xref: /freebsd/sys/dev/msk/if_msk.c (revision b28624fde638caadd4a89f50c9b7e7da0f98c4d2)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /*
96  * Device driver for the Marvell Yukon II Ethernet controller.
97  * Due to lack of documentation, this driver is based on the code from
98  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
99  */
100 
101 #include <sys/cdefs.h>
102 __FBSDID("$FreeBSD$");
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/module.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/queue.h>
115 #include <sys/sysctl.h>
116 #include <sys/taskqueue.h>
117 
118 #include <net/bpf.h>
119 #include <net/ethernet.h>
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_types.h>
125 #include <net/if_vlan_var.h>
126 
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/tcp.h>
131 #include <netinet/udp.h>
132 
133 #include <machine/bus.h>
134 #include <machine/in_cksum.h>
135 #include <machine/resource.h>
136 #include <sys/rman.h>
137 
138 #include <dev/mii/mii.h>
139 #include <dev/mii/miivar.h>
140 #include <dev/mii/brgphyreg.h>
141 
142 #include <dev/pci/pcireg.h>
143 #include <dev/pci/pcivar.h>
144 
145 #include <dev/msk/if_mskreg.h>
146 
147 MODULE_DEPEND(msk, pci, 1, 1, 1);
148 MODULE_DEPEND(msk, ether, 1, 1, 1);
149 MODULE_DEPEND(msk, miibus, 1, 1, 1);
150 
151 /* "device miibus" required.  See GENERIC if you get errors here. */
152 #include "miibus_if.h"
153 
154 /* Tunables. */
155 static int msi_disable = 0;
156 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
157 static int legacy_intr = 0;
158 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
159 
160 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
161 
162 /*
163  * Devices supported by this driver.
164  */
165 static struct msk_product {
166 	uint16_t	msk_vendorid;
167 	uint16_t	msk_deviceid;
168 	const char	*msk_name;
169 } msk_products[] = {
170 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
171 	    "SK-9Sxx Gigabit Ethernet" },
172 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
173 	    "SK-9Exx Gigabit Ethernet"},
174 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
175 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
176 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
177 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
178 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
179 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
180 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
181 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
182 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
183 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
184 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
185 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
186 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
187 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
188 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
189 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
190 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
191 	    "Marvell Yukon 88E8035 Gigabit Ethernet" },
192 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
193 	    "Marvell Yukon 88E8036 Gigabit Ethernet" },
194 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
195 	    "Marvell Yukon 88E8038 Gigabit Ethernet" },
196 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
197 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
198 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
199 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
200 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
201 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
202 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
203 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
204 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
205 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
206 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
207 	    "D-Link 550SX Gigabit Ethernet" },
208 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
209 	    "D-Link 560T Gigabit Ethernet" }
210 };
211 
212 static const char *model_name[] = {
213 	"Yukon XL",
214         "Yukon EC Ultra",
215         "Yukon Unknown",
216         "Yukon EC",
217         "Yukon FE"
218 };
219 
220 static int mskc_probe(device_t);
221 static int mskc_attach(device_t);
222 static int mskc_detach(device_t);
223 static void mskc_shutdown(device_t);
224 static int mskc_setup_rambuffer(struct msk_softc *);
225 static int mskc_suspend(device_t);
226 static int mskc_resume(device_t);
227 static void mskc_reset(struct msk_softc *);
228 
229 static int msk_probe(device_t);
230 static int msk_attach(device_t);
231 static int msk_detach(device_t);
232 
233 static void msk_tick(void *);
234 static void msk_legacy_intr(void *);
235 static int msk_intr(void *);
236 static void msk_int_task(void *, int);
237 static void msk_intr_phy(struct msk_if_softc *);
238 static void msk_intr_gmac(struct msk_if_softc *);
239 static __inline void msk_rxput(struct msk_if_softc *);
240 static int msk_handle_events(struct msk_softc *);
241 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
242 static void msk_intr_hwerr(struct msk_softc *);
243 static void msk_rxeof(struct msk_if_softc *, uint32_t, int);
244 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
245 static void msk_txeof(struct msk_if_softc *, int);
246 static struct mbuf *msk_defrag(struct mbuf *, int, int);
247 static int msk_encap(struct msk_if_softc *, struct mbuf **);
248 static void msk_tx_task(void *, int);
249 static void msk_start(struct ifnet *);
250 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
251 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
252 static void msk_set_rambuffer(struct msk_if_softc *);
253 static void msk_init(void *);
254 static void msk_init_locked(struct msk_if_softc *);
255 static void msk_stop(struct msk_if_softc *);
256 static void msk_watchdog(struct msk_if_softc *);
257 static int msk_mediachange(struct ifnet *);
258 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
259 static void msk_phy_power(struct msk_softc *, int);
260 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
261 static int msk_status_dma_alloc(struct msk_softc *);
262 static void msk_status_dma_free(struct msk_softc *);
263 static int msk_txrx_dma_alloc(struct msk_if_softc *);
264 static void msk_txrx_dma_free(struct msk_if_softc *);
265 static void *msk_jalloc(struct msk_if_softc *);
266 static void msk_jfree(void *, void *);
267 static int msk_init_rx_ring(struct msk_if_softc *);
268 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
269 static void msk_init_tx_ring(struct msk_if_softc *);
270 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
271 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
272 static int msk_newbuf(struct msk_if_softc *, int);
273 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
274 
275 static int msk_phy_readreg(struct msk_if_softc *, int, int);
276 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
277 static int msk_miibus_readreg(device_t, int, int);
278 static int msk_miibus_writereg(device_t, int, int, int);
279 static void msk_miibus_statchg(device_t);
280 static void msk_link_task(void *, int);
281 
282 static void msk_setmulti(struct msk_if_softc *);
283 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
284 static void msk_setpromisc(struct msk_if_softc *);
285 
286 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
287 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
288 
289 static device_method_t mskc_methods[] = {
290 	/* Device interface */
291 	DEVMETHOD(device_probe,		mskc_probe),
292 	DEVMETHOD(device_attach,	mskc_attach),
293 	DEVMETHOD(device_detach,	mskc_detach),
294 	DEVMETHOD(device_suspend,	mskc_suspend),
295 	DEVMETHOD(device_resume,	mskc_resume),
296 	DEVMETHOD(device_shutdown,	mskc_shutdown),
297 
298 	/* bus interface */
299 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
300 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
301 
302 	{ NULL, NULL }
303 };
304 
305 static driver_t mskc_driver = {
306 	"mskc",
307 	mskc_methods,
308 	sizeof(struct msk_softc)
309 };
310 
311 static devclass_t mskc_devclass;
312 
313 static device_method_t msk_methods[] = {
314 	/* Device interface */
315 	DEVMETHOD(device_probe,		msk_probe),
316 	DEVMETHOD(device_attach,	msk_attach),
317 	DEVMETHOD(device_detach,	msk_detach),
318 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
319 
320 	/* bus interface */
321 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
322 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
323 
324 	/* MII interface */
325 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
326 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
327 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
328 
329 	{ NULL, NULL }
330 };
331 
332 static driver_t msk_driver = {
333 	"msk",
334 	msk_methods,
335 	sizeof(struct msk_if_softc)
336 };
337 
338 static devclass_t msk_devclass;
339 
340 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
341 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
342 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
343 
344 static struct resource_spec msk_res_spec_io[] = {
345 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
346 	{ -1,			0,		0 }
347 };
348 
349 static struct resource_spec msk_res_spec_mem[] = {
350 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
351 	{ -1,			0,		0 }
352 };
353 
354 static struct resource_spec msk_irq_spec_legacy[] = {
355 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
356 	{ -1,			0,		0 }
357 };
358 
359 static struct resource_spec msk_irq_spec_msi[] = {
360 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
361 	{ SYS_RES_IRQ,		2,		RF_ACTIVE },
362 	{ -1,			0,		0 }
363 };
364 
365 static int
366 msk_miibus_readreg(device_t dev, int phy, int reg)
367 {
368 	struct msk_if_softc *sc_if;
369 
370 	sc_if = device_get_softc(dev);
371 
372 	return (msk_phy_readreg(sc_if, phy, reg));
373 }
374 
375 static int
376 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
377 {
378 	struct msk_softc *sc;
379 	int i, val;
380 
381 	sc = sc_if->msk_softc;
382 
383         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
384 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
385 
386 	for (i = 0; i < MSK_TIMEOUT; i++) {
387 		DELAY(1);
388 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
389 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
390 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
391 			break;
392 		}
393 	}
394 
395 	if (i == MSK_TIMEOUT) {
396 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
397 		val = 0;
398 	}
399 
400 	return (val);
401 }
402 
403 static int
404 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
405 {
406 	struct msk_if_softc *sc_if;
407 
408 	sc_if = device_get_softc(dev);
409 
410 	return (msk_phy_writereg(sc_if, phy, reg, val));
411 }
412 
413 static int
414 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
415 {
416 	struct msk_softc *sc;
417 	int i;
418 
419 	sc = sc_if->msk_softc;
420 
421 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
422         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
423 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
424 	for (i = 0; i < MSK_TIMEOUT; i++) {
425 		DELAY(1);
426 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
427 		    GM_SMI_CT_BUSY) == 0)
428 			break;
429 	}
430 	if (i == MSK_TIMEOUT)
431 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
432 
433 	return (0);
434 }
435 
436 static void
437 msk_miibus_statchg(device_t dev)
438 {
439 	struct msk_if_softc *sc_if;
440 
441 	sc_if = device_get_softc(dev);
442 	taskqueue_enqueue(taskqueue_swi, &sc_if->msk_link_task);
443 }
444 
445 static void
446 msk_link_task(void *arg, int pending)
447 {
448 	struct msk_softc *sc;
449 	struct msk_if_softc *sc_if;
450 	struct mii_data *mii;
451 	struct ifnet *ifp;
452 	uint32_t gmac;
453 
454 	sc_if = (struct msk_if_softc *)arg;
455 	sc = sc_if->msk_softc;
456 
457 	MSK_IF_LOCK(sc_if);
458 
459 	mii = device_get_softc(sc_if->msk_miibus);
460 	ifp = sc_if->msk_ifp;
461 	if (mii == NULL || ifp == NULL) {
462 		MSK_IF_UNLOCK(sc_if);
463 		return;
464 	}
465 
466 	if (mii->mii_media_status & IFM_ACTIVE) {
467 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
468 			sc_if->msk_link = 1;
469 	} else
470 		sc_if->msk_link = 0;
471 
472 	if (sc_if->msk_link != 0) {
473 		/* Enable Tx FIFO Underrun. */
474 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
475 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
476 		/*
477 		 * Because mii(4) notify msk(4) that it detected link status
478 		 * change, there is no need to enable automatic
479 		 * speed/flow-control/duplex updates.
480 		 */
481 		gmac = GM_GPCR_AU_ALL_DIS;
482 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
483 		case IFM_1000_SX:
484 		case IFM_1000_T:
485 			gmac |= GM_GPCR_SPEED_1000;
486 			break;
487 		case IFM_100_TX:
488 			gmac |= GM_GPCR_SPEED_100;
489 			break;
490 		case IFM_10_T:
491 			break;
492 		}
493 
494 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
495 			gmac |= GM_GPCR_DUP_FULL;
496 		/* Disable Rx flow control. */
497 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
498 			gmac |= GM_GPCR_FC_RX_DIS;
499 		/* Disable Tx flow control. */
500 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
501 			gmac |= GM_GPCR_FC_TX_DIS;
502 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
503 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
504 		/* Read again to ensure writing. */
505 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
506 
507 		gmac = GMC_PAUSE_ON;
508 		if (((mii->mii_media_active & IFM_GMASK) &
509 		    (IFM_FLAG0 | IFM_FLAG1)) == 0)
510 			gmac = GMC_PAUSE_OFF;
511 		/* Diable pause for 10/100 Mbps in half-duplex mode. */
512 		if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
513 		    (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
514 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
515 			gmac = GMC_PAUSE_OFF;
516 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
517 
518 		/* Enable PHY interrupt for FIFO underrun/overflow. */
519 		if (sc->msk_marvell_phy)
520 			msk_phy_writereg(sc_if, PHY_ADDR_MARV,
521 			    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
522 	} else {
523 		/*
524 		 * Link state changed to down.
525 		 * Disable PHY interrupts.
