xref: /freebsd/sys/dev/msk/if_msk.c (revision aa64588d28258aef88cc33b8043112e8856948d0)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /*
96  * Device driver for the Marvell Yukon II Ethernet controller.
97  * Due to lack of documentation, this driver is based on the code from
98  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
99  */
100 
101 #include <sys/cdefs.h>
102 __FBSDID("$FreeBSD$");
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/module.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/queue.h>
115 #include <sys/sysctl.h>
116 
117 #include <net/bpf.h>
118 #include <net/ethernet.h>
119 #include <net/if.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/if_types.h>
124 #include <net/if_vlan_var.h>
125 
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/tcp.h>
130 #include <netinet/udp.h>
131 
132 #include <machine/bus.h>
133 #include <machine/in_cksum.h>
134 #include <machine/resource.h>
135 #include <sys/rman.h>
136 
137 #include <dev/mii/mii.h>
138 #include <dev/mii/miivar.h>
139 
140 #include <dev/pci/pcireg.h>
141 #include <dev/pci/pcivar.h>
142 
143 #include <dev/msk/if_mskreg.h>
144 
145 MODULE_DEPEND(msk, pci, 1, 1, 1);
146 MODULE_DEPEND(msk, ether, 1, 1, 1);
147 MODULE_DEPEND(msk, miibus, 1, 1, 1);
148 
149 /* "device miibus" required.  See GENERIC if you get errors here. */
150 #include "miibus_if.h"
151 
152 /* Tunables. */
153 static int msi_disable = 0;
154 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
155 static int legacy_intr = 0;
156 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
157 static int jumbo_disable = 0;
158 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
159 
160 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
161 
162 /*
163  * Devices supported by this driver.
164  */
165 static struct msk_product {
166 	uint16_t	msk_vendorid;
167 	uint16_t	msk_deviceid;
168 	const char	*msk_name;
169 } msk_products[] = {
170 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
171 	    "SK-9Sxx Gigabit Ethernet" },
172 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
173 	    "SK-9Exx Gigabit Ethernet"},
174 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
175 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
176 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
177 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
178 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
179 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
180 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
181 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
182 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
183 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
184 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
185 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
186 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
187 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
188 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
189 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
190 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
191 	    "Marvell Yukon 88E8035 Fast Ethernet" },
192 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
193 	    "Marvell Yukon 88E8036 Fast Ethernet" },
194 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
195 	    "Marvell Yukon 88E8038 Fast Ethernet" },
196 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
197 	    "Marvell Yukon 88E8039 Fast Ethernet" },
198 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
199 	    "Marvell Yukon 88E8040 Fast Ethernet" },
200 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
201 	    "Marvell Yukon 88E8040T Fast Ethernet" },
202 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
203 	    "Marvell Yukon 88E8042 Fast Ethernet" },
204 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
205 	    "Marvell Yukon 88E8048 Fast Ethernet" },
206 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
207 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
208 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
209 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
210 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
211 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
212 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
213 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
214 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
215 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
216 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
217 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
218 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
219 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
220 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
221 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
222 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
223 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
224 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
225 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
226 	{ VENDORID_MARVELL, DEVICEID_MRVL_4381,
227 	    "Marvell Yukon 88E8059 Gigabit Ethernet" },
228 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
229 	    "D-Link 550SX Gigabit Ethernet" },
230 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560SX,
231 	    "D-Link 560SX Gigabit Ethernet" },
232 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
233 	    "D-Link 560T Gigabit Ethernet" }
234 };
235 
236 static const char *model_name[] = {
237 	"Yukon XL",
238         "Yukon EC Ultra",
239         "Yukon EX",
240         "Yukon EC",
241         "Yukon FE",
242         "Yukon FE+",
243         "Yukon Supreme",
244         "Yukon Ultra 2",
245         "Yukon Unknown",
246         "Yukon Optima",
247 };
248 
249 static int mskc_probe(device_t);
250 static int mskc_attach(device_t);
251 static int mskc_detach(device_t);
252 static int mskc_shutdown(device_t);
253 static int mskc_setup_rambuffer(struct msk_softc *);
254 static int mskc_suspend(device_t);
255 static int mskc_resume(device_t);
256 static void mskc_reset(struct msk_softc *);
257 
258 static int msk_probe(device_t);
259 static int msk_attach(device_t);
260 static int msk_detach(device_t);
261 
262 static void msk_tick(void *);
263 static void msk_intr(void *);
264 static void msk_intr_phy(struct msk_if_softc *);
265 static void msk_intr_gmac(struct msk_if_softc *);
266 static __inline void msk_rxput(struct msk_if_softc *);
267 static int msk_handle_events(struct msk_softc *);
268 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
269 static void msk_intr_hwerr(struct msk_softc *);
270 #ifndef __NO_STRICT_ALIGNMENT
271 static __inline void msk_fixup_rx(struct mbuf *);
272 #endif
273 static __inline void msk_rxcsum(struct msk_if_softc *, uint32_t, struct mbuf *);
274 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
275 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
276 static void msk_txeof(struct msk_if_softc *, int);
277 static int msk_encap(struct msk_if_softc *, struct mbuf **);
278 static void msk_start(struct ifnet *);
279 static void msk_start_locked(struct ifnet *);
280 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
281 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
282 static void msk_set_rambuffer(struct msk_if_softc *);
283 static void msk_set_tx_stfwd(struct msk_if_softc *);
284 static void msk_init(void *);
285 static void msk_init_locked(struct msk_if_softc *);
286 static void msk_stop(struct msk_if_softc *);
287 static void msk_watchdog(struct msk_if_softc *);
288 static int msk_mediachange(struct ifnet *);
289 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
290 static void msk_phy_power(struct msk_softc *, int);
291 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
292 static int msk_status_dma_alloc(struct msk_softc *);
293 static void msk_status_dma_free(struct msk_softc *);
294 static int msk_txrx_dma_alloc(struct msk_if_softc *);
295 static int msk_rx_dma_jalloc(struct msk_if_softc *);
296 static void msk_txrx_dma_free(struct msk_if_softc *);
297 static void msk_rx_dma_jfree(struct msk_if_softc *);
298 static int msk_rx_fill(struct msk_if_softc *, int);
299 static int msk_init_rx_ring(struct msk_if_softc *);
300 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
301 static void msk_init_tx_ring(struct msk_if_softc *);
302 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
303 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
304 static int msk_newbuf(struct msk_if_softc *, int);
305 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
306 
307 static int msk_phy_readreg(struct msk_if_softc *, int, int);
308 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
309 static int msk_miibus_readreg(device_t, int, int);
310 static int msk_miibus_writereg(device_t, int, int, int);
311 static void msk_miibus_statchg(device_t);
312 
313 static void msk_rxfilter(struct msk_if_softc *);
314 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
315 
316 static void msk_stats_clear(struct msk_if_softc *);
317 static void msk_stats_update(struct msk_if_softc *);
318 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
319 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
320 static void msk_sysctl_node(struct msk_if_softc *);
321 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
322 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
323 
324 static device_method_t mskc_methods[] = {
325 	/* Device interface */
326 	DEVMETHOD(device_probe,		mskc_probe),
327 	DEVMETHOD(device_attach,	mskc_attach),
328 	DEVMETHOD(device_detach,	mskc_detach),
329 	DEVMETHOD(device_suspend,	mskc_suspend),
330 	DEVMETHOD(device_resume,	mskc_resume),
331 	DEVMETHOD(device_shutdown,	mskc_shutdown),
332 
333 	/* bus interface */
334 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
335 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
336 
337 	{ NULL, NULL }
338 };
339 
340 static driver_t mskc_driver = {
341 	"mskc",
342 	mskc_methods,
343 	sizeof(struct msk_softc)
344 };
345 
346 static devclass_t mskc_devclass;
347 
348 static device_method_t msk_methods[] = {
349 	/* Device interface */
350 	DEVMETHOD(device_probe,		msk_probe),
351 	DEVMETHOD(device_attach,	msk_attach),
352 	DEVMETHOD(device_detach,	msk_detach),
353 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
354 
355 	/* bus interface */
356 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
357 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
358 
359 	/* MII interface */
360 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
361 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
362 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
363 
364 	{ NULL, NULL }
365 };
366 
367 static driver_t msk_driver = {
368 	"msk",
369 	msk_methods,
370 	sizeof(struct msk_if_softc)
371 };
372 
373 static devclass_t msk_devclass;
374 
375 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
376 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
377 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
378 
379 static struct resource_spec msk_res_spec_io[] = {
380 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
381 	{ -1,			0,		0 }
382 };
383 
384 static struct resource_spec msk_res_spec_mem[] = {
385 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
386 	{ -1,			0,		0 }
387 };
388 
389 static struct resource_spec msk_irq_spec_legacy[] = {
390 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
391 	{ -1,			0,		0 }
392 };
393 
394 static struct resource_spec msk_irq_spec_msi[] = {
395 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
396 	{ -1,			0,		0 }
397 };
398 
399 static int
400 msk_miibus_readreg(device_t dev, int phy, int reg)
401 {
402 	struct msk_if_softc *sc_if;
403 
404 	if (phy != PHY_ADDR_MARV)
405 		return (0);
406 
407 	sc_if = device_get_softc(dev);
408 
409 	return (msk_phy_readreg(sc_if, phy, reg));
410 }
411 
412 static int
413 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
414 {
415 	struct msk_softc *sc;
416 	int i, val;
417 
418 	sc = sc_if->msk_softc;
419 
420         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
421 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
422 
423 	for (i = 0; i < MSK_TIMEOUT; i++) {
424 		DELAY(1);
425 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
426 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
427 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
428 			break;
429 		}
430 	}
431 
432 	if (i == MSK_TIMEOUT) {
433 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
434 		val = 0;
435 	}
436 
437 	return (val);
438 }
439 
440 static int
441 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
442 {
443 	struct msk_if_softc *sc_if;
444 
445 	if (phy != PHY_ADDR_MARV)
446 		return (0);
447 
448 	sc_if = device_get_softc(dev);
449 
450 	return (msk_phy_writereg(sc_if, phy, reg, val));
451 }
452 
453 static int
454 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
455 {
456 	struct msk_softc *sc;
457 	int i;
458 
459 	sc = sc_if->msk_softc;
460 
461 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
462         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
463 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
464 	for (i = 0; i < MSK_TIMEOUT; i++) {
465 		DELAY(1);
466 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
467 		    GM_SMI_CT_BUSY) == 0)
468 			break;
469 	}
470 	if (i == MSK_TIMEOUT)
471 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
472 
473 	return (0);
474 }
475 
476 static void
477 msk_miibus_statchg(device_t dev)
478 {
479 	struct msk_softc *sc;
480 	struct msk_if_softc *sc_if;
481 	struct mii_data *mii;
482 	struct ifnet *ifp;
483 	uint32_t gmac;
484 
485 	sc_if = device_get_softc(dev);
486 	sc = sc_if->msk_softc;
487 
488 	MSK_IF_LOCK_ASSERT(sc_if);
489 
490 	mii = device_get_softc(sc_if->msk_miibus);
491 	ifp = sc_if->msk_ifp;
492 	if (mii == NULL || ifp == NULL ||
493 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
494 		return;
495 
496 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
497 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
498 	    (IFM_AVALID | IFM_ACTIVE)) {
499 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
500 		case IFM_10_T:
501 		case IFM_100_TX:
502 			sc_if->msk_flags |= MSK_FLAG_LINK;
503 			break;
504 		case IFM_1000_T:
505 		case IFM_1000_SX:
506 		case IFM_1000_LX:
507 		case IFM_1000_CX:
508 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
509 				sc_if->msk_flags |= MSK_FLAG_LINK;
510 			break;
511 		default:
512 			break;
513 		}
514 	}
515 
516 	if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) {
517 		/* Enable Tx FIFO Underrun. */
518 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
519 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
520 		/*
521 		 * Because mii(4) notify msk(4) that it detected link status
522 		 * change, there is no need to enable automatic
523 		 * speed/flow-control/duplex updates.
