xref: /freebsd/sys/dev/msk/if_msk.c (revision c0020399a650364d0134f79f3fa319f84064372d)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /*
96  * Device driver for the Marvell Yukon II Ethernet controller.
97  * Due to lack of documentation, this driver is based on the code from
98  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
99  */
100 
101 #include <sys/cdefs.h>
102 __FBSDID("$FreeBSD$");
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/module.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/queue.h>
115 #include <sys/sysctl.h>
116 #include <sys/taskqueue.h>
117 
118 #include <net/bpf.h>
119 #include <net/ethernet.h>
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_types.h>
125 #include <net/if_vlan_var.h>
126 
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/tcp.h>
131 #include <netinet/udp.h>
132 
133 #include <machine/bus.h>
134 #include <machine/in_cksum.h>
135 #include <machine/resource.h>
136 #include <sys/rman.h>
137 
138 #include <dev/mii/mii.h>
139 #include <dev/mii/miivar.h>
140 #include <dev/mii/brgphyreg.h>
141 
142 #include <dev/pci/pcireg.h>
143 #include <dev/pci/pcivar.h>
144 
145 #include <dev/msk/if_mskreg.h>
146 
147 MODULE_DEPEND(msk, pci, 1, 1, 1);
148 MODULE_DEPEND(msk, ether, 1, 1, 1);
149 MODULE_DEPEND(msk, miibus, 1, 1, 1);
150 
151 /* "device miibus" required.  See GENERIC if you get errors here. */
152 #include "miibus_if.h"
153 
154 /* Tunables. */
155 static int msi_disable = 0;
156 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
157 static int legacy_intr = 0;
158 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
159 static int jumbo_disable = 0;
160 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
161 
162 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
163 
164 /*
165  * Devices supported by this driver.
166  */
167 static struct msk_product {
168 	uint16_t	msk_vendorid;
169 	uint16_t	msk_deviceid;
170 	const char	*msk_name;
171 } msk_products[] = {
172 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
173 	    "SK-9Sxx Gigabit Ethernet" },
174 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
175 	    "SK-9Exx Gigabit Ethernet"},
176 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
177 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
178 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
179 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
180 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
181 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
182 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
183 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
184 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
185 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
186 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
187 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
188 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
189 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
190 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
191 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
192 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
193 	    "Marvell Yukon 88E8035 Gigabit Ethernet" },
194 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
195 	    "Marvell Yukon 88E8036 Gigabit Ethernet" },
196 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
197 	    "Marvell Yukon 88E8038 Gigabit Ethernet" },
198 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
199 	    "Marvell Yukon 88E8039 Gigabit Ethernet" },
200 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
201 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
202 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
203 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
204 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
205 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
206 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
207 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
208 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
209 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
210 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
211 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
212 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
213 	    "D-Link 550SX Gigabit Ethernet" },
214 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
215 	    "D-Link 560T Gigabit Ethernet" }
216 };
217 
218 static const char *model_name[] = {
219 	"Yukon XL",
220         "Yukon EC Ultra",
221         "Yukon Unknown",
222         "Yukon EC",
223         "Yukon FE"
224 };
225 
226 static int mskc_probe(device_t);
227 static int mskc_attach(device_t);
228 static int mskc_detach(device_t);
229 static int mskc_shutdown(device_t);
230 static int mskc_setup_rambuffer(struct msk_softc *);
231 static int mskc_suspend(device_t);
232 static int mskc_resume(device_t);
233 static void mskc_reset(struct msk_softc *);
234 
235 static int msk_probe(device_t);
236 static int msk_attach(device_t);
237 static int msk_detach(device_t);
238 
239 static void msk_tick(void *);
240 static void msk_legacy_intr(void *);
241 static int msk_intr(void *);
242 static void msk_int_task(void *, int);
243 static void msk_intr_phy(struct msk_if_softc *);
244 static void msk_intr_gmac(struct msk_if_softc *);
245 static __inline void msk_rxput(struct msk_if_softc *);
246 static int msk_handle_events(struct msk_softc *);
247 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
248 static void msk_intr_hwerr(struct msk_softc *);
249 #ifndef __NO_STRICT_ALIGNMENT
250 static __inline void msk_fixup_rx(struct mbuf *);
251 #endif
252 static void msk_rxeof(struct msk_if_softc *, uint32_t, int);
253 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
254 static void msk_txeof(struct msk_if_softc *, int);
255 static int msk_encap(struct msk_if_softc *, struct mbuf **);
256 static void msk_tx_task(void *, int);
257 static void msk_start(struct ifnet *);
258 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
259 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
260 static void msk_set_rambuffer(struct msk_if_softc *);
261 static void msk_init(void *);
262 static void msk_init_locked(struct msk_if_softc *);
263 static void msk_stop(struct msk_if_softc *);
264 static void msk_watchdog(struct msk_if_softc *);
265 static int msk_mediachange(struct ifnet *);
266 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
267 static void msk_phy_power(struct msk_softc *, int);
268 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
269 static int msk_status_dma_alloc(struct msk_softc *);
270 static void msk_status_dma_free(struct msk_softc *);
271 static int msk_txrx_dma_alloc(struct msk_if_softc *);
272 static int msk_rx_dma_jalloc(struct msk_if_softc *);
273 static void msk_txrx_dma_free(struct msk_if_softc *);
274 static void msk_rx_dma_jfree(struct msk_if_softc *);
275 static int msk_init_rx_ring(struct msk_if_softc *);
276 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
277 static void msk_init_tx_ring(struct msk_if_softc *);
278 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
279 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
280 static int msk_newbuf(struct msk_if_softc *, int);
281 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
282 
283 static int msk_phy_readreg(struct msk_if_softc *, int, int);
284 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
285 static int msk_miibus_readreg(device_t, int, int);
286 static int msk_miibus_writereg(device_t, int, int, int);
287 static void msk_miibus_statchg(device_t);
288 static void msk_link_task(void *, int);
289 
290 static void msk_rxfilter(struct msk_if_softc *);
291 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
292 
293 static void msk_stats_clear(struct msk_if_softc *);
294 static void msk_stats_update(struct msk_if_softc *);
295 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
296 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
297 static void msk_sysctl_node(struct msk_if_softc *);
298 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
299 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
300 
301 static device_method_t mskc_methods[] = {
302 	/* Device interface */
303 	DEVMETHOD(device_probe,		mskc_probe),
304 	DEVMETHOD(device_attach,	mskc_attach),
305 	DEVMETHOD(device_detach,	mskc_detach),
306 	DEVMETHOD(device_suspend,	mskc_suspend),
307 	DEVMETHOD(device_resume,	mskc_resume),
308 	DEVMETHOD(device_shutdown,	mskc_shutdown),
309 
310 	/* bus interface */
311 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
312 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
313 
314 	{ NULL, NULL }
315 };
316 
317 static driver_t mskc_driver = {
318 	"mskc",
319 	mskc_methods,
320 	sizeof(struct msk_softc)
321 };
322 
323 static devclass_t mskc_devclass;
324 
325 static device_method_t msk_methods[] = {
326 	/* Device interface */
327 	DEVMETHOD(device_probe,		msk_probe),
328 	DEVMETHOD(device_attach,	msk_attach),
329 	DEVMETHOD(device_detach,	msk_detach),
330 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
331 
332 	/* bus interface */
333 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
334 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
335 
336 	/* MII interface */
337 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
338 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
339 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
340 
341 	{ NULL, NULL }
342 };
343 
344 static driver_t msk_driver = {
345 	"msk",
346 	msk_methods,
347 	sizeof(struct msk_if_softc)
348 };
349 
350 static devclass_t msk_devclass;
351 
352 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
353 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
354 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
355 
356 static struct resource_spec msk_res_spec_io[] = {
357 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
358 	{ -1,			0,		0 }
359 };
360 
361 static struct resource_spec msk_res_spec_mem[] = {
362 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
363 	{ -1,			0,		0 }
364 };
365 
366 static struct resource_spec msk_irq_spec_legacy[] = {
367 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
368 	{ -1,			0,		0 }
369 };
370 
371 static struct resource_spec msk_irq_spec_msi[] = {
372 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
373 	{ -1,			0,		0 }
374 };
375 
376 static struct resource_spec msk_irq_spec_msi2[] = {
377 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
378 	{ SYS_RES_IRQ,		2,		RF_ACTIVE },
379 	{ -1,			0,		0 }
380 };
381 
382 static int
383 msk_miibus_readreg(device_t dev, int phy, int reg)
384 {
385 	struct msk_if_softc *sc_if;
386 
387 	if (phy != PHY_ADDR_MARV)
388 		return (0);
389 
390 	sc_if = device_get_softc(dev);
391 
392 	return (msk_phy_readreg(sc_if, phy, reg));
393 }
394 
395 static int
396 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
397 {
398 	struct msk_softc *sc;
399 	int i, val;
400 
401 	sc = sc_if->msk_softc;
402 
403         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
404 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
405 
406 	for (i = 0; i < MSK_TIMEOUT; i++) {
407 		DELAY(1);
408 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
409 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
410 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
411 			break;
412 		}
413 	}
414 
415 	if (i == MSK_TIMEOUT) {
416 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
417 		val = 0;
418 	}
419 
420 	return (val);
421 }
422 
423 static int
424 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
425 {
426 	struct msk_if_softc *sc_if;
427 
428 	if (phy != PHY_ADDR_MARV)
429 		return (0);
430 
431 	sc_if = device_get_softc(dev);
432 
433 	return (msk_phy_writereg(sc_if, phy, reg, val));
434 }
435 
436 static int
437 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
438 {
439 	struct msk_softc *sc;
440 	int i;
441 
442 	sc = sc_if->msk_softc;
443 
444 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
445         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
446 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
447 	for (i = 0; i < MSK_TIMEOUT; i++) {
448 		DELAY(1);
449 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
450 		    GM_SMI_CT_BUSY) == 0)
451 			break;
452 	}
453 	if (i == MSK_TIMEOUT)
454 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
455 
456 	return (0);
457 }
458 
459 static void
460 msk_miibus_statchg(device_t dev)
461 {
462 	struct msk_if_softc *sc_if;
463 
464 	sc_if = device_get_softc(dev);
465 	taskqueue_enqueue(taskqueue_swi, &sc_if->msk_link_task);
466 }
467 
468 static void
469 msk_link_task(void *arg, int pending)
470 {
471 	struct msk_softc *sc;
472 	struct msk_if_softc *sc_if;
473 	struct mii_data *mii;
474 	struct ifnet *ifp;
475 	uint32_t gmac;
476 
477 	sc_if = (struct msk_if_softc *)arg;
478 	sc = sc_if->msk_softc;
479 
480 	MSK_IF_LOCK(sc_if);
481 
482 	mii = device_get_softc(sc_if->msk_miibus);
483 	ifp = sc_if->msk_ifp;
484 	if (mii == NULL || ifp == NULL) {
485 		MSK_IF_UNLOCK(sc_if);
486 		return;
487 	}
488 
489 	if (mii->mii_media_status & IFM_ACTIVE) {
490 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
491 			sc_if->msk_link = 1;
492 	} else
493 		sc_if->msk_link = 0;
494 
495 	if (sc_if->msk_link != 0) {
496 		/* Enable Tx FIFO Underrun. */
497 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
498 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
499 		/*
500 		 * Because mii(4) notify msk(4) that it detected link status
501 		 * change, there is no need to enable automatic
502 		 * speed/flow-control/duplex updates.
503 		 */
504 		gmac = GM_GPCR_AU_ALL_DIS;
505 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
506 		case IFM_1000_SX:
507 		case IFM_1000_T:
508 			gmac |= GM_GPCR_SPEED_1000;
509 			break;
510 		case IFM_100_TX:
511 			gmac |= GM_GPCR_SPEED_100;
512 			break;
513 		case IFM_10_T:
514 			break;
515 		}
516 
517 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
518 			gmac |= GM_GPCR_DUP_FULL;
519 		/* Disable Rx flow control. */
520 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
521 			gmac |= GM_GPCR_FC_RX_DIS;
522 		/* Disable Tx flow control. */
523 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
524 			gmac |= GM_GPCR_FC_TX_DIS;
525 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
526 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
527 		/* Read again to ensure writing. */
528 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
529 
530 		gmac = GMC_PAUSE_ON;
531 		if (((mii->mii_media_active & IFM_GMASK) &
532 		    (IFM_FLAG0 | IFM_FLAG1)) == 0)
533 			gmac = GMC_PAUSE_OFF;
534 		/* Diable pause for 10/100 Mbps in half-duplex mode. */
535 		if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
536 		    (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
537 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
538 			gmac = GMC_PAUSE_OFF;
539 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
540 
541 		/* Enable PHY interrupt for FIFO underrun/overflow. */
542 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
543 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
544 	} else {
545 		/*
546 		 * Link state changed to down.
547 		 * Disable PHY interrupts.
