xref: /freebsd/sys/dev/msk/if_msk.c (revision cf4c5a533126ca1ddb1f070af73f8f53b9e77fd4)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /*
96  * Device driver for the Marvell Yukon II Ethernet controller.
97  * Due to lack of documentation, this driver is based on the code from
98  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
99  */
100 
101 #include <sys/cdefs.h>
102 __FBSDID("$FreeBSD$");
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/module.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/queue.h>
115 #include <sys/sysctl.h>
116 #include <sys/taskqueue.h>
117 
118 #include <net/bpf.h>
119 #include <net/ethernet.h>
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_types.h>
125 #include <net/if_vlan_var.h>
126 
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/tcp.h>
131 #include <netinet/udp.h>
132 
133 #include <machine/bus.h>
134 #include <machine/in_cksum.h>
135 #include <machine/resource.h>
136 #include <sys/rman.h>
137 
138 #include <dev/mii/mii.h>
139 #include <dev/mii/miivar.h>
140 #include <dev/mii/brgphyreg.h>
141 
142 #include <dev/pci/pcireg.h>
143 #include <dev/pci/pcivar.h>
144 
145 #include <dev/msk/if_mskreg.h>
146 
147 MODULE_DEPEND(msk, pci, 1, 1, 1);
148 MODULE_DEPEND(msk, ether, 1, 1, 1);
149 MODULE_DEPEND(msk, miibus, 1, 1, 1);
150 
151 /* "device miibus" required.  See GENERIC if you get errors here. */
152 #include "miibus_if.h"
153 
154 /* Tunables. */
155 static int msi_disable = 0;
156 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
157 static int legacy_intr = 0;
158 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
159 static int jumbo_disable = 0;
160 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
161 
162 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
163 
164 /*
165  * Devices supported by this driver.
166  */
167 static struct msk_product {
168 	uint16_t	msk_vendorid;
169 	uint16_t	msk_deviceid;
170 	const char	*msk_name;
171 } msk_products[] = {
172 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
173 	    "SK-9Sxx Gigabit Ethernet" },
174 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
175 	    "SK-9Exx Gigabit Ethernet"},
176 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
177 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
178 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
179 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
180 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
181 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
182 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
183 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
184 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
185 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
186 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
187 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
188 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
189 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
190 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
191 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
192 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
193 	    "Marvell Yukon 88E8035 Fast Ethernet" },
194 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
195 	    "Marvell Yukon 88E8036 Fast Ethernet" },
196 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
197 	    "Marvell Yukon 88E8038 Fast Ethernet" },
198 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
199 	    "Marvell Yukon 88E8039 Fast Ethernet" },
200 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
201 	    "Marvell Yukon 88E8040 Fast Ethernet" },
202 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
203 	    "Marvell Yukon 88E8040T Fast Ethernet" },
204 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
205 	    "Marvell Yukon 88E8048 Fast Ethernet" },
206 	{ VENDORID_MARVELL, DEVICEID_MRVL_8070,
207 	    "Marvell Yukon 88E8070 Fast Ethernet" },
208 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
209 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
210 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
211 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
212 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
213 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
214 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
215 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
216 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
217 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
218 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
219 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
220 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
221 	    "D-Link 550SX Gigabit Ethernet" },
222 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
223 	    "D-Link 560T Gigabit Ethernet" }
224 };
225 
226 static const char *model_name[] = {
227 	"Yukon XL",
228         "Yukon EC Ultra",
229         "Yukon Unknown",
230         "Yukon EC",
231         "Yukon FE",
232         "Yukon FE+"
233 };
234 
235 static int mskc_probe(device_t);
236 static int mskc_attach(device_t);
237 static int mskc_detach(device_t);
238 static int mskc_shutdown(device_t);
239 static int mskc_setup_rambuffer(struct msk_softc *);
240 static int mskc_suspend(device_t);
241 static int mskc_resume(device_t);
242 static void mskc_reset(struct msk_softc *);
243 
244 static int msk_probe(device_t);
245 static int msk_attach(device_t);
246 static int msk_detach(device_t);
247 
248 static void msk_tick(void *);
249 static void msk_legacy_intr(void *);
250 static int msk_intr(void *);
251 static void msk_int_task(void *, int);
252 static void msk_intr_phy(struct msk_if_softc *);
253 static void msk_intr_gmac(struct msk_if_softc *);
254 static __inline void msk_rxput(struct msk_if_softc *);
255 static int msk_handle_events(struct msk_softc *);
256 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
257 static void msk_intr_hwerr(struct msk_softc *);
258 #ifndef __NO_STRICT_ALIGNMENT
259 static __inline void msk_fixup_rx(struct mbuf *);
260 #endif
261 static void msk_rxeof(struct msk_if_softc *, uint32_t, int);
262 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
263 static void msk_txeof(struct msk_if_softc *, int);
264 static int msk_encap(struct msk_if_softc *, struct mbuf **);
265 static void msk_tx_task(void *, int);
266 static void msk_start(struct ifnet *);
267 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
268 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
269 static void msk_set_rambuffer(struct msk_if_softc *);
270 static void msk_init(void *);
271 static void msk_init_locked(struct msk_if_softc *);
272 static void msk_stop(struct msk_if_softc *);
273 static void msk_watchdog(struct msk_if_softc *);
274 static int msk_mediachange(struct ifnet *);
275 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
276 static void msk_phy_power(struct msk_softc *, int);
277 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
278 static int msk_status_dma_alloc(struct msk_softc *);
279 static void msk_status_dma_free(struct msk_softc *);
280 static int msk_txrx_dma_alloc(struct msk_if_softc *);
281 static int msk_rx_dma_jalloc(struct msk_if_softc *);
282 static void msk_txrx_dma_free(struct msk_if_softc *);
283 static void msk_rx_dma_jfree(struct msk_if_softc *);
284 static int msk_init_rx_ring(struct msk_if_softc *);
285 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
286 static void msk_init_tx_ring(struct msk_if_softc *);
287 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
288 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
289 static int msk_newbuf(struct msk_if_softc *, int);
290 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
291 
292 static int msk_phy_readreg(struct msk_if_softc *, int, int);
293 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
294 static int msk_miibus_readreg(device_t, int, int);
295 static int msk_miibus_writereg(device_t, int, int, int);
296 static void msk_miibus_statchg(device_t);
297 
298 static void msk_rxfilter(struct msk_if_softc *);
299 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
300 
301 static void msk_stats_clear(struct msk_if_softc *);
302 static void msk_stats_update(struct msk_if_softc *);
303 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
304 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
305 static void msk_sysctl_node(struct msk_if_softc *);
306 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
307 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
308 
309 static device_method_t mskc_methods[] = {
310 	/* Device interface */
311 	DEVMETHOD(device_probe,		mskc_probe),
312 	DEVMETHOD(device_attach,	mskc_attach),
313 	DEVMETHOD(device_detach,	mskc_detach),
314 	DEVMETHOD(device_suspend,	mskc_suspend),
315 	DEVMETHOD(device_resume,	mskc_resume),
316 	DEVMETHOD(device_shutdown,	mskc_shutdown),
317 
318 	/* bus interface */
319 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
320 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
321 
322 	{ NULL, NULL }
323 };
324 
325 static driver_t mskc_driver = {
326 	"mskc",
327 	mskc_methods,
328 	sizeof(struct msk_softc)
329 };
330 
331 static devclass_t mskc_devclass;
332 
333 static device_method_t msk_methods[] = {
334 	/* Device interface */
335 	DEVMETHOD(device_probe,		msk_probe),
336 	DEVMETHOD(device_attach,	msk_attach),
337 	DEVMETHOD(device_detach,	msk_detach),
338 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
339 
340 	/* bus interface */
341 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
342 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
343 
344 	/* MII interface */
345 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
346 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
347 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
348 
349 	{ NULL, NULL }
350 };
351 
352 static driver_t msk_driver = {
353 	"msk",
354 	msk_methods,
355 	sizeof(struct msk_if_softc)
356 };
357 
358 static devclass_t msk_devclass;
359 
360 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
361 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
362 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
363 
364 static struct resource_spec msk_res_spec_io[] = {
365 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
366 	{ -1,			0,		0 }
367 };
368 
369 static struct resource_spec msk_res_spec_mem[] = {
370 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
371 	{ -1,			0,		0 }
372 };
373 
374 static struct resource_spec msk_irq_spec_legacy[] = {
375 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
376 	{ -1,			0,		0 }
377 };
378 
379 static struct resource_spec msk_irq_spec_msi[] = {
380 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
381 	{ -1,			0,		0 }
382 };
383 
384 static struct resource_spec msk_irq_spec_msi2[] = {
385 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
386 	{ SYS_RES_IRQ,		2,		RF_ACTIVE },
387 	{ -1,			0,		0 }
388 };
389 
390 static int
391 msk_miibus_readreg(device_t dev, int phy, int reg)
392 {
393 	struct msk_if_softc *sc_if;
394 
395 	if (phy != PHY_ADDR_MARV)
396 		return (0);
397 
398 	sc_if = device_get_softc(dev);
399 
400 	return (msk_phy_readreg(sc_if, phy, reg));
401 }
402 
403 static int
404 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
405 {
406 	struct msk_softc *sc;
407 	int i, val;
408 
409 	sc = sc_if->msk_softc;
410 
411         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
412 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
413 
414 	for (i = 0; i < MSK_TIMEOUT; i++) {
415 		DELAY(1);
416 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
417 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
418 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
419 			break;
420 		}
421 	}
422 
423 	if (i == MSK_TIMEOUT) {
424 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
425 		val = 0;
426 	}
427 
428 	return (val);
429 }
430 
431 static int
432 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
433 {
434 	struct msk_if_softc *sc_if;
435 
436 	if (phy != PHY_ADDR_MARV)
437 		return (0);
438 
439 	sc_if = device_get_softc(dev);
440 
441 	return (msk_phy_writereg(sc_if, phy, reg, val));
442 }
443 
444 static int
445 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
446 {
447 	struct msk_softc *sc;
448 	int i;
449 
450 	sc = sc_if->msk_softc;
451 
452 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
453         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
454 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
455 	for (i = 0; i < MSK_TIMEOUT; i++) {
456 		DELAY(1);
457 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
458 		    GM_SMI_CT_BUSY) == 0)
459 			break;
460 	}
461 	if (i == MSK_TIMEOUT)
462 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
463 
464 	return (0);
465 }
466 
467 static void
468 msk_miibus_statchg(device_t dev)
469 {
470 	struct msk_softc *sc;
471 	struct msk_if_softc *sc_if;
472 	struct mii_data *mii;
473 	struct ifnet *ifp;
474 	uint32_t gmac;
475 
476 	sc_if = device_get_softc(dev);
477 	sc = sc_if->msk_softc;
478 
479 	MSK_IF_LOCK_ASSERT(sc_if);
480 
481 	mii = device_get_softc(sc_if->msk_miibus);
482 	ifp = sc_if->msk_ifp;
483 	if (mii == NULL || ifp == NULL ||
484 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
485 		return;
486 
487 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
488 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
489 	    (IFM_AVALID | IFM_ACTIVE)) {
490 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
491 		case IFM_10_T:
492 		case IFM_100_TX:
493 			sc_if->msk_flags |= MSK_FLAG_LINK;
494 			break;
495 		case IFM_1000_T:
496 		case IFM_1000_SX:
497 		case IFM_1000_LX:
498 		case IFM_1000_CX:
499 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
500 				sc_if->msk_flags |= MSK_FLAG_LINK;
501 			break;
502 		default:
503 			break;
504 		}
505 	}
506 
507 	if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) {
508 		/* Enable Tx FIFO Underrun. */
509 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
510 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
511 		/*
512 		 * Because mii(4) notify msk(4) that it detected link status
513 		 * change, there is no need to enable automatic
514 		 * speed/flow-control/duplex updates.
515 		 */
516 		gmac = GM_GPCR_AU_ALL_DIS;
517 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
518 		case IFM_1000_SX:
519 		case IFM_1000_T:
520 			gmac |= GM_GPCR_SPEED_1000;
521 			break;
522 		case IFM_100_TX:
523 			gmac |= GM_GPCR_SPEED_100;
524 			break;
525 		case IFM_10_T:
526 			break;
527 		}
528 
529 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
530 			gmac |= GM_GPCR_DUP_FULL;
531 		/* Disable Rx flow control. */
532 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
533 			gmac |= GM_GPCR_FC_RX_DIS;
534 		/* Disable Tx flow control. */
535 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
536 			gmac |= GM_GPCR_FC_TX_DIS;
537 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
538 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
539 		/* Read again to ensure writing. */
540 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
541 
542 		gmac = GMC_PAUSE_ON;
543 		if (((mii->mii_media_active & IFM_GMASK) &
544 		    (IFM_FLAG0 | IFM_FLAG1)) == 0)
545 			gmac = GMC_PAUSE_OFF;
546 		/* Diable pause for 10/100 Mbps in half-duplex mode. */
547 		if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
548 		    (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
549 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
550 			gmac = GMC_PAUSE_OFF;
551 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
552 
553 		/* Enable PHY interrupt for FIFO underrun/overflow. */
554 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
555 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
556 	} else {
557 		/*
558 		 * Link state changed to down.
559 		 * Disable PHY interrupts.