524 		 */
525 		gmac = GM_GPCR_AU_ALL_DIS;
526 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
527 		case IFM_1000_SX:
528 		case IFM_1000_T:
529 			gmac |= GM_GPCR_SPEED_1000;
530 			break;
531 		case IFM_100_TX:
532 			gmac |= GM_GPCR_SPEED_100;
533 			break;
534 		case IFM_10_T:
535 			break;
536 		}
537 
538 		/* Disable Rx flow control. */
539 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLAG0) == 0)
540 			gmac |= GM_GPCR_FC_RX_DIS;
541 		/* Disable Tx flow control. */
542 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLAG1) == 0)
543 			gmac |= GM_GPCR_FC_TX_DIS;
544 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
545 			gmac |= GM_GPCR_DUP_FULL;
546 		else
547 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
548 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
549 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
550 		/* Read again to ensure writing. */
551 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
552 		gmac = GMC_PAUSE_OFF;
553 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
554 			if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLAG0) != 0)
555 				gmac = GMC_PAUSE_ON;
556 		}
557 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
558 
559 		/* Enable PHY interrupt for FIFO underrun/overflow. */
560 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
561 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
562 	} else {
563 		/*
564 		 * Link state changed to down.
565 		 * Disable PHY interrupts.
566 		 */
567 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
568 		/* Disable Rx/Tx MAC. */
569 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
570 		if ((GM_GPCR_RX_ENA | GM_GPCR_TX_ENA) != 0) {
571 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
572 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
573 			/* Read again to ensure writing. */
574 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
575 		}
576 	}
577 }
578 
579 static void
580 msk_rxfilter(struct msk_if_softc *sc_if)
581 {
582 	struct msk_softc *sc;
583 	struct ifnet *ifp;
584 	struct ifmultiaddr *ifma;
585 	uint32_t mchash[2];
586 	uint32_t crc;
587 	uint16_t mode;
588 
589 	sc = sc_if->msk_softc;
590 
591 	MSK_IF_LOCK_ASSERT(sc_if);
592 
593 	ifp = sc_if->msk_ifp;
594 
595 	bzero(mchash, sizeof(mchash));
596 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
597 	if ((ifp->if_flags & IFF_PROMISC) != 0)
598 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
599 	else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
600 		mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
601 		mchash[0] = 0xffff;
602 		mchash[1] = 0xffff;
603 	} else {
604 		mode |= GM_RXCR_UCF_ENA;
605 		if_maddr_rlock(ifp);
606 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
607 			if (ifma->ifma_addr->sa_family != AF_LINK)
608 				continue;
609 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
610 			    ifma->ifma_addr), ETHER_ADDR_LEN);
611 			/* Just want the 6 least significant bits. */
612 			crc &= 0x3f;
613 			/* Set the corresponding bit in the hash table. */
614 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
615 		}
616 		if_maddr_runlock(ifp);
617 		if (mchash[0] != 0 || mchash[1] != 0)
618 			mode |= GM_RXCR_MCF_ENA;
619 	}
620 
621 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
622 	    mchash[0] & 0xffff);
623 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
624 	    (mchash[0] >> 16) & 0xffff);
625 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
626 	    mchash[1] & 0xffff);
627 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
628 	    (mchash[1] >> 16) & 0xffff);
629 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
630 }
631 
632 static void
633 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
634 {
635 	struct msk_softc *sc;
636 
637 	sc = sc_if->msk_softc;
638 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
639 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
640 		    RX_VLAN_STRIP_ON);
641 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
642 		    TX_VLAN_TAG_ON);
643 	} else {
644 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
645 		    RX_VLAN_STRIP_OFF);
646 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
647 		    TX_VLAN_TAG_OFF);
648 	}
649 }
650 
651 static int
652 msk_rx_fill(struct msk_if_softc *sc_if, int jumbo)
653 {
654 	uint16_t idx;
655 	int i;
656 
657 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
658 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
659 		/* Wait until controller executes OP_TCPSTART command. */
660 		for (i = 10; i > 0; i--) {
661 			DELAY(10);
662 			idx = CSR_READ_2(sc_if->msk_softc,
663 			    Y2_PREF_Q_ADDR(sc_if->msk_rxq,
664 			    PREF_UNIT_GET_IDX_REG));
665 			if (idx != 0)
666 				break;
667 		}
668 		if (i == 0) {
669 			device_printf(sc_if->msk_if_dev,
670 			    "prefetch unit stuck?\n");
671 			return (ETIMEDOUT);
672 		}
673 		/*
674 		 * Fill consumed LE with free buffer. This can be done
675 		 * in Rx handler but we don't want to add special code
676 		 * in fast handler.
677 		 */
678 		if (jumbo > 0) {
679 			if (msk_jumbo_newbuf(sc_if, 0) != 0)
680 				return (ENOBUFS);
681 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
682 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
683 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
684 		} else {
685 			if (msk_newbuf(sc_if, 0) != 0)
686 				return (ENOBUFS);
687 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
688 			    sc_if->msk_cdata.msk_rx_ring_map,
689 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
690 		}
691 		sc_if->msk_cdata.msk_rx_prod = 0;
692 		CSR_WRITE_2(sc_if->msk_softc,
693 		    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
694 		    sc_if->msk_cdata.msk_rx_prod);
695 	}
696 	return (0);
697 }
698 
699 static int
700 msk_init_rx_ring(struct msk_if_softc *sc_if)
701 {
702 	struct msk_ring_data *rd;
703 	struct msk_rxdesc *rxd;
704 	int i, prod;
705 
706 	MSK_IF_LOCK_ASSERT(sc_if);
707 
708 	sc_if->msk_cdata.msk_rx_cons = 0;
709 	sc_if->msk_cdata.msk_rx_prod = 0;
710 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
711 
712 	rd = &sc_if->msk_rdata;
713 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
714 	prod = sc_if->msk_cdata.msk_rx_prod;
715 	i = 0;
716 	/* Have controller know how to compute Rx checksum. */
717 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
718 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
719 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
720 		rxd->rx_m = NULL;
721 		rxd->rx_le = &rd->msk_rx_ring[prod];
722 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
723 		    ETHER_HDR_LEN);
724 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
725 		MSK_INC(prod, MSK_RX_RING_CNT);
726 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
727 		i++;
728 	}
729 	for (; i < MSK_RX_RING_CNT; i++) {
730 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
731 		rxd->rx_m = NULL;
732 		rxd->rx_le = &rd->msk_rx_ring[prod];
733 		if (msk_newbuf(sc_if, prod) != 0)
734 			return (ENOBUFS);
735 		MSK_INC(prod, MSK_RX_RING_CNT);
736 	}
737 
738 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
739 	    sc_if->msk_cdata.msk_rx_ring_map,
740 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
741 
742 	/* Update prefetch unit. */
743 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
744 	CSR_WRITE_2(sc_if->msk_softc,
745 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
746 	    sc_if->msk_cdata.msk_rx_prod);
747 	if (msk_rx_fill(sc_if, 0) != 0)
748 		return (ENOBUFS);
749 	return (0);
750 }
751 
752 static int
753 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
754 {
755 	struct msk_ring_data *rd;
756 	struct msk_rxdesc *rxd;
757 	int i, prod;
758 
759 	MSK_IF_LOCK_ASSERT(sc_if);
760 
761 	sc_if->msk_cdata.msk_rx_cons = 0;
762 	sc_if->msk_cdata.msk_rx_prod = 0;
763 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
764 
765 	rd = &sc_if->msk_rdata;
766 	bzero(rd->msk_jumbo_rx_ring,
767 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
768 	prod = sc_if->msk_cdata.msk_rx_prod;
769 	i = 0;
770 	/* Have controller know how to compute Rx checksum. */
771 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
772 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
773 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
774 		rxd->rx_m = NULL;
775 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
776 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
777 		    ETHER_HDR_LEN);
778 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
779 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
780 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
781 		i++;
782 	}
783 	for (; i < MSK_JUMBO_RX_RING_CNT; i++) {
784 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
785 		rxd->rx_m = NULL;
786 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
787 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
788 			return (ENOBUFS);
789 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
790 	}
791 
792 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
793 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
794 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
795 
796 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
797 	CSR_WRITE_2(sc_if->msk_softc,
798 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
799 	    sc_if->msk_cdata.msk_rx_prod);
800 	if (msk_rx_fill(sc_if, 1) != 0)
801 		return (ENOBUFS);
802 	return (0);
803 }
804 
805 static void
806 msk_init_tx_ring(struct msk_if_softc *sc_if)
807 {
808 	struct msk_ring_data *rd;
809 	struct msk_txdesc *txd;
810 	int i;
811 
812 	sc_if->msk_cdata.msk_tso_mtu = 0;
813 	sc_if->msk_cdata.msk_last_csum = 0;
814 	sc_if->msk_cdata.msk_tx_prod = 0;
815 	sc_if->msk_cdata.msk_tx_cons = 0;
816 	sc_if->msk_cdata.msk_tx_cnt = 0;
817 
818 	rd = &sc_if->msk_rdata;
819 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
820 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
821 		txd = &sc_if->msk_cdata.msk_txdesc[i];
822 		txd->tx_m = NULL;
823 		txd->tx_le = &rd->msk_tx_ring[i];
824 	}
825 
826 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
827 	    sc_if->msk_cdata.msk_tx_ring_map,
828 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
829 }
