len)
2993 {
2994 	struct mbuf *m;
2995 	struct ifnet *ifp;
2996 	struct msk_rxdesc *jrxd;
2997 	int cons, rxlen;
2998 
2999 	ifp = sc_if->msk_ifp;
3000 
3001 	MSK_IF_LOCK_ASSERT(sc_if);
3002 
3003 	cons = sc_if->msk_cdata.msk_rx_cons;
3004 	do {
3005 		rxlen = status >> 16;
3006 		if ((status & GMR_FS_VLAN) != 0 &&
3007 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3008 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3009 		if (len > sc_if->msk_framesize ||
3010 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3011 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3012 			/* Don't count flow-control packet as errors. */
3013 			if ((status & GMR_FS_GOOD_FC) == 0)
3014 				ifp->if_ierrors++;
3015 			msk_discard_jumbo_rxbuf(sc_if, cons);
3016 			break;
3017 		}
3018 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3019 		m = jrxd->rx_m;
3020 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3021 			ifp->if_iqdrops++;
3022 			/* Reuse old buffer. */
3023 			msk_discard_jumbo_rxbuf(sc_if, cons);
3024 			break;
3025 		}
3026 		m->m_pkthdr.rcvif = ifp;
3027 		m->m_pkthdr.len = m->m_len = len;
3028 #ifndef __NO_STRICT_ALIGNMENT
3029 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3030 			msk_fixup_rx(m);
3031 #endif
3032 		ifp->if_ipackets++;
3033 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
3034 		    (control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
3035 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3036 			if ((control & CSS_IPV4_CSUM_OK) != 0)
3037 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3038 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3039 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3040 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3041 				    CSUM_PSEUDO_HDR;
3042 				m->m_pkthdr.csum_data = 0xffff;
3043 			}
3044 		}
3045 		/* Check for VLAN tagged packets. */
3046 		if ((status & GMR_FS_VLAN) != 0 &&
3047 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3048 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3049 			m->m_flags |= M_VLANTAG;
3050 		}
3051 		MSK_IF_UNLOCK(sc_if);
3052 		(*ifp->if_input)(ifp, m);
3053 		MSK_IF_LOCK(sc_if);
3054 	} while (0);
3055 
3056 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3057 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3058 }
3059 
3060 static void
3061 msk_txeof(struct msk_if_softc *sc_if, int idx)
3062 {
3063 	struct msk_txdesc *txd;
3064 	struct msk_tx_desc *cur_tx;
3065 	struct ifnet *ifp;
3066 	uint32_t control;
3067 	int cons, prog;
3068 
3069 	MSK_IF_LOCK_ASSERT(sc_if);
3070 
3071 	ifp = sc_if->msk_ifp;
3072 
3073 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3074 	    sc_if->msk_cdata.msk_tx_ring_map,
3075 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3076 	/*
3077 	 * Go through our tx ring and free mbufs for those
3078 	 * frames that have been sent.
3079 	 */
3080 	cons = sc_if->msk_cdata.msk_tx_cons;
3081 	prog = 0;
3082 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3083 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3084 			break;
3085 		prog++;
3086 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3087 		control = le32toh(cur_tx->msk_control);
3088 		sc_if->msk_cdata.msk_tx_cnt--;
3089 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3090 		if ((control & EOP) == 0)
3091 			continue;
3092 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3093 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3094 		    BUS_DMASYNC_POSTWRITE);
3095 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3096 
3097 		ifp->if_opackets++;
3098 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3099 		    __func__));
3100 		m_freem(txd->tx_m);
3101 		txd->tx_m = NULL;
3102 	}
3103 
3104 	if (prog > 0) {
3105 		sc_if->msk_cdata.msk_tx_cons = cons;
3106 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3107 			sc_if->msk_watchdog_timer = 0;
3108 		/* No need to sync LEs as we didn't update LEs. */
3109 	}
3110 }
3111 
3112 static void
3113 msk_tick(void *xsc_if)
3114 {
3115 	struct msk_if_softc *sc_if;
3116 	struct mii_data *mii;
3117 
3118 	sc_if = xsc_if;
3119 
3120 	MSK_IF_LOCK_ASSERT(sc_if);
3121 
3122 	mii = device_get_softc(sc_if->msk_miibus);
3123 
3124 	mii_tick(mii);
3125 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0)
3126 		msk_miibus_statchg(sc_if->msk_if_dev);
3127 	msk_handle_events(sc_if->msk_softc);
3128 	msk_watchdog(sc_if);
3129 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3130 }
3131 
3132 static void
3133 msk_intr_phy(struct msk_if_softc *sc_if)
3134 {
3135 	uint16_t status;
3136 
3137 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3138 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3139 	/* Handle FIFO Underrun/Overflow? */
3140 	if ((status & PHY_M_IS_FIFO_ERROR))
3141 		device_printf(sc_if->msk_if_dev,
3142 		    "PHY FIFO underrun/overflow.\n");
3143 }
3144 
3145 static void
3146 msk_intr_gmac(struct msk_if_softc *sc_if)
3147 {
3148 	struct msk_softc *sc;
3149 	uint8_t status;
3150 
3151 	sc = sc_if->msk_softc;
3152 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3153 
3154 	/* GMAC Rx FIFO overrun. */
3155 	if ((status & GM_IS_RX_FF_OR) != 0)
3156 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3157 		    GMF_CLI_RX_FO);
3158 	/* GMAC Tx FIFO underrun. */
3159 	if ((status & GM_IS_TX_FF_UR) != 0) {
3160 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3161 		    GMF_CLI_TX_FU);
3162 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3163 		/*
3164 		 * XXX
3165 		 * In case of Tx underrun, we may need to flush/reset
3166 		 * Tx MAC but that would also require resynchronization
3167 		 * with status LEs. Reintializing status LEs would
3168 		 * affect other port in dual MAC configuration so it
3169 		 * should be avoided as possible as we can.