560 		 */
561 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
562 		/* Disable Rx/Tx MAC. */
563 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
564 		if ((GM_GPCR_RX_ENA | GM_GPCR_TX_ENA) != 0) {
565 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
566 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
567 			/* Read again to ensure writing. */
568 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
569 		}
570 	}
571 }
572 
573 static void
574 msk_rxfilter(struct msk_if_softc *sc_if)
575 {
576 	struct msk_softc *sc;
577 	struct ifnet *ifp;
578 	struct ifmultiaddr *ifma;
579 	uint32_t mchash[2];
580 	uint32_t crc;
581 	uint16_t mode;
582 
583 	sc = sc_if->msk_softc;
584 
585 	MSK_IF_LOCK_ASSERT(sc_if);
586 
587 	ifp = sc_if->msk_ifp;
588 
589 	bzero(mchash, sizeof(mchash));
590 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
591 	if ((ifp->if_flags & IFF_PROMISC) != 0)
592 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
593 	else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
594 		mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
595 		mchash[0] = 0xffff;
596 		mchash[1] = 0xffff;
597 	} else {
598 		mode |= GM_RXCR_UCF_ENA;
599 		IF_ADDR_LOCK(ifp);
600 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
601 			if (ifma->ifma_addr->sa_family != AF_LINK)
602 				continue;
603 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
604 			    ifma->ifma_addr), ETHER_ADDR_LEN);
605 			/* Just want the 6 least significant bits. */
606 			crc &= 0x3f;
607 			/* Set the corresponding bit in the hash table. */
608 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
609 		}
610 		IF_ADDR_UNLOCK(ifp);
611 		if (mchash[0] != 0 || mchash[1] != 0)
612 			mode |= GM_RXCR_MCF_ENA;
613 	}
614 
615 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
616 	    mchash[0] & 0xffff);
617 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
618 	    (mchash[0] >> 16) & 0xffff);
619 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
620 	    mchash[1] & 0xffff);
621 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
622 	    (mchash[1] >> 16) & 0xffff);
623 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
624 }
625 
626 static void
627 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
628 {
629 	struct msk_softc *sc;
630 
631 	sc = sc_if->msk_softc;
632 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
633 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
634 		    RX_VLAN_STRIP_ON);
635 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
636 		    TX_VLAN_TAG_ON);
637 	} else {
638 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
639 		    RX_VLAN_STRIP_OFF);
640 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
641 		    TX_VLAN_TAG_OFF);
642 	}
643 }
644 
645 static int
646 msk_init_rx_ring(struct msk_if_softc *sc_if)
647 {
648 	struct msk_ring_data *rd;
649 	struct msk_rxdesc *rxd;
650 	int i, prod;
651 
652 	MSK_IF_LOCK_ASSERT(sc_if);
653 
654 	sc_if->msk_cdata.msk_rx_cons = 0;
655 	sc_if->msk_cdata.msk_rx_prod = 0;
656 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
657 
658 	rd = &sc_if->msk_rdata;
659 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
660 	prod = sc_if->msk_cdata.msk_rx_prod;
661 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
662 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
663 		rxd->rx_m = NULL;
664 		rxd->rx_le = &rd->msk_rx_ring[prod];
665 		if (msk_newbuf(sc_if, prod) != 0)
666 			return (ENOBUFS);
667 		MSK_INC(prod, MSK_RX_RING_CNT);
668 	}
669 
670 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
671 	    sc_if->msk_cdata.msk_rx_ring_map,
672 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
673 
674 	/* Update prefetch unit. */
675 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
676 	CSR_WRITE_2(sc_if->msk_softc,
677 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
678 	    sc_if->msk_cdata.msk_rx_prod);
679 
680 	return (0);
681 }
682 
683 static int
684 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
685 {
686 	struct msk_ring_data *rd;
687 	struct msk_rxdesc *rxd;
688 	int i, prod;
689 
690 	MSK_IF_LOCK_ASSERT(sc_if);
691 
692 	sc_if->msk_cdata.msk_rx_cons = 0;
693 	sc_if->msk_cdata.msk_rx_prod = 0;
694 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
695 
696 	rd = &sc_if->msk_rdata;
697 	bzero(rd->msk_jumbo_rx_ring,
698 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
699 	prod = sc_if->msk_cdata.msk_rx_prod;
700 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
701 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
702 		rxd->rx_m = NULL;
703 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
704 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
705 			return (ENOBUFS);
706 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
707 	}
708 
709 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
710 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
711 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
712 
713 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
714 	CSR_WRITE_2(sc_if->msk_softc,
715 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
716 	    sc_if->msk_cdata.msk_rx_prod);
717 
718 	return (0);
719 }
720 
721 static void
722 msk_init_tx_ring(struct msk_if_softc *sc_if)
723 {
724 	struct msk_ring_data *rd;
725 	struct msk_txdesc *txd;
726 	int i;
727 
728 	sc_if->msk_cdata.msk_tso_mtu = 0;
729 	sc_if->msk_cdata.msk_tx_prod = 0;
730 	sc_if->msk_cdata.msk_tx_cons = 0;
731 	sc_if->msk_cdata.msk_tx_cnt = 0;
732 
733 	rd = &sc_if->msk_rdata;
734 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
735 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
736 		txd = &sc_if->msk_cdata.msk_txdesc[i];
737 		txd->tx_m = NULL;
738 		txd->tx_le = &rd->msk_tx_ring[i];
739 	}
740 
741 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
742 	    sc_if->msk_cdata.msk_tx_ring_map,
743 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
744 }
745 
746 static __inline void
747 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
748 {
749 	struct msk_rx_desc *rx_le;
750 	struct msk_rxdesc *rxd;
751 	struct mbuf *m;
752 
753 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
754 	m = rxd->rx_m;
755 	rx_le = rxd->rx_le;
756 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
757 }
758 
759 static __inline void
760 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
761 {
762 	struct msk_rx_desc *rx_le;
763 	struct msk_rxdesc *rxd;
764 	struct mbuf *m;
765 
766 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
767 	m = rxd->rx_m;
768 	rx_le = rxd->rx_le;
769 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
770 }
771 
772 static int
773 msk_newbuf(struct msk_if_softc *sc_if, int idx)
774 {
775 	struct msk_rx_desc *rx_le;
776 	struct msk_rxdesc *rxd;
777 	struct mbuf *m;
778 	bus_dma_segment_t segs[1];
779 	bus_dmamap_t map;
780 	int nsegs;
781 
782 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
783 	if (m == NULL)
784 		return (ENOBUFS);
785 
786 	m->m_len = m->m_pkthdr.len = MCLBYTES;
787 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
788 		m_adj(m, ETHER_ALIGN);
789 #ifndef __NO_STRICT_ALIGNMENT
790 	else
791 		m_adj(m, MSK_RX_BUF_ALIGN);
792 #endif
793 
794 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
795 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
796 	    BUS_DMA_NOWAIT) != 0) {
797 		m_freem(m);
798 		return (ENOBUFS);
799 	}
800 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
801 
802 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
803 	if (rxd->rx_m != NULL) {
804 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
805 		    BUS_DMASYNC_POSTREAD);
806 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
807 	}
808 	map = rxd->rx_dmamap;
809 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
810 	sc_if->msk_cdata.msk_rx_sparemap = map;
811 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
812 	    BUS_DMASYNC_PREREAD);
813 	rxd->rx_m = m;
814 	rx_le = rxd->rx_le;
815 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
816 	rx_le->msk_control =
817 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
818 
819 	return (0);
820 }
821 
822 static int
823 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
824 {
825 	struct msk_rx_desc *rx_le;
826 	struct msk_rxdesc *rxd;
827 	struct mbuf *m;
828 	bus_dma_segment_t segs[1];
829 	bus_dmamap_t map;
830 	int nsegs;
831 
832 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
833 	if (m == NULL)
834 		return (ENOBUFS);
835 	if ((m->m_flags & M_EXT) == 0) {
836 		m_freem(m);
837 		return (ENOBUFS);
838 	}
839 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
840 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
841 		m_adj(m, ETHER_ALIGN);
842 #ifndef __NO_STRICT_ALIGNMENT
843 	else
844 		m_adj(m, MSK_RX_BUF_ALIGN);
845 #endif
846 
847 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
848 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
849 	    BUS_DMA_NOWAIT) != 0) {
850 		m_freem(m);
851 		return (ENOBUFS);
852 	}
853 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
854 
855 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
856 	if (rxd->rx_m != NULL) {
857 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
858 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
859 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
860 		    rxd->rx_dmamap);
861 	}
862 	map = rxd->rx_dmamap;
863 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
864 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
865 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
866 	    BUS_DMASYNC_PREREAD);
867 	rxd->rx_m = m;
868 	rx_le = rxd->rx_le;
869 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
870 	rx_le->msk_control =
871 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
872 
873 	return (0);
874 }
875 
876 /*
877  * Set media options.
878  */
879 static int
880 msk_mediachange(struct ifnet *ifp)
881 {
882 	struct msk_if_softc *sc_if;
883 	struct mii_data	*mii;
884 	int error;
885 
886 	sc_if = ifp->if_softc;
887 
888 	MSK_IF_LOCK(sc_if);
889 	mii = device_get_softc(sc_if->msk_miibus);
890 	error = mii_mediachg(mii);
891 	MSK_IF_UNLOCK(sc_if);
892 
893 	return (error);
894 }
895 
896 /*
897  * Report current media status.
898  */
899 static void
900 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
901 {
902 	struct msk_if_softc *sc_if;
903 	struct mii_data	*mii;
904 
905 	sc_if = ifp->if_softc;
906 	MSK_IF_LOCK(sc_if);
907 	if ((ifp->if_flags & IFF_UP) == 0) {
908 		MSK_IF_UNLOCK(sc_if);
909 		return;
910 	}
911 	mii = device_get_softc(sc_if->msk_miibus);
912 
913 	mii_pollstat(mii);
914 	MSK_IF_UNLOCK(sc_if);
915 	ifmr->ifm_active = mii->mii_media_active;
916 	ifmr->ifm_status = mii->mii_media_status;
917 }
918 
919 static int
920 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
921 {
922 	struct msk_if_softc *sc_if;
923 	struct ifreq *ifr;
924 	struct mii_data	*mii;
925 	int error, mask;
926 
927 	sc_if = ifp->if_softc;
928 	ifr = (struct ifreq *)data;
929 	error = 0;
930 
931 	switch(command) {
932 	case SIOCSIFMTU:
933 		MSK_IF_LOCK(sc_if);
934 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
935 			error = EINVAL;
936 		else if (ifp->if_mtu != ifr->ifr_mtu) {
937  			if (ifr->ifr_mtu > ETHERMTU) {
938 				if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
939 					error = EINVAL;
940 					MSK_IF_UNLOCK(sc_if);
941 					break;
942 				}
943 				if ((sc_if->msk_flags &
944 				    MSK_FLAG_JUMBO_NOCSUM) != 0) {
945 					ifp->if_hwassist &=
946 					    ~(MSK_CSUM_FEATURES | CSUM_TSO);
947 					ifp->if_capenable &=
948 					    ~(IFCAP_TSO4 | IFCAP_TXCSUM);
949 					VLAN_CAPABILITIES(ifp);
950 				}
951 			}
952 			ifp->if_mtu = ifr->ifr_mtu;
953 			msk_init_locked(sc_if);
954 		}
955 		MSK_IF_UNLOCK(sc_if);
956 		break;
957 	case SIOCSIFFLAGS:
958 		MSK_IF_LOCK(sc_if);
959 		if ((ifp->if_flags & IFF_UP) != 0) {
960 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
961 			    ((ifp->if_flags ^ sc_if->msk_if_flags) &
962 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
963 				msk_rxfilter(sc_if);
964 			else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0)
965 				msk_init_locked(sc_if);
966 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
967 			msk_stop(sc_if);
968 		sc_if->msk_if_flags = ifp->if_flags;
969 		MSK_IF_UNLOCK(sc_if);
970 		break;
971 	case SIOCADDMULTI:
972 	case SIOCDELMULTI:
973 		MSK_IF_LOCK(sc_if);
974 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
975 			msk_rxfilter(sc_if);
976 		MSK_IF_UNLOCK(sc_if);
977 		break;
978 	case SIOCGIFMEDIA:
979 	case SIOCSIFMEDIA:
980 		mii = device_get_softc(sc_if->msk_miibus);
981 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
982 		break;
983 	case SIOCSIFCAP:
984 		MSK_IF_LOCK(sc_if);
985 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
986 		if ((mask & IFCAP_TXCSUM) != 0 &&
987 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
988 			ifp->if_capenable ^= IFCAP_TXCSUM;
989 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
990 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
991 			else
992 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
993 		}
994 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
995 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
996 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
997 			msk_setvlan(sc_if, ifp);
998 		}
999 
1000 		if ((mask & IFCAP_TSO4) != 0 &&
1001 		    (IFCAP_TSO4 & ifp->if_capabilities) != 0) {
1002 			ifp->if_capenable ^= IFCAP_TSO4;
1003 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1004 				ifp->if_hwassist |= CSUM_TSO;
1005 			else
1006 				ifp->if_hwassist &= ~CSUM_TSO;
1007 		}
1008 		if (ifp->if_mtu > ETHERMTU &&
1009 		    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
1010 			ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
1011 			ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1012 		}
1013 
1014 		VLAN_CAPABILITIES(ifp);
1015 		MSK_IF_UNLOCK(sc_if);
1016 		break;
1017 	default:
1018 		error = ether_ioctl(ifp, command, data);
1019 		break;
1020 	}
1021 
1022 	return (error);
1023 }
1024 
1025 static int
1026 mskc_probe(device_t dev)
1027 {
1028 	struct msk_product *mp;
1029 	uint16_t vendor, devid;
1030 	int i;
1031 
1032 	vendor = pci_get_vendor(dev);
1033 	devid = pci_get_device(dev);
1034 	mp = msk_products;
1035 	for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
1036 	    i++, mp++) {
1037 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1038 			device_set_desc(dev, mp->msk_name);
1039 			return (BUS_PROBE_DEFAULT);
1040 		}
1041 	}
1042 
1043 	return (ENXIO);
1044 }
1045 
1046 static int
1047 mskc_setup_rambuffer(struct msk_softc *sc)
1048 {
1049 	int next;
1050 	int i;
1051 
1052 	/* Get adapter SRAM size. */
1053 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1054 	if (bootverbose)
1055 		device_printf(sc->msk_dev,
1056 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1057 	if (sc->msk_ramsize == 0)
1058 		return (0);
1059 
1060 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1061 	/*
1062 	 * Give receiver 2/3 of memory and round down to the multiple
1063 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
1064 	 * of 1024.
1065 	 */
1066 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1067 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1068 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1069 		sc->msk_rxqstart[i] = next;
1070 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1071 		next = sc->msk_rxqend[i] + 1;
1072 		sc->msk_txqstart[i] = next;
1073 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1074 		next = sc->msk_txqend[i] + 1;
1075 		if (bootverbose) {
1076 			device_printf(sc->msk_dev,
1077 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1078 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1079 			    sc->msk_rxqend[i]);
1080 			device_printf(sc->msk_dev,
1081 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1082 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1083 			    sc->msk_txqend[i]);
1084 		}
1085 	}
1086 
1087 	return (0);
1088 }
1089 
1090 static void
1091 msk_phy_power(struct msk_softc *sc, int mode)
1092 {
1093 	uint32_t our, val;
1094 	int i;
1095 
1096 	switch (mode) {
1097 	case MSK_PHY_POWERUP:
1098 		/* Switch power to VCC (WA for VAUX problem). */
1099 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1100 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1101 		/* Disable Core Clock Division, set Clock Select to 0. */
1102 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1103 
1104 		val = 0;
1105 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1106 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1107 			/* Enable bits are inverted. */
1108 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1109 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1110 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1111 		}
1112 		/*
1113 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1114 		 */
1115 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1116 
1117 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1118 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1119 		switch (sc->msk_hw_id) {
1120 		case CHIP_ID_YUKON_XL:
1121 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1122 				/* Deassert Low Power for 1st PHY. */
1123 				val |= PCI_Y2_PHY1_COMA;
1124 				if (sc->msk_num_port > 1)
1125 					val |= PCI_Y2_PHY2_COMA;
1126 			}
1127 			break;
1128 		case CHIP_ID_YUKON_EC_U:
1129 		case CHIP_ID_YUKON_FE_P:
1130 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_OFF);
1131 
1132 			/* Enable all clocks. */
1133 			pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1134 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1135 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1136 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1137 			/* Set all bits to 0 except bits 15..12. */
1138 			pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1139 			/* Set to default value. */
1140 			pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
1141 			break;
1142 		default:
1143 			break;
1144 		}
1145 		/* Release PHY from PowerDown/COMA mode. */
1146 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1147 		for (i = 0; i < sc->msk_num_port; i++) {
1148 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1149 			    GMLC_RST_SET);
1150 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1151 			    GMLC_RST_CLR);
1152 		}
1153 		break;
1154 	case MSK_PHY_POWERDOWN:
1155 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1156 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1157 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1158 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1159 			val &= ~PCI_Y2_PHY1_COMA;
1160 			if (sc->msk_num_port > 1)
1161 				val &= ~PCI_Y2_PHY2_COMA;
1162 		}
1163 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1164 
1165 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1166 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1167 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1168 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1169 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1170 			/* Enable bits are inverted. */
1171 			val = 0;
1172 		}
1173 		/*
1174 		 * Disable PCI & Core Clock, disable clock gating for
1175 		 * both Links.
1176 		 */
1177 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1178 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1179 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1180 		break;
1181 	default:
1182 		break;
1183 	}
1184 }
1185 
1186 static void
1187 mskc_reset(struct msk_softc *sc)
1188 {
1189 	bus_addr_t addr;
1190 	uint16_t status;
1191 	uint32_t val;
1192 	int i;
1193 
1194 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1195 
1196 	/* Disable ASF. */
1197 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
1198 		CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1199 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1200 	}
1201 	/*
1202 	 * Since we disabled ASF, S/W reset is required for Power Management.