830 
831 static __inline void
832 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
833 {
834 	struct msk_rx_desc *rx_le;
835 	struct msk_rxdesc *rxd;
836 	struct mbuf *m;
837 
838 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
839 	m = rxd->rx_m;
840 	rx_le = rxd->rx_le;
841 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
842 }
843 
844 static __inline void
845 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
846 {
847 	struct msk_rx_desc *rx_le;
848 	struct msk_rxdesc *rxd;
849 	struct mbuf *m;
850 
851 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
852 	m = rxd->rx_m;
853 	rx_le = rxd->rx_le;
854 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
855 }
856 
857 static int
858 msk_newbuf(struct msk_if_softc *sc_if, int idx)
859 {
860 	struct msk_rx_desc *rx_le;
861 	struct msk_rxdesc *rxd;
862 	struct mbuf *m;
863 	bus_dma_segment_t segs[1];
864 	bus_dmamap_t map;
865 	int nsegs;
866 
867 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
868 	if (m == NULL)
869 		return (ENOBUFS);
870 
871 	m->m_len = m->m_pkthdr.len = MCLBYTES;
872 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
873 		m_adj(m, ETHER_ALIGN);
874 #ifndef __NO_STRICT_ALIGNMENT
875 	else
876 		m_adj(m, MSK_RX_BUF_ALIGN);
877 #endif
878 
879 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
880 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
881 	    BUS_DMA_NOWAIT) != 0) {
882 		m_freem(m);
883 		return (ENOBUFS);
884 	}
885 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
886 
887 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
888 	if (rxd->rx_m != NULL) {
889 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
890 		    BUS_DMASYNC_POSTREAD);
891 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
892 	}
893 	map = rxd->rx_dmamap;
894 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
895 	sc_if->msk_cdata.msk_rx_sparemap = map;
896 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
897 	    BUS_DMASYNC_PREREAD);
898 	rxd->rx_m = m;
899 	rx_le = rxd->rx_le;
900 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
901 	rx_le->msk_control =
902 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
903 
904 	return (0);
905 }
906 
907 static int
908 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
909 {
910 	struct msk_rx_desc *rx_le;
911 	struct msk_rxdesc *rxd;
912 	struct mbuf *m;
913 	bus_dma_segment_t segs[1];
914 	bus_dmamap_t map;
915 	int nsegs;
916 
917 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
918 	if (m == NULL)
919 		return (ENOBUFS);
920 	if ((m->m_flags & M_EXT) == 0) {
921 		m_freem(m);
922 		return (ENOBUFS);
923 	}
924 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
925 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
926 		m_adj(m, ETHER_ALIGN);
927 #ifndef __NO_STRICT_ALIGNMENT
928 	else
929 		m_adj(m, MSK_RX_BUF_ALIGN);
930 #endif
931 
932 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
933 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
934 	    BUS_DMA_NOWAIT) != 0) {
935 		m_freem(m);
936 		return (ENOBUFS);
937 	}
938 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
939 
940 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
941 	if (rxd->rx_m != NULL) {
942 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
943 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
944 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
945 		    rxd->rx_dmamap);
946 	}
947 	map = rxd->rx_dmamap;
948 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
949 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
950 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
951 	    BUS_DMASYNC_PREREAD);
952 	rxd->rx_m = m;
953 	rx_le = rxd->rx_le;
954 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
955 	rx_le->msk_control =
956 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
957 
958 	return (0);
959 }
960 
961 /*
962  * Set media options.
963  */
964 static int
965 msk_mediachange(struct ifnet *ifp)
966 {
967 	struct msk_if_softc *sc_if;
968 	struct mii_data	*mii;
969 	int error;
970 
971 	sc_if = ifp->if_softc;
972 
973 	MSK_IF_LOCK(sc_if);
974 	mii = device_get_softc(sc_if->msk_miibus);
975 	error = mii_mediachg(mii);
976 	MSK_IF_UNLOCK(sc_if);
977 
978 	return (error);
979 }
980 
981 /*
982  * Report current media status.
983  */
984 static void
985 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
986 {
987 	struct msk_if_softc *sc_if;
988 	struct mii_data	*mii;
989 
990 	sc_if = ifp->if_softc;
991 	MSK_IF_LOCK(sc_if);
992 	if ((ifp->if_flags & IFF_UP) == 0) {
993 		MSK_IF_UNLOCK(sc_if);
994 		return;
995 	}
996 	mii = device_get_softc(sc_if->msk_miibus);
997 
998 	mii_pollstat(mii);
999 	MSK_IF_UNLOCK(sc_if);
1000 	ifmr->ifm_active = mii->mii_media_active;
1001 	ifmr->ifm_status = mii->mii_media_status;
1002 }
1003 
1004 static int
1005 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1006 {
1007 	struct msk_if_softc *sc_if;
1008 	struct ifreq *ifr;
1009 	struct mii_data	*mii;
1010 	int error, mask, reinit;
1011 
1012 	sc_if = ifp->if_softc;
1013 	ifr = (struct ifreq *)data;
1014 	error = 0;
1015 
1016 	switch(command) {
1017 	case SIOCSIFMTU:
1018 		MSK_IF_LOCK(sc_if);
1019 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
1020 			error = EINVAL;
1021 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1022  			if (ifr->ifr_mtu > ETHERMTU) {
1023 				if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
1024 					error = EINVAL;
1025 					MSK_IF_UNLOCK(sc_if);
1026 					break;
1027 				}
1028 				if ((sc_if->msk_flags &
1029 				    MSK_FLAG_JUMBO_NOCSUM) != 0) {
1030 					ifp->if_hwassist &=
1031 					    ~(MSK_CSUM_FEATURES | CSUM_TSO);
1032 					ifp->if_capenable &=
1033 					    ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1034 					VLAN_CAPABILITIES(ifp);
1035 				}
1036 			}
1037 			ifp->if_mtu = ifr->ifr_mtu;
1038 			msk_init_locked(sc_if);
1039 		}
1040 		MSK_IF_UNLOCK(sc_if);
1041 		break;
1042 	case SIOCSIFFLAGS:
1043 		MSK_IF_LOCK(sc_if);
1044 		if ((ifp->if_flags & IFF_UP) != 0) {
1045 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1046 			    ((ifp->if_flags ^ sc_if->msk_if_flags) &
1047 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1048 				msk_rxfilter(sc_if);
1049 			else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0)
1050 				msk_init_locked(sc_if);
1051 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1052 			msk_stop(sc_if);
1053 		sc_if->msk_if_flags = ifp->if_flags;
1054 		MSK_IF_UNLOCK(sc_if);
1055 		break;
1056 	case SIOCADDMULTI:
1057 	case SIOCDELMULTI:
1058 		MSK_IF_LOCK(sc_if);
1059 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1060 			msk_rxfilter(sc_if);
1061 		MSK_IF_UNLOCK(sc_if);
1062 		break;
1063 	case SIOCGIFMEDIA:
1064 	case SIOCSIFMEDIA:
1065 		mii = device_get_softc(sc_if->msk_miibus);
1066 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1067 		break;
1068 	case SIOCSIFCAP:
1069 		reinit = 0;
1070 		MSK_IF_LOCK(sc_if);
1071 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1072 		if ((mask & IFCAP_TXCSUM) != 0 &&
1073 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1074 			ifp->if_capenable ^= IFCAP_TXCSUM;
1075 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
1076 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
1077 			else
1078 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
1079 		}
1080 		if ((mask & IFCAP_RXCSUM) != 0 &&
1081 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
1082 			ifp->if_capenable ^= IFCAP_RXCSUM;
1083 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1084 				reinit = 1;
1085 		}
1086 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1087 		    (IFCAP_VLAN_HWCSUM & ifp->if_capabilities) != 0)
1088 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1089 		if ((mask & IFCAP_TSO4) != 0 &&
1090 		    (IFCAP_TSO4 & ifp->if_capabilities) != 0) {
1091 			ifp->if_capenable ^= IFCAP_TSO4;
1092 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1093 				ifp->if_hwassist |= CSUM_TSO;
1094 			else
1095 				ifp->if_hwassist &= ~CSUM_TSO;
1096 		}
1097 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1098 		    (IFCAP_VLAN_HWTSO & ifp->if_capabilities) != 0)
1099 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1100 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1101 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
1102 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1103 			if ((IFCAP_VLAN_HWTAGGING & ifp->if_capenable) == 0)
1104 				ifp->if_capenable &=
1105 				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1106 			msk_setvlan(sc_if, ifp);
1107 		}
1108 		if (ifp->if_mtu > ETHERMTU &&
1109 		    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
1110 			ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
1111 			ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1112 		}
1113 		VLAN_CAPABILITIES(ifp);
1114 		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1115 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1116 			msk_init_locked(sc_if);
1117 		}
1118 		MSK_IF_UNLOCK(sc_if);
1119 		break;
1120 	default:
1121 		error = ether_ioctl(ifp, command, data);
1122 		break;
1123 	}
1124 
1125 	return (error);
1126 }
1127 
1128 static int
1129 mskc_probe(device_t dev)
1130 {
1131 	struct msk_product *mp;
1132 	uint16_t vendor, devid;
1133 	int i;
1134 
1135 	vendor = pci_get_vendor(dev);
1136 	devid = pci_get_device(dev);
1137 	mp = msk_products;
1138 	for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
1139 	    i++, mp++) {
1140 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1141 			device_set_desc(dev, mp->msk_name);
1142 			return (BUS_PROBE_DEFAULT);
1143 		}
1144 	}
1145 
1146 	return (ENXIO);
1147 }
1148 
1149 static int
1150 mskc_setup_rambuffer(struct msk_softc *sc)
1151 {
1152 	int next;
1153 	int i;
1154 
1155 	/* Get adapter SRAM size. */
1156 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1157 	if (bootverbose)
1158 		device_printf(sc->msk_dev,
1159 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1160 	if (sc->msk_ramsize == 0)
1161 		return (0);
1162 
1163 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1164 	/*
1165 	 * Give receiver 2/3 of memory and round down to the multiple
1166 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
1167 	 * of 1024.