526 		 */
527 		if (sc->msk_marvell_phy)
528 			msk_phy_writereg(sc_if, PHY_ADDR_MARV,
529 			    PHY_MARV_INT_MASK, 0);
530 		/* Disable Rx/Tx MAC. */
531 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
532 		gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
533 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
534 		/* Read again to ensure writing. */
535 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
536 	}
537 
538 	MSK_IF_UNLOCK(sc_if);
539 }
540 
541 static void
542 msk_setmulti(struct msk_if_softc *sc_if)
543 {
544 	struct msk_softc *sc;
545 	struct ifnet *ifp;
546 	struct ifmultiaddr *ifma;
547 	uint32_t mchash[2];
548 	uint32_t crc;
549 	uint16_t mode;
550 
551 	sc = sc_if->msk_softc;
552 
553 	MSK_IF_LOCK_ASSERT(sc_if);
554 
555 	ifp = sc_if->msk_ifp;
556 
557 	bzero(mchash, sizeof(mchash));
558 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
559 	mode |= GM_RXCR_UCF_ENA;
560 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
561 		if ((ifp->if_flags & IFF_PROMISC) != 0)
562 			mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
563 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
564 			mchash[0] = 0xffff;
565 			mchash[1] = 0xffff;
566 		}
567 	} else {
568 		IF_ADDR_LOCK(ifp);
569 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
570 			if (ifma->ifma_addr->sa_family != AF_LINK)
571 				continue;
572 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
573 			    ifma->ifma_addr), ETHER_ADDR_LEN);
574 			/* Just want the 6 least significant bits. */
575 			crc &= 0x3f;
576 			/* Set the corresponding bit in the hash table. */
577 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
578 		}
579 		IF_ADDR_UNLOCK(ifp);
580 		mode |= GM_RXCR_MCF_ENA;
581 	}
582 
583 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
584 	    mchash[0] & 0xffff);
585 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
586 	    (mchash[0] >> 16) & 0xffff);
587 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
588 	    mchash[1] & 0xffff);
589 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
590 	    (mchash[1] >> 16) & 0xffff);
591 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
592 }
593 
594 static void
595 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
596 {
597 	struct msk_softc *sc;
598 
599 	sc = sc_if->msk_softc;
600 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
601 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
602 		    RX_VLAN_STRIP_ON);
603 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
604 		    TX_VLAN_TAG_ON);
605 	} else {
606 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
607 		    RX_VLAN_STRIP_OFF);
608 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
609 		    TX_VLAN_TAG_OFF);
610 	}
611 }
612 
613 static void
614 msk_setpromisc(struct msk_if_softc *sc_if)
615 {
616 	struct msk_softc *sc;
617 	struct ifnet *ifp;
618 	uint16_t mode;
619 
620 	MSK_IF_LOCK_ASSERT(sc_if);
621 
622 	sc = sc_if->msk_softc;
623 	ifp = sc_if->msk_ifp;
624 
625 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
626 	if (ifp->if_flags & IFF_PROMISC)
627 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
628 	else
629 		mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
630 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
631 }
632 
633 static int
634 msk_init_rx_ring(struct msk_if_softc *sc_if)
635 {
636 	struct msk_ring_data *rd;
637 	struct msk_rxdesc *rxd;
638 	int i, prod;
639 
640 	MSK_IF_LOCK_ASSERT(sc_if);
641 
642 	sc_if->msk_cdata.msk_rx_cons = 0;
643 	sc_if->msk_cdata.msk_rx_prod = 0;
644 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
645 
646 	rd = &sc_if->msk_rdata;
647 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
648 	prod = sc_if->msk_cdata.msk_rx_prod;
649 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
650 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
651 		rxd->rx_m = NULL;
652 		rxd->rx_le = &rd->msk_rx_ring[prod];
653 		if (msk_newbuf(sc_if, prod) != 0)
654 			return (ENOBUFS);
655 		MSK_INC(prod, MSK_RX_RING_CNT);
656 	}
657 
658 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
659 	    sc_if->msk_cdata.msk_rx_ring_map,
660 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
661 
662 	/* Update prefetch unit. */
663 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
664 	CSR_WRITE_2(sc_if->msk_softc,
665 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
666 	    sc_if->msk_cdata.msk_rx_prod);
667 
668 	return (0);
669 }
670 
671 static int
672 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
673 {
674 	struct msk_ring_data *rd;
675 	struct msk_rxdesc *rxd;
676 	int i, prod;
677 
678 	MSK_IF_LOCK_ASSERT(sc_if);
679 
680 	sc_if->msk_cdata.msk_rx_cons = 0;
681 	sc_if->msk_cdata.msk_rx_prod = 0;
682 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
683 
684 	rd = &sc_if->msk_rdata;
685 	bzero(rd->msk_jumbo_rx_ring,
686 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
687 	prod = sc_if->msk_cdata.msk_rx_prod;
688 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
689 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
690 		rxd->rx_m = NULL;
691 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
692 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
693 			return (ENOBUFS);
694 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
695 	}
696 
697 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
698 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
699 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
700 
701 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
702 	CSR_WRITE_2(sc_if->msk_softc,
703 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
704 	    sc_if->msk_cdata.msk_rx_prod);
705 
706 	return (0);
707 }
708 
709 static void
710 msk_init_tx_ring(struct msk_if_softc *sc_if)
711 {
712 	struct msk_ring_data *rd;
713 	struct msk_txdesc *txd;
714 	int i;
715 
716 	sc_if->msk_cdata.msk_tso_mtu = 0;
717 	sc_if->msk_cdata.msk_tx_prod = 0;
718 	sc_if->msk_cdata.msk_tx_cons = 0;
719 	sc_if->msk_cdata.msk_tx_cnt = 0;
720 
721 	rd = &sc_if->msk_rdata;
722 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
723 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
724 		txd = &sc_if->msk_cdata.msk_txdesc[i];
725 		txd->tx_m = NULL;
726 		txd->tx_le = &rd->msk_tx_ring[i];
727 	}
728 
729 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
730 	    sc_if->msk_cdata.msk_tx_ring_map,
731 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
732 }
733 
734 static __inline void
735 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
736 {
737 	struct msk_rx_desc *rx_le;
738 	struct msk_rxdesc *rxd;
739 	struct mbuf *m;
740 
741 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
742 	m = rxd->rx_m;
743 	rx_le = rxd->rx_le;
744 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
745 }
746 
747 static __inline void
748 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
749 {
750 	struct msk_rx_desc *rx_le;
751 	struct msk_rxdesc *rxd;
752 	struct mbuf *m;
753 
754 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
755 	m = rxd->rx_m;
756 	rx_le = rxd->rx_le;
757 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
758 }
759 
760 static int
761 msk_newbuf(struct msk_if_softc *sc_if, int idx)
762 {
763 	struct msk_rx_desc *rx_le;
764 	struct msk_rxdesc *rxd;
765 	struct mbuf *m;
766 	bus_dma_segment_t segs[1];
767 	bus_dmamap_t map;
768 	int nsegs;
769 
770 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
771 	if (m == NULL)
772 		return (ENOBUFS);
773 
774 	m->m_len = m->m_pkthdr.len = MCLBYTES;
775 	m_adj(m, ETHER_ALIGN);
776 
777 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
778 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
779 	    BUS_DMA_NOWAIT) != 0) {
780 		m_freem(m);
781 		return (ENOBUFS);
782 	}
783 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
784 
785 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
786 	if (rxd->rx_m != NULL) {
787 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
788 		    BUS_DMASYNC_POSTREAD);
789 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
790 	}
791 	map = rxd->rx_dmamap;
792 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
793 	sc_if->msk_cdata.msk_rx_sparemap = map;
794 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
795 	    BUS_DMASYNC_PREREAD);
796 	rxd->rx_m = m;
797 	rx_le = rxd->rx_le;
798 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
799 	rx_le->msk_control =
800 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
801 
802 	return (0);
803 }
804 
805 static int
806 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
807 {
808 	struct msk_rx_desc *rx_le;
809 	struct msk_rxdesc *rxd;
810 	struct mbuf *m;
811 	bus_dma_segment_t segs[1];
812 	bus_dmamap_t map;
813 	int nsegs;
814 	void *buf;
815 
816 	MGETHDR(m, M_DONTWAIT, MT_DATA);
817 	if (m == NULL)
818 		return (ENOBUFS);
819 	buf = msk_jalloc(sc_if);
820 	if (buf == NULL) {
821 		m_freem(m);
822 		return (ENOBUFS);
823 	}
824 	/* Attach the buffer to the mbuf. */
825 	MEXTADD(m, buf, MSK_JLEN, msk_jfree, (struct msk_if_softc *)sc_if, 0,
826 	    EXT_NET_DRV);
827 	if ((m->m_flags & M_EXT) == 0) {
828 		m_freem(m);
829 		return (ENOBUFS);
830 	}
831 	m->m_pkthdr.len = m->m_len = MSK_JLEN;
832 	m_adj(m, ETHER_ALIGN);
833 
834 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
835 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
836 	    BUS_DMA_NOWAIT) != 0) {
837 		m_freem(m);
838 		return (ENOBUFS);
839 	}
840 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
841 
842 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
843 	if (rxd->rx_m != NULL) {
844 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
845 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
846 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
847 		    rxd->rx_dmamap);
848 	}
849 	map = rxd->rx_dmamap;
850 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
851 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
852 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
853 	    BUS_DMASYNC_PREREAD);
854 	rxd->rx_m = m;
855 	rx_le = rxd->rx_le;
856 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
857 	rx_le->msk_control =
858 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
859 
860 	return (0);
861 }
862 
863 /*
864  * Set media options.
865  */
866 static int
867 msk_mediachange(struct ifnet *ifp)
868 {
869 	struct msk_if_softc *sc_if;
870 	struct mii_data	*mii;
871 
872 	sc_if = ifp->if_softc;
873 
874 	MSK_IF_LOCK(sc_if);
875 	mii = device_get_softc(sc_if->msk_miibus);
876 	mii_mediachg(mii);
877 	MSK_IF_UNLOCK(sc_if);
878 
879 	return (0);
880 }
881 
882 /*
883  * Report current media status.
884  */
885 static void
886 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
887 {
888 	struct msk_if_softc *sc_if;
889 	struct mii_data	*mii;
890 
891 	sc_if = ifp->if_softc;
892 	MSK_IF_LOCK(sc_if);
893 	mii = device_get_softc(sc_if->msk_miibus);
894 
895 	mii_pollstat(mii);
896 	MSK_IF_UNLOCK(sc_if);
897 	ifmr->ifm_active = mii->mii_media_active;
898 	ifmr->ifm_status = mii->mii_media_status;
899 }
900 
901 static int
902 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
903 {
904 	struct msk_if_softc *sc_if;
905 	struct ifreq *ifr;
906 	struct mii_data	*mii;
907 	int error, mask;
908 
909 	sc_if = ifp->if_softc;
910 	ifr = (struct ifreq *)data;
911 	error = 0;
912 
913 	switch(command) {
914 	case SIOCSIFMTU:
915 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
916 			error = EINVAL;
917 			break;
918 		}
919 		if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
920 		    ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
921 			error = EINVAL;
922 			break;
923 		}
924 		MSK_IF_LOCK(sc_if);
925 		ifp->if_mtu = ifr->ifr_mtu;
926 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
927 			msk_init_locked(sc_if);
928 		MSK_IF_UNLOCK(sc_if);
929 		break;
930 	case SIOCSIFFLAGS:
931 		MSK_IF_LOCK(sc_if);
932 		if ((ifp->if_flags & IFF_UP) != 0) {
933 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
934 				if (((ifp->if_flags ^ sc_if->msk_if_flags)
935 				    & IFF_PROMISC) != 0) {
936 					msk_setpromisc(sc_if);
937 					msk_setmulti(sc_if);
938 				}
939 			} else {
940 				if (sc_if->msk_detach == 0)
941 					msk_init_locked(sc_if);
942 			}
943 		} else {
944 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
945 				msk_stop(sc_if);
946 		}
947 		sc_if->msk_if_flags = ifp->if_flags;
948 		MSK_IF_UNLOCK(sc_if);
949 		break;
950 	case SIOCADDMULTI:
951 	case SIOCDELMULTI:
952 		MSK_IF_LOCK(sc_if);
953 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
954 			msk_setmulti(sc_if);
955 		MSK_IF_UNLOCK(sc_if);
956 		break;
957 	case SIOCGIFMEDIA:
958 	case SIOCSIFMEDIA:
959 		mii = device_get_softc(sc_if->msk_miibus);
960 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
961 		break;
962 	case SIOCSIFCAP:
963 		MSK_IF_LOCK(sc_if);
964 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
965 		if ((mask & IFCAP_TXCSUM) != 0) {
966 			ifp->if_capenable ^= IFCAP_TXCSUM;
967 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
968 			    (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
969 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
970 			else
971 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
972 		}
973 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
974 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
975 			msk_setvlan(sc_if, ifp);
976 		}
977 
978 		if ((mask & IFCAP_TSO4) != 0) {
979 			ifp->if_capenable ^= IFCAP_TSO4;
980 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0 &&
981 			    (IFCAP_TSO4 & ifp->if_capabilities) != 0)
982 				ifp->if_hwassist |= CSUM_TSO;
983 			else
984 				ifp->if_hwassist &= ~CSUM_TSO;
985 		}
986 		VLAN_CAPABILITIES(ifp);
987 		MSK_IF_UNLOCK(sc_if);
988 		break;
989 	default:
990 		error = ether_ioctl(ifp, command, data);
991 		break;
992 	}
993 
994 	return (error);
995 }
996 
997 static int
998 mskc_probe(device_t dev)
999 {
1000 	struct msk_product *mp;
1001 	uint16_t vendor, devid;
1002 	int i;
1003 
1004 	vendor = pci_get_vendor(dev);
1005 	devid = pci_get_device(dev);
1006 	mp = msk_products;
1007 	for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
1008 	    i++, mp++) {
1009 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1010 			device_set_desc(dev, mp->msk_name);
1011 			return (BUS_PROBE_DEFAULT);
1012 		}
1013 	}
1014 
1015 	return (ENXIO);
1016 }
1017 
1018 static int
1019 mskc_setup_rambuffer(struct msk_softc *sc)
1020 {
1021 	int totqsize, minqsize;
1022 	int avail, next;
1023 	int i;
1024 	uint8_t val;
1025 
1026 	/* Get adapter SRAM size. */
1027 	val = CSR_READ_1(sc, B2_E_0);
1028 	sc->msk_ramsize = (val == 0) ? 128 : val * 4;
1029 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE)
1030 		sc->msk_ramsize = 4 * 4;
1031 	if (bootverbose)
1032 		device_printf(sc->msk_dev,
1033 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1034 
1035 	totqsize = sc->msk_ramsize * sc->msk_num_port;
1036 	minqsize = MSK_MIN_RXQ_SIZE + MSK_MIN_TXQ_SIZE;
1037 	if (minqsize > sc->msk_ramsize)
1038 		minqsize = sc->msk_ramsize;
1039 
1040 	if (minqsize * sc->msk_num_port > totqsize) {
1041 		device_printf(sc->msk_dev,
1042 		    "not enough RAM buffer memory : %d/%dKB\n",
1043 		    minqsize * sc->msk_num_port, totqsize);
1044 		return (ENOSPC);
1045 	}
1046 
1047 	avail = totqsize;
1048 	if (sc->msk_num_port > 1) {
1049 		/*
1050 		 * Divide up the memory evenly so that everyone gets a
1051 		 * fair share for dual port adapters.
1052 		 */
1053 		avail = sc->msk_ramsize;
1054 	}
1055 
1056 	/* Take away the minimum memory for active queues. */
1057 	avail -= minqsize;
1058 	/* Rx queue gets the minimum + 80% of the rest. */
1059 	sc->msk_rxqsize =
1060 	    (avail * MSK_RAM_QUOTA_RX) / 100 + MSK_MIN_RXQ_SIZE;
1061 	avail -= (sc->msk_rxqsize - MSK_MIN_RXQ_SIZE);
1062 	sc->msk_txqsize = avail + MSK_MIN_TXQ_SIZE;
1063 
1064 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1065 		sc->msk_rxqstart[i] = next;
1066 		sc->msk_rxqend[i] = next + (sc->msk_rxqsize * 1024) - 1;
1067 		next = sc->msk_rxqend[i] + 1;
1068 		sc->msk_txqstart[i] = next;
1069 		sc->msk_txqend[i] = next + (sc->msk_txqsize * 1024) - 1;
1070 		next = sc->msk_txqend[i] + 1;
1071 		if (bootverbose) {
1072 			device_printf(sc->msk_dev,
1073 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1074 			    sc->msk_rxqsize, sc->msk_rxqstart[i],
1075 			    sc->msk_rxqend[i]);
1076 			device_printf(sc->msk_dev,
1077 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1078 			    sc->msk_txqsize, sc->msk_txqstart[i],
1079 			    sc->msk_txqend[i]);
1080 		}
1081 	}
1082 
1083 	return (0);
1084 }
1085 
1086 static void
1087 msk_phy_power(struct msk_softc *sc, int mode)
1088 {
1089 	uint32_t val;
1090 	int i;
1091 
1092 	switch (mode) {
1093 	case MSK_PHY_POWERUP:
1094 		/* Switch power to VCC (WA for VAUX problem). */
1095 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1096 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1097 		/* Disable Core Clock Division, set Clock Select to 0. */
1098 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1099 
1100 		val = 0;
1101 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1102 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1103 			/* Enable bits are inverted. */
1104 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1105 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1106 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1107 		}
1108 		/*
1109 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1110 		 */
1111 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1112 
1113 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1114 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1115 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1116 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1117 			/* Deassert Low Power for 1st PHY. */
1118 			val |= PCI_Y2_PHY1_COMA;
1119 			if (sc->msk_num_port > 1)
1120 				val |= PCI_Y2_PHY2_COMA;
1121 		} else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
1122 			uint32_t our;
1123 
1124 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1125 
1126 			/* Enable all clocks. */
1127 			pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1128 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1129 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1130 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1131 			/* Set all bits to 0 except bits 15..12. */
1132 			pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1133 			/* Set to default value. */
1134 			pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
1135 		}
1136 		/* Release PHY from PowerDown/COMA mode. */
1137 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1138 		for (i = 0; i < sc->msk_num_port; i++) {
1139 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1140 			    GMLC_RST_SET);
1141 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1142 			    GMLC_RST_CLR);
1143 		}
1144 		break;
1145 	case MSK_PHY_POWERDOWN:
1146 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1147 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1148 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1149 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1150 			val &= ~PCI_Y2_PHY1_COMA;
1151 			if (sc->msk_num_port > 1)
1152 				val &= ~PCI_Y2_PHY2_COMA;
1153 		}
1154 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1155 
1156 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1157 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1158 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1159 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1160 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1161 			/* Enable bits are inverted. */
1162 			val = 0;
1163 		}
1164 		/*
1165 		 * Disable PCI & Core Clock, disable clock gating for
1166 		 * both Links.
1167 		 */
1168 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1169 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1170 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1171 		break;
1172 	default:
1173 		break;
1174 	}
1175 }
1176 
1177 static void
1178 mskc_reset(struct msk_softc *sc)
1179 {
1180 	bus_addr_t addr;
1181 	uint16_t status;
1182 	uint32_t val;
1183 	int i;
1184 
1185 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1186 
1187 	/* Disable ASF. */
1188 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
1189 		CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1190 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1191 	}
1192 	/*
1193 	 * Since we disabled ASF, S/W reset is required for Power Management.