548 		 */
549 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
550 		/* Disable Rx/Tx MAC. */
551 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
552 		gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
553 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
554 		/* Read again to ensure writing. */
555 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
556 	}
557 
558 	MSK_IF_UNLOCK(sc_if);
559 }
560 
561 static void
562 msk_rxfilter(struct msk_if_softc *sc_if)
563 {
564 	struct msk_softc *sc;
565 	struct ifnet *ifp;
566 	struct ifmultiaddr *ifma;
567 	uint32_t mchash[2];
568 	uint32_t crc;
569 	uint16_t mode;
570 
571 	sc = sc_if->msk_softc;
572 
573 	MSK_IF_LOCK_ASSERT(sc_if);
574 
575 	ifp = sc_if->msk_ifp;
576 
577 	bzero(mchash, sizeof(mchash));
578 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
579 	if ((ifp->if_flags & IFF_PROMISC) != 0)
580 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
581 	else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
582 		mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
583 		mchash[0] = 0xffff;
584 		mchash[1] = 0xffff;
585 	} else {
586 		mode |= GM_RXCR_UCF_ENA;
587 		IF_ADDR_LOCK(ifp);
588 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
589 			if (ifma->ifma_addr->sa_family != AF_LINK)
590 				continue;
591 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
592 			    ifma->ifma_addr), ETHER_ADDR_LEN);
593 			/* Just want the 6 least significant bits. */
594 			crc &= 0x3f;
595 			/* Set the corresponding bit in the hash table. */
596 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
597 		}
598 		IF_ADDR_UNLOCK(ifp);
599 		if (mchash[0] != 0 || mchash[1] != 0)
600 			mode |= GM_RXCR_MCF_ENA;
601 	}
602 
603 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
604 	    mchash[0] & 0xffff);
605 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
606 	    (mchash[0] >> 16) & 0xffff);
607 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
608 	    mchash[1] & 0xffff);
609 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
610 	    (mchash[1] >> 16) & 0xffff);
611 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
612 }
613 
614 static void
615 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
616 {
617 	struct msk_softc *sc;
618 
619 	sc = sc_if->msk_softc;
620 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
621 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
622 		    RX_VLAN_STRIP_ON);
623 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
624 		    TX_VLAN_TAG_ON);
625 	} else {
626 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
627 		    RX_VLAN_STRIP_OFF);
628 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
629 		    TX_VLAN_TAG_OFF);
630 	}
631 }
632 
633 static int
634 msk_init_rx_ring(struct msk_if_softc *sc_if)
635 {
636 	struct msk_ring_data *rd;
637 	struct msk_rxdesc *rxd;
638 	int i, prod;
639 
640 	MSK_IF_LOCK_ASSERT(sc_if);
641 
642 	sc_if->msk_cdata.msk_rx_cons = 0;
643 	sc_if->msk_cdata.msk_rx_prod = 0;
644 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
645 
646 	rd = &sc_if->msk_rdata;
647 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
648 	prod = sc_if->msk_cdata.msk_rx_prod;
649 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
650 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
651 		rxd->rx_m = NULL;
652 		rxd->rx_le = &rd->msk_rx_ring[prod];
653 		if (msk_newbuf(sc_if, prod) != 0)
654 			return (ENOBUFS);
655 		MSK_INC(prod, MSK_RX_RING_CNT);
656 	}
657 
658 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
659 	    sc_if->msk_cdata.msk_rx_ring_map,
660 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
661 
662 	/* Update prefetch unit. */
663 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
664 	CSR_WRITE_2(sc_if->msk_softc,
665 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
666 	    sc_if->msk_cdata.msk_rx_prod);
667 
668 	return (0);
669 }
670 
671 static int
672 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
673 {
674 	struct msk_ring_data *rd;
675 	struct msk_rxdesc *rxd;
676 	int i, prod;
677 
678 	MSK_IF_LOCK_ASSERT(sc_if);
679 
680 	sc_if->msk_cdata.msk_rx_cons = 0;
681 	sc_if->msk_cdata.msk_rx_prod = 0;
682 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
683 
684 	rd = &sc_if->msk_rdata;
685 	bzero(rd->msk_jumbo_rx_ring,
686 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
687 	prod = sc_if->msk_cdata.msk_rx_prod;
688 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
689 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
690 		rxd->rx_m = NULL;
691 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
692 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
693 			return (ENOBUFS);
694 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
695 	}
696 
697 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
698 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
699 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
700 
701 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
702 	CSR_WRITE_2(sc_if->msk_softc,
703 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
704 	    sc_if->msk_cdata.msk_rx_prod);
705 
706 	return (0);
707 }
708 
709 static void
710 msk_init_tx_ring(struct msk_if_softc *sc_if)
711 {
712 	struct msk_ring_data *rd;
713 	struct msk_txdesc *txd;
714 	int i;
715 
716 	sc_if->msk_cdata.msk_tso_mtu = 0;
717 	sc_if->msk_cdata.msk_tx_prod = 0;
718 	sc_if->msk_cdata.msk_tx_cons = 0;
719 	sc_if->msk_cdata.msk_tx_cnt = 0;
720 
721 	rd = &sc_if->msk_rdata;
722 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
723 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
724 		txd = &sc_if->msk_cdata.msk_txdesc[i];
725 		txd->tx_m = NULL;
726 		txd->tx_le = &rd->msk_tx_ring[i];
727 	}
728 
729 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
730 	    sc_if->msk_cdata.msk_tx_ring_map,
731 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
732 }
733 
734 static __inline void
735 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
736 {
737 	struct msk_rx_desc *rx_le;
738 	struct msk_rxdesc *rxd;
739 	struct mbuf *m;
740 
741 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
742 	m = rxd->rx_m;
743 	rx_le = rxd->rx_le;
744 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
745 }
746 
747 static __inline void
748 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
749 {
750 	struct msk_rx_desc *rx_le;
751 	struct msk_rxdesc *rxd;
752 	struct mbuf *m;
753 
754 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
755 	m = rxd->rx_m;
756 	rx_le = rxd->rx_le;
757 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
758 }
759 
760 static int
761 msk_newbuf(struct msk_if_softc *sc_if, int idx)
762 {
763 	struct msk_rx_desc *rx_le;
764 	struct msk_rxdesc *rxd;
765 	struct mbuf *m;
766 	bus_dma_segment_t segs[1];
767 	bus_dmamap_t map;
768 	int nsegs;
769 
770 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
771 	if (m == NULL)
772 		return (ENOBUFS);
773 
774 	m->m_len = m->m_pkthdr.len = MCLBYTES;
775 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
776 		m_adj(m, ETHER_ALIGN);
777 #ifndef __NO_STRICT_ALIGNMENT
778 	else
779 		m_adj(m, MSK_RX_BUF_ALIGN);
780 #endif
781 
782 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
783 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
784 	    BUS_DMA_NOWAIT) != 0) {
785 		m_freem(m);
786 		return (ENOBUFS);
787 	}
788 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
789 
790 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
791 	if (rxd->rx_m != NULL) {
792 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
793 		    BUS_DMASYNC_POSTREAD);
794 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
795 	}
796 	map = rxd->rx_dmamap;
797 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
798 	sc_if->msk_cdata.msk_rx_sparemap = map;
799 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
800 	    BUS_DMASYNC_PREREAD);
801 	rxd->rx_m = m;
802 	rx_le = rxd->rx_le;
803 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
804 	rx_le->msk_control =
805 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
806 
807 	return (0);
808 }
809 
810 static int
811 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
812 {
813 	struct msk_rx_desc *rx_le;
814 	struct msk_rxdesc *rxd;
815 	struct mbuf *m;
816 	bus_dma_segment_t segs[1];
817 	bus_dmamap_t map;
818 	int nsegs;
819 
820 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
821 	if (m == NULL)
822 		return (ENOBUFS);
823 	if ((m->m_flags & M_EXT) == 0) {
824 		m_freem(m);
825 		return (ENOBUFS);
826 	}
827 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
828 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
829 		m_adj(m, ETHER_ALIGN);
830 #ifndef __NO_STRICT_ALIGNMENT
831 	else
832 		m_adj(m, MSK_RX_BUF_ALIGN);
833 #endif
834 
835 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
836 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
837 	    BUS_DMA_NOWAIT) != 0) {
838 		m_freem(m);
839 		return (ENOBUFS);
840 	}
841 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
842 
843 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
844 	if (rxd->rx_m != NULL) {
845 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
846 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
847 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
848 		    rxd->rx_dmamap);
849 	}
850 	map = rxd->rx_dmamap;
851 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
852 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
853 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
854 	    BUS_DMASYNC_PREREAD);
855 	rxd->rx_m = m;
856 	rx_le = rxd->rx_le;
857 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
858 	rx_le->msk_control =
859 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
860 
861 	return (0);
862 }
863 
864 /*
865  * Set media options.
866  */
867 static int
868 msk_mediachange(struct ifnet *ifp)
869 {
870 	struct msk_if_softc *sc_if;
871 	struct mii_data	*mii;
872 
873 	sc_if = ifp->if_softc;
874 
875 	MSK_IF_LOCK(sc_if);
876 	mii = device_get_softc(sc_if->msk_miibus);
877 	mii_mediachg(mii);
878 	MSK_IF_UNLOCK(sc_if);
879 
880 	return (0);
881 }
882 
883 /*
884  * Report current media status.
885  */
886 static void
887 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
888 {
889 	struct msk_if_softc *sc_if;
890 	struct mii_data	*mii;
891 
892 	sc_if = ifp->if_softc;
893 	MSK_IF_LOCK(sc_if);
894 	mii = device_get_softc(sc_if->msk_miibus);
895 
896 	mii_pollstat(mii);
897 	MSK_IF_UNLOCK(sc_if);
898 	ifmr->ifm_active = mii->mii_media_active;
899 	ifmr->ifm_status = mii->mii_media_status;
900 }
901 
902 static int
903 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
904 {
905 	struct msk_if_softc *sc_if;
906 	struct ifreq *ifr;
907 	struct mii_data	*mii;
908 	int error, mask;
909 
910 	sc_if = ifp->if_softc;
911 	ifr = (struct ifreq *)data;
912 	error = 0;
913 
914 	switch(command) {
915 	case SIOCSIFMTU:
916 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
917 			error = EINVAL;
918 		else if (ifp->if_mtu != ifr->ifr_mtu) {
919 			if ((sc_if->msk_flags & MSK_FLAG_NOJUMBO) != 0 &&
920 			    ifr->ifr_mtu > ETHERMTU)
921 				error = EINVAL;
922 			else {
923 				MSK_IF_LOCK(sc_if);
924 				ifp->if_mtu = ifr->ifr_mtu;
925 				if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
926 					msk_init_locked(sc_if);
927 				MSK_IF_UNLOCK(sc_if);
928 			}
929 		}
930 		break;
931 	case SIOCSIFFLAGS:
932 		MSK_IF_LOCK(sc_if);
933 		if ((ifp->if_flags & IFF_UP) != 0) {
934 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
935 				if (((ifp->if_flags ^ sc_if->msk_if_flags)
936 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
937 					msk_rxfilter(sc_if);
938 			} else {
939 				if (sc_if->msk_detach == 0)
940 					msk_init_locked(sc_if);
941 			}
942 		} else {
943 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
944 				msk_stop(sc_if);
945 		}
946 		sc_if->msk_if_flags = ifp->if_flags;
947 		MSK_IF_UNLOCK(sc_if);
948 		break;
949 	case SIOCADDMULTI:
950 	case SIOCDELMULTI:
951 		MSK_IF_LOCK(sc_if);
952 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
953 			msk_rxfilter(sc_if);
954 		MSK_IF_UNLOCK(sc_if);
955 		break;
956 	case SIOCGIFMEDIA:
957 	case SIOCSIFMEDIA:
958 		mii = device_get_softc(sc_if->msk_miibus);
959 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
960 		break;
961 	case SIOCSIFCAP:
962 		MSK_IF_LOCK(sc_if);
963 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
964 		if ((mask & IFCAP_TXCSUM) != 0) {
965 			ifp->if_capenable ^= IFCAP_TXCSUM;
966 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
967 			    (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
968 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
969 			else
970 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
971 		}
972 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
973 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
974 			msk_setvlan(sc_if, ifp);
975 		}
976 
977 		if ((mask & IFCAP_TSO4) != 0) {
978 			ifp->if_capenable ^= IFCAP_TSO4;
979 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0 &&
980 			    (IFCAP_TSO4 & ifp->if_capabilities) != 0)
981 				ifp->if_hwassist |= CSUM_TSO;
982 			else
983 				ifp->if_hwassist &= ~CSUM_TSO;
984 		}
985 		if (ifp->if_mtu > ETHERMTU &&
986 		    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
987 			/*
988 			 * In Yukon EC Ultra, TSO & checksum offload is not
989 			 * supported for jumbo frame.
990 			 */
991 			ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
992 			ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
993 		}
994 
995 		VLAN_CAPABILITIES(ifp);
996 		MSK_IF_UNLOCK(sc_if);
997 		break;
998 	default:
999 		error = ether_ioctl(ifp, command, data);
1000 		break;
1001 	}
1002 
1003 	return (error);
1004 }
1005 
1006 static int
1007 mskc_probe(device_t dev)
1008 {
1009 	struct msk_product *mp;
1010 	uint16_t vendor, devid;
1011 	int i;
1012 
1013 	vendor = pci_get_vendor(dev);
1014 	devid = pci_get_device(dev);
1015 	mp = msk_products;
1016 	for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
1017 	    i++, mp++) {
1018 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1019 			device_set_desc(dev, mp->msk_name);
1020 			return (BUS_PROBE_DEFAULT);
1021 		}
1022 	}
1023 
1024 	return (ENXIO);
1025 }
1026 
1027 static int
1028 mskc_setup_rambuffer(struct msk_softc *sc)
1029 {
1030 	int next;
1031 	int i;
1032 
1033 	/* Get adapter SRAM size. */
1034 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1035 	if (bootverbose)
1036 		device_printf(sc->msk_dev,
1037 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1038 	if (sc->msk_ramsize == 0)
1039 		return (0);
1040 
1041 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1042 	/*
1043 	 * Give receiver 2/3 of memory and round down to the multiple
1044 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
1045 	 * of 1024.
1046 	 */
1047 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1048 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1049 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1050 		sc->msk_rxqstart[i] = next;
1051 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1052 		next = sc->msk_rxqend[i] + 1;
1053 		sc->msk_txqstart[i] = next;
1054 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1055 		next = sc->msk_txqend[i] + 1;
1056 		if (bootverbose) {
1057 			device_printf(sc->msk_dev,
1058 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1059 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1060 			    sc->msk_rxqend[i]);
1061 			device_printf(sc->msk_dev,
1062 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1063 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1064 			    sc->msk_txqend[i]);
1065 		}
1066 	}
1067 
1068 	return (0);
1069 }
1070 
1071 static void
1072 msk_phy_power(struct msk_softc *sc, int mode)
1073 {
1074 	uint32_t val;
1075 	int i;
1076 
1077 	switch (mode) {
1078 	case MSK_PHY_POWERUP:
1079 		/* Switch power to VCC (WA for VAUX problem). */
1080 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1081 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1082 		/* Disable Core Clock Division, set Clock Select to 0. */
1083 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1084 
1085 		val = 0;
1086 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1087 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1088 			/* Enable bits are inverted. */
1089 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1090 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1091 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1092 		}
1093 		/*
1094 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1095 		 */
1096 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1097 
1098 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1099 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1100 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1101 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1102 			/* Deassert Low Power for 1st PHY. */
1103 			val |= PCI_Y2_PHY1_COMA;
1104 			if (sc->msk_num_port > 1)
1105 				val |= PCI_Y2_PHY2_COMA;
1106 		} else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
1107 			uint32_t our;
1108 
1109 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1110 
1111 			/* Enable all clocks. */
1112 			pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1113 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1114 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1115 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1116 			/* Set all bits to 0 except bits 15..12. */
1117 			pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1118 			/* Set to default value. */
1119 			pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
1120 		}
1121 		/* Release PHY from PowerDown/COMA mode. */
1122 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1123 		for (i = 0; i < sc->msk_num_port; i++) {
1124 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1125 			    GMLC_RST_SET);
1126 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1127 			    GMLC_RST_CLR);
1128 		}
1129 		break;
1130 	case MSK_PHY_POWERDOWN:
1131 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1132 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1133 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1134 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1135 			val &= ~PCI_Y2_PHY1_COMA;
1136 			if (sc->msk_num_port > 1)
1137 				val &= ~PCI_Y2_PHY2_COMA;
1138 		}
1139 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1140 
1141 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1142 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1143 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1144 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1145 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1146 			/* Enable bits are inverted. */
1147 			val = 0;
1148 		}
1149 		/*
1150 		 * Disable PCI & Core Clock, disable clock gating for
1151 		 * both Links.
1152 		 */
1153 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1154 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1155 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1156 		break;
1157 	default:
1158 		break;
1159 	}
1160 }
1161 
1162 static void
1163 mskc_reset(struct msk_softc *sc)
1164 {
1165 	bus_addr_t addr;
1166 	uint16_t status;
1167 	uint32_t val;
1168 	int i;
1169 
1170 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1171 
1172 	/* Disable ASF. */
1173 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
1174 		CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1175 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1176 	}
1177 	/*
1178 	 * Since we disabled ASF, S/W reset is required for Power Management.
