1 /****************************************************************************** 2 * 3 * Name : sky2.c 4 * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x 5 * Version: $Revision: 1.23 $ 6 * Date : $Date: 2005/12/22 09:04:11 $ 7 * Purpose: Main driver source file 8 * 9 *****************************************************************************/ 10 11 /****************************************************************************** 12 * 13 * LICENSE: 14 * Copyright (C) Marvell International Ltd. and/or its affiliates 15 * 16 * The computer program files contained in this folder ("Files") 17 * are provided to you under the BSD-type license terms provided 18 * below, and any use of such Files and any derivative works 19 * thereof created by you shall be governed by the following terms 20 * and conditions: 21 * 22 * - Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials provided 27 * with the distribution. 28 * - Neither the name of Marvell nor the names of its contributors 29 * may be used to endorse or promote products derived from this 30 * software without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 35 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 36 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 37 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 38 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 39 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 41 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 42 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 43 * OF THE POSSIBILITY OF SUCH DAMAGE. 44 * /LICENSE 45 * 46 *****************************************************************************/ 47 48 /*- 49 * Copyright (c) 1997, 1998, 1999, 2000 50 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 51 * 52 * Redistribution and use in source and binary forms, with or without 53 * modification, are permitted provided that the following conditions 54 * are met: 55 * 1. Redistributions of source code must retain the above copyright 56 * notice, this list of conditions and the following disclaimer. 57 * 2. Redistributions in binary form must reproduce the above copyright 58 * notice, this list of conditions and the following disclaimer in the 59 * documentation and/or other materials provided with the distribution. 60 * 3. All advertising materials mentioning features or use of this software 61 * must display the following acknowledgement: 62 * This product includes software developed by Bill Paul. 63 * 4. Neither the name of the author nor the names of any co-contributors 64 * may be used to endorse or promote products derived from this software 65 * without specific prior written permission. 66 * 67 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 70 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 71 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 72 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 73 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 74 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 75 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 76 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 77 * THE POSSIBILITY OF SUCH DAMAGE. 78 */ 79 /*- 80 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu> 81 * 82 * Permission to use, copy, modify, and distribute this software for any 83 * purpose with or without fee is hereby granted, provided that the above 84 * copyright notice and this permission notice appear in all copies. 85 * 86 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 87 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 88 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 89 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 90 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 91 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 92 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 93 */ 94 95 /* 96 * Device driver for the Marvell Yukon II Ethernet controller. 97 * Due to lack of documentation, this driver is based on the code from 98 * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x. 99 */ 100 101 #include <sys/cdefs.h> 102 __FBSDID("$FreeBSD$"); 103 104 #include <sys/param.h> 105 #include <sys/systm.h> 106 #include <sys/bus.h> 107 #include <sys/endian.h> 108 #include <sys/mbuf.h> 109 #include <sys/malloc.h> 110 #include <sys/kernel.h> 111 #include <sys/module.h> 112 #include <sys/socket.h> 113 #include <sys/sockio.h> 114 #include <sys/queue.h> 115 #include <sys/sysctl.h> 116 #include <sys/taskqueue.h> 117 118 #include <net/bpf.h> 119 #include <net/ethernet.h> 120 #include <net/if.h> 121 #include <net/if_arp.h> 122 #include <net/if_dl.h> 123 #include <net/if_media.h> 124 #include <net/if_types.h> 125 #include <net/if_vlan_var.h> 126 127 #include <netinet/in.h> 128 #include <netinet/in_systm.h> 129 #include <netinet/ip.h> 130 #include <netinet/tcp.h> 131 #include <netinet/udp.h> 132 133 #include <machine/bus.h> 134 #include <machine/in_cksum.h> 135 #include <machine/resource.h> 136 #include <sys/rman.h> 137 138 #include <dev/mii/mii.h> 139 #include <dev/mii/miivar.h> 140 #include <dev/mii/brgphyreg.h> 141 142 #include <dev/pci/pcireg.h> 143 #include <dev/pci/pcivar.h> 144 145 #include <dev/msk/if_mskreg.h> 146 147 MODULE_DEPEND(msk, pci, 1, 1, 1); 148 MODULE_DEPEND(msk, ether, 1, 1, 1); 149 MODULE_DEPEND(msk, miibus, 1, 1, 1); 150 151 /* "device miibus" required. See GENERIC if you get errors here. */ 152 #include "miibus_if.h" 153 154 /* Tunables. */ 155 static int msi_disable = 0; 156 TUNABLE_INT("hw.msk.msi_disable", &msi_disable); 157 static int legacy_intr = 0; 158 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr); 159 160 #define MSK_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 161 162 /* 163 * Devices supported by this driver. 164 */ 165 static struct msk_product { 166 uint16_t msk_vendorid; 167 uint16_t msk_deviceid; 168 const char *msk_name; 169 } msk_products[] = { 170 { VENDORID_SK, DEVICEID_SK_YUKON2, 171 "SK-9Sxx Gigabit Ethernet" }, 172 { VENDORID_SK, DEVICEID_SK_YUKON2_EXPR, 173 "SK-9Exx Gigabit Ethernet"}, 174 { VENDORID_MARVELL, DEVICEID_MRVL_8021CU, 175 "Marvell Yukon 88E8021CU Gigabit Ethernet" }, 176 { VENDORID_MARVELL, DEVICEID_MRVL_8021X, 177 "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" }, 178 { VENDORID_MARVELL, DEVICEID_MRVL_8022CU, 179 "Marvell Yukon 88E8022CU Gigabit Ethernet" }, 180 { VENDORID_MARVELL, DEVICEID_MRVL_8022X, 181 "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" }, 182 { VENDORID_MARVELL, DEVICEID_MRVL_8061CU, 183 "Marvell Yukon 88E8061CU Gigabit Ethernet" }, 184 { VENDORID_MARVELL, DEVICEID_MRVL_8061X, 185 "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" }, 186 { VENDORID_MARVELL, DEVICEID_MRVL_8062CU, 187 "Marvell Yukon 88E8062CU Gigabit Ethernet" }, 188 { VENDORID_MARVELL, DEVICEID_MRVL_8062X, 189 "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" }, 190 { VENDORID_MARVELL, DEVICEID_MRVL_8035, 191 "Marvell Yukon 88E8035 Gigabit Ethernet" }, 192 { VENDORID_MARVELL, DEVICEID_MRVL_8036, 193 "Marvell Yukon 88E8036 Gigabit Ethernet" }, 194 { VENDORID_MARVELL, DEVICEID_MRVL_8038, 195 "Marvell Yukon 88E8038 Gigabit Ethernet" }, 196 { VENDORID_MARVELL, DEVICEID_MRVL_4361, 197 "Marvell Yukon 88E8050 Gigabit Ethernet" }, 198 { VENDORID_MARVELL, DEVICEID_MRVL_4360, 199 "Marvell Yukon 88E8052 Gigabit Ethernet" }, 200 { VENDORID_MARVELL, DEVICEID_MRVL_4362, 201 "Marvell Yukon 88E8053 Gigabit Ethernet" }, 202 { VENDORID_MARVELL, DEVICEID_MRVL_4363, 203 "Marvell Yukon 88E8055 Gigabit Ethernet" }, 204 { VENDORID_MARVELL, DEVICEID_MRVL_4364, 205 "Marvell Yukon 88E8056 Gigabit Ethernet" }, 206 { VENDORID_DLINK, DEVICEID_DLINK_DGE550SX, 207 "D-Link 550SX Gigabit Ethernet" }, 208 { VENDORID_DLINK, DEVICEID_DLINK_DGE560T, 209 "D-Link 560T Gigabit Ethernet" } 210 }; 211 212 static const char *model_name[] = { 213 "Yukon XL", 214 "Yukon EC Ultra", 215 "Yukon Unknown", 216 "Yukon EC", 217 "Yukon FE" 218 }; 219 220 static int mskc_probe(device_t); 221 static int mskc_attach(device_t); 222 static int mskc_detach(device_t); 223 static void mskc_shutdown(device_t); 224 static int mskc_setup_rambuffer(struct msk_softc *); 225 static int mskc_suspend(device_t); 226 static int mskc_resume(device_t); 227 static void mskc_reset(struct msk_softc *); 228 229 static int msk_probe(device_t); 230 static int msk_attach(device_t); 231 static int msk_detach(device_t); 232 233 static void msk_tick(void *); 234 static void msk_legacy_intr(void *); 235 static int msk_intr(void *); 236 static void msk_int_task(void *, int); 237 static void msk_intr_phy(struct msk_if_softc *); 238 static void msk_intr_gmac(struct msk_if_softc *); 239 static __inline void msk_rxput(struct msk_if_softc *); 240 static int msk_handle_events(struct msk_softc *); 241 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t); 242 static void msk_intr_hwerr(struct msk_softc *); 243 static void msk_rxeof(struct msk_if_softc *, uint32_t, int); 244 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int); 245 static void msk_txeof(struct msk_if_softc *, int); 246 static struct mbuf *msk_defrag(struct mbuf *, int, int); 247 static int msk_encap(struct msk_if_softc *, struct mbuf **); 248 static void msk_tx_task(void *, int); 249 static void msk_start(struct ifnet *); 250 static int msk_ioctl(struct ifnet *, u_long, caddr_t); 251 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t); 252 static void msk_set_rambuffer(struct msk_if_softc *); 253 static void msk_init(void *); 254 static void msk_init_locked(struct msk_if_softc *); 255 static void msk_stop(struct msk_if_softc *); 256 static void msk_watchdog(struct msk_if_softc *); 257 static int msk_mediachange(struct ifnet *); 258 static void msk_mediastatus(struct ifnet *, struct ifmediareq *); 259 static void msk_phy_power(struct msk_softc *, int); 260 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int); 261 static int msk_status_dma_alloc(struct msk_softc *); 262 static void msk_status_dma_free(struct msk_softc *); 263 static int msk_txrx_dma_alloc(struct msk_if_softc *); 264 static void msk_txrx_dma_free(struct msk_if_softc *); 265 static void *msk_jalloc(struct msk_if_softc *); 266 static void msk_jfree(void *, void *); 267 static int msk_init_rx_ring(struct msk_if_softc *); 268 static int msk_init_jumbo_rx_ring(struct msk_if_softc *); 269 static void msk_init_tx_ring(struct msk_if_softc *); 270 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int); 271 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int); 272 static int msk_newbuf(struct msk_if_softc *, int); 273 static int msk_jumbo_newbuf(struct msk_if_softc *, int); 274 275 static int msk_phy_readreg(struct msk_if_softc *, int, int); 276 static int msk_phy_writereg(struct msk_if_softc *, int, int, int); 277 static int msk_miibus_readreg(device_t, int, int); 278 static int msk_miibus_writereg(device_t, int, int, int); 279 static void msk_miibus_statchg(device_t); 280 static void msk_link_task(void *, int); 281 282 static void msk_setmulti(struct msk_if_softc *); 283 static void msk_setvlan(struct msk_if_softc *, struct ifnet *); 284 static void msk_setpromisc(struct msk_if_softc *); 285 286 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 287 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS); 288 289 static device_method_t mskc_methods[] = { 290 /* Device interface */ 291 DEVMETHOD(device_probe, mskc_probe), 292 DEVMETHOD(device_attach, mskc_attach), 293 DEVMETHOD(device_detach, mskc_detach), 294 DEVMETHOD(device_suspend, mskc_suspend), 295 DEVMETHOD(device_resume, mskc_resume), 296 DEVMETHOD(device_shutdown, mskc_shutdown), 297 298 /* bus interface */ 299 DEVMETHOD(bus_print_child, bus_generic_print_child), 300 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 301 302 { NULL, NULL } 303 }; 304 305 static driver_t mskc_driver = { 306 "mskc", 307 mskc_methods, 308 sizeof(struct msk_softc) 309 }; 310 311 static devclass_t mskc_devclass; 312 313 static device_method_t msk_methods[] = { 314 /* Device interface */ 315 DEVMETHOD(device_probe, msk_probe), 316 DEVMETHOD(device_attach, msk_attach), 317 DEVMETHOD(device_detach, msk_detach), 318 DEVMETHOD(device_shutdown, bus_generic_shutdown), 319 320 /* bus interface */ 321 DEVMETHOD(bus_print_child, bus_generic_print_child), 322 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 323 324 /* MII interface */ 325 DEVMETHOD(miibus_readreg, msk_miibus_readreg), 326 DEVMETHOD(miibus_writereg, msk_miibus_writereg), 327 DEVMETHOD(miibus_statchg, msk_miibus_statchg), 328 329 { NULL, NULL } 330 }; 331 332 static driver_t msk_driver = { 333 "msk", 334 msk_methods, 335 sizeof(struct msk_if_softc) 336 }; 337 338 static devclass_t msk_devclass; 339 340 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0); 341 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0); 342 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0); 343 344 static struct resource_spec msk_res_spec_io[] = { 345 { SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE }, 346 { -1, 0, 0 } 347 }; 348 349 static struct resource_spec msk_res_spec_mem[] = { 350 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 351 { -1, 0, 0 } 352 }; 353 354 static struct resource_spec msk_irq_spec_legacy[] = { 355 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 356 { -1, 0, 0 } 357 }; 358 359 static struct resource_spec msk_irq_spec_msi[] = { 360 { SYS_RES_IRQ, 1, RF_ACTIVE }, 361 { SYS_RES_IRQ, 2, RF_ACTIVE }, 362 { -1, 0, 0 } 363 }; 364 365 static int 366 msk_miibus_readreg(device_t dev, int phy, int reg) 367 { 368 struct msk_if_softc *sc_if; 369 370 sc_if = device_get_softc(dev); 371 372 return (msk_phy_readreg(sc_if, phy, reg)); 373 } 374 375 static int 376 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg) 377 { 378 struct msk_softc *sc; 379 int i, val; 380 381 sc = sc_if->msk_softc; 382 383 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL, 384 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); 385 386 for (i = 0; i < MSK_TIMEOUT; i++) { 387 DELAY(1); 388 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL); 389 if ((val & GM_SMI_CT_RD_VAL) != 0) { 390 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA); 391 break; 392 } 393 } 394 395 if (i == MSK_TIMEOUT) { 396 if_printf(sc_if->msk_ifp, "phy failed to come ready\n"); 397 val = 0; 398 } 399 400 return (val); 401 } 402 403 static int 404 msk_miibus_writereg(device_t dev, int phy, int reg, int val) 405 { 406 struct msk_if_softc *sc_if; 407 408 sc_if = device_get_softc(dev); 409 410 return (msk_phy_writereg(sc_if, phy, reg, val)); 411 } 412 413 static int 414 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val) 415 { 416 struct msk_softc *sc; 417 int i; 418 419 sc = sc_if->msk_softc; 420 421 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val); 422 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL, 423 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg)); 424 for (i = 0; i < MSK_TIMEOUT; i++) { 425 DELAY(1); 426 if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) & 427 GM_SMI_CT_BUSY) == 0) 428 break; 429 } 430 if (i == MSK_TIMEOUT) 431 if_printf(sc_if->msk_ifp, "phy write timeout\n"); 432 433 return (0); 434 } 435 436 static void 437 msk_miibus_statchg(device_t dev) 438 { 439 struct msk_if_softc *sc_if; 440 441 sc_if = device_get_softc(dev); 442 taskqueue_enqueue(taskqueue_swi, &sc_if->msk_link_task); 443 } 444 445 static void 446 msk_link_task(void *arg, int pending) 447 { 448 struct msk_softc *sc; 449 struct msk_if_softc *sc_if; 450 struct mii_data *mii; 451 struct ifnet *ifp; 452 uint32_t gmac; 453 454 sc_if = (struct msk_if_softc *)arg; 455 sc = sc_if->msk_softc; 456 457 MSK_IF_LOCK(sc_if); 458 459 mii = device_get_softc(sc_if->msk_miibus); 460 ifp = sc_if->msk_ifp; 461 if (mii == NULL || ifp == NULL) { 462 MSK_IF_UNLOCK(sc_if); 463 return; 464 } 465 466 if (mii->mii_media_status & IFM_ACTIVE) { 467 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) 468 sc_if->msk_link = 1; 469 } else 470 sc_if->msk_link = 0; 471 472 if (sc_if->msk_link != 0) { 473 /* Enable Tx FIFO Underrun. */ 474 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 475 GM_IS_TX_FF_UR | GM_IS_RX_FF_OR); 476 /* 477 * Because mii(4) notify msk(4) that it detected link status 478 * change, there is no need to enable automatic 479 * speed/flow-control/duplex updates. 