1194 	 */
1195 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1196 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1197 
1198 	/* Clear all error bits in the PCI status register. */
1199 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1200 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1201 
1202 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1203 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1204 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1205 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1206 
1207 	switch (sc->msk_bustype) {
1208 	case MSK_PEX_BUS:
1209 		/* Clear all PEX errors. */
1210 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1211 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1212 		if ((val & PEX_RX_OV) != 0) {
1213 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1214 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1215 		}
1216 		break;
1217 	case MSK_PCI_BUS:
1218 	case MSK_PCIX_BUS:
1219 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1220 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1221 		if (val == 0)
1222 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1223 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1224 			/* Set Cache Line Size opt. */
1225 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1226 			val |= PCI_CLS_OPT;
1227 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1228 		}
1229 		break;
1230 	}
1231 	/* Set PHY power state. */
1232 	msk_phy_power(sc, MSK_PHY_POWERUP);
1233 
1234 	/* Reset GPHY/GMAC Control */
1235 	for (i = 0; i < sc->msk_num_port; i++) {
1236 		/* GPHY Control reset. */
1237 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1238 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1239 		/* GMAC Control reset. */
1240 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1241 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1242 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1243 	}
1244 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1245 
1246 	/* LED On. */
1247 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1248 
1249 	/* Clear TWSI IRQ. */
1250 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1251 
1252 	/* Turn off hardware timer. */
1253 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1254 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1255 
1256 	/* Turn off descriptor polling. */
1257 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1258 
1259 	/* Turn off time stamps. */
1260 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1261 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1262 
1263 	/* Configure timeout values. */
1264 	for (i = 0; i < sc->msk_num_port; i++) {
1265 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1266 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1267 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1268 		    MSK_RI_TO_53);
1269 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1270 		    MSK_RI_TO_53);
1271 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1272 		    MSK_RI_TO_53);
1273 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1274 		    MSK_RI_TO_53);
1275 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1276 		    MSK_RI_TO_53);
1277 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1278 		    MSK_RI_TO_53);
1279 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1280 		    MSK_RI_TO_53);
1281 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1282 		    MSK_RI_TO_53);
1283 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1284 		    MSK_RI_TO_53);
1285 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1286 		    MSK_RI_TO_53);
1287 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1288 		    MSK_RI_TO_53);
1289 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1290 		    MSK_RI_TO_53);
1291 	}
1292 
1293 	/* Disable all interrupts. */
1294 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1295 	CSR_READ_4(sc, B0_HWE_IMSK);
1296 	CSR_WRITE_4(sc, B0_IMSK, 0);
1297 	CSR_READ_4(sc, B0_IMSK);
1298 
1299         /*
1300          * On dual port PCI-X card, there is an problem where status
1301          * can be received out of order due to split transactions.
1302          */
1303 	if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
1304 		int pcix;
1305 		uint16_t pcix_cmd;
1306 
1307 		if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &pcix) == 0) {
1308 			pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
1309 			/* Clear Max Outstanding Split Transactions. */
1310 			pcix_cmd &= ~0x70;
1311 			CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1312 			pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
1313 			CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1314 		}
1315         }
1316 	if (sc->msk_bustype == MSK_PEX_BUS) {
1317 		uint16_t v, width;
1318 
1319 		v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
1320 		/* Change Max. Read Request Size to 4096 bytes. */
1321 		v &= ~PEX_DC_MAX_RRS_MSK;
1322 		v |= PEX_DC_MAX_RD_RQ_SIZE(5);
1323 		pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
1324 		width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
1325 		width = (width & PEX_LS_LINK_WI_MSK) >> 4;
1326 		v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
1327 		v = (v & PEX_LS_LINK_WI_MSK) >> 4;
1328 		if (v != width)
1329 			device_printf(sc->msk_dev,
1330 			    "negotiated width of link(x%d) != "
1331 			    "max. width of link(x%d)\n", width, v);
1332 	}
1333 
1334 	/* Clear status list. */
1335 	bzero(sc->msk_stat_ring,
1336 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1337 	sc->msk_stat_cons = 0;
1338 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1339 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1340 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1341 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1342 	/* Set the status list base address. */
1343 	addr = sc->msk_stat_ring_paddr;
1344 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1345 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1346 	/* Set the status list last index. */
1347 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1348 	if (HW_FEATURE(sc, HWF_WA_DEV_43_418)) {
1349 		/* WA for dev. #4.3 */
1350 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1351 		/* WA for dev. #4.18 */
1352 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1353 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1354 	} else {
1355 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1356 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1357 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM,
1358 		    HW_FEATURE(sc, HWF_WA_DEV_4109) ? 0x10 : 0x04);
1359 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1360 	}
1361 	/*
1362 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1363 	 */
1364 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1365 
1366 	/* Enable status unit. */
1367 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1368 
1369 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1370 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1371 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1372 }
1373 
1374 static int
1375 msk_probe(device_t dev)
1376 {
1377 	struct msk_softc *sc;
1378 	char desc[100];
1379 
1380 	sc = device_get_softc(device_get_parent(dev));
1381 	/*
1382 	 * Not much to do here. We always know there will be
1383 	 * at least one GMAC present, and if there are two,
1384 	 * mskc_attach() will create a second device instance
1385 	 * for us.
1386 	 */
1387 	snprintf(desc, sizeof(desc),
1388 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1389 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1390 	    sc->msk_hw_rev);
1391 	device_set_desc_copy(dev, desc);
1392 
1393 	return (BUS_PROBE_DEFAULT);
1394 }
1395 
1396 static int
1397 msk_attach(device_t dev)
1398 {
1399 	struct msk_softc *sc;
1400 	struct msk_if_softc *sc_if;
1401 	struct ifnet *ifp;
1402 	int i, port, error;
1403 	uint8_t eaddr[6];
1404 
1405 	if (dev == NULL)
1406 		return (EINVAL);
1407 
1408 	error = 0;
1409 	sc_if = device_get_softc(dev);
1410 	sc = device_get_softc(device_get_parent(dev));
1411 	port = *(int *)device_get_ivars(dev);
1412 
1413 	sc_if->msk_if_dev = dev;
1414 	sc_if->msk_port = port;
1415 	sc_if->msk_softc = sc;
1416 	sc->msk_if[port] = sc_if;
1417 	/* Setup Tx/Rx queue register offsets. */
1418 	if (port == MSK_PORT_A) {
1419 		sc_if->msk_txq = Q_XA1;
1420 		sc_if->msk_txsq = Q_XS1;
1421 		sc_if->msk_rxq = Q_R1;
1422 	} else {
1423 		sc_if->msk_txq = Q_XA2;
1424 		sc_if->msk_txsq = Q_XS2;
1425 		sc_if->msk_rxq = Q_R2;
1426 	}
1427 
1428 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1429 	TASK_INIT(&sc_if->msk_link_task, 0, msk_link_task, sc_if);
1430 
1431 	if ((error = msk_txrx_dma_alloc(sc_if) != 0))
1432 		goto fail;
1433 
1434 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1435 	if (ifp == NULL) {
1436 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1437 		error = ENOSPC;
1438 		goto fail;
1439 	}
1440 	ifp->if_softc = sc_if;
1441 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1442 	ifp->if_mtu = ETHERMTU;
1443 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1444 	/*
1445 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1446 	 * has serious bug in Rx checksum offload for all Yukon II family
1447 	 * hardware. It seems there is a workaround to make it work somtimes.
1448 	 * However, the workaround also have to check OP code sequences to
1449 	 * verify whether the OP code is correct. Sometimes it should compute
1450 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1451 	 * checksum computed by hardware. If you have to compute checksum
1452 	 * with software to verify the hardware's checksum why have hardware
1453 	 * compute the checksum? I think there is no reason to spend time to
1454 	 * make Rx checksum offload work on Yukon II hardware.
1455 	 */
1456 	ifp->if_capabilities = IFCAP_TXCSUM;
1457 	ifp->if_hwassist = MSK_CSUM_FEATURES;
1458 	if (sc->msk_hw_id != CHIP_ID_YUKON_EC_U) {
1459 		/* It seems Yukon EC Ultra doesn't support TSO. */
1460 		ifp->if_capabilities |= IFCAP_TSO4;
1461 		ifp->if_hwassist |= CSUM_TSO;
1462 	}
1463 	ifp->if_capenable = ifp->if_capabilities;
1464 	ifp->if_ioctl = msk_ioctl;
1465 	ifp->if_start = msk_start;
1466 	ifp->if_timer = 0;
1467 	ifp->if_watchdog = NULL;
1468 	ifp->if_init = msk_init;
1469 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1470 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1471 	IFQ_SET_READY(&ifp->if_snd);
1472 
1473 	TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp);
1474 
1475 	/*
1476 	 * Get station address for this interface. Note that
1477 	 * dual port cards actually come with three station
1478 	 * addresses: one for each port, plus an extra. The
1479 	 * extra one is used by the SysKonnect driver software
1480 	 * as a 'virtual' station address for when both ports
1481 	 * are operating in failover mode. Currently we don't
1482 	 * use this extra address.
1483 	 */
1484 	MSK_IF_LOCK(sc_if);
1485 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1486 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1487 
1488 	/*
1489 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1490 	 */
1491 	MSK_IF_UNLOCK(sc_if);
1492 	ether_ifattach(ifp, eaddr);
1493 	MSK_IF_LOCK(sc_if);
1494 
1495 	/* VLAN capability setup */
1496         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1497 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1498 		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1499 	ifp->if_capenable = ifp->if_capabilities;
1500 
1501 	/*
1502 	 * Tell the upper layer(s) we support long frames.
1503 	 * Must appear after the call to ether_ifattach() because
1504 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1505 	 */
1506         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1507 
1508 	/*
1509 	 * Do miibus setup.
1510 	 */
1511 	MSK_IF_UNLOCK(sc_if);
1512 	error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
1513 	    msk_mediastatus);
1514 	if (error != 0) {
1515 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1516 		ether_ifdetach(ifp);
1517 		error = ENXIO;
1518 		goto fail;
1519 	}
1520 	/* Check whether PHY Id is MARVELL. */
1521 	if (msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_ID0)
1522 	    == PHY_MARV_ID0_VAL)
1523 		sc->msk_marvell_phy = 1;
1524 
1525 fail:
1526 	if (error != 0) {
1527 		/* Access should be ok even though lock has been dropped */
1528 		sc->msk_if[port] = NULL;
1529 		msk_detach(dev);
1530 	}
1531 
1532 	return (error);
1533 }
1534 
1535 /*
1536  * Attach the interface. Allocate softc structures, do ifmedia
1537  * setup and ethernet/BPF attach.
1538  */
1539 static int
1540 mskc_attach(device_t dev)
1541 {
1542 	struct msk_softc *sc;
1543 	int error, msic, *port, reg;
1544 
1545 	sc = device_get_softc(dev);
1546 	sc->msk_dev = dev;
1547 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1548 	    MTX_DEF);
1549 
1550 	/*
1551 	 * Map control/status registers.
1552 	 */
1553 	pci_enable_busmaster(dev);
1554 
1555 	/* Allocate I/O resource */
1556 #ifdef MSK_USEIOSPACE
1557 	sc->msk_res_spec = msk_res_spec_io;
1558 #else
1559 	sc->msk_res_spec = msk_res_spec_mem;
1560 #endif
1561 	sc->msk_irq_spec = msk_irq_spec_legacy;
1562 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1563 	if (error) {
1564 		if (sc->msk_res_spec == msk_res_spec_mem)
1565 			sc->msk_res_spec = msk_res_spec_io;
1566 		else
1567 			sc->msk_res_spec = msk_res_spec_mem;
1568 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1569 		if (error) {
1570 			device_printf(dev, "couldn't allocate %s resources\n",
1571 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1572 			    "I/O");
1573 			mtx_destroy(&sc->msk_mtx);
1574 			return (ENXIO);
1575 		}
1576 	}
1577 
1578 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1579 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1580 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1581 	/* Bail out if chip is not recognized. */
1582 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1583 	    sc->msk_hw_id > CHIP_ID_YUKON_FE) {
1584 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1585 		    sc->msk_hw_id, sc->msk_hw_rev);
1586 		mtx_destroy(&sc->msk_mtx);
1587 		return (ENXIO);
1588 	}
1589 
1590 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1591 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1592 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1593 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1594 	    "max number of Rx events to process");
1595 
1596 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1597 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1598 	    "process_limit", &sc->msk_process_limit);
1599 	if (error == 0) {
1600 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1601 		    sc->msk_process_limit > MSK_PROC_MAX) {
1602 			device_printf(dev, "process_limit value out of range; "
1603 			    "using default: %d\n", MSK_PROC_DEFAULT);
1604 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1605 		}
1606 	}
1607 
1608 	/* Soft reset. */
1609 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1610 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1611 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1612 	 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1613 		 sc->msk_coppertype = 0;
1614 	 else
1615 		 sc->msk_coppertype = 1;
1616 	/* Check number of MACs. */
1617 	sc->msk_num_port = 1;
1618 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1619 	    CFG_DUAL_MAC_MSK) {
1620 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1621 			sc->msk_num_port++;
1622 	}
1623 
1624 	/* Check bus type. */
1625 	if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0)
1626 		sc->msk_bustype = MSK_PEX_BUS;
1627 	else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0)
1628 		sc->msk_bustype = MSK_PCIX_BUS;
1629 	else
1630 		sc->msk_bustype = MSK_PCI_BUS;
1631 
1632 	/* Get H/W features(bugs). */
1633 	switch (sc->msk_hw_id) {
1634 	case CHIP_ID_YUKON_EC:
1635 		sc->msk_clock = 125;	/* 125 Mhz */
1636 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1637 			sc->msk_hw_feature =
1638 			    HWF_WA_DEV_42  | HWF_WA_DEV_46 | HWF_WA_DEV_43_418 |
1639 			    HWF_WA_DEV_420 | HWF_WA_DEV_423 |
1640 			    HWF_WA_DEV_424 | HWF_WA_DEV_425 | HWF_WA_DEV_427 |
1641 			    HWF_WA_DEV_428 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
1642 			    HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
1643 		} else {
1644 			/* A2/A3 */
1645 			sc->msk_hw_feature =
1646 			    HWF_WA_DEV_424 | HWF_WA_DEV_425 | HWF_WA_DEV_427 |
1647 			    HWF_WA_DEV_428 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
1648 			    HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
1649 		}
1650 		break;
1651 	case CHIP_ID_YUKON_EC_U:
1652 		sc->msk_clock = 125;	/* 125 Mhz */
1653 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
1654 			sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_483 |
1655 			    HWF_WA_DEV_4109;
1656 		} else if (sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1657 			uint16_t v;
1658 
1659 			sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_4109 |
1660 			    HWF_WA_DEV_4185;
1661 			v = CSR_READ_2(sc, Q_ADDR(Q_XA1, Q_WM));
1662 			if (v == 0)
1663 				sc->msk_hw_feature |= HWF_WA_DEV_4185CS |
1664 				    HWF_WA_DEV_4200;
1665 		}
1666 		break;
1667 	case CHIP_ID_YUKON_FE:
1668 		sc->msk_clock = 100;	/* 100 Mhz */
1669 		sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_4109 |
1670 		    HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
1671 		break;
1672 	case CHIP_ID_YUKON_XL:
1673 		sc->msk_clock = 156;	/* 156 Mhz */
1674 		switch (sc->msk_hw_rev) {
1675 		case CHIP_REV_YU_XL_A0:
1676 			sc->msk_hw_feature =
1677 			    HWF_WA_DEV_427 | HWF_WA_DEV_463 | HWF_WA_DEV_472 |
1678 			    HWF_WA_DEV_479 | HWF_WA_DEV_483 | HWF_WA_DEV_4115 |
1679 			    HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
1680 			break;
1681 		case CHIP_REV_YU_XL_A1:
1682 			sc->msk_hw_feature =
1683 			    HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
1684 			    HWF_WA_DEV_4115 | HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
1685 			break;
1686 		case CHIP_REV_YU_XL_A2:
1687 			sc->msk_hw_feature =
1688 			    HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
1689 			    HWF_WA_DEV_4115 | HWF_WA_DEV_4167;
1690 			break;
1691 		case CHIP_REV_YU_XL_A3:
1692 			sc->msk_hw_feature =
1693 			    HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
1694 			    HWF_WA_DEV_4115;
1695 		}
1696 		break;
1697 	default:
1698 		sc->msk_clock = 156;	/* 156 Mhz */
1699 		sc->msk_hw_feature = 0;
1700 	}
1701 
1702 	/* Allocate IRQ resources. */
1703 	msic = pci_msi_count(dev);
1704 	if (bootverbose)
1705 		device_printf(dev, "MSI count : %d\n", msic);
1706 	/*
1707 	 * The Yukon II reports it can handle two messages, one for each
1708 	 * possible port.  We go ahead and allocate two messages and only
1709 	 * setup a handler for both if we have a dual port card.