3170 		 * Due to lack of documentation it's all vague guess but
3171 		 * it needs more investigation.
3172 		 */
3173 	}
3174 }
3175 
3176 static void
3177 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3178 {
3179 	struct msk_softc *sc;
3180 
3181 	sc = sc_if->msk_softc;
3182 	if ((status & Y2_IS_PAR_RD1) != 0) {
3183 		device_printf(sc_if->msk_if_dev,
3184 		    "RAM buffer read parity error\n");
3185 		/* Clear IRQ. */
3186 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3187 		    RI_CLR_RD_PERR);
3188 	}
3189 	if ((status & Y2_IS_PAR_WR1) != 0) {
3190 		device_printf(sc_if->msk_if_dev,
3191 		    "RAM buffer write parity error\n");
3192 		/* Clear IRQ. */
3193 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3194 		    RI_CLR_WR_PERR);
3195 	}
3196 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3197 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3198 		/* Clear IRQ. */
3199 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3200 		    GMF_CLI_TX_PE);
3201 	}
3202 	if ((status & Y2_IS_PAR_RX1) != 0) {
3203 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3204 		/* Clear IRQ. */
3205 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3206 	}
3207 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3208 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3209 		/* Clear IRQ. */
3210 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3211 	}
3212 }
3213 
3214 static void
3215 msk_intr_hwerr(struct msk_softc *sc)
3216 {
3217 	uint32_t status;
3218 	uint32_t tlphead[4];
3219 
3220 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3221 	/* Time Stamp timer overflow. */
3222 	if ((status & Y2_IS_TIST_OV) != 0)
3223 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3224 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3225 		/*
3226 		 * PCI Express Error occured which is not described in PEX
3227 		 * spec.
3228 		 * This error is also mapped either to Master Abort(
3229 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3230 		 * can only be cleared there.
3231                  */
3232 		device_printf(sc->msk_dev,
3233 		    "PCI Express protocol violation error\n");
3234 	}
3235 
3236 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3237 		uint16_t v16;
3238 
3239 		if ((status & Y2_IS_MST_ERR) != 0)
3240 			device_printf(sc->msk_dev,
3241 			    "unexpected IRQ Status error\n");
3242 		else
3243 			device_printf(sc->msk_dev,
3244 			    "unexpected IRQ Master error\n");
3245 		/* Reset all bits in the PCI status register. */
3246 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3247 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3248 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3249 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3250 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3251 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3252 	}
3253 
3254 	/* Check for PCI Express Uncorrectable Error. */
3255 	if ((status & Y2_IS_PCI_EXP) != 0) {
3256 		uint32_t v32;
3257 
3258 		/*
3259 		 * On PCI Express bus bridges are called root complexes (RC).
3260 		 * PCI Express errors are recognized by the root complex too,
3261 		 * which requests the system to handle the problem. After
3262 		 * error occurence it may be that no access to the adapter
3263 		 * may be performed any longer.