1168 	 */
1169 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1170 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1171 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1172 		sc->msk_rxqstart[i] = next;
1173 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1174 		next = sc->msk_rxqend[i] + 1;
1175 		sc->msk_txqstart[i] = next;
1176 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1177 		next = sc->msk_txqend[i] + 1;
1178 		if (bootverbose) {
1179 			device_printf(sc->msk_dev,
1180 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1181 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1182 			    sc->msk_rxqend[i]);
1183 			device_printf(sc->msk_dev,
1184 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1185 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1186 			    sc->msk_txqend[i]);
1187 		}
1188 	}
1189 
1190 	return (0);
1191 }
1192 
1193 static void
1194 msk_phy_power(struct msk_softc *sc, int mode)
1195 {
1196 	uint32_t our, val;
1197 	int i;
1198 
1199 	switch (mode) {
1200 	case MSK_PHY_POWERUP:
1201 		/* Switch power to VCC (WA for VAUX problem). */
1202 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1203 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1204 		/* Disable Core Clock Division, set Clock Select to 0. */
1205 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1206 
1207 		val = 0;
1208 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1209 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1210 			/* Enable bits are inverted. */
1211 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1212 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1213 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1214 		}
1215 		/*
1216 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1217 		 */
1218 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1219 
1220 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1221 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1222 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1223 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1224 				/* Deassert Low Power for 1st PHY. */
1225 				val |= PCI_Y2_PHY1_COMA;
1226 				if (sc->msk_num_port > 1)
1227 					val |= PCI_Y2_PHY2_COMA;
1228 			}
1229 		}
1230 		/* Release PHY from PowerDown/COMA mode. */
1231 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1232 		switch (sc->msk_hw_id) {
1233 		case CHIP_ID_YUKON_EC_U:
1234 		case CHIP_ID_YUKON_EX:
1235 		case CHIP_ID_YUKON_FE_P:
1236 		case CHIP_ID_YUKON_UL_2:
1237 		case CHIP_ID_YUKON_OPT:
1238 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_OFF);
1239 
1240 			/* Enable all clocks. */
1241 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1242 			our = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1243 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1244 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1245 			/* Set all bits to 0 except bits 15..12. */
1246 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, our);
1247 			our = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1248 			our &= PCI_CTL_TIM_VMAIN_AV_MSK;
1249 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, our);
1250 			CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1251 			/*
1252 			 * Disable status race, workaround for
1253 			 * Yukon EC Ultra & Yukon EX.
1254 			 */
1255 			val = CSR_READ_4(sc, B2_GP_IO);
1256 			val |= GLB_GPIO_STAT_RACE_DIS;
1257 			CSR_WRITE_4(sc, B2_GP_IO, val);
1258 			CSR_READ_4(sc, B2_GP_IO);
1259 			break;
1260 		default:
1261 			break;
1262 		}
1263 		for (i = 0; i < sc->msk_num_port; i++) {
1264 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1265 			    GMLC_RST_SET);
1266 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1267 			    GMLC_RST_CLR);
1268 		}
1269 		break;
1270 	case MSK_PHY_POWERDOWN:
1271 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1272 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1273 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1274 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1275 			val &= ~PCI_Y2_PHY1_COMA;
1276 			if (sc->msk_num_port > 1)
1277 				val &= ~PCI_Y2_PHY2_COMA;
1278 		}
1279 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1280 
1281 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1282 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1283 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1284 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1285 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1286 			/* Enable bits are inverted. */
1287 			val = 0;
1288 		}
1289 		/*
1290 		 * Disable PCI & Core Clock, disable clock gating for
1291 		 * both Links.
1292 		 */
1293 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1294 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1295 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1296 		break;
1297 	default:
1298 		break;
1299 	}
1300 }
1301 
1302 static void
1303 mskc_reset(struct msk_softc *sc)
1304 {
1305 	bus_addr_t addr;
1306 	uint16_t status;
1307 	uint32_t val;
1308 	int i;
1309 
1310 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1311 
1312 	/* Disable ASF. */
1313 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX) {
1314 		status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1315 		/* Clear AHB bridge & microcontroller reset. */
1316 		status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1317 		    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1318 		/* Clear ASF microcontroller state. */
1319 		status &= ~ Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1320 		CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1321 	} else
1322 		CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1323 	CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1324 
1325 	/*
1326 	 * Since we disabled ASF, S/W reset is required for Power Management.
1327 	 */
1328 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1329 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1330 
1331 	/* Clear all error bits in the PCI status register. */
1332 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1333 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1334 
1335 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1336 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1337 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1338 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1339 
1340 	switch (sc->msk_bustype) {
1341 	case MSK_PEX_BUS:
1342 		/* Clear all PEX errors. */
1343 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1344 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1345 		if ((val & PEX_RX_OV) != 0) {
1346 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1347 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1348 		}
1349 		break;
1350 	case MSK_PCI_BUS:
1351 	case MSK_PCIX_BUS:
1352 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1353 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1354 		if (val == 0)
1355 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1356 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1357 			/* Set Cache Line Size opt. */
1358 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1359 			val |= PCI_CLS_OPT;
1360 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1361 		}
1362 		break;
1363 	}
1364 	/* Set PHY power state. */
1365 	msk_phy_power(sc, MSK_PHY_POWERUP);
1366 
1367 	/* Reset GPHY/GMAC Control */
1368 	for (i = 0; i < sc->msk_num_port; i++) {
1369 		/* GPHY Control reset. */
1370 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1371 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1372 		/* GMAC Control reset. */
1373 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1374 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1375 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1376 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX)
1377 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1378 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1379 			    GMC_BYP_RETR_ON);
1380 	}
1381 	if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) {
1382 		/* Disable PCIe PHY powerdown(reg 0x80, bit7). */
1383 		CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080);
1384 	}
1385 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1386 
1387 	/* LED On. */
1388 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1389 
1390 	/* Clear TWSI IRQ. */
1391 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1392 
1393 	/* Turn off hardware timer. */
1394 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1395 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1396 
1397 	/* Turn off descriptor polling. */
1398 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1399 
1400 	/* Turn off time stamps. */
1401 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1402 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1403 
1404 	/* Configure timeout values. */
1405 	for (i = 0; i < sc->msk_num_port; i++) {
1406 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1407 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1408 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1409 		    MSK_RI_TO_53);
1410 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1411 		    MSK_RI_TO_53);
1412 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1413 		    MSK_RI_TO_53);
1414 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1415 		    MSK_RI_TO_53);
1416 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1417 		    MSK_RI_TO_53);
1418 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1419 		    MSK_RI_TO_53);
1420 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1421 		    MSK_RI_TO_53);
1422 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1423 		    MSK_RI_TO_53);
1424 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1425 		    MSK_RI_TO_53);
1426 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1427 		    MSK_RI_TO_53);
1428 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1429 		    MSK_RI_TO_53);
1430 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1431 		    MSK_RI_TO_53);
1432 	}
1433 
1434 	/* Disable all interrupts. */
1435 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1436 	CSR_READ_4(sc, B0_HWE_IMSK);
1437 	CSR_WRITE_4(sc, B0_IMSK, 0);
1438 	CSR_READ_4(sc, B0_IMSK);
1439 
1440         /*
1441          * On dual port PCI-X card, there is an problem where status
1442          * can be received out of order due to split transactions.
1443          */
1444 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1445 		uint16_t pcix_cmd;
1446 
1447 		pcix_cmd = pci_read_config(sc->msk_dev,
1448 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1449 		/* Clear Max Outstanding Split Transactions. */
1450 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1451 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1452 		pci_write_config(sc->msk_dev,
1453 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1454 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1455         }
1456 	if (sc->msk_expcap != 0) {
1457 		/* Change Max. Read Request Size to 2048 bytes. */
1458 		if (pci_get_max_read_req(sc->msk_dev) == 512)
1459 			pci_set_max_read_req(sc->msk_dev, 2048);
1460 	}
1461 
1462 	/* Clear status list. */
1463 	bzero(sc->msk_stat_ring,
1464 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1465 	sc->msk_stat_cons = 0;
1466 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1467 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1468 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1469 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1470 	/* Set the status list base address. */
1471 	addr = sc->msk_stat_ring_paddr;
1472 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1473 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1474 	/* Set the status list last index. */
1475 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1476 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1477 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1478 		/* WA for dev. #4.3 */
1479 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1480 		/* WA for dev. #4.18 */
1481 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1482 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1483 	} else {
1484 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1485 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1486 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1487 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1488 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1489 		else
1490 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1491 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1492 	}
1493 	/*
1494 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1495 	 */
1496 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1497 
1498 	/* Enable status unit. */
1499 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1500 
1501 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1502 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1503 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1504 }
1505 
1506 static int
1507 msk_probe(device_t dev)
1508 {
1509 	struct msk_softc *sc;
1510 	char desc[100];
1511 
1512 	sc = device_get_softc(device_get_parent(dev));
1513 	/*
1514 	 * Not much to do here. We always know there will be
1515 	 * at least one GMAC present, and if there are two,
1516 	 * mskc_attach() will create a second device instance
1517 	 * for us.