1710 	 *
1711 	 * XXX: I haven't untangled the interrupt handler to handle dual
1712 	 * port cards with separate MSI messages, so for now I disable MSI
1713 	 * on dual port cards.
1714 	 */
1715 	if (legacy_intr != 0)
1716 		msi_disable = 1;
1717 	if (msic == 2 && msi_disable == 0 && sc->msk_num_port == 1 &&
1718 	    pci_alloc_msi(dev, &msic) == 0) {
1719 		if (msic == 2) {
1720 			sc->msk_msi = 1;
1721 			sc->msk_irq_spec = msk_irq_spec_msi;
1722 		} else
1723 			pci_release_msi(dev);
1724 	}
1725 
1726 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1727 	if (error) {
1728 		device_printf(dev, "couldn't allocate IRQ resources\n");
1729 		goto fail;
1730 	}
1731 
1732 	if ((error = msk_status_dma_alloc(sc)) != 0)
1733 		goto fail;
1734 
1735 	/* Set base interrupt mask. */
1736 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1737 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1738 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1739 
1740 	/* Reset the adapter. */
1741 	mskc_reset(sc);
1742 
1743 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1744 		goto fail;
1745 
1746 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1747 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1748 		device_printf(dev, "failed to add child for PORT_A\n");
1749 		error = ENXIO;
1750 		goto fail;
1751 	}
1752 	port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1753 	if (port == NULL) {
1754 		device_printf(dev, "failed to allocate memory for "
1755 		    "ivars of PORT_A\n");
1756 		error = ENXIO;
1757 		goto fail;
1758 	}
1759 	*port = MSK_PORT_A;
1760 	device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1761 
1762 	if (sc->msk_num_port > 1) {
1763 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1764 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1765 			device_printf(dev, "failed to add child for PORT_B\n");
1766 			error = ENXIO;
1767 			goto fail;
1768 		}
1769 		port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1770 		if (port == NULL) {
1771 			device_printf(dev, "failed to allocate memory for "
1772 			    "ivars of PORT_B\n");
1773 			error = ENXIO;
1774 			goto fail;
1775 		}
1776 		*port = MSK_PORT_B;
1777 		device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1778 	}
1779 
1780 	error = bus_generic_attach(dev);
1781 	if (error) {
1782 		device_printf(dev, "failed to attach port(s)\n");
1783 		goto fail;
1784 	}
1785 
1786 	/* Hook interrupt last to avoid having to lock softc. */
1787 	if (legacy_intr)
1788 		error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1789 		    INTR_MPSAFE, NULL, msk_legacy_intr, sc,
1790 		    &sc->msk_intrhand[0]);
1791 	else {
1792 		TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc);
1793 		sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK,
1794 		    taskqueue_thread_enqueue, &sc->msk_tq);
1795 		taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq",
1796 		    device_get_nameunit(sc->msk_dev));
1797 		error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1798 		    INTR_MPSAFE, msk_intr, NULL, sc, &sc->msk_intrhand[0]);
1799 	}
1800 
1801 	if (error != 0) {
1802 		device_printf(dev, "couldn't set up interrupt handler\n");
1803 		if (legacy_intr == 0)
1804 			taskqueue_free(sc->msk_tq);
1805 		sc->msk_tq = NULL;
1806 		goto fail;
1807 	}
1808 fail:
1809 	if (error != 0)
1810 		mskc_detach(dev);
1811 
1812 	return (error);
1813 }
1814 
1815 /*
1816  * Shutdown hardware and free up resources. This can be called any
1817  * time after the mutex has been initialized. It is called in both
1818  * the error case in attach and the normal detach case so it needs
1819  * to be careful about only freeing resources that have actually been
1820  * allocated.
1821  */
1822 static int
1823 msk_detach(device_t dev)
1824 {
1825 	struct msk_softc *sc;
1826 	struct msk_if_softc *sc_if;
1827 	struct ifnet *ifp;
1828 
1829 	sc_if = device_get_softc(dev);
1830 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
1831 	    ("msk mutex not initialized in msk_detach"));
1832 	MSK_IF_LOCK(sc_if);
1833 
1834 	ifp = sc_if->msk_ifp;
1835 	if (device_is_attached(dev)) {
1836 		/* XXX */
1837 		sc_if->msk_detach = 1;
1838 		msk_stop(sc_if);
1839 		/* Can't hold locks while calling detach. */
1840 		MSK_IF_UNLOCK(sc_if);
1841 		callout_drain(&sc_if->msk_tick_ch);
1842 		taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task);
1843 		taskqueue_drain(taskqueue_swi, &sc_if->msk_link_task);
1844 		ether_ifdetach(ifp);
1845 		MSK_IF_LOCK(sc_if);
1846 	}
1847 
1848 	/*
1849 	 * We're generally called from mskc_detach() which is using
1850 	 * device_delete_child() to get to here. It's already trashed
1851 	 * miibus for us, so don't do it here or we'll panic.
1852 	 *
1853 	 * if (sc_if->msk_miibus != NULL) {
1854 	 * 	device_delete_child(dev, sc_if->msk_miibus);
1855 	 * 	sc_if->msk_miibus = NULL;
1856 	 * }
1857 	 */
1858 
1859 	msk_txrx_dma_free(sc_if);
1860 	bus_generic_detach(dev);
1861 
1862 	if (ifp)
1863 		if_free(ifp);
1864 	sc = sc_if->msk_softc;
1865 	sc->msk_if[sc_if->msk_port] = NULL;
1866 	MSK_IF_UNLOCK(sc_if);
1867 
1868 	return (0);
1869 }
1870 
1871 static int
1872 mskc_detach(device_t dev)
1873 {
1874 	struct msk_softc *sc;
1875 
1876 	sc = device_get_softc(dev);
1877 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
1878 
1879 	if (device_is_alive(dev)) {
1880 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
1881 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
1882 			    M_DEVBUF);
1883 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
1884 		}
1885 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
1886 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
1887 			    M_DEVBUF);
1888 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
1889 		}
1890 		bus_generic_detach(dev);
1891 	}
1892 
1893 	/* Disable all interrupts. */
1894 	CSR_WRITE_4(sc, B0_IMSK, 0);
1895 	CSR_READ_4(sc, B0_IMSK);
1896 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1897 	CSR_READ_4(sc, B0_HWE_IMSK);
1898 
1899 	/* LED Off. */
1900 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1901 
1902 	/* Put hardware reset. */
1903 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1904 
1905 	msk_status_dma_free(sc);
1906 
1907 	if (legacy_intr == 0 && sc->msk_tq != NULL) {
1908 		taskqueue_drain(sc->msk_tq, &sc->msk_int_task);
1909 		taskqueue_free(sc->msk_tq);
1910 		sc->msk_tq = NULL;
1911 	}
1912 	if (sc->msk_intrhand[0]) {
1913 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1914 		sc->msk_intrhand[0] = NULL;
1915 	}
1916 	if (sc->msk_intrhand[1]) {
1917 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1918 		sc->msk_intrhand[1] = NULL;
1919 	}
1920 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1921 	if (sc->msk_msi)
1922 		pci_release_msi(dev);
1923 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
1924 	mtx_destroy(&sc->msk_mtx);
1925 
1926 	return (0);
1927 }
1928 
1929 struct msk_dmamap_arg {
1930 	bus_addr_t	msk_busaddr;
1931 };
1932 
1933 static void
1934 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1935 {
1936 	struct msk_dmamap_arg *ctx;
1937 
1938 	if (error != 0)
1939 		return;
1940 	ctx = arg;
1941 	ctx->msk_busaddr = segs[0].ds_addr;
1942 }
1943 
1944 /* Create status DMA region. */
1945 static int
1946 msk_status_dma_alloc(struct msk_softc *sc)
1947 {
1948 	struct msk_dmamap_arg ctx;
1949 	int error;
1950 
1951 	error = bus_dma_tag_create(
1952 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
1953 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
1954 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1955 		    BUS_SPACE_MAXADDR,		/* highaddr */
1956 		    NULL, NULL,			/* filter, filterarg */
1957 		    MSK_STAT_RING_SZ,		/* maxsize */
1958 		    1,				/* nsegments */
1959 		    MSK_STAT_RING_SZ,		/* maxsegsize */
1960 		    0,				/* flags */
1961 		    NULL, NULL,			/* lockfunc, lockarg */
1962 		    &sc->msk_stat_tag);
1963 	if (error != 0) {
1964 		device_printf(sc->msk_dev,
1965 		    "failed to create status DMA tag\n");
1966 		return (error);
1967 	}
1968 
1969 	/* Allocate DMA'able memory and load the DMA map for status ring. */
1970 	error = bus_dmamem_alloc(sc->msk_stat_tag,
1971 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
1972 	    BUS_DMA_ZERO, &sc->msk_stat_map);
1973 	if (error != 0) {
1974 		device_printf(sc->msk_dev,
1975 		    "failed to allocate DMA'able memory for status ring\n");
1976 		return (error);
1977 	}
1978 
1979 	ctx.msk_busaddr = 0;
1980 	error = bus_dmamap_load(sc->msk_stat_tag,
1981 	    sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
1982 	    msk_dmamap_cb, &ctx, 0);
1983 	if (error != 0) {
1984 		device_printf(sc->msk_dev,
1985 		    "failed to load DMA'able memory for status ring\n");
1986 		return (error);
1987 	}
1988 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
1989 
1990 	return (0);
1991 }
1992 
1993 static void
1994 msk_status_dma_free(struct msk_softc *sc)
1995 {
1996 
1997 	/* Destroy status block. */
1998 	if (sc->msk_stat_tag) {
1999 		if (sc->msk_stat_map) {
2000 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
2001 			if (sc->msk_stat_ring) {
2002 				bus_dmamem_free(sc->msk_stat_tag,
2003 				    sc->msk_stat_ring, sc->msk_stat_map);
2004 				sc->msk_stat_ring = NULL;
2005 			}
2006 			sc->msk_stat_map = NULL;
2007 		}
2008 		bus_dma_tag_destroy(sc->msk_stat_tag);
2009 		sc->msk_stat_tag = NULL;
2010 	}
2011 }
2012 
2013 static int
2014 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2015 {
2016 	struct msk_dmamap_arg ctx;
2017 	struct msk_txdesc *txd;
2018 	struct msk_rxdesc *rxd;
2019 	struct msk_rxdesc *jrxd;
2020 	struct msk_jpool_entry *entry;
2021 	uint8_t *ptr;
2022 	int error, i;
2023 
2024 	mtx_init(&sc_if->msk_jlist_mtx, "msk_jlist_mtx", NULL, MTX_DEF);
2025 	SLIST_INIT(&sc_if->msk_jfree_listhead);
2026 	SLIST_INIT(&sc_if->msk_jinuse_listhead);
2027 
2028 	/* Create parent DMA tag. */
2029 	/*
2030 	 * XXX
2031 	 * It seems that Yukon II supports full 64bits DMA operations. But
2032 	 * it needs two descriptors(list elements) for 64bits DMA operations.
2033 	 * Since we don't know what DMA address mappings(32bits or 64bits)
2034 	 * would be used in advance for each mbufs, we limits its DMA space
2035 	 * to be in range of 32bits address space. Otherwise, we should check
2036 	 * what DMA address is used and chain another descriptor for the
2037 	 * 64bits DMA operation. This also means descriptor ring size is
2038 	 * variable. Limiting DMA address to be in 32bit address space greatly
2039 	 * simplyfies descriptor handling and possibly would increase
2040 	 * performance a bit due to efficient handling of descriptors.
2041 	 * Apart from harassing checksum offloading mechanisms, it seems
2042 	 * it's really bad idea to use a seperate descriptor for 64bit
2043 	 * DMA operation to save small descriptor memory. Anyway, I've
2044 	 * never seen these exotic scheme on ethernet interface hardware.