1203 	 */
1204 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1205 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1206 
1207 	/* Clear all error bits in the PCI status register. */
1208 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1209 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1210 
1211 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1212 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1213 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1214 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1215 
1216 	switch (sc->msk_bustype) {
1217 	case MSK_PEX_BUS:
1218 		/* Clear all PEX errors. */
1219 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1220 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1221 		if ((val & PEX_RX_OV) != 0) {
1222 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1223 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1224 		}
1225 		break;
1226 	case MSK_PCI_BUS:
1227 	case MSK_PCIX_BUS:
1228 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1229 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1230 		if (val == 0)
1231 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1232 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1233 			/* Set Cache Line Size opt. */
1234 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1235 			val |= PCI_CLS_OPT;
1236 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1237 		}
1238 		break;
1239 	}
1240 	/* Set PHY power state. */
1241 	msk_phy_power(sc, MSK_PHY_POWERUP);
1242 
1243 	/* Reset GPHY/GMAC Control */
1244 	for (i = 0; i < sc->msk_num_port; i++) {
1245 		/* GPHY Control reset. */
1246 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1247 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1248 		/* GMAC Control reset. */
1249 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1250 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1251 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1252 	}
1253 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1254 
1255 	/* LED On. */
1256 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1257 
1258 	/* Clear TWSI IRQ. */
1259 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1260 
1261 	/* Turn off hardware timer. */
1262 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1263 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1264 
1265 	/* Turn off descriptor polling. */
1266 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1267 
1268 	/* Turn off time stamps. */
1269 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1270 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1271 
1272 	/* Configure timeout values. */
1273 	for (i = 0; i < sc->msk_num_port; i++) {
1274 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1275 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1276 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1277 		    MSK_RI_TO_53);
1278 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1279 		    MSK_RI_TO_53);
1280 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1281 		    MSK_RI_TO_53);
1282 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1283 		    MSK_RI_TO_53);
1284 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1285 		    MSK_RI_TO_53);
1286 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1287 		    MSK_RI_TO_53);
1288 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1289 		    MSK_RI_TO_53);
1290 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1291 		    MSK_RI_TO_53);
1292 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1293 		    MSK_RI_TO_53);
1294 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1295 		    MSK_RI_TO_53);
1296 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1297 		    MSK_RI_TO_53);
1298 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1299 		    MSK_RI_TO_53);
1300 	}
1301 
1302 	/* Disable all interrupts. */
1303 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1304 	CSR_READ_4(sc, B0_HWE_IMSK);
1305 	CSR_WRITE_4(sc, B0_IMSK, 0);
1306 	CSR_READ_4(sc, B0_IMSK);
1307 
1308         /*
1309          * On dual port PCI-X card, there is an problem where status
1310          * can be received out of order due to split transactions.
1311          */
1312 	if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
1313 		int pcix;
1314 		uint16_t pcix_cmd;
1315 
1316 		if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &pcix) == 0) {
1317 			pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
1318 			/* Clear Max Outstanding Split Transactions. */
1319 			pcix_cmd &= ~0x70;
1320 			CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1321 			pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
1322 			CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1323 		}
1324         }
1325 	if (sc->msk_bustype == MSK_PEX_BUS) {
1326 		uint16_t v, width;
1327 
1328 		v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
1329 		/* Change Max. Read Request Size to 4096 bytes. */
1330 		v &= ~PEX_DC_MAX_RRS_MSK;
1331 		v |= PEX_DC_MAX_RD_RQ_SIZE(5);
1332 		pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
1333 		width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
1334 		width = (width & PEX_LS_LINK_WI_MSK) >> 4;
1335 		v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
1336 		v = (v & PEX_LS_LINK_WI_MSK) >> 4;
1337 		if (v != width)
1338 			device_printf(sc->msk_dev,
1339 			    "negotiated width of link(x%d) != "
1340 			    "max. width of link(x%d)\n", width, v);
1341 	}
1342 
1343 	/* Clear status list. */
1344 	bzero(sc->msk_stat_ring,
1345 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1346 	sc->msk_stat_cons = 0;
1347 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1348 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1349 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1350 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1351 	/* Set the status list base address. */
1352 	addr = sc->msk_stat_ring_paddr;
1353 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1354 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1355 	/* Set the status list last index. */
1356 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1357 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1358 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1359 		/* WA for dev. #4.3 */
1360 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1361 		/* WA for dev. #4.18 */
1362 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1363 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1364 	} else {
1365 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1366 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1367 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1368 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1369 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1370 		else
1371 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1372 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1373 	}
1374 	/*
1375 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1376 	 */
1377 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1378 
1379 	/* Enable status unit. */
1380 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1381 
1382 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1383 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1384 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1385 }
1386 
1387 static int
1388 msk_probe(device_t dev)
1389 {
1390 	struct msk_softc *sc;
1391 	char desc[100];
1392 
1393 	sc = device_get_softc(device_get_parent(dev));
1394 	/*
1395 	 * Not much to do here. We always know there will be
1396 	 * at least one GMAC present, and if there are two,
1397 	 * mskc_attach() will create a second device instance
1398 	 * for us.
1399 	 */
1400 	snprintf(desc, sizeof(desc),
1401 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1402 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1403 	    sc->msk_hw_rev);
1404 	device_set_desc_copy(dev, desc);
1405 
1406 	return (BUS_PROBE_DEFAULT);
1407 }
1408 
1409 static int
1410 msk_attach(device_t dev)
1411 {
1412 	struct msk_softc *sc;
1413 	struct msk_if_softc *sc_if;
1414 	struct ifnet *ifp;
1415 	int i, port, error;
1416 	uint8_t eaddr[6];
1417 
1418 	if (dev == NULL)
1419 		return (EINVAL);
1420 
1421 	error = 0;
1422 	sc_if = device_get_softc(dev);
1423 	sc = device_get_softc(device_get_parent(dev));
1424 	port = *(int *)device_get_ivars(dev);
1425 
1426 	sc_if->msk_if_dev = dev;
1427 	sc_if->msk_port = port;
1428 	sc_if->msk_softc = sc;
1429 	sc_if->msk_flags = sc->msk_pflags;
1430 	sc->msk_if[port] = sc_if;
1431 	/* Setup Tx/Rx queue register offsets. */
1432 	if (port == MSK_PORT_A) {
1433 		sc_if->msk_txq = Q_XA1;
1434 		sc_if->msk_txsq = Q_XS1;
1435 		sc_if->msk_rxq = Q_R1;
1436 	} else {
1437 		sc_if->msk_txq = Q_XA2;
1438 		sc_if->msk_txsq = Q_XS2;
1439 		sc_if->msk_rxq = Q_R2;
1440 	}
1441 
1442 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1443 	msk_sysctl_node(sc_if);
1444 
1445 	if ((error = msk_txrx_dma_alloc(sc_if) != 0))
1446 		goto fail;
1447 	msk_rx_dma_jalloc(sc_if);
1448 
1449 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1450 	if (ifp == NULL) {
1451 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1452 		error = ENOSPC;
1453 		goto fail;
1454 	}
1455 	ifp->if_softc = sc_if;
1456 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1457 	ifp->if_mtu = ETHERMTU;
1458 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1459 	/*
1460 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1461 	 * has serious bug in Rx checksum offload for all Yukon II family
1462 	 * hardware. It seems there is a workaround to make it work somtimes.
1463 	 * However, the workaround also have to check OP code sequences to
1464 	 * verify whether the OP code is correct. Sometimes it should compute
1465 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1466 	 * checksum computed by hardware. If you have to compute checksum
1467 	 * with software to verify the hardware's checksum why have hardware
1468 	 * compute the checksum? I think there is no reason to spend time to
1469 	 * make Rx checksum offload work on Yukon II hardware.
1470 	 */
1471 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1472 	ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1473 	ifp->if_capenable = ifp->if_capabilities;
1474 	ifp->if_ioctl = msk_ioctl;
1475 	ifp->if_start = msk_start;
1476 	ifp->if_timer = 0;
1477 	ifp->if_watchdog = NULL;
1478 	ifp->if_init = msk_init;
1479 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1480 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1481 	IFQ_SET_READY(&ifp->if_snd);
1482 
1483 	TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp);
1484 
1485 	/*
1486 	 * Get station address for this interface. Note that
1487 	 * dual port cards actually come with three station
1488 	 * addresses: one for each port, plus an extra. The
1489 	 * extra one is used by the SysKonnect driver software
1490 	 * as a 'virtual' station address for when both ports
1491 	 * are operating in failover mode. Currently we don't
1492 	 * use this extra address.
1493 	 */
1494 	MSK_IF_LOCK(sc_if);
1495 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1496 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1497 
1498 	/*
1499 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1500 	 */
1501 	MSK_IF_UNLOCK(sc_if);
1502 	ether_ifattach(ifp, eaddr);
1503 	MSK_IF_LOCK(sc_if);
1504 
1505 	/* VLAN capability setup */
1506 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1507 	if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) {
1508 		/*
1509 		 * Due to Tx checksum offload hardware bugs, msk(4) manually
1510 		 * computes checksum for short frames. For VLAN tagged frames
1511 		 * this workaround does not work so disable checksum offload
1512 		 * for VLAN interface.
1513 		 */
1514         	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
1515 	}
1516 	ifp->if_capenable = ifp->if_capabilities;
1517 
1518 	/*
1519 	 * Tell the upper layer(s) we support long frames.
1520 	 * Must appear after the call to ether_ifattach() because
1521 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1522 	 */
1523         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1524 
1525 	/*
1526 	 * Do miibus setup.
1527 	 */
1528 	MSK_IF_UNLOCK(sc_if);
1529 	error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
1530 	    msk_mediastatus);
1531 	if (error != 0) {
1532 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1533 		ether_ifdetach(ifp);
1534 		error = ENXIO;
1535 		goto fail;
1536 	}
1537 
1538 fail:
1539 	if (error != 0) {
1540 		/* Access should be ok even though lock has been dropped */
1541 		sc->msk_if[port] = NULL;
1542 		msk_detach(dev);
1543 	}
1544 
1545 	return (error);
1546 }
1547 
1548 /*
1549  * Attach the interface. Allocate softc structures, do ifmedia
1550  * setup and ethernet/BPF attach.
1551  */
1552 static int
1553 mskc_attach(device_t dev)
1554 {
1555 	struct msk_softc *sc;
1556 	int error, msic, msir, *port, reg;
1557 
1558 	sc = device_get_softc(dev);
1559 	sc->msk_dev = dev;
1560 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1561 	    MTX_DEF);
1562 
1563 	/*
1564 	 * Map control/status registers.
1565 	 */
1566 	pci_enable_busmaster(dev);
1567 
1568 	/* Allocate I/O resource */
1569 #ifdef MSK_USEIOSPACE
1570 	sc->msk_res_spec = msk_res_spec_io;
1571 #else
1572 	sc->msk_res_spec = msk_res_spec_mem;
1573 #endif
1574 	sc->msk_irq_spec = msk_irq_spec_legacy;
1575 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1576 	if (error) {
1577 		if (sc->msk_res_spec == msk_res_spec_mem)
1578 			sc->msk_res_spec = msk_res_spec_io;
1579 		else
1580 			sc->msk_res_spec = msk_res_spec_mem;
1581 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1582 		if (error) {
1583 			device_printf(dev, "couldn't allocate %s resources\n",
1584 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1585 			    "I/O");
1586 			mtx_destroy(&sc->msk_mtx);
1587 			return (ENXIO);
1588 		}
1589 	}
1590 
1591 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1592 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1593 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1594 	/* Bail out if chip is not recognized. */
1595 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1596 	    sc->msk_hw_id > CHIP_ID_YUKON_FE_P) {
1597 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1598 		    sc->msk_hw_id, sc->msk_hw_rev);
1599 		mtx_destroy(&sc->msk_mtx);
1600 		return (ENXIO);
1601 	}
1602 
1603 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1604 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1605 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1606 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1607 	    "max number of Rx events to process");
1608 
1609 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1610 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1611 	    "process_limit", &sc->msk_process_limit);
1612 	if (error == 0) {
1613 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1614 		    sc->msk_process_limit > MSK_PROC_MAX) {
1615 			device_printf(dev, "process_limit value out of range; "
1616 			    "using default: %d\n", MSK_PROC_DEFAULT);
1617 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1618 		}
1619 	}
1620 
1621 	/* Soft reset. */
1622 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1623 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1624 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1625 	 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1626 		 sc->msk_coppertype = 0;
1627 	 else
1628 		 sc->msk_coppertype = 1;
1629 	/* Check number of MACs. */
1630 	sc->msk_num_port = 1;
1631 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1632 	    CFG_DUAL_MAC_MSK) {
1633 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1634 			sc->msk_num_port++;
1635 	}
1636 
1637 	/* Check bus type. */
1638 	if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0)
1639 		sc->msk_bustype = MSK_PEX_BUS;
1640 	else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0)
1641 		sc->msk_bustype = MSK_PCIX_BUS;
1642 	else
1643 		sc->msk_bustype = MSK_PCI_BUS;
1644 
1645 	switch (sc->msk_hw_id) {
1646 	case CHIP_ID_YUKON_EC:
1647 		sc->msk_clock = 125;	/* 125 Mhz */
1648 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1649 		break;
1650 	case CHIP_ID_YUKON_EC_U:
1651 		sc->msk_clock = 125;	/* 125 Mhz */
1652 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM;
1653 		break;
1654 	case CHIP_ID_YUKON_FE:
1655 		sc->msk_clock = 100;	/* 100 Mhz */
1656 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1657 		break;
1658 	case CHIP_ID_YUKON_FE_P:
1659 		sc->msk_clock = 50;	/* 50 Mhz */
1660 		sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2;
1661 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1662 			/*
1663 			 * XXX
1664 			 * FE+ A0 has status LE writeback bug so msk(4)
1665 			 * does not rely on status word of received frame
1666 			 * in msk_rxeof() which in turn disables all
1667 			 * hardware assistance bits reported by the status
1668 			 * word as well as validity of the recevied frame.
1669 			 * Just pass received frames to upper stack with
1670 			 * minimal test and let upper stack handle them.
1671 			 */
1672 			sc->msk_pflags |= MSK_FLAG_NOHWVLAN | MSK_FLAG_NORXCHK;
1673 		}
1674 		break;
1675 	case CHIP_ID_YUKON_XL:
1676 		sc->msk_clock = 156;	/* 156 Mhz */
1677 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1678 		break;
1679 	default:
1680 		sc->msk_clock = 156;	/* 156 Mhz */
1681 		break;
1682 	}
1683 
1684 	/* Allocate IRQ resources. */
1685 	msic = pci_msi_count(dev);
1686 	if (bootverbose)
1687 		device_printf(dev, "MSI count : %d\n", msic);
1688 	/*
1689 	 * The Yukon II reports it can handle two messages, one for each
1690 	 * possible port.  We go ahead and allocate two messages and only
1691 	 * setup a handler for both if we have a dual port card.
1692 	 *
1693 	 * XXX: I haven't untangled the interrupt handler to handle dual
1694 	 * port cards with separate MSI messages, so for now I disable MSI
1695 	 * on dual port cards.
1696 	 */
1697 	if (legacy_intr != 0)
1698 		msi_disable = 1;
1699 	if (msi_disable == 0) {
1700 		switch (msic) {
1701 		case 2:
1702 		case 1: /* 88E8058 reports 1 MSI message */
1703 			msir = msic;
1704 			if (sc->msk_num_port == 1 &&
1705 			    pci_alloc_msi(dev, &msir) == 0) {
1706 				if (msic == msir) {
1707 					sc->msk_pflags |= MSK_FLAG_MSI;
1708 					sc->msk_irq_spec = msic == 2 ?