480 */ 481 gmac = GM_GPCR_AU_ALL_DIS; 482 switch (IFM_SUBTYPE(mii->mii_media_active)) { 483 case IFM_1000_SX: 484 case IFM_1000_T: 485 gmac |= GM_GPCR_SPEED_1000; 486 break; 487 case IFM_100_TX: 488 gmac |= GM_GPCR_SPEED_100; 489 break; 490 case IFM_10_T: 491 break; 492 } 493 494 if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0) 495 gmac |= GM_GPCR_DUP_FULL; 496 /* Disable Rx flow control. */ 497 if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0) 498 gmac |= GM_GPCR_FC_RX_DIS; 499 /* Disable Tx flow control. */ 500 if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0) 501 gmac |= GM_GPCR_FC_TX_DIS; 502 gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; 503 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac); 504 /* Read again to ensure writing. */ 505 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 506 507 gmac = GMC_PAUSE_ON; 508 if (((mii->mii_media_active & IFM_GMASK) & 509 (IFM_FLAG0 | IFM_FLAG1)) == 0) 510 gmac = GMC_PAUSE_OFF; 511 /* Diable pause for 10/100 Mbps in half-duplex mode. */ 512 if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) && 513 (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX || 514 IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T)) 515 gmac = GMC_PAUSE_OFF; 516 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac); 517 518 /* Enable PHY interrupt for FIFO underrun/overflow. */ 519 if (sc->msk_marvell_phy) 520 msk_phy_writereg(sc_if, PHY_ADDR_MARV, 521 PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR); 522 } else { 523 /* 524 * Link state changed to down. 525 * Disable PHY interrupts. 526 */ 527 if (sc->msk_marvell_phy) 528 msk_phy_writereg(sc_if, PHY_ADDR_MARV, 529 PHY_MARV_INT_MASK, 0); 530 /* Disable Rx/Tx MAC. */ 531 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 532 gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 533 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac); 534 /* Read again to ensure writing. */ 535 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 536 } 537 538 MSK_IF_UNLOCK(sc_if); 539 } 540 541 static void 542 msk_setmulti(struct msk_if_softc *sc_if) 543 { 544 struct msk_softc *sc; 545 struct ifnet *ifp; 546 struct ifmultiaddr *ifma; 547 uint32_t mchash[2]; 548 uint32_t crc; 549 uint16_t mode; 550 551 sc = sc_if->msk_softc; 552 553 MSK_IF_LOCK_ASSERT(sc_if); 554 555 ifp = sc_if->msk_ifp; 556 557 bzero(mchash, sizeof(mchash)); 558 mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL); 559 mode |= GM_RXCR_UCF_ENA; 560 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 561 if ((ifp->if_flags & IFF_PROMISC) != 0) 562 mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 563 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) { 564 mchash[0] = 0xffff; 565 mchash[1] = 0xffff; 566 } 567 } else { 568 IF_ADDR_LOCK(ifp); 569 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 570 if (ifma->ifma_addr->sa_family != AF_LINK) 571 continue; 572 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 573 ifma->ifma_addr), ETHER_ADDR_LEN); 574 /* Just want the 6 least significant bits. */ 575 crc &= 0x3f; 576 /* Set the corresponding bit in the hash table. */ 577 mchash[crc >> 5] |= 1 << (crc & 0x1f); 578 } 579 IF_ADDR_UNLOCK(ifp); 580 mode |= GM_RXCR_MCF_ENA; 581 } 582 583 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1, 584 mchash[0] & 0xffff); 585 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2, 586 (mchash[0] >> 16) & 0xffff); 587 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3, 588 mchash[1] & 0xffff); 589 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4, 590 (mchash[1] >> 16) & 0xffff); 591 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode); 592 } 593 594 static void 595 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp) 596 { 597 struct msk_softc *sc; 598 599 sc = sc_if->msk_softc; 600 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 601 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 602 RX_VLAN_STRIP_ON); 603 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 604 TX_VLAN_TAG_ON); 605 } else { 606 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 607 RX_VLAN_STRIP_OFF); 608 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 609 TX_VLAN_TAG_OFF); 610 } 611 } 612 613 static void 614 msk_setpromisc(struct msk_if_softc *sc_if) 615 { 616 struct msk_softc *sc; 617 struct ifnet *ifp; 618 uint16_t mode; 619 620 MSK_IF_LOCK_ASSERT(sc_if); 621 622 sc = sc_if->msk_softc; 623 ifp = sc_if->msk_ifp; 624 625 mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL); 626 if (ifp->if_flags & IFF_PROMISC) 627 mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 628 else 629 mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 630 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode); 631 } 632 633 static int 634 msk_init_rx_ring(struct msk_if_softc *sc_if) 635 { 636 struct msk_ring_data *rd; 637 struct msk_rxdesc *rxd; 638 int i, prod; 639 640 MSK_IF_LOCK_ASSERT(sc_if); 641 642 sc_if->msk_cdata.msk_rx_cons = 0; 643 sc_if->msk_cdata.msk_rx_prod = 0; 644 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM; 645 646 rd = &sc_if->msk_rdata; 647 bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT); 648 prod = sc_if->msk_cdata.msk_rx_prod; 649 for (i = 0; i < MSK_RX_RING_CNT; i++) { 650 rxd = &sc_if->msk_cdata.msk_rxdesc[prod]; 651 rxd->rx_m = NULL; 652 rxd->rx_le = &rd->msk_rx_ring[prod]; 653 if (msk_newbuf(sc_if, prod) != 0) 654 return (ENOBUFS); 655 MSK_INC(prod, MSK_RX_RING_CNT); 656 } 657 658 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag, 659 sc_if->msk_cdata.msk_rx_ring_map, 660 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 661 662 /* Update prefetch unit. */ 663 sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1; 664 CSR_WRITE_2(sc_if->msk_softc, 665 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG), 666 sc_if->msk_cdata.msk_rx_prod); 667 668 return (0); 669 } 670 671 static int 672 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if) 673 { 674 struct msk_ring_data *rd; 675 struct msk_rxdesc *rxd; 676 int i, prod; 677 678 MSK_IF_LOCK_ASSERT(sc_if); 679 680 sc_if->msk_cdata.msk_rx_cons = 0; 681 sc_if->msk_cdata.msk_rx_prod = 0; 682 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM; 683 684 rd = &sc_if->msk_rdata; 685 bzero(rd->msk_jumbo_rx_ring, 686 sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT); 687 prod = sc_if->msk_cdata.msk_rx_prod; 688 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 689 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod]; 690 rxd->rx_m = NULL; 691 rxd->rx_le = &rd->msk_jumbo_rx_ring[prod]; 692 if (msk_jumbo_newbuf(sc_if, prod) != 0) 693 return (ENOBUFS); 694 MSK_INC(prod, MSK_JUMBO_RX_RING_CNT); 695 } 696 697 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 698 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 699 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 700 701 sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1; 702 CSR_WRITE_2(sc_if->msk_softc, 703 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG), 704 sc_if->msk_cdata.msk_rx_prod); 705 706 return (0); 707 } 708 709 static void 710 msk_init_tx_ring(struct msk_if_softc *sc_if) 711 { 712 struct msk_ring_data *rd; 713 struct msk_txdesc *txd; 714 int i; 715 716 sc_if->msk_cdata.msk_tso_mtu = 0; 717 sc_if->msk_cdata.msk_tx_prod = 0; 718 sc_if->msk_cdata.msk_tx_cons = 0; 719 sc_if->msk_cdata.msk_tx_cnt = 0; 720 721 rd = &sc_if->msk_rdata; 722 bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT); 723 for (i = 0; i < MSK_TX_RING_CNT; i++) { 724 txd = &sc_if->msk_cdata.msk_txdesc[i]; 725 txd->tx_m = NULL; 726 txd->tx_le = &rd->msk_tx_ring[i]; 727 } 728 729 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, 730 sc_if->msk_cdata.msk_tx_ring_map, 731 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 732 } 733 734 static __inline void 735 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx) 736 { 737 struct msk_rx_desc *rx_le; 738 struct msk_rxdesc *rxd; 739 struct mbuf *m; 740 741 rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; 742 m = rxd->rx_m; 743 rx_le = rxd->rx_le; 744 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER); 745 } 746 747 static __inline void 748 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int idx) 749 { 750 struct msk_rx_desc *rx_le; 751 struct msk_rxdesc *rxd; 752 struct mbuf *m; 753 754 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; 755 m = rxd->rx_m; 756 rx_le = rxd->rx_le; 757 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER); 758 } 759 760 static int 761 msk_newbuf(struct msk_if_softc *sc_if, int idx) 762 { 763 struct msk_rx_desc *rx_le; 764 struct msk_rxdesc *rxd; 765 struct mbuf *m; 766 bus_dma_segment_t segs[1]; 767 bus_dmamap_t map; 768 int nsegs; 769 770 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 771 if (m == NULL) 772 return (ENOBUFS); 773 774 m->m_len = m->m_pkthdr.len = MCLBYTES; 775 m_adj(m, ETHER_ALIGN); 776 777 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag, 778 sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs, 779 BUS_DMA_NOWAIT) != 0) { 780 m_freem(m); 781 return (ENOBUFS); 782 } 783 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 784 785 rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; 786 if (rxd->rx_m != NULL) { 787 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap, 788 BUS_DMASYNC_POSTREAD); 789 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap); 790 } 791 map = rxd->rx_dmamap; 792 rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap; 793 sc_if->msk_cdata.msk_rx_sparemap = map; 794 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap, 795 BUS_DMASYNC_PREREAD); 796 rxd->rx_m = m; 797 rx_le = rxd->rx_le; 798 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr)); 799 rx_le->msk_control = 800 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER); 801 802 return (0); 803 } 804 805 static int 806 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx) 807 { 808 struct msk_rx_desc *rx_le; 809 struct msk_rxdesc *rxd; 810 struct mbuf *m; 811 bus_dma_segment_t segs[1]; 812 bus_dmamap_t map; 813 int nsegs; 814 void *buf; 815 816 MGETHDR(m, M_DONTWAIT, MT_DATA); 817 if (m == NULL) 818 return (ENOBUFS); 819 buf = msk_jalloc(sc_if); 820 if (buf == NULL) { 821 m_freem(m); 822 return (ENOBUFS); 823 } 824 /* Attach the buffer to the mbuf. */ 825 MEXTADD(m, buf, MSK_JLEN, msk_jfree, (struct msk_if_softc *)sc_if, 0, 826 EXT_NET_DRV); 827 if ((m->m_flags & M_EXT) == 0) { 828 m_freem(m); 829 return (ENOBUFS); 830 } 831 m->m_pkthdr.len = m->m_len = MSK_JLEN; 832 m_adj(m, ETHER_ALIGN); 833 834 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag, 835 sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs, 836 BUS_DMA_NOWAIT) != 0) { 837 m_freem(m); 838 return (ENOBUFS); 839 } 840 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 841 842 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; 843 if (rxd->rx_m != NULL) { 844 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, 845 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 846 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag, 847 rxd->rx_dmamap); 848 } 849 map = rxd->rx_dmamap; 850 rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap; 851 sc_if->msk_cdata.msk_jumbo_rx_sparemap = map; 852 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap, 853 BUS_DMASYNC_PREREAD); 854 rxd->rx_m = m; 855 rx_le = rxd->rx_le; 856 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr)); 857 rx_le->msk_control = 858 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER); 859 860 return (0); 861 } 862 863 /* 864 * Set media options. 865 */ 866 static int 867 msk_mediachange(struct ifnet *ifp) 868 { 869 struct msk_if_softc *sc_if; 870 struct mii_data *mii; 871 872 sc_if = ifp->if_softc; 873 874 MSK_IF_LOCK(sc_if); 875 mii = device_get_softc(sc_if->msk_miibus); 876 mii_mediachg(mii); 877 MSK_IF_UNLOCK(sc_if); 878 879 return (0); 880 } 881 882 /* 883 * Report current media status. 884 */ 885 static void 886 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 887 { 888 struct msk_if_softc *sc_if; 889 struct mii_data *mii; 890 891 sc_if = ifp->if_softc; 892 MSK_IF_LOCK(sc_if); 893 mii = device_get_softc(sc_if->msk_miibus); 894 895 mii_pollstat(mii); 896 MSK_IF_UNLOCK(sc_if); 897 ifmr->ifm_active = mii->mii_media_active; 898 ifmr->ifm_status = mii->mii_media_status; 899 } 900 901 static int 902 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 903 { 904 struct msk_if_softc *sc_if; 905 struct ifreq *ifr; 906 struct mii_data *mii; 907 int error, mask; 908 909 sc_if = ifp->if_softc; 910 ifr = (struct ifreq *)data; 911 error = 0; 912 913 switch(command) { 914 case SIOCSIFMTU: 915 if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) { 916 error = EINVAL; 917 break; 918 } 919 if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U && 920 ifr->ifr_mtu > MSK_MAX_FRAMELEN) { 921 error = EINVAL; 922 break; 923 } 924 MSK_IF_LOCK(sc_if); 925 ifp->if_mtu = ifr->ifr_mtu; 926 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 927 msk_init_locked(sc_if); 928 MSK_IF_UNLOCK(sc_if); 929 break; 930 case SIOCSIFFLAGS: 931 MSK_IF_LOCK(sc_if); 932 if ((ifp->if_flags & IFF_UP) != 0) { 933 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 934 if (((ifp->if_flags ^ sc_if->msk_if_flags) 935 & IFF_PROMISC) != 0) { 936 msk_setpromisc(sc_if); 937 msk_setmulti(sc_if); 938 } 939 } else { 940 if (sc_if->msk_detach == 0) 941 msk_init_locked(sc_if); 942 } 943 } else { 944 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 945 msk_stop(sc_if); 946 } 947 sc_if->msk_if_flags = ifp->if_flags; 948 MSK_IF_UNLOCK(sc_if); 949 break; 950 case SIOCADDMULTI: 951 case SIOCDELMULTI: 952 MSK_IF_LOCK(sc_if); 953 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 954 msk_setmulti(sc_if); 955 MSK_IF_UNLOCK(sc_if); 956 break; 957 case SIOCGIFMEDIA: 958 case SIOCSIFMEDIA: 959 mii = device_get_softc(sc_if->msk_miibus); 960 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 961 break; 962 case SIOCSIFCAP: 963 MSK_IF_LOCK(sc_if); 964 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 965 if ((mask & IFCAP_TXCSUM) != 0) { 966 ifp->if_capenable ^= IFCAP_TXCSUM; 967 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 && 968 (IFCAP_TXCSUM & ifp->if_capabilities) != 0) 969 ifp->if_hwassist |= MSK_CSUM_FEATURES; 970 else 971 ifp->if_hwassist &= ~MSK_CSUM_FEATURES; 972 } 973 if ((mask & IFCAP_VLAN_HWTAGGING) != 0) { 974 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 975 msk_setvlan(sc_if, ifp); 976 } 977 978 if ((mask & IFCAP_TSO4) != 0) { 979 ifp->if_capenable ^= IFCAP_TSO4; 980 if ((IFCAP_TSO4 & ifp->if_capenable) != 0 && 981 (IFCAP_TSO4 & ifp->if_capabilities) != 0) 982 ifp->if_hwassist |= CSUM_TSO; 983 else 984 ifp->if_hwassist &= ~CSUM_TSO; 985 } 986 VLAN_CAPABILITIES(ifp); 987 MSK_IF_UNLOCK(sc_if); 988 break; 989 default: 990 error = ether_ioctl(ifp, command, data); 991 break; 992 } 993 994 return (error); 995 } 996 997 static int 998 mskc_probe(device_t dev) 999 { 1000 struct msk_product *mp; 1001 uint16_t vendor, devid; 1002 int i; 1003 1004 vendor = pci_get_vendor(dev); 1005 devid = pci_get_device(dev); 1006 mp = msk_products; 1007 for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]); 1008 i++, mp++) { 1009 if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) { 1010 device_set_desc(dev, mp->msk_name); 1011 return (BUS_PROBE_DEFAULT); 1012 } 1013 } 1014 1015 return (ENXIO); 1016 } 1017 1018 static int 1019 mskc_setup_rambuffer(struct msk_softc *sc) 1020 { 1021 int totqsize, minqsize; 1022 int avail, next; 1023 int i; 1024 uint8_t val; 1025 1026 /* Get adapter SRAM size. */ 1027 val = CSR_READ_1(sc, B2_E_0); 1028 sc->msk_ramsize = (val == 0) ? 128 : val * 4; 1029 if (sc->msk_hw_id == CHIP_ID_YUKON_FE) 1030 sc->msk_ramsize = 4 * 4; 1031 if (bootverbose) 1032 device_printf(sc->msk_dev, 1033 "RAM buffer size : %dKB\n", sc->msk_ramsize); 1034 1035 totqsize = sc->msk_ramsize * sc->msk_num_port; 1036 minqsize = MSK_MIN_RXQ_SIZE + MSK_MIN_TXQ_SIZE; 1037 if (minqsize > sc->msk_ramsize) 1038 minqsize = sc->msk_ramsize; 1039 1040 if (minqsize * sc->msk_num_port > totqsize) { 1041 device_printf(sc->msk_dev, 1042 "not enough RAM buffer memory : %d/%dKB\n", 1043 minqsize * sc->msk_num_port, totqsize); 1044 return (ENOSPC); 1045 } 1046 1047 avail = totqsize; 1048 if (sc->msk_num_port > 1) { 1049 /* 1050 * Divide up the memory evenly so that everyone gets a 1051 * fair share for dual port adapters. 1052 */ 1053 avail = sc->msk_ramsize; 1054 } 1055 1056 /* Take away the minimum memory for active queues. */ 1057 avail -= minqsize; 1058 /* Rx queue gets the minimum + 80% of the rest. */ 1059 sc->msk_rxqsize = 1060 (avail * MSK_RAM_QUOTA_RX) / 100 + MSK_MIN_RXQ_SIZE; 1061 avail -= (sc->msk_rxqsize - MSK_MIN_RXQ_SIZE); 1062 sc->msk_txqsize = avail + MSK_MIN_TXQ_SIZE; 1063 1064 for (i = 0, next = 0; i < sc->msk_num_port; i++) { 1065 sc->msk_rxqstart[i] = next; 1066 sc->msk_rxqend[i] = next + (sc->msk_rxqsize * 1024) - 1; 1067 next = sc->msk_rxqend[i] + 1; 1068 sc->msk_txqstart[i] = next; 1069 sc->msk_txqend[i] = next + (sc->msk_txqsize * 1024) - 1; 1070 next = sc->msk_txqend[i] + 1; 1071 if (bootverbose) { 1072 device_printf(sc->msk_dev, 1073 "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i, 1074 sc->msk_rxqsize, sc->msk_rxqstart[i], 1075 sc->msk_rxqend[i]); 1076 device_printf(sc->msk_dev, 1077 "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i, 1078 sc->msk_txqsize, sc->msk_txqstart[i], 1079 sc->msk_txqend[i]); 1080 } 1081 } 1082 1083 return (0); 1084 } 1085 1086 static void 1087 msk_phy_power(struct msk_softc *sc, int mode) 1088 { 1089 uint32_t val; 1090 int i; 1091 1092 switch (mode) { 1093 case MSK_PHY_POWERUP: 1094 /* Switch power to VCC (WA for VAUX problem). */ 1095 CSR_WRITE_1(sc, B0_POWER_CTRL, 1096 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); 1097 /* Disable Core Clock Division, set Clock Select to 0. */ 1098 CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS); 1099 1100 val = 0; 1101 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1102 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1103 /* Enable bits are inverted. */ 1104 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | 1105 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | 1106 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS; 1107 } 1108 /* 1109 * Enable PCI & Core Clock, enable clock gating for both Links. 