3264 		 */
3265 
3266 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3267 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3268 			/* Ignore unsupported request error. */
3269 			device_printf(sc->msk_dev,
3270 			    "Uncorrectable PCI Express error\n");
3271 		}
3272 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3273 			int i;
3274 
3275 			/* Get TLP header form Log Registers. */
3276 			for (i = 0; i < 4; i++)
3277 				tlphead[i] = CSR_PCI_READ_4(sc,
3278 				    PEX_HEADER_LOG + i * 4);
3279 			/* Check for vendor defined broadcast message. */
3280 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3281 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3282 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3283 				    sc->msk_intrhwemask);
3284 				CSR_READ_4(sc, B0_HWE_IMSK);
3285 			}
3286 		}
3287 		/* Clear the interrupt. */
3288 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3289 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3290 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3291 	}
3292 
3293 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3294 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3295 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3296 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3297 }
3298 
3299 static __inline void
3300 msk_rxput(struct msk_if_softc *sc_if)
3301 {
3302 	struct msk_softc *sc;
3303 
3304 	sc = sc_if->msk_softc;
3305 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3306 		bus_dmamap_sync(
3307 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3308 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3309 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3310 	else
3311 		bus_dmamap_sync(
3312 		    sc_if->msk_cdata.msk_rx_ring_tag,
3313 		    sc_if->msk_cdata.msk_rx_ring_map,
3314 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3315 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3316 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3317 }
3318 
3319 static int
3320 msk_handle_events(struct msk_softc *sc)
3321 {
3322 	struct msk_if_softc *sc_if;
3323 	int rxput[2];
3324 	struct msk_stat_desc *sd;
3325 	uint32_t control, status;
3326 	int cons, len, port, rxprog;
3327 
3328 	/* Sync status LEs. */
3329 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3330 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3331 
3332 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3333 	rxprog = 0;
3334 	cons = sc->msk_stat_cons;
3335 	for (;;) {
3336 		sd = &sc->msk_stat_ring[cons];
3337 		control = le32toh(sd->msk_control);
3338 		if ((control & HW_OWNER) == 0)
3339 			break;
3340 		control &= ~HW_OWNER;
3341 		sd->msk_control = htole32(control);
3342 		status = le32toh(sd->msk_status);
3343 		len = control & STLE_LEN_MASK;
3344 		port = (control >> 16) & 0x01;
3345 		sc_if = sc->msk_if[port];
3346 		if (sc_if == NULL) {
3347 			device_printf(sc->msk_dev, "invalid port opcode "
3348 			    "0x%08x\n", control & STLE_OP_MASK);
3349 			continue;
3350 		}
3351 
3352 		switch (control & STLE_OP_MASK) {
3353 		case OP_RXVLAN:
3354 			sc_if->msk_vtag = ntohs(len);
3355 			break;
3356 		case OP_RXCHKSVLAN:
3357 			sc_if->msk_vtag = ntohs(len);
3358 			break;
3359 		case OP_RXSTAT:
3360 			if (sc_if->msk_framesize >
3361 			    (MCLBYTES - MSK_RX_BUF_ALIGN))
3362 				msk_jumbo_rxeof(sc_if, status, control, len);
3363 			else
3364 				msk_rxeof(sc_if, status, control, len);
3365 			rxprog++;
3366 			/*
3367 			 * Because there is no way to sync single Rx LE
3368 			 * put the DMA sync operation off until the end of
3369 			 * event processing.
3370 			 */
3371 			rxput[port]++;
3372 			/* Update prefetch unit if we've passed water mark. */
3373 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3374 				msk_rxput(sc_if);
3375 				rxput[port] = 0;
3376 			}
3377 			break;
3378 		case OP_TXINDEXLE:
3379 			if (sc->msk_if[MSK_PORT_A] != NULL)
3380 				msk_txeof(sc->msk_if[MSK_PORT_A],
3381 				    status & STLE_TXA1_MSKL);
3382 			if (sc->msk_if[MSK_PORT_B] != NULL)
3383 				msk_txeof(sc->msk_if[MSK_PORT_B],
3384 				    ((status & STLE_TXA2_MSKL) >>
3385 				    STLE_TXA2_SHIFTL) |
3386 				    ((len & STLE_TXA2_MSKH) <<
3387 				    STLE_TXA2_SHIFTH));
3388 			break;
3389 		default:
3390 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3391 			    control & STLE_OP_MASK);
3392 			break;
3393 		}
3394 		MSK_INC(cons, MSK_STAT_RING_CNT);
3395 		if (rxprog > sc->msk_process_limit)
3396 			break;
3397 	}
3398 
3399 	sc->msk_stat_cons = cons;
3400 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3401 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3402 
3403 	if (rxput[MSK_PORT_A] > 0)
3404 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3405 	if (rxput[MSK_PORT_B] > 0)
3406 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3407 
3408 	return (rxprog > sc->msk_process_limit ? EAGAIN : 0);
3409 }
3410 
3411 static void
3412 msk_intr(void *xsc)
3413 {
3414 	struct msk_softc *sc;
3415 	struct msk_if_softc *sc_if0, *sc_if1;
3416 	struct ifnet *ifp0, *ifp1;
3417 	uint32_t status;
3418 	int domore;
3419 
3420 	sc = xsc;
3421 	MSK_LOCK(sc);
3422 
3423 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3424 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3425 	if (status == 0 || status == 0xffffffff ||
3426 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3427 	    (status & sc->msk_intrmask) == 0) {
3428 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3429 		return;
3430 	}
3431 
3432 	sc_if0 = sc->msk_if[MSK_PORT_A];
3433 	sc_if1 = sc->msk_if[MSK_PORT_B];
3434 	ifp0 = ifp1 = NULL;
3435 	if (sc_if0 != NULL)
3436 		ifp0 = sc_if0->msk_ifp;
3437 	if (sc_if1 != NULL)
3438 		ifp1 = sc_if1->msk_ifp;
3439 
3440 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3441 		msk_intr_phy(sc_if0);
3442 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3443 		msk_intr_phy(sc_if1);
3444 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3445 		msk_intr_gmac(sc_if0);
3446 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3447 		msk_intr_gmac(sc_if1);
3448 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3449 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3450 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3451 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3452 		CSR_READ_4(sc, B0_IMSK);
3453 	}
3454         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3455 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3456 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3457 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3458 		CSR_READ_4(sc, B0_IMSK);
3459 	}