1709 					    msk_irq_spec_msi2 :
1710 					    msk_irq_spec_msi;
1711 				} else
1712 					pci_release_msi(dev);
1713 			}
1714 			break;
1715 		default:
1716 			device_printf(dev,
1717 			    "Unexpected number of MSI messages : %d\n", msic);
1718 			break;
1719 		}
1720 	}
1721 
1722 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1723 	if (error) {
1724 		device_printf(dev, "couldn't allocate IRQ resources\n");
1725 		goto fail;
1726 	}
1727 
1728 	if ((error = msk_status_dma_alloc(sc)) != 0)
1729 		goto fail;
1730 
1731 	/* Set base interrupt mask. */
1732 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1733 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1734 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1735 
1736 	/* Reset the adapter. */
1737 	mskc_reset(sc);
1738 
1739 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1740 		goto fail;
1741 
1742 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1743 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1744 		device_printf(dev, "failed to add child for PORT_A\n");
1745 		error = ENXIO;
1746 		goto fail;
1747 	}
1748 	port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1749 	if (port == NULL) {
1750 		device_printf(dev, "failed to allocate memory for "
1751 		    "ivars of PORT_A\n");
1752 		error = ENXIO;
1753 		goto fail;
1754 	}
1755 	*port = MSK_PORT_A;
1756 	device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1757 
1758 	if (sc->msk_num_port > 1) {
1759 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1760 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1761 			device_printf(dev, "failed to add child for PORT_B\n");
1762 			error = ENXIO;
1763 			goto fail;
1764 		}
1765 		port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1766 		if (port == NULL) {
1767 			device_printf(dev, "failed to allocate memory for "
1768 			    "ivars of PORT_B\n");
1769 			error = ENXIO;
1770 			goto fail;
1771 		}
1772 		*port = MSK_PORT_B;
1773 		device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1774 	}
1775 
1776 	error = bus_generic_attach(dev);
1777 	if (error) {
1778 		device_printf(dev, "failed to attach port(s)\n");
1779 		goto fail;
1780 	}
1781 
1782 	/* Hook interrupt last to avoid having to lock softc. */
1783 	if (legacy_intr)
1784 		error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1785 		    INTR_MPSAFE, NULL, msk_legacy_intr, sc,
1786 		    &sc->msk_intrhand[0]);
1787 	else {
1788 		TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc);
1789 		sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK,
1790 		    taskqueue_thread_enqueue, &sc->msk_tq);
1791 		taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq",
1792 		    device_get_nameunit(sc->msk_dev));
1793 		error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1794 		    INTR_MPSAFE, msk_intr, NULL, sc, &sc->msk_intrhand[0]);
1795 	}
1796 
1797 	if (error != 0) {
1798 		device_printf(dev, "couldn't set up interrupt handler\n");
1799 		if (legacy_intr == 0)
1800 			taskqueue_free(sc->msk_tq);
1801 		sc->msk_tq = NULL;
1802 		goto fail;
1803 	}
1804 fail:
1805 	if (error != 0)
1806 		mskc_detach(dev);
1807 
1808 	return (error);
1809 }
1810 
1811 /*
1812  * Shutdown hardware and free up resources. This can be called any
1813  * time after the mutex has been initialized. It is called in both
1814  * the error case in attach and the normal detach case so it needs
1815  * to be careful about only freeing resources that have actually been
1816  * allocated.
1817  */
1818 static int
1819 msk_detach(device_t dev)
1820 {
1821 	struct msk_softc *sc;
1822 	struct msk_if_softc *sc_if;
1823 	struct ifnet *ifp;
1824 
1825 	sc_if = device_get_softc(dev);
1826 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
1827 	    ("msk mutex not initialized in msk_detach"));
1828 	MSK_IF_LOCK(sc_if);
1829 
1830 	ifp = sc_if->msk_ifp;
1831 	if (device_is_attached(dev)) {
1832 		/* XXX */
1833 		sc_if->msk_flags |= MSK_FLAG_DETACH;
1834 		msk_stop(sc_if);
1835 		/* Can't hold locks while calling detach. */
1836 		MSK_IF_UNLOCK(sc_if);
1837 		callout_drain(&sc_if->msk_tick_ch);
1838 		taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task);
1839 		ether_ifdetach(ifp);
1840 		MSK_IF_LOCK(sc_if);
1841 	}
1842 
1843 	/*
1844 	 * We're generally called from mskc_detach() which is using
1845 	 * device_delete_child() to get to here. It's already trashed
1846 	 * miibus for us, so don't do it here or we'll panic.
1847 	 *
1848 	 * if (sc_if->msk_miibus != NULL) {
1849 	 * 	device_delete_child(dev, sc_if->msk_miibus);
1850 	 * 	sc_if->msk_miibus = NULL;
1851 	 * }
1852 	 */
1853 
1854 	msk_rx_dma_jfree(sc_if);
1855 	msk_txrx_dma_free(sc_if);
1856 	bus_generic_detach(dev);
1857 
1858 	if (ifp)
1859 		if_free(ifp);
1860 	sc = sc_if->msk_softc;
1861 	sc->msk_if[sc_if->msk_port] = NULL;
1862 	MSK_IF_UNLOCK(sc_if);
1863 
1864 	return (0);
1865 }
1866 
1867 static int
1868 mskc_detach(device_t dev)
1869 {
1870 	struct msk_softc *sc;
1871 
1872 	sc = device_get_softc(dev);
1873 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
1874 
1875 	if (device_is_alive(dev)) {
1876 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
1877 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
1878 			    M_DEVBUF);
1879 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
1880 		}
1881 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
1882 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
1883 			    M_DEVBUF);
1884 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
1885 		}
1886 		bus_generic_detach(dev);
1887 	}
1888 
1889 	/* Disable all interrupts. */
1890 	CSR_WRITE_4(sc, B0_IMSK, 0);
1891 	CSR_READ_4(sc, B0_IMSK);
1892 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1893 	CSR_READ_4(sc, B0_HWE_IMSK);
1894 
1895 	/* LED Off. */
1896 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1897 
1898 	/* Put hardware reset. */
1899 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1900 
1901 	msk_status_dma_free(sc);
1902 
1903 	if (legacy_intr == 0 && sc->msk_tq != NULL) {
1904 		taskqueue_drain(sc->msk_tq, &sc->msk_int_task);
1905 		taskqueue_free(sc->msk_tq);
1906 		sc->msk_tq = NULL;
1907 	}
1908 	if (sc->msk_intrhand[0]) {
1909 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1910 		sc->msk_intrhand[0] = NULL;
1911 	}
1912 	if (sc->msk_intrhand[1]) {
1913 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1914 		sc->msk_intrhand[1] = NULL;
1915 	}
1916 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1917 	if ((sc->msk_pflags & MSK_FLAG_MSI) != 0)
1918 		pci_release_msi(dev);
1919 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
1920 	mtx_destroy(&sc->msk_mtx);
1921 
1922 	return (0);
1923 }
1924 
1925 struct msk_dmamap_arg {
1926 	bus_addr_t	msk_busaddr;
1927 };
1928 
1929 static void
1930 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1931 {
1932 	struct msk_dmamap_arg *ctx;
1933 
1934 	if (error != 0)
1935 		return;
1936 	ctx = arg;
1937 	ctx->msk_busaddr = segs[0].ds_addr;
1938 }
1939 
1940 /* Create status DMA region. */
1941 static int
1942 msk_status_dma_alloc(struct msk_softc *sc)
1943 {
1944 	struct msk_dmamap_arg ctx;
1945 	int error;
1946 
1947 	error = bus_dma_tag_create(
1948 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
1949 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
1950 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1951 		    BUS_SPACE_MAXADDR,		/* highaddr */
1952 		    NULL, NULL,			/* filter, filterarg */
1953 		    MSK_STAT_RING_SZ,		/* maxsize */
1954 		    1,				/* nsegments */
1955 		    MSK_STAT_RING_SZ,		/* maxsegsize */
1956 		    0,				/* flags */
1957 		    NULL, NULL,			/* lockfunc, lockarg */
1958 		    &sc->msk_stat_tag);
1959 	if (error != 0) {
1960 		device_printf(sc->msk_dev,
1961 		    "failed to create status DMA tag\n");
1962 		return (error);
1963 	}
1964 
1965 	/* Allocate DMA'able memory and load the DMA map for status ring. */
1966 	error = bus_dmamem_alloc(sc->msk_stat_tag,
1967 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
1968 	    BUS_DMA_ZERO, &sc->msk_stat_map);
1969 	if (error != 0) {
1970 		device_printf(sc->msk_dev,
1971 		    "failed to allocate DMA'able memory for status ring\n");
1972 		return (error);
1973 	}
1974 
1975 	ctx.msk_busaddr = 0;
1976 	error = bus_dmamap_load(sc->msk_stat_tag,
1977 	    sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
1978 	    msk_dmamap_cb, &ctx, 0);
1979 	if (error != 0) {
1980 		device_printf(sc->msk_dev,
1981 		    "failed to load DMA'able memory for status ring\n");
1982 		return (error);
1983 	}
1984 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
1985 
1986 	return (0);
1987 }
1988 
1989 static void
1990 msk_status_dma_free(struct msk_softc *sc)
1991 {
1992 
1993 	/* Destroy status block. */
1994 	if (sc->msk_stat_tag) {
1995 		if (sc->msk_stat_map) {
1996 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1997 			if (sc->msk_stat_ring) {
1998 				bus_dmamem_free(sc->msk_stat_tag,
1999 				    sc->msk_stat_ring, sc->msk_stat_map);
2000 				sc->msk_stat_ring = NULL;
2001 			}
2002 			sc->msk_stat_map = NULL;
2003 		}
2004 		bus_dma_tag_destroy(sc->msk_stat_tag);
2005 		sc->msk_stat_tag = NULL;
2006 	}
2007 }
2008 
2009 static int
2010 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2011 {
2012 	struct msk_dmamap_arg ctx;
2013 	struct msk_txdesc *txd;
2014 	struct msk_rxdesc *rxd;
2015 	bus_size_t rxalign;
2016 	int error, i;
2017 
2018 	/* Create parent DMA tag. */
2019 	/*
2020 	 * XXX
2021 	 * It seems that Yukon II supports full 64bits DMA operations. But
2022 	 * it needs two descriptors(list elements) for 64bits DMA operations.
2023 	 * Since we don't know what DMA address mappings(32bits or 64bits)
2024 	 * would be used in advance for each mbufs, we limits its DMA space
2025 	 * to be in range of 32bits address space. Otherwise, we should check
2026 	 * what DMA address is used and chain another descriptor for the
2027 	 * 64bits DMA operation. This also means descriptor ring size is
2028 	 * variable. Limiting DMA address to be in 32bit address space greatly
2029 	 * simplyfies descriptor handling and possibly would increase
2030 	 * performance a bit due to efficient handling of descriptors.
2031 	 * Apart from harassing checksum offloading mechanisms, it seems
2032 	 * it's really bad idea to use a seperate descriptor for 64bit
2033 	 * DMA operation to save small descriptor memory. Anyway, I've
2034 	 * never seen these exotic scheme on ethernet interface hardware.
2035 	 */
2036 	error = bus_dma_tag_create(
2037 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2038 		    1, 0,			/* alignment, boundary */
2039 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2040 		    BUS_SPACE_MAXADDR,		/* highaddr */
2041 		    NULL, NULL,			/* filter, filterarg */
2042 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2043 		    0,				/* nsegments */
2044 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2045 		    0,				/* flags */
2046 		    NULL, NULL,			/* lockfunc, lockarg */
2047 		    &sc_if->msk_cdata.msk_parent_tag);
2048 	if (error != 0) {
2049 		device_printf(sc_if->msk_if_dev,
2050 		    "failed to create parent DMA tag\n");
2051 		goto fail;
2052 	}
2053 	/* Create tag for Tx ring. */
2054 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2055 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2056 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2057 		    BUS_SPACE_MAXADDR,		/* highaddr */
2058 		    NULL, NULL,			/* filter, filterarg */
2059 		    MSK_TX_RING_SZ,		/* maxsize */
2060 		    1,				/* nsegments */
2061 		    MSK_TX_RING_SZ,		/* maxsegsize */
2062 		    0,				/* flags */
2063 		    NULL, NULL,			/* lockfunc, lockarg */
2064 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2065 	if (error != 0) {
2066 		device_printf(sc_if->msk_if_dev,
2067 		    "failed to create Tx ring DMA tag\n");
2068 		goto fail;
2069 	}
2070 
2071 	/* Create tag for Rx ring. */
2072 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2073 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2074 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2075 		    BUS_SPACE_MAXADDR,		/* highaddr */
2076 		    NULL, NULL,			/* filter, filterarg */
2077 		    MSK_RX_RING_SZ,		/* maxsize */
2078 		    1,				/* nsegments */
2079 		    MSK_RX_RING_SZ,		/* maxsegsize */
2080 		    0,				/* flags */
2081 		    NULL, NULL,			/* lockfunc, lockarg */
2082 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2083 	if (error != 0) {
2084 		device_printf(sc_if->msk_if_dev,
2085 		    "failed to create Rx ring DMA tag\n");
2086 		goto fail;
2087 	}
2088 
2089 	/* Create tag for Tx buffers. */
2090 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2091 		    1, 0,			/* alignment, boundary */
2092 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2093 		    BUS_SPACE_MAXADDR,		/* highaddr */
2094 		    NULL, NULL,			/* filter, filterarg */
2095 		    MSK_TSO_MAXSIZE,		/* maxsize */
2096 		    MSK_MAXTXSEGS,		/* nsegments */
2097 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2098 		    0,				/* flags */
2099 		    NULL, NULL,			/* lockfunc, lockarg */
2100 		    &sc_if->msk_cdata.msk_tx_tag);
2101 	if (error != 0) {
2102 		device_printf(sc_if->msk_if_dev,
2103 		    "failed to create Tx DMA tag\n");
2104 		goto fail;
2105 	}
2106 
2107 	rxalign = 1;
2108 	/*
2109 	 * Workaround hardware hang which seems to happen when Rx buffer
2110 	 * is not aligned on multiple of FIFO word(8 bytes).
2111 	 */
2112 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2113 		rxalign = MSK_RX_BUF_ALIGN;
2114 	/* Create tag for Rx buffers. */
2115 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2116 		    rxalign, 0,			/* alignment, boundary */
2117 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2118 		    BUS_SPACE_MAXADDR,		/* highaddr */
2119 		    NULL, NULL,			/* filter, filterarg */
2120 		    MCLBYTES,			/* maxsize */
2121 		    1,				/* nsegments */
2122 		    MCLBYTES,			/* maxsegsize */
2123 		    0,				/* flags */
2124 		    NULL, NULL,			/* lockfunc, lockarg */
2125 		    &sc_if->msk_cdata.msk_rx_tag);
2126 	if (error != 0) {
2127 		device_printf(sc_if->msk_if_dev,
2128 		    "failed to create Rx DMA tag\n");
2129 		goto fail;
2130 	}
2131 
2132 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2133 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2134 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2135 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2136 	if (error != 0) {
2137 		device_printf(sc_if->msk_if_dev,
2138 		    "failed to allocate DMA'able memory for Tx ring\n");
2139 		goto fail;
2140 	}
2141 
2142 	ctx.msk_busaddr = 0;
2143 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2144 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2145 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2146 	if (error != 0) {
2147 		device_printf(sc_if->msk_if_dev,
2148 		    "failed to load DMA'able memory for Tx ring\n");
2149 		goto fail;
2150 	}
2151 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2152 
2153 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2154 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2155 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2156 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2157 	if (error != 0) {
2158 		device_printf(sc_if->msk_if_dev,
2159 		    "failed to allocate DMA'able memory for Rx ring\n");
2160 		goto fail;
2161 	}
2162 
2163 	ctx.msk_busaddr = 0;
2164 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2165 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2166 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2167 	if (error != 0) {
2168 		device_printf(sc_if->msk_if_dev,
2169 		    "failed to load DMA'able memory for Rx ring\n");
2170 		goto fail;
2171 	}
2172 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2173 
2174 	/* Create DMA maps for Tx buffers. */
2175 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2176 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2177 		txd->tx_m = NULL;
2178 		txd->tx_dmamap = NULL;
2179 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2180 		    &txd->tx_dmamap);
2181 		if (error != 0) {
2182 			device_printf(sc_if->msk_if_dev,
2183 			    "failed to create Tx dmamap\n");
2184 			goto fail;
2185 		}
2186 	}
2187 	/* Create DMA maps for Rx buffers. */
2188 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2189 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2190 		device_printf(sc_if->msk_if_dev,
2191 		    "failed to create spare Rx dmamap\n");
2192 		goto fail;
2193 	}
2194 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2195 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2196 		rxd->rx_m = NULL;
2197 		rxd->rx_dmamap = NULL;
2198 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2199 		    &rxd->rx_dmamap);
2200 		if (error != 0) {
2201 			device_printf(sc_if->msk_if_dev,
2202 			    "failed to create Rx dmamap\n");
2203 			goto fail;
2204 		}
2205 	}
2206 
2207 fail:
2208 	return (error);
2209 }
2210 
2211 static int
2212 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2213 {
2214 	struct msk_dmamap_arg ctx;
2215 	struct msk_rxdesc *jrxd;
2216 	bus_size_t rxalign;
2217 	int error, i;
2218 
2219 	if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
2220 		sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2221 		device_printf(sc_if->msk_if_dev,
2222 		    "disabling jumbo frame support\n");
2223 		return (0);
2224 	}
2225 	/* Create tag for jumbo Rx ring. */
2226 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2227 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2228 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2229 		    BUS_SPACE_MAXADDR,		/* highaddr */
2230 		    NULL, NULL,			/* filter, filterarg */
2231 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2232 		    1,				/* nsegments */
2233 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2234 		    0,				/* flags */
2235 		    NULL, NULL,			/* lockfunc, lockarg */
2236 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2237 	if (error != 0) {
2238 		device_printf(sc_if->msk_if_dev,
2239 		    "failed to create jumbo Rx ring DMA tag\n");
2240 		goto jumbo_fail;
2241 	}
2242 
2243 	rxalign = 1;
2244 	/*
2245 	 * Workaround hardware hang which seems to happen when Rx buffer
2246 	 * is not aligned on multiple of FIFO word(8 bytes).