2045 	 */
2046 	error = bus_dma_tag_create(
2047 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2048 		    1, 0,			/* alignment, boundary */
2049 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2050 		    BUS_SPACE_MAXADDR,		/* highaddr */
2051 		    NULL, NULL,			/* filter, filterarg */
2052 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2053 		    0,				/* nsegments */
2054 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2055 		    0,				/* flags */
2056 		    NULL, NULL,			/* lockfunc, lockarg */
2057 		    &sc_if->msk_cdata.msk_parent_tag);
2058 	if (error != 0) {
2059 		device_printf(sc_if->msk_if_dev,
2060 		    "failed to create parent DMA tag\n");
2061 		goto fail;
2062 	}
2063 	/* Create tag for Tx ring. */
2064 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2065 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2066 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2067 		    BUS_SPACE_MAXADDR,		/* highaddr */
2068 		    NULL, NULL,			/* filter, filterarg */
2069 		    MSK_TX_RING_SZ,		/* maxsize */
2070 		    1,				/* nsegments */
2071 		    MSK_TX_RING_SZ,		/* maxsegsize */
2072 		    0,				/* flags */
2073 		    NULL, NULL,			/* lockfunc, lockarg */
2074 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2075 	if (error != 0) {
2076 		device_printf(sc_if->msk_if_dev,
2077 		    "failed to create Tx ring DMA tag\n");
2078 		goto fail;
2079 	}
2080 
2081 	/* Create tag for Rx ring. */
2082 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2083 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2084 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2085 		    BUS_SPACE_MAXADDR,		/* highaddr */
2086 		    NULL, NULL,			/* filter, filterarg */
2087 		    MSK_RX_RING_SZ,		/* maxsize */
2088 		    1,				/* nsegments */
2089 		    MSK_RX_RING_SZ,		/* maxsegsize */
2090 		    0,				/* flags */
2091 		    NULL, NULL,			/* lockfunc, lockarg */
2092 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2093 	if (error != 0) {
2094 		device_printf(sc_if->msk_if_dev,
2095 		    "failed to create Rx ring DMA tag\n");
2096 		goto fail;
2097 	}
2098 
2099 	/* Create tag for jumbo Rx ring. */
2100 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2101 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2102 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2103 		    BUS_SPACE_MAXADDR,		/* highaddr */
2104 		    NULL, NULL,			/* filter, filterarg */
2105 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2106 		    1,				/* nsegments */
2107 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2108 		    0,				/* flags */
2109 		    NULL, NULL,			/* lockfunc, lockarg */
2110 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2111 	if (error != 0) {
2112 		device_printf(sc_if->msk_if_dev,
2113 		    "failed to create jumbo Rx ring DMA tag\n");
2114 		goto fail;
2115 	}
2116 
2117 	/* Create tag for jumbo buffer blocks. */
2118 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2119 		    PAGE_SIZE, 0,		/* alignment, boundary */
2120 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2121 		    BUS_SPACE_MAXADDR,		/* highaddr */
2122 		    NULL, NULL,			/* filter, filterarg */
2123 		    MSK_JMEM,			/* maxsize */
2124 		    1,				/* nsegments */
2125 		    MSK_JMEM,			/* maxsegsize */
2126 		    0,				/* flags */
2127 		    NULL, NULL,			/* lockfunc, lockarg */
2128 		    &sc_if->msk_cdata.msk_jumbo_tag);
2129 	if (error != 0) {
2130 		device_printf(sc_if->msk_if_dev,
2131 		    "failed to create jumbo Rx buffer block DMA tag\n");
2132 		goto fail;
2133 	}
2134 
2135 	/* Create tag for Tx buffers. */
2136 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2137 		    1, 0,			/* alignment, boundary */
2138 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2139 		    BUS_SPACE_MAXADDR,		/* highaddr */
2140 		    NULL, NULL,			/* filter, filterarg */
2141 		    MSK_TSO_MAXSIZE,		/* maxsize */
2142 		    MSK_MAXTXSEGS,		/* nsegments */
2143 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2144 		    0,				/* flags */
2145 		    NULL, NULL,			/* lockfunc, lockarg */
2146 		    &sc_if->msk_cdata.msk_tx_tag);
2147 	if (error != 0) {
2148 		device_printf(sc_if->msk_if_dev,
2149 		    "failed to create Tx DMA tag\n");
2150 		goto fail;
2151 	}
2152 
2153 	/* Create tag for Rx buffers. */
2154 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2155 		    1, 0,			/* alignment, boundary */
2156 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2157 		    BUS_SPACE_MAXADDR,		/* highaddr */
2158 		    NULL, NULL,			/* filter, filterarg */
2159 		    MCLBYTES,			/* maxsize */
2160 		    1,				/* nsegments */
2161 		    MCLBYTES,			/* maxsegsize */
2162 		    0,				/* flags */
2163 		    NULL, NULL,			/* lockfunc, lockarg */
2164 		    &sc_if->msk_cdata.msk_rx_tag);
2165 	if (error != 0) {
2166 		device_printf(sc_if->msk_if_dev,
2167 		    "failed to create Rx DMA tag\n");
2168 		goto fail;
2169 	}
2170 
2171 	/* Create tag for jumbo Rx buffers. */
2172 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2173 		    PAGE_SIZE, 0,		/* alignment, boundary */
2174 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2175 		    BUS_SPACE_MAXADDR,		/* highaddr */
2176 		    NULL, NULL,			/* filter, filterarg */
2177 		    MCLBYTES * MSK_MAXRXSEGS,	/* maxsize */
2178 		    MSK_MAXRXSEGS,		/* nsegments */
2179 		    MSK_JLEN,			/* maxsegsize */
2180 		    0,				/* flags */
2181 		    NULL, NULL,			/* lockfunc, lockarg */
2182 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2183 	if (error != 0) {
2184 		device_printf(sc_if->msk_if_dev,
2185 		    "failed to create jumbo Rx DMA tag\n");
2186 		goto fail;
2187 	}
2188 
2189 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2190 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2191 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2192 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2193 	if (error != 0) {
2194 		device_printf(sc_if->msk_if_dev,
2195 		    "failed to allocate DMA'able memory for Tx ring\n");
2196 		goto fail;
2197 	}
2198 
2199 	ctx.msk_busaddr = 0;
2200 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2201 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2202 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2203 	if (error != 0) {
2204 		device_printf(sc_if->msk_if_dev,
2205 		    "failed to load DMA'able memory for Tx ring\n");
2206 		goto fail;
2207 	}
2208 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2209 
2210 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2211 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2212 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2213 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2214 	if (error != 0) {
2215 		device_printf(sc_if->msk_if_dev,
2216 		    "failed to allocate DMA'able memory for Rx ring\n");
2217 		goto fail;
2218 	}
2219 
2220 	ctx.msk_busaddr = 0;
2221 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2222 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2223 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2224 	if (error != 0) {
2225 		device_printf(sc_if->msk_if_dev,
2226 		    "failed to load DMA'able memory for Rx ring\n");
2227 		goto fail;
2228 	}
2229 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2230 
2231 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2232 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2233 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2234 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2235 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2236 	if (error != 0) {
2237 		device_printf(sc_if->msk_if_dev,
2238 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2239 		goto fail;
2240 	}
2241 
2242 	ctx.msk_busaddr = 0;
2243 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2244 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2245 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2246 	    msk_dmamap_cb, &ctx, 0);
2247 	if (error != 0) {
2248 		device_printf(sc_if->msk_if_dev,
2249 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2250 		goto fail;
2251 	}
2252 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2253 
2254 	/* Create DMA maps for Tx buffers. */
2255 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2256 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2257 		txd->tx_m = NULL;
2258 		txd->tx_dmamap = NULL;
2259 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2260 		    &txd->tx_dmamap);
2261 		if (error != 0) {
2262 			device_printf(sc_if->msk_if_dev,
2263 			    "failed to create Tx dmamap\n");
2264 			goto fail;
2265 		}
2266 	}
2267 	/* Create DMA maps for Rx buffers. */
2268 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2269 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2270 		device_printf(sc_if->msk_if_dev,
2271 		    "failed to create spare Rx dmamap\n");
2272 		goto fail;
2273 	}
2274 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2275 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2276 		rxd->rx_m = NULL;
2277 		rxd->rx_dmamap = NULL;
2278 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2279 		    &rxd->rx_dmamap);
2280 		if (error != 0) {
2281 			device_printf(sc_if->msk_if_dev,
2282 			    "failed to create Rx dmamap\n");
2283 			goto fail;
2284 		}
2285 	}
2286 	/* Create DMA maps for jumbo Rx buffers. */
2287 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2288 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2289 		device_printf(sc_if->msk_if_dev,
2290 		    "failed to create spare jumbo Rx dmamap\n");
2291 		goto fail;
2292 	}
2293 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2294 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2295 		jrxd->rx_m = NULL;
2296 		jrxd->rx_dmamap = NULL;
2297 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2298 		    &jrxd->rx_dmamap);
2299 		if (error != 0) {
2300 			device_printf(sc_if->msk_if_dev,
2301 			    "failed to create jumbo Rx dmamap\n");
2302 			goto fail;
2303 		}
2304 	}
2305 
2306 	/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
2307 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
2308 	    (void **)&sc_if->msk_rdata.msk_jumbo_buf,
2309 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2310 	    &sc_if->msk_cdata.msk_jumbo_map);
2311 	if (error != 0) {
2312 		device_printf(sc_if->msk_if_dev,
2313 		    "failed to allocate DMA'able memory for jumbo buf\n");
2314 		goto fail;
2315 	}
2316 
2317 	ctx.msk_busaddr = 0;
2318 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
2319 	    sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
2320 	    MSK_JMEM, msk_dmamap_cb, &ctx, 0);
2321 	if (error != 0) {
2322 		device_printf(sc_if->msk_if_dev,
2323 		    "failed to load DMA'able memory for jumbobuf\n");
2324 		goto fail;
2325 	}
2326 	sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
2327 
2328 	/*
2329 	 * Now divide it up into 9K pieces and save the addresses
2330 	 * in an array.
2331 	 */
2332 	ptr = sc_if->msk_rdata.msk_jumbo_buf;
2333 	for (i = 0; i < MSK_JSLOTS; i++) {
2334 		sc_if->msk_cdata.msk_jslots[i] = ptr;
2335 		ptr += MSK_JLEN;
2336 		entry = malloc(sizeof(struct msk_jpool_entry),
2337 		    M_DEVBUF, M_WAITOK);
2338 		if (entry == NULL) {
2339 			device_printf(sc_if->msk_if_dev,
2340 			    "no memory for jumbo buffers!\n");
2341 			error = ENOMEM;
2342 			goto fail;
2343 		}
2344 		entry->slot = i;
2345 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2346 		    jpool_entries);
2347 	}
2348 
2349 fail:
2350 	return (error);
2351 }
2352 
2353 static void
2354 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2355 {
2356 	struct msk_txdesc *txd;
2357 	struct msk_rxdesc *rxd;
2358 	struct msk_rxdesc *jrxd;
2359 	struct msk_jpool_entry *entry;
2360 	int i;
2361 
2362 	MSK_JLIST_LOCK(sc_if);
2363 	while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
2364 		device_printf(sc_if->msk_if_dev,
2365 		    "asked to free buffer that is in use!\n");
2366 		SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2367 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2368 		    jpool_entries);
2369 	}
2370 
2371 	while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
2372 		entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2373 		SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2374 		free(entry, M_DEVBUF);
2375 	}
2376 	MSK_JLIST_UNLOCK(sc_if);
2377 
2378 	/* Destroy jumbo buffer block. */
2379 	if (sc_if->msk_cdata.msk_jumbo_map)
2380 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
2381 		    sc_if->msk_cdata.msk_jumbo_map);
2382 
2383 	if (sc_if->msk_rdata.msk_jumbo_buf) {
2384 		bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
2385 		    sc_if->msk_rdata.msk_jumbo_buf,
2386 		    sc_if->msk_cdata.msk_jumbo_map);
2387 		sc_if->msk_rdata.msk_jumbo_buf = NULL;
2388 		sc_if->msk_cdata.msk_jumbo_map = NULL;
2389 	}
2390 
2391 	/* Tx ring. */
2392 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2393 		if (sc_if->msk_cdata.msk_tx_ring_map)
2394 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2395 			    sc_if->msk_cdata.msk_tx_ring_map);
2396 		if (sc_if->msk_cdata.msk_tx_ring_map &&
2397 		    sc_if->msk_rdata.msk_tx_ring)
2398 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2399 			    sc_if->msk_rdata.msk_tx_ring,
2400 			    sc_if->msk_cdata.msk_tx_ring_map);
2401 		sc_if->msk_rdata.msk_tx_ring = NULL;
2402 		sc_if->msk_cdata.msk_tx_ring_map = NULL;
2403 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2404 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2405 	}
2406 	/* Rx ring. */
2407 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2408 		if (sc_if->msk_cdata.msk_rx_ring_map)
2409 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2410 			    sc_if->msk_cdata.msk_rx_ring_map);
2411 		if (sc_if->msk_cdata.msk_rx_ring_map &&
2412 		    sc_if->msk_rdata.msk_rx_ring)
2413 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2414 			    sc_if->msk_rdata.msk_rx_ring,
2415 			    sc_if->msk_cdata.msk_rx_ring_map);
2416 		sc_if->msk_rdata.msk_rx_ring = NULL;
2417 		sc_if->msk_cdata.msk_rx_ring_map = NULL;
2418 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2419 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2420 	}
2421 	/* Jumbo Rx ring. */
2422 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2423 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2424 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2425 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2426 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2427 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2428 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2429 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2430 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2431 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2432 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2433 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2434 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2435 	}
2436 	/* Tx buffers. */
2437 	if (sc_if->msk_cdata.msk_tx_tag) {
2438 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2439 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2440 			if (txd->tx_dmamap) {
2441 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2442 				    txd->tx_dmamap);
2443 				txd->tx_dmamap = NULL;
2444 			}
2445 		}
2446 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2447 		sc_if->msk_cdata.msk_tx_tag = NULL;
2448 	}
2449 	/* Rx buffers. */
2450 	if (sc_if->msk_cdata.msk_rx_tag) {
2451 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2452 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2453 			if (rxd->rx_dmamap) {
2454 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2455 				    rxd->rx_dmamap);
2456 				rxd->rx_dmamap = NULL;
2457 			}
2458 		}
2459 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2460 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2461 			    sc_if->msk_cdata.msk_rx_sparemap);
2462 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2463 		}
2464 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2465 		sc_if->msk_cdata.msk_rx_tag = NULL;
2466 	}
2467 	/* Jumbo Rx buffers. */
2468 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2469 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2470 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2471 			if (jrxd->rx_dmamap) {
2472 				bus_dmamap_destroy(
2473 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2474 				    jrxd->rx_dmamap);
2475 				jrxd->rx_dmamap = NULL;
2476 			}
2477 		}
2478 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2479 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2480 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2481 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2482 		}
2483 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2484 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2485 	}
2486 
2487 	if (sc_if->msk_cdata.msk_parent_tag) {
2488 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2489 		sc_if->msk_cdata.msk_parent_tag = NULL;
2490 	}
2491 	mtx_destroy(&sc_if->msk_jlist_mtx);
2492 }
2493 
2494 /*
2495  * Allocate a jumbo buffer.
2496  */
2497 static void *
2498 msk_jalloc(struct msk_if_softc *sc_if)
2499 {
2500 	struct msk_jpool_entry *entry;
2501 
2502 	MSK_JLIST_LOCK(sc_if);
2503 
2504 	entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2505 
2506 	if (entry == NULL) {
2507 		MSK_JLIST_UNLOCK(sc_if);
2508 		return (NULL);
2509 	}
2510 
2511 	SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2512 	SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
2513 
2514 	MSK_JLIST_UNLOCK(sc_if);
2515 
2516 	return (sc_if->msk_cdata.msk_jslots[entry->slot]);
2517 }
2518 
2519 /*
2520  * Release a jumbo buffer.
2521  */
2522 static void
2523 msk_jfree(void *buf, void *args)
2524 {
2525 	struct msk_if_softc *sc_if;
2526 	struct msk_jpool_entry *entry;
2527 	int i;
2528 
2529 	/* Extract the softc struct pointer. */
2530 	sc_if = (struct msk_if_softc *)args;
2531 	KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
2532 
2533 	MSK_JLIST_LOCK(sc_if);
2534 	/* Calculate the slot this buffer belongs to. */
2535 	i = ((vm_offset_t)buf
2536 	     - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
2537 	KASSERT(i >= 0 && i < MSK_JSLOTS,
2538 	    ("%s: asked to free buffer that we don't manage!", __func__));
2539 
2540 	entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
2541 	KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
2542 	entry->slot = i;
2543 	SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2544 	SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
2545 	if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
2546 		wakeup(sc_if);
2547 
2548 	MSK_JLIST_UNLOCK(sc_if);
2549 }
2550 
2551 /*
2552  * It's copy of ath_defrag(ath(4)).
2553  *
2554  * Defragment an mbuf chain, returning at most maxfrags separate
2555  * mbufs+clusters.  If this is not possible NULL is returned and
2556  * the original mbuf chain is left in it's present (potentially
2557  * modified) state.  We use two techniques: collapsing consecutive
2558  * mbufs and replacing consecutive mbufs by a cluster.
2559  */
2560 static struct mbuf *
2561 msk_defrag(struct mbuf *m0, int how, int maxfrags)
2562 {
2563 	struct mbuf *m, *n, *n2, **prev;
2564 	u_int curfrags;
2565 
2566 	/*
2567 	 * Calculate the current number of frags.
2568 	 */
2569 	curfrags = 0;
2570 	for (m = m0; m != NULL; m = m->m_next)
2571 		curfrags++;
2572 	/*
2573 	 * First, try to collapse mbufs.  Note that we always collapse
2574 	 * towards the front so we don't need to deal with moving the
2575 	 * pkthdr.  This may be suboptimal if the first mbuf has much
2576 	 * less data than the following.
2577 	 */
2578 	m = m0;
2579 again:
2580 	for (;;) {
2581 		n = m->m_next;
2582 		if (n == NULL)
2583 			break;
2584 		if ((m->m_flags & M_RDONLY) == 0 &&
2585 		    n->m_len < M_TRAILINGSPACE(m)) {
2586 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
2587 				n->m_len);
2588 			m->m_len += n->m_len;
2589 			m->m_next = n->m_next;
2590 			m_free(n);
2591 			if (--curfrags <= maxfrags)
2592 				return (m0);
2593 		} else
2594 			m = n;
2595 	}
2596 	KASSERT(maxfrags > 1,
2597 		("maxfrags %u, but normal collapse failed", maxfrags));
2598 	/*
2599 	 * Collapse consecutive mbufs to a cluster.