3460 	if ((status & Y2_IS_HW_ERR) != 0)
3461 		msk_intr_hwerr(sc);
3462 
3463 	domore = msk_handle_events(sc);
3464 	if ((status & Y2_IS_STAT_BMU) != 0 && domore == 0)
3465 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3466 
3467 	/* Reenable interrupts. */
3468 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3469 
3470 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3471 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3472 		msk_start_locked(ifp0);
3473 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3474 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3475 		msk_start_locked(ifp1);
3476 
3477 	MSK_UNLOCK(sc);
3478 }
3479 
3480 static void
3481 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3482 {
3483 	struct msk_softc *sc;
3484 	struct ifnet *ifp;
3485 
3486 	ifp = sc_if->msk_ifp;
3487 	sc = sc_if->msk_softc;
3488 	switch (sc->msk_hw_id) {
3489 	case CHIP_ID_YUKON_EX:
3490 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
3491 			goto yukon_ex_workaround;
3492 		if (ifp->if_mtu > ETHERMTU)
3493 			CSR_WRITE_4(sc,
3494 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3495 			    TX_JUMBO_ENA | TX_STFW_ENA);
3496 		else
3497 			CSR_WRITE_4(sc,
3498 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3499 			    TX_JUMBO_DIS | TX_STFW_ENA);
3500 		break;
3501 	default:
3502 yukon_ex_workaround:
3503 		if (ifp->if_mtu > ETHERMTU) {
3504 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3505 			CSR_WRITE_4(sc,
3506 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3507 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3508 			/* Disable Store & Forward mode for Tx. */
3509 			CSR_WRITE_4(sc,
3510 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3511 			    TX_JUMBO_ENA | TX_STFW_DIS);
3512 		} else {
3513 			/* Enable Store & Forward mode for Tx. */
3514 			CSR_WRITE_4(sc,
3515 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3516 			    TX_JUMBO_DIS | TX_STFW_ENA);
3517 		}
3518 		break;
3519 	}
3520 }
3521 
3522 static void
3523 msk_init(void *xsc)
3524 {
3525 	struct msk_if_softc *sc_if = xsc;
3526 
3527 	MSK_IF_LOCK(sc_if);
3528 	msk_init_locked(sc_if);
3529 	MSK_IF_UNLOCK(sc_if);
3530 }
3531 
3532 static void
3533 msk_init_locked(struct msk_if_softc *sc_if)
3534 {
3535 	struct msk_softc *sc;
3536 	struct ifnet *ifp;
3537 	struct mii_data	 *mii;
3538 	uint8_t *eaddr;
3539 	uint16_t gmac;
3540 	uint32_t reg;
3541 	int error;
3542 
3543 	MSK_IF_LOCK_ASSERT(sc_if);
3544 
3545 	ifp = sc_if->msk_ifp;
3546 	sc = sc_if->msk_softc;
3547 	mii = device_get_softc(sc_if->msk_miibus);
3548 
3549 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3550 		return;
3551 
3552 	error = 0;
3553 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3554 	msk_stop(sc_if);
3555 
3556 	if (ifp->if_mtu < ETHERMTU)
3557 		sc_if->msk_framesize = ETHERMTU;
3558 	else
3559 		sc_if->msk_framesize = ifp->if_mtu;
3560 	sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3561 	if (ifp->if_mtu > ETHERMTU &&
3562 	    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
3563 		ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3564 		ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3565 	}
3566 
3567  	/* GMAC Control reset. */
3568  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3569  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3570  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3571 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX)
3572 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3573 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3574 		    GMC_BYP_RETR_ON);
3575 
3576 	/*
3577 	 * Initialize GMAC first such that speed/duplex/flow-control
3578 	 * parameters are renegotiated when interface is brought up.
3579 	 */
3580 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3581 
3582 	/* Dummy read the Interrupt Source Register. */
3583 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3584 
3585 	/* Clear MIB stats. */
3586 	msk_stats_clear(sc_if);
3587 
3588 	/* Disable FCS. */
3589 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3590 
3591 	/* Setup Transmit Control Register. */
3592 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3593 
3594 	/* Setup Transmit Flow Control Register. */
3595 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3596 
3597 	/* Setup Transmit Parameter Register. */
3598 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3599 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3600 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3601 
3602 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3603 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3604 
3605 	if (ifp->if_mtu > ETHERMTU)
3606 		gmac |= GM_SMOD_JUMBO_ENA;
3607 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3608 
3609 	/* Set station address. */
3610 	eaddr = IF_LLADDR(ifp);
3611 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L,
3612 	    eaddr[0] | (eaddr[1] << 8));
3613 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M,
3614 	    eaddr[2] | (eaddr[3] << 8));
3615 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H,
3616 	    eaddr[4] | (eaddr[5] << 8));
3617 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L,
3618 	    eaddr[0] | (eaddr[1] << 8));
3619 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M,
3620 	    eaddr[2] | (eaddr[3] << 8));
3621 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H,
3622 	    eaddr[4] | (eaddr[5] << 8));
3623 
3624 	/* Disable interrupts for counter overflows. */
3625 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3626 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3627 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3628 
3629 	/* Configure Rx MAC FIFO. */
3630 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3631 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3632 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3633 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3634 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3635 		reg |= GMF_RX_OVER_ON;
3636 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3637 
3638 	/* Set receive filter. */
3639 	msk_rxfilter(sc_if);
3640 
3641 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3642 		/* Clear flush mask - HW bug. */
3643 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3644 	} else {
3645 		/* Flush Rx MAC FIFO on any flow control or error. */
3646 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3647 		    GMR_FS_ANY_ERR);
3648 	}
3649 
3650 	/*
3651 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3652 	 * due to hardware hang on receipt of pause frames.