1110 */ 1111 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val); 1112 1113 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4); 1114 val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD); 1115 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1116 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1117 /* Deassert Low Power for 1st PHY. */ 1118 val |= PCI_Y2_PHY1_COMA; 1119 if (sc->msk_num_port > 1) 1120 val |= PCI_Y2_PHY2_COMA; 1121 } else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) { 1122 uint32_t our; 1123 1124 CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON); 1125 1126 /* Enable all clocks. */ 1127 pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4); 1128 our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4); 1129 our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN| 1130 PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST); 1131 /* Set all bits to 0 except bits 15..12. */ 1132 pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4); 1133 /* Set to default value. */ 1134 pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4); 1135 } 1136 /* Release PHY from PowerDown/COMA mode. */ 1137 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4); 1138 for (i = 0; i < sc->msk_num_port; i++) { 1139 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL), 1140 GMLC_RST_SET); 1141 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL), 1142 GMLC_RST_CLR); 1143 } 1144 break; 1145 case MSK_PHY_POWERDOWN: 1146 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4); 1147 val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD; 1148 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1149 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1150 val &= ~PCI_Y2_PHY1_COMA; 1151 if (sc->msk_num_port > 1) 1152 val &= ~PCI_Y2_PHY2_COMA; 1153 } 1154 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4); 1155 1156 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | 1157 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | 1158 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS; 1159 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1160 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1161 /* Enable bits are inverted. */ 1162 val = 0; 1163 } 1164 /* 1165 * Disable PCI & Core Clock, disable clock gating for 1166 * both Links. 1167 */ 1168 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val); 1169 CSR_WRITE_1(sc, B0_POWER_CTRL, 1170 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF); 1171 break; 1172 default: 1173 break; 1174 } 1175 } 1176 1177 static void 1178 mskc_reset(struct msk_softc *sc) 1179 { 1180 bus_addr_t addr; 1181 uint16_t status; 1182 uint32_t val; 1183 int i; 1184 1185 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); 1186 1187 /* Disable ASF. */ 1188 if (sc->msk_hw_id < CHIP_ID_YUKON_XL) { 1189 CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET); 1190 CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE); 1191 } 1192 /* 1193 * Since we disabled ASF, S/W reset is required for Power Management. 1194 */ 1195 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 1196 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); 1197 1198 /* Clear all error bits in the PCI status register. */ 1199 status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2); 1200 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 1201 1202 pci_write_config(sc->msk_dev, PCIR_STATUS, status | 1203 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT | 1204 PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2); 1205 CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR); 1206 1207 switch (sc->msk_bustype) { 1208 case MSK_PEX_BUS: 1209 /* Clear all PEX errors. */ 1210 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff); 1211 val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT); 1212 if ((val & PEX_RX_OV) != 0) { 1213 sc->msk_intrmask &= ~Y2_IS_HW_ERR; 1214 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP; 1215 } 1216 break; 1217 case MSK_PCI_BUS: 1218 case MSK_PCIX_BUS: 1219 /* Set Cache Line Size to 2(8bytes) if configured to 0. */ 1220 val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1); 1221 if (val == 0) 1222 pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1); 1223 if (sc->msk_bustype == MSK_PCIX_BUS) { 1224 /* Set Cache Line Size opt. */ 1225 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4); 1226 val |= PCI_CLS_OPT; 1227 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4); 1228 } 1229 break; 1230 } 1231 /* Set PHY power state. */ 1232 msk_phy_power(sc, MSK_PHY_POWERUP); 1233 1234 /* Reset GPHY/GMAC Control */ 1235 for (i = 0; i < sc->msk_num_port; i++) { 1236 /* GPHY Control reset. */ 1237 CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET); 1238 CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR); 1239 /* GMAC Control reset. */ 1240 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET); 1241 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR); 1242 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF); 1243 } 1244 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 1245 1246 /* LED On. */ 1247 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON); 1248 1249 /* Clear TWSI IRQ. */ 1250 CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ); 1251 1252 /* Turn off hardware timer. */ 1253 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP); 1254 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ); 1255 1256 /* Turn off descriptor polling. */ 1257 CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP); 1258 1259 /* Turn off time stamps. */ 1260 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP); 1261 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 1262 1263 /* Configure timeout values. */ 1264 for (i = 0; i < sc->msk_num_port; i++) { 1265 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET); 1266 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR); 1267 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1), 1268 MSK_RI_TO_53); 1269 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1), 1270 MSK_RI_TO_53); 1271 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1), 1272 MSK_RI_TO_53); 1273 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1), 1274 MSK_RI_TO_53); 1275 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1), 1276 MSK_RI_TO_53); 1277 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1), 1278 MSK_RI_TO_53); 1279 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2), 1280 MSK_RI_TO_53); 1281 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2), 1282 MSK_RI_TO_53); 1283 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2), 1284 MSK_RI_TO_53); 1285 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2), 1286 MSK_RI_TO_53); 1287 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2), 1288 MSK_RI_TO_53); 1289 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2), 1290 MSK_RI_TO_53); 1291 } 1292 1293 /* Disable all interrupts. */ 1294 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 1295 CSR_READ_4(sc, B0_HWE_IMSK); 1296 CSR_WRITE_4(sc, B0_IMSK, 0); 1297 CSR_READ_4(sc, B0_IMSK); 1298 1299 /* 1300 * On dual port PCI-X card, there is an problem where status 1301 * can be received out of order due to split transactions. 1302 */ 1303 if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) { 1304 int pcix; 1305 uint16_t pcix_cmd; 1306 1307 if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &pcix) == 0) { 1308 pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2); 1309 /* Clear Max Outstanding Split Transactions. */ 1310 pcix_cmd &= ~0x70; 1311 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 1312 pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2); 1313 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 1314 } 1315 } 1316 if (sc->msk_bustype == MSK_PEX_BUS) { 1317 uint16_t v, width; 1318 1319 v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2); 1320 /* Change Max. Read Request Size to 4096 bytes. */ 1321 v &= ~PEX_DC_MAX_RRS_MSK; 1322 v |= PEX_DC_MAX_RD_RQ_SIZE(5); 1323 pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2); 1324 width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2); 1325 width = (width & PEX_LS_LINK_WI_MSK) >> 4; 1326 v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2); 1327 v = (v & PEX_LS_LINK_WI_MSK) >> 4; 1328 if (v != width) 1329 device_printf(sc->msk_dev, 1330 "negotiated width of link(x%d) != " 1331 "max. width of link(x%d)\n", width, v); 1332 } 1333 1334 /* Clear status list. */ 1335 bzero(sc->msk_stat_ring, 1336 sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT); 1337 sc->msk_stat_cons = 0; 1338 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map, 1339 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1340 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET); 1341 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR); 1342 /* Set the status list base address. */ 1343 addr = sc->msk_stat_ring_paddr; 1344 CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr)); 1345 CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr)); 1346 /* Set the status list last index. */ 1347 CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1); 1348 if (HW_FEATURE(sc, HWF_WA_DEV_43_418)) { 1349 /* WA for dev. #4.3 */ 1350 CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK); 1351 /* WA for dev. #4.18 */ 1352 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21); 1353 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07); 1354 } else { 1355 CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a); 1356 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10); 1357 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 1358 HW_FEATURE(sc, HWF_WA_DEV_4109) ? 0x10 : 0x04); 1359 CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190); 1360 } 1361 /* 1362 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI. 1363 */ 1364 CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000)); 1365 1366 /* Enable status unit. */ 1367 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON); 1368 1369 CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START); 1370 CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START); 1371 CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START); 1372 } 1373 1374 static int 1375 msk_probe(device_t dev) 1376 { 1377 struct msk_softc *sc; 1378 char desc[100]; 1379 1380 sc = device_get_softc(device_get_parent(dev)); 1381 /* 1382 * Not much to do here. We always know there will be 1383 * at least one GMAC present, and if there are two, 1384 * mskc_attach() will create a second device instance 1385 * for us. 1386 */ 1387 snprintf(desc, sizeof(desc), 1388 "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x", 1389 model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id, 1390 sc->msk_hw_rev); 1391 device_set_desc_copy(dev, desc); 1392 1393 return (BUS_PROBE_DEFAULT); 1394 } 1395 1396 static int 1397 msk_attach(device_t dev) 1398 { 1399 struct msk_softc *sc; 1400 struct msk_if_softc *sc_if; 1401 struct ifnet *ifp; 1402 int i, port, error; 1403 uint8_t eaddr[6]; 1404 1405 if (dev == NULL) 1406 return (EINVAL); 1407 1408 error = 0; 1409 sc_if = device_get_softc(dev); 1410 sc = device_get_softc(device_get_parent(dev)); 1411 port = *(int *)device_get_ivars(dev); 1412 1413 sc_if->msk_if_dev = dev; 1414 sc_if->msk_port = port; 1415 sc_if->msk_softc = sc; 1416 sc->msk_if[port] = sc_if; 1417 /* Setup Tx/Rx queue register offsets. */ 1418 if (port == MSK_PORT_A) { 1419 sc_if->msk_txq = Q_XA1; 1420 sc_if->msk_txsq = Q_XS1; 1421 sc_if->msk_rxq = Q_R1; 1422 } else { 1423 sc_if->msk_txq = Q_XA2; 1424 sc_if->msk_txsq = Q_XS2; 1425 sc_if->msk_rxq = Q_R2; 1426 } 1427 1428 callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0); 1429 TASK_INIT(&sc_if->msk_link_task, 0, msk_link_task, sc_if); 1430 1431 if ((error = msk_txrx_dma_alloc(sc_if) != 0)) 1432 goto fail; 1433 1434 ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER); 1435 if (ifp == NULL) { 1436 device_printf(sc_if->msk_if_dev, "can not if_alloc()\n"); 1437 error = ENOSPC; 1438 goto fail; 1439 } 1440 ifp->if_softc = sc_if; 1441 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1442 ifp->if_mtu = ETHERMTU; 1443 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1444 /* 1445 * IFCAP_RXCSUM capability is intentionally disabled as the hardware 1446 * has serious bug in Rx checksum offload for all Yukon II family 1447 * hardware. It seems there is a workaround to make it work somtimes. 1448 * However, the workaround also have to check OP code sequences to 1449 * verify whether the OP code is correct. Sometimes it should compute 1450 * IP/TCP/UDP checksum in driver in order to verify correctness of 1451 * checksum computed by hardware. If you have to compute checksum 1452 * with software to verify the hardware's checksum why have hardware 1453 * compute the checksum? I think there is no reason to spend time to 1454 * make Rx checksum offload work on Yukon II hardware. 1455 */ 1456 ifp->if_capabilities = IFCAP_TXCSUM; 1457 ifp->if_hwassist = MSK_CSUM_FEATURES; 1458 if (sc->msk_hw_id != CHIP_ID_YUKON_EC_U) { 1459 /* It seems Yukon EC Ultra doesn't support TSO. */ 1460 ifp->if_capabilities |= IFCAP_TSO4; 1461 ifp->if_hwassist |= CSUM_TSO; 1462 } 1463 ifp->if_capenable = ifp->if_capabilities; 1464 ifp->if_ioctl = msk_ioctl; 1465 ifp->if_start = msk_start; 1466 ifp->if_timer = 0; 1467 ifp->if_watchdog = NULL; 1468 ifp->if_init = msk_init; 1469 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1); 1470 ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1; 1471 IFQ_SET_READY(&ifp->if_snd); 1472 1473 TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp); 1474 1475 /* 1476 * Get station address for this interface. Note that 1477 * dual port cards actually come with three station 1478 * addresses: one for each port, plus an extra. The 1479 * extra one is used by the SysKonnect driver software 1480 * as a 'virtual' station address for when both ports 1481 * are operating in failover mode. Currently we don't 1482 * use this extra address. 1483 */ 1484 MSK_IF_LOCK(sc_if); 1485 for (i = 0; i < ETHER_ADDR_LEN; i++) 1486 eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i); 1487 1488 /* 1489 * Call MI attach routine. Can't hold locks when calling into ether_*. 1490 */ 1491 MSK_IF_UNLOCK(sc_if); 1492 ether_ifattach(ifp, eaddr); 1493 MSK_IF_LOCK(sc_if); 1494 1495 /* VLAN capability setup */ 1496 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING; 1497 if (ifp->if_capabilities & IFCAP_HWCSUM) 1498 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 1499 ifp->if_capenable = ifp->if_capabilities; 1500 1501 /* 1502 * Tell the upper layer(s) we support long frames. 1503 * Must appear after the call to ether_ifattach() because 1504 * ether_ifattach() sets ifi_hdrlen to the default value. 1505 */ 1506 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 1507 1508 /* 1509 * Do miibus setup. 1510 */ 1511 MSK_IF_UNLOCK(sc_if); 1512 error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange, 1513 msk_mediastatus); 1514 if (error != 0) { 1515 device_printf(sc_if->msk_if_dev, "no PHY found!\n"); 1516 ether_ifdetach(ifp); 1517 error = ENXIO; 1518 goto fail; 1519 } 1520 /* Check whether PHY Id is MARVELL. */ 1521 if (msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_ID0) 1522 == PHY_MARV_ID0_VAL) 1523 sc->msk_marvell_phy = 1; 1524 1525 fail: 1526 if (error != 0) { 1527 /* Access should be ok even though lock has been dropped */ 1528 sc->msk_if[port] = NULL; 1529 msk_detach(dev); 1530 } 1531 1532 return (error); 1533 } 1534 1535 /* 1536 * Attach the interface. Allocate softc structures, do ifmedia 1537 * setup and ethernet/BPF attach. 1538 */ 1539 static int 1540 mskc_attach(device_t dev) 1541 { 1542 struct msk_softc *sc; 1543 int error, msic, *port, reg; 1544 1545 sc = device_get_softc(dev); 1546 sc->msk_dev = dev; 1547 mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1548 MTX_DEF); 1549 1550 /* 1551 * Map control/status registers. 