1179 	 */
1180 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1181 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1182 
1183 	/* Clear all error bits in the PCI status register. */
1184 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1185 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1186 
1187 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1188 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1189 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1190 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1191 
1192 	switch (sc->msk_bustype) {
1193 	case MSK_PEX_BUS:
1194 		/* Clear all PEX errors. */
1195 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1196 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1197 		if ((val & PEX_RX_OV) != 0) {
1198 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1199 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1200 		}
1201 		break;
1202 	case MSK_PCI_BUS:
1203 	case MSK_PCIX_BUS:
1204 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1205 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1206 		if (val == 0)
1207 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1208 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1209 			/* Set Cache Line Size opt. */
1210 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1211 			val |= PCI_CLS_OPT;
1212 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1213 		}
1214 		break;
1215 	}
1216 	/* Set PHY power state. */
1217 	msk_phy_power(sc, MSK_PHY_POWERUP);
1218 
1219 	/* Reset GPHY/GMAC Control */
1220 	for (i = 0; i < sc->msk_num_port; i++) {
1221 		/* GPHY Control reset. */
1222 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1223 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1224 		/* GMAC Control reset. */
1225 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1226 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1227 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1228 	}
1229 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1230 
1231 	/* LED On. */
1232 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1233 
1234 	/* Clear TWSI IRQ. */
1235 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1236 
1237 	/* Turn off hardware timer. */
1238 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1239 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1240 
1241 	/* Turn off descriptor polling. */
1242 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1243 
1244 	/* Turn off time stamps. */
1245 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1246 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1247 
1248 	/* Configure timeout values. */
1249 	for (i = 0; i < sc->msk_num_port; i++) {
1250 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1251 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1252 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1253 		    MSK_RI_TO_53);
1254 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1255 		    MSK_RI_TO_53);
1256 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1257 		    MSK_RI_TO_53);
1258 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1259 		    MSK_RI_TO_53);
1260 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1261 		    MSK_RI_TO_53);
1262 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1263 		    MSK_RI_TO_53);
1264 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1265 		    MSK_RI_TO_53);
1266 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1267 		    MSK_RI_TO_53);
1268 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1269 		    MSK_RI_TO_53);
1270 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1271 		    MSK_RI_TO_53);
1272 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1273 		    MSK_RI_TO_53);
1274 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1275 		    MSK_RI_TO_53);
1276 	}
1277 
1278 	/* Disable all interrupts. */
1279 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1280 	CSR_READ_4(sc, B0_HWE_IMSK);
1281 	CSR_WRITE_4(sc, B0_IMSK, 0);
1282 	CSR_READ_4(sc, B0_IMSK);
1283 
1284         /*
1285          * On dual port PCI-X card, there is an problem where status
1286          * can be received out of order due to split transactions.
1287          */
1288 	if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
1289 		int pcix;
1290 		uint16_t pcix_cmd;
1291 
1292 		if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &pcix) == 0) {
1293 			pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
1294 			/* Clear Max Outstanding Split Transactions. */
1295 			pcix_cmd &= ~0x70;
1296 			CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1297 			pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
1298 			CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1299 		}
1300         }
1301 	if (sc->msk_bustype == MSK_PEX_BUS) {
1302 		uint16_t v, width;
1303 
1304 		v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
1305 		/* Change Max. Read Request Size to 4096 bytes. */
1306 		v &= ~PEX_DC_MAX_RRS_MSK;
1307 		v |= PEX_DC_MAX_RD_RQ_SIZE(5);
1308 		pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
1309 		width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
1310 		width = (width & PEX_LS_LINK_WI_MSK) >> 4;
1311 		v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
1312 		v = (v & PEX_LS_LINK_WI_MSK) >> 4;
1313 		if (v != width)
1314 			device_printf(sc->msk_dev,
1315 			    "negotiated width of link(x%d) != "
1316 			    "max. width of link(x%d)\n", width, v);
1317 	}
1318 
1319 	/* Clear status list. */
1320 	bzero(sc->msk_stat_ring,
1321 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1322 	sc->msk_stat_cons = 0;
1323 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1324 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1325 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1326 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1327 	/* Set the status list base address. */
1328 	addr = sc->msk_stat_ring_paddr;
1329 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1330 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1331 	/* Set the status list last index. */
1332 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1333 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1334 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1335 		/* WA for dev. #4.3 */
1336 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1337 		/* WA for dev. #4.18 */
1338 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1339 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1340 	} else {
1341 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1342 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1343 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1344 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1345 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1346 		else
1347 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1348 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1349 	}
1350 	/*
1351 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1352 	 */
1353 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1354 
1355 	/* Enable status unit. */
1356 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1357 
1358 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1359 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1360 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1361 }
1362 
1363 static int
1364 msk_probe(device_t dev)
1365 {
1366 	struct msk_softc *sc;
1367 	char desc[100];
1368 
1369 	sc = device_get_softc(device_get_parent(dev));
1370 	/*
1371 	 * Not much to do here. We always know there will be
1372 	 * at least one GMAC present, and if there are two,
1373 	 * mskc_attach() will create a second device instance
1374 	 * for us.
1375 	 */
1376 	snprintf(desc, sizeof(desc),
1377 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1378 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1379 	    sc->msk_hw_rev);
1380 	device_set_desc_copy(dev, desc);
1381 
1382 	return (BUS_PROBE_DEFAULT);
1383 }
1384 
1385 static int
1386 msk_attach(device_t dev)
1387 {
1388 	struct msk_softc *sc;
1389 	struct msk_if_softc *sc_if;
1390 	struct ifnet *ifp;
1391 	int i, port, error;
1392 	uint8_t eaddr[6];
1393 
1394 	if (dev == NULL)
1395 		return (EINVAL);
1396 
1397 	error = 0;
1398 	sc_if = device_get_softc(dev);
1399 	sc = device_get_softc(device_get_parent(dev));
1400 	port = *(int *)device_get_ivars(dev);
1401 
1402 	sc_if->msk_if_dev = dev;
1403 	sc_if->msk_port = port;
1404 	sc_if->msk_softc = sc;
1405 	sc_if->msk_flags = sc->msk_pflags;
1406 	sc->msk_if[port] = sc_if;
1407 	/* Setup Tx/Rx queue register offsets. */
1408 	if (port == MSK_PORT_A) {
1409 		sc_if->msk_txq = Q_XA1;
1410 		sc_if->msk_txsq = Q_XS1;
1411 		sc_if->msk_rxq = Q_R1;
1412 	} else {
1413 		sc_if->msk_txq = Q_XA2;
1414 		sc_if->msk_txsq = Q_XS2;
1415 		sc_if->msk_rxq = Q_R2;
1416 	}
1417 
1418 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1419 	TASK_INIT(&sc_if->msk_link_task, 0, msk_link_task, sc_if);
1420 	msk_sysctl_node(sc_if);
1421 
1422 	/* Disable jumbo frame for Yukon FE. */
1423 	if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE)
1424 		sc_if->msk_flags |= MSK_FLAG_NOJUMBO;
1425 
1426 	if ((error = msk_txrx_dma_alloc(sc_if) != 0))
1427 		goto fail;
1428 	msk_rx_dma_jalloc(sc_if);
1429 
1430 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1431 	if (ifp == NULL) {
1432 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1433 		error = ENOSPC;
1434 		goto fail;
1435 	}
1436 	ifp->if_softc = sc_if;
1437 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1438 	ifp->if_mtu = ETHERMTU;
1439 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1440 	/*
1441 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1442 	 * has serious bug in Rx checksum offload for all Yukon II family
1443 	 * hardware. It seems there is a workaround to make it work somtimes.
1444 	 * However, the workaround also have to check OP code sequences to
1445 	 * verify whether the OP code is correct. Sometimes it should compute
1446 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1447 	 * checksum computed by hardware. If you have to compute checksum
1448 	 * with software to verify the hardware's checksum why have hardware
1449 	 * compute the checksum? I think there is no reason to spend time to
1450 	 * make Rx checksum offload work on Yukon II hardware.
1451 	 */
1452 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1453 	ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1454 	ifp->if_capenable = ifp->if_capabilities;
1455 	ifp->if_ioctl = msk_ioctl;
1456 	ifp->if_start = msk_start;
1457 	ifp->if_timer = 0;
1458 	ifp->if_watchdog = NULL;
1459 	ifp->if_init = msk_init;
1460 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1461 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1462 	IFQ_SET_READY(&ifp->if_snd);
1463 
1464 	TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp);
1465 
1466 	/*
1467 	 * Get station address for this interface. Note that
1468 	 * dual port cards actually come with three station
1469 	 * addresses: one for each port, plus an extra. The
1470 	 * extra one is used by the SysKonnect driver software
1471 	 * as a 'virtual' station address for when both ports
1472 	 * are operating in failover mode. Currently we don't
1473 	 * use this extra address.
1474 	 */
1475 	MSK_IF_LOCK(sc_if);
1476 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1477 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1478 
1479 	/*
1480 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1481 	 */
1482 	MSK_IF_UNLOCK(sc_if);
1483 	ether_ifattach(ifp, eaddr);
1484 	MSK_IF_LOCK(sc_if);
1485 
1486 	/*
1487 	 * VLAN capability setup
1488 	 * Due to Tx checksum offload hardware bugs, msk(4) manually
1489 	 * computes checksum for short frames. For VLAN tagged frames
1490 	 * this workaround does not work so disable checksum offload
1491 	 * for VLAN interface.
1492 	 */
1493 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1494 	ifp->if_capenable = ifp->if_capabilities;
1495 
1496 	/*
1497 	 * Tell the upper layer(s) we support long frames.
1498 	 * Must appear after the call to ether_ifattach() because
1499 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1500 	 */
1501         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1502 
1503 	/*
1504 	 * Do miibus setup.
1505 	 */
1506 	MSK_IF_UNLOCK(sc_if);
1507 	error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
1508 	    msk_mediastatus);
1509 	if (error != 0) {
1510 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1511 		ether_ifdetach(ifp);
1512 		error = ENXIO;
1513 		goto fail;
1514 	}
1515 
1516 fail:
1517 	if (error != 0) {
1518 		/* Access should be ok even though lock has been dropped */
1519 		sc->msk_if[port] = NULL;
1520 		msk_detach(dev);
1521 	}
1522 
1523 	return (error);
1524 }
1525 
1526 /*
1527  * Attach the interface. Allocate softc structures, do ifmedia
1528  * setup and ethernet/BPF attach.
1529  */
1530 static int
1531 mskc_attach(device_t dev)
1532 {
1533 	struct msk_softc *sc;
1534 	int error, msic, msir, *port, reg;
1535 
1536 	sc = device_get_softc(dev);
1537 	sc->msk_dev = dev;
1538 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1539 	    MTX_DEF);
1540 
1541 	/*
1542 	 * Map control/status registers.
1543 	 */
1544 	pci_enable_busmaster(dev);
1545 
1546 	/* Allocate I/O resource */
1547 #ifdef MSK_USEIOSPACE
1548 	sc->msk_res_spec = msk_res_spec_io;
1549 #else
1550 	sc->msk_res_spec = msk_res_spec_mem;
1551 #endif
1552 	sc->msk_irq_spec = msk_irq_spec_legacy;
1553 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1554 	if (error) {
1555 		if (sc->msk_res_spec == msk_res_spec_mem)
1556 			sc->msk_res_spec = msk_res_spec_io;
1557 		else
1558 			sc->msk_res_spec = msk_res_spec_mem;
1559 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1560 		if (error) {
1561 			device_printf(dev, "couldn't allocate %s resources\n",
1562 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1563 			    "I/O");
1564 			mtx_destroy(&sc->msk_mtx);
1565 			return (ENXIO);
1566 		}
1567 	}
1568 
1569 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1570 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1571 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1572 	/* Bail out if chip is not recognized. */
1573 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1574 	    sc->msk_hw_id > CHIP_ID_YUKON_FE) {
1575 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1576 		    sc->msk_hw_id, sc->msk_hw_rev);
1577 		mtx_destroy(&sc->msk_mtx);
1578 		return (ENXIO);
1579 	}
1580 
1581 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1582 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1583 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1584 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1585 	    "max number of Rx events to process");
1586 
1587 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1588 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1589 	    "process_limit", &sc->msk_process_limit);
1590 	if (error == 0) {
1591 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1592 		    sc->msk_process_limit > MSK_PROC_MAX) {
1593 			device_printf(dev, "process_limit value out of range; "
1594 			    "using default: %d\n", MSK_PROC_DEFAULT);
1595 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1596 		}
1597 	}
1598 
1599 	/* Soft reset. */
1600 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1601 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1602 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1603 	 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1604 		 sc->msk_coppertype = 0;
1605 	 else
1606 		 sc->msk_coppertype = 1;
1607 	/* Check number of MACs. */
1608 	sc->msk_num_port = 1;
1609 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1610 	    CFG_DUAL_MAC_MSK) {
1611 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1612 			sc->msk_num_port++;
1613 	}
1614 
1615 	/* Check bus type. */
1616 	if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0)
1617 		sc->msk_bustype = MSK_PEX_BUS;
1618 	else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0)
1619 		sc->msk_bustype = MSK_PCIX_BUS;
1620 	else
1621 		sc->msk_bustype = MSK_PCI_BUS;
1622 
1623 	switch (sc->msk_hw_id) {
1624 	case CHIP_ID_YUKON_EC:
1625 	case CHIP_ID_YUKON_EC_U:
1626 		sc->msk_clock = 125;	/* 125 Mhz */
1627 		break;
1628 	case CHIP_ID_YUKON_FE:
1629 		sc->msk_clock = 100;	/* 100 Mhz */
1630 		break;
1631 	case CHIP_ID_YUKON_XL:
1632 		sc->msk_clock = 156;	/* 156 Mhz */
1633 		break;
1634 	default:
1635 		sc->msk_clock = 156;	/* 156 Mhz */
1636 		break;
1637 	}
1638 
1639 	/* Allocate IRQ resources. */
1640 	msic = pci_msi_count(dev);
1641 	if (bootverbose)
1642 		device_printf(dev, "MSI count : %d\n", msic);
1643 	/*
1644 	 * The Yukon II reports it can handle two messages, one for each
1645 	 * possible port.  We go ahead and allocate two messages and only
1646 	 * setup a handler for both if we have a dual port card.
1647 	 *
1648 	 * XXX: I haven't untangled the interrupt handler to handle dual
1649 	 * port cards with separate MSI messages, so for now I disable MSI
1650 	 * on dual port cards.
1651 	 */
1652 	if (legacy_intr != 0)
1653 		msi_disable = 1;
1654 	if (msi_disable == 0) {
1655 		switch (msic) {
1656 		case 2:
1657 		case 1: /* 88E8058 reports 1 MSI message */
1658 			msir = msic;
1659 			if (sc->msk_num_port == 1 &&
1660 			    pci_alloc_msi(dev, &msir) == 0) {
1661 				if (msic == msir) {
1662 					sc->msk_msi = 1;
1663 					sc->msk_irq_spec = msic == 2 ?
1664 					    msk_irq_spec_msi2 :
1665 					    msk_irq_spec_msi;
1666 				} else
1667 					pci_release_msi(dev);
1668 			}
1669 			break;
1670 		default:
1671 			device_printf(dev,
1672 			    "Unexpected number of MSI messages : %d\n", msic);
1673 			break;
1674 		}
1675 	}
1676 
1677 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1678 	if (error) {
1679 		device_printf(dev, "couldn't allocate IRQ resources\n");
1680 		goto fail;
1681 	}
1682 
1683 	if ((error = msk_status_dma_alloc(sc)) != 0)
1684 		goto fail;
1685 
1686 	/* Set base interrupt mask. */
1687 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1688 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1689 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1690 
1691 	/* Reset the adapter. */
1692 	mskc_reset(sc);
1693 
1694 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1695 		goto fail;
1696 
1697 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1698 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1699 		device_printf(dev, "failed to add child for PORT_A\n");
1700 		error = ENXIO;
1701 		goto fail;
1702 	}
1703 	port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1704 	if (port == NULL) {
1705 		device_printf(dev, "failed to allocate memory for "
1706 		    "ivars of PORT_A\n");
1707 		error = ENXIO;
1708 		goto fail;
1709 	}
1710 	*port = MSK_PORT_A;
1711 	device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1712 
1713 	if (sc->msk_num_port > 1) {
1714 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1715 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1716 			device_printf(dev, "failed to add child for PORT_B\n");
1717 			error = ENXIO;
1718 			goto fail;
1719 		}
1720 		port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1721 		if (port == NULL) {
1722 			device_printf(dev, "failed to allocate memory for "
1723 			    "ivars of PORT_B\n");
1724 			error = ENXIO;
1725 			goto fail;
1726 		}
1727 		*port = MSK_PORT_B;
1728 		device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1729 	}
1730 
1731 	error = bus_generic_attach(dev);
1732 	if (error) {
1733 		device_printf(dev, "failed to attach port(s)\n");
1734 		goto fail;
1735 	}
1736 
1737 	/* Hook interrupt last to avoid having to lock softc. */
1738 	if (legacy_intr)
1739 		error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1740 		    INTR_MPSAFE, NULL, msk_legacy_intr, sc,
1741 		    &sc->msk_intrhand[0]);
1742 	else {
1743 		TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc);
1744 		sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK,
1745 		    taskqueue_thread_enqueue, &sc->msk_tq);
1746 		taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq",
1747 		    device_get_nameunit(sc->msk_dev));
1748 		error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1749 		    INTR_MPSAFE, msk_intr, NULL, sc, &sc->msk_intrhand[0]);
1750 	}
1751 
1752 	if (error != 0) {
1753 		device_printf(dev, "couldn't set up interrupt handler\n");
1754 		if (legacy_intr == 0)
1755 			taskqueue_free(sc->msk_tq);
1756 		sc->msk_tq = NULL;
1757 		goto fail;
1758 	}
1759 fail:
1760 	if (error != 0)
1761 		mskc_detach(dev);
1762 
1763 	return (error);
1764 }
1765 
1766 /*
1767  * Shutdown hardware and free up resources. This can be called any
1768  * time after the mutex has been initialized. It is called in both
1769  * the error case in attach and the normal detach case so it needs
1770  * to be careful about only freeing resources that have actually been
1771  * allocated.