2600 	 */
2601 	prev = &m0->m_next;		/* NB: not the first mbuf */
2602 	while ((n = *prev) != NULL) {
2603 		if ((n2 = n->m_next) != NULL &&
2604 		    n->m_len + n2->m_len < MCLBYTES) {
2605 			m = m_getcl(how, MT_DATA, 0);
2606 			if (m == NULL)
2607 				goto bad;
2608 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
2609 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
2610 				n2->m_len);
2611 			m->m_len = n->m_len + n2->m_len;
2612 			m->m_next = n2->m_next;
2613 			*prev = m;
2614 			m_free(n);
2615 			m_free(n2);
2616 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
2617 				return m0;
2618 			/*
2619 			 * Still not there, try the normal collapse
2620 			 * again before we allocate another cluster.
2621 			 */
2622 			goto again;
2623 		}
2624 		prev = &n->m_next;
2625 	}
2626 	/*
2627 	 * No place where we can collapse to a cluster; punt.
2628 	 * This can occur if, for example, you request 2 frags
2629 	 * but the packet requires that both be clusters (we
2630 	 * never reallocate the first mbuf to avoid moving the
2631 	 * packet header).
2632 	 */
2633 bad:
2634 	return (NULL);
2635 }
2636 
2637 static int
2638 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2639 {
2640 	struct msk_txdesc *txd, *txd_last;
2641 	struct msk_tx_desc *tx_le;
2642 	struct mbuf *m;
2643 	bus_dmamap_t map;
2644 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2645 	uint32_t control, prod, si;
2646 	uint16_t offset, tcp_offset, tso_mtu;
2647 	int error, i, nseg, tso;
2648 
2649 	MSK_IF_LOCK_ASSERT(sc_if);
2650 
2651 	tcp_offset = offset = 0;
2652 	m = *m_head;
2653 	if ((m->m_pkthdr.csum_flags & (MSK_CSUM_FEATURES | CSUM_TSO)) != 0) {
2654 		/*
2655 		 * Since mbuf has no protocol specific structure information
2656 		 * in it we have to inspect protocol information here to
2657 		 * setup TSO and checksum offload. I don't know why Marvell
2658 		 * made a such decision in chip design because other GigE
2659 		 * hardwares normally takes care of all these chores in
2660 		 * hardware. However, TSO performance of Yukon II is very
2661 		 * good such that it's worth to implement it.
2662 		 */
2663 		struct ether_header *eh;
2664 		struct ip *ip;
2665 		struct tcphdr *tcp;
2666 
2667 		/* TODO check for M_WRITABLE(m) */
2668 
2669 		offset = sizeof(struct ether_header);
2670 		m = m_pullup(m, offset);
2671 		if (m == NULL) {
2672 			*m_head = NULL;
2673 			return (ENOBUFS);
2674 		}
2675 		eh = mtod(m, struct ether_header *);
2676 		/* Check if hardware VLAN insertion is off. */
2677 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2678 			offset = sizeof(struct ether_vlan_header);
2679 			m = m_pullup(m, offset);
2680 			if (m == NULL) {
2681 				*m_head = NULL;
2682 				return (ENOBUFS);
2683 			}
2684 		}
2685 		m = m_pullup(m, offset + sizeof(struct ip));
2686 		if (m == NULL) {
2687 			*m_head = NULL;
2688 			return (ENOBUFS);
2689 		}
2690 		ip = (struct ip *)(mtod(m, char *) + offset);
2691 		offset += (ip->ip_hl << 2);
2692 		tcp_offset = offset;
2693 		/*
2694 		 * It seems that Yukon II has Tx checksum offload bug for
2695 		 * small TCP packets that's less than 60 bytes in size
2696 		 * (e.g. TCP window probe packet, pure ACK packet).
2697 		 * Common work around like padding with zeros to make the
2698 		 * frame minimum ethernet frame size didn't work at all.
2699 		 * Instead of disabling checksum offload completely we
2700 		 * resort to S/W checksum routine when we encounter short
2701 		 * TCP frames.
2702 		 * Short UDP packets appear to be handled correctly by
2703 		 * Yukon II.
2704 		 */
2705 		if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2706 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2707 			uint16_t csum;
2708 
2709 			csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset -
2710 			    (ip->ip_hl << 2), offset);
2711 			*(uint16_t *)(m->m_data + offset +
2712 			    m->m_pkthdr.csum_data) = csum;
2713 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2714 		}
2715 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2716 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2717 			if (m == NULL) {
2718 				*m_head = NULL;
2719 				return (ENOBUFS);
2720 			}
2721 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2722 			offset += (tcp->th_off << 2);
2723 		}
2724 		*m_head = m;
2725 	}
2726 
2727 	prod = sc_if->msk_cdata.msk_tx_prod;
2728 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2729 	txd_last = txd;
2730 	map = txd->tx_dmamap;
2731 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2732 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2733 	if (error == EFBIG) {
2734 		m = msk_defrag(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
2735 		if (m == NULL) {
2736 			m_freem(*m_head);
2737 			*m_head = NULL;
2738 			return (ENOBUFS);
2739 		}
2740 		*m_head = m;
2741 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2742 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2743 		if (error != 0) {
2744 			m_freem(*m_head);
2745 			*m_head = NULL;
2746 			return (error);
2747 		}
2748 	} else if (error != 0)
2749 		return (error);
2750 	if (nseg == 0) {
2751 		m_freem(*m_head);
2752 		*m_head = NULL;
2753 		return (EIO);
2754 	}
2755 
2756 	/* Check number of available descriptors. */
2757 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2758 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2759 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2760 		return (ENOBUFS);
2761 	}
2762 
2763 	control = 0;
2764 	tso = 0;
2765 	tx_le = NULL;
2766 
2767 	/* Check TSO support. */
2768 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2769 		tso_mtu = offset + m->m_pkthdr.tso_segsz;
2770 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2771 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2772 			tx_le->msk_addr = htole32(tso_mtu);
2773 			tx_le->msk_control = htole32(OP_LRGLEN | HW_OWNER);
2774 			sc_if->msk_cdata.msk_tx_cnt++;
2775 			MSK_INC(prod, MSK_TX_RING_CNT);
2776 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2777 		}
2778 		tso++;
2779 	}
2780 	/* Check if we have a VLAN tag to insert. */
2781 	if ((m->m_flags & M_VLANTAG) != 0) {
2782 		if (tso == 0) {
2783 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2784 			tx_le->msk_addr = htole32(0);
2785 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2786 			    htons(m->m_pkthdr.ether_vtag));
2787 			sc_if->msk_cdata.msk_tx_cnt++;
2788 			MSK_INC(prod, MSK_TX_RING_CNT);
2789 		} else {
2790 			tx_le->msk_control |= htole32(OP_VLAN |
2791 			    htons(m->m_pkthdr.ether_vtag));
2792 		}
2793 		control |= INS_VLAN;
2794 	}
2795 	/* Check if we have to handle checksum offload. */
2796 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2797 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2798 		tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2799 		    & 0xffff) | ((uint32_t)tcp_offset << 16));
2800 		tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2801 		control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2802 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2803 			control |= UDPTCP;
2804 		sc_if->msk_cdata.msk_tx_cnt++;
2805 		MSK_INC(prod, MSK_TX_RING_CNT);
2806 	}
2807 
2808 	si = prod;
2809 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2810 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2811 	if (tso == 0)
2812 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2813 		    OP_PACKET);
2814 	else
2815 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2816 		    OP_LARGESEND);
2817 	sc_if->msk_cdata.msk_tx_cnt++;
2818 	MSK_INC(prod, MSK_TX_RING_CNT);
2819 
2820 	for (i = 1; i < nseg; i++) {
2821 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2822 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2823 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2824 		    OP_BUFFER | HW_OWNER);
2825 		sc_if->msk_cdata.msk_tx_cnt++;
2826 		MSK_INC(prod, MSK_TX_RING_CNT);
2827 	}
2828 	/* Update producer index. */
2829 	sc_if->msk_cdata.msk_tx_prod = prod;
2830 
2831 	/* Set EOP on the last desciptor. */
2832 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2833 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2834 	tx_le->msk_control |= htole32(EOP);
2835 
2836 	/* Turn the first descriptor ownership to hardware. */
2837 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2838 	tx_le->msk_control |= htole32(HW_OWNER);
2839 
2840 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2841 	map = txd_last->tx_dmamap;
2842 	txd_last->tx_dmamap = txd->tx_dmamap;
2843 	txd->tx_dmamap = map;
2844 	txd->tx_m = m;
2845 
2846 	/* Sync descriptors. */
2847 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2848 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2849 	    sc_if->msk_cdata.msk_tx_ring_map,
2850 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2851 
2852 	return (0);
2853 }
2854 
2855 static void
2856 msk_tx_task(void *arg, int pending)
2857 {
2858 	struct ifnet *ifp;
2859 
2860 	ifp = arg;
2861 	msk_start(ifp);
2862 }
2863 
2864 static void
2865 msk_start(struct ifnet *ifp)
2866 {
2867         struct msk_if_softc *sc_if;
2868         struct mbuf *m_head;
2869 	int enq;
2870 
2871 	sc_if = ifp->if_softc;
2872 
2873 	MSK_IF_LOCK(sc_if);
2874 
2875 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2876 	    IFF_DRV_RUNNING || sc_if->msk_link == 0) {
2877 		MSK_IF_UNLOCK(sc_if);
2878 		return;
2879 	}
2880 
2881 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2882 	    sc_if->msk_cdata.msk_tx_cnt <
2883 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2884 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2885 		if (m_head == NULL)
2886 			break;
2887 		/*
2888 		 * Pack the data into the transmit ring. If we
2889 		 * don't have room, set the OACTIVE flag and wait
2890 		 * for the NIC to drain the ring.
2891 		 */
2892 		if (msk_encap(sc_if, &m_head) != 0) {
2893 			if (m_head == NULL)
2894 				break;
2895 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2896 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2897 			break;
2898 		}
2899 
2900 		enq++;
2901 		/*
2902 		 * If there's a BPF listener, bounce a copy of this frame
2903 		 * to him.
2904 		 */
2905 		ETHER_BPF_MTAP(ifp, m_head);
2906 	}
2907 
2908 	if (enq > 0) {
2909 		/* Transmit */
2910 		CSR_WRITE_2(sc_if->msk_softc,
2911 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2912 		    sc_if->msk_cdata.msk_tx_prod);
2913 
2914 		/* Set a timeout in case the chip goes out to lunch. */
2915 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2916 	}
2917 
2918 	MSK_IF_UNLOCK(sc_if);
2919 }
2920 
2921 static void
2922 msk_watchdog(struct msk_if_softc *sc_if)
2923 {
2924 	struct ifnet *ifp;
2925 	uint32_t ridx;
2926 	int idx;
2927 
2928 	MSK_IF_LOCK_ASSERT(sc_if);
2929 
2930 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2931 		return;
2932 	ifp = sc_if->msk_ifp;
2933 	if (sc_if->msk_link == 0) {
2934 		if (bootverbose)
2935 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2936 			   "(missed link)\n");
2937 		ifp->if_oerrors++;
2938 		msk_init_locked(sc_if);
2939 		return;
2940 	}
2941 
2942 	/*
2943 	 * Reclaim first as there is a possibility of losing Tx completion
2944 	 * interrupts.
2945 	 */
2946 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2947 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2948 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2949 		msk_txeof(sc_if, idx);
2950 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2951 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2952 			    "-- recovering\n");
2953 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2954 				taskqueue_enqueue(taskqueue_fast,
2955 				    &sc_if->msk_tx_task);
2956 			return;
2957 		}
2958 	}
2959 
2960 	if_printf(ifp, "watchdog timeout\n");
2961 	ifp->if_oerrors++;
2962 	msk_init_locked(sc_if);
2963 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2964 		taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task);
2965 }
2966 
2967 static void
2968 mskc_shutdown(device_t dev)
2969 {
2970 	struct msk_softc *sc;
2971 	int i;
2972 
2973 	sc = device_get_softc(dev);
2974 	MSK_LOCK(sc);
2975 	for (i = 0; i < sc->msk_num_port; i++) {
2976 		if (sc->msk_if[i] != NULL)
2977 			msk_stop(sc->msk_if[i]);
2978 	}
2979 
2980 	/* Disable all interrupts. */
2981 	CSR_WRITE_4(sc, B0_IMSK, 0);
2982 	CSR_READ_4(sc, B0_IMSK);
2983 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2984 	CSR_READ_4(sc, B0_HWE_IMSK);
2985 
2986 	/* Put hardware reset. */
2987 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2988 
2989 	MSK_UNLOCK(sc);
2990 }
2991 
2992 static int
2993 mskc_suspend(device_t dev)
2994 {
2995 	struct msk_softc *sc;
2996 	int i;
2997 
2998 	sc = device_get_softc(dev);
2999 
3000 	MSK_LOCK(sc);
3001 
3002 	for (i = 0; i < sc->msk_num_port; i++) {
3003 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3004 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
3005 		    IFF_DRV_RUNNING) != 0))
3006 			msk_stop(sc->msk_if[i]);
3007 	}
3008 
3009 	/* Disable all interrupts. */
3010 	CSR_WRITE_4(sc, B0_IMSK, 0);
3011 	CSR_READ_4(sc, B0_IMSK);
3012 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
3013 	CSR_READ_4(sc, B0_HWE_IMSK);
3014 
3015 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
3016 
3017 	/* Put hardware reset. */
3018 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3019 	sc->msk_suspended = 1;
3020 
3021 	MSK_UNLOCK(sc);
3022 
3023 	return (0);
3024 }
3025 
3026 static int
3027 mskc_resume(device_t dev)
3028 {
3029 	struct msk_softc *sc;
3030 	int i;
3031 
3032 	sc = device_get_softc(dev);
3033 
3034 	MSK_LOCK(sc);
3035 
3036 	mskc_reset(sc);
3037 	for (i = 0; i < sc->msk_num_port; i++) {
3038 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3039 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
3040 			msk_init_locked(sc->msk_if[i]);
3041 	}
3042 	sc->msk_suspended = 0;
3043 
3044 	MSK_UNLOCK(sc);
3045 
3046 	return (0);
3047 }
3048 
3049 static void
3050 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
3051 {
3052 	struct mbuf *m;
3053 	struct ifnet *ifp;
3054 	struct msk_rxdesc *rxd;
3055 	int cons, rxlen;
3056 
3057 	ifp = sc_if->msk_ifp;
3058 
3059 	MSK_IF_LOCK_ASSERT(sc_if);
3060 
3061 	cons = sc_if->msk_cdata.msk_rx_cons;
3062 	do {
3063 		rxlen = status >> 16;
3064 		if ((status & GMR_FS_VLAN) != 0 &&
3065 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3066 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3067 		if (len > sc_if->msk_framesize ||
3068 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3069 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3070 			/* Don't count flow-control packet as errors. */
3071 			if ((status & GMR_FS_GOOD_FC) == 0)
3072 				ifp->if_ierrors++;
3073 			msk_discard_rxbuf(sc_if, cons);
3074 			break;
3075 		}
3076 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3077 		m = rxd->rx_m;
3078 		if (msk_newbuf(sc_if, cons) != 0) {
3079 			ifp->if_iqdrops++;
3080 			/* Reuse old buffer. */
3081 			msk_discard_rxbuf(sc_if, cons);
3082 			break;
3083 		}
3084 		m->m_pkthdr.rcvif = ifp;
3085 		m->m_pkthdr.len = m->m_len = len;
3086 		ifp->if_ipackets++;
3087 		/* Check for VLAN tagged packets. */
3088 		if ((status & GMR_FS_VLAN) != 0 &&
3089 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3090 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3091 			m->m_flags |= M_VLANTAG;
3092 		}
3093 		MSK_IF_UNLOCK(sc_if);
3094 		(*ifp->if_input)(ifp, m);
3095 		MSK_IF_LOCK(sc_if);
3096 	} while (0);
3097 
3098 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3099 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3100 }
3101 
3102 static void
3103 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
3104 {
3105 	struct mbuf *m;
3106 	struct ifnet *ifp;
3107 	struct msk_rxdesc *jrxd;
3108 	int cons, rxlen;
3109 
3110 	ifp = sc_if->msk_ifp;
3111 
3112 	MSK_IF_LOCK_ASSERT(sc_if);
3113 
3114 	cons = sc_if->msk_cdata.msk_rx_cons;
3115 	do {
3116 		rxlen = status >> 16;
3117 		if ((status & GMR_FS_VLAN) != 0 &&
3118 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3119 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3120 		if (len > sc_if->msk_framesize ||
3121 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3122 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3123 			/* Don't count flow-control packet as errors. */
3124 			if ((status & GMR_FS_GOOD_FC) == 0)
3125 				ifp->if_ierrors++;
3126 			msk_discard_jumbo_rxbuf(sc_if, cons);
3127 			break;
3128 		}
3129 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3130 		m = jrxd->rx_m;
3131 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3132 			ifp->if_iqdrops++;
3133 			/* Reuse old buffer. */
3134 			msk_discard_jumbo_rxbuf(sc_if, cons);
3135 			break;
3136 		}
3137 		m->m_pkthdr.rcvif = ifp;
3138 		m->m_pkthdr.len = m->m_len = len;
3139 		ifp->if_ipackets++;
3140 		/* Check for VLAN tagged packets. */
3141 		if ((status & GMR_FS_VLAN) != 0 &&
3142 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3143 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3144 			m->m_flags |= M_VLANTAG;
3145 		}
3146 		MSK_IF_UNLOCK(sc_if);
3147 		(*ifp->if_input)(ifp, m);
3148 		MSK_IF_LOCK(sc_if);
3149 	} while (0);
3150 
3151 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3152 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3153 }
3154 
3155 static void
3156 msk_txeof(struct msk_if_softc *sc_if, int idx)
3157 {
3158 	struct msk_txdesc *txd;
3159 	struct msk_tx_desc *cur_tx;
3160 	struct ifnet *ifp;
3161 	uint32_t control;
3162 	int cons, prog;
3163 
3164 	MSK_IF_LOCK_ASSERT(sc_if);
3165 
3166 	ifp = sc_if->msk_ifp;
3167 
3168 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3169 	    sc_if->msk_cdata.msk_tx_ring_map,
3170 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3171 	/*
3172 	 * Go through our tx ring and free mbufs for those
3173 	 * frames that have been sent.