1552 */ 1553 pci_enable_busmaster(dev); 1554 1555 /* Allocate I/O resource */ 1556 #ifdef MSK_USEIOSPACE 1557 sc->msk_res_spec = msk_res_spec_io; 1558 #else 1559 sc->msk_res_spec = msk_res_spec_mem; 1560 #endif 1561 sc->msk_irq_spec = msk_irq_spec_legacy; 1562 error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res); 1563 if (error) { 1564 if (sc->msk_res_spec == msk_res_spec_mem) 1565 sc->msk_res_spec = msk_res_spec_io; 1566 else 1567 sc->msk_res_spec = msk_res_spec_mem; 1568 error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res); 1569 if (error) { 1570 device_printf(dev, "couldn't allocate %s resources\n", 1571 sc->msk_res_spec == msk_res_spec_mem ? "memory" : 1572 "I/O"); 1573 mtx_destroy(&sc->msk_mtx); 1574 return (ENXIO); 1575 } 1576 } 1577 1578 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); 1579 sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID); 1580 sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f; 1581 /* Bail out if chip is not recognized. */ 1582 if (sc->msk_hw_id < CHIP_ID_YUKON_XL || 1583 sc->msk_hw_id > CHIP_ID_YUKON_FE) { 1584 device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n", 1585 sc->msk_hw_id, sc->msk_hw_rev); 1586 mtx_destroy(&sc->msk_mtx); 1587 return (ENXIO); 1588 } 1589 1590 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 1591 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1592 OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW, 1593 &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I", 1594 "max number of Rx events to process"); 1595 1596 sc->msk_process_limit = MSK_PROC_DEFAULT; 1597 error = resource_int_value(device_get_name(dev), device_get_unit(dev), 1598 "process_limit", &sc->msk_process_limit); 1599 if (error == 0) { 1600 if (sc->msk_process_limit < MSK_PROC_MIN || 1601 sc->msk_process_limit > MSK_PROC_MAX) { 1602 device_printf(dev, "process_limit value out of range; " 1603 "using default: %d\n", MSK_PROC_DEFAULT); 1604 sc->msk_process_limit = MSK_PROC_DEFAULT; 1605 } 1606 } 1607 1608 /* Soft reset. */ 1609 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 1610 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); 1611 sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP); 1612 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S') 1613 sc->msk_coppertype = 0; 1614 else 1615 sc->msk_coppertype = 1; 1616 /* Check number of MACs. */ 1617 sc->msk_num_port = 1; 1618 if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) == 1619 CFG_DUAL_MAC_MSK) { 1620 if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC)) 1621 sc->msk_num_port++; 1622 } 1623 1624 /* Check bus type. */ 1625 if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, ®) == 0) 1626 sc->msk_bustype = MSK_PEX_BUS; 1627 else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, ®) == 0) 1628 sc->msk_bustype = MSK_PCIX_BUS; 1629 else 1630 sc->msk_bustype = MSK_PCI_BUS; 1631 1632 /* Get H/W features(bugs). */ 1633 switch (sc->msk_hw_id) { 1634 case CHIP_ID_YUKON_EC: 1635 sc->msk_clock = 125; /* 125 Mhz */ 1636 if (sc->msk_hw_rev == CHIP_REV_YU_EC_A1) { 1637 sc->msk_hw_feature = 1638 HWF_WA_DEV_42 | HWF_WA_DEV_46 | HWF_WA_DEV_43_418 | 1639 HWF_WA_DEV_420 | HWF_WA_DEV_423 | 1640 HWF_WA_DEV_424 | HWF_WA_DEV_425 | HWF_WA_DEV_427 | 1641 HWF_WA_DEV_428 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 | 1642 HWF_WA_DEV_4152 | HWF_WA_DEV_4167; 1643 } else { 1644 /* A2/A3 */ 1645 sc->msk_hw_feature = 1646 HWF_WA_DEV_424 | HWF_WA_DEV_425 | HWF_WA_DEV_427 | 1647 HWF_WA_DEV_428 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 | 1648 HWF_WA_DEV_4152 | HWF_WA_DEV_4167; 1649 } 1650 break; 1651 case CHIP_ID_YUKON_EC_U: 1652 sc->msk_clock = 125; /* 125 Mhz */ 1653 if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) { 1654 sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_483 | 1655 HWF_WA_DEV_4109; 1656 } else if (sc->msk_hw_rev == CHIP_REV_YU_EC_A1) { 1657 uint16_t v; 1658 1659 sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_4109 | 1660 HWF_WA_DEV_4185; 1661 v = CSR_READ_2(sc, Q_ADDR(Q_XA1, Q_WM)); 1662 if (v == 0) 1663 sc->msk_hw_feature |= HWF_WA_DEV_4185CS | 1664 HWF_WA_DEV_4200; 1665 } 1666 break; 1667 case CHIP_ID_YUKON_FE: 1668 sc->msk_clock = 100; /* 100 Mhz */ 1669 sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_4109 | 1670 HWF_WA_DEV_4152 | HWF_WA_DEV_4167; 1671 break; 1672 case CHIP_ID_YUKON_XL: 1673 sc->msk_clock = 156; /* 156 Mhz */ 1674 switch (sc->msk_hw_rev) { 1675 case CHIP_REV_YU_XL_A0: 1676 sc->msk_hw_feature = 1677 HWF_WA_DEV_427 | HWF_WA_DEV_463 | HWF_WA_DEV_472 | 1678 HWF_WA_DEV_479 | HWF_WA_DEV_483 | HWF_WA_DEV_4115 | 1679 HWF_WA_DEV_4152 | HWF_WA_DEV_4167; 1680 break; 1681 case CHIP_REV_YU_XL_A1: 1682 sc->msk_hw_feature = 1683 HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 | 1684 HWF_WA_DEV_4115 | HWF_WA_DEV_4152 | HWF_WA_DEV_4167; 1685 break; 1686 case CHIP_REV_YU_XL_A2: 1687 sc->msk_hw_feature = 1688 HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 | 1689 HWF_WA_DEV_4115 | HWF_WA_DEV_4167; 1690 break; 1691 case CHIP_REV_YU_XL_A3: 1692 sc->msk_hw_feature = 1693 HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 | 1694 HWF_WA_DEV_4115; 1695 } 1696 break; 1697 default: 1698 sc->msk_clock = 156; /* 156 Mhz */ 1699 sc->msk_hw_feature = 0; 1700 } 1701 1702 /* Allocate IRQ resources. */ 1703 msic = pci_msi_count(dev); 1704 if (bootverbose) 1705 device_printf(dev, "MSI count : %d\n", msic); 1706 /* 1707 * The Yukon II reports it can handle two messages, one for each 1708 * possible port. We go ahead and allocate two messages and only 1709 * setup a handler for both if we have a dual port card. 1710 * 1711 * XXX: I haven't untangled the interrupt handler to handle dual 1712 * port cards with separate MSI messages, so for now I disable MSI 1713 * on dual port cards. 1714 */ 1715 if (legacy_intr != 0) 1716 msi_disable = 1; 1717 if (msic == 2 && msi_disable == 0 && sc->msk_num_port == 1 && 1718 pci_alloc_msi(dev, &msic) == 0) { 1719 if (msic == 2) { 1720 sc->msk_msi = 1; 1721 sc->msk_irq_spec = msk_irq_spec_msi; 1722 } else 1723 pci_release_msi(dev); 1724 } 1725 1726 error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq); 1727 if (error) { 1728 device_printf(dev, "couldn't allocate IRQ resources\n"); 1729 goto fail; 1730 } 1731 1732 if ((error = msk_status_dma_alloc(sc)) != 0) 1733 goto fail; 1734 1735 /* Set base interrupt mask. */ 1736 sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU; 1737 sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR | 1738 Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP; 1739 1740 /* Reset the adapter. */ 1741 mskc_reset(sc); 1742 1743 if ((error = mskc_setup_rambuffer(sc)) != 0) 1744 goto fail; 1745 1746 sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1); 1747 if (sc->msk_devs[MSK_PORT_A] == NULL) { 1748 device_printf(dev, "failed to add child for PORT_A\n"); 1749 error = ENXIO; 1750 goto fail; 1751 } 1752 port = malloc(sizeof(int), M_DEVBUF, M_WAITOK); 1753 if (port == NULL) { 1754 device_printf(dev, "failed to allocate memory for " 1755 "ivars of PORT_A\n"); 1756 error = ENXIO; 1757 goto fail; 1758 } 1759 *port = MSK_PORT_A; 1760 device_set_ivars(sc->msk_devs[MSK_PORT_A], port); 1761 1762 if (sc->msk_num_port > 1) { 1763 sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1); 1764 if (sc->msk_devs[MSK_PORT_B] == NULL) { 1765 device_printf(dev, "failed to add child for PORT_B\n"); 1766 error = ENXIO; 1767 goto fail; 1768 } 1769 port = malloc(sizeof(int), M_DEVBUF, M_WAITOK); 1770 if (port == NULL) { 1771 device_printf(dev, "failed to allocate memory for " 1772 "ivars of PORT_B\n"); 1773 error = ENXIO; 1774 goto fail; 1775 } 1776 *port = MSK_PORT_B; 1777 device_set_ivars(sc->msk_devs[MSK_PORT_B], port); 1778 } 1779 1780 error = bus_generic_attach(dev); 1781 if (error) { 1782 device_printf(dev, "failed to attach port(s)\n"); 1783 goto fail; 1784 } 1785 1786 /* Hook interrupt last to avoid having to lock softc. */ 1787 if (legacy_intr) 1788 error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET | 1789 INTR_MPSAFE, NULL, msk_legacy_intr, sc, 1790 &sc->msk_intrhand[0]); 1791 else { 1792 TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc); 1793 sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK, 1794 taskqueue_thread_enqueue, &sc->msk_tq); 1795 taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq", 1796 device_get_nameunit(sc->msk_dev)); 1797 error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET | 1798 INTR_MPSAFE, msk_intr, NULL, sc, &sc->msk_intrhand[0]); 1799 } 1800 1801 if (error != 0) { 1802 device_printf(dev, "couldn't set up interrupt handler\n"); 1803 if (legacy_intr == 0) 1804 taskqueue_free(sc->msk_tq); 1805 sc->msk_tq = NULL; 1806 goto fail; 1807 } 1808 fail: 1809 if (error != 0) 1810 mskc_detach(dev); 1811 1812 return (error); 1813 } 1814 1815 /* 1816 * Shutdown hardware and free up resources. This can be called any 1817 * time after the mutex has been initialized. It is called in both 1818 * the error case in attach and the normal detach case so it needs 1819 * to be careful about only freeing resources that have actually been 1820 * allocated. 1821 */ 1822 static int 1823 msk_detach(device_t dev) 1824 { 1825 struct msk_softc *sc; 1826 struct msk_if_softc *sc_if; 1827 struct ifnet *ifp; 1828 1829 sc_if = device_get_softc(dev); 1830 KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx), 1831 ("msk mutex not initialized in msk_detach")); 1832 MSK_IF_LOCK(sc_if); 1833 1834 ifp = sc_if->msk_ifp; 1835 if (device_is_attached(dev)) { 1836 /* XXX */ 1837 sc_if->msk_detach = 1; 1838 msk_stop(sc_if); 1839 /* Can't hold locks while calling detach. */ 1840 MSK_IF_UNLOCK(sc_if); 1841 callout_drain(&sc_if->msk_tick_ch); 1842 taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task); 1843 taskqueue_drain(taskqueue_swi, &sc_if->msk_link_task); 1844 ether_ifdetach(ifp); 1845 MSK_IF_LOCK(sc_if); 1846 } 1847 1848 /* 1849 * We're generally called from mskc_detach() which is using 1850 * device_delete_child() to get to here. It's already trashed 1851 * miibus for us, so don't do it here or we'll panic. 1852 * 1853 * if (sc_if->msk_miibus != NULL) { 1854 * device_delete_child(dev, sc_if->msk_miibus); 1855 * sc_if->msk_miibus = NULL; 1856 * } 1857 */ 1858 1859 msk_txrx_dma_free(sc_if); 1860 bus_generic_detach(dev); 1861 1862 if (ifp) 1863 if_free(ifp); 1864 sc = sc_if->msk_softc; 1865 sc->msk_if[sc_if->msk_port] = NULL; 1866 MSK_IF_UNLOCK(sc_if); 1867 1868 return (0); 1869 } 1870 1871 static int 1872 mskc_detach(device_t dev) 1873 { 1874 struct msk_softc *sc; 1875 1876 sc = device_get_softc(dev); 1877 KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized")); 1878 1879 if (device_is_alive(dev)) { 1880 if (sc->msk_devs[MSK_PORT_A] != NULL) { 1881 free(device_get_ivars(sc->msk_devs[MSK_PORT_A]), 1882 M_DEVBUF); 1883 device_delete_child(dev, sc->msk_devs[MSK_PORT_A]); 1884 } 1885 if (sc->msk_devs[MSK_PORT_B] != NULL) { 1886 free(device_get_ivars(sc->msk_devs[MSK_PORT_B]), 1887 M_DEVBUF); 1888 device_delete_child(dev, sc->msk_devs[MSK_PORT_B]); 1889 } 1890 bus_generic_detach(dev); 1891 } 1892 1893 /* Disable all interrupts. */ 1894 CSR_WRITE_4(sc, B0_IMSK, 0); 1895 CSR_READ_4(sc, B0_IMSK); 1896 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 1897 CSR_READ_4(sc, B0_HWE_IMSK); 1898 1899 /* LED Off. */ 1900 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF); 1901 1902 /* Put hardware reset. */ 1903 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 1904 1905 msk_status_dma_free(sc); 1906 1907 if (legacy_intr == 0 && sc->msk_tq != NULL) { 1908 taskqueue_drain(sc->msk_tq, &sc->msk_int_task); 1909 taskqueue_free(sc->msk_tq); 1910 sc->msk_tq = NULL; 1911 } 1912 if (sc->msk_intrhand[0]) { 1913 bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]); 1914 sc->msk_intrhand[0] = NULL; 1915 } 1916 if (sc->msk_intrhand[1]) { 1917 bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]); 1918 sc->msk_intrhand[1] = NULL; 1919 } 1920 bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq); 1921 if (sc->msk_msi) 1922 pci_release_msi(dev); 1923 bus_release_resources(dev, sc->msk_res_spec, sc->msk_res); 1924 mtx_destroy(&sc->msk_mtx); 1925 1926 return (0); 1927 } 1928 1929 struct msk_dmamap_arg { 1930 bus_addr_t msk_busaddr; 1931 }; 1932 1933 static void 1934 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1935 { 1936 struct msk_dmamap_arg *ctx; 1937 1938 if (error != 0) 1939 return; 1940 ctx = arg; 1941 ctx->msk_busaddr = segs[0].ds_addr; 1942 } 1943 1944 /* Create status DMA region. */ 1945 static int 1946 msk_status_dma_alloc(struct msk_softc *sc) 1947 { 1948 struct msk_dmamap_arg ctx; 1949 int error; 1950 1951 error = bus_dma_tag_create( 1952 bus_get_dma_tag(sc->msk_dev), /* parent */ 1953 MSK_STAT_ALIGN, 0, /* alignment, boundary */ 1954 BUS_SPACE_MAXADDR, /* lowaddr */ 1955 BUS_SPACE_MAXADDR, /* highaddr */ 1956 NULL, NULL, /* filter, filterarg */ 1957 MSK_STAT_RING_SZ, /* maxsize */ 1958 1, /* nsegments */ 1959 MSK_STAT_RING_SZ, /* maxsegsize */ 1960 0, /* flags */ 1961 NULL, NULL, /* lockfunc, lockarg */ 1962 &sc->msk_stat_tag); 1963 if (error != 0) { 1964 device_printf(sc->msk_dev, 1965 "failed to create status DMA tag\n"); 1966 return (error); 1967 } 1968 1969 /* Allocate DMA'able memory and load the DMA map for status ring. */ 1970 error = bus_dmamem_alloc(sc->msk_stat_tag, 1971 (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | 1972 BUS_DMA_ZERO, &sc->msk_stat_map); 1973 if (error != 0) { 1974 device_printf(sc->msk_dev, 1975 "failed to allocate DMA'able memory for status ring\n"); 1976 return (error); 1977 } 1978 1979 ctx.msk_busaddr = 0; 1980 error = bus_dmamap_load(sc->msk_stat_tag, 1981 sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ, 1982 msk_dmamap_cb, &ctx, 0); 1983 if (error != 0) { 1984 device_printf(sc->msk_dev, 1985 "failed to load DMA'able memory for status ring\n"); 1986 return (error); 1987 } 1988 sc->msk_stat_ring_paddr = ctx.msk_busaddr; 1989 1990 return (0); 1991 } 1992 1993 static void 1994 msk_status_dma_free(struct msk_softc *sc) 1995 { 1996 1997 /* Destroy status block. */ 1998 if (sc->msk_stat_tag) { 1999 if (sc->msk_stat_map) { 2000 bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map); 2001 if (sc->msk_stat_ring) { 2002 bus_dmamem_free(sc->msk_stat_tag, 2003 sc->msk_stat_ring, sc->msk_stat_map); 2004 sc->msk_stat_ring = NULL; 2005 } 2006 sc->msk_stat_map = NULL; 2007 } 2008 bus_dma_tag_destroy(sc->msk_stat_tag); 2009 sc->msk_stat_tag = NULL; 2010 } 2011 } 2012 2013 static int 2014 msk_txrx_dma_alloc(struct msk_if_softc *sc_if) 2015 { 2016 struct msk_dmamap_arg ctx; 2017 struct msk_txdesc *txd; 2018 struct msk_rxdesc *rxd; 2019 struct msk_rxdesc *jrxd; 2020 struct msk_jpool_entry *entry; 2021 uint8_t *ptr; 2022 int error, i; 2023 2024 mtx_init(&sc_if->msk_jlist_mtx, "msk_jlist_mtx", NULL, MTX_DEF); 2025 SLIST_INIT(&sc_if->msk_jfree_listhead); 2026 SLIST_INIT(&sc_if->msk_jinuse_listhead); 2027 2028 /* Create parent DMA tag. */ 2029 /* 2030 * XXX 2031 * It seems that Yukon II supports full 64bits DMA operations. But 2032 * it needs two descriptors(list elements) for 64bits DMA operations. 2033 * Since we don't know what DMA address mappings(32bits or 64bits) 2034 * would be used in advance for each mbufs, we limits its DMA space 2035 * to be in range of 32bits address space. Otherwise, we should check 2036 * what DMA address is used and chain another descriptor for the 2037 * 64bits DMA operation. This also means descriptor ring size is 2038 * variable. Limiting DMA address to be in 32bit address space greatly 2039 * simplyfies descriptor handling and possibly would increase 2040 * performance a bit due to efficient handling of descriptors. 2041 * Apart from harassing checksum offloading mechanisms, it seems 2042 * it's really bad idea to use a seperate descriptor for 64bit 2043 * DMA operation to save small descriptor memory. Anyway, I've 2044 * never seen these exotic scheme on ethernet interface hardware. 