2247 	 */
2248 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2249 		rxalign = MSK_RX_BUF_ALIGN;
2250 	/* Create tag for jumbo Rx buffers. */
2251 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2252 		    rxalign, 0,			/* alignment, boundary */
2253 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2254 		    BUS_SPACE_MAXADDR,		/* highaddr */
2255 		    NULL, NULL,			/* filter, filterarg */
2256 		    MJUM9BYTES,			/* maxsize */
2257 		    1,				/* nsegments */
2258 		    MJUM9BYTES,			/* maxsegsize */
2259 		    0,				/* flags */
2260 		    NULL, NULL,			/* lockfunc, lockarg */
2261 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2262 	if (error != 0) {
2263 		device_printf(sc_if->msk_if_dev,
2264 		    "failed to create jumbo Rx DMA tag\n");
2265 		goto jumbo_fail;
2266 	}
2267 
2268 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2269 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2270 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2271 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2272 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2273 	if (error != 0) {
2274 		device_printf(sc_if->msk_if_dev,
2275 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2276 		goto jumbo_fail;
2277 	}
2278 
2279 	ctx.msk_busaddr = 0;
2280 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2281 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2282 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2283 	    msk_dmamap_cb, &ctx, 0);
2284 	if (error != 0) {
2285 		device_printf(sc_if->msk_if_dev,
2286 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2287 		goto jumbo_fail;
2288 	}
2289 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2290 
2291 	/* Create DMA maps for jumbo Rx buffers. */
2292 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2293 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2294 		device_printf(sc_if->msk_if_dev,
2295 		    "failed to create spare jumbo Rx dmamap\n");
2296 		goto jumbo_fail;
2297 	}
2298 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2299 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2300 		jrxd->rx_m = NULL;
2301 		jrxd->rx_dmamap = NULL;
2302 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2303 		    &jrxd->rx_dmamap);
2304 		if (error != 0) {
2305 			device_printf(sc_if->msk_if_dev,
2306 			    "failed to create jumbo Rx dmamap\n");
2307 			goto jumbo_fail;
2308 		}
2309 	}
2310 
2311 	return (0);
2312 
2313 jumbo_fail:
2314 	msk_rx_dma_jfree(sc_if);
2315 	device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2316 	    "due to resource shortage\n");
2317 	sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2318 	return (error);
2319 }
2320 
2321 static void
2322 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2323 {
2324 	struct msk_txdesc *txd;
2325 	struct msk_rxdesc *rxd;
2326 	int i;
2327 
2328 	/* Tx ring. */
2329 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2330 		if (sc_if->msk_cdata.msk_tx_ring_map)
2331 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2332 			    sc_if->msk_cdata.msk_tx_ring_map);
2333 		if (sc_if->msk_cdata.msk_tx_ring_map &&
2334 		    sc_if->msk_rdata.msk_tx_ring)
2335 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2336 			    sc_if->msk_rdata.msk_tx_ring,
2337 			    sc_if->msk_cdata.msk_tx_ring_map);
2338 		sc_if->msk_rdata.msk_tx_ring = NULL;
2339 		sc_if->msk_cdata.msk_tx_ring_map = NULL;
2340 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2341 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2342 	}
2343 	/* Rx ring. */
2344 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2345 		if (sc_if->msk_cdata.msk_rx_ring_map)
2346 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2347 			    sc_if->msk_cdata.msk_rx_ring_map);
2348 		if (sc_if->msk_cdata.msk_rx_ring_map &&
2349 		    sc_if->msk_rdata.msk_rx_ring)
2350 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2351 			    sc_if->msk_rdata.msk_rx_ring,
2352 			    sc_if->msk_cdata.msk_rx_ring_map);
2353 		sc_if->msk_rdata.msk_rx_ring = NULL;
2354 		sc_if->msk_cdata.msk_rx_ring_map = NULL;
2355 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2356 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2357 	}
2358 	/* Tx buffers. */
2359 	if (sc_if->msk_cdata.msk_tx_tag) {
2360 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2361 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2362 			if (txd->tx_dmamap) {
2363 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2364 				    txd->tx_dmamap);
2365 				txd->tx_dmamap = NULL;
2366 			}
2367 		}
2368 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2369 		sc_if->msk_cdata.msk_tx_tag = NULL;
2370 	}
2371 	/* Rx buffers. */
2372 	if (sc_if->msk_cdata.msk_rx_tag) {
2373 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2374 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2375 			if (rxd->rx_dmamap) {
2376 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2377 				    rxd->rx_dmamap);
2378 				rxd->rx_dmamap = NULL;
2379 			}
2380 		}
2381 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2382 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2383 			    sc_if->msk_cdata.msk_rx_sparemap);
2384 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2385 		}
2386 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2387 		sc_if->msk_cdata.msk_rx_tag = NULL;
2388 	}
2389 	if (sc_if->msk_cdata.msk_parent_tag) {
2390 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2391 		sc_if->msk_cdata.msk_parent_tag = NULL;
2392 	}
2393 }
2394 
2395 static void
2396 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2397 {
2398 	struct msk_rxdesc *jrxd;
2399 	int i;
2400 
2401 	/* Jumbo Rx ring. */
2402 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2403 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2404 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2405 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2406 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2407 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2408 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2409 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2410 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2411 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2412 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2413 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2414 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2415 	}
2416 	/* Jumbo Rx buffers. */
2417 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2418 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2419 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2420 			if (jrxd->rx_dmamap) {
2421 				bus_dmamap_destroy(
2422 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2423 				    jrxd->rx_dmamap);
2424 				jrxd->rx_dmamap = NULL;
2425 			}
2426 		}
2427 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2428 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2429 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2430 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2431 		}
2432 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2433 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2434 	}
2435 }
2436 
2437 static int
2438 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2439 {
2440 	struct msk_txdesc *txd, *txd_last;
2441 	struct msk_tx_desc *tx_le;
2442 	struct mbuf *m;
2443 	bus_dmamap_t map;
2444 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2445 	uint32_t control, prod, si;
2446 	uint16_t offset, tcp_offset, tso_mtu;
2447 	int error, i, nseg, tso;
2448 
2449 	MSK_IF_LOCK_ASSERT(sc_if);
2450 
2451 	tcp_offset = offset = 0;
2452 	m = *m_head;
2453 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
2454 	    (m->m_pkthdr.csum_flags & (MSK_CSUM_FEATURES | CSUM_TSO)) != 0) {
2455 		/*
2456 		 * Since mbuf has no protocol specific structure information
2457 		 * in it we have to inspect protocol information here to
2458 		 * setup TSO and checksum offload. I don't know why Marvell
2459 		 * made a such decision in chip design because other GigE
2460 		 * hardwares normally takes care of all these chores in
2461 		 * hardware. However, TSO performance of Yukon II is very
2462 		 * good such that it's worth to implement it.
2463 		 */
2464 		struct ether_header *eh;
2465 		struct ip *ip;
2466 		struct tcphdr *tcp;
2467 
2468 		if (M_WRITABLE(m) == 0) {
2469 			/* Get a writable copy. */
2470 			m = m_dup(*m_head, M_DONTWAIT);
2471 			m_freem(*m_head);
2472 			if (m == NULL) {
2473 				*m_head = NULL;
2474 				return (ENOBUFS);
2475 			}
2476 			*m_head = m;
2477 		}
2478 
2479 		offset = sizeof(struct ether_header);
2480 		m = m_pullup(m, offset);
2481 		if (m == NULL) {
2482 			*m_head = NULL;
2483 			return (ENOBUFS);
2484 		}
2485 		eh = mtod(m, struct ether_header *);
2486 		/* Check if hardware VLAN insertion is off. */
2487 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2488 			offset = sizeof(struct ether_vlan_header);
2489 			m = m_pullup(m, offset);
2490 			if (m == NULL) {
2491 				*m_head = NULL;
2492 				return (ENOBUFS);
2493 			}
2494 		}
2495 		m = m_pullup(m, offset + sizeof(struct ip));
2496 		if (m == NULL) {
2497 			*m_head = NULL;
2498 			return (ENOBUFS);
2499 		}
2500 		ip = (struct ip *)(mtod(m, char *) + offset);
2501 		offset += (ip->ip_hl << 2);
2502 		tcp_offset = offset;
2503 		/*
2504 		 * It seems that Yukon II has Tx checksum offload bug for
2505 		 * small TCP packets that's less than 60 bytes in size
2506 		 * (e.g. TCP window probe packet, pure ACK packet).
2507 		 * Common work around like padding with zeros to make the
2508 		 * frame minimum ethernet frame size didn't work at all.
2509 		 * Instead of disabling checksum offload completely we
2510 		 * resort to S/W checksum routine when we encounter short
2511 		 * TCP frames.
2512 		 * Short UDP packets appear to be handled correctly by
2513 		 * Yukon II.
2514 		 */
2515 		if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2516 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2517 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2518 			if (m == NULL) {
2519 				*m_head = NULL;
2520 				return (ENOBUFS);
2521 			}
2522 			*(uint16_t *)(m->m_data + offset +
2523 			    m->m_pkthdr.csum_data) = in_cksum_skip(m,
2524 			    m->m_pkthdr.len, offset);
2525 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2526 		}
2527 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2528 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2529 			if (m == NULL) {
2530 				*m_head = NULL;
2531 				return (ENOBUFS);
2532 			}
2533 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2534 			offset += (tcp->th_off << 2);
2535 		}
2536 		*m_head = m;
2537 	}
2538 
2539 	prod = sc_if->msk_cdata.msk_tx_prod;
2540 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2541 	txd_last = txd;
2542 	map = txd->tx_dmamap;
2543 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2544 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2545 	if (error == EFBIG) {
2546 		m = m_collapse(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
2547 		if (m == NULL) {
2548 			m_freem(*m_head);
2549 			*m_head = NULL;
2550 			return (ENOBUFS);
2551 		}
2552 		*m_head = m;
2553 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2554 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2555 		if (error != 0) {
2556 			m_freem(*m_head);
2557 			*m_head = NULL;
2558 			return (error);
2559 		}
2560 	} else if (error != 0)
2561 		return (error);
2562 	if (nseg == 0) {
2563 		m_freem(*m_head);
2564 		*m_head = NULL;
2565 		return (EIO);
2566 	}
2567 
2568 	/* Check number of available descriptors. */
2569 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2570 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2571 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2572 		return (ENOBUFS);
2573 	}
2574 
2575 	control = 0;
2576 	tso = 0;
2577 	tx_le = NULL;
2578 
2579 	/* Check TSO support. */
2580 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2581 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2582 			tso_mtu = m->m_pkthdr.tso_segsz;
2583 		else
2584 			tso_mtu = offset + m->m_pkthdr.tso_segsz;
2585 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2586 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2587 			tx_le->msk_addr = htole32(tso_mtu);
2588 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2589 				tx_le->msk_control = htole32(OP_MSS | HW_OWNER);
2590 			else
2591 				tx_le->msk_control =
2592 				    htole32(OP_LRGLEN | HW_OWNER);
2593 			sc_if->msk_cdata.msk_tx_cnt++;
2594 			MSK_INC(prod, MSK_TX_RING_CNT);
2595 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2596 		}
2597 		tso++;
2598 	}
2599 	/* Check if we have a VLAN tag to insert. */
2600 	if ((m->m_flags & M_VLANTAG) != 0) {
2601 		if (tso == 0) {
2602 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2603 			tx_le->msk_addr = htole32(0);
2604 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2605 			    htons(m->m_pkthdr.ether_vtag));
2606 			sc_if->msk_cdata.msk_tx_cnt++;
2607 			MSK_INC(prod, MSK_TX_RING_CNT);
2608 		} else {
2609 			tx_le->msk_control |= htole32(OP_VLAN |
2610 			    htons(m->m_pkthdr.ether_vtag));
2611 		}
2612 		control |= INS_VLAN;
2613 	}
2614 	/* Check if we have to handle checksum offload. */
2615 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2616 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2617 			control |= CALSUM;
2618 		else {
2619 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2620 			tx_le->msk_addr = htole32(((tcp_offset +
2621 			    m->m_pkthdr.csum_data) & 0xffff) |
2622 			    ((uint32_t)tcp_offset << 16));
2623 			tx_le->msk_control = htole32(1 << 16 |
2624 			    (OP_TCPLISW | HW_OWNER));
2625 			control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2626 			if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2627 				control |= UDPTCP;
2628 			sc_if->msk_cdata.msk_tx_cnt++;
2629 			MSK_INC(prod, MSK_TX_RING_CNT);
2630 		}
2631 	}
2632 
2633 	si = prod;
2634 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2635 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2636 	if (tso == 0)
2637 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2638 		    OP_PACKET);
2639 	else
2640 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2641 		    OP_LARGESEND);
2642 	sc_if->msk_cdata.msk_tx_cnt++;
2643 	MSK_INC(prod, MSK_TX_RING_CNT);
2644 
2645 	for (i = 1; i < nseg; i++) {
2646 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2647 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2648 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2649 		    OP_BUFFER | HW_OWNER);
2650 		sc_if->msk_cdata.msk_tx_cnt++;
2651 		MSK_INC(prod, MSK_TX_RING_CNT);
2652 	}
2653 	/* Update producer index. */
2654 	sc_if->msk_cdata.msk_tx_prod = prod;
2655 
2656 	/* Set EOP on the last desciptor. */
2657 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2658 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2659 	tx_le->msk_control |= htole32(EOP);
2660 
2661 	/* Turn the first descriptor ownership to hardware. */
2662 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2663 	tx_le->msk_control |= htole32(HW_OWNER);
2664 
2665 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2666 	map = txd_last->tx_dmamap;
2667 	txd_last->tx_dmamap = txd->tx_dmamap;
2668 	txd->tx_dmamap = map;
2669 	txd->tx_m = m;
2670 
2671 	/* Sync descriptors. */
2672 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2673 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2674 	    sc_if->msk_cdata.msk_tx_ring_map,
2675 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2676 
2677 	return (0);
2678 }
2679 
2680 static void
2681 msk_tx_task(void *arg, int pending)
2682 {
2683 	struct ifnet *ifp;
2684 
2685 	ifp = arg;
2686 	msk_start(ifp);
2687 }
2688 
2689 static void
2690 msk_start(struct ifnet *ifp)
2691 {
2692         struct msk_if_softc *sc_if;
2693         struct mbuf *m_head;
2694 	int enq;
2695 
2696 	sc_if = ifp->if_softc;
2697 
2698 	MSK_IF_LOCK(sc_if);
2699 
2700 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2701 	    IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2702 		MSK_IF_UNLOCK(sc_if);
2703 		return;
2704 	}
2705 
2706 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2707 	    sc_if->msk_cdata.msk_tx_cnt <
2708 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2709 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2710 		if (m_head == NULL)
2711 			break;
2712 		/*
2713 		 * Pack the data into the transmit ring. If we
2714 		 * don't have room, set the OACTIVE flag and wait
2715 		 * for the NIC to drain the ring.