3174 	 */
3175 	cons = sc_if->msk_cdata.msk_tx_cons;
3176 	prog = 0;
3177 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3178 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3179 			break;
3180 		prog++;
3181 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3182 		control = le32toh(cur_tx->msk_control);
3183 		sc_if->msk_cdata.msk_tx_cnt--;
3184 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3185 		if ((control & EOP) == 0)
3186 			continue;
3187 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3188 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3189 		    BUS_DMASYNC_POSTWRITE);
3190 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3191 
3192 		ifp->if_opackets++;
3193 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3194 		    __func__));
3195 		m_freem(txd->tx_m);
3196 		txd->tx_m = NULL;
3197 	}
3198 
3199 	if (prog > 0) {
3200 		sc_if->msk_cdata.msk_tx_cons = cons;
3201 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3202 			sc_if->msk_watchdog_timer = 0;
3203 		/* No need to sync LEs as we didn't update LEs. */
3204 	}
3205 }
3206 
3207 static void
3208 msk_tick(void *xsc_if)
3209 {
3210 	struct msk_if_softc *sc_if;
3211 	struct mii_data *mii;
3212 
3213 	sc_if = xsc_if;
3214 
3215 	MSK_IF_LOCK_ASSERT(sc_if);
3216 
3217 	mii = device_get_softc(sc_if->msk_miibus);
3218 
3219 	mii_tick(mii);
3220 	msk_watchdog(sc_if);
3221 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3222 }
3223 
3224 static void
3225 msk_intr_phy(struct msk_if_softc *sc_if)
3226 {
3227 	uint16_t status;
3228 
3229 	if (sc_if->msk_softc->msk_marvell_phy) {
3230 		msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3231 		status = msk_phy_readreg(sc_if, PHY_ADDR_MARV,
3232 		    PHY_MARV_INT_STAT);
3233 		/* Handle FIFO Underrun/Overflow? */
3234 		if ((status & PHY_M_IS_FIFO_ERROR))
3235 			device_printf(sc_if->msk_if_dev,
3236 			    "PHY FIFO underrun/overflow.\n");
3237 	}
3238 }
3239 
3240 static void
3241 msk_intr_gmac(struct msk_if_softc *sc_if)
3242 {
3243 	struct msk_softc *sc;
3244 	uint8_t status;
3245 
3246 	sc = sc_if->msk_softc;
3247 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3248 
3249 	/* GMAC Rx FIFO overrun. */
3250 	if ((status & GM_IS_RX_FF_OR) != 0) {
3251 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3252 		    GMF_CLI_RX_FO);
3253 		device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
3254 	}
3255 	/* GMAC Tx FIFO underrun. */
3256 	if ((status & GM_IS_TX_FF_UR) != 0) {
3257 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3258 		    GMF_CLI_TX_FU);
3259 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3260 		/*
3261 		 * XXX
3262 		 * In case of Tx underrun, we may need to flush/reset
3263 		 * Tx MAC but that would also require resynchronization
3264 		 * with status LEs. Reintializing status LEs would
3265 		 * affect other port in dual MAC configuration so it
3266 		 * should be avoided as possible as we can.
3267 		 * Due to lack of documentation it's all vague guess but
3268 		 * it needs more investigation.
3269 		 */
3270 	}
3271 }
3272 
3273 static void
3274 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3275 {
3276 	struct msk_softc *sc;
3277 
3278 	sc = sc_if->msk_softc;
3279 	if ((status & Y2_IS_PAR_RD1) != 0) {
3280 		device_printf(sc_if->msk_if_dev,
3281 		    "RAM buffer read parity error\n");
3282 		/* Clear IRQ. */
3283 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3284 		    RI_CLR_RD_PERR);
3285 	}
3286 	if ((status & Y2_IS_PAR_WR1) != 0) {
3287 		device_printf(sc_if->msk_if_dev,
3288 		    "RAM buffer write parity error\n");
3289 		/* Clear IRQ. */
3290 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3291 		    RI_CLR_WR_PERR);
3292 	}
3293 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3294 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3295 		/* Clear IRQ. */
3296 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3297 		    GMF_CLI_TX_PE);
3298 	}
3299 	if ((status & Y2_IS_PAR_RX1) != 0) {
3300 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3301 		/* Clear IRQ. */
3302 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3303 	}
3304 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3305 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3306 		/* Clear IRQ. */
3307 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3308 	}
3309 }
3310 
3311 static void
3312 msk_intr_hwerr(struct msk_softc *sc)
3313 {
3314 	uint32_t status;
3315 	uint32_t tlphead[4];
3316 
3317 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3318 	/* Time Stamp timer overflow. */
3319 	if ((status & Y2_IS_TIST_OV) != 0)
3320 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3321 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3322 		/*
3323 		 * PCI Express Error occured which is not described in PEX
3324 		 * spec.
3325 		 * This error is also mapped either to Master Abort(
3326 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3327 		 * can only be cleared there.
3328                  */
3329 		device_printf(sc->msk_dev,
3330 		    "PCI Express protocol violation error\n");
3331 	}
3332 
3333 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3334 		uint16_t v16;
3335 
3336 		if ((status & Y2_IS_MST_ERR) != 0)
3337 			device_printf(sc->msk_dev,
3338 			    "unexpected IRQ Status error\n");
3339 		else
3340 			device_printf(sc->msk_dev,
3341 			    "unexpected IRQ Master error\n");
3342 		/* Reset all bits in the PCI status register. */
3343 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3344 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3345 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3346 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3347 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3348 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3349 	}
3350 
3351 	/* Check for PCI Express Uncorrectable Error. */
3352 	if ((status & Y2_IS_PCI_EXP) != 0) {
3353 		uint32_t v32;
3354 
3355 		/*
3356 		 * On PCI Express bus bridges are called root complexes (RC).
3357 		 * PCI Express errors are recognized by the root complex too,
3358 		 * which requests the system to handle the problem. After
3359 		 * error occurence it may be that no access to the adapter
3360 		 * may be performed any longer.
3361 		 */
3362 
3363 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3364 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3365 			/* Ignore unsupported request error. */
3366 			device_printf(sc->msk_dev,
3367 			    "Uncorrectable PCI Express error\n");
3368 		}
3369 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3370 			int i;
3371 
3372 			/* Get TLP header form Log Registers. */
3373 			for (i = 0; i < 4; i++)
3374 				tlphead[i] = CSR_PCI_READ_4(sc,
3375 				    PEX_HEADER_LOG + i * 4);
3376 			/* Check for vendor defined broadcast message. */
3377 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3378 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3379 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3380 				    sc->msk_intrhwemask);
3381 				CSR_READ_4(sc, B0_HWE_IMSK);
3382 			}
3383 		}
3384 		/* Clear the interrupt. */
3385 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3386 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3387 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3388 	}
3389 
3390 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3391 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3392 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3393 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3394 }
3395 
3396 static __inline void
3397 msk_rxput(struct msk_if_softc *sc_if)
3398 {
3399 	struct msk_softc *sc;
3400 
3401 	sc = sc_if->msk_softc;
3402 	if (sc_if->msk_framesize >(MCLBYTES - ETHER_HDR_LEN))
3403 		bus_dmamap_sync(
3404 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3405 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3406 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3407 	else
3408 		bus_dmamap_sync(
3409 		    sc_if->msk_cdata.msk_rx_ring_tag,
3410 		    sc_if->msk_cdata.msk_rx_ring_map,
3411 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3412 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3413 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3414 }
3415 
3416 static int
3417 msk_handle_events(struct msk_softc *sc)
3418 {
3419 	struct msk_if_softc *sc_if;
3420 	int rxput[2];
3421 	struct msk_stat_desc *sd;
3422 	uint32_t control, status;
3423 	int cons, idx, len, port, rxprog;
3424 
3425 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3426 	if (idx == sc->msk_stat_cons)
3427 		return (0);
3428 
3429 	/* Sync status LEs. */
3430 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3431 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3432 	/* XXX Sync Rx LEs here. */
3433 
3434 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3435 
3436 	rxprog = 0;
3437 	for (cons = sc->msk_stat_cons; cons != idx;) {
3438 		sd = &sc->msk_stat_ring[cons];
3439 		control = le32toh(sd->msk_control);
3440 		if ((control & HW_OWNER) == 0)
3441 			break;
3442 		/*
3443 		 * Marvell's FreeBSD driver updates status LE after clearing
3444 		 * HW_OWNER. However we don't have a way to sync single LE
3445 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3446 		 * an entire DMA map. So don't sync LE until we have a better
3447 		 * way to sync LEs.
3448 		 */
3449 		control &= ~HW_OWNER;
3450 		sd->msk_control = htole32(control);
3451 		status = le32toh(sd->msk_status);
3452 		len = control & STLE_LEN_MASK;
3453 		port = (control >> 16) & 0x01;
3454 		sc_if = sc->msk_if[port];
3455 		if (sc_if == NULL) {
3456 			device_printf(sc->msk_dev, "invalid port opcode "
3457 			    "0x%08x\n", control & STLE_OP_MASK);
3458 			continue;
3459 		}
3460 
3461 		switch (control & STLE_OP_MASK) {
3462 		case OP_RXVLAN:
3463 			sc_if->msk_vtag = ntohs(len);
3464 			break;
3465 		case OP_RXCHKSVLAN:
3466 			sc_if->msk_vtag = ntohs(len);
3467 			break;
3468 		case OP_RXSTAT:
3469 			if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
3470 				msk_jumbo_rxeof(sc_if, status, len);
3471 			else
3472 				msk_rxeof(sc_if, status, len);
3473 			rxprog++;
3474 			/*
3475 			 * Because there is no way to sync single Rx LE
3476 			 * put the DMA sync operation off until the end of
3477 			 * event processing.