2045 */ 2046 error = bus_dma_tag_create( 2047 bus_get_dma_tag(sc_if->msk_if_dev), /* parent */ 2048 1, 0, /* alignment, boundary */ 2049 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2050 BUS_SPACE_MAXADDR, /* highaddr */ 2051 NULL, NULL, /* filter, filterarg */ 2052 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 2053 0, /* nsegments */ 2054 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 2055 0, /* flags */ 2056 NULL, NULL, /* lockfunc, lockarg */ 2057 &sc_if->msk_cdata.msk_parent_tag); 2058 if (error != 0) { 2059 device_printf(sc_if->msk_if_dev, 2060 "failed to create parent DMA tag\n"); 2061 goto fail; 2062 } 2063 /* Create tag for Tx ring. */ 2064 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2065 MSK_RING_ALIGN, 0, /* alignment, boundary */ 2066 BUS_SPACE_MAXADDR, /* lowaddr */ 2067 BUS_SPACE_MAXADDR, /* highaddr */ 2068 NULL, NULL, /* filter, filterarg */ 2069 MSK_TX_RING_SZ, /* maxsize */ 2070 1, /* nsegments */ 2071 MSK_TX_RING_SZ, /* maxsegsize */ 2072 0, /* flags */ 2073 NULL, NULL, /* lockfunc, lockarg */ 2074 &sc_if->msk_cdata.msk_tx_ring_tag); 2075 if (error != 0) { 2076 device_printf(sc_if->msk_if_dev, 2077 "failed to create Tx ring DMA tag\n"); 2078 goto fail; 2079 } 2080 2081 /* Create tag for Rx ring. */ 2082 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2083 MSK_RING_ALIGN, 0, /* alignment, boundary */ 2084 BUS_SPACE_MAXADDR, /* lowaddr */ 2085 BUS_SPACE_MAXADDR, /* highaddr */ 2086 NULL, NULL, /* filter, filterarg */ 2087 MSK_RX_RING_SZ, /* maxsize */ 2088 1, /* nsegments */ 2089 MSK_RX_RING_SZ, /* maxsegsize */ 2090 0, /* flags */ 2091 NULL, NULL, /* lockfunc, lockarg */ 2092 &sc_if->msk_cdata.msk_rx_ring_tag); 2093 if (error != 0) { 2094 device_printf(sc_if->msk_if_dev, 2095 "failed to create Rx ring DMA tag\n"); 2096 goto fail; 2097 } 2098 2099 /* Create tag for jumbo Rx ring. */ 2100 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2101 MSK_RING_ALIGN, 0, /* alignment, boundary */ 2102 BUS_SPACE_MAXADDR, /* lowaddr */ 2103 BUS_SPACE_MAXADDR, /* highaddr */ 2104 NULL, NULL, /* filter, filterarg */ 2105 MSK_JUMBO_RX_RING_SZ, /* maxsize */ 2106 1, /* nsegments */ 2107 MSK_JUMBO_RX_RING_SZ, /* maxsegsize */ 2108 0, /* flags */ 2109 NULL, NULL, /* lockfunc, lockarg */ 2110 &sc_if->msk_cdata.msk_jumbo_rx_ring_tag); 2111 if (error != 0) { 2112 device_printf(sc_if->msk_if_dev, 2113 "failed to create jumbo Rx ring DMA tag\n"); 2114 goto fail; 2115 } 2116 2117 /* Create tag for jumbo buffer blocks. */ 2118 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2119 PAGE_SIZE, 0, /* alignment, boundary */ 2120 BUS_SPACE_MAXADDR, /* lowaddr */ 2121 BUS_SPACE_MAXADDR, /* highaddr */ 2122 NULL, NULL, /* filter, filterarg */ 2123 MSK_JMEM, /* maxsize */ 2124 1, /* nsegments */ 2125 MSK_JMEM, /* maxsegsize */ 2126 0, /* flags */ 2127 NULL, NULL, /* lockfunc, lockarg */ 2128 &sc_if->msk_cdata.msk_jumbo_tag); 2129 if (error != 0) { 2130 device_printf(sc_if->msk_if_dev, 2131 "failed to create jumbo Rx buffer block DMA tag\n"); 2132 goto fail; 2133 } 2134 2135 /* Create tag for Tx buffers. */ 2136 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2137 1, 0, /* alignment, boundary */ 2138 BUS_SPACE_MAXADDR, /* lowaddr */ 2139 BUS_SPACE_MAXADDR, /* highaddr */ 2140 NULL, NULL, /* filter, filterarg */ 2141 MSK_TSO_MAXSIZE, /* maxsize */ 2142 MSK_MAXTXSEGS, /* nsegments */ 2143 MSK_TSO_MAXSGSIZE, /* maxsegsize */ 2144 0, /* flags */ 2145 NULL, NULL, /* lockfunc, lockarg */ 2146 &sc_if->msk_cdata.msk_tx_tag); 2147 if (error != 0) { 2148 device_printf(sc_if->msk_if_dev, 2149 "failed to create Tx DMA tag\n"); 2150 goto fail; 2151 } 2152 2153 /* Create tag for Rx buffers. */ 2154 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2155 1, 0, /* alignment, boundary */ 2156 BUS_SPACE_MAXADDR, /* lowaddr */ 2157 BUS_SPACE_MAXADDR, /* highaddr */ 2158 NULL, NULL, /* filter, filterarg */ 2159 MCLBYTES, /* maxsize */ 2160 1, /* nsegments */ 2161 MCLBYTES, /* maxsegsize */ 2162 0, /* flags */ 2163 NULL, NULL, /* lockfunc, lockarg */ 2164 &sc_if->msk_cdata.msk_rx_tag); 2165 if (error != 0) { 2166 device_printf(sc_if->msk_if_dev, 2167 "failed to create Rx DMA tag\n"); 2168 goto fail; 2169 } 2170 2171 /* Create tag for jumbo Rx buffers. */ 2172 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2173 PAGE_SIZE, 0, /* alignment, boundary */ 2174 BUS_SPACE_MAXADDR, /* lowaddr */ 2175 BUS_SPACE_MAXADDR, /* highaddr */ 2176 NULL, NULL, /* filter, filterarg */ 2177 MCLBYTES * MSK_MAXRXSEGS, /* maxsize */ 2178 MSK_MAXRXSEGS, /* nsegments */ 2179 MSK_JLEN, /* maxsegsize */ 2180 0, /* flags */ 2181 NULL, NULL, /* lockfunc, lockarg */ 2182 &sc_if->msk_cdata.msk_jumbo_rx_tag); 2183 if (error != 0) { 2184 device_printf(sc_if->msk_if_dev, 2185 "failed to create jumbo Rx DMA tag\n"); 2186 goto fail; 2187 } 2188 2189 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 2190 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag, 2191 (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK | 2192 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map); 2193 if (error != 0) { 2194 device_printf(sc_if->msk_if_dev, 2195 "failed to allocate DMA'able memory for Tx ring\n"); 2196 goto fail; 2197 } 2198 2199 ctx.msk_busaddr = 0; 2200 error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag, 2201 sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring, 2202 MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0); 2203 if (error != 0) { 2204 device_printf(sc_if->msk_if_dev, 2205 "failed to load DMA'able memory for Tx ring\n"); 2206 goto fail; 2207 } 2208 sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr; 2209 2210 /* Allocate DMA'able memory and load the DMA map for Rx ring. */ 2211 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag, 2212 (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK | 2213 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map); 2214 if (error != 0) { 2215 device_printf(sc_if->msk_if_dev, 2216 "failed to allocate DMA'able memory for Rx ring\n"); 2217 goto fail; 2218 } 2219 2220 ctx.msk_busaddr = 0; 2221 error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag, 2222 sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring, 2223 MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0); 2224 if (error != 0) { 2225 device_printf(sc_if->msk_if_dev, 2226 "failed to load DMA'able memory for Rx ring\n"); 2227 goto fail; 2228 } 2229 sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr; 2230 2231 /* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */ 2232 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2233 (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring, 2234 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 2235 &sc_if->msk_cdata.msk_jumbo_rx_ring_map); 2236 if (error != 0) { 2237 device_printf(sc_if->msk_if_dev, 2238 "failed to allocate DMA'able memory for jumbo Rx ring\n"); 2239 goto fail; 2240 } 2241 2242 ctx.msk_busaddr = 0; 2243 error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2244 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 2245 sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ, 2246 msk_dmamap_cb, &ctx, 0); 2247 if (error != 0) { 2248 device_printf(sc_if->msk_if_dev, 2249 "failed to load DMA'able memory for jumbo Rx ring\n"); 2250 goto fail; 2251 } 2252 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr; 2253 2254 /* Create DMA maps for Tx buffers. */ 2255 for (i = 0; i < MSK_TX_RING_CNT; i++) { 2256 txd = &sc_if->msk_cdata.msk_txdesc[i]; 2257 txd->tx_m = NULL; 2258 txd->tx_dmamap = NULL; 2259 error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0, 2260 &txd->tx_dmamap); 2261 if (error != 0) { 2262 device_printf(sc_if->msk_if_dev, 2263 "failed to create Tx dmamap\n"); 2264 goto fail; 2265 } 2266 } 2267 /* Create DMA maps for Rx buffers. */ 2268 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0, 2269 &sc_if->msk_cdata.msk_rx_sparemap)) != 0) { 2270 device_printf(sc_if->msk_if_dev, 2271 "failed to create spare Rx dmamap\n"); 2272 goto fail; 2273 } 2274 for (i = 0; i < MSK_RX_RING_CNT; i++) { 2275 rxd = &sc_if->msk_cdata.msk_rxdesc[i]; 2276 rxd->rx_m = NULL; 2277 rxd->rx_dmamap = NULL; 2278 error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0, 2279 &rxd->rx_dmamap); 2280 if (error != 0) { 2281 device_printf(sc_if->msk_if_dev, 2282 "failed to create Rx dmamap\n"); 2283 goto fail; 2284 } 2285 } 2286 /* Create DMA maps for jumbo Rx buffers. */ 2287 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0, 2288 &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) { 2289 device_printf(sc_if->msk_if_dev, 2290 "failed to create spare jumbo Rx dmamap\n"); 2291 goto fail; 2292 } 2293 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 2294 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; 2295 jrxd->rx_m = NULL; 2296 jrxd->rx_dmamap = NULL; 2297 error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0, 2298 &jrxd->rx_dmamap); 2299 if (error != 0) { 2300 device_printf(sc_if->msk_if_dev, 2301 "failed to create jumbo Rx dmamap\n"); 2302 goto fail; 2303 } 2304 } 2305 2306 /* Allocate DMA'able memory and load the DMA map for jumbo buf. */ 2307 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag, 2308 (void **)&sc_if->msk_rdata.msk_jumbo_buf, 2309 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 2310 &sc_if->msk_cdata.msk_jumbo_map); 2311 if (error != 0) { 2312 device_printf(sc_if->msk_if_dev, 2313 "failed to allocate DMA'able memory for jumbo buf\n"); 2314 goto fail; 2315 } 2316 2317 ctx.msk_busaddr = 0; 2318 error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag, 2319 sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf, 2320 MSK_JMEM, msk_dmamap_cb, &ctx, 0); 2321 if (error != 0) { 2322 device_printf(sc_if->msk_if_dev, 2323 "failed to load DMA'able memory for jumbobuf\n"); 2324 goto fail; 2325 } 2326 sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr; 2327 2328 /* 2329 * Now divide it up into 9K pieces and save the addresses 2330 * in an array. 2331 */ 2332 ptr = sc_if->msk_rdata.msk_jumbo_buf; 2333 for (i = 0; i < MSK_JSLOTS; i++) { 2334 sc_if->msk_cdata.msk_jslots[i] = ptr; 2335 ptr += MSK_JLEN; 2336 entry = malloc(sizeof(struct msk_jpool_entry), 2337 M_DEVBUF, M_WAITOK); 2338 if (entry == NULL) { 2339 device_printf(sc_if->msk_if_dev, 2340 "no memory for jumbo buffers!\n"); 2341 error = ENOMEM; 2342 goto fail; 2343 } 2344 entry->slot = i; 2345 SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, 2346 jpool_entries); 2347 } 2348 2349 fail: 2350 return (error); 2351 } 2352 2353 static void 2354 msk_txrx_dma_free(struct msk_if_softc *sc_if) 2355 { 2356 struct msk_txdesc *txd; 2357 struct msk_rxdesc *rxd; 2358 struct msk_rxdesc *jrxd; 2359 struct msk_jpool_entry *entry; 2360 int i; 2361 2362 MSK_JLIST_LOCK(sc_if); 2363 while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) { 2364 device_printf(sc_if->msk_if_dev, 2365 "asked to free buffer that is in use!\n"); 2366 SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries); 2367 SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, 2368 jpool_entries); 2369 } 2370 2371 while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) { 2372 entry = SLIST_FIRST(&sc_if->msk_jfree_listhead); 2373 SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries); 2374 free(entry, M_DEVBUF); 2375 } 2376 MSK_JLIST_UNLOCK(sc_if); 2377 2378 /* Destroy jumbo buffer block. */ 2379 if (sc_if->msk_cdata.msk_jumbo_map) 2380 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag, 2381 sc_if->msk_cdata.msk_jumbo_map); 2382 2383 if (sc_if->msk_rdata.msk_jumbo_buf) { 2384 bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag, 2385 sc_if->msk_rdata.msk_jumbo_buf, 2386 sc_if->msk_cdata.msk_jumbo_map); 2387 sc_if->msk_rdata.msk_jumbo_buf = NULL; 2388 sc_if->msk_cdata.msk_jumbo_map = NULL; 2389 } 2390 2391 /* Tx ring. */ 2392 if (sc_if->msk_cdata.msk_tx_ring_tag) { 2393 if (sc_if->msk_cdata.msk_tx_ring_map) 2394 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag, 2395 sc_if->msk_cdata.msk_tx_ring_map); 2396 if (sc_if->msk_cdata.msk_tx_ring_map && 2397 sc_if->msk_rdata.msk_tx_ring) 2398 bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag, 2399 sc_if->msk_rdata.msk_tx_ring, 2400 sc_if->msk_cdata.msk_tx_ring_map); 2401 sc_if->msk_rdata.msk_tx_ring = NULL; 2402 sc_if->msk_cdata.msk_tx_ring_map = NULL; 2403 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag); 2404 sc_if->msk_cdata.msk_tx_ring_tag = NULL; 2405 } 2406 /* Rx ring. */ 2407 if (sc_if->msk_cdata.msk_rx_ring_tag) { 2408 if (sc_if->msk_cdata.msk_rx_ring_map) 2409 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag, 2410 sc_if->msk_cdata.msk_rx_ring_map); 2411 if (sc_if->msk_cdata.msk_rx_ring_map && 2412 sc_if->msk_rdata.msk_rx_ring) 2413 bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag, 2414 sc_if->msk_rdata.msk_rx_ring, 2415 sc_if->msk_cdata.msk_rx_ring_map); 2416 sc_if->msk_rdata.msk_rx_ring = NULL; 2417 sc_if->msk_cdata.msk_rx_ring_map = NULL; 2418 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag); 2419 sc_if->msk_cdata.msk_rx_ring_tag = NULL; 2420 } 2421 /* Jumbo Rx ring. */ 2422 if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) { 2423 if (sc_if->msk_cdata.msk_jumbo_rx_ring_map) 2424 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2425 sc_if->msk_cdata.msk_jumbo_rx_ring_map); 2426 if (sc_if->msk_cdata.msk_jumbo_rx_ring_map && 2427 sc_if->msk_rdata.msk_jumbo_rx_ring) 2428 bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2429 sc_if->msk_rdata.msk_jumbo_rx_ring, 2430 sc_if->msk_cdata.msk_jumbo_rx_ring_map); 2431 sc_if->msk_rdata.msk_jumbo_rx_ring = NULL; 2432 sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL; 2433 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag); 2434 sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL; 2435 } 2436 /* Tx buffers. */ 2437 if (sc_if->msk_cdata.msk_tx_tag) { 2438 for (i = 0; i < MSK_TX_RING_CNT; i++) { 2439 txd = &sc_if->msk_cdata.msk_txdesc[i]; 2440 if (txd->tx_dmamap) { 2441 bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag, 2442 txd->tx_dmamap); 2443 txd->tx_dmamap = NULL; 2444 } 2445 } 2446 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag); 2447 sc_if->msk_cdata.msk_tx_tag = NULL; 2448 } 2449 /* Rx buffers. */ 2450 if (sc_if->msk_cdata.msk_rx_tag) { 2451 for (i = 0; i < MSK_RX_RING_CNT; i++) { 2452 rxd = &sc_if->msk_cdata.msk_rxdesc[i]; 2453 if (rxd->rx_dmamap) { 2454 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag, 2455 rxd->rx_dmamap); 2456 rxd->rx_dmamap = NULL; 2457 } 2458 } 2459 if (sc_if->msk_cdata.msk_rx_sparemap) { 2460 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag, 2461 sc_if->msk_cdata.msk_rx_sparemap); 2462 sc_if->msk_cdata.msk_rx_sparemap = 0; 2463 } 2464 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag); 2465 sc_if->msk_cdata.msk_rx_tag = NULL; 2466 } 2467 /* Jumbo Rx buffers. */ 2468 if (sc_if->msk_cdata.msk_jumbo_rx_tag) { 2469 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 2470 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; 2471 if (jrxd->rx_dmamap) { 2472 bus_dmamap_destroy( 2473 sc_if->msk_cdata.msk_jumbo_rx_tag, 2474 jrxd->rx_dmamap); 2475 jrxd->rx_dmamap = NULL; 2476 } 2477 } 2478 if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) { 2479 bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag, 2480 sc_if->msk_cdata.msk_jumbo_rx_sparemap); 2481 sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0; 2482 } 2483 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag); 2484 sc_if->msk_cdata.msk_jumbo_rx_tag = NULL; 2485 } 2486 2487 if (sc_if->msk_cdata.msk_parent_tag) { 2488 bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag); 2489 sc_if->msk_cdata.msk_parent_tag = NULL; 2490 } 2491 mtx_destroy(&sc_if->msk_jlist_mtx); 2492 } 2493 2494 /* 2495 * Allocate a jumbo buffer. 2496 */ 2497 static void * 2498 msk_jalloc(struct msk_if_softc *sc_if) 2499 { 2500 struct msk_jpool_entry *entry; 2501 2502 MSK_JLIST_LOCK(sc_if); 2503 2504 entry = SLIST_FIRST(&sc_if->msk_jfree_listhead); 2505 2506 if (entry == NULL) { 2507 MSK_JLIST_UNLOCK(sc_if); 2508 return (NULL); 2509 } 2510 2511 SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries); 2512 SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries); 2513 2514 MSK_JLIST_UNLOCK(sc_if); 2515 2516 return (sc_if->msk_cdata.msk_jslots[entry->slot]); 2517 } 2518 2519 /* 2520 * Release a jumbo buffer. 2521 */ 2522 static void 2523 msk_jfree(void *buf, void *args) 2524 { 2525 struct msk_if_softc *sc_if; 2526 struct msk_jpool_entry *entry; 2527 int i; 2528 2529 /* Extract the softc struct pointer. */ 2530 sc_if = (struct msk_if_softc *)args; 2531 KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__)); 2532 2533 MSK_JLIST_LOCK(sc_if); 2534 /* Calculate the slot this buffer belongs to. */ 2535 i = ((vm_offset_t)buf 2536 - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN; 2537 KASSERT(i >= 0 && i < MSK_JSLOTS, 2538 ("%s: asked to free buffer that we don't manage!", __func__)); 2539 2540 entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead); 2541 KASSERT(entry != NULL, ("%s: buffer not in use!", __func__)); 2542 entry->slot = i; 2543 SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries); 2544 SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries); 2545 if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead)) 2546 wakeup(sc_if); 2547 2548 MSK_JLIST_UNLOCK(sc_if); 2549 } 2550 2551 /* 2552 * It's copy of ath_defrag(ath(4)). 2553 * 2554 * Defragment an mbuf chain, returning at most maxfrags separate 2555 * mbufs+clusters. If this is not possible NULL is returned and 2556 * the original mbuf chain is left in it's present (potentially 2557 * modified) state. We use two techniques: collapsing consecutive 2558 * mbufs and replacing consecutive mbufs by a cluster. 2559 */ 2560 static struct mbuf * 2561 msk_defrag(struct mbuf *m0, int how, int maxfrags) 2562 { 2563 struct mbuf *m, *n, *n2, **prev; 2564 u_int curfrags; 2565 2566 /* 2567 * Calculate the current number of frags. 2568 */ 2569 curfrags = 0; 2570 for (m = m0; m != NULL; m = m->m_next) 2571 curfrags++; 2572 /* 2573 * First, try to collapse mbufs. Note that we always collapse 2574 * towards the front so we don't need to deal with moving the 2575 * pkthdr. This may be suboptimal if the first mbuf has much 2576 * less data than the following. 2577 */ 2578 m = m0; 2579 again: 2580 for (;;) { 2581 n = m->m_next; 2582 if (n == NULL) 2583 break; 2584 if ((m->m_flags & M_RDONLY) == 0 && 2585 n->m_len < M_TRAILINGSPACE(m)) { 2586 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len, 2587 n->m_len); 2588 m->m_len += n->m_len; 2589 m->m_next = n->m_next; 2590 m_free(n); 2591 if (--curfrags <= maxfrags) 2592 return (m0); 2593 } else 2594 m = n; 2595 } 2596 KASSERT(maxfrags > 1, 2597 ("maxfrags %u, but normal collapse failed", maxfrags)); 2598 /* 2599 * Collapse consecutive mbufs to a cluster. 