3653 	 */
3654 	reg = RX_GMF_FL_THR_DEF + 1;
3655 	/* Another magic for Yukon FE+ - From Linux. */
3656 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3657 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3658 		reg = 0x178;
3659 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3660 
3661 	/* Configure Tx MAC FIFO. */
3662 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3663 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3664 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3665 
3666 	/* Configure hardware VLAN tag insertion/stripping. */
3667 	msk_setvlan(sc_if, ifp);
3668 
3669 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3670 		/* Set Rx Pause threshould. */
3671 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3672 		    MSK_ECU_LLPP);
3673 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3674 		    MSK_ECU_ULPP);
3675 		/* Configure store-and-forward for Tx. */
3676 		msk_set_tx_stfwd(sc_if);
3677 	}
3678 
3679  	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3680  	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3681  		/* Disable dynamic watermark - from Linux. */
3682  		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3683  		reg &= ~0x03;
3684  		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3685  	}
3686 
3687 	/*
3688 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3689 	 * arbiter as we don't use Sync Tx queue.
3690 	 */
3691 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3692 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3693 	/* Enable the RAM Interface Arbiter. */
3694 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3695 
3696 	/* Setup RAM buffer. */
3697 	msk_set_rambuffer(sc_if);
3698 
3699 	/* Disable Tx sync Queue. */
3700 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3701 
3702 	/* Setup Tx Queue Bus Memory Interface. */
3703 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3704 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3705 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3706 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3707 	switch (sc->msk_hw_id) {
3708 	case CHIP_ID_YUKON_EC_U:
3709 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3710 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3711 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3712 			    MSK_ECU_TXFF_LEV);
3713 		}
3714 		break;
3715 	case CHIP_ID_YUKON_EX:
3716 		/*
3717 		 * Yukon Extreme seems to have silicon bug for
3718 		 * automatic Tx checksum calculation capability.
3719 		 */
3720 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
3721 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3722 			    F_TX_CHK_AUTO_OFF);
3723 		break;
3724 	}
3725 
3726 	/* Setup Rx Queue Bus Memory Interface. */
3727 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3728 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3729 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3730 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3731         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3732 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3733 		/* MAC Rx RAM Read is controlled by hardware. */
3734                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3735 	}
3736 
3737 	msk_set_prefetch(sc, sc_if->msk_txq,
3738 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3739 	msk_init_tx_ring(sc_if);
3740 
3741 	/* Disable Rx checksum offload and RSS hash. */
3742 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3743 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3744 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
3745 		msk_set_prefetch(sc, sc_if->msk_rxq,
3746 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3747 		    MSK_JUMBO_RX_RING_CNT - 1);
3748 		error = msk_init_jumbo_rx_ring(sc_if);
3749 	 } else {
3750 		msk_set_prefetch(sc, sc_if->msk_rxq,
3751 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3752 		    MSK_RX_RING_CNT - 1);
3753 		error = msk_init_rx_ring(sc_if);
3754 	}
3755 	if (error != 0) {
3756 		device_printf(sc_if->msk_if_dev,
3757 		    "initialization failed: no memory for Rx buffers\n");
3758 		msk_stop(sc_if);
3759 		return;
3760 	}
3761 
3762 	/* Configure interrupt handling. */
3763 	if (sc_if->msk_port == MSK_PORT_A) {
3764 		sc->msk_intrmask |= Y2_IS_PORT_A;
3765 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3766 	} else {
3767 		sc->msk_intrmask |= Y2_IS_PORT_B;
3768 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3769 	}
3770 	/* Configure IRQ moderation mask. */
3771 	CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
3772 	if (sc->msk_int_holdoff > 0) {
3773 		/* Configure initial IRQ moderation timer value. */
3774 		CSR_WRITE_4(sc, B2_IRQM_INI,
3775 		    MSK_USECS(sc, sc->msk_int_holdoff));
3776 		CSR_WRITE_4(sc, B2_IRQM_VAL,
3777 		    MSK_USECS(sc, sc->msk_int_holdoff));
3778 		/* Start IRQ moderation. */
3779 		CSR_WRITE_1(sc, B2_IRQM_CTRL, TIM_START);
3780 	}
3781 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3782 	CSR_READ_4(sc, B0_HWE_IMSK);
3783 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3784 	CSR_READ_4(sc, B0_IMSK);
3785 
3786 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
3787 	mii_mediachg(mii);
3788 
3789 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3790 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3791 
3792 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3793 }
3794 
3795 static void
3796 msk_set_rambuffer(struct msk_if_softc *sc_if)
3797 {
3798 	struct msk_softc *sc;
3799 	int ltpp, utpp;
3800 
3801 	sc = sc_if->msk_softc;
3802 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3803 		return;
3804 
3805 	/* Setup Rx Queue. */
3806 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3807 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3808 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3809 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3810 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3811 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3812 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3813 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3814 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3815 
3816 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3817 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3818 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3819 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3820 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3821 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3822 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3823 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3824 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3825 
3826 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3827 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3828 
3829 	/* Setup Tx Queue. */
3830 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3831 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3832 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3833 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3834 	    sc->msk_txqend[sc_if->msk_port] / 8);