2716 		 */
2717 		if (msk_encap(sc_if, &m_head) != 0) {
2718 			if (m_head == NULL)
2719 				break;
2720 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2721 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2722 			break;
2723 		}
2724 
2725 		enq++;
2726 		/*
2727 		 * If there's a BPF listener, bounce a copy of this frame
2728 		 * to him.
2729 		 */
2730 		ETHER_BPF_MTAP(ifp, m_head);
2731 	}
2732 
2733 	if (enq > 0) {
2734 		/* Transmit */
2735 		CSR_WRITE_2(sc_if->msk_softc,
2736 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2737 		    sc_if->msk_cdata.msk_tx_prod);
2738 
2739 		/* Set a timeout in case the chip goes out to lunch. */
2740 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2741 	}
2742 
2743 	MSK_IF_UNLOCK(sc_if);
2744 }
2745 
2746 static void
2747 msk_watchdog(struct msk_if_softc *sc_if)
2748 {
2749 	struct ifnet *ifp;
2750 	uint32_t ridx;
2751 	int idx;
2752 
2753 	MSK_IF_LOCK_ASSERT(sc_if);
2754 
2755 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2756 		return;
2757 	ifp = sc_if->msk_ifp;
2758 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2759 		if (bootverbose)
2760 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2761 			   "(missed link)\n");
2762 		ifp->if_oerrors++;
2763 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2764 		msk_init_locked(sc_if);
2765 		return;
2766 	}
2767 
2768 	/*
2769 	 * Reclaim first as there is a possibility of losing Tx completion
2770 	 * interrupts.
2771 	 */
2772 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2773 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2774 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2775 		msk_txeof(sc_if, idx);
2776 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2777 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2778 			    "-- recovering\n");
2779 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2780 				taskqueue_enqueue(taskqueue_fast,
2781 				    &sc_if->msk_tx_task);
2782 			return;
2783 		}
2784 	}
2785 
2786 	if_printf(ifp, "watchdog timeout\n");
2787 	ifp->if_oerrors++;
2788 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2789 	msk_init_locked(sc_if);
2790 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2791 		taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task);
2792 }
2793 
2794 static int
2795 mskc_shutdown(device_t dev)
2796 {
2797 	struct msk_softc *sc;
2798 	int i;
2799 
2800 	sc = device_get_softc(dev);
2801 	MSK_LOCK(sc);
2802 	for (i = 0; i < sc->msk_num_port; i++) {
2803 		if (sc->msk_if[i] != NULL)
2804 			msk_stop(sc->msk_if[i]);
2805 	}
2806 
2807 	/* Disable all interrupts. */
2808 	CSR_WRITE_4(sc, B0_IMSK, 0);
2809 	CSR_READ_4(sc, B0_IMSK);
2810 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2811 	CSR_READ_4(sc, B0_HWE_IMSK);
2812 
2813 	/* Put hardware reset. */
2814 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2815 
2816 	MSK_UNLOCK(sc);
2817 	return (0);
2818 }
2819 
2820 static int
2821 mskc_suspend(device_t dev)
2822 {
2823 	struct msk_softc *sc;
2824 	int i;
2825 
2826 	sc = device_get_softc(dev);
2827 
2828 	MSK_LOCK(sc);
2829 
2830 	for (i = 0; i < sc->msk_num_port; i++) {
2831 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2832 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
2833 		    IFF_DRV_RUNNING) != 0))
2834 			msk_stop(sc->msk_if[i]);
2835 	}
2836 
2837 	/* Disable all interrupts. */
2838 	CSR_WRITE_4(sc, B0_IMSK, 0);
2839 	CSR_READ_4(sc, B0_IMSK);
2840 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2841 	CSR_READ_4(sc, B0_HWE_IMSK);
2842 
2843 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
2844 
2845 	/* Put hardware reset. */
2846 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2847 	sc->msk_pflags |= MSK_FLAG_SUSPEND;
2848 
2849 	MSK_UNLOCK(sc);
2850 
2851 	return (0);
2852 }
2853 
2854 static int
2855 mskc_resume(device_t dev)
2856 {
2857 	struct msk_softc *sc;
2858 	int i;
2859 
2860 	sc = device_get_softc(dev);
2861 
2862 	MSK_LOCK(sc);
2863 
2864 	mskc_reset(sc);
2865 	for (i = 0; i < sc->msk_num_port; i++) {
2866 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2867 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) {
2868 			sc->msk_if[i]->msk_ifp->if_drv_flags &=
2869 			    ~IFF_DRV_RUNNING;
2870 			msk_init_locked(sc->msk_if[i]);
2871 		}
2872 	}
2873 	sc->msk_pflags &= ~MSK_FLAG_SUSPEND;
2874 
2875 	MSK_UNLOCK(sc);
2876 
2877 	return (0);
2878 }
2879 
2880 #ifndef __NO_STRICT_ALIGNMENT
2881 static __inline void
2882 msk_fixup_rx(struct mbuf *m)
2883 {
2884         int i;
2885         uint16_t *src, *dst;
2886 
2887 	src = mtod(m, uint16_t *);
2888 	dst = src - 3;
2889 
2890 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2891 		*dst++ = *src++;
2892 
2893 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
2894 }
2895 #endif
2896 
2897 static void
2898 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2899 {
2900 	struct mbuf *m;
2901 	struct ifnet *ifp;
2902 	struct msk_rxdesc *rxd;
2903 	int cons, rxlen;
2904 
2905 	ifp = sc_if->msk_ifp;
2906 
2907 	MSK_IF_LOCK_ASSERT(sc_if);
2908 
2909 	cons = sc_if->msk_cdata.msk_rx_cons;
2910 	do {
2911 		rxlen = status >> 16;
2912 		if ((status & GMR_FS_VLAN) != 0 &&
2913 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2914 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2915 		if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) {
2916 			/*
2917 			 * For controllers that returns bogus status code
2918 			 * just do minimal check and let upper stack
2919 			 * handle this frame.
2920 			 */
2921 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
2922 				ifp->if_ierrors++;
2923 				msk_discard_rxbuf(sc_if, cons);
2924 				break;
2925 			}
2926 		} else if (len > sc_if->msk_framesize ||
2927 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2928 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2929 			/* Don't count flow-control packet as errors. */
2930 			if ((status & GMR_FS_GOOD_FC) == 0)
2931 				ifp->if_ierrors++;
2932 			msk_discard_rxbuf(sc_if, cons);
2933 			break;
2934 		}
2935 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2936 		m = rxd->rx_m;
2937 		if (msk_newbuf(sc_if, cons) != 0) {
2938 			ifp->if_iqdrops++;
2939 			/* Reuse old buffer. */
2940 			msk_discard_rxbuf(sc_if, cons);
2941 			break;
2942 		}
2943 		m->m_pkthdr.rcvif = ifp;
2944 		m->m_pkthdr.len = m->m_len = len;
2945 #ifndef __NO_STRICT_ALIGNMENT
2946 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2947 			msk_fixup_rx(m);
2948 #endif
2949 		ifp->if_ipackets++;
2950 		/* Check for VLAN tagged packets. */
2951 		if ((status & GMR_FS_VLAN) != 0 &&
2952 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2953 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2954 			m->m_flags |= M_VLANTAG;
2955 		}
2956 		MSK_IF_UNLOCK(sc_if);
2957 		(*ifp->if_input)(ifp, m);
2958 		MSK_IF_LOCK(sc_if);
2959 	} while (0);
2960 
2961 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
2962 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
2963 }
2964 
2965 static void
2966 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2967 {
2968 	struct mbuf *m;
2969 	struct ifnet *ifp;
2970 	struct msk_rxdesc *jrxd;
2971 	int cons, rxlen;
2972 
2973 	ifp = sc_if->msk_ifp;
2974 
2975 	MSK_IF_LOCK_ASSERT(sc_if);
2976 
2977 	cons = sc_if->msk_cdata.msk_rx_cons;
2978 	do {
2979 		rxlen = status >> 16;
2980 		if ((status & GMR_FS_VLAN) != 0 &&
2981 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2982 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2983 		if (len > sc_if->msk_framesize ||
2984 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2985 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2986 			/* Don't count flow-control packet as errors. */
2987 			if ((status & GMR_FS_GOOD_FC) == 0)
2988 				ifp->if_ierrors++;
2989 			msk_discard_jumbo_rxbuf(sc_if, cons);
2990 			break;
2991 		}
2992 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
2993 		m = jrxd->rx_m;
2994 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
2995 			ifp->if_iqdrops++;
2996 			/* Reuse old buffer. */
2997 			msk_discard_jumbo_rxbuf(sc_if, cons);
2998 			break;
2999 		}
3000 		m->m_pkthdr.rcvif = ifp;
3001 		m->m_pkthdr.len = m->m_len = len;
3002 #ifndef __NO_STRICT_ALIGNMENT
3003 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3004 			msk_fixup_rx(m);
3005 #endif
3006 		ifp->if_ipackets++;
3007 		/* Check for VLAN tagged packets. */
3008 		if ((status & GMR_FS_VLAN) != 0 &&
3009 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3010 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3011 			m->m_flags |= M_VLANTAG;
3012 		}
3013 		MSK_IF_UNLOCK(sc_if);
3014 		(*ifp->if_input)(ifp, m);
3015 		MSK_IF_LOCK(sc_if);
3016 	} while (0);
3017 
3018 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3019 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3020 }
3021 
3022 static void
3023 msk_txeof(struct msk_if_softc *sc_if, int idx)
3024 {
3025 	struct msk_txdesc *txd;
3026 	struct msk_tx_desc *cur_tx;
3027 	struct ifnet *ifp;
3028 	uint32_t control;
3029 	int cons, prog;
3030 
3031 	MSK_IF_LOCK_ASSERT(sc_if);
3032 
3033 	ifp = sc_if->msk_ifp;
3034 
3035 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3036 	    sc_if->msk_cdata.msk_tx_ring_map,
3037 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3038 	/*
3039 	 * Go through our tx ring and free mbufs for those
3040 	 * frames that have been sent.
3041 	 */
3042 	cons = sc_if->msk_cdata.msk_tx_cons;
3043 	prog = 0;
3044 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3045 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3046 			break;
3047 		prog++;
3048 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3049 		control = le32toh(cur_tx->msk_control);
3050 		sc_if->msk_cdata.msk_tx_cnt--;
3051 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3052 		if ((control & EOP) == 0)
3053 			continue;
3054 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3055 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3056 		    BUS_DMASYNC_POSTWRITE);
3057 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3058 
3059 		ifp->if_opackets++;
3060 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3061 		    __func__));
3062 		m_freem(txd->tx_m);
3063 		txd->tx_m = NULL;
3064 	}
3065 
3066 	if (prog > 0) {
3067 		sc_if->msk_cdata.msk_tx_cons = cons;
3068 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3069 			sc_if->msk_watchdog_timer = 0;
3070 		/* No need to sync LEs as we didn't update LEs. */
3071 	}
3072 }
3073 
3074 static void
3075 msk_tick(void *xsc_if)
3076 {
3077 	struct msk_if_softc *sc_if;
3078 	struct mii_data *mii;
3079 
3080 	sc_if = xsc_if;
3081 
3082 	MSK_IF_LOCK_ASSERT(sc_if);
3083 
3084 	mii = device_get_softc(sc_if->msk_miibus);
3085 
3086 	mii_tick(mii);
3087 	msk_watchdog(sc_if);
3088 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3089 }
3090 
3091 static void
3092 msk_intr_phy(struct msk_if_softc *sc_if)
3093 {
3094 	uint16_t status;
3095 
3096 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3097 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3098 	/* Handle FIFO Underrun/Overflow? */
3099 	if ((status & PHY_M_IS_FIFO_ERROR))
3100 		device_printf(sc_if->msk_if_dev,
3101 		    "PHY FIFO underrun/overflow.\n");
3102 }
3103 
3104 static void
3105 msk_intr_gmac(struct msk_if_softc *sc_if)
3106 {
3107 	struct msk_softc *sc;
3108 	uint8_t status;
3109 
3110 	sc = sc_if->msk_softc;
3111 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3112 
3113 	/* GMAC Rx FIFO overrun. */
3114 	if ((status & GM_IS_RX_FF_OR) != 0) {
3115 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3116 		    GMF_CLI_RX_FO);
3117 		device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
3118 	}
3119 	/* GMAC Tx FIFO underrun. */
3120 	if ((status & GM_IS_TX_FF_UR) != 0) {
3121 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3122 		    GMF_CLI_TX_FU);
3123 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3124 		/*
3125 		 * XXX
3126 		 * In case of Tx underrun, we may need to flush/reset
3127 		 * Tx MAC but that would also require resynchronization
3128 		 * with status LEs. Reintializing status LEs would
3129 		 * affect other port in dual MAC configuration so it
3130 		 * should be avoided as possible as we can.
3131 		 * Due to lack of documentation it's all vague guess but
3132 		 * it needs more investigation.
3133 		 */
3134 	}
3135 }
3136 
3137 static void
3138 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3139 {
3140 	struct msk_softc *sc;
3141 
3142 	sc = sc_if->msk_softc;
3143 	if ((status & Y2_IS_PAR_RD1) != 0) {
3144 		device_printf(sc_if->msk_if_dev,
3145 		    "RAM buffer read parity error\n");
3146 		/* Clear IRQ. */
3147 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3148 		    RI_CLR_RD_PERR);
3149 	}
3150 	if ((status & Y2_IS_PAR_WR1) != 0) {
3151 		device_printf(sc_if->msk_if_dev,
3152 		    "RAM buffer write parity error\n");
3153 		/* Clear IRQ. */
3154 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3155 		    RI_CLR_WR_PERR);
3156 	}
3157 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3158 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3159 		/* Clear IRQ. */
3160 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3161 		    GMF_CLI_TX_PE);
3162 	}
3163 	if ((status & Y2_IS_PAR_RX1) != 0) {
3164 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3165 		/* Clear IRQ. */
3166 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3167 	}
3168 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3169 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3170 		/* Clear IRQ. */
3171 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3172 	}
3173 }
3174 
3175 static void
3176 msk_intr_hwerr(struct msk_softc *sc)
3177 {
3178 	uint32_t status;
3179 	uint32_t tlphead[4];
3180 
3181 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3182 	/* Time Stamp timer overflow. */
3183 	if ((status & Y2_IS_TIST_OV) != 0)
3184 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3185 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3186 		/*
3187 		 * PCI Express Error occured which is not described in PEX
3188 		 * spec.
3189 		 * This error is also mapped either to Master Abort(
3190 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3191 		 * can only be cleared there.
3192                  */
3193 		device_printf(sc->msk_dev,
3194 		    "PCI Express protocol violation error\n");
3195 	}
3196 
3197 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3198 		uint16_t v16;
3199 
3200 		if ((status & Y2_IS_MST_ERR) != 0)
3201 			device_printf(sc->msk_dev,
3202 			    "unexpected IRQ Status error\n");
3203 		else
3204 			device_printf(sc->msk_dev,
3205 			    "unexpected IRQ Master error\n");
3206 		/* Reset all bits in the PCI status register. */
3207 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3208 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3209 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3210 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3211 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3212 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3213 	}
3214 
3215 	/* Check for PCI Express Uncorrectable Error. */
3216 	if ((status & Y2_IS_PCI_EXP) != 0) {
3217 		uint32_t v32;
3218 
3219 		/*
3220 		 * On PCI Express bus bridges are called root complexes (RC).
3221 		 * PCI Express errors are recognized by the root complex too,
3222 		 * which requests the system to handle the problem. After
3223 		 * error occurence it may be that no access to the adapter
3224 		 * may be performed any longer.