2600 */ 2601 prev = &m0->m_next; /* NB: not the first mbuf */ 2602 while ((n = *prev) != NULL) { 2603 if ((n2 = n->m_next) != NULL && 2604 n->m_len + n2->m_len < MCLBYTES) { 2605 m = m_getcl(how, MT_DATA, 0); 2606 if (m == NULL) 2607 goto bad; 2608 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 2609 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 2610 n2->m_len); 2611 m->m_len = n->m_len + n2->m_len; 2612 m->m_next = n2->m_next; 2613 *prev = m; 2614 m_free(n); 2615 m_free(n2); 2616 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 2617 return m0; 2618 /* 2619 * Still not there, try the normal collapse 2620 * again before we allocate another cluster. 2621 */ 2622 goto again; 2623 } 2624 prev = &n->m_next; 2625 } 2626 /* 2627 * No place where we can collapse to a cluster; punt. 2628 * This can occur if, for example, you request 2 frags 2629 * but the packet requires that both be clusters (we 2630 * never reallocate the first mbuf to avoid moving the 2631 * packet header). 2632 */ 2633 bad: 2634 return (NULL); 2635 } 2636 2637 static int 2638 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head) 2639 { 2640 struct msk_txdesc *txd, *txd_last; 2641 struct msk_tx_desc *tx_le; 2642 struct mbuf *m; 2643 bus_dmamap_t map; 2644 bus_dma_segment_t txsegs[MSK_MAXTXSEGS]; 2645 uint32_t control, prod, si; 2646 uint16_t offset, tcp_offset, tso_mtu; 2647 int error, i, nseg, tso; 2648 2649 MSK_IF_LOCK_ASSERT(sc_if); 2650 2651 tcp_offset = offset = 0; 2652 m = *m_head; 2653 if ((m->m_pkthdr.csum_flags & (MSK_CSUM_FEATURES | CSUM_TSO)) != 0) { 2654 /* 2655 * Since mbuf has no protocol specific structure information 2656 * in it we have to inspect protocol information here to 2657 * setup TSO and checksum offload. I don't know why Marvell 2658 * made a such decision in chip design because other GigE 2659 * hardwares normally takes care of all these chores in 2660 * hardware. However, TSO performance of Yukon II is very 2661 * good such that it's worth to implement it. 2662 */ 2663 struct ether_header *eh; 2664 struct ip *ip; 2665 struct tcphdr *tcp; 2666 2667 /* TODO check for M_WRITABLE(m) */ 2668 2669 offset = sizeof(struct ether_header); 2670 m = m_pullup(m, offset); 2671 if (m == NULL) { 2672 *m_head = NULL; 2673 return (ENOBUFS); 2674 } 2675 eh = mtod(m, struct ether_header *); 2676 /* Check if hardware VLAN insertion is off. */ 2677 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 2678 offset = sizeof(struct ether_vlan_header); 2679 m = m_pullup(m, offset); 2680 if (m == NULL) { 2681 *m_head = NULL; 2682 return (ENOBUFS); 2683 } 2684 } 2685 m = m_pullup(m, offset + sizeof(struct ip)); 2686 if (m == NULL) { 2687 *m_head = NULL; 2688 return (ENOBUFS); 2689 } 2690 ip = (struct ip *)(mtod(m, char *) + offset); 2691 offset += (ip->ip_hl << 2); 2692 tcp_offset = offset; 2693 /* 2694 * It seems that Yukon II has Tx checksum offload bug for 2695 * small TCP packets that's less than 60 bytes in size 2696 * (e.g. TCP window probe packet, pure ACK packet). 2697 * Common work around like padding with zeros to make the 2698 * frame minimum ethernet frame size didn't work at all. 2699 * Instead of disabling checksum offload completely we 2700 * resort to S/W checksum routine when we encounter short 2701 * TCP frames. 2702 * Short UDP packets appear to be handled correctly by 2703 * Yukon II. 2704 */ 2705 if (m->m_pkthdr.len < MSK_MIN_FRAMELEN && 2706 (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) { 2707 uint16_t csum; 2708 2709 csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset - 2710 (ip->ip_hl << 2), offset); 2711 *(uint16_t *)(m->m_data + offset + 2712 m->m_pkthdr.csum_data) = csum; 2713 m->m_pkthdr.csum_flags &= ~CSUM_TCP; 2714 } 2715 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2716 m = m_pullup(m, offset + sizeof(struct tcphdr)); 2717 if (m == NULL) { 2718 *m_head = NULL; 2719 return (ENOBUFS); 2720 } 2721 tcp = (struct tcphdr *)(mtod(m, char *) + offset); 2722 offset += (tcp->th_off << 2); 2723 } 2724 *m_head = m; 2725 } 2726 2727 prod = sc_if->msk_cdata.msk_tx_prod; 2728 txd = &sc_if->msk_cdata.msk_txdesc[prod]; 2729 txd_last = txd; 2730 map = txd->tx_dmamap; 2731 error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map, 2732 *m_head, txsegs, &nseg, BUS_DMA_NOWAIT); 2733 if (error == EFBIG) { 2734 m = msk_defrag(*m_head, M_DONTWAIT, MSK_MAXTXSEGS); 2735 if (m == NULL) { 2736 m_freem(*m_head); 2737 *m_head = NULL; 2738 return (ENOBUFS); 2739 } 2740 *m_head = m; 2741 error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, 2742 map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT); 2743 if (error != 0) { 2744 m_freem(*m_head); 2745 *m_head = NULL; 2746 return (error); 2747 } 2748 } else if (error != 0) 2749 return (error); 2750 if (nseg == 0) { 2751 m_freem(*m_head); 2752 *m_head = NULL; 2753 return (EIO); 2754 } 2755 2756 /* Check number of available descriptors. */ 2757 if (sc_if->msk_cdata.msk_tx_cnt + nseg >= 2758 (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) { 2759 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map); 2760 return (ENOBUFS); 2761 } 2762 2763 control = 0; 2764 tso = 0; 2765 tx_le = NULL; 2766 2767 /* Check TSO support. */ 2768 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2769 tso_mtu = offset + m->m_pkthdr.tso_segsz; 2770 if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) { 2771 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2772 tx_le->msk_addr = htole32(tso_mtu); 2773 tx_le->msk_control = htole32(OP_LRGLEN | HW_OWNER); 2774 sc_if->msk_cdata.msk_tx_cnt++; 2775 MSK_INC(prod, MSK_TX_RING_CNT); 2776 sc_if->msk_cdata.msk_tso_mtu = tso_mtu; 2777 } 2778 tso++; 2779 } 2780 /* Check if we have a VLAN tag to insert. */ 2781 if ((m->m_flags & M_VLANTAG) != 0) { 2782 if (tso == 0) { 2783 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2784 tx_le->msk_addr = htole32(0); 2785 tx_le->msk_control = htole32(OP_VLAN | HW_OWNER | 2786 htons(m->m_pkthdr.ether_vtag)); 2787 sc_if->msk_cdata.msk_tx_cnt++; 2788 MSK_INC(prod, MSK_TX_RING_CNT); 2789 } else { 2790 tx_le->msk_control |= htole32(OP_VLAN | 2791 htons(m->m_pkthdr.ether_vtag)); 2792 } 2793 control |= INS_VLAN; 2794 } 2795 /* Check if we have to handle checksum offload. */ 2796 if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) { 2797 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2798 tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data) 2799 & 0xffff) | ((uint32_t)tcp_offset << 16)); 2800 tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER)); 2801 control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM; 2802 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 2803 control |= UDPTCP; 2804 sc_if->msk_cdata.msk_tx_cnt++; 2805 MSK_INC(prod, MSK_TX_RING_CNT); 2806 } 2807 2808 si = prod; 2809 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2810 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr)); 2811 if (tso == 0) 2812 tx_le->msk_control = htole32(txsegs[0].ds_len | control | 2813 OP_PACKET); 2814 else 2815 tx_le->msk_control = htole32(txsegs[0].ds_len | control | 2816 OP_LARGESEND); 2817 sc_if->msk_cdata.msk_tx_cnt++; 2818 MSK_INC(prod, MSK_TX_RING_CNT); 2819 2820 for (i = 1; i < nseg; i++) { 2821 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2822 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr)); 2823 tx_le->msk_control = htole32(txsegs[i].ds_len | control | 2824 OP_BUFFER | HW_OWNER); 2825 sc_if->msk_cdata.msk_tx_cnt++; 2826 MSK_INC(prod, MSK_TX_RING_CNT); 2827 } 2828 /* Update producer index. */ 2829 sc_if->msk_cdata.msk_tx_prod = prod; 2830 2831 /* Set EOP on the last desciptor. */ 2832 prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT; 2833 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2834 tx_le->msk_control |= htole32(EOP); 2835 2836 /* Turn the first descriptor ownership to hardware. */ 2837 tx_le = &sc_if->msk_rdata.msk_tx_ring[si]; 2838 tx_le->msk_control |= htole32(HW_OWNER); 2839 2840 txd = &sc_if->msk_cdata.msk_txdesc[prod]; 2841 map = txd_last->tx_dmamap; 2842 txd_last->tx_dmamap = txd->tx_dmamap; 2843 txd->tx_dmamap = map; 2844 txd->tx_m = m; 2845 2846 /* Sync descriptors. */ 2847 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE); 2848 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, 2849 sc_if->msk_cdata.msk_tx_ring_map, 2850 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2851 2852 return (0); 2853 } 2854 2855 static void 2856 msk_tx_task(void *arg, int pending) 2857 { 2858 struct ifnet *ifp; 2859 2860 ifp = arg; 2861 msk_start(ifp); 2862 } 2863 2864 static void 2865 msk_start(struct ifnet *ifp) 2866 { 2867 struct msk_if_softc *sc_if; 2868 struct mbuf *m_head; 2869 int enq; 2870 2871 sc_if = ifp->if_softc; 2872 2873 MSK_IF_LOCK(sc_if); 2874 2875 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 2876 IFF_DRV_RUNNING || sc_if->msk_link == 0) { 2877 MSK_IF_UNLOCK(sc_if); 2878 return; 2879 } 2880 2881 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 2882 sc_if->msk_cdata.msk_tx_cnt < 2883 (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) { 2884 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2885 if (m_head == NULL) 2886 break; 2887 /* 2888 * Pack the data into the transmit ring. If we 2889 * don't have room, set the OACTIVE flag and wait 2890 * for the NIC to drain the ring. 2891 */ 2892 if (msk_encap(sc_if, &m_head) != 0) { 2893 if (m_head == NULL) 2894 break; 2895 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2896 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2897 break; 2898 } 2899 2900 enq++; 2901 /* 2902 * If there's a BPF listener, bounce a copy of this frame 2903 * to him. 2904 */ 2905 ETHER_BPF_MTAP(ifp, m_head); 2906 } 2907 2908 if (enq > 0) { 2909 /* Transmit */ 2910 CSR_WRITE_2(sc_if->msk_softc, 2911 Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG), 2912 sc_if->msk_cdata.msk_tx_prod); 2913 2914 /* Set a timeout in case the chip goes out to lunch. */ 2915 sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT; 2916 } 2917 2918 MSK_IF_UNLOCK(sc_if); 2919 } 2920 2921 static void 2922 msk_watchdog(struct msk_if_softc *sc_if) 2923 { 2924 struct ifnet *ifp; 2925 uint32_t ridx; 2926 int idx; 2927 2928 MSK_IF_LOCK_ASSERT(sc_if); 2929 2930 if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer) 2931 return; 2932 ifp = sc_if->msk_ifp; 2933 if (sc_if->msk_link == 0) { 2934 if (bootverbose) 2935 if_printf(sc_if->msk_ifp, "watchdog timeout " 2936 "(missed link)\n"); 2937 ifp->if_oerrors++; 2938 msk_init_locked(sc_if); 2939 return; 2940 } 2941 2942 /* 2943 * Reclaim first as there is a possibility of losing Tx completion 2944 * interrupts. 2945 */ 2946 ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX; 2947 idx = CSR_READ_2(sc_if->msk_softc, ridx); 2948 if (sc_if->msk_cdata.msk_tx_cons != idx) { 2949 msk_txeof(sc_if, idx); 2950 if (sc_if->msk_cdata.msk_tx_cnt == 0) { 2951 if_printf(ifp, "watchdog timeout (missed Tx interrupts) " 2952 "-- recovering\n"); 2953 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2954 taskqueue_enqueue(taskqueue_fast, 2955 &sc_if->msk_tx_task); 2956 return; 2957 } 2958 } 2959 2960 if_printf(ifp, "watchdog timeout\n"); 2961 ifp->if_oerrors++; 2962 msk_init_locked(sc_if); 2963 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2964 taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task); 2965 } 2966 2967 static void 2968 mskc_shutdown(device_t dev) 2969 { 2970 struct msk_softc *sc; 2971 int i; 2972 2973 sc = device_get_softc(dev); 2974 MSK_LOCK(sc); 2975 for (i = 0; i < sc->msk_num_port; i++) { 2976 if (sc->msk_if[i] != NULL) 2977 msk_stop(sc->msk_if[i]); 2978 } 2979 2980 /* Disable all interrupts. */ 2981 CSR_WRITE_4(sc, B0_IMSK, 0); 2982 CSR_READ_4(sc, B0_IMSK); 2983 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 2984 CSR_READ_4(sc, B0_HWE_IMSK); 2985 2986 /* Put hardware reset. */ 2987 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 2988 2989 MSK_UNLOCK(sc); 2990 } 2991 2992 static int 2993 mskc_suspend(device_t dev) 2994 { 2995 struct msk_softc *sc; 2996 int i; 2997 2998 sc = device_get_softc(dev); 2999 3000 MSK_LOCK(sc); 3001 3002 for (i = 0; i < sc->msk_num_port; i++) { 3003 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL && 3004 ((sc->msk_if[i]->msk_ifp->if_drv_flags & 3005 IFF_DRV_RUNNING) != 0)) 3006 msk_stop(sc->msk_if[i]); 3007 } 3008 3009 /* Disable all interrupts. */ 3010 CSR_WRITE_4(sc, B0_IMSK, 0); 3011 CSR_READ_4(sc, B0_IMSK); 3012 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 3013 CSR_READ_4(sc, B0_HWE_IMSK); 3014 3015 msk_phy_power(sc, MSK_PHY_POWERDOWN); 3016 3017 /* Put hardware reset. */ 3018 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 3019 sc->msk_suspended = 1; 3020 3021 MSK_UNLOCK(sc); 3022 3023 return (0); 3024 } 3025 3026 static int 3027 mskc_resume(device_t dev) 3028 { 3029 struct msk_softc *sc; 3030 int i; 3031 3032 sc = device_get_softc(dev); 3033 3034 MSK_LOCK(sc); 3035 3036 mskc_reset(sc); 3037 for (i = 0; i < sc->msk_num_port; i++) { 3038 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL && 3039 ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) 3040 msk_init_locked(sc->msk_if[i]); 3041 } 3042 sc->msk_suspended = 0; 3043 3044 MSK_UNLOCK(sc); 3045 3046 return (0); 3047 } 3048 3049 static void 3050 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len) 3051 { 3052 struct mbuf *m; 3053 struct ifnet *ifp; 3054 struct msk_rxdesc *rxd; 3055 int cons, rxlen; 3056 3057 ifp = sc_if->msk_ifp; 3058 3059 MSK_IF_LOCK_ASSERT(sc_if); 3060 3061 cons = sc_if->msk_cdata.msk_rx_cons; 3062 do { 3063 rxlen = status >> 16; 3064 if ((status & GMR_FS_VLAN) != 0 && 3065 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3066 rxlen -= ETHER_VLAN_ENCAP_LEN; 3067 if (len > sc_if->msk_framesize || 3068 ((status & GMR_FS_ANY_ERR) != 0) || 3069 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) { 3070 /* Don't count flow-control packet as errors. */ 3071 if ((status & GMR_FS_GOOD_FC) == 0) 3072 ifp->if_ierrors++; 3073 msk_discard_rxbuf(sc_if, cons); 3074 break; 3075 } 3076 rxd = &sc_if->msk_cdata.msk_rxdesc[cons]; 3077 m = rxd->rx_m; 3078 if (msk_newbuf(sc_if, cons) != 0) { 3079 ifp->if_iqdrops++; 3080 /* Reuse old buffer. */ 3081 msk_discard_rxbuf(sc_if, cons); 3082 break; 3083 } 3084 m->m_pkthdr.rcvif = ifp; 3085 m->m_pkthdr.len = m->m_len = len; 3086 ifp->if_ipackets++; 3087 /* Check for VLAN tagged packets. */ 3088 if ((status & GMR_FS_VLAN) != 0 && 3089 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 3090 m->m_pkthdr.ether_vtag = sc_if->msk_vtag; 3091 m->m_flags |= M_VLANTAG; 3092 } 3093 MSK_IF_UNLOCK(sc_if); 3094 (*ifp->if_input)(ifp, m); 3095 MSK_IF_LOCK(sc_if); 3096 } while (0); 3097 3098 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT); 3099 MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT); 3100 } 3101 3102 static void 3103 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len) 3104 { 3105 struct mbuf *m; 3106 struct ifnet *ifp; 3107 struct msk_rxdesc *jrxd; 3108 int cons, rxlen; 3109 3110 ifp = sc_if->msk_ifp; 3111 3112 MSK_IF_LOCK_ASSERT(sc_if); 3113 3114 cons = sc_if->msk_cdata.msk_rx_cons; 3115 do { 3116 rxlen = status >> 16; 3117 if ((status & GMR_FS_VLAN) != 0 && 3118 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3119 rxlen -= ETHER_VLAN_ENCAP_LEN; 3120 if (len > sc_if->msk_framesize || 3121 ((status & GMR_FS_ANY_ERR) != 0) || 3122 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) { 3123 /* Don't count flow-control packet as errors. */ 3124 if ((status & GMR_FS_GOOD_FC) == 0) 3125 ifp->if_ierrors++; 3126 msk_discard_jumbo_rxbuf(sc_if, cons); 3127 break; 3128 } 3129 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons]; 3130 m = jrxd->rx_m; 3131 if (msk_jumbo_newbuf(sc_if, cons) != 0) { 3132 ifp->if_iqdrops++; 3133 /* Reuse old buffer. */ 3134 msk_discard_jumbo_rxbuf(sc_if, cons); 3135 break; 3136 } 3137 m->m_pkthdr.rcvif = ifp; 3138 m->m_pkthdr.len = m->m_len = len; 3139 ifp->if_ipackets++; 3140 /* Check for VLAN tagged packets. */ 3141 if ((status & GMR_FS_VLAN) != 0 && 3142 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 3143 m->m_pkthdr.ether_vtag = sc_if->msk_vtag; 3144 m->m_flags |= M_VLANTAG; 3145 } 3146 MSK_IF_UNLOCK(sc_if); 3147 (*ifp->if_input)(ifp, m); 3148 MSK_IF_LOCK(sc_if); 3149 } while (0); 3150 3151 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT); 3152 MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT); 3153 } 3154 3155 static void 3156 msk_txeof(struct msk_if_softc *sc_if, int idx) 3157 { 3158 struct msk_txdesc *txd; 3159 struct msk_tx_desc *cur_tx; 3160 struct ifnet *ifp; 3161 uint32_t control; 3162 int cons, prog; 3163 3164 MSK_IF_LOCK_ASSERT(sc_if); 3165 3166 ifp = sc_if->msk_ifp; 3167 3168 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, 3169 sc_if->msk_cdata.msk_tx_ring_map, 3170 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3171 /* 3172 * Go through our tx ring and free mbufs for those 3173 * frames that have been sent. 3174 */ 3175 cons = sc_if->msk_cdata.msk_tx_cons; 3176 prog = 0; 3177 for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) { 3178 if (sc_if->msk_cdata.msk_tx_cnt <= 0) 3179 break; 3180 prog++; 3181 cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons]; 3182 control = le32toh(cur_tx->msk_control); 3183 sc_if->msk_cdata.msk_tx_cnt--; 3184 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3185 if ((control & EOP) == 0) 3186 continue; 3187 txd = &sc_if->msk_cdata.msk_txdesc[cons]; 3188 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap, 3189 BUS_DMASYNC_POSTWRITE); 3190 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap); 3191 3192 ifp->if_opackets++; 3193 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!", 3194 __func__)); 3195 m_freem(txd->tx_m); 3196 txd->tx_m = NULL; 3197 } 3198 3199 if (prog > 0) { 3200 sc_if->msk_cdata.msk_tx_cons = cons; 3201 if (sc_if->msk_cdata.msk_tx_cnt == 0) 3202 sc_if->msk_watchdog_timer = 0; 3203 /* No need to sync LEs as we didn't update LEs. */ 3204 } 3205 } 3206 3207 static void 3208 msk_tick(void *xsc_if) 3209 { 3210 struct msk_if_softc *sc_if; 3211 struct mii_data *mii; 3212 3213 sc_if = xsc_if; 3214 3215 MSK_IF_LOCK_ASSERT(sc_if); 3216 3217 mii = device_get_softc(sc_if->msk_miibus); 3218 3219 mii_tick(mii); 3220 msk_watchdog(sc_if); 3221 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if); 3222 } 3223 3224 static void 3225 msk_intr_phy(struct msk_if_softc *sc_if) 3226 { 3227 uint16_t status; 3228 3229 if (sc_if->msk_softc->msk_marvell_phy) { 3230 msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT); 3231 status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, 3232 PHY_MARV_INT_STAT); 3233 /* Handle FIFO Underrun/Overflow? */ 3234 if ((status & PHY_M_IS_FIFO_ERROR)) 3235 device_printf(sc_if->msk_if_dev, 3236 "PHY FIFO underrun/overflow.