3835 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3836 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3837 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3838 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3839 	/* Enable Store & Forward for Tx side. */
3840 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3841 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3842 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3843 }
3844 
3845 static void
3846 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3847     uint32_t count)
3848 {
3849 
3850 	/* Reset the prefetch unit. */
3851 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3852 	    PREF_UNIT_RST_SET);
3853 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3854 	    PREF_UNIT_RST_CLR);
3855 	/* Set LE base address. */
3856 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3857 	    MSK_ADDR_LO(addr));
3858 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3859 	    MSK_ADDR_HI(addr));
3860 	/* Set the list last index. */
3861 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3862 	    count);
3863 	/* Turn on prefetch unit. */
3864 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3865 	    PREF_UNIT_OP_ON);
3866 	/* Dummy read to ensure write. */
3867 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3868 }
3869 
3870 static void
3871 msk_stop(struct msk_if_softc *sc_if)
3872 {
3873 	struct msk_softc *sc;
3874 	struct msk_txdesc *txd;
3875 	struct msk_rxdesc *rxd;
3876 	struct msk_rxdesc *jrxd;
3877 	struct ifnet *ifp;
3878 	uint32_t val;
3879 	int i;
3880 
3881 	MSK_IF_LOCK_ASSERT(sc_if);
3882 	sc = sc_if->msk_softc;
3883 	ifp = sc_if->msk_ifp;
3884 
3885 	callout_stop(&sc_if->msk_tick_ch);
3886 	sc_if->msk_watchdog_timer = 0;
3887 
3888 	/* Disable interrupts. */
3889 	if (sc_if->msk_port == MSK_PORT_A) {
3890 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
3891 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3892 	} else {
3893 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
3894 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3895 	}
3896 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3897 	CSR_READ_4(sc, B0_HWE_IMSK);
3898 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3899 	CSR_READ_4(sc, B0_IMSK);
3900 
3901 	/* Disable Tx/Rx MAC. */
3902 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3903 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3904 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3905 	/* Read again to ensure writing. */
3906 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3907 	/* Update stats and clear counters. */
3908 	msk_stats_update(sc_if);
3909 
3910 	/* Stop Tx BMU. */
3911 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3912 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3913 	for (i = 0; i < MSK_TIMEOUT; i++) {
3914 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3915 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3916 			    BMU_STOP);
3917 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3918 		} else
3919 			break;
3920 		DELAY(1);
3921 	}
3922 	if (i == MSK_TIMEOUT)
3923 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3924 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3925 	    RB_RST_SET | RB_DIS_OP_MD);
3926 
3927 	/* Disable all GMAC interrupt. */
3928 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3929 	/* Disable PHY interrupt. */
3930 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3931 
3932 	/* Disable the RAM Interface Arbiter. */
3933 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3934 
3935 	/* Reset the PCI FIFO of the async Tx queue */
3936 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3937 	    BMU_RST_SET | BMU_FIFO_RST);
3938 
3939 	/* Reset the Tx prefetch units. */
3940 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3941 	    PREF_UNIT_RST_SET);
3942 
3943 	/* Reset the RAM Buffer async Tx queue. */
3944 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3945 
3946 	/* Reset Tx MAC FIFO. */
3947 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3948 	/* Set Pause Off. */
3949 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3950 
3951 	/*
3952 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3953 	 * reach the end of packet and since we can't make sure that we have
3954 	 * incoming data, we must reset the BMU while it is not during a DMA
3955 	 * transfer. Since it is possible that the Rx path is still active,
3956 	 * the Rx RAM buffer will be stopped first, so any possible incoming
3957 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
3958 	 * BMU is polled until any DMA in progress is ended and only then it
3959 	 * will be reset.
3960 	 */
3961 
3962 	/* Disable the RAM Buffer receive queue. */
3963 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3964 	for (i = 0; i < MSK_TIMEOUT; i++) {
3965 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3966 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3967 			break;
3968 		DELAY(1);
3969 	}
3970 	if (i == MSK_TIMEOUT)
3971 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3972 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3973 	    BMU_RST_SET | BMU_FIFO_RST);
3974 	/* Reset the Rx prefetch unit. */
3975 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3976 	    PREF_UNIT_RST_SET);
3977 	/* Reset the RAM Buffer receive queue. */
3978 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3979 	/* Reset Rx MAC FIFO. */
3980 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3981 
3982 	/* Free Rx and Tx mbufs still in the queues. */
3983 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
3984 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
3985 		if (rxd->rx_m != NULL) {
3986 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
3987 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3988 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
3989 			    rxd->rx_dmamap);
3990 			m_freem(rxd->rx_m);
3991 			rxd->rx_m = NULL;
3992 		}
3993 	}
3994 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
3995 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
3996 		if (jrxd->rx_m != NULL) {
3997 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
3998 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3999 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4000 			    jrxd->rx_dmamap);
4001 			m_freem(jrxd->rx_m);
4002 			jrxd->rx_m = NULL;
4003 		}
4004 	}
4005 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4006 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4007 		if (txd->tx_m != NULL) {
4008 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4009 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4010 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4011 			    txd->tx_dmamap);
4012 			m_freem(txd->tx_m);
4013 			txd->tx_m = NULL;
4014 		}
4015 	}
4016 
4017 	/*
4018 	 * Mark the interface down.