1518 	 */
1519 	snprintf(desc, sizeof(desc),
1520 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1521 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1522 	    sc->msk_hw_rev);
1523 	device_set_desc_copy(dev, desc);
1524 
1525 	return (BUS_PROBE_DEFAULT);
1526 }
1527 
1528 static int
1529 msk_attach(device_t dev)
1530 {
1531 	struct msk_softc *sc;
1532 	struct msk_if_softc *sc_if;
1533 	struct ifnet *ifp;
1534 	struct msk_mii_data *mmd;
1535 	int i, port, error;
1536 	uint8_t eaddr[6];
1537 
1538 	if (dev == NULL)
1539 		return (EINVAL);
1540 
1541 	error = 0;
1542 	sc_if = device_get_softc(dev);
1543 	sc = device_get_softc(device_get_parent(dev));
1544 	mmd = device_get_ivars(dev);
1545 	port = mmd->port;
1546 
1547 	sc_if->msk_if_dev = dev;
1548 	sc_if->msk_port = port;
1549 	sc_if->msk_softc = sc;
1550 	sc_if->msk_flags = sc->msk_pflags;
1551 	sc->msk_if[port] = sc_if;
1552 	/* Setup Tx/Rx queue register offsets. */
1553 	if (port == MSK_PORT_A) {
1554 		sc_if->msk_txq = Q_XA1;
1555 		sc_if->msk_txsq = Q_XS1;
1556 		sc_if->msk_rxq = Q_R1;
1557 	} else {
1558 		sc_if->msk_txq = Q_XA2;
1559 		sc_if->msk_txsq = Q_XS2;
1560 		sc_if->msk_rxq = Q_R2;
1561 	}
1562 
1563 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1564 	msk_sysctl_node(sc_if);
1565 
1566 	if ((error = msk_txrx_dma_alloc(sc_if) != 0))
1567 		goto fail;
1568 	msk_rx_dma_jalloc(sc_if);
1569 
1570 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1571 	if (ifp == NULL) {
1572 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1573 		error = ENOSPC;
1574 		goto fail;
1575 	}
1576 	ifp->if_softc = sc_if;
1577 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1578 	ifp->if_mtu = ETHERMTU;
1579 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1580 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1581 	/*
1582 	 * Enable Rx checksum offloading if controller supports
1583 	 * new descriptor formant and controller is not Yukon XL.
1584 	 */
1585 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
1586 	    sc->msk_hw_id != CHIP_ID_YUKON_XL)
1587 		ifp->if_capabilities |= IFCAP_RXCSUM;
1588 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1589 	    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1590 		ifp->if_capabilities |= IFCAP_RXCSUM;
1591 	ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1592 	ifp->if_capenable = ifp->if_capabilities;
1593 	ifp->if_ioctl = msk_ioctl;
1594 	ifp->if_start = msk_start;
1595 	ifp->if_init = msk_init;
1596 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1597 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1598 	IFQ_SET_READY(&ifp->if_snd);
1599 	/*
1600 	 * Get station address for this interface. Note that
1601 	 * dual port cards actually come with three station
1602 	 * addresses: one for each port, plus an extra. The
1603 	 * extra one is used by the SysKonnect driver software
1604 	 * as a 'virtual' station address for when both ports
1605 	 * are operating in failover mode. Currently we don't
1606 	 * use this extra address.
1607 	 */
1608 	MSK_IF_LOCK(sc_if);
1609 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1610 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1611 
1612 	/*
1613 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1614 	 */
1615 	MSK_IF_UNLOCK(sc_if);
1616 	ether_ifattach(ifp, eaddr);
1617 	MSK_IF_LOCK(sc_if);
1618 
1619 	/* VLAN capability setup */
1620 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1621 	if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) {
1622 		/*
1623 		 * Due to Tx checksum offload hardware bugs, msk(4) manually
1624 		 * computes checksum for short frames. For VLAN tagged frames
1625 		 * this workaround does not work so disable checksum offload
1626 		 * for VLAN interface.
1627 		 */
1628         	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO;
1629 		/*
1630 		 * Enable Rx checksum offloading for VLAN taggedd frames
1631 		 * if controller support new descriptor format.
1632 		 */
1633 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1634 		    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1635 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1636 	}
1637 	ifp->if_capenable = ifp->if_capabilities;
1638 
1639 	/*
1640 	 * Tell the upper layer(s) we support long frames.
1641 	 * Must appear after the call to ether_ifattach() because
1642 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1643 	 */
1644         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1645 
1646 	/*
1647 	 * Do miibus setup.
1648 	 */
1649 	MSK_IF_UNLOCK(sc_if);
1650 	error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
1651 	    msk_mediastatus);
1652 	if (error != 0) {
1653 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1654 		ether_ifdetach(ifp);
1655 		error = ENXIO;
1656 		goto fail;
1657 	}
1658 
1659 fail:
1660 	if (error != 0) {
1661 		/* Access should be ok even though lock has been dropped */
1662 		sc->msk_if[port] = NULL;
1663 		msk_detach(dev);
1664 	}
1665 
1666 	return (error);
1667 }
1668 
1669 /*
1670  * Attach the interface. Allocate softc structures, do ifmedia
1671  * setup and ethernet/BPF attach.
1672  */
1673 static int
1674 mskc_attach(device_t dev)
1675 {
1676 	struct msk_softc *sc;
1677 	struct msk_mii_data *mmd;
1678 	int error, msic, msir, reg;
1679 
1680 	sc = device_get_softc(dev);
1681 	sc->msk_dev = dev;
1682 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1683 	    MTX_DEF);
1684 
1685 	/*
1686 	 * Map control/status registers.
1687 	 */
1688 	pci_enable_busmaster(dev);
1689 
1690 	/* Allocate I/O resource */
1691 #ifdef MSK_USEIOSPACE
1692 	sc->msk_res_spec = msk_res_spec_io;
1693 #else
1694 	sc->msk_res_spec = msk_res_spec_mem;
1695 #endif
1696 	sc->msk_irq_spec = msk_irq_spec_legacy;
1697 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1698 	if (error) {
1699 		if (sc->msk_res_spec == msk_res_spec_mem)
1700 			sc->msk_res_spec = msk_res_spec_io;
1701 		else
1702 			sc->msk_res_spec = msk_res_spec_mem;
1703 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1704 		if (error) {
1705 			device_printf(dev, "couldn't allocate %s resources\n",
1706 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1707 			    "I/O");
1708 			mtx_destroy(&sc->msk_mtx);
1709 			return (ENXIO);
1710 		}
1711 	}
1712 
1713 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1714 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1715 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1716 	/* Bail out if chip is not recognized. */
1717 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1718 	    sc->msk_hw_id > CHIP_ID_YUKON_OPT ||
1719 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR ||
1720 	    sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) {
1721 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1722 		    sc->msk_hw_id, sc->msk_hw_rev);
1723 		mtx_destroy(&sc->msk_mtx);
1724 		return (ENXIO);
1725 	}
1726 
1727 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1728 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1729 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1730 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1731 	    "max number of Rx events to process");
1732 
1733 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1734 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1735 	    "process_limit", &sc->msk_process_limit);
1736 	if (error == 0) {
1737 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1738 		    sc->msk_process_limit > MSK_PROC_MAX) {
1739 			device_printf(dev, "process_limit value out of range; "
1740 			    "using default: %d\n", MSK_PROC_DEFAULT);
1741 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1742 		}
1743 	}
1744 
1745 	sc->msk_int_holdoff = MSK_INT_HOLDOFF_DEFAULT;
1746 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
1747 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
1748 	    "int_holdoff", CTLFLAG_RW, &sc->msk_int_holdoff, 0,
1749 	    "Maximum number of time to delay interrupts");
1750 	resource_int_value(device_get_name(dev), device_get_unit(dev),
1751 	    "int_holdoff", &sc->msk_int_holdoff);
1752 
1753 	/* Soft reset. */
1754 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1755 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1756 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1757 	/* Check number of MACs. */
1758 	sc->msk_num_port = 1;
1759 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1760 	    CFG_DUAL_MAC_MSK) {
1761 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1762 			sc->msk_num_port++;
1763 	}
1764 
1765 	/* Check bus type. */
1766 	if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0) {
1767 		sc->msk_bustype = MSK_PEX_BUS;
1768 		sc->msk_expcap = reg;
1769 	} else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0) {
1770 		sc->msk_bustype = MSK_PCIX_BUS;
1771 		sc->msk_pcixcap = reg;
1772 	} else
1773 		sc->msk_bustype = MSK_PCI_BUS;
1774 
1775 	switch (sc->msk_hw_id) {
1776 	case CHIP_ID_YUKON_EC:
1777 		sc->msk_clock = 125;	/* 125 MHz */
1778 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1779 		break;
1780 	case CHIP_ID_YUKON_EC_U:
1781 		sc->msk_clock = 125;	/* 125 MHz */
1782 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM;
1783 		break;
1784 	case CHIP_ID_YUKON_EX:
1785 		sc->msk_clock = 125;	/* 125 MHz */
1786 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1787 		    MSK_FLAG_AUTOTX_CSUM;
1788 		/*
1789 		 * Yukon Extreme seems to have silicon bug for
1790 		 * automatic Tx checksum calculation capability.