\n"); 3237 } 3238 } 3239 3240 static void 3241 msk_intr_gmac(struct msk_if_softc *sc_if) 3242 { 3243 struct msk_softc *sc; 3244 uint8_t status; 3245 3246 sc = sc_if->msk_softc; 3247 status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC)); 3248 3249 /* GMAC Rx FIFO overrun. */ 3250 if ((status & GM_IS_RX_FF_OR) != 0) { 3251 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 3252 GMF_CLI_RX_FO); 3253 device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n"); 3254 } 3255 /* GMAC Tx FIFO underrun. */ 3256 if ((status & GM_IS_TX_FF_UR) != 0) { 3257 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3258 GMF_CLI_TX_FU); 3259 device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n"); 3260 /* 3261 * XXX 3262 * In case of Tx underrun, we may need to flush/reset 3263 * Tx MAC but that would also require resynchronization 3264 * with status LEs. Reintializing status LEs would 3265 * affect other port in dual MAC configuration so it 3266 * should be avoided as possible as we can. 3267 * Due to lack of documentation it's all vague guess but 3268 * it needs more investigation. 3269 */ 3270 } 3271 } 3272 3273 static void 3274 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status) 3275 { 3276 struct msk_softc *sc; 3277 3278 sc = sc_if->msk_softc; 3279 if ((status & Y2_IS_PAR_RD1) != 0) { 3280 device_printf(sc_if->msk_if_dev, 3281 "RAM buffer read parity error\n"); 3282 /* Clear IRQ. */ 3283 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL), 3284 RI_CLR_RD_PERR); 3285 } 3286 if ((status & Y2_IS_PAR_WR1) != 0) { 3287 device_printf(sc_if->msk_if_dev, 3288 "RAM buffer write parity error\n"); 3289 /* Clear IRQ. */ 3290 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL), 3291 RI_CLR_WR_PERR); 3292 } 3293 if ((status & Y2_IS_PAR_MAC1) != 0) { 3294 device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n"); 3295 /* Clear IRQ. */ 3296 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3297 GMF_CLI_TX_PE); 3298 } 3299 if ((status & Y2_IS_PAR_RX1) != 0) { 3300 device_printf(sc_if->msk_if_dev, "Rx parity error\n"); 3301 /* Clear IRQ. */ 3302 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR); 3303 } 3304 if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) { 3305 device_printf(sc_if->msk_if_dev, "TCP segmentation error\n"); 3306 /* Clear IRQ. */ 3307 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP); 3308 } 3309 } 3310 3311 static void 3312 msk_intr_hwerr(struct msk_softc *sc) 3313 { 3314 uint32_t status; 3315 uint32_t tlphead[4]; 3316 3317 status = CSR_READ_4(sc, B0_HWE_ISRC); 3318 /* Time Stamp timer overflow. */ 3319 if ((status & Y2_IS_TIST_OV) != 0) 3320 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 3321 if ((status & Y2_IS_PCI_NEXP) != 0) { 3322 /* 3323 * PCI Express Error occured which is not described in PEX 3324 * spec. 3325 * This error is also mapped either to Master Abort( 3326 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and 3327 * can only be cleared there. 3328 */ 3329 device_printf(sc->msk_dev, 3330 "PCI Express protocol violation error\n"); 3331 } 3332 3333 if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) { 3334 uint16_t v16; 3335 3336 if ((status & Y2_IS_MST_ERR) != 0) 3337 device_printf(sc->msk_dev, 3338 "unexpected IRQ Status error\n"); 3339 else 3340 device_printf(sc->msk_dev, 3341 "unexpected IRQ Master error\n"); 3342 /* Reset all bits in the PCI status register. */ 3343 v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2); 3344 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3345 pci_write_config(sc->msk_dev, PCIR_STATUS, v16 | 3346 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT | 3347 PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2); 3348 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3349 } 3350 3351 /* Check for PCI Express Uncorrectable Error. */ 3352 if ((status & Y2_IS_PCI_EXP) != 0) { 3353 uint32_t v32; 3354 3355 /* 3356 * On PCI Express bus bridges are called root complexes (RC). 3357 * PCI Express errors are recognized by the root complex too, 3358 * which requests the system to handle the problem. After 3359 * error occurence it may be that no access to the adapter 3360 * may be performed any longer. 3361 */ 3362 3363 v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT); 3364 if ((v32 & PEX_UNSUP_REQ) != 0) { 3365 /* Ignore unsupported request error. */ 3366 device_printf(sc->msk_dev, 3367 "Uncorrectable PCI Express error\n"); 3368 } 3369 if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) { 3370 int i; 3371 3372 /* Get TLP header form Log Registers. */ 3373 for (i = 0; i < 4; i++) 3374 tlphead[i] = CSR_PCI_READ_4(sc, 3375 PEX_HEADER_LOG + i * 4); 3376 /* Check for vendor defined broadcast message. */ 3377 if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) { 3378 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP; 3379 CSR_WRITE_4(sc, B0_HWE_IMSK, 3380 sc->msk_intrhwemask); 3381 CSR_READ_4(sc, B0_HWE_IMSK); 3382 } 3383 } 3384 /* Clear the interrupt. */ 3385 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3386 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff); 3387 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3388 } 3389 3390 if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL) 3391 msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status); 3392 if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL) 3393 msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8); 3394 } 3395 3396 static __inline void 3397 msk_rxput(struct msk_if_softc *sc_if) 3398 { 3399 struct msk_softc *sc; 3400 3401 sc = sc_if->msk_softc; 3402 if (sc_if->msk_framesize >(MCLBYTES - ETHER_HDR_LEN)) 3403 bus_dmamap_sync( 3404 sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 3405 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 3406 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3407 else 3408 bus_dmamap_sync( 3409 sc_if->msk_cdata.msk_rx_ring_tag, 3410 sc_if->msk_cdata.msk_rx_ring_map, 3411 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3412 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, 3413 PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod); 3414 } 3415 3416 static int 3417 msk_handle_events(struct msk_softc *sc) 3418 { 3419 struct msk_if_softc *sc_if; 3420 int rxput[2]; 3421 struct msk_stat_desc *sd; 3422 uint32_t control, status; 3423 int cons, idx, len, port, rxprog; 3424 3425 idx = CSR_READ_2(sc, STAT_PUT_IDX); 3426 if (idx == sc->msk_stat_cons) 3427 return (0); 3428 3429 /* Sync status LEs. */ 3430 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map, 3431 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3432 /* XXX Sync Rx LEs here. */ 3433 3434 rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0; 3435 3436 rxprog = 0; 3437 for (cons = sc->msk_stat_cons; cons != idx;) { 3438 sd = &sc->msk_stat_ring[cons]; 3439 control = le32toh(sd->msk_control); 3440 if ((control & HW_OWNER) == 0) 3441 break; 3442 /* 3443 * Marvell's FreeBSD driver updates status LE after clearing 3444 * HW_OWNER. However we don't have a way to sync single LE 3445 * with bus_dma(9) API. bus_dma(9) provides a way to sync 3446 * an entire DMA map. So don't sync LE until we have a better 3447 * way to sync LEs. 3448 */ 3449 control &= ~HW_OWNER; 3450 sd->msk_control = htole32(control); 3451 status = le32toh(sd->msk_status); 3452 len = control & STLE_LEN_MASK; 3453 port = (control >> 16) & 0x01; 3454 sc_if = sc->msk_if[port]; 3455 if (sc_if == NULL) { 3456 device_printf(sc->msk_dev, "invalid port opcode " 3457 "0x%08x\n", control & STLE_OP_MASK); 3458 continue; 3459 } 3460 3461 switch (control & STLE_OP_MASK) { 3462 case OP_RXVLAN: 3463 sc_if->msk_vtag = ntohs(len); 3464 break; 3465 case OP_RXCHKSVLAN: 3466 sc_if->msk_vtag = ntohs(len); 3467 break; 3468 case OP_RXSTAT: 3469 if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) 3470 msk_jumbo_rxeof(sc_if, status, len); 3471 else 3472 msk_rxeof(sc_if, status, len); 3473 rxprog++; 3474 /* 3475 * Because there is no way to sync single Rx LE 3476 * put the DMA sync operation off until the end of 3477 * event processing. 3478 */ 3479 rxput[port]++; 3480 /* Update prefetch unit if we've passed water mark. */ 3481 if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) { 3482 msk_rxput(sc_if); 3483 rxput[port] = 0; 3484 } 3485 break; 3486 case OP_TXINDEXLE: 3487 if (sc->msk_if[MSK_PORT_A] != NULL) 3488 msk_txeof(sc->msk_if[MSK_PORT_A], 3489 status & STLE_TXA1_MSKL); 3490 if (sc->msk_if[MSK_PORT_B] != NULL) 3491 msk_txeof(sc->msk_if[MSK_PORT_B], 3492 ((status & STLE_TXA2_MSKL) >> 3493 STLE_TXA2_SHIFTL) | 3494 ((len & STLE_TXA2_MSKH) << 3495 STLE_TXA2_SHIFTH)); 3496 break; 3497 default: 3498 device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n", 3499 control & STLE_OP_MASK); 3500 break; 3501 } 3502 MSK_INC(cons, MSK_STAT_RING_CNT); 3503 if (rxprog > sc->msk_process_limit) 3504 break; 3505 } 3506 3507 sc->msk_stat_cons = cons; 3508 /* XXX We should sync status LEs here. See above notes. */ 3509 3510 if (rxput[MSK_PORT_A] > 0) 3511 msk_rxput(sc->msk_if[MSK_PORT_A]); 3512 if (rxput[MSK_PORT_B] > 0) 3513 msk_rxput(sc->msk_if[MSK_PORT_B]); 3514 3515 return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX)); 3516 } 3517 3518 /* Legacy interrupt handler for shared interrupt. */ 3519 static void 3520 msk_legacy_intr(void *xsc) 3521 { 3522 struct msk_softc *sc; 3523 struct msk_if_softc *sc_if0, *sc_if1; 3524 struct ifnet *ifp0, *ifp1; 3525 uint32_t status; 3526 3527 sc = xsc; 3528 MSK_LOCK(sc); 3529 3530 /* Reading B0_Y2_SP_ISRC2 masks further interrupts. */ 3531 status = CSR_READ_4(sc, B0_Y2_SP_ISRC2); 3532 if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 || 3533 (status & sc->msk_intrmask) == 0) { 3534 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2); 3535 return; 3536 } 3537 3538 sc_if0 = sc->msk_if[MSK_PORT_A]; 3539 sc_if1 = sc->msk_if[MSK_PORT_B]; 3540 ifp0 = ifp1 = NULL; 3541 if (sc_if0 != NULL) 3542 ifp0 = sc_if0->msk_ifp; 3543 if (sc_if1 != NULL) 3544 ifp1 = sc_if1->msk_ifp; 3545 3546 if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL) 3547 msk_intr_phy(sc_if0); 3548 if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL) 3549 msk_intr_phy(sc_if1); 3550 if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL) 3551 msk_intr_gmac(sc_if0); 3552 if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL) 3553 msk_intr_gmac(sc_if1); 3554 if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) { 3555 device_printf(sc->msk_dev, "Rx descriptor error\n"); 3556 sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2); 3557 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3558 CSR_READ_4(sc, B0_IMSK); 3559 } 3560 if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) { 3561 device_printf(sc->msk_dev, "Tx descriptor error\n"); 3562 sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2); 3563 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3564 CSR_READ_4(sc, B0_IMSK); 3565 } 3566 if ((status & Y2_IS_HW_ERR) != 0) 3567 msk_intr_hwerr(sc); 3568 3569 while (msk_handle_events(sc) != 0) 3570 ; 3571 if ((status & Y2_IS_STAT_BMU) != 0) 3572 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ); 3573 3574 /* Reenable interrupts. */ 3575 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2); 3576 3577 if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 && 3578 !IFQ_DRV_IS_EMPTY(&ifp0->if_snd)) 3579 taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task); 3580 if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 && 3581 !IFQ_DRV_IS_EMPTY(&ifp1->if_snd)) 3582 taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task); 3583 3584 MSK_UNLOCK(sc); 3585 } 3586 3587 static int 3588 msk_intr(void *xsc) 3589 { 3590 struct msk_softc *sc; 3591 uint32_t status; 3592 3593 sc = xsc; 3594 status = CSR_READ_4(sc, B0_Y2_SP_ISRC2); 3595 /* Reading B0_Y2_SP_ISRC2 masks further interrupts. */ 3596 if (status == 0 || status == 0xffffffff) { 3597 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2); 3598 return (FILTER_STRAY); 3599 } 3600 3601 taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task); 3602 return (FILTER_HANDLED); 3603 } 3604 3605 static void 3606 msk_int_task(void *arg, int pending) 3607 { 3608 struct msk_softc *sc; 3609 struct msk_if_softc *sc_if0, *sc_if1; 3610 struct ifnet *ifp0, *ifp1; 3611 uint32_t status; 3612 int domore; 3613 3614 sc = arg; 3615 MSK_LOCK(sc); 3616 3617 /* Get interrupt source. */ 3618 status = CSR_READ_4(sc, B0_ISRC); 3619 if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 || 3620 (status & sc->msk_intrmask) == 0) 3621 goto done; 3622 3623 sc_if0 = sc->msk_if[MSK_PORT_A]; 3624 sc_if1 = sc->msk_if[MSK_PORT_B]; 3625 ifp0 = ifp1 = NULL; 3626 if (sc_if0 != NULL) 3627 ifp0 = sc_if0->msk_ifp; 3628 if (sc_if1 != NULL) 3629 ifp1 = sc_if1->msk_ifp; 3630 3631 if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL) 3632 msk_intr_phy(sc_if0); 3633 if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL) 3634 msk_intr_phy(sc_if1); 3635 if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL) 3636 msk_intr_gmac(sc_if0); 3637 if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL) 3638 msk_intr_gmac(sc_if1); 3639 if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) { 3640 device_printf(sc->msk_dev, "Rx descriptor error\n"); 3641 sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2); 3642 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3643 CSR_READ_4(sc, B0_IMSK); 3644 } 3645 if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) { 3646 device_printf(sc->msk_dev, "Tx descriptor error\n"); 3647 sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2); 3648 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3649 CSR_READ_4(sc, B0_IMSK); 3650 } 3651 if ((status & Y2_IS_HW_ERR) != 0) 3652 msk_intr_hwerr(sc); 3653 3654 domore = msk_handle_events(sc); 3655 if ((status & Y2_IS_STAT_BMU) != 0) 3656 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ); 3657 3658 if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 && 3659 !IFQ_DRV_IS_EMPTY(&ifp0->if_snd)) 3660 taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task); 3661 if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 && 3662 !IFQ_DRV_IS_EMPTY(&ifp1->if_snd)) 3663 taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task); 3664 3665 if (domore > 0) { 3666 taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task); 3667 MSK_UNLOCK(sc); 3668 return; 3669 } 3670 done: 3671 MSK_UNLOCK(sc); 3672 3673 /* Reenable interrupts. */ 3674 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2); 3675 } 3676 3677 static void 3678 msk_init(void *xsc) 3679 { 3680 struct msk_if_softc *sc_if = xsc; 3681 3682 MSK_IF_LOCK(sc_if); 3683 msk_init_locked(sc_if); 3684 MSK_IF_UNLOCK(sc_if); 3685 } 3686 3687 static void 3688 msk_init_locked(struct msk_if_softc *sc_if) 3689 { 3690 struct msk_softc *sc; 3691 struct ifnet *ifp; 3692 struct mii_data *mii; 3693 uint16_t eaddr[ETHER_ADDR_LEN / 2]; 3694 uint16_t gmac; 3695 int error, i; 3696 3697 MSK_IF_LOCK_ASSERT(sc_if); 3698 3699 ifp = sc_if->msk_ifp; 3700 sc = sc_if->msk_softc; 3701 mii = device_get_softc(sc_if->msk_miibus); 3702 3703 error = 0; 3704 /* Cancel pending I/O and free all Rx/Tx buffers. */ 3705 msk_stop(sc_if); 3706 3707 sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + 3708 ETHER_VLAN_ENCAP_LEN; 3709 3710 /* 3711 * Initialize GMAC first. 