4019 	 */
4020 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4021 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4022 }
4023 
4024 /*
4025  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
4026  * counter clears high 16 bits of the counter such that accessing
4027  * lower 16 bits should be the last operation.
4028  */
4029 #define	MSK_READ_MIB32(x, y)					\
4030 	(((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) +	\
4031 	(uint32_t)GMAC_READ_2(sc, x, y)
4032 #define	MSK_READ_MIB64(x, y)					\
4033 	(((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) +	\
4034 	(uint64_t)MSK_READ_MIB32(x, y)
4035 
4036 static void
4037 msk_stats_clear(struct msk_if_softc *sc_if)
4038 {
4039 	struct msk_softc *sc;
4040 	uint32_t reg;
4041 	uint16_t gmac;
4042 	int i;
4043 
4044 	MSK_IF_LOCK_ASSERT(sc_if);
4045 
4046 	sc = sc_if->msk_softc;
4047 	/* Set MIB Clear Counter Mode. */
4048 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4049 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4050 	/* Read all MIB Counters with Clear Mode set. */
4051 	for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t))
4052 		reg = MSK_READ_MIB32(sc_if->msk_port, i);
4053 	/* Clear MIB Clear Counter Mode. */
4054 	gmac &= ~GM_PAR_MIB_CLR;
4055 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4056 }
4057 
4058 static void
4059 msk_stats_update(struct msk_if_softc *sc_if)
4060 {
4061 	struct msk_softc *sc;
4062 	struct ifnet *ifp;
4063 	struct msk_hw_stats *stats;
4064 	uint16_t gmac;
4065 	uint32_t reg;
4066 
4067 	MSK_IF_LOCK_ASSERT(sc_if);
4068 
4069 	ifp = sc_if->msk_ifp;
4070 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4071 		return;
4072 	sc = sc_if->msk_softc;
4073 	stats = &sc_if->msk_stats;
4074 	/* Set MIB Clear Counter Mode. */
4075 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4076 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4077 
4078 	/* Rx stats. */
4079 	stats->rx_ucast_frames +=
4080 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4081 	stats->rx_bcast_frames +=
4082 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4083 	stats->rx_pause_frames +=
4084 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4085 	stats->rx_mcast_frames +=
4086 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4087 	stats->rx_crc_errs +=
4088 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4089 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1);
4090 	stats->rx_good_octets +=
4091 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4092 	stats->rx_bad_octets +=
4093 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4094 	stats->rx_runts +=
4095 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4096 	stats->rx_runt_errs +=
4097 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4098 	stats->rx_pkts_64 +=
4099 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4100 	stats->rx_pkts_65_127 +=
4101 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4102 	stats->rx_pkts_128_255 +=
4103 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4104 	stats->rx_pkts_256_511 +=
4105 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4106 	stats->rx_pkts_512_1023 +=
4107 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4108 	stats->rx_pkts_1024_1518 +=
4109 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4110 	stats->rx_pkts_1519_max +=
4111 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4112 	stats->rx_pkts_too_long +=
4113 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4114 	stats->rx_pkts_jabbers +=
4115 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4116 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2);
4117 	stats->rx_fifo_oflows +=
4118 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4119 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3);
4120 
4121 	/* Tx stats. */
4122 	stats->tx_ucast_frames +=
4123 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4124 	stats->tx_bcast_frames +=
4125 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4126 	stats->tx_pause_frames +=
4127 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4128 	stats->tx_mcast_frames +=
4129 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4130 	stats->tx_octets +=
4131 	    MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4132 	stats->tx_pkts_64 +=
4133 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4134 	stats->tx_pkts_65_127 +=
4135 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4136 	stats->tx_pkts_128_255 +=
4137 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4138 	stats->tx_pkts_256_511 +=
4139 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4140 	stats->tx_pkts_512_1023 +=
4141 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4142 	stats->tx_pkts_1024_1518 +=
4143 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4144 	stats->tx_pkts_1519_max +=
4145 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4146 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1);
4147 	stats->tx_colls +=
4148 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4149 	stats->tx_late_colls +=
4150 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4151 	stats->tx_excess_colls +=
4152 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4153 	stats->tx_multi_colls +=
4154 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4155 	stats->tx_single_colls +=
4156 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4157 	stats->tx_underflows +=
4158 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4159 	/* Clear MIB Clear Counter Mode. */
4160 	gmac &= ~GM_PAR_MIB_CLR;
4161 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4162 }
4163 
4164 static int
4165 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4166 {
4167 	struct msk_softc *sc;
4168 	struct msk_if_softc *sc_if;
4169 	uint32_t result, *stat;
4170 	int off;
4171 
4172 	sc_if = (struct msk_if_softc *)arg1;
4173 	sc = sc_if->msk_softc;
4174 	off = arg2;
4175 	stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4176 
4177 	MSK_IF_LOCK(sc_if);
4178 	result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4179 	result += *stat;
4180 	MSK_IF_UNLOCK(sc_if);
4181 
4182 	return (sysctl_handle_int(oidp, &result, 0, req));
4183 }
4184 
4185 static int
4186 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4187 {
4188 	struct msk_softc *sc;