1772  */
1773 static int
1774 msk_detach(device_t dev)
1775 {
1776 	struct msk_softc *sc;
1777 	struct msk_if_softc *sc_if;
1778 	struct ifnet *ifp;
1779 
1780 	sc_if = device_get_softc(dev);
1781 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
1782 	    ("msk mutex not initialized in msk_detach"));
1783 	MSK_IF_LOCK(sc_if);
1784 
1785 	ifp = sc_if->msk_ifp;
1786 	if (device_is_attached(dev)) {
1787 		/* XXX */
1788 		sc_if->msk_detach = 1;
1789 		msk_stop(sc_if);
1790 		/* Can't hold locks while calling detach. */
1791 		MSK_IF_UNLOCK(sc_if);
1792 		callout_drain(&sc_if->msk_tick_ch);
1793 		taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task);
1794 		taskqueue_drain(taskqueue_swi, &sc_if->msk_link_task);
1795 		ether_ifdetach(ifp);
1796 		MSK_IF_LOCK(sc_if);
1797 	}
1798 
1799 	/*
1800 	 * We're generally called from mskc_detach() which is using
1801 	 * device_delete_child() to get to here. It's already trashed
1802 	 * miibus for us, so don't do it here or we'll panic.
1803 	 *
1804 	 * if (sc_if->msk_miibus != NULL) {
1805 	 * 	device_delete_child(dev, sc_if->msk_miibus);
1806 	 * 	sc_if->msk_miibus = NULL;
1807 	 * }
1808 	 */
1809 
1810 	msk_rx_dma_jfree(sc_if);
1811 	msk_txrx_dma_free(sc_if);
1812 	bus_generic_detach(dev);
1813 
1814 	if (ifp)
1815 		if_free(ifp);
1816 	sc = sc_if->msk_softc;
1817 	sc->msk_if[sc_if->msk_port] = NULL;
1818 	MSK_IF_UNLOCK(sc_if);
1819 
1820 	return (0);
1821 }
1822 
1823 static int
1824 mskc_detach(device_t dev)
1825 {
1826 	struct msk_softc *sc;
1827 
1828 	sc = device_get_softc(dev);
1829 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
1830 
1831 	if (device_is_alive(dev)) {
1832 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
1833 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
1834 			    M_DEVBUF);
1835 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
1836 		}
1837 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
1838 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
1839 			    M_DEVBUF);
1840 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
1841 		}
1842 		bus_generic_detach(dev);
1843 	}
1844 
1845 	/* Disable all interrupts. */
1846 	CSR_WRITE_4(sc, B0_IMSK, 0);
1847 	CSR_READ_4(sc, B0_IMSK);
1848 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1849 	CSR_READ_4(sc, B0_HWE_IMSK);
1850 
1851 	/* LED Off. */
1852 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1853 
1854 	/* Put hardware reset. */
1855 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1856 
1857 	msk_status_dma_free(sc);
1858 
1859 	if (legacy_intr == 0 && sc->msk_tq != NULL) {
1860 		taskqueue_drain(sc->msk_tq, &sc->msk_int_task);
1861 		taskqueue_free(sc->msk_tq);
1862 		sc->msk_tq = NULL;
1863 	}
1864 	if (sc->msk_intrhand[0]) {
1865 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1866 		sc->msk_intrhand[0] = NULL;
1867 	}
1868 	if (sc->msk_intrhand[1]) {
1869 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1870 		sc->msk_intrhand[1] = NULL;
1871 	}
1872 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1873 	if (sc->msk_msi)
1874 		pci_release_msi(dev);
1875 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
1876 	mtx_destroy(&sc->msk_mtx);
1877 
1878 	return (0);
1879 }
1880 
1881 struct msk_dmamap_arg {
1882 	bus_addr_t	msk_busaddr;
1883 };
1884 
1885 static void
1886 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1887 {
1888 	struct msk_dmamap_arg *ctx;
1889 
1890 	if (error != 0)
1891 		return;
1892 	ctx = arg;
1893 	ctx->msk_busaddr = segs[0].ds_addr;
1894 }
1895 
1896 /* Create status DMA region. */
1897 static int
1898 msk_status_dma_alloc(struct msk_softc *sc)
1899 {
1900 	struct msk_dmamap_arg ctx;
1901 	int error;
1902 
1903 	error = bus_dma_tag_create(
1904 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
1905 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
1906 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1907 		    BUS_SPACE_MAXADDR,		/* highaddr */
1908 		    NULL, NULL,			/* filter, filterarg */
1909 		    MSK_STAT_RING_SZ,		/* maxsize */
1910 		    1,				/* nsegments */
1911 		    MSK_STAT_RING_SZ,		/* maxsegsize */
1912 		    0,				/* flags */
1913 		    NULL, NULL,			/* lockfunc, lockarg */
1914 		    &sc->msk_stat_tag);
1915 	if (error != 0) {
1916 		device_printf(sc->msk_dev,
1917 		    "failed to create status DMA tag\n");
1918 		return (error);
1919 	}
1920 
1921 	/* Allocate DMA'able memory and load the DMA map for status ring. */
1922 	error = bus_dmamem_alloc(sc->msk_stat_tag,
1923 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
1924 	    BUS_DMA_ZERO, &sc->msk_stat_map);
1925 	if (error != 0) {
1926 		device_printf(sc->msk_dev,
1927 		    "failed to allocate DMA'able memory for status ring\n");
1928 		return (error);
1929 	}
1930 
1931 	ctx.msk_busaddr = 0;
1932 	error = bus_dmamap_load(sc->msk_stat_tag,
1933 	    sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
1934 	    msk_dmamap_cb, &ctx, 0);
1935 	if (error != 0) {
1936 		device_printf(sc->msk_dev,
1937 		    "failed to load DMA'able memory for status ring\n");
1938 		return (error);
1939 	}
1940 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
1941 
1942 	return (0);
1943 }
1944 
1945 static void
1946 msk_status_dma_free(struct msk_softc *sc)
1947 {
1948 
1949 	/* Destroy status block. */
1950 	if (sc->msk_stat_tag) {
1951 		if (sc->msk_stat_map) {
1952 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1953 			if (sc->msk_stat_ring) {
1954 				bus_dmamem_free(sc->msk_stat_tag,
1955 				    sc->msk_stat_ring, sc->msk_stat_map);
1956 				sc->msk_stat_ring = NULL;
1957 			}
1958 			sc->msk_stat_map = NULL;
1959 		}
1960 		bus_dma_tag_destroy(sc->msk_stat_tag);
1961 		sc->msk_stat_tag = NULL;
1962 	}
1963 }
1964 
1965 static int
1966 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
1967 {
1968 	struct msk_dmamap_arg ctx;
1969 	struct msk_txdesc *txd;
1970 	struct msk_rxdesc *rxd;
1971 	bus_size_t rxalign;
1972 	int error, i;
1973 
1974 	/* Create parent DMA tag. */
1975 	/*
1976 	 * XXX
1977 	 * It seems that Yukon II supports full 64bits DMA operations. But
1978 	 * it needs two descriptors(list elements) for 64bits DMA operations.
1979 	 * Since we don't know what DMA address mappings(32bits or 64bits)
1980 	 * would be used in advance for each mbufs, we limits its DMA space
1981 	 * to be in range of 32bits address space. Otherwise, we should check
1982 	 * what DMA address is used and chain another descriptor for the
1983 	 * 64bits DMA operation. This also means descriptor ring size is
1984 	 * variable. Limiting DMA address to be in 32bit address space greatly
1985 	 * simplyfies descriptor handling and possibly would increase
1986 	 * performance a bit due to efficient handling of descriptors.
1987 	 * Apart from harassing checksum offloading mechanisms, it seems
1988 	 * it's really bad idea to use a seperate descriptor for 64bit
1989 	 * DMA operation to save small descriptor memory. Anyway, I've
1990 	 * never seen these exotic scheme on ethernet interface hardware.
1991 	 */
1992 	error = bus_dma_tag_create(
1993 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
1994 		    1, 0,			/* alignment, boundary */
1995 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1996 		    BUS_SPACE_MAXADDR,		/* highaddr */
1997 		    NULL, NULL,			/* filter, filterarg */
1998 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1999 		    0,				/* nsegments */
2000 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2001 		    0,				/* flags */
2002 		    NULL, NULL,			/* lockfunc, lockarg */
2003 		    &sc_if->msk_cdata.msk_parent_tag);
2004 	if (error != 0) {
2005 		device_printf(sc_if->msk_if_dev,
2006 		    "failed to create parent DMA tag\n");
2007 		goto fail;
2008 	}
2009 	/* Create tag for Tx ring. */
2010 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2011 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2012 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2013 		    BUS_SPACE_MAXADDR,		/* highaddr */
2014 		    NULL, NULL,			/* filter, filterarg */
2015 		    MSK_TX_RING_SZ,		/* maxsize */
2016 		    1,				/* nsegments */
2017 		    MSK_TX_RING_SZ,		/* maxsegsize */
2018 		    0,				/* flags */
2019 		    NULL, NULL,			/* lockfunc, lockarg */
2020 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2021 	if (error != 0) {
2022 		device_printf(sc_if->msk_if_dev,
2023 		    "failed to create Tx ring DMA tag\n");
2024 		goto fail;
2025 	}
2026 
2027 	/* Create tag for Rx ring. */
2028 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2029 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2030 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2031 		    BUS_SPACE_MAXADDR,		/* highaddr */
2032 		    NULL, NULL,			/* filter, filterarg */
2033 		    MSK_RX_RING_SZ,		/* maxsize */
2034 		    1,				/* nsegments */
2035 		    MSK_RX_RING_SZ,		/* maxsegsize */
2036 		    0,				/* flags */
2037 		    NULL, NULL,			/* lockfunc, lockarg */
2038 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2039 	if (error != 0) {
2040 		device_printf(sc_if->msk_if_dev,
2041 		    "failed to create Rx ring DMA tag\n");
2042 		goto fail;
2043 	}
2044 
2045 	/* Create tag for Tx buffers. */
2046 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2047 		    1, 0,			/* alignment, boundary */
2048 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2049 		    BUS_SPACE_MAXADDR,		/* highaddr */
2050 		    NULL, NULL,			/* filter, filterarg */
2051 		    MSK_TSO_MAXSIZE,		/* maxsize */
2052 		    MSK_MAXTXSEGS,		/* nsegments */
2053 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2054 		    0,				/* flags */
2055 		    NULL, NULL,			/* lockfunc, lockarg */
2056 		    &sc_if->msk_cdata.msk_tx_tag);
2057 	if (error != 0) {
2058 		device_printf(sc_if->msk_if_dev,
2059 		    "failed to create Tx DMA tag\n");
2060 		goto fail;
2061 	}
2062 
2063 	rxalign = 1;
2064 	/*
2065 	 * Workaround hardware hang which seems to happen when Rx buffer
2066 	 * is not aligned on multiple of FIFO word(8 bytes).
2067 	 */
2068 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2069 		rxalign = MSK_RX_BUF_ALIGN;
2070 	/* Create tag for Rx buffers. */
2071 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2072 		    rxalign, 0,			/* alignment, boundary */
2073 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2074 		    BUS_SPACE_MAXADDR,		/* highaddr */
2075 		    NULL, NULL,			/* filter, filterarg */
2076 		    MCLBYTES,			/* maxsize */
2077 		    1,				/* nsegments */
2078 		    MCLBYTES,			/* maxsegsize */
2079 		    0,				/* flags */
2080 		    NULL, NULL,			/* lockfunc, lockarg */
2081 		    &sc_if->msk_cdata.msk_rx_tag);
2082 	if (error != 0) {
2083 		device_printf(sc_if->msk_if_dev,
2084 		    "failed to create Rx DMA tag\n");
2085 		goto fail;
2086 	}
2087 
2088 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2089 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2090 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2091 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2092 	if (error != 0) {
2093 		device_printf(sc_if->msk_if_dev,
2094 		    "failed to allocate DMA'able memory for Tx ring\n");
2095 		goto fail;
2096 	}
2097 
2098 	ctx.msk_busaddr = 0;
2099 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2100 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2101 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2102 	if (error != 0) {
2103 		device_printf(sc_if->msk_if_dev,
2104 		    "failed to load DMA'able memory for Tx ring\n");
2105 		goto fail;
2106 	}
2107 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2108 
2109 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2110 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2111 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2112 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2113 	if (error != 0) {
2114 		device_printf(sc_if->msk_if_dev,
2115 		    "failed to allocate DMA'able memory for Rx ring\n");
2116 		goto fail;
2117 	}
2118 
2119 	ctx.msk_busaddr = 0;
2120 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2121 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2122 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2123 	if (error != 0) {
2124 		device_printf(sc_if->msk_if_dev,
2125 		    "failed to load DMA'able memory for Rx ring\n");
2126 		goto fail;
2127 	}
2128 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2129 
2130 	/* Create DMA maps for Tx buffers. */
2131 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2132 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2133 		txd->tx_m = NULL;
2134 		txd->tx_dmamap = NULL;
2135 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2136 		    &txd->tx_dmamap);
2137 		if (error != 0) {
2138 			device_printf(sc_if->msk_if_dev,
2139 			    "failed to create Tx dmamap\n");
2140 			goto fail;
2141 		}
2142 	}
2143 	/* Create DMA maps for Rx buffers. */
2144 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2145 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2146 		device_printf(sc_if->msk_if_dev,
2147 		    "failed to create spare Rx dmamap\n");
2148 		goto fail;
2149 	}
2150 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2151 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2152 		rxd->rx_m = NULL;
2153 		rxd->rx_dmamap = NULL;
2154 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2155 		    &rxd->rx_dmamap);
2156 		if (error != 0) {
2157 			device_printf(sc_if->msk_if_dev,
2158 			    "failed to create Rx dmamap\n");
2159 			goto fail;
2160 		}
2161 	}
2162 
2163 fail:
2164 	return (error);
2165 }
2166 
2167 static int
2168 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2169 {
2170 	struct msk_dmamap_arg ctx;
2171 	struct msk_rxdesc *jrxd;
2172 	bus_size_t rxalign;
2173 	int error, i;
2174 
2175 	if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_NOJUMBO) != 0) {
2176 		sc_if->msk_flags |= MSK_FLAG_NOJUMBO;
2177 		device_printf(sc_if->msk_if_dev,
2178 		    "disabling jumbo frame support\n");
2179 		sc_if->msk_flags |= MSK_FLAG_NOJUMBO;
2180 		return (0);
2181 	}
2182 	/* Create tag for jumbo Rx ring. */
2183 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2184 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2185 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2186 		    BUS_SPACE_MAXADDR,		/* highaddr */
2187 		    NULL, NULL,			/* filter, filterarg */
2188 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2189 		    1,				/* nsegments */
2190 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2191 		    0,				/* flags */
2192 		    NULL, NULL,			/* lockfunc, lockarg */
2193 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2194 	if (error != 0) {
2195 		device_printf(sc_if->msk_if_dev,
2196 		    "failed to create jumbo Rx ring DMA tag\n");
2197 		goto jumbo_fail;
2198 	}
2199 
2200 	rxalign = 1;
2201 	/*
2202 	 * Workaround hardware hang which seems to happen when Rx buffer
2203 	 * is not aligned on multiple of FIFO word(8 bytes).