3225 		 */
3226 
3227 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3228 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3229 			/* Ignore unsupported request error. */
3230 			device_printf(sc->msk_dev,
3231 			    "Uncorrectable PCI Express error\n");
3232 		}
3233 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3234 			int i;
3235 
3236 			/* Get TLP header form Log Registers. */
3237 			for (i = 0; i < 4; i++)
3238 				tlphead[i] = CSR_PCI_READ_4(sc,
3239 				    PEX_HEADER_LOG + i * 4);
3240 			/* Check for vendor defined broadcast message. */
3241 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3242 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3243 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3244 				    sc->msk_intrhwemask);
3245 				CSR_READ_4(sc, B0_HWE_IMSK);
3246 			}
3247 		}
3248 		/* Clear the interrupt. */
3249 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3250 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3251 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3252 	}
3253 
3254 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3255 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3256 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3257 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3258 }
3259 
3260 static __inline void
3261 msk_rxput(struct msk_if_softc *sc_if)
3262 {
3263 	struct msk_softc *sc;
3264 
3265 	sc = sc_if->msk_softc;
3266 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3267 		bus_dmamap_sync(
3268 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3269 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3270 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3271 	else
3272 		bus_dmamap_sync(
3273 		    sc_if->msk_cdata.msk_rx_ring_tag,
3274 		    sc_if->msk_cdata.msk_rx_ring_map,
3275 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3276 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3277 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3278 }
3279 
3280 static int
3281 msk_handle_events(struct msk_softc *sc)
3282 {
3283 	struct msk_if_softc *sc_if;
3284 	int rxput[2];
3285 	struct msk_stat_desc *sd;
3286 	uint32_t control, status;
3287 	int cons, idx, len, port, rxprog;
3288 
3289 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3290 	if (idx == sc->msk_stat_cons)
3291 		return (0);
3292 
3293 	/* Sync status LEs. */
3294 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3295 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3296 	/* XXX Sync Rx LEs here. */
3297 
3298 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3299 
3300 	rxprog = 0;
3301 	for (cons = sc->msk_stat_cons; cons != idx;) {
3302 		sd = &sc->msk_stat_ring[cons];
3303 		control = le32toh(sd->msk_control);
3304 		if ((control & HW_OWNER) == 0)
3305 			break;
3306 		/*
3307 		 * Marvell's FreeBSD driver updates status LE after clearing
3308 		 * HW_OWNER. However we don't have a way to sync single LE
3309 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3310 		 * an entire DMA map. So don't sync LE until we have a better
3311 		 * way to sync LEs.
3312 		 */
3313 		control &= ~HW_OWNER;
3314 		sd->msk_control = htole32(control);
3315 		status = le32toh(sd->msk_status);
3316 		len = control & STLE_LEN_MASK;
3317 		port = (control >> 16) & 0x01;
3318 		sc_if = sc->msk_if[port];
3319 		if (sc_if == NULL) {
3320 			device_printf(sc->msk_dev, "invalid port opcode "
3321 			    "0x%08x\n", control & STLE_OP_MASK);
3322 			continue;
3323 		}
3324 
3325 		switch (control & STLE_OP_MASK) {
3326 		case OP_RXVLAN:
3327 			sc_if->msk_vtag = ntohs(len);
3328 			break;
3329 		case OP_RXCHKSVLAN:
3330 			sc_if->msk_vtag = ntohs(len);
3331 			break;
3332 		case OP_RXSTAT:
3333 			if (sc_if->msk_framesize >
3334 			    (MCLBYTES - MSK_RX_BUF_ALIGN))
3335 				msk_jumbo_rxeof(sc_if, status, len);
3336 			else
3337 				msk_rxeof(sc_if, status, len);
3338 			rxprog++;
3339 			/*
3340 			 * Because there is no way to sync single Rx LE
3341 			 * put the DMA sync operation off until the end of
3342 			 * event processing.
3343 			 */
3344 			rxput[port]++;
3345 			/* Update prefetch unit if we've passed water mark. */
3346 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3347 				msk_rxput(sc_if);
3348 				rxput[port] = 0;
3349 			}
3350 			break;
3351 		case OP_TXINDEXLE:
3352 			if (sc->msk_if[MSK_PORT_A] != NULL)
3353 				msk_txeof(sc->msk_if[MSK_PORT_A],
3354 				    status & STLE_TXA1_MSKL);
3355 			if (sc->msk_if[MSK_PORT_B] != NULL)
3356 				msk_txeof(sc->msk_if[MSK_PORT_B],
3357 				    ((status & STLE_TXA2_MSKL) >>
3358 				    STLE_TXA2_SHIFTL) |
3359 				    ((len & STLE_TXA2_MSKH) <<
3360 				    STLE_TXA2_SHIFTH));
3361 			break;
3362 		default:
3363 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3364 			    control & STLE_OP_MASK);
3365 			break;
3366 		}
3367 		MSK_INC(cons, MSK_STAT_RING_CNT);
3368 		if (rxprog > sc->msk_process_limit)
3369 			break;
3370 	}
3371 
3372 	sc->msk_stat_cons = cons;
3373 	/* XXX We should sync status LEs here. See above notes. */
3374 
3375 	if (rxput[MSK_PORT_A] > 0)
3376 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3377 	if (rxput[MSK_PORT_B] > 0)
3378 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3379 
3380 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3381 }
3382 
3383 /* Legacy interrupt handler for shared interrupt. */
3384 static void
3385 msk_legacy_intr(void *xsc)
3386 {
3387 	struct msk_softc *sc;
3388 	struct msk_if_softc *sc_if0, *sc_if1;
3389 	struct ifnet *ifp0, *ifp1;
3390 	uint32_t status;
3391 
3392 	sc = xsc;
3393 	MSK_LOCK(sc);
3394 
3395 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3396 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3397 	if (status == 0 || status == 0xffffffff ||
3398 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3399 	    (status & sc->msk_intrmask) == 0) {
3400 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3401 		return;
3402 	}
3403 
3404 	sc_if0 = sc->msk_if[MSK_PORT_A];
3405 	sc_if1 = sc->msk_if[MSK_PORT_B];
3406 	ifp0 = ifp1 = NULL;
3407 	if (sc_if0 != NULL)
3408 		ifp0 = sc_if0->msk_ifp;
3409 	if (sc_if1 != NULL)
3410 		ifp1 = sc_if1->msk_ifp;
3411 
3412 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3413 		msk_intr_phy(sc_if0);
3414 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3415 		msk_intr_phy(sc_if1);
3416 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3417 		msk_intr_gmac(sc_if0);
3418 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3419 		msk_intr_gmac(sc_if1);
3420 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3421 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3422 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3423 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3424 		CSR_READ_4(sc, B0_IMSK);
3425 	}
3426         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3427 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3428 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3429 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3430 		CSR_READ_4(sc, B0_IMSK);
3431 	}
3432 	if ((status & Y2_IS_HW_ERR) != 0)
3433 		msk_intr_hwerr(sc);
3434 
3435 	while (msk_handle_events(sc) != 0)
3436 		;
3437 	if ((status & Y2_IS_STAT_BMU) != 0)
3438 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3439 
3440 	/* Reenable interrupts. */
3441 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3442 
3443 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3444 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3445 		taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3446 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3447 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3448 		taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3449 
3450 	MSK_UNLOCK(sc);
3451 }
3452 
3453 static int
3454 msk_intr(void *xsc)
3455 {
3456 	struct msk_softc *sc;
3457 	uint32_t status;
3458 
3459 	sc = xsc;
3460 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3461 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3462 	if (status == 0 || status == 0xffffffff) {
3463 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3464 		return (FILTER_STRAY);
3465 	}
3466 
3467 	taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3468 	return (FILTER_HANDLED);
3469 }
3470 
3471 static void
3472 msk_int_task(void *arg, int pending)
3473 {
3474 	struct msk_softc *sc;
3475 	struct msk_if_softc *sc_if0, *sc_if1;
3476 	struct ifnet *ifp0, *ifp1;
3477 	uint32_t status;
3478 	int domore;
3479 
3480 	sc = arg;
3481 	MSK_LOCK(sc);
3482 
3483 	/* Get interrupt source. */
3484 	status = CSR_READ_4(sc, B0_ISRC);
3485 	if (status == 0 || status == 0xffffffff ||
3486 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3487 	    (status & sc->msk_intrmask) == 0)
3488 		goto done;
3489 
3490 	sc_if0 = sc->msk_if[MSK_PORT_A];
3491 	sc_if1 = sc->msk_if[MSK_PORT_B];
3492 	ifp0 = ifp1 = NULL;
3493 	if (sc_if0 != NULL)
3494 		ifp0 = sc_if0->msk_ifp;
3495 	if (sc_if1 != NULL)
3496 		ifp1 = sc_if1->msk_ifp;
3497 
3498 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3499 		msk_intr_phy(sc_if0);
3500 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3501 		msk_intr_phy(sc_if1);
3502 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3503 		msk_intr_gmac(sc_if0);
3504 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3505 		msk_intr_gmac(sc_if1);
3506 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3507 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3508 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3509 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3510 		CSR_READ_4(sc, B0_IMSK);
3511 	}
3512         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3513 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3514 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3515 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3516 		CSR_READ_4(sc, B0_IMSK);
3517 	}
3518 	if ((status & Y2_IS_HW_ERR) != 0)
3519 		msk_intr_hwerr(sc);
3520 
3521 	domore = msk_handle_events(sc);
3522 	if ((status & Y2_IS_STAT_BMU) != 0)
3523 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3524 
3525 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3526 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3527 		taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3528 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3529 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3530 		taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3531 
3532 	if (domore > 0) {
3533 		taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3534 		MSK_UNLOCK(sc);
3535 		return;
3536 	}
3537 done:
3538 	MSK_UNLOCK(sc);
3539 
3540 	/* Reenable interrupts. */
3541 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3542 }
3543 
3544 static void
3545 msk_init(void *xsc)
3546 {
3547 	struct msk_if_softc *sc_if = xsc;
3548 
3549 	MSK_IF_LOCK(sc_if);
3550 	msk_init_locked(sc_if);
3551 	MSK_IF_UNLOCK(sc_if);
3552 }
3553 
3554 static void
3555 msk_init_locked(struct msk_if_softc *sc_if)
3556 {
3557 	struct msk_softc *sc;
3558 	struct ifnet *ifp;
3559 	struct mii_data	 *mii;
3560 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
3561 	uint16_t gmac;
3562 	uint32_t reg;
3563 	int error, i;
3564 
3565 	MSK_IF_LOCK_ASSERT(sc_if);
3566 
3567 	ifp = sc_if->msk_ifp;
3568 	sc = sc_if->msk_softc;
3569 	mii = device_get_softc(sc_if->msk_miibus);
3570 
3571 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3572 		return;
3573 
3574 	error = 0;
3575 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3576 	msk_stop(sc_if);
3577 
3578 	if (ifp->if_mtu < ETHERMTU)
3579 		sc_if->msk_framesize = ETHERMTU;
3580 	else
3581 		sc_if->msk_framesize = ifp->if_mtu;
3582 	sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3583 	if (ifp->if_mtu > ETHERMTU &&
3584 	    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
3585 		ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3586 		ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3587 	}
3588 
3589  	/* GMAC Control reset. */
3590  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3591  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3592  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3593 
3594 	/*
3595 	 * Initialize GMAC first such that speed/duplex/flow-control
3596 	 * parameters are renegotiated when interface is brought up.
3597 	 */
3598 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3599 
3600 	/* Dummy read the Interrupt Source Register. */
3601 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3602 
3603 	/* Clear MIB stats. */
3604 	msk_stats_clear(sc_if);
3605 
3606 	/* Disable FCS. */
3607 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3608 
3609 	/* Setup Transmit Control Register. */
3610 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3611 
3612 	/* Setup Transmit Flow Control Register. */
3613 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3614 
3615 	/* Setup Transmit Parameter Register. */
3616 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3617 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3618 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3619 
3620 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3621 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3622 
3623 	if (ifp->if_mtu > ETHERMTU)
3624 		gmac |= GM_SMOD_JUMBO_ENA;
3625 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3626 
3627 	/* Set station address. */
3628         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3629         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3630 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3631 		    eaddr[i]);
3632         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3633 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3634 		    eaddr[i]);
3635 
3636 	/* Disable interrupts for counter overflows. */
3637 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3638 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3639 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3640 
3641 	/* Configure Rx MAC FIFO. */
3642 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3643 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3644 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3645 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P)
3646 		reg |= GMF_RX_OVER_ON;
3647 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3648 
3649 	/* Set receive filter. */
3650 	msk_rxfilter(sc_if);
3651 
3652 	/* Flush Rx MAC FIFO on any flow control or error. */
3653 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3654 	    GMR_FS_ANY_ERR);
3655 
3656 	/*
3657 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3658 	 * due to hardware hang on receipt of pause frames.
3659 	 */
3660 	reg = RX_GMF_FL_THR_DEF + 1;
3661 	/* Another magic for Yukon FE+ - From Linux. */
3662 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3663 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3664 		reg = 0x178;
3665 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3666 
3667 	/* Configure Tx MAC FIFO. */
3668 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3669 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3670 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3671 
3672 	/* Configure hardware VLAN tag insertion/stripping. */
3673 	msk_setvlan(sc_if, ifp);
3674 
3675 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3676 		/* Set Rx Pause threshould. */
3677 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3678 		    MSK_ECU_LLPP);
3679 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3680 		    MSK_ECU_ULPP);
3681 		if (ifp->if_mtu > ETHERMTU) {
3682 			/*
3683 			 * Set Tx GMAC FIFO Almost Empty Threshold.
3684 			 */
3685 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3686 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3687 			/* Disable Store & Forward mode for Tx. */
3688 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3689 			    TX_JUMBO_ENA | TX_STFW_DIS);
3690 		} else {
3691 			/* Enable Store & Forward mode for Tx. */
3692 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3693 			    TX_JUMBO_DIS | TX_STFW_ENA);
3694 		}
3695 	}
3696 
3697  	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3698  	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3699  		/* Disable dynamic watermark - from Linux. */
3700  		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3701  		reg &= ~0x03;
3702  		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3703  	}
3704 
3705 	/*
3706 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3707 	 * arbiter as we don't use Sync Tx queue.