1791 		 */
1792 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
1793 			sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM;
1794 		/*
1795 		 * Yukon Extreme A0 could not use store-and-forward
1796 		 * for jumbo frames, so disable Tx checksum
1797 		 * offloading for jumbo frames.
1798 		 */
1799 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
1800 			sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM;
1801 		break;
1802 	case CHIP_ID_YUKON_FE:
1803 		sc->msk_clock = 100;	/* 100 MHz */
1804 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1805 		break;
1806 	case CHIP_ID_YUKON_FE_P:
1807 		sc->msk_clock = 50;	/* 50 MHz */
1808 		sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 |
1809 		    MSK_FLAG_AUTOTX_CSUM;
1810 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1811 			/*
1812 			 * XXX
1813 			 * FE+ A0 has status LE writeback bug so msk(4)
1814 			 * does not rely on status word of received frame
1815 			 * in msk_rxeof() which in turn disables all
1816 			 * hardware assistance bits reported by the status
1817 			 * word as well as validity of the recevied frame.
1818 			 * Just pass received frames to upper stack with
1819 			 * minimal test and let upper stack handle them.
1820 			 */
1821 			sc->msk_pflags |= MSK_FLAG_NOHWVLAN |
1822 			    MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM;
1823 		}
1824 		break;
1825 	case CHIP_ID_YUKON_XL:
1826 		sc->msk_clock = 156;	/* 156 MHz */
1827 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1828 		break;
1829 	case CHIP_ID_YUKON_UL_2:
1830 		sc->msk_clock = 125;	/* 125 MHz */
1831 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1832 		break;
1833 	case CHIP_ID_YUKON_OPT:
1834 		sc->msk_clock = 125;	/* 125 MHz */
1835 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2;
1836 		break;
1837 	default:
1838 		sc->msk_clock = 156;	/* 156 MHz */
1839 		break;
1840 	}
1841 
1842 	/* Allocate IRQ resources. */
1843 	msic = pci_msi_count(dev);
1844 	if (bootverbose)
1845 		device_printf(dev, "MSI count : %d\n", msic);
1846 	if (legacy_intr != 0)
1847 		msi_disable = 1;
1848 	if (msi_disable == 0 && msic > 0) {
1849 		msir = 1;
1850 		if (pci_alloc_msi(dev, &msir) == 0) {
1851 			if (msir == 1) {
1852 				sc->msk_pflags |= MSK_FLAG_MSI;
1853 				sc->msk_irq_spec = msk_irq_spec_msi;
1854 			} else
1855 				pci_release_msi(dev);
1856 		}
1857 	}
1858 
1859 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1860 	if (error) {
1861 		device_printf(dev, "couldn't allocate IRQ resources\n");
1862 		goto fail;
1863 	}
1864 
1865 	if ((error = msk_status_dma_alloc(sc)) != 0)
1866 		goto fail;
1867 
1868 	/* Set base interrupt mask. */
1869 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1870 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1871 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1872 
1873 	/* Reset the adapter. */
1874 	mskc_reset(sc);
1875 
1876 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1877 		goto fail;
1878 
1879 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1880 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1881 		device_printf(dev, "failed to add child for PORT_A\n");
1882 		error = ENXIO;
1883 		goto fail;
1884 	}
1885 	mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1886 	if (mmd == NULL) {
1887 		device_printf(dev, "failed to allocate memory for "
1888 		    "ivars of PORT_A\n");
1889 		error = ENXIO;
1890 		goto fail;
1891 	}
1892 	mmd->port = MSK_PORT_A;
1893 	mmd->pmd = sc->msk_pmd;
1894 	 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S' || sc->msk_pmd == 'P')
1895 		mmd->mii_flags |= MIIF_HAVEFIBER;
1896 	device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd);
1897 
1898 	if (sc->msk_num_port > 1) {
1899 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1900 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1901 			device_printf(dev, "failed to add child for PORT_B\n");
1902 			error = ENXIO;
1903 			goto fail;
1904 		}
1905 		mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1906 		if (mmd == NULL) {
1907 			device_printf(dev, "failed to allocate memory for "
1908 			    "ivars of PORT_B\n");
1909 			error = ENXIO;
1910 			goto fail;
1911 		}
1912 		mmd->port = MSK_PORT_B;
1913 		mmd->pmd = sc->msk_pmd;
1914 	 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S' || sc->msk_pmd == 'P')
1915 			mmd->mii_flags |= MIIF_HAVEFIBER;
1916 		device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd);
1917 	}
1918 
1919 	error = bus_generic_attach(dev);
1920 	if (error) {
1921 		device_printf(dev, "failed to attach port(s)\n");
1922 		goto fail;
1923 	}
1924 
1925 	/* Hook interrupt last to avoid having to lock softc. */
1926 	error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1927 	    INTR_MPSAFE, NULL, msk_intr, sc, &sc->msk_intrhand);
1928 	if (error != 0) {
1929 		device_printf(dev, "couldn't set up interrupt handler\n");
1930 		goto fail;
1931 	}
1932 fail:
1933 	if (error != 0)
1934 		mskc_detach(dev);
1935 
1936 	return (error);
1937 }
1938 
1939 /*
1940  * Shutdown hardware and free up resources. This can be called any
1941  * time after the mutex has been initialized. It is called in both
1942  * the error case in attach and the normal detach case so it needs
1943  * to be careful about only freeing resources that have actually been
1944  * allocated.
1945  */
1946 static int
1947 msk_detach(device_t dev)
1948 {
1949 	struct msk_softc *sc;
1950 	struct msk_if_softc *sc_if;
1951 	struct ifnet *ifp;
1952 
1953 	sc_if = device_get_softc(dev);
1954 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
1955 	    ("msk mutex not initialized in msk_detach"));
1956 	MSK_IF_LOCK(sc_if);
1957 
1958 	ifp = sc_if->msk_ifp;
1959 	if (device_is_attached(dev)) {
1960 		/* XXX */
1961 		sc_if->msk_flags |= MSK_FLAG_DETACH;
1962 		msk_stop(sc_if);
1963 		/* Can't hold locks while calling detach. */
1964 		MSK_IF_UNLOCK(sc_if);
1965 		callout_drain(&sc_if->msk_tick_ch);
1966 		ether_ifdetach(ifp);
1967 		MSK_IF_LOCK(sc_if);
1968 	}
1969 
1970 	/*
1971 	 * We're generally called from mskc_detach() which is using
1972 	 * device_delete_child() to get to here. It's already trashed
1973 	 * miibus for us, so don't do it here or we'll panic.
1974 	 *
1975 	 * if (sc_if->msk_miibus != NULL) {
1976 	 * 	device_delete_child(dev, sc_if->msk_miibus);
1977 	 * 	sc_if->msk_miibus = NULL;
1978 	 * }
1979 	 */
1980 
1981 	msk_rx_dma_jfree(sc_if);
1982 	msk_txrx_dma_free(sc_if);
1983 	bus_generic_detach(dev);
1984 
1985 	if (ifp)
1986 		if_free(ifp);
1987 	sc = sc_if->msk_softc;
1988 	sc->msk_if[sc_if->msk_port] = NULL;
1989 	MSK_IF_UNLOCK(sc_if);
1990 
1991 	return (0);
1992 }
1993 
1994 static int
1995 mskc_detach(device_t dev)
1996 {
1997 	struct msk_softc *sc;
1998 
1999 	sc = device_get_softc(dev);
2000 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
2001 
2002 	if (device_is_alive(dev)) {
2003 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
2004 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
2005 			    M_DEVBUF);
2006 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
2007 		}
2008 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
2009 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
2010 			    M_DEVBUF);
2011 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
2012 		}
2013 		bus_generic_detach(dev);
2014 	}
2015 
2016 	/* Disable all interrupts. */
2017 	CSR_WRITE_4(sc, B0_IMSK, 0);
2018 	CSR_READ_4(sc, B0_IMSK);
2019 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2020 	CSR_READ_4(sc, B0_HWE_IMSK);
2021 
2022 	/* LED Off. */
2023 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
2024 
2025 	/* Put hardware reset. */
2026 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2027 
2028 	msk_status_dma_free(sc);
2029 
2030 	if (sc->msk_intrhand) {
2031 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand);
2032 		sc->msk_intrhand = NULL;
2033 	}
2034 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
2035 	if ((sc->msk_pflags & MSK_FLAG_MSI) != 0)
2036 		pci_release_msi(dev);
2037 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
2038 	mtx_destroy(&sc->msk_mtx);
2039 
2040 	return (0);
2041 }
2042 
2043 struct msk_dmamap_arg {
2044 	bus_addr_t	msk_busaddr;
2045 };
2046 
2047 static void
2048 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2049 {
2050 	struct msk_dmamap_arg *ctx;
2051 
2052 	if (error != 0)
2053 		return;
2054 	ctx = arg;
2055 	ctx->msk_busaddr = segs[0].ds_addr;
2056 }
2057 
2058 /* Create status DMA region. */
2059 static int
2060 msk_status_dma_alloc(struct msk_softc *sc)
2061 {
2062 	struct msk_dmamap_arg ctx;
2063 	int error;
2064 
2065 	error = bus_dma_tag_create(
2066 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
2067 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
2068 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2069 		    BUS_SPACE_MAXADDR,		/* highaddr */
2070 		    NULL, NULL,			/* filter, filterarg */
2071 		    MSK_STAT_RING_SZ,		/* maxsize */
2072 		    1,				/* nsegments */
2073 		    MSK_STAT_RING_SZ,		/* maxsegsize */
2074 		    0,				/* flags */
2075 		    NULL, NULL,			/* lockfunc, lockarg */
2076 		    &sc->msk_stat_tag);
2077 	if (error != 0) {
2078 		device_printf(sc->msk_dev,
2079 		    "failed to create status DMA tag\n");
2080 		return (error);
2081 	}
2082 
2083 	/* Allocate DMA'able memory and load the DMA map for status ring. */
2084 	error = bus_dmamem_alloc(sc->msk_stat_tag,
2085 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
2086 	    BUS_DMA_ZERO, &sc->msk_stat_map);
2087 	if (error != 0) {
2088 		device_printf(sc->msk_dev,
2089 		    "failed to allocate DMA'able memory for status ring\n");
2090 		return (error);
2091 	}
2092 
2093 	ctx.msk_busaddr = 0;
2094 	error = bus_dmamap_load(sc->msk_stat_tag,
2095 	    sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
2096 	    msk_dmamap_cb, &ctx, 0);
2097 	if (error != 0) {
2098 		device_printf(sc->msk_dev,
2099 		    "failed to load DMA'able memory for status ring\n");
2100 		return (error);
2101 	}
2102 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
2103 
2104 	return (0);
2105 }
2106 
2107 static void
2108 msk_status_dma_free(struct msk_softc *sc)
2109 {
2110 
2111 	/* Destroy status block. */
2112 	if (sc->msk_stat_tag) {
2113 		if (sc->msk_stat_map) {
2114 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
2115 			if (sc->msk_stat_ring) {
2116 				bus_dmamem_free(sc->msk_stat_tag,
2117 				    sc->msk_stat_ring, sc->msk_stat_map);
2118 				sc->msk_stat_ring = NULL;
2119 			}
2120 			sc->msk_stat_map = NULL;
2121 		}
2122 		bus_dma_tag_destroy(sc->msk_stat_tag);
2123 		sc->msk_stat_tag = NULL;
2124 	}
2125 }
2126 
2127 static int
2128 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2129 {
2130 	struct msk_dmamap_arg ctx;
2131 	struct msk_txdesc *txd;
2132 	struct msk_rxdesc *rxd;
2133 	bus_size_t rxalign;
2134 	int error, i;
2135 
2136 	/* Create parent DMA tag. */
2137 	/*
2138 	 * XXX
2139 	 * It seems that Yukon II supports full 64bits DMA operations. But
2140 	 * it needs two descriptors(list elements) for 64bits DMA operations.