4189 	struct msk_if_softc *sc_if;
4190 	uint64_t result, *stat;
4191 	int off;
4192 
4193 	sc_if = (struct msk_if_softc *)arg1;
4194 	sc = sc_if->msk_softc;
4195 	off = arg2;
4196 	stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4197 
4198 	MSK_IF_LOCK(sc_if);
4199 	result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4200 	result += *stat;
4201 	MSK_IF_UNLOCK(sc_if);
4202 
4203 	return (sysctl_handle_quad(oidp, &result, 0, req));
4204 }
4205 
4206 #undef MSK_READ_MIB32
4207 #undef MSK_READ_MIB64
4208 
4209 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) 				\
4210 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4211 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32,	\
4212 	    "IU", d)
4213 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) 				\
4214 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4215 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64,	\
4216 	    "Q", d)
4217 
4218 static void
4219 msk_sysctl_node(struct msk_if_softc *sc_if)
4220 {
4221 	struct sysctl_ctx_list *ctx;
4222 	struct sysctl_oid_list *child, *schild;
4223 	struct sysctl_oid *tree;
4224 
4225 	ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4226 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4227 
4228 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
4229 	    NULL, "MSK Statistics");
4230 	schild = child = SYSCTL_CHILDREN(tree);
4231 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
4232 	    NULL, "MSK RX Statistics");
4233 	child = SYSCTL_CHILDREN(tree);
4234 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4235 	    child, rx_ucast_frames, "Good unicast frames");
4236 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4237 	    child, rx_bcast_frames, "Good broadcast frames");
4238 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4239 	    child, rx_pause_frames, "Pause frames");
4240 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4241 	    child, rx_mcast_frames, "Multicast frames");
4242 	MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4243 	    child, rx_crc_errs, "CRC errors");
4244 	MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4245 	    child, rx_good_octets, "Good octets");
4246 	MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4247 	    child, rx_bad_octets, "Bad octets");
4248 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4249 	    child, rx_pkts_64, "64 bytes frames");
4250 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4251 	    child, rx_pkts_65_127, "65 to 127 bytes frames");
4252 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4253 	    child, rx_pkts_128_255, "128 to 255 bytes frames");
4254 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4255 	    child, rx_pkts_256_511, "256 to 511 bytes frames");
4256 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4257 	    child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4258 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4259 	    child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4260 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4261 	    child, rx_pkts_1519_max, "1519 to max frames");
4262 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4263 	    child, rx_pkts_too_long, "frames too long");
4264 	MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4265 	    child, rx_pkts_jabbers, "Jabber errors");
4266 	MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4267 	    child, rx_fifo_oflows, "FIFO overflows");
4268 
4269 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
4270 	    NULL, "MSK TX Statistics");
4271 	child = SYSCTL_CHILDREN(tree);
4272 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4273 	    child, tx_ucast_frames, "Unicast frames");
4274 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4275 	    child, tx_bcast_frames, "Broadcast frames");
4276 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4277 	    child, tx_pause_frames, "Pause frames");
4278 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4279 	    child, tx_mcast_frames, "Multicast frames");
4280 	MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4281 	    child, tx_octets, "Octets");
4282 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4283 	    child, tx_pkts_64, "64 bytes frames");
4284 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4285 	    child, tx_pkts_65_127, "65 to 127 bytes frames");
4286 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4287 	    child, tx_pkts_128_255, "128 to 255 bytes frames");
4288 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4289 	    child, tx_pkts_256_511, "256 to 511 bytes frames");
4290 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4291 	    child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4292 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4293 	    child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4294 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4295 	    child, tx_pkts_1519_max, "1519 to max frames");
4296 	MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4297 	    child, tx_colls, "Collisions");
4298 	MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4299 	    child, tx_late_colls, "Late collisions");
4300 	MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4301 	    child, tx_excess_colls, "Excessive collisions");
4302 	MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4303 	    child, tx_multi_colls, "Multiple collisions");
4304 	MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4305 	    child, tx_single_colls, "Single collisions");
4306 	MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4307 	    child, tx_underflows, "FIFO underflows");
4308 }
4309 
4310 #undef MSK_SYSCTL_STAT32
4311 #undef MSK_SYSCTL_STAT64
4312 
4313 static int
4314 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4315 {
4316 	int error, value;
4317 
4318 	if (!arg1)
4319 		return (EINVAL);
4320 	value = *(int *)arg1;
4321 	error = sysctl_handle_int(oidp, &value, 0, req);
4322 	if (error || !req->newptr)
4323 		return (error);
4324 	if (value < low || value > high)
4325 		return (EINVAL);
4326 	*(int *)arg1 = value;
4327 
4328 	return (0);
4329 }
4330 
4331 static int
4332 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4333 {
4334 
4335 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4336 	    MSK_PROC_MAX));
4337 }
4338