3708 	 */
3709 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3710 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3711 	/* Enable the RAM Interface Arbiter. */
3712 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3713 
3714 	/* Setup RAM buffer. */
3715 	msk_set_rambuffer(sc_if);
3716 
3717 	/* Disable Tx sync Queue. */
3718 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3719 
3720 	/* Setup Tx Queue Bus Memory Interface. */
3721 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3722 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3723 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3724 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3725 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3726 	    sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3727 		/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3728 		CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV);
3729 	}
3730 
3731 	/* Setup Rx Queue Bus Memory Interface. */
3732 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3733 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3734 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3735 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3736         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3737 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3738 		/* MAC Rx RAM Read is controlled by hardware. */
3739                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3740 	}
3741 
3742 	msk_set_prefetch(sc, sc_if->msk_txq,
3743 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3744 	msk_init_tx_ring(sc_if);
3745 
3746 	/* Disable Rx checksum offload and RSS hash. */
3747 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3748 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3749 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
3750 		msk_set_prefetch(sc, sc_if->msk_rxq,
3751 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3752 		    MSK_JUMBO_RX_RING_CNT - 1);
3753 		error = msk_init_jumbo_rx_ring(sc_if);
3754 	 } else {
3755 		msk_set_prefetch(sc, sc_if->msk_rxq,
3756 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3757 		    MSK_RX_RING_CNT - 1);
3758 		error = msk_init_rx_ring(sc_if);
3759 	}
3760 	if (error != 0) {
3761 		device_printf(sc_if->msk_if_dev,
3762 		    "initialization failed: no memory for Rx buffers\n");
3763 		msk_stop(sc_if);
3764 		return;
3765 	}
3766 
3767 	/* Configure interrupt handling. */
3768 	if (sc_if->msk_port == MSK_PORT_A) {
3769 		sc->msk_intrmask |= Y2_IS_PORT_A;
3770 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3771 	} else {
3772 		sc->msk_intrmask |= Y2_IS_PORT_B;
3773 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3774 	}
3775 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3776 	CSR_READ_4(sc, B0_HWE_IMSK);
3777 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3778 	CSR_READ_4(sc, B0_IMSK);
3779 
3780 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
3781 	mii_mediachg(mii);
3782 
3783 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3784 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3785 
3786 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3787 }
3788 
3789 static void
3790 msk_set_rambuffer(struct msk_if_softc *sc_if)
3791 {
3792 	struct msk_softc *sc;
3793 	int ltpp, utpp;
3794 
3795 	sc = sc_if->msk_softc;
3796 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3797 		return;
3798 
3799 	/* Setup Rx Queue. */
3800 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3801 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3802 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3803 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3804 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3805 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3806 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3807 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3808 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3809 
3810 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3811 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3812 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3813 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3814 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3815 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3816 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3817 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3818 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3819 
3820 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3821 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3822 
3823 	/* Setup Tx Queue. */
3824 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3825 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3826 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3827 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3828 	    sc->msk_txqend[sc_if->msk_port] / 8);
3829 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3830 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3831 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3832 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3833 	/* Enable Store & Forward for Tx side. */
3834 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3835 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3836 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3837 }
3838 
3839 static void
3840 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3841     uint32_t count)
3842 {
3843 
3844 	/* Reset the prefetch unit. */
3845 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3846 	    PREF_UNIT_RST_SET);
3847 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3848 	    PREF_UNIT_RST_CLR);
3849 	/* Set LE base address. */
3850 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3851 	    MSK_ADDR_LO(addr));
3852 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3853 	    MSK_ADDR_HI(addr));
3854 	/* Set the list last index. */
3855 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3856 	    count);
3857 	/* Turn on prefetch unit. */
3858 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3859 	    PREF_UNIT_OP_ON);
3860 	/* Dummy read to ensure write. */
3861 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3862 }
3863 
3864 static void
3865 msk_stop(struct msk_if_softc *sc_if)
3866 {
3867 	struct msk_softc *sc;
3868 	struct msk_txdesc *txd;
3869 	struct msk_rxdesc *rxd;
3870 	struct msk_rxdesc *jrxd;
3871 	struct ifnet *ifp;
3872 	uint32_t val;
3873 	int i;
3874 
3875 	MSK_IF_LOCK_ASSERT(sc_if);
3876 	sc = sc_if->msk_softc;
3877 	ifp = sc_if->msk_ifp;
3878 
3879 	callout_stop(&sc_if->msk_tick_ch);
3880 	sc_if->msk_watchdog_timer = 0;
3881 
3882 	/* Disable interrupts. */
3883 	if (sc_if->msk_port == MSK_PORT_A) {
3884 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
3885 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3886 	} else {
3887 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
3888 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3889 	}
3890 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3891 	CSR_READ_4(sc, B0_HWE_IMSK);
3892 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3893 	CSR_READ_4(sc, B0_IMSK);
3894 
3895 	/* Disable Tx/Rx MAC. */
3896 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3897 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3898 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3899 	/* Read again to ensure writing. */
3900 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3901 	/* Update stats and clear counters. */
3902 	msk_stats_update(sc_if);
3903 
3904 	/* Stop Tx BMU. */
3905 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3906 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3907 	for (i = 0; i < MSK_TIMEOUT; i++) {
3908 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3909 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3910 			    BMU_STOP);
3911 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3912 		} else
3913 			break;
3914 		DELAY(1);
3915 	}
3916 	if (i == MSK_TIMEOUT)
3917 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3918 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3919 	    RB_RST_SET | RB_DIS_OP_MD);
3920 
3921 	/* Disable all GMAC interrupt. */
3922 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3923 	/* Disable PHY interrupt. */
3924 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3925 
3926 	/* Disable the RAM Interface Arbiter. */
3927 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3928 
3929 	/* Reset the PCI FIFO of the async Tx queue */
3930 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3931 	    BMU_RST_SET | BMU_FIFO_RST);
3932 
3933 	/* Reset the Tx prefetch units. */
3934 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3935 	    PREF_UNIT_RST_SET);
3936 
3937 	/* Reset the RAM Buffer async Tx queue. */
3938 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3939 
3940 	/* Reset Tx MAC FIFO. */
3941 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3942 	/* Set Pause Off. */
3943 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3944 
3945 	/*
3946 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3947 	 * reach the end of packet and since we can't make sure that we have
3948 	 * incoming data, we must reset the BMU while it is not during a DMA
3949 	 * transfer. Since it is possible that the Rx path is still active,
3950 	 * the Rx RAM buffer will be stopped first, so any possible incoming
3951 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
3952 	 * BMU is polled until any DMA in progress is ended and only then it
3953 	 * will be reset.
3954 	 */
3955 
3956 	/* Disable the RAM Buffer receive queue. */
3957 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3958 	for (i = 0; i < MSK_TIMEOUT; i++) {
3959 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3960 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3961 			break;
3962 		DELAY(1);
3963 	}
3964 	if (i == MSK_TIMEOUT)
3965 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3966 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3967 	    BMU_RST_SET | BMU_FIFO_RST);
3968 	/* Reset the Rx prefetch unit. */
3969 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3970 	    PREF_UNIT_RST_SET);
3971 	/* Reset the RAM Buffer receive queue. */
3972 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3973 	/* Reset Rx MAC FIFO. */
3974 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3975 
3976 	/* Free Rx and Tx mbufs still in the queues. */
3977 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
3978 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
3979 		if (rxd->rx_m != NULL) {
3980 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
3981 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3982 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
3983 			    rxd->rx_dmamap);
3984 			m_freem(rxd->rx_m);
3985 			rxd->rx_m = NULL;
3986 		}
3987 	}
3988 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
3989 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
3990 		if (jrxd->rx_m != NULL) {
3991 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
3992 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3993 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
3994 			    jrxd->rx_dmamap);
3995 			m_freem(jrxd->rx_m);
3996 			jrxd->rx_m = NULL;
3997 		}
3998 	}
3999 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4000 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4001 		if (txd->tx_m != NULL) {
4002 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4003 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4004 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4005 			    txd->tx_dmamap);
4006 			m_freem(txd->tx_m);
4007 			txd->tx_m = NULL;
4008 		}
4009 	}
4010 
4011 	/*
4012 	 * Mark the interface down.
4013 	 */
4014 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4015 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4016 }
4017 
4018 /*
4019  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
4020  * counter clears high 16 bits of the counter such that accessing
4021  * lower 16 bits should be the last operation.
4022  */
4023 #define	MSK_READ_MIB32(x, y)					\
4024 	(((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) +	\
4025 	(uint32_t)GMAC_READ_2(sc, x, y)
4026 #define	MSK_READ_MIB64(x, y)					\
4027 	(((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) +	\
4028 	(uint64_t)MSK_READ_MIB32(x, y)
4029 
4030 static void
4031 msk_stats_clear(struct msk_if_softc *sc_if)
4032 {
4033 	struct msk_softc *sc;
4034 	uint32_t reg;
4035 	uint16_t gmac;
4036 	int i;
4037 
4038 	MSK_IF_LOCK_ASSERT(sc_if);
4039 
4040 	sc = sc_if->msk_softc;
4041 	/* Set MIB Clear Counter Mode. */
4042 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4043 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4044 	/* Read all MIB Counters with Clear Mode set. */
4045 	for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i++)
4046 		reg = MSK_READ_MIB32(sc_if->msk_port, i);
4047 	/* Clear MIB Clear Counter Mode. */
4048 	gmac &= ~GM_PAR_MIB_CLR;
4049 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4050 }
4051 
4052 static void
4053 msk_stats_update(struct msk_if_softc *sc_if)
4054 {
4055 	struct msk_softc *sc;
4056 	struct ifnet *ifp;
4057 	struct msk_hw_stats *stats;
4058 	uint16_t gmac;
4059 	uint32_t reg;
4060 
4061 	MSK_IF_LOCK_ASSERT(sc_if);
4062 
4063 	ifp = sc_if->msk_ifp;
4064 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4065 		return;
4066 	sc = sc_if->msk_softc;
4067 	stats = &sc_if->msk_stats;
4068 	/* Set MIB Clear Counter Mode. */
4069 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4070 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4071 
4072 	/* Rx stats. */
4073 	stats->rx_ucast_frames +=
4074 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4075 	stats->rx_bcast_frames +=
4076 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4077 	stats->rx_pause_frames +=
4078 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4079 	stats->rx_mcast_frames +=
4080 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4081 	stats->rx_crc_errs +=
4082 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4083 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1);
4084 	stats->rx_good_octets +=
4085 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4086 	stats->rx_bad_octets +=
4087 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4088 	stats->rx_runts +=
4089 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4090 	stats->rx_runt_errs +=
4091 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4092 	stats->rx_pkts_64 +=
4093 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4094 	stats->rx_pkts_65_127 +=
4095 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4096 	stats->rx_pkts_128_255 +=
4097 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4098 	stats->rx_pkts_256_511 +=
4099 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4100 	stats->rx_pkts_512_1023 +=
4101 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4102 	stats->rx_pkts_1024_1518 +=
4103 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4104 	stats->rx_pkts_1519_max +=
4105 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4106 	stats->rx_pkts_too_long +=
4107 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4108 	stats->rx_pkts_jabbers +=
4109 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4110 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2);
4111 	stats->rx_fifo_oflows +=
4112 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4113 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3);
4114 
4115 	/* Tx stats. */
4116 	stats->tx_ucast_frames +=
4117 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4118 	stats->tx_bcast_frames +=
4119 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4120 	stats->tx_pause_frames +=
4121 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4122 	stats->tx_mcast_frames +=
4123 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4124 	stats->tx_octets +=
4125 	    MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4126 	stats->tx_pkts_64 +=
4127 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4128 	stats->tx_pkts_65_127 +=
4129 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4130 	stats->tx_pkts_128_255 +=
4131 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4132 	stats->tx_pkts_256_511 +=
4133 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4134 	stats->tx_pkts_512_1023 +=
4135 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4136 	stats->tx_pkts_1024_1518 +=
4137 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4138 	stats->tx_pkts_1519_max +=
4139 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4140 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1);
4141 	stats->tx_colls +=
4142 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4143 	stats->tx_late_colls +=
4144 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4145 	stats->tx_excess_colls +=
4146 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4147 	stats->tx_multi_colls +=
4148 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4149 	stats->tx_single_colls +=
4150 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4151 	stats->tx_underflows +=
4152 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4153 	/* Clear MIB Clear Counter Mode. */
4154 	gmac &= ~GM_PAR_MIB_CLR;
4155 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4156 }
4157 
4158 static int
4159 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4160 {
4161 	struct msk_softc *sc;
4162 	struct msk_if_softc *sc_if;
4163 	uint32_t result, *stat;
4164 	int off;
4165 
4166 	sc_if = (struct msk_if_softc *)arg1;
4167 	sc = sc_if->msk_softc;
4168 	off = arg2;
4169 	stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4170 
4171 	MSK_IF_LOCK(sc_if);
4172 	result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4173 	result += *stat;
4174 	MSK_IF_UNLOCK(sc_if);
4175 
4176 	return (sysctl_handle_int(oidp, &result, 0, req));
4177 }
4178 
4179 static int
4180 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4181 {
4182 	struct msk_softc *sc;
4183 	struct msk_if_softc *sc_if;
4184 	uint64_t result, *stat;
4185 	int off;
4186 
4187 	sc_if = (struct msk_if_softc *)arg1;
4188 	sc = sc_if->msk_softc;
4189 	off = arg2;
4190 	stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4191 
4192 	MSK_IF_LOCK(sc_if);
4193 	result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4194 	result += *stat;
4195 	MSK_IF_UNLOCK(sc_if);
4196 
4197 	return (sysctl_handle_quad(oidp, &result, 0, req));
4198 }
4199 
4200 #undef MSK_READ_MIB32
4201 #undef MSK_READ_MIB64
4202 
4203 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) 				\
4204 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4205 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32,	\
4206 	    "IU", d)
4207 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) 				\
4208 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4209 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64,	\
4210 	    "Q", d)
4211 
4212 static void
4213 msk_sysctl_node(struct msk_if_softc *sc_if)
4214 {
4215 	struct sysctl_ctx_list *ctx;
4216 	struct sysctl_oid_list *child, *schild;
4217 	struct sysctl_oid *tree;
4218 
4219 	ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4220 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4221 
4222 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
4223 	    NULL, "MSK Statistics");
4224 	schild = child = SYSCTL_CHILDREN(tree);
4225 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
4226 	    NULL, "MSK RX Statistics");
4227 	child = SYSCTL_CHILDREN(tree);
4228 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4229 	    child, rx_ucast_frames, "Good unicast frames");
4230 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4231 	    child, rx_bcast_frames, "Good broadcast frames");
4232 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4233 	    child, rx_pause_frames, "Pause frames");
4234 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4235 	    child, rx_mcast_frames, "Multicast frames");
4236 	MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4237 	    child, rx_crc_errs, "CRC errors");
4238 	MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4239 	    child, rx_good_octets, "Good octets");
4240 	MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4241 	    child, rx_bad_octets, "Bad octets");
4242 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4243 	    child, rx_pkts_64, "64 bytes frames");
4244 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4245 	    child, rx_pkts_65_127, "65 to 127 bytes frames");
4246 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4247 	    child, rx_pkts_128_255, "128 to 255 bytes frames");
4248 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4249 	    child, rx_pkts_256_511, "256 to 511 bytes frames");
4250 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4251 	    child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4252 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4253 	    child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4254 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4255 	    child, rx_pkts_1519_max, "1519 to max frames");
4256 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4257 	    child, rx_pkts_too_long, "frames too long");
4258 	MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4259 	    child, rx_pkts_jabbers, "Jabber errors");
4260 	MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4261 	    child, rx_fifo_oflows, "FIFO overflows");
4262 
4263 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
4264 	    NULL, "MSK TX Statistics");
4265 	child = SYSCTL_CHILDREN(tree);
4266 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4267 	    child, tx_ucast_frames, "Unicast frames");
4268 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4269 	    child, tx_bcast_frames, "Broadcast frames");
4270 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4271 	    child, tx_pause_frames, "Pause frames");
4272 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4273 	    child, tx_mcast_frames, "Multicast frames");
4274 	MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4275 	    child, tx_octets, "Octets");
4276 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4277 	    child, tx_pkts_64, "64 bytes frames");
4278 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4279 	    child, tx_pkts_65_127, "65 to 127 bytes frames");
4280 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4281 	    child, tx_pkts_128_255, "128 to 255 bytes frames");
4282 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4283 	    child, tx_pkts_256_511, "256 to 511 bytes frames");
4284 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4285 	    child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4286 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4287 	    child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4288 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4289 	    child, tx_pkts_1519_max, "1519 to max frames");
4290 	MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4291 	    child, tx_colls, "Collisions");
4292 	MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4293 	    child, tx_late_colls, "Late collisions");
4294 	MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4295 	    child, tx_excess_colls, "Excessive collisions");
4296 	MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4297 	    child, tx_multi_colls, "Multiple collisions");
4298 	MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4299 	    child, tx_single_colls, "Single collisions");
4300 	MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4301 	    child, tx_underflows, "FIFO underflows");
4302 }
4303 
4304 #undef MSK_SYSCTL_STAT32
4305 #undef MSK_SYSCTL_STAT64
4306 
4307 static int
4308 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4309 {
4310 	int error, value;
4311 
4312 	if (!arg1)
4313 		return (EINVAL);
4314 	value = *(int *)arg1;
4315 	error = sysctl_handle_int(oidp, &value, 0, req);
4316 	if (error || !req->newptr)
4317 		return (error);
4318 	if (value < low || value > high)
4319 		return (EINVAL);
4320 	*(int *)arg1 = value;
4321 
4322 	return (0);
4323 }
4324 
4325 static int
4326 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4327 {
4328 
4329 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4330 	    MSK_PROC_MAX));
4331 }
4332