2141 	 * Since we don't know what DMA address mappings(32bits or 64bits)
2142 	 * would be used in advance for each mbufs, we limits its DMA space
2143 	 * to be in range of 32bits address space. Otherwise, we should check
2144 	 * what DMA address is used and chain another descriptor for the
2145 	 * 64bits DMA operation. This also means descriptor ring size is
2146 	 * variable. Limiting DMA address to be in 32bit address space greatly
2147 	 * simplyfies descriptor handling and possibly would increase
2148 	 * performance a bit due to efficient handling of descriptors.
2149 	 * Apart from harassing checksum offloading mechanisms, it seems
2150 	 * it's really bad idea to use a seperate descriptor for 64bit
2151 	 * DMA operation to save small descriptor memory. Anyway, I've
2152 	 * never seen these exotic scheme on ethernet interface hardware.
2153 	 */
2154 	error = bus_dma_tag_create(
2155 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2156 		    1, 0,			/* alignment, boundary */
2157 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2158 		    BUS_SPACE_MAXADDR,		/* highaddr */
2159 		    NULL, NULL,			/* filter, filterarg */
2160 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2161 		    0,				/* nsegments */
2162 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2163 		    0,				/* flags */
2164 		    NULL, NULL,			/* lockfunc, lockarg */
2165 		    &sc_if->msk_cdata.msk_parent_tag);
2166 	if (error != 0) {
2167 		device_printf(sc_if->msk_if_dev,
2168 		    "failed to create parent DMA tag\n");
2169 		goto fail;
2170 	}
2171 	/* Create tag for Tx ring. */
2172 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2173 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2174 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2175 		    BUS_SPACE_MAXADDR,		/* highaddr */
2176 		    NULL, NULL,			/* filter, filterarg */
2177 		    MSK_TX_RING_SZ,		/* maxsize */
2178 		    1,				/* nsegments */
2179 		    MSK_TX_RING_SZ,		/* maxsegsize */
2180 		    0,				/* flags */
2181 		    NULL, NULL,			/* lockfunc, lockarg */
2182 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2183 	if (error != 0) {
2184 		device_printf(sc_if->msk_if_dev,
2185 		    "failed to create Tx ring DMA tag\n");
2186 		goto fail;
2187 	}
2188 
2189 	/* Create tag for Rx ring. */
2190 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2191 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2192 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2193 		    BUS_SPACE_MAXADDR,		/* highaddr */
2194 		    NULL, NULL,			/* filter, filterarg */
2195 		    MSK_RX_RING_SZ,		/* maxsize */
2196 		    1,				/* nsegments */
2197 		    MSK_RX_RING_SZ,		/* maxsegsize */
2198 		    0,				/* flags */
2199 		    NULL, NULL,			/* lockfunc, lockarg */
2200 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2201 	if (error != 0) {
2202 		device_printf(sc_if->msk_if_dev,
2203 		    "failed to create Rx ring DMA tag\n");
2204 		goto fail;
2205 	}
2206 
2207 	/* Create tag for Tx buffers. */
2208 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2209 		    1, 0,			/* alignment, boundary */
2210 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2211 		    BUS_SPACE_MAXADDR,		/* highaddr */
2212 		    NULL, NULL,			/* filter, filterarg */
2213 		    MSK_TSO_MAXSIZE,		/* maxsize */
2214 		    MSK_MAXTXSEGS,		/* nsegments */
2215 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2216 		    0,				/* flags */
2217 		    NULL, NULL,			/* lockfunc, lockarg */
2218 		    &sc_if->msk_cdata.msk_tx_tag);
2219 	if (error != 0) {
2220 		device_printf(sc_if->msk_if_dev,
2221 		    "failed to create Tx DMA tag\n");
2222 		goto fail;
2223 	}
2224 
2225 	rxalign = 1;
2226 	/*
2227 	 * Workaround hardware hang which seems to happen when Rx buffer
2228 	 * is not aligned on multiple of FIFO word(8 bytes).
2229 	 */
2230 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2231 		rxalign = MSK_RX_BUF_ALIGN;
2232 	/* Create tag for Rx buffers. */
2233 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2234 		    rxalign, 0,			/* alignment, boundary */
2235 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2236 		    BUS_SPACE_MAXADDR,		/* highaddr */
2237 		    NULL, NULL,			/* filter, filterarg */
2238 		    MCLBYTES,			/* maxsize */
2239 		    1,				/* nsegments */
2240 		    MCLBYTES,			/* maxsegsize */
2241 		    0,				/* flags */
2242 		    NULL, NULL,			/* lockfunc, lockarg */
2243 		    &sc_if->msk_cdata.msk_rx_tag);
2244 	if (error != 0) {
2245 		device_printf(sc_if->msk_if_dev,
2246 		    "failed to create Rx DMA tag\n");
2247 		goto fail;
2248 	}
2249 
2250 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2251 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2252 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2253 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2254 	if (error != 0) {
2255 		device_printf(sc_if->msk_if_dev,
2256 		    "failed to allocate DMA'able memory for Tx ring\n");
2257 		goto fail;
2258 	}
2259 
2260 	ctx.msk_busaddr = 0;
2261 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2262 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2263 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2264 	if (error != 0) {
2265 		device_printf(sc_if->msk_if_dev,
2266 		    "failed to load DMA'able memory for Tx ring\n");
2267 		goto fail;
2268 	}
2269 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2270 
2271 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2272 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2273 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2274 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2275 	if (error != 0) {
2276 		device_printf(sc_if->msk_if_dev,
2277 		    "failed to allocate DMA'able memory for Rx ring\n");
2278 		goto fail;
2279 	}
2280 
2281 	ctx.msk_busaddr = 0;
2282 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2283 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2284 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2285 	if (error != 0) {
2286 		device_printf(sc_if->msk_if_dev,
2287 		    "failed to load DMA'able memory for Rx ring\n");
2288 		goto fail;
2289 	}
2290 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2291 
2292 	/* Create DMA maps for Tx buffers. */
2293 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2294 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2295 		txd->tx_m = NULL;
2296 		txd->tx_dmamap = NULL;
2297 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2298 		    &txd->tx_dmamap);
2299 		if (error != 0) {
2300 			device_printf(sc_if->msk_if_dev,
2301 			    "failed to create Tx dmamap\n");
2302 			goto fail;
2303 		}
2304 	}
2305 	/* Create DMA maps for Rx buffers. */
2306 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2307 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2308 		device_printf(sc_if->msk_if_dev,
2309 		    "failed to create spare Rx dmamap\n");
2310 		goto fail;
2311 	}
2312 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2313 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2314 		rxd->rx_m = NULL;
2315 		rxd->rx_dmamap = NULL;
2316 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2317 		    &rxd->rx_dmamap);
2318 		if (error != 0) {
2319 			device_printf(sc_if->msk_if_dev,
2320 			    "failed to create Rx dmamap\n");
2321 			goto fail;
2322 		}
2323 	}
2324 
2325 fail:
2326 	return (error);
2327 }
2328 
2329 static int
2330 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2331 {
2332 	struct msk_dmamap_arg ctx;
2333 	struct msk_rxdesc *jrxd;
2334 	bus_size_t rxalign;
2335 	int error, i;
2336 
2337 	if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
2338 		sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2339 		device_printf(sc_if->msk_if_dev,
2340 		    "disabling jumbo frame support\n");
2341 		return (0);
2342 	}
2343 	/* Create tag for jumbo Rx ring. */
2344 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2345 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2346 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2347 		    BUS_SPACE_MAXADDR,		/* highaddr */
2348 		    NULL, NULL,			/* filter, filterarg */
2349 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2350 		    1,				/* nsegments */
2351 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2352 		    0,				/* flags */
2353 		    NULL, NULL,			/* lockfunc, lockarg */
2354 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2355 	if (error != 0) {
2356 		device_printf(sc_if->msk_if_dev,
2357 		    "failed to create jumbo Rx ring DMA tag\n");
2358 		goto jumbo_fail;
2359 	}
2360 
2361 	rxalign = 1;
2362 	/*
2363 	 * Workaround hardware hang which seems to happen when Rx buffer
2364 	 * is not aligned on multiple of FIFO word(8 bytes).