3478 			 */
3479 			rxput[port]++;
3480 			/* Update prefetch unit if we've passed water mark. */
3481 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3482 				msk_rxput(sc_if);
3483 				rxput[port] = 0;
3484 			}
3485 			break;
3486 		case OP_TXINDEXLE:
3487 			if (sc->msk_if[MSK_PORT_A] != NULL)
3488 				msk_txeof(sc->msk_if[MSK_PORT_A],
3489 				    status & STLE_TXA1_MSKL);
3490 			if (sc->msk_if[MSK_PORT_B] != NULL)
3491 				msk_txeof(sc->msk_if[MSK_PORT_B],
3492 				    ((status & STLE_TXA2_MSKL) >>
3493 				    STLE_TXA2_SHIFTL) |
3494 				    ((len & STLE_TXA2_MSKH) <<
3495 				    STLE_TXA2_SHIFTH));
3496 			break;
3497 		default:
3498 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3499 			    control & STLE_OP_MASK);
3500 			break;
3501 		}
3502 		MSK_INC(cons, MSK_STAT_RING_CNT);
3503 		if (rxprog > sc->msk_process_limit)
3504 			break;
3505 	}
3506 
3507 	sc->msk_stat_cons = cons;
3508 	/* XXX We should sync status LEs here. See above notes. */
3509 
3510 	if (rxput[MSK_PORT_A] > 0)
3511 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3512 	if (rxput[MSK_PORT_B] > 0)
3513 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3514 
3515 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3516 }
3517 
3518 /* Legacy interrupt handler for shared interrupt. */
3519 static void
3520 msk_legacy_intr(void *xsc)
3521 {
3522 	struct msk_softc *sc;
3523 	struct msk_if_softc *sc_if0, *sc_if1;
3524 	struct ifnet *ifp0, *ifp1;
3525 	uint32_t status;
3526 
3527 	sc = xsc;
3528 	MSK_LOCK(sc);
3529 
3530 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3531 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3532 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3533 	    (status & sc->msk_intrmask) == 0) {
3534 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3535 		return;
3536 	}
3537 
3538 	sc_if0 = sc->msk_if[MSK_PORT_A];
3539 	sc_if1 = sc->msk_if[MSK_PORT_B];
3540 	ifp0 = ifp1 = NULL;
3541 	if (sc_if0 != NULL)
3542 		ifp0 = sc_if0->msk_ifp;
3543 	if (sc_if1 != NULL)
3544 		ifp1 = sc_if1->msk_ifp;
3545 
3546 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3547 		msk_intr_phy(sc_if0);
3548 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3549 		msk_intr_phy(sc_if1);
3550 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3551 		msk_intr_gmac(sc_if0);
3552 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3553 		msk_intr_gmac(sc_if1);
3554 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3555 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3556 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3557 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3558 		CSR_READ_4(sc, B0_IMSK);
3559 	}
3560         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3561 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3562 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3563 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3564 		CSR_READ_4(sc, B0_IMSK);
3565 	}
3566 	if ((status & Y2_IS_HW_ERR) != 0)
3567 		msk_intr_hwerr(sc);
3568 
3569 	while (msk_handle_events(sc) != 0)
3570 		;
3571 	if ((status & Y2_IS_STAT_BMU) != 0)
3572 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3573 
3574 	/* Reenable interrupts. */
3575 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3576 
3577 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3578 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3579 		taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3580 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3581 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3582 		taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3583 
3584 	MSK_UNLOCK(sc);
3585 }
3586 
3587 static int
3588 msk_intr(void *xsc)
3589 {
3590 	struct msk_softc *sc;
3591 	uint32_t status;
3592 
3593 	sc = xsc;
3594 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3595 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3596 	if (status == 0 || status == 0xffffffff) {
3597 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3598 		return (FILTER_STRAY);
3599 	}
3600 
3601 	taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3602 	return (FILTER_HANDLED);
3603 }
3604 
3605 static void
3606 msk_int_task(void *arg, int pending)
3607 {
3608 	struct msk_softc *sc;
3609 	struct msk_if_softc *sc_if0, *sc_if1;
3610 	struct ifnet *ifp0, *ifp1;
3611 	uint32_t status;
3612 	int domore;
3613 
3614 	sc = arg;
3615 	MSK_LOCK(sc);
3616 
3617 	/* Get interrupt source. */
3618 	status = CSR_READ_4(sc, B0_ISRC);
3619 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3620 	    (status & sc->msk_intrmask) == 0)
3621 		goto done;
3622 
3623 	sc_if0 = sc->msk_if[MSK_PORT_A];
3624 	sc_if1 = sc->msk_if[MSK_PORT_B];
3625 	ifp0 = ifp1 = NULL;
3626 	if (sc_if0 != NULL)
3627 		ifp0 = sc_if0->msk_ifp;
3628 	if (sc_if1 != NULL)
3629 		ifp1 = sc_if1->msk_ifp;
3630 
3631 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3632 		msk_intr_phy(sc_if0);
3633 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3634 		msk_intr_phy(sc_if1);
3635 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3636 		msk_intr_gmac(sc_if0);
3637 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3638 		msk_intr_gmac(sc_if1);
3639 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3640 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3641 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3642 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3643 		CSR_READ_4(sc, B0_IMSK);
3644 	}
3645         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3646 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3647 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3648 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3649 		CSR_READ_4(sc, B0_IMSK);
3650 	}
3651 	if ((status & Y2_IS_HW_ERR) != 0)
3652 		msk_intr_hwerr(sc);
3653 
3654 	domore = msk_handle_events(sc);
3655 	if ((status & Y2_IS_STAT_BMU) != 0)
3656 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3657 
3658 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3659 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3660 		taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3661 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3662 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3663 		taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3664 
3665 	if (domore > 0) {
3666 		taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3667 		MSK_UNLOCK(sc);
3668 		return;
3669 	}
3670 done:
3671 	MSK_UNLOCK(sc);
3672 
3673 	/* Reenable interrupts. */
3674 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3675 }
3676 
3677 static void
3678 msk_init(void *xsc)
3679 {
3680 	struct msk_if_softc *sc_if = xsc;
3681 
3682 	MSK_IF_LOCK(sc_if);
3683 	msk_init_locked(sc_if);
3684 	MSK_IF_UNLOCK(sc_if);
3685 }
3686 
3687 static void
3688 msk_init_locked(struct msk_if_softc *sc_if)
3689 {
3690 	struct msk_softc *sc;
3691 	struct ifnet *ifp;
3692 	struct mii_data	 *mii;
3693 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
3694 	uint16_t gmac;
3695 	int error, i;
3696 
3697 	MSK_IF_LOCK_ASSERT(sc_if);
3698 
3699 	ifp = sc_if->msk_ifp;
3700 	sc = sc_if->msk_softc;
3701 	mii = device_get_softc(sc_if->msk_miibus);
3702 
3703 	error = 0;
3704 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3705 	msk_stop(sc_if);
3706 
3707 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN +
3708 	    ETHER_VLAN_ENCAP_LEN;
3709 
3710 	/*
3711 	 * Initialize GMAC first.
3712 	 * Without this initialization, Rx MAC did not work as expected
3713 	 * and Rx MAC garbled status LEs and it resulted in out-of-order
3714 	 * or duplicated frame delivery which in turn showed very poor
3715 	 * Rx performance.(I had to write a packet analysis code that
3716 	 * could be embeded in driver to diagnose this issue.)
3717 	 * I've spent almost 2 months to fix this issue. If I have had
3718 	 * datasheet for Yukon II I wouldn't have encountered this. :-(
3719 	 */
3720 	gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL;
3721 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
3722 
3723 	/* Dummy read the Interrupt Source Register. */
3724 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3725 
3726 	/* Set MIB Clear Counter Mode. */
3727 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3728 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3729 	/* Read all MIB Counters with Clear Mode set. */
3730 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
3731 		GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
3732 	/* Clear MIB Clear Counter Mode. */
3733 	gmac &= ~GM_PAR_MIB_CLR;
3734 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3735 
3736 	/* Disable FCS. */
3737 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3738 
3739 	/* Setup Transmit Control Register. */
3740 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3741 
3742 	/* Setup Transmit Flow Control Register. */
3743 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3744 
3745 	/* Setup Transmit Parameter Register. */
3746 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3747 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3748 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3749 
3750 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3751 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3752 
3753 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
3754 		gmac |= GM_SMOD_JUMBO_ENA;
3755 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3756 
3757 	/* Set station address. */
3758         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3759         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3760 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3761 		    eaddr[i]);
3762         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3763 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3764 		    eaddr[i]);
3765 
3766 	/* Disable interrupts for counter overflows. */
3767 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3768 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3769 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3770 
3771 	/* Configure Rx MAC FIFO. */
3772 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3773 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3774 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3775 	    GMF_OPER_ON | GMF_RX_F_FL_ON);
3776 
3777 	/* Set promiscuous mode. */
3778 	msk_setpromisc(sc_if);
3779 
3780 	/* Set multicast filter. */
3781 	msk_setmulti(sc_if);
3782 
3783 	/* Flush Rx MAC FIFO on any flow control or error. */
3784 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3785 	    GMR_FS_ANY_ERR);
3786 
3787 	/* Set Rx FIFO flush threshold to 64 bytes. */
3788 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR),
3789 	    RX_GMF_FL_THR_DEF);
3790 
3791 	/* Configure Tx MAC FIFO. */
3792 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3793 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3794 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3795 
3796 	/* Configure hardware VLAN tag insertion/stripping. */
3797 	msk_setvlan(sc_if, ifp);
3798 
3799 	/* XXX It seems STFW is requried for all cases. */
3800 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), TX_STFW_ENA);
3801 
3802 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3803 		/* Set Rx Pause threshould. */
3804 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3805 		    MSK_ECU_LLPP);
3806 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3807 		    MSK_ECU_ULPP);
3808 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) {
3809 			/*
3810 			 * Can't sure the following code is needed as Yukon
3811 			 * Yukon EC Ultra may not support jumbo frames.
3812 			 *
3813 			 * Set Tx GMAC FIFO Almost Empty Threshold.
3814 			 */
3815 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3816 			    MSK_ECU_AE_THR);
3817 			/* Disable Store & Forward mode for Tx. */
3818 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3819 			    TX_STFW_DIS);
3820 		}
3821 	}
3822 
3823 	/*
3824 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3825 	 * arbiter as we don't use Sync Tx queue.
3826 	 */
3827 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3828 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3829 	/* Enable the RAM Interface Arbiter. */
3830 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3831 
3832 	/* Setup RAM buffer. */
3833 	msk_set_rambuffer(sc_if);
3834 
3835 	/* Disable Tx sync Queue. */
3836 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3837 
3838 	/* Setup Tx Queue Bus Memory Interface. */
3839 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3840 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3841 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3842 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3843 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3844 	    sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3845 		/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3846 		CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV);
3847 	}
3848 
3849 	/* Setup Rx Queue Bus Memory Interface. */
3850 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3851 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3852 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3853 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3854         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3855 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3856 		/* MAC Rx RAM Read is controlled by hardware. */
3857                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3858 	}
3859 
3860 	msk_set_prefetch(sc, sc_if->msk_txq,
3861 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3862 	msk_init_tx_ring(sc_if);
3863 
3864 	/* Disable Rx checksum offload and RSS hash. */
3865 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3866 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3867 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3868 		msk_set_prefetch(sc, sc_if->msk_rxq,
3869 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3870 		    MSK_JUMBO_RX_RING_CNT - 1);
3871 		error = msk_init_jumbo_rx_ring(sc_if);
3872 	 } else {
3873 		msk_set_prefetch(sc, sc_if->msk_rxq,
3874 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3875 		    MSK_RX_RING_CNT - 1);
3876 		error = msk_init_rx_ring(sc_if);
3877 	}
3878 	if (error != 0) {
3879 		device_printf(sc_if->msk_if_dev,
3880 		    "initialization failed: no memory for Rx buffers\n");
3881 		msk_stop(sc_if);
3882 		return;
3883 	}
3884 
3885 	/* Configure interrupt handling. */
3886 	if (sc_if->msk_port == MSK_PORT_A) {
3887 		sc->msk_intrmask |= Y2_IS_PORT_A;
3888 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3889 	} else {
3890 		sc->msk_intrmask |= Y2_IS_PORT_B;
3891 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3892 	}
3893 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3894 	CSR_READ_4(sc, B0_HWE_IMSK);
3895 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3896 	CSR_READ_4(sc, B0_IMSK);
3897 
3898 	sc_if->msk_link = 0;
3899 	mii_mediachg(mii);
3900 
3901 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3902 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3903 
3904 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3905 }
3906 
3907 static void
3908 msk_set_rambuffer(struct msk_if_softc *sc_if)
3909 {
3910 	struct msk_softc *sc;
3911 	int ltpp, utpp;
3912 
3913 	sc = sc_if->msk_softc;
3914 
3915 	/* Setup Rx Queue. */
3916 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3917 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3918 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3919 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3920 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3921 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3922 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3923 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3924 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3925 
3926 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3927 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3928 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3929 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3930 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3931 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3932 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3933 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3934 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3935 
3936 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3937 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3938 
3939 	/* Setup Tx Queue. */
3940 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3941 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3942 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3943 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3944 	    sc->msk_txqend[sc_if->msk_port] / 8);
3945 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3946 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3947 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3948 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3949 	/* Enable Store & Forward for Tx side. */
3950 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3951 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3952 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3953 }
3954 
3955 static void
3956 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3957     uint32_t count)
3958 {
3959 
3960 	/* Reset the prefetch unit. */
3961 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3962 	    PREF_UNIT_RST_SET);
3963 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3964 	    PREF_UNIT_RST_CLR);
3965 	/* Set LE base address. */
3966 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3967 	    MSK_ADDR_LO(addr));
3968 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3969 	    MSK_ADDR_HI(addr));
3970 	/* Set the list last index. */
3971 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3972 	    count);
3973 	/* Turn on prefetch unit. */
3974 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3975 	    PREF_UNIT_OP_ON);
3976 	/* Dummy read to ensure write. */
3977 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3978 }
3979 
3980 static void
3981 msk_stop(struct msk_if_softc *sc_if)
3982 {
3983 	struct msk_softc *sc;
3984 	struct msk_txdesc *txd;
3985 	struct msk_rxdesc *rxd;
3986 	struct msk_rxdesc *jrxd;
3987 	struct ifnet *ifp;
3988 	uint32_t val;
3989 	int i;
3990 
3991 	MSK_IF_LOCK_ASSERT(sc_if);
3992 	sc = sc_if->msk_softc;
3993 	ifp = sc_if->msk_ifp;
3994 
3995 	callout_stop(&sc_if->msk_tick_ch);
3996 	sc_if->msk_watchdog_timer = 0;
3997 
3998 	/* Disable interrupts. */
3999 	if (sc_if->msk_port == MSK_PORT_A) {
4000 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
4001 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
4002 	} else {
4003 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
4004 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
4005 	}
4006 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4007 	CSR_READ_4(sc, B0_HWE_IMSK);
4008 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4009 	CSR_READ_4(sc, B0_IMSK);
4010 
4011 	/* Disable Tx/Rx MAC. */
4012 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4013 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
4014 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
4015 	/* Read again to ensure writing. */
4016 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4017 
4018 	/* Stop Tx BMU. */
4019 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
4020 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4021 	for (i = 0; i < MSK_TIMEOUT; i++) {
4022 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
4023 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4024 			    BMU_STOP);
4025 			CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4026 		} else
4027 			break;
4028 		DELAY(1);
4029 	}
4030 	if (i == MSK_TIMEOUT)
4031 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
4032 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
4033 	    RB_RST_SET | RB_DIS_OP_MD);
4034 
4035 	/* Disable all GMAC interrupt. */
4036 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
4037 	/* Disable PHY interrupt. */
4038 	if (sc->msk_marvell_phy)
4039 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
4040 
4041 	/* Disable the RAM Interface Arbiter. */
4042 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
4043 
4044 	/* Reset the PCI FIFO of the async Tx queue */
4045 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4046 	    BMU_RST_SET | BMU_FIFO_RST);
4047 
4048 	/* Reset the Tx prefetch units. */
4049 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
4050 	    PREF_UNIT_RST_SET);
4051 
4052 	/* Reset the RAM Buffer async Tx queue. */
4053 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
4054 
4055 	/* Reset Tx MAC FIFO. */
4056 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
4057 	/* Set Pause Off. */
4058 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
4059 
4060 	/*
4061 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
4062 	 * reach the end of packet and since we can't make sure that we have
4063 	 * incoming data, we must reset the BMU while it is not during a DMA
4064 	 * transfer. Since it is possible that the Rx path is still active,
4065 	 * the Rx RAM buffer will be stopped first, so any possible incoming
4066 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
4067 	 * BMU is polled until any DMA in progress is ended and only then it
4068 	 * will be reset.
4069 	 */
4070 
4071 	/* Disable the RAM Buffer receive queue. */
4072 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4073 	for (i = 0; i < MSK_TIMEOUT; i++) {
4074 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4075 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4076 			break;
4077 		DELAY(1);
4078 	}
4079 	if (i == MSK_TIMEOUT)
4080 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4081 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4082 	    BMU_RST_SET | BMU_FIFO_RST);
4083 	/* Reset the Rx prefetch unit. */
4084 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4085 	    PREF_UNIT_RST_SET);
4086 	/* Reset the RAM Buffer receive queue. */
4087 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4088 	/* Reset Rx MAC FIFO. */
4089 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4090 
4091 	/* Free Rx and Tx mbufs still in the queues. */
4092 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4093 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4094 		if (rxd->rx_m != NULL) {
4095 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4096 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4097 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4098 			    rxd->rx_dmamap);
4099 			m_freem(rxd->rx_m);
4100 			rxd->rx_m = NULL;
4101 		}
4102 	}
4103 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4104 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4105 		if (jrxd->rx_m != NULL) {
4106 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4107 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4108 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4109 			    jrxd->rx_dmamap);
4110 			m_freem(jrxd->rx_m);
4111 			jrxd->rx_m = NULL;
4112 		}
4113 	}
4114 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4115 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4116 		if (txd->tx_m != NULL) {
4117 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4118 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4119 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4120 			    txd->tx_dmamap);
4121 			m_freem(txd->tx_m);
4122 			txd->tx_m = NULL;
4123 		}
4124 	}
4125 
4126 	/*
4127 	 * Mark the interface down.
4128 	 */
4129 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4130 	sc_if->msk_link = 0;
4131 }
4132 
4133 static int
4134 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4135 {
4136 	int error, value;
4137 
4138 	if (!arg1)
4139 		return (EINVAL);
4140 	value = *(int *)arg1;
4141 	error = sysctl_handle_int(oidp, &value, 0, req);
4142 	if (error || !req->newptr)
4143 		return (error);
4144 	if (value < low || value > high)
4145 		return (EINVAL);
4146 	*(int *)arg1 = value;
4147 
4148 	return (0);
4149 }
4150 
4151 static int
4152 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4153 {
4154 
4155 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4156 	    MSK_PROC_MAX));
4157 }
4158