3712 * Without this initialization, Rx MAC did not work as expected 3713 * and Rx MAC garbled status LEs and it resulted in out-of-order 3714 * or duplicated frame delivery which in turn showed very poor 3715 * Rx performance.(I had to write a packet analysis code that 3716 * could be embeded in driver to diagnose this issue.) 3717 * I've spent almost 2 months to fix this issue. If I have had 3718 * datasheet for Yukon II I wouldn't have encountered this. :-( 3719 */ 3720 gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL; 3721 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac); 3722 3723 /* Dummy read the Interrupt Source Register. */ 3724 CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC)); 3725 3726 /* Set MIB Clear Counter Mode. */ 3727 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR); 3728 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR); 3729 /* Read all MIB Counters with Clear Mode set. */ 3730 for (i = 0; i < GM_MIB_CNT_SIZE; i++) 3731 GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i); 3732 /* Clear MIB Clear Counter Mode. */ 3733 gmac &= ~GM_PAR_MIB_CLR; 3734 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac); 3735 3736 /* Disable FCS. */ 3737 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS); 3738 3739 /* Setup Transmit Control Register. */ 3740 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); 3741 3742 /* Setup Transmit Flow Control Register. */ 3743 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff); 3744 3745 /* Setup Transmit Parameter Register. */ 3746 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM, 3747 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | 3748 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF)); 3749 3750 gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) | 3751 GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); 3752 3753 if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) 3754 gmac |= GM_SMOD_JUMBO_ENA; 3755 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac); 3756 3757 /* Set station address. */ 3758 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 3759 for (i = 0; i < ETHER_ADDR_LEN /2; i++) 3760 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4, 3761 eaddr[i]); 3762 for (i = 0; i < ETHER_ADDR_LEN /2; i++) 3763 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4, 3764 eaddr[i]); 3765 3766 /* Disable interrupts for counter overflows. */ 3767 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0); 3768 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0); 3769 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0); 3770 3771 /* Configure Rx MAC FIFO. */ 3772 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET); 3773 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR); 3774 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 3775 GMF_OPER_ON | GMF_RX_F_FL_ON); 3776 3777 /* Set promiscuous mode. */ 3778 msk_setpromisc(sc_if); 3779 3780 /* Set multicast filter. */ 3781 msk_setmulti(sc_if); 3782 3783 /* Flush Rx MAC FIFO on any flow control or error. */ 3784 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 3785 GMR_FS_ANY_ERR); 3786 3787 /* Set Rx FIFO flush threshold to 64 bytes. */ 3788 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), 3789 RX_GMF_FL_THR_DEF); 3790 3791 /* Configure Tx MAC FIFO. */ 3792 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET); 3793 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR); 3794 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON); 3795 3796 /* Configure hardware VLAN tag insertion/stripping. */ 3797 msk_setvlan(sc_if, ifp); 3798 3799 /* XXX It seems STFW is requried for all cases. */ 3800 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), TX_STFW_ENA); 3801 3802 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) { 3803 /* Set Rx Pause threshould. */ 3804 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR), 3805 MSK_ECU_LLPP); 3806 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR), 3807 MSK_ECU_ULPP); 3808 if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) { 3809 /* 3810 * Can't sure the following code is needed as Yukon 3811 * Yukon EC Ultra may not support jumbo frames. 3812 * 3813 * Set Tx GMAC FIFO Almost Empty Threshold. 3814 */ 3815 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR), 3816 MSK_ECU_AE_THR); 3817 /* Disable Store & Forward mode for Tx. */ 3818 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3819 TX_STFW_DIS); 3820 } 3821 } 3822 3823 /* 3824 * Disable Force Sync bit and Alloc bit in Tx RAM interface 3825 * arbiter as we don't use Sync Tx queue. 3826 */ 3827 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), 3828 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); 3829 /* Enable the RAM Interface Arbiter. */ 3830 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB); 3831 3832 /* Setup RAM buffer. */ 3833 msk_set_rambuffer(sc_if); 3834 3835 /* Disable Tx sync Queue. */ 3836 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET); 3837 3838 /* Setup Tx Queue Bus Memory Interface. */ 3839 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET); 3840 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT); 3841 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON); 3842 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM); 3843 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U && 3844 sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) { 3845 /* Fix for Yukon-EC Ultra: set BMU FIFO level */ 3846 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV); 3847 } 3848 3849 /* Setup Rx Queue Bus Memory Interface. */ 3850 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET); 3851 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT); 3852 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON); 3853 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM); 3854 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U && 3855 sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) { 3856 /* MAC Rx RAM Read is controlled by hardware. */ 3857 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS); 3858 } 3859 3860 msk_set_prefetch(sc, sc_if->msk_txq, 3861 sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1); 3862 msk_init_tx_ring(sc_if); 3863 3864 /* Disable Rx checksum offload and RSS hash. */ 3865 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), 3866 BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH); 3867 if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) { 3868 msk_set_prefetch(sc, sc_if->msk_rxq, 3869 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr, 3870 MSK_JUMBO_RX_RING_CNT - 1); 3871 error = msk_init_jumbo_rx_ring(sc_if); 3872 } else { 3873 msk_set_prefetch(sc, sc_if->msk_rxq, 3874 sc_if->msk_rdata.msk_rx_ring_paddr, 3875 MSK_RX_RING_CNT - 1); 3876 error = msk_init_rx_ring(sc_if); 3877 } 3878 if (error != 0) { 3879 device_printf(sc_if->msk_if_dev, 3880 "initialization failed: no memory for Rx buffers\n"); 3881 msk_stop(sc_if); 3882 return; 3883 } 3884 3885 /* Configure interrupt handling. */ 3886 if (sc_if->msk_port == MSK_PORT_A) { 3887 sc->msk_intrmask |= Y2_IS_PORT_A; 3888 sc->msk_intrhwemask |= Y2_HWE_L1_MASK; 3889 } else { 3890 sc->msk_intrmask |= Y2_IS_PORT_B; 3891 sc->msk_intrhwemask |= Y2_HWE_L2_MASK; 3892 } 3893 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask); 3894 CSR_READ_4(sc, B0_HWE_IMSK); 3895 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3896 CSR_READ_4(sc, B0_IMSK); 3897 3898 sc_if->msk_link = 0; 3899 mii_mediachg(mii); 3900 3901 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3902 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3903 3904 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if); 3905 } 3906 3907 static void 3908 msk_set_rambuffer(struct msk_if_softc *sc_if) 3909 { 3910 struct msk_softc *sc; 3911 int ltpp, utpp; 3912 3913 sc = sc_if->msk_softc; 3914 3915 /* Setup Rx Queue. */ 3916 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR); 3917 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START), 3918 sc->msk_rxqstart[sc_if->msk_port] / 8); 3919 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END), 3920 sc->msk_rxqend[sc_if->msk_port] / 8); 3921 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP), 3922 sc->msk_rxqstart[sc_if->msk_port] / 8); 3923 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP), 3924 sc->msk_rxqstart[sc_if->msk_port] / 8); 3925 3926 utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 - 3927 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8; 3928 ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 - 3929 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8; 3930 if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE) 3931 ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8; 3932 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp); 3933 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp); 3934 /* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */ 3935 3936 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD); 3937 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL)); 3938 3939 /* Setup Tx Queue. */ 3940 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR); 3941 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START), 3942 sc->msk_txqstart[sc_if->msk_port] / 8); 3943 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END), 3944 sc->msk_txqend[sc_if->msk_port] / 8); 3945 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP), 3946 sc->msk_txqstart[sc_if->msk_port] / 8); 3947 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP), 3948 sc->msk_txqstart[sc_if->msk_port] / 8); 3949 /* Enable Store & Forward for Tx side. */ 3950 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD); 3951 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD); 3952 CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL)); 3953 } 3954 3955 static void 3956 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr, 3957 uint32_t count) 3958 { 3959 3960 /* Reset the prefetch unit. */ 3961 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), 3962 PREF_UNIT_RST_SET); 3963 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), 3964 PREF_UNIT_RST_CLR); 3965 /* Set LE base address. */ 3966 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG), 3967 MSK_ADDR_LO(addr)); 3968 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG), 3969 MSK_ADDR_HI(addr)); 3970 /* Set the list last index. */ 3971 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG), 3972 count); 3973 /* Turn on prefetch unit. */ 3974 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), 3975 PREF_UNIT_OP_ON); 3976 /* Dummy read to ensure write. */ 3977 CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG)); 3978 } 3979 3980 static void 3981 msk_stop(struct msk_if_softc *sc_if) 3982 { 3983 struct msk_softc *sc; 3984 struct msk_txdesc *txd; 3985 struct msk_rxdesc *rxd; 3986 struct msk_rxdesc *jrxd; 3987 struct ifnet *ifp; 3988 uint32_t val; 3989 int i; 3990 3991 MSK_IF_LOCK_ASSERT(sc_if); 3992 sc = sc_if->msk_softc; 3993 ifp = sc_if->msk_ifp; 3994 3995 callout_stop(&sc_if->msk_tick_ch); 3996 sc_if->msk_watchdog_timer = 0; 3997 3998 /* Disable interrupts. */ 3999 if (sc_if->msk_port == MSK_PORT_A) { 4000 sc->msk_intrmask &= ~Y2_IS_PORT_A; 4001 sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK; 4002 } else { 4003 sc->msk_intrmask &= ~Y2_IS_PORT_B; 4004 sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK; 4005 } 4006 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask); 4007 CSR_READ_4(sc, B0_HWE_IMSK); 4008 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 4009 CSR_READ_4(sc, B0_IMSK); 4010 4011 /* Disable Tx/Rx MAC. */ 4012 val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 4013 val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 4014 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val); 4015 /* Read again to ensure writing. */ 4016 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 4017 4018 /* Stop Tx BMU. */ 4019 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP); 4020 val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR)); 4021 for (i = 0; i < MSK_TIMEOUT; i++) { 4022 if ((val & (BMU_STOP | BMU_IDLE)) == 0) { 4023 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), 4024 BMU_STOP); 4025 CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR)); 4026 } else 4027 break; 4028 DELAY(1); 4029 } 4030 if (i == MSK_TIMEOUT) 4031 device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n"); 4032 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), 4033 RB_RST_SET | RB_DIS_OP_MD); 4034 4035 /* Disable all GMAC interrupt. */ 4036 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0); 4037 /* Disable PHY interrupt. */ 4038 if (sc->msk_marvell_phy) 4039 msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0); 4040 4041 /* Disable the RAM Interface Arbiter. */ 4042 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB); 4043 4044 /* Reset the PCI FIFO of the async Tx queue */ 4045 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), 4046 BMU_RST_SET | BMU_FIFO_RST); 4047 4048 /* Reset the Tx prefetch units. */ 4049 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG), 4050 PREF_UNIT_RST_SET); 4051 4052 /* Reset the RAM Buffer async Tx queue. */ 4053 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET); 4054 4055 /* Reset Tx MAC FIFO. */ 4056 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET); 4057 /* Set Pause Off. */ 4058 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF); 4059 4060 /* 4061 * The Rx Stop command will not work for Yukon-2 if the BMU does not 4062 * reach the end of packet and since we can't make sure that we have 4063 * incoming data, we must reset the BMU while it is not during a DMA 4064 * transfer. Since it is possible that the Rx path is still active, 4065 * the Rx RAM buffer will be stopped first, so any possible incoming 4066 * data will not trigger a DMA. After the RAM buffer is stopped, the 4067 * BMU is polled until any DMA in progress is ended and only then it 4068 * will be reset. 4069 */ 4070 4071 /* Disable the RAM Buffer receive queue. */ 4072 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD); 4073 for (i = 0; i < MSK_TIMEOUT; i++) { 4074 if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) == 4075 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL))) 4076 break; 4077 DELAY(1); 4078 } 4079 if (i == MSK_TIMEOUT) 4080 device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n"); 4081 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), 4082 BMU_RST_SET | BMU_FIFO_RST); 4083 /* Reset the Rx prefetch unit. */ 4084 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG), 4085 PREF_UNIT_RST_SET); 4086 /* Reset the RAM Buffer receive queue. */ 4087 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET); 4088 /* Reset Rx MAC FIFO. */ 4089 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET); 4090 4091 /* Free Rx and Tx mbufs still in the queues. */ 4092 for (i = 0; i < MSK_RX_RING_CNT; i++) { 4093 rxd = &sc_if->msk_cdata.msk_rxdesc[i]; 4094 if (rxd->rx_m != NULL) { 4095 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, 4096 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 4097 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, 4098 rxd->rx_dmamap); 4099 m_freem(rxd->rx_m); 4100 rxd->rx_m = NULL; 4101 } 4102 } 4103 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 4104 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; 4105 if (jrxd->rx_m != NULL) { 4106 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, 4107 jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 4108 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag, 4109 jrxd->rx_dmamap); 4110 m_freem(jrxd->rx_m); 4111 jrxd->rx_m = NULL; 4112 } 4113 } 4114 for (i = 0; i < MSK_TX_RING_CNT; i++) { 4115 txd = &sc_if->msk_cdata.msk_txdesc[i]; 4116 if (txd->tx_m != NULL) { 4117 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, 4118 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 4119 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, 4120 txd->tx_dmamap); 4121 m_freem(txd->tx_m); 4122 txd->tx_m = NULL; 4123 } 4124 } 4125 4126 /* 4127 * Mark the interface down. 4128 */ 4129 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 4130 sc_if->msk_link = 0; 4131 } 4132 4133 static int 4134 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 4135 { 4136 int error, value; 4137 4138 if (!arg1) 4139 return (EINVAL); 4140 value = *(int *)arg1; 4141 error = sysctl_handle_int(oidp, &value, 0, req); 4142 if (error || !req->newptr) 4143 return (error); 4144 if (value < low || value > high) 4145 return (EINVAL); 4146 *(int *)arg1 = value; 4147 4148 return (0); 4149 } 4150 4151 static int 4152 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS) 4153 { 4154 4155 return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN, 4156 MSK_PROC_MAX)); 4157 } 4158