2365 	 */
2366 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2367 		rxalign = MSK_RX_BUF_ALIGN;
2368 	/* Create tag for jumbo Rx buffers. */
2369 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2370 		    rxalign, 0,			/* alignment, boundary */
2371 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2372 		    BUS_SPACE_MAXADDR,		/* highaddr */
2373 		    NULL, NULL,			/* filter, filterarg */
2374 		    MJUM9BYTES,			/* maxsize */
2375 		    1,				/* nsegments */
2376 		    MJUM9BYTES,			/* maxsegsize */
2377 		    0,				/* flags */
2378 		    NULL, NULL,			/* lockfunc, lockarg */
2379 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2380 	if (error != 0) {
2381 		device_printf(sc_if->msk_if_dev,
2382 		    "failed to create jumbo Rx DMA tag\n");
2383 		goto jumbo_fail;
2384 	}
2385 
2386 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2387 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2388 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2389 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2390 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2391 	if (error != 0) {
2392 		device_printf(sc_if->msk_if_dev,
2393 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2394 		goto jumbo_fail;
2395 	}
2396 
2397 	ctx.msk_busaddr = 0;
2398 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2399 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2400 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2401 	    msk_dmamap_cb, &ctx, 0);
2402 	if (error != 0) {
2403 		device_printf(sc_if->msk_if_dev,
2404 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2405 		goto jumbo_fail;
2406 	}
2407 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2408 
2409 	/* Create DMA maps for jumbo Rx buffers. */
2410 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2411 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2412 		device_printf(sc_if->msk_if_dev,
2413 		    "failed to create spare jumbo Rx dmamap\n");
2414 		goto jumbo_fail;
2415 	}
2416 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2417 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2418 		jrxd->rx_m = NULL;
2419 		jrxd->rx_dmamap = NULL;
2420 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2421 		    &jrxd->rx_dmamap);
2422 		if (error != 0) {
2423 			device_printf(sc_if->msk_if_dev,
2424 			    "failed to create jumbo Rx dmamap\n");
2425 			goto jumbo_fail;
2426 		}
2427 	}
2428 
2429 	return (0);
2430 
2431 jumbo_fail:
2432 	msk_rx_dma_jfree(sc_if);
2433 	device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2434 	    "due to resource shortage\n");
2435 	sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2436 	return (error);
2437 }
2438 
2439 static void
2440 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2441 {
2442 	struct msk_txdesc *txd;
2443 	struct msk_rxdesc *rxd;
2444 	int i;
2445 
2446 	/* Tx ring. */
2447 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2448 		if (sc_if->msk_cdata.msk_tx_ring_map)
2449 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2450 			    sc_if->msk_cdata.msk_tx_ring_map);
2451 		if (sc_if->msk_cdata.msk_tx_ring_map &&
2452 		    sc_if->msk_rdata.msk_tx_ring)
2453 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2454 			    sc_if->msk_rdata.msk_tx_ring,
2455 			    sc_if->msk_cdata.msk_tx_ring_map);
2456 		sc_if->msk_rdata.msk_tx_ring = NULL;
2457 		sc_if->msk_cdata.msk_tx_ring_map = NULL;
2458 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2459 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2460 	}
2461 	/* Rx ring. */
2462 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2463 		if (sc_if->msk_cdata.msk_rx_ring_map)
2464 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2465 			    sc_if->msk_cdata.msk_rx_ring_map);
2466 		if (sc_if->msk_cdata.msk_rx_ring_map &&
2467 		    sc_if->msk_rdata.msk_rx_ring)
2468 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2469 			    sc_if->msk_rdata.msk_rx_ring,
2470 			    sc_if->msk_cdata.msk_rx_ring_map);
2471 		sc_if->msk_rdata.msk_rx_ring = NULL;
2472 		sc_if->msk_cdata.msk_rx_ring_map = NULL;
2473 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2474 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2475 	}
2476 	/* Tx buffers. */
2477 	if (sc_if->msk_cdata.msk_tx_tag) {
2478 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2479 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2480 			if (txd->tx_dmamap) {
2481 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2482 				    txd->tx_dmamap);
2483 				txd->tx_dmamap = NULL;
2484 			}
2485 		}
2486 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2487 		sc_if->msk_cdata.msk_tx_tag = NULL;
2488 	}
2489 	/* Rx buffers. */
2490 	if (sc_if->msk_cdata.msk_rx_tag) {
2491 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2492 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2493 			if (rxd->rx_dmamap) {
2494 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2495 				    rxd->rx_dmamap);
2496 				rxd->rx_dmamap = NULL;
2497 			}
2498 		}
2499 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2500 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2501 			    sc_if->msk_cdata.msk_rx_sparemap);
2502 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2503 		}
2504 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2505 		sc_if->msk_cdata.msk_rx_tag = NULL;
2506 	}
2507 	if (sc_if->msk_cdata.msk_parent_tag) {
2508 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2509 		sc_if->msk_cdata.msk_parent_tag = NULL;
2510 	}
2511 }
2512 
2513 static void
2514 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2515 {
2516 	struct msk_rxdesc *jrxd;
2517 	int i;
2518 
2519 	/* Jumbo Rx ring. */
2520 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2521 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2522 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2523 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2524 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2525 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2526 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2527 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2528 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2529 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2530 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2531 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2532 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2533 	}
2534 	/* Jumbo Rx buffers. */
2535 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2536 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2537 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2538 			if (jrxd->rx_dmamap) {
2539 				bus_dmamap_destroy(
2540 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2541 				    jrxd->rx_dmamap);
2542 				jrxd->rx_dmamap = NULL;
2543 			}
2544 		}
2545 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2546 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2547 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2548 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2549 		}
2550 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2551 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2552 	}
2553 }
2554 
2555 static int
2556 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2557 {
2558 	struct msk_txdesc *txd, *txd_last;
2559 	struct msk_tx_desc *tx_le;
2560 	struct mbuf *m;
2561 	bus_dmamap_t map;
2562 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2563 	uint32_t control, csum, prod, si;
2564 	uint16_t offset, tcp_offset, tso_mtu;
2565 	int error, i, nseg, tso;
2566 
2567 	MSK_IF_LOCK_ASSERT(sc_if);
2568 
2569 	tcp_offset = offset = 0;
2570 	m = *m_head;
2571 	if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2572 	    (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) ||
2573 	    ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
2574 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) {
2575 		/*
2576 		 * Since mbuf has no protocol specific structure information
2577 		 * in it we have to inspect protocol information here to
2578 		 * setup TSO and checksum offload. I don't know why Marvell
2579 		 * made a such decision in chip design because other GigE
2580 		 * hardwares normally takes care of all these chores in
2581 		 * hardware. However, TSO performance of Yukon II is very
2582 		 * good such that it's worth to implement it.
2583 		 */
2584 		struct ether_header *eh;
2585 		struct ip *ip;
2586 		struct tcphdr *tcp;
2587 
2588 		if (M_WRITABLE(m) == 0) {
2589 			/* Get a writable copy. */
2590 			m = m_dup(*m_head, M_DONTWAIT);
2591 			m_freem(*m_head);
2592 			if (m == NULL) {
2593 				*m_head = NULL;
2594 				return (ENOBUFS);
2595 			}
2596 			*m_head = m;
2597 		}
2598 
2599 		offset = sizeof(struct ether_header);
2600 		m = m_pullup(m, offset);
2601 		if (m == NULL) {
2602 			*m_head = NULL;
2603 			return (ENOBUFS);
2604 		}
2605 		eh = mtod(m, struct ether_header *);
2606 		/* Check if hardware VLAN insertion is off. */
2607 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2608 			offset = sizeof(struct ether_vlan_header);
2609 			m = m_pullup(m, offset);
2610 			if (m == NULL) {
2611 				*m_head = NULL;
2612 				return (ENOBUFS);
2613 			}
2614 		}
2615 		m = m_pullup(m, offset + sizeof(struct ip));
2616 		if (m == NULL) {
2617 			*m_head = NULL;
2618 			return (ENOBUFS);
2619 		}
2620 		ip = (struct ip *)(mtod(m, char *) + offset);
2621 		offset += (ip->ip_hl << 2);
2622 		tcp_offset = offset;
2623 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2624 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2625 			if (m == NULL) {
2626 				*m_head = NULL;
2627 				return (ENOBUFS);
2628 			}
2629 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2630 			offset += (tcp->th_off << 2);
2631 		} else if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2632 		    (m->m_pkthdr.len < MSK_MIN_FRAMELEN) &&
2633 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2634 			/*
2635 			 * It seems that Yukon II has Tx checksum offload bug
2636 			 * for small TCP packets that's less than 60 bytes in
2637 			 * size (e.g. TCP window probe packet, pure ACK packet).
2638 			 * Common work around like padding with zeros to make
2639 			 * the frame minimum ethernet frame size didn't work at
2640 			 * all.
2641 			 * Instead of disabling checksum offload completely we
2642 			 * resort to S/W checksum routine when we encounter
2643 			 * short TCP frames.
2644 			 * Short UDP packets appear to be handled correctly by
2645 			 * Yukon II. Also I assume this bug does not happen on
2646 			 * controllers that use newer descriptor format or
2647 			 * automatic Tx checksum calaulcation.
2648 			 */
2649 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2650 			if (m == NULL) {
2651 				*m_head = NULL;
2652 				return (ENOBUFS);
2653 			}
2654 			*(uint16_t *)(m->m_data + offset +
2655 			    m->m_pkthdr.csum_data) = in_cksum_skip(m,
2656 			    m->m_pkthdr.len, offset);
2657 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2658 		}
2659 		*m_head = m;
2660 	}
2661 
2662 	prod = sc_if->msk_cdata.msk_tx_prod