2204 	 */
2205 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2206 		rxalign = MSK_RX_BUF_ALIGN;
2207 	/* Create tag for jumbo Rx buffers. */
2208 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2209 		    rxalign, 0,			/* alignment, boundary */
2210 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2211 		    BUS_SPACE_MAXADDR,		/* highaddr */
2212 		    NULL, NULL,			/* filter, filterarg */
2213 		    MJUM9BYTES,			/* maxsize */
2214 		    1,				/* nsegments */
2215 		    MJUM9BYTES,			/* maxsegsize */
2216 		    0,				/* flags */
2217 		    NULL, NULL,			/* lockfunc, lockarg */
2218 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2219 	if (error != 0) {
2220 		device_printf(sc_if->msk_if_dev,
2221 		    "failed to create jumbo Rx DMA tag\n");
2222 		goto jumbo_fail;
2223 	}
2224 
2225 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2226 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2227 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2228 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2229 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2230 	if (error != 0) {
2231 		device_printf(sc_if->msk_if_dev,
2232 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2233 		goto jumbo_fail;
2234 	}
2235 
2236 	ctx.msk_busaddr = 0;
2237 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2238 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2239 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2240 	    msk_dmamap_cb, &ctx, 0);
2241 	if (error != 0) {
2242 		device_printf(sc_if->msk_if_dev,
2243 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2244 		goto jumbo_fail;
2245 	}
2246 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2247 
2248 	/* Create DMA maps for jumbo Rx buffers. */
2249 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2250 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2251 		device_printf(sc_if->msk_if_dev,
2252 		    "failed to create spare jumbo Rx dmamap\n");
2253 		goto jumbo_fail;
2254 	}
2255 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2256 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2257 		jrxd->rx_m = NULL;
2258 		jrxd->rx_dmamap = NULL;
2259 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2260 		    &jrxd->rx_dmamap);
2261 		if (error != 0) {
2262 			device_printf(sc_if->msk_if_dev,
2263 			    "failed to create jumbo Rx dmamap\n");
2264 			goto jumbo_fail;
2265 		}
2266 	}
2267 
2268 	return (0);
2269 
2270 jumbo_fail:
2271 	msk_rx_dma_jfree(sc_if);
2272 	device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2273 	    "due to resource shortage\n");
2274 	sc_if->msk_flags |= MSK_FLAG_NOJUMBO;
2275 	return (error);
2276 }
2277 
2278 static void
2279 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2280 {
2281 	struct msk_txdesc *txd;
2282 	struct msk_rxdesc *rxd;
2283 	int i;
2284 
2285 	/* Tx ring. */
2286 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2287 		if (sc_if->msk_cdata.msk_tx_ring_map)
2288 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2289 			    sc_if->msk_cdata.msk_tx_ring_map);
2290 		if (sc_if->msk_cdata.msk_tx_ring_map &&
2291 		    sc_if->msk_rdata.msk_tx_ring)
2292 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2293 			    sc_if->msk_rdata.msk_tx_ring,
2294 			    sc_if->msk_cdata.msk_tx_ring_map);
2295 		sc_if->msk_rdata.msk_tx_ring = NULL;
2296 		sc_if->msk_cdata.msk_tx_ring_map = NULL;
2297 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2298 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2299 	}
2300 	/* Rx ring. */
2301 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2302 		if (sc_if->msk_cdata.msk_rx_ring_map)
2303 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2304 			    sc_if->msk_cdata.msk_rx_ring_map);
2305 		if (sc_if->msk_cdata.msk_rx_ring_map &&
2306 		    sc_if->msk_rdata.msk_rx_ring)
2307 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2308 			    sc_if->msk_rdata.msk_rx_ring,
2309 			    sc_if->msk_cdata.msk_rx_ring_map);
2310 		sc_if->msk_rdata.msk_rx_ring = NULL;
2311 		sc_if->msk_cdata.msk_rx_ring_map = NULL;
2312 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2313 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2314 	}
2315 	/* Tx buffers. */
2316 	if (sc_if->msk_cdata.msk_tx_tag) {
2317 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2318 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2319 			if (txd->tx_dmamap) {
2320 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2321 				    txd->tx_dmamap);
2322 				txd->tx_dmamap = NULL;
2323 			}
2324 		}
2325 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2326 		sc_if->msk_cdata.msk_tx_tag = NULL;
2327 	}
2328 	/* Rx buffers. */
2329 	if (sc_if->msk_cdata.msk_rx_tag) {
2330 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2331 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2332 			if (rxd->rx_dmamap) {
2333 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2334 				    rxd->rx_dmamap);
2335 				rxd->rx_dmamap = NULL;
2336 			}
2337 		}
2338 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2339 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2340 			    sc_if->msk_cdata.msk_rx_sparemap);
2341 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2342 		}
2343 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2344 		sc_if->msk_cdata.msk_rx_tag = NULL;
2345 	}
2346 	if (sc_if->msk_cdata.msk_parent_tag) {
2347 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2348 		sc_if->msk_cdata.msk_parent_tag = NULL;
2349 	}
2350 }
2351 
2352 static void
2353 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2354 {
2355 	struct msk_rxdesc *jrxd;
2356 	int i;
2357 
2358 	/* Jumbo Rx ring. */
2359 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2360 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2361 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2362 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2363 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2364 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2365 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2366 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2367 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2368 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2369 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2370 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2371 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2372 	}
2373 	/* Jumbo Rx buffers. */
2374 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2375 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2376 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2377 			if (jrxd->rx_dmamap) {
2378 				bus_dmamap_destroy(
2379 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2380 				    jrxd->rx_dmamap);
2381 				jrxd->rx_dmamap = NULL;
2382 			}
2383 		}
2384 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2385 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2386 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2387 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2388 		}
2389 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2390 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2391 	}
2392 }
2393 
2394 static int
2395 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2396 {
2397 	struct msk_txdesc *txd, *txd_last;
2398 	struct msk_tx_desc *tx_le;
2399 	struct mbuf *m;
2400 	bus_dmamap_t map;
2401 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2402 	uint32_t control, prod, si;
2403 	uint16_t offset, tcp_offset, tso_mtu;
2404 	int error, i, nseg, tso;
2405 
2406 	MSK_IF_LOCK_ASSERT(sc_if);
2407 
2408 	tcp_offset = offset = 0;
2409 	m = *m_head;
2410 	if ((m->m_pkthdr.csum_flags & (MSK_CSUM_FEATURES | CSUM_TSO)) != 0) {
2411 		/*
2412 		 * Since mbuf has no protocol specific structure information
2413 		 * in it we have to inspect protocol information here to
2414 		 * setup TSO and checksum offload. I don't know why Marvell
2415 		 * made a such decision in chip design because other GigE
2416 		 * hardwares normally takes care of all these chores in
2417 		 * hardware. However, TSO performance of Yukon II is very
2418 		 * good such that it's worth to implement it.
2419 		 */
2420 		struct ether_header *eh;
2421 		struct ip *ip;
2422 		struct tcphdr *tcp;
2423 
2424 		if (M_WRITABLE(m) == 0) {
2425 			/* Get a writable copy. */
2426 			m = m_dup(*m_head, M_DONTWAIT);
2427 			m_freem(*m_head);
2428 			if (m == NULL) {
2429 				*m_head = NULL;
2430 				return (ENOBUFS);
2431 			}
2432 			*m_head = m;
2433 		}
2434 
2435 		offset = sizeof(struct ether_header);
2436 		m = m_pullup(m, offset);
2437 		if (m == NULL) {
2438 			*m_head = NULL;
2439 			return (ENOBUFS);
2440 		}
2441 		eh = mtod(m, struct ether_header *);
2442 		/* Check if hardware VLAN insertion is off. */
2443 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2444 			offset = sizeof(struct ether_vlan_header);
2445 			m = m_pullup(m, offset);
2446 			if (m == NULL) {
2447 				*m_head = NULL;
2448 				return (ENOBUFS);
2449 			}
2450 		}
2451 		m = m_pullup(m, offset + sizeof(struct ip));
2452 		if (m == NULL) {
2453 			*m_head = NULL;
2454 			return (ENOBUFS);
2455 		}
2456 		ip = (struct ip *)(mtod(m, char *) + offset);
2457 		offset += (ip->ip_hl << 2);
2458 		tcp_offset = offset;
2459 		/*
2460 		 * It seems that Yukon II has Tx checksum offload bug for
2461 		 * small TCP packets that's less than 60 bytes in size
2462 		 * (e.g. TCP window probe packet, pure ACK packet).
2463 		 * Common work around like padding with zeros to make the
2464 		 * frame minimum ethernet frame size didn't work at all.
2465 		 * Instead of disabling checksum offload completely we
2466 		 * resort to S/W checksum routine when we encounter short
2467 		 * TCP frames.
2468 		 * Short UDP packets appear to be handled correctly by
2469 		 * Yukon II.
2470 		 */
2471 		if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2472 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2473 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2474 			if (m == NULL) {
2475 				*m_head = NULL;
2476 				return (ENOBUFS);
2477 			}
2478 			*(uint16_t *)(m->m_data + offset +
2479 			    m->m_pkthdr.csum_data) = in_cksum_skip(m,
2480 			    m->m_pkthdr.len, offset);
2481 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2482 		}
2483 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2484 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2485 			if (m == NULL) {
2486 				*m_head = NULL;
2487 				return (ENOBUFS);
2488 			}
2489 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2490 			offset += (tcp->th_off << 2);
2491 		}
2492 		*m_head = m;
2493 	}
2494 
2495 	prod = sc_if->msk_cdata.msk_tx_prod;
2496 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2497 	txd_last = txd;
2498 	map = txd->tx_dmamap;
2499 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2500 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2501 	if (error == EFBIG) {
2502 		m = m_collapse(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
2503 		if (m == NULL) {
2504 			m_freem(*m_head);
2505 			*m_head = NULL;
2506 			return (ENOBUFS);
2507 		}
2508 		*m_head = m;
2509 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2510 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2511 		if (error != 0) {
2512 			m_freem(*m_head);
2513 			*m_head = NULL;
2514 			return (error);
2515 		}
2516 	} else if (error != 0)
2517 		return (error);
2518 	if (nseg == 0) {
2519 		m_freem(*m_head);
2520 		*m_head = NULL;
2521 		return (EIO);
2522 	}
2523 
2524 	/* Check number of available descriptors. */
2525 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2526 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2527 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2528 		return (ENOBUFS);
2529 	}
2530 
2531 	control = 0;
2532 	tso = 0;
2533 	tx_le = NULL;
2534 
2535 	/* Check TSO support. */
2536 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2537 		tso_mtu = offset + m->m_pkthdr.tso_segsz;
2538 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2539 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2540 			tx_le->msk_addr = htole32(tso_mtu);
2541 			tx_le->msk_control = htole32(OP_LRGLEN | HW_OWNER);
2542 			sc_if->msk_cdata.msk_tx_cnt++;
2543 			MSK_INC(prod, MSK_TX_RING_CNT);
2544 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2545 		}
2546 		tso++;
2547 	}
2548 	/* Check if we have a VLAN tag to insert. */
2549 	if ((m->m_flags & M_VLANTAG) != 0) {
2550 		if (tso == 0) {
2551 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2552 			tx_le->msk_addr = htole32(0);
2553 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2554 			    htons(m->m_pkthdr.ether_vtag));
2555 			sc_if->msk_cdata.msk_tx_cnt++;
2556 			MSK_INC(prod, MSK_TX_RING_CNT);
2557 		} else {
2558 			tx_le->msk_control |= htole32(OP_VLAN |
2559 			    htons(m->m_pkthdr.ether_vtag));
2560 		}
2561 		control |= INS_VLAN;
2562 	}
2563 	/* Check if we have to handle checksum offload. */
2564 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2565 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2566 		tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2567 		    & 0xffff) | ((uint32_t)tcp_offset << 16));
2568 		tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2569 		control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2570 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2571 			control |= UDPTCP;
2572 		sc_if->msk_cdata.msk_tx_cnt++;
2573 		MSK_INC(prod, MSK_TX_RING_CNT);
2574 	}
2575 
2576 	si = prod;
2577 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2578 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2579 	if (tso == 0)
2580 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2581 		    OP_PACKET);
2582 	else
2583 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2584 		    OP_LARGESEND);
2585 	sc_if->msk_cdata.msk_tx_cnt++;
2586 	MSK_INC(prod, MSK_TX_RING_CNT);
2587 
2588 	for (i = 1; i < nseg; i++) {
2589 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2590 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2591 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2592 		    OP_BUFFER | HW_OWNER);
2593 		sc_if->msk_cdata.msk_tx_cnt++;
2594 		MSK_INC(prod, MSK_TX_RING_CNT);
2595 	}
2596 	/* Update producer index. */
2597 	sc_if->msk_cdata.msk_tx_prod = prod;
2598 
2599 	/* Set EOP on the last desciptor. */
2600 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2601 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2602 	tx_le->msk_control |= htole32(EOP);
2603 
2604 	/* Turn the first descriptor ownership to hardware. */
2605 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2606 	tx_le->msk_control |= htole32(HW_OWNER);
2607 
2608 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2609 	map = txd_last->tx_dmamap;
2610 	txd_last->tx_dmamap = txd->tx_dmamap;
2611 	txd->tx_dmamap = map;
2612 	txd->tx_m = m;
2613 
2614 	/* Sync descriptors. */
2615 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2616 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2617 	    sc_if->msk_cdata.msk_tx_ring_map,
2618 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2619 
2620 	return (0);
2621 }
2622 
2623 static void
2624 msk_tx_task(void *arg, int pending)
2625 {
2626 	struct ifnet *ifp;
2627 
2628 	ifp = arg;
2629 	msk_start(ifp);
2630 }
2631 
2632 static void
2633 msk_start(struct ifnet *ifp)
2634 {
2635         struct msk_if_softc *sc_if;
2636         struct mbuf *m_head;
2637 	int enq;
2638 
2639 	sc_if = ifp->if_softc;
2640 
2641 	MSK_IF_LOCK(sc_if);
2642 
2643 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2644 	    IFF_DRV_RUNNING || sc_if->msk_link == 0) {
2645 		MSK_IF_UNLOCK(sc_if);
2646 		return;
2647 	}
2648 
2649 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2650 	    sc_if->msk_cdata.msk_tx_cnt <
2651 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2652 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2653 		if (m_head == NULL)
2654 			break;
2655 		/*
2656 		 * Pack the data into the transmit ring. If we
2657 		 * don't have room, set the OACTIVE flag and wait
2658 		 * for the NIC to drain the ring.
2659 		 */
2660 		if (msk_encap(sc_if, &m_head) != 0) {
2661 			if (m_head == NULL)
2662 				break;
2663 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2664 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2665 			break;
2666 		}
2667 
2668 		enq++;
2669 		/*
2670 		 * If there's a BPF listener, bounce a copy of this frame
2671 		 * to him.
2672 		 */
2673 		ETHER_BPF_MTAP(ifp, m_head);
2674 	}
2675 
2676 	if (enq > 0) {
2677 		/* Transmit */
2678 		CSR_WRITE_2(sc_if->msk_softc,
2679 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2680 		    sc_if->msk_cdata.msk_tx_prod);
2681 
2682 		/* Set a timeout in case the chip goes out to lunch. */
2683 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2684 	}
2685 
2686 	MSK_IF_UNLOCK(sc_if);
2687 }
2688 
2689 static void
2690 msk_watchdog(struct msk_if_softc *sc_if)
2691 {
2692 	struct ifnet *ifp;
2693 	uint32_t ridx;
2694 	int idx;
2695 
2696 	MSK_IF_LOCK_ASSERT(sc_if);
2697 
2698 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2699 		return;
2700 	ifp = sc_if->msk_ifp;
2701 	if (sc_if->msk_link == 0) {
2702 		if (bootverbose)
2703 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2704 			   "(missed link)\n");
2705 		ifp->if_oerrors++;
2706 		msk_init_locked(sc_if);
2707 		return;
2708 	}
2709 
2710 	/*
2711 	 * Reclaim first as there is a possibility of losing Tx completion
2712 	 * interrupts.
2713 	 */
2714 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2715 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2716 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2717 		msk_txeof(sc_if, idx);
2718 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2719 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2720 			    "-- recovering\n");
2721 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2722 				taskqueue_enqueue(taskqueue_fast,
2723 				    &sc_if->msk_tx_task);
2724 			return;
2725 		}
2726 	}
2727 
2728 	if_printf(ifp, "watchdog timeout\n");
2729 	ifp->if_oerrors++;
2730 	msk_init_locked(sc_if);
2731 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2732 		taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task);
2733 }
2734 
2735 static int
2736 mskc_shutdown(device_t dev)
2737 {
2738 	struct msk_softc *sc;
2739 	int i;
2740 
2741 	sc = device_get_softc(dev);
2742 	MSK_LOCK(sc);
2743 	for (i = 0; i < sc->msk_num_port; i++) {
2744 		if (sc->msk_if[i] != NULL)
2745 			msk_stop(sc->msk_if[i]);
2746 	}
2747 
2748 	/* Disable all interrupts. */
2749 	CSR_WRITE_4(sc, B0_IMSK, 0);
2750 	CSR_READ_4(sc, B0_IMSK);
2751 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2752 	CSR_READ_4(sc, B0_HWE_IMSK);
2753 
2754 	/* Put hardware reset. */
2755 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2756 
2757 	MSK_UNLOCK(sc);
2758 	return (0);
2759 }
2760 
2761 static int
2762 mskc_suspend(device_t dev)
2763 {
2764 	struct msk_softc *sc;
2765 	int i;
2766 
2767 	sc = device_get_softc(dev);
2768 
2769 	MSK_LOCK(sc);
2770 
2771 	for (i = 0; i < sc->msk_num_port; i++) {
2772 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2773 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
2774 		    IFF_DRV_RUNNING) != 0))
2775 			msk_stop(sc->msk_if[i]);
2776 	}
2777 
2778 	/* Disable all interrupts. */
2779 	CSR_WRITE_4(sc, B0_IMSK, 0);
2780 	CSR_READ_4(sc, B0_IMSK);
2781 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2782 	CSR_READ_4(sc, B0_HWE_IMSK);
2783 
2784 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
2785 
2786 	/* Put hardware reset. */
2787 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2788 	sc->msk_suspended = 1;
2789 
2790 	MSK_UNLOCK(sc);
2791 
2792 	return (0);
2793 }
2794 
2795 static int
2796 mskc_resume(device_t dev)
2797 {
2798 	struct msk_softc *sc;
2799 	int i;
2800 
2801 	sc = device_get_softc(dev);
2802 
2803 	MSK_LOCK(sc);
2804 
2805 	mskc_reset(sc);
2806 	for (i = 0; i < sc->msk_num_port; i++) {
2807 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2808 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
2809 			msk_init_locked(sc->msk_if[i]);
2810 	}
2811 	sc->msk_suspended = 0;
2812 
2813 	MSK_UNLOCK(sc);
2814 
2815 	return (0);
2816 }
2817 
2818 #ifndef __NO_STRICT_ALIGNMENT
2819 static __inline void
2820 msk_fixup_rx(struct mbuf *m)
2821 {
2822         int i;
2823         uint16_t *src, *dst;
2824 
2825 	src = mtod(m, uint16_t *);
2826 	dst = src - 3;
2827 
2828 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2829 		*dst++ = *src++;
2830 
2831 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
2832 }
2833 #endif
2834 
2835 static void
2836 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2837 {
2838 	struct mbuf *m;
2839 	struct ifnet *ifp;
2840 	struct msk_rxdesc *rxd;
2841 	int cons, rxlen;
2842 
2843 	ifp = sc_if->msk_ifp;
2844 
2845 	MSK_IF_LOCK_ASSERT(sc_if);
2846 
2847 	cons = sc_if->msk_cdata.msk_rx_cons;
2848 	do {
2849 		rxlen = status >> 16;
2850 		if ((status & GMR_FS_VLAN) != 0 &&
2851 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2852 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2853 		if (len > sc_if->msk_framesize ||
2854 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2855 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2856 			/* Don't count flow-control packet as errors. */
2857 			if ((status & GMR_FS_GOOD_FC) == 0)
2858 				ifp->if_ierrors++;
2859 			msk_discard_rxbuf(sc_if, cons);
2860 			break;
2861 		}
2862 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2863 		m = rxd->rx_m;
2864 		if (msk_newbuf(sc_if, cons) != 0) {
2865 			ifp->if_iqdrops++;
2866 			/* Reuse old buffer. */
2867 			msk_discard_rxbuf(sc_if, cons);
2868 			break;
2869 		}
2870 		m->m_pkthdr.rcvif = ifp;
2871 		m->m_pkthdr.len = m->m_len = len;
2872 #ifndef __NO_STRICT_ALIGNMENT
2873 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2874 			msk_fixup_rx(m);
2875 #endif
2876 		ifp->if_ipackets++;
2877 		/* Check for VLAN tagged packets. */
2878 		if ((status & GMR_FS_VLAN) != 0 &&
2879 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2880 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2881 			m->m_flags |= M_VLANTAG;
2882 		}
2883 		MSK_IF_UNLOCK(sc_if);
2884 		(*ifp->if_input)(ifp, m);
2885 		MSK_IF_LOCK(sc_if);
2886 	} while (0);
2887 
2888 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
2889 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
2890 }
2891 
2892 static void
2893 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2894 {
2895 	struct mbuf *m;
2896 	struct ifnet *ifp;
2897 	struct msk_rxdesc *jrxd;
2898 	int cons, rxlen;
2899 
2900 	ifp = sc_if->msk_ifp;
2901 
2902 	MSK_IF_LOCK_ASSERT(sc_if);
2903 
2904 	cons = sc_if->msk_cdata.msk_rx_cons;
2905 	do {
2906 		rxlen = status >> 16;
2907 		if ((status & GMR_FS_VLAN) != 0 &&
2908 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2909 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2910 		if (len > sc_if->msk_framesize ||
2911 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2912 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2913 			/* Don't count flow-control packet as errors. */
2914 			if ((status & GMR_FS_GOOD_FC) == 0)
2915 				ifp->if_ierrors++;
2916 			msk_discard_jumbo_rxbuf(sc_if, cons);
2917 			break;
2918 		}
2919 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
2920 		m = jrxd->rx_m;
2921 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
2922 			ifp->if_iqdrops++;
2923 			/* Reuse old buffer. */
2924 			msk_discard_jumbo_rxbuf(sc_if, cons);
2925 			break;
2926 		}
2927 		m->m_pkthdr.rcvif = ifp;
2928 		m->m_pkthdr.len = m->m_len = len;
2929 #ifndef __NO_STRICT_ALIGNMENT
2930 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2931 			msk_fixup_rx(m);
2932 #endif
2933 		ifp->if_ipackets++;
2934 		/* Check for VLAN tagged packets. */
2935 		if ((status & GMR_FS_VLAN) != 0 &&
2936 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2937 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2938 			m->m_flags |= M_VLANTAG;
2939 		}
2940 		MSK_IF_UNLOCK(sc_if);
2941 		(*ifp->if_input)(ifp, m);
2942 		MSK_IF_LOCK(sc_if);
2943 	} while (0);
2944 
2945 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
2946 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
2947 }
2948 
2949 static void
2950 msk_txeof(struct msk_if_softc *sc_if, int idx)
2951 {
2952 	struct msk_txdesc *txd;
2953 	struct msk_tx_desc *cur_tx;
2954 	struct ifnet *ifp;
2955 	uint32_t control;
2956 	int cons, prog;
2957 
2958 	MSK_IF_LOCK_ASSERT(sc_if);
2959 
2960 	ifp = sc_if->msk_ifp;
2961 
2962 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2963 	    sc_if->msk_cdata.msk_tx_ring_map,
2964 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2965 	/*
2966 	 * Go through our tx ring and free mbufs for those
2967 	 * frames that have been sent.
2968 	 */
2969 	cons = sc_if->msk_cdata.msk_tx_cons;
2970 	prog = 0;
2971 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
2972 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
2973 			break;
2974 		prog++;
2975 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
2976 		control = le32toh(cur_tx->msk_control);
2977 		sc_if->msk_cdata.msk_tx_cnt--;
2978 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2979 		if ((control & EOP) == 0)
2980 			continue;
2981 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
2982 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
2983 		    BUS_DMASYNC_POSTWRITE);
2984 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
2985 
2986 		ifp->if_opackets++;
2987 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
2988 		    __func__));
2989 		m_freem(txd->tx_m);
2990 		txd->tx_m = NULL;
2991 	}
2992 
2993 	if (prog > 0) {
2994 		sc_if->msk_cdata.msk_tx_cons = cons;
2995 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
2996 			sc_if->msk_watchdog_timer = 0;
2997 		/* No need to sync LEs as we didn't update LEs. */
2998 	}
2999 }
3000 
3001 static void
3002 msk_tick(void *xsc_if)
3003 {
3004 	struct msk_if_softc *sc_if;
3005 	struct mii_data *mii;
3006 
3007 	sc_if = xsc_if;
3008 
3009 	MSK_IF_LOCK_ASSERT(sc_if);
3010 
3011 	mii = device_get_softc(sc_if->msk_miibus);
3012 
3013 	mii_tick(mii);
3014 	msk_watchdog(sc_if);
3015 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3016 }
3017 
3018 static void
3019 msk_intr_phy(struct msk_if_softc *sc_if)
3020 {
3021 	uint16_t status;
3022 
3023 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3024 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3025 	/* Handle FIFO Underrun/Overflow? */
3026 	if ((status & PHY_M_IS_FIFO_ERROR))
3027 		device_printf(sc_if->msk_if_dev,
3028 		    "PHY FIFO underrun/overflow.\n");
3029 }
3030 
3031 static void
3032 msk_intr_gmac(struct msk_if_softc *sc_if)
3033 {
3034 	struct msk_softc *sc;
3035 	uint8_t status;
3036 
3037 	sc = sc_if->msk_softc;
3038 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3039 
3040 	/* GMAC Rx FIFO overrun. */
3041 	if ((status & GM_IS_RX_FF_OR) != 0) {
3042 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3043 		    GMF_CLI_RX_FO);
3044 		device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
3045 	}
3046 	/* GMAC Tx FIFO underrun. */
3047 	if ((status & GM_IS_TX_FF_UR) != 0) {
3048 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3049 		    GMF_CLI_TX_FU);
3050 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3051 		/*
3052 		 * XXX
3053 		 * In case of Tx underrun, we may need to flush/reset
3054 		 * Tx MAC but that would also require resynchronization
3055 		 * with status LEs. Reintializing status LEs would
3056 		 * affect other port in dual MAC configuration so it
3057 		 * should be avoided as possible as we can.
3058 		 * Due to lack of documentation it's all vague guess but
3059 		 * it needs more investigation.
3060 		 */
3061 	}
3062 }
3063 
3064 static void
3065 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3066 {
3067 	struct msk_softc *sc;
3068 
3069 	sc = sc_if->msk_softc;
3070 	if ((status & Y2_IS_PAR_RD1) != 0) {
3071 		device_printf(sc_if->msk_if_dev,
3072 		    "RAM buffer read parity error\n");
3073 		/* Clear IRQ. */
3074 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3075 		    RI_CLR_RD_PERR);
3076 	}
3077 	if ((status & Y2_IS_PAR_WR1) != 0) {
3078 		device_printf(sc_if->msk_if_dev,
3079 		    "RAM buffer write parity error\n");
3080 		/* Clear IRQ. */
3081 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3082 		    RI_CLR_WR_PERR);
3083 	}
3084 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3085 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3086 		/* Clear IRQ. */
3087 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3088 		    GMF_CLI_TX_PE);
3089 	}
3090 	if ((status & Y2_IS_PAR_RX1) != 0) {
3091 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3092 		/* Clear IRQ. */
3093 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3094 	}
3095 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3096 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3097 		/* Clear IRQ. */
3098 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3099 	}
3100 }
3101 
3102 static void
3103 msk_intr_hwerr(struct msk_softc *sc)
3104 {
3105 	uint32_t status;
3106 	uint32_t tlphead[4];
3107 
3108 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3109 	/* Time Stamp timer overflow. */
3110 	if ((status & Y2_IS_TIST_OV) != 0)
3111 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3112 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3113 		/*
3114 		 * PCI Express Error occured which is not described in PEX
3115 		 * spec.
3116 		 * This error is also mapped either to Master Abort(
3117 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3118 		 * can only be cleared there.
3119                  */
3120 		device_printf(sc->msk_dev,
3121 		    "PCI Express protocol violation error\n");
3122 	}
3123 
3124 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3125 		uint16_t v16;
3126 
3127 		if ((status & Y2_IS_MST_ERR) != 0)
3128 			device_printf(sc->msk_dev,
3129 			    "unexpected IRQ Status error\n");
3130 		else
3131 			device_printf(sc->msk_dev,
3132 			    "unexpected IRQ Master error\n");
3133 		/* Reset all bits in the PCI status register. */
3134 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3135 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3136 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3137 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3138 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3139 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3140 	}
3141 
3142 	/* Check for PCI Express Uncorrectable Error. */
3143 	if ((status & Y2_IS_PCI_EXP) != 0) {
3144 		uint32_t v32;
3145 
3146 		/*
3147 		 * On PCI Express bus bridges are called root complexes (RC).
3148 		 * PCI Express errors are recognized by the root complex too,
3149 		 * which requests the system to handle the problem. After
3150 		 * error occurence it may be that no access to the adapter
3151 		 * may be performed any longer.
3152 		 */
3153 
3154 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3155 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3156 			/* Ignore unsupported request error. */
3157 			device_printf(sc->msk_dev,
3158 			    "Uncorrectable PCI Express error\n");
3159 		}
3160 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3161 			int i;
3162 
3163 			/* Get TLP header form Log Registers. */
3164 			for (i = 0; i < 4; i++)
3165 				tlphead[i] = CSR_PCI_READ_4(sc,
3166 				    PEX_HEADER_LOG + i * 4);
3167 			/* Check for vendor defined broadcast message. */
3168 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3169 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3170 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3171 				    sc->msk_intrhwemask);
3172 				CSR_READ_4(sc, B0_HWE_IMSK);
3173 			}
3174 		}
3175 		/* Clear the interrupt. */
3176 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3177 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3178 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3179 	}
3180 
3181 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3182 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3183 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3184 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3185 }
3186 
3187 static __inline void
3188 msk_rxput(struct msk_if_softc *sc_if)
3189 {
3190 	struct msk_softc *sc;
3191 
3192 	sc = sc_if->msk_softc;
3193 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3194 		bus_dmamap_sync(
3195 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3196 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3197 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3198 	else
3199 		bus_dmamap_sync(
3200 		    sc_if->msk_cdata.msk_rx_ring_tag,
3201 		    sc_if->msk_cdata.msk_rx_ring_map,
3202 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3203 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3204 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3205 }
3206 
3207 static int
3208 msk_handle_events(struct msk_softc *sc)
3209 {
3210 	struct msk_if_softc *sc_if;
3211 	int rxput[2];
3212 	struct msk_stat_desc *sd;
3213 	uint32_t control, status;
3214 	int cons, idx, len, port, rxprog;
3215 
3216 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3217 	if (idx == sc->msk_stat_cons)
3218 		return (0);
3219 
3220 	/* Sync status LEs. */
3221 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3222 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3223 	/* XXX Sync Rx LEs here. */
3224 
3225 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3226 
3227 	rxprog = 0;
3228 	for (cons = sc->msk_stat_cons; cons != idx;) {
3229 		sd = &sc->msk_stat_ring[cons];
3230 		control = le32toh(sd->msk_control);
3231 		if ((control & HW_OWNER) == 0)
3232 			break;
3233 		/*
3234 		 * Marvell's FreeBSD driver updates status LE after clearing
3235 		 * HW_OWNER. However we don't have a way to sync single LE
3236 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3237 		 * an entire DMA map. So don't sync LE until we have a better
3238 		 * way to sync LEs.
3239 		 */
3240 		control &= ~HW_OWNER;
3241 		sd->msk_control = htole32(control);
3242 		status = le32toh(sd->msk_status);
3243 		len = control & STLE_LEN_MASK;
3244 		port = (control >> 16) & 0x01;
3245 		sc_if = sc->msk_if[port];
3246 		if (sc_if == NULL) {
3247 			device_printf(sc->msk_dev, "invalid port opcode "
3248 			    "0x%08x\n", control & STLE_OP_MASK);
3249 			continue;
3250 		}
3251 
3252 		switch (control & STLE_OP_MASK) {
3253 		case OP_RXVLAN:
3254 			sc_if->msk_vtag = ntohs(len);
3255 			break;
3256 		case OP_RXCHKSVLAN:
3257 			sc_if->msk_vtag = ntohs(len);
3258 			break;
3259 		case OP_RXSTAT:
3260 			if (sc_if->msk_framesize >
3261 			    (MCLBYTES - MSK_RX_BUF_ALIGN))
3262 				msk_jumbo_rxeof(sc_if, status, len);
3263 			else
3264 				msk_rxeof(sc_if, status, len);
3265 			rxprog++;
3266 			/*
3267 			 * Because there is no way to sync single Rx LE
3268 			 * put the DMA sync operation off until the end of
3269 			 * event processing.
3270 			 */
3271 			rxput[port]++;
3272 			/* Update prefetch unit if we've passed water mark. */
3273 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3274 				msk_rxput(sc_if);
3275 				rxput[port] = 0;
3276 			}
3277 			break;
3278 		case OP_TXINDEXLE:
3279 			if (sc->msk_if[MSK_PORT_A] != NULL)
3280 				msk_txeof(sc->msk_if[MSK_PORT_A],
3281 				    status & STLE_TXA1_MSKL);
3282 			if (sc->msk_if[MSK_PORT_B] != NULL)
3283 				msk_txeof(sc->msk_if[MSK_PORT_B],
3284 				    ((status & STLE_TXA2_MSKL) >>
3285 				    STLE_TXA2_SHIFTL) |
3286 				    ((len & STLE_TXA2_MSKH) <<
3287 				    STLE_TXA2_SHIFTH));
3288 			break;
3289 		default:
3290 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3291 			    control & STLE_OP_MASK);
3292 			break;
3293 		}
3294 		MSK_INC(cons, MSK_STAT_RING_CNT);
3295 		if (rxprog > sc->msk_process_limit)
3296 			break;
3297 	}
3298 
3299 	sc->msk_stat_cons = cons;
3300 	/* XXX We should sync status LEs here. See above notes. */
3301 
3302 	if (rxput[MSK_PORT_A] > 0)
3303 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3304 	if (rxput[MSK_PORT_B] > 0)
3305 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3306 
3307 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3308 }
3309 
3310 /* Legacy interrupt handler for shared interrupt. */
3311 static void
3312 msk_legacy_intr(void *xsc)
3313 {
3314 	struct msk_softc *sc;
3315 	struct msk_if_softc *sc_if0, *sc_if1;
3316 	struct ifnet *ifp0, *ifp1;
3317 	uint32_t status;
3318 
3319 	sc = xsc;
3320 	MSK_LOCK(sc);
3321 
3322 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3323 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3324 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3325 	    (status & sc->msk_intrmask) == 0) {
3326 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3327 		return;
3328 	}
3329 
3330 	sc_if0 = sc->msk_if[MSK_PORT_A];
3331 	sc_if1 = sc->msk_if[MSK_PORT_B];
3332 	ifp0 = ifp1 = NULL;
3333 	if (sc_if0 != NULL)
3334 		ifp0 = sc_if0->msk_ifp;
3335 	if (sc_if1 != NULL)
3336 		ifp1 = sc_if1->msk_ifp;
3337 
3338 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3339 		msk_intr_phy(sc_if0);
3340 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3341 		msk_intr_phy(sc_if1);
3342 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3343 		msk_intr_gmac(sc_if0);
3344 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3345 		msk_intr_gmac(sc_if1);
3346 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3347 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3348 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3349 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3350 		CSR_READ_4(sc, B0_IMSK);
3351 	}
3352         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3353 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3354 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3355 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3356 		CSR_READ_4(sc, B0_IMSK);
3357 	}
3358 	if ((status & Y2_IS_HW_ERR) != 0)
3359 		msk_intr_hwerr(sc);
3360 
3361 	while (msk_handle_events(sc) != 0)
3362 		;
3363 	if ((status & Y2_IS_STAT_BMU) != 0)
3364 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3365 
3366 	/* Reenable interrupts. */
3367 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3368 
3369 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3370 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3371 		taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3372 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3373 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3374 		taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3375 
3376 	MSK_UNLOCK(sc);
3377 }
3378 
3379 static int
3380 msk_intr(void *xsc)
3381 {
3382 	struct msk_softc *sc;
3383 	uint32_t status;
3384 
3385 	sc = xsc;
3386 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3387 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3388 	if (status == 0 || status == 0xffffffff) {
3389 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3390 		return (FILTER_STRAY);
3391 	}
3392 
3393 	taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3394 	return (FILTER_HANDLED);
3395 }
3396 
3397 static void
3398 msk_int_task(void *arg, int pending)
3399 {
3400 	struct msk_softc *sc;
3401 	struct msk_if_softc *sc_if0, *sc_if1;
3402 	struct ifnet *ifp0, *ifp1;
3403 	uint32_t status;
3404 	int domore;
3405 
3406 	sc = arg;
3407 	MSK_LOCK(sc);
3408 
3409 	/* Get interrupt source. */
3410 	status = CSR_READ_4(sc, B0_ISRC);
3411 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3412 	    (status & sc->msk_intrmask) == 0)
3413 		goto done;
3414 
3415 	sc_if0 = sc->msk_if[MSK_PORT_A];
3416 	sc_if1 = sc->msk_if[MSK_PORT_B];
3417 	ifp0 = ifp1 = NULL;
3418 	if (sc_if0 != NULL)
3419 		ifp0 = sc_if0->msk_ifp;
3420 	if (sc_if1 != NULL)
3421 		ifp1 = sc_if1->msk_ifp;
3422 
3423 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3424 		msk_intr_phy(sc_if0);
3425 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3426 		msk_intr_phy(sc_if1);
3427 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3428 		msk_intr_gmac(sc_if0);
3429 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3430 		msk_intr_gmac(sc_if1);
3431 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3432 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3433 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3434 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3435 		CSR_READ_4(sc, B0_IMSK);
3436 	}
3437         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3438 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3439 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3440 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3441 		CSR_READ_4(sc, B0_IMSK);
3442 	}
3443 	if ((status & Y2_IS_HW_ERR) != 0)
3444 		msk_intr_hwerr(sc);
3445 
3446 	domore = msk_handle_events(sc);
3447 	if ((status & Y2_IS_STAT_BMU) != 0)
3448 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3449 
3450 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3451 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3452 		taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3453 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3454 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3455 		taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3456 
3457 	if (domore > 0) {
3458 		taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3459 		MSK_UNLOCK(sc);
3460 		return;
3461 	}
3462 done:
3463 	MSK_UNLOCK(sc);
3464 
3465 	/* Reenable interrupts. */
3466 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3467 }
3468 
3469 static void
3470 msk_init(void *xsc)
3471 {
3472 	struct msk_if_softc *sc_if = xsc;
3473 
3474 	MSK_IF_LOCK(sc_if);
3475 	msk_init_locked(sc_if);
3476 	MSK_IF_UNLOCK(sc_if);
3477 }
3478 
3479 static void
3480 msk_init_locked(struct msk_if_softc *sc_if)
3481 {
3482 	struct msk_softc *sc;
3483 	struct ifnet *ifp;
3484 	struct mii_data	 *mii;
3485 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
3486 	uint16_t gmac;
3487 	int error, i;
3488 
3489 	MSK_IF_LOCK_ASSERT(sc_if);
3490 
3491 	ifp = sc_if->msk_ifp;
3492 	sc = sc_if->msk_softc;
3493 	mii = device_get_softc(sc_if->msk_miibus);
3494 
3495 	error = 0;
3496 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3497 	msk_stop(sc_if);
3498 
3499 	if (ifp->if_mtu < ETHERMTU)
3500 		sc_if->msk_framesize = ETHERMTU;
3501 	else
3502 		sc_if->msk_framesize = ifp->if_mtu;
3503 	sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3504 	if (ifp->if_mtu > ETHERMTU &&
3505 	    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3506 		/*
3507 		 * In Yukon EC Ultra, TSO & checksum offload is not
3508 		 * supported for jumbo frame.
3509 		 */
3510 		ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3511 		ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3512 	}
3513 
3514 	/*
3515 	 * Initialize GMAC first.
3516 	 * Without this initialization, Rx MAC did not work as expected
3517 	 * and Rx MAC garbled status LEs and it resulted in out-of-order
3518 	 * or duplicated frame delivery which in turn showed very poor
3519 	 * Rx performance.(I had to write a packet analysis code that
3520 	 * could be embeded in driver to diagnose this issue.)
3521 	 * I've spent almost 2 months to fix this issue. If I have had
3522 	 * datasheet for Yukon II I wouldn't have encountered this. :-(
3523 	 */
3524 	gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL;
3525 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
3526 
3527 	/* Dummy read the Interrupt Source Register. */
3528 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3529 
3530 	/* Clear MIB stats. */
3531 	msk_stats_clear(sc_if);
3532 
3533 	/* Disable FCS. */
3534 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3535 
3536 	/* Setup Transmit Control Register. */
3537 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3538 
3539 	/* Setup Transmit Flow Control Register. */
3540 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3541 
3542 	/* Setup Transmit Parameter Register. */
3543 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3544 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3545 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3546 
3547 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3548 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3549 
3550 	if (ifp->if_mtu > ETHERMTU)
3551 		gmac |= GM_SMOD_JUMBO_ENA;
3552 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3553 
3554 	/* Set station address. */
3555         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3556         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3557 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3558 		    eaddr[i]);
3559         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3560 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3561 		    eaddr[i]);
3562 
3563 	/* Disable interrupts for counter overflows. */
3564 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3565 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3566 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3567 
3568 	/* Configure Rx MAC FIFO. */
3569 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3570 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3571 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3572 	    GMF_OPER_ON | GMF_RX_F_FL_ON);
3573 
3574 	/* Set receive filter. */
3575 	msk_rxfilter(sc_if);
3576 
3577 	/* Flush Rx MAC FIFO on any flow control or error. */
3578 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3579 	    GMR_FS_ANY_ERR);
3580 
3581 	/*
3582 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3583 	 * due to hardware hang on receipt of pause frames.
3584 	 */
3585 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR),
3586 	    RX_GMF_FL_THR_DEF + 1);
3587 
3588 	/* Configure Tx MAC FIFO. */
3589 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3590 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3591 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3592 
3593 	/* Configure hardware VLAN tag insertion/stripping. */
3594 	msk_setvlan(sc_if, ifp);
3595 
3596 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3597 		/* Set Rx Pause threshould. */
3598 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3599 		    MSK_ECU_LLPP);
3600 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3601 		    MSK_ECU_ULPP);
3602 		if (ifp->if_mtu > ETHERMTU) {
3603 			/*
3604 			 * Set Tx GMAC FIFO Almost Empty Threshold.
3605 			 */
3606 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3607 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3608 			/* Disable Store & Forward mode for Tx. */
3609 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3610 			    TX_JUMBO_ENA | TX_STFW_DIS);
3611 		} else {
3612 			/* Enable Store & Forward mode for Tx. */
3613 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3614 			    TX_JUMBO_DIS | TX_STFW_ENA);
3615 		}
3616 	}
3617 
3618 	/*
3619 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3620 	 * arbiter as we don't use Sync Tx queue.
3621 	 */
3622 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3623 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3624 	/* Enable the RAM Interface Arbiter. */
3625 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3626 
3627 	/* Setup RAM buffer. */
3628 	msk_set_rambuffer(sc_if);
3629 
3630 	/* Disable Tx sync Queue. */
3631 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3632 
3633 	/* Setup Tx Queue Bus Memory Interface. */
3634 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3635 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3636 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3637 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3638 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3639 	    sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3640 		/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3641 		CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV);
3642 	}
3643 
3644 	/* Setup Rx Queue Bus Memory Interface. */
3645 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3646 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3647 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3648 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3649         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3650 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3651 		/* MAC Rx RAM Read is controlled by hardware. */
3652                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3653 	}
3654 
3655 	msk_set_prefetch(sc, sc_if->msk_txq,
3656 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3657 	msk_init_tx_ring(sc_if);
3658 
3659 	/* Disable Rx checksum offload and RSS hash. */
3660 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3661 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3662 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
3663 		msk_set_prefetch(sc, sc_if->msk_rxq,
3664 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3665 		    MSK_JUMBO_RX_RING_CNT - 1);
3666 		error = msk_init_jumbo_rx_ring(sc_if);
3667 	 } else {
3668 		msk_set_prefetch(sc, sc_if->msk_rxq,
3669 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3670 		    MSK_RX_RING_CNT - 1);
3671 		error = msk_init_rx_ring(sc_if);
3672 	}
3673 	if (error != 0) {
3674 		device_printf(sc_if->msk_if_dev,
3675 		    "initialization failed: no memory for Rx buffers\n");
3676 		msk_stop(sc_if);
3677 		return;
3678 	}
3679 
3680 	/* Configure interrupt handling. */
3681 	if (sc_if->msk_port == MSK_PORT_A) {
3682 		sc->msk_intrmask |= Y2_IS_PORT_A;
3683 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3684 	} else {
3685 		sc->msk_intrmask |= Y2_IS_PORT_B;
3686 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3687 	}
3688 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3689 	CSR_READ_4(sc, B0_HWE_IMSK);
3690 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3691 	CSR_READ_4(sc, B0_IMSK);
3692 
3693 	sc_if->msk_link = 0;
3694 	mii_mediachg(mii);
3695 
3696 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3697 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3698 
3699 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3700 }
3701 
3702 static void
3703 msk_set_rambuffer(struct msk_if_softc *sc_if)
3704 {
3705 	struct msk_softc *sc;
3706 	int ltpp, utpp;
3707 
3708 	sc = sc_if->msk_softc;
3709 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3710 		return;
3711 
3712 	/* Setup Rx Queue. */
3713 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3714 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3715 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3716 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3717 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3718 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3719 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3720 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3721 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3722 
3723 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3724 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3725 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3726 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3727 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3728 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3729 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3730 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3731 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3732 
3733 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3734 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3735 
3736 	/* Setup Tx Queue. */
3737 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3738 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3739 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3740 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3741 	    sc->msk_txqend[sc_if->msk_port] / 8);
3742 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3743 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3744 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3745 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3746 	/* Enable Store & Forward for Tx side. */
3747 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3748 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3749 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3750 }
3751 
3752 static void
3753 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3754     uint32_t count)
3755 {
3756 
3757 	/* Reset the prefetch unit. */
3758 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3759 	    PREF_UNIT_RST_SET);
3760 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3761 	    PREF_UNIT_RST_CLR);
3762 	/* Set LE base address. */
3763 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3764 	    MSK_ADDR_LO(addr));
3765 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3766 	    MSK_ADDR_HI(addr));
3767 	/* Set the list last index. */
3768 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3769 	    count);
3770 	/* Turn on prefetch unit. */
3771 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3772 	    PREF_UNIT_OP_ON);
3773 	/* Dummy read to ensure write. */
3774 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3775 }
3776 
3777 static void
3778 msk_stop(struct msk_if_softc *sc_if)
3779 {
3780 	struct msk_softc *sc;
3781 	struct msk_txdesc *txd;
3782 	struct msk_rxdesc *rxd;
3783 	struct msk_rxdesc *jrxd;
3784 	struct ifnet *ifp;
3785 	uint32_t val;
3786 	int i;
3787 
3788 	MSK_IF_LOCK_ASSERT(sc_if);
3789 	sc = sc_if->msk_softc;
3790 	ifp = sc_if->msk_ifp;
3791 
3792 	callout_stop(&sc_if->msk_tick_ch);
3793 	sc_if->msk_watchdog_timer = 0;
3794 
3795 	/* Disable interrupts. */
3796 	if (sc_if->msk_port == MSK_PORT_A) {
3797 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
3798 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3799 	} else {
3800 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
3801 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3802 	}
3803 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3804 	CSR_READ_4(sc, B0_HWE_IMSK);
3805 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3806 	CSR_READ_4(sc, B0_IMSK);
3807 
3808 	/* Disable Tx/Rx MAC. */
3809 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3810 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3811 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3812 	/* Read again to ensure writing. */
3813 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3814 	/* Update stats and clear counters. */
3815 	msk_stats_update(sc_if);
3816 
3817 	/* Stop Tx BMU. */
3818 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3819 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3820 	for (i = 0; i < MSK_TIMEOUT; i++) {
3821 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3822 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3823 			    BMU_STOP);
3824 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3825 		} else
3826 			break;
3827 		DELAY(1);
3828 	}
3829 	if (i == MSK_TIMEOUT)
3830 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3831 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3832 	    RB_RST_SET | RB_DIS_OP_MD);
3833 
3834 	/* Disable all GMAC interrupt. */
3835 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3836 	/* Disable PHY interrupt. */
3837 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3838 
3839 	/* Disable the RAM Interface Arbiter. */
3840 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3841 
3842 	/* Reset the PCI FIFO of the async Tx queue */
3843 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3844 	    BMU_RST_SET | BMU_FIFO_RST);
3845 
3846 	/* Reset the Tx prefetch units. */
3847 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3848 	    PREF_UNIT_RST_SET);
3849 
3850 	/* Reset the RAM Buffer async Tx queue. */
3851 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3852 
3853 	/* Reset Tx MAC FIFO. */
3854 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3855 	/* Set Pause Off. */
3856 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3857 
3858 	/*
3859 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3860 	 * reach the end of packet and since we can't make sure that we have
3861 	 * incoming data, we must reset the BMU while it is not during a DMA
3862 	 * transfer. Since it is possible that the Rx path is still active,
3863 	 * the Rx RAM buffer will be stopped first, so any possible incoming
3864 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
3865 	 * BMU is polled until any DMA in progress is ended and only then it
3866 	 * will be reset.
3867 	 */
3868 
3869 	/* Disable the RAM Buffer receive queue. */
3870 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3871 	for (i = 0; i < MSK_TIMEOUT; i++) {
3872 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3873 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3874 			break;
3875 		DELAY(1);
3876 	}
3877 	if (i == MSK_TIMEOUT)
3878 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3879 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3880 	    BMU_RST_SET | BMU_FIFO_RST);
3881 	/* Reset the Rx prefetch unit. */
3882 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3883 	    PREF_UNIT_RST_SET);
3884 	/* Reset the RAM Buffer receive queue. */
3885 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3886 	/* Reset Rx MAC FIFO. */
3887 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3888 
3889 	/* Free Rx and Tx mbufs still in the queues. */
3890 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
3891 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
3892 		if (rxd->rx_m != NULL) {
3893 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
3894 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3895 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
3896 			    rxd->rx_dmamap);
3897 			m_freem(rxd->rx_m);
3898 			rxd->rx_m = NULL;
3899 		}
3900 	}
3901 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
3902 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
3903 		if (jrxd->rx_m != NULL) {
3904 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
3905 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3906 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
3907 			    jrxd->rx_dmamap);
3908 			m_freem(jrxd->rx_m);
3909 			jrxd->rx_m = NULL;
3910 		}
3911 	}
3912 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
3913 		txd = &sc_if->msk_cdata.msk_txdesc[i];
3914 		if (txd->tx_m != NULL) {
3915 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
3916 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3917 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
3918 			    txd->tx_dmamap);
3919 			m_freem(txd->tx_m);
3920 			txd->tx_m = NULL;
3921 		}
3922 	}
3923 
3924 	/*
3925 	 * Mark the interface down.
3926 	 */
3927 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3928 	sc_if->msk_link = 0;
3929 }
3930 
3931 /*
3932  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
3933  * counter clears high 16 bits of the counter such that accessing
3934  * lower 16 bits should be the last operation.
3935  */
3936 #define	MSK_READ_MIB32(x, y)					\
3937 	(((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) +	\
3938 	(uint32_t)GMAC_READ_2(sc, x, y)
3939 #define	MSK_READ_MIB64(x, y)					\
3940 	(((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) +	\
3941 	(uint64_t)MSK_READ_MIB32(x, y)
3942 
3943 static void
3944 msk_stats_clear(struct msk_if_softc *sc_if)
3945 {
3946 	struct msk_softc *sc;
3947 	uint32_t reg;
3948 	uint16_t gmac;
3949 	int i;
3950 
3951 	MSK_IF_LOCK_ASSERT(sc_if);
3952 
3953 	sc = sc_if->msk_softc;
3954 	/* Set MIB Clear Counter Mode. */
3955 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3956 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3957 	/* Read all MIB Counters with Clear Mode set. */
3958 	for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i++)
3959 		reg = MSK_READ_MIB32(sc_if->msk_port, i);
3960 	/* Clear MIB Clear Counter Mode. */
3961 	gmac &= ~GM_PAR_MIB_CLR;
3962 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3963 }
3964 
3965 static void
3966 msk_stats_update(struct msk_if_softc *sc_if)
3967 {
3968 	struct msk_softc *sc;
3969 	struct ifnet *ifp;
3970 	struct msk_hw_stats *stats;
3971 	uint16_t gmac;
3972 	uint32_t reg;
3973 
3974 	MSK_IF_LOCK_ASSERT(sc_if);
3975 
3976 	ifp = sc_if->msk_ifp;
3977 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3978 		return;
3979 	sc = sc_if->msk_softc;
3980 	stats = &sc_if->msk_stats;
3981 	/* Set MIB Clear Counter Mode. */
3982 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3983 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3984 
3985 	/* Rx stats. */
3986 	stats->rx_ucast_frames +=
3987 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
3988 	stats->rx_bcast_frames +=
3989 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
3990 	stats->rx_pause_frames +=
3991 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
3992 	stats->rx_mcast_frames +=
3993 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
3994 	stats->rx_crc_errs +=
3995 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
3996 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1);
3997 	stats->rx_good_octets +=
3998 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
3999 	stats->rx_bad_octets +=
4000 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4001 	stats->rx_runts +=
4002 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4003 	stats->rx_runt_errs +=
4004 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4005 	stats->rx_pkts_64 +=
4006 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4007 	stats->rx_pkts_65_127 +=
4008 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4009 	stats->rx_pkts_128_255 +=
4010 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4011 	stats->rx_pkts_256_511 +=
4012 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4013 	stats->rx_pkts_512_1023 +=
4014 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4015 	stats->rx_pkts_1024_1518 +=
4016 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4017 	stats->rx_pkts_1519_max +=
4018 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4019 	stats->rx_pkts_too_long +=
4020 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4021 	stats->rx_pkts_jabbers +=
4022 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4023 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2);
4024 	stats->rx_fifo_oflows +=
4025 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4026 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3);
4027 
4028 	/* Tx stats. */
4029 	stats->tx_ucast_frames +=
4030 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4031 	stats->tx_bcast_frames +=
4032 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4033 	stats->tx_pause_frames +=
4034 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4035 	stats->tx_mcast_frames +=
4036 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4037 	stats->tx_octets +=
4038 	    MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4039 	stats->tx_pkts_64 +=
4040 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4041 	stats->tx_pkts_65_127 +=
4042 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4043 	stats->tx_pkts_128_255 +=
4044 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4045 	stats->tx_pkts_256_511 +=
4046 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4047 	stats->tx_pkts_512_1023 +=
4048 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4049 	stats->tx_pkts_1024_1518 +=
4050 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4051 	stats->tx_pkts_1519_max +=
4052 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4053 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1);
4054 	stats->tx_colls +=
4055 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4056 	stats->tx_late_colls +=
4057 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4058 	stats->tx_excess_colls +=
4059 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4060 	stats->tx_multi_colls +=
4061 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4062 	stats->tx_single_colls +=
4063 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4064 	stats->tx_underflows +=
4065 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4066 	/* Clear MIB Clear Counter Mode. */
4067 	gmac &= ~GM_PAR_MIB_CLR;
4068 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4069 }
4070 
4071 static int
4072 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4073 {
4074 	struct msk_softc *sc;
4075 	struct msk_if_softc *sc_if;
4076 	uint32_t result, *stat;
4077 	int off;
4078 
4079 	sc_if = (struct msk_if_softc *)arg1;
4080 	sc = sc_if->msk_softc;
4081 	off = arg2;
4082 	stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4083 
4084 	MSK_IF_LOCK(sc_if);
4085 	result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4086 	result += *stat;
4087 	MSK_IF_UNLOCK(sc_if);
4088 
4089 	return (sysctl_handle_int(oidp, &result, 0, req));
4090 }
4091 
4092 static int
4093 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4094 {
4095 	struct msk_softc *sc;
4096 	struct msk_if_softc *sc_if;
4097 	uint64_t result, *stat;
4098 	int off;
4099 
4100 	sc_if = (struct msk_if_softc *)arg1;
4101 	sc = sc_if->msk_softc;
4102 	off = arg2;
4103 	stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4104 
4105 	MSK_IF_LOCK(sc_if);
4106 	result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4107 	result += *stat;
4108 	MSK_IF_UNLOCK(sc_if);
4109 
4110 	return (sysctl_handle_quad(oidp, &result, 0, req));
4111 }
4112 
4113 #undef MSK_READ_MIB32
4114 #undef MSK_READ_MIB64
4115 
4116 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) 				\
4117 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4118 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32,	\
4119 	    "IU", d)
4120 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) 				\
4121 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4122 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64,	\
4123 	    "Q", d)
4124 
4125 static void
4126 msk_sysctl_node(struct msk_if_softc *sc_if)
4127 {
4128 	struct sysctl_ctx_list *ctx;
4129 	struct sysctl_oid_list *child, *schild;
4130 	struct sysctl_oid *tree;
4131 
4132 	ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4133 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4134 
4135 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
4136 	    NULL, "MSK Statistics");
4137 	schild = child = SYSCTL_CHILDREN(tree);
4138 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
4139 	    NULL, "MSK RX Statistics");
4140 	child = SYSCTL_CHILDREN(tree);
4141 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4142 	    child, rx_ucast_frames, "Good unicast frames");
4143 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4144 	    child, rx_bcast_frames, "Good broadcast frames");
4145 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4146 	    child, rx_pause_frames, "Pause frames");
4147 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4148 	    child, rx_mcast_frames, "Multicast frames");
4149 	MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4150 	    child, rx_crc_errs, "CRC errors");
4151 	MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4152 	    child, rx_good_octets, "Good octets");
4153 	MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4154 	    child, rx_bad_octets, "Bad octets");
4155 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4156 	    child, rx_pkts_64, "64 bytes frames");
4157 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4158 	    child, rx_pkts_65_127, "65 to 127 bytes frames");
4159 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4160 	    child, rx_pkts_128_255, "128 to 255 bytes frames");
4161 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4162 	    child, rx_pkts_256_511, "256 to 511 bytes frames");
4163 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4164 	    child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4165 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4166 	    child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4167 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4168 	    child, rx_pkts_1519_max, "1519 to max frames");
4169 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4170 	    child, rx_pkts_too_long, "frames too long");
4171 	MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4172 	    child, rx_pkts_jabbers, "Jabber errors");
4173 	MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4174 	    child, rx_fifo_oflows, "FIFO overflows");
4175 
4176 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
4177 	    NULL, "MSK TX Statistics");
4178 	child = SYSCTL_CHILDREN(tree);
4179 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4180 	    child, tx_ucast_frames, "Unicast frames");
4181 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4182 	    child, tx_bcast_frames, "Broadcast frames");
4183 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4184 	    child, tx_pause_frames, "Pause frames");
4185 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4186 	    child, tx_mcast_frames, "Multicast frames");
4187 	MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4188 	    child, tx_octets, "Octets");
4189 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4190 	    child, tx_pkts_64, "64 bytes frames");
4191 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4192 	    child, tx_pkts_65_127, "65 to 127 bytes frames");
4193 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4194 	    child, tx_pkts_128_255, "128 to 255 bytes frames");
4195 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4196 	    child, tx_pkts_256_511, "256 to 511 bytes frames");
4197 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4198 	    child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4199 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4200 	    child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4201 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4202 	    child, tx_pkts_1519_max, "1519 to max frames");
4203 	MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4204 	    child, tx_colls, "Collisions");
4205 	MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4206 	    child, tx_late_colls, "Late collisions");
4207 	MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4208 	    child, tx_excess_colls, "Excessive collisions");
4209 	MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4210 	    child, tx_multi_colls, "Multiple collisions");
4211 	MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4212 	    child, tx_single_colls, "Single collisions");
4213 	MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4214 	    child, tx_underflows, "FIFO underflows");
4215 }
4216 
4217 #undef MSK_SYSCTL_STAT32
4218 #undef MSK_SYSCTL_STAT64
4219 
4220 static int
4221 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4222 {
4223 	int error, value;
4224 
4225 	if (!arg1)
4226 		return (EINVAL);
4227 	value = *(int *)arg1;
4228 	error = sysctl_handle_int(oidp, &value, 0, req);
4229 	if (error || !req->newptr)
4230 		return (error);
4231 	if (value < low || value > high)
4232 		return (EINVAL);
4233 	*(int *)arg1 = value;
4234 
4235 	return (0);
4236 }
4237 
4238 static int
4239 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4240 {
4241 
4242 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4243 	    MSK_PROC_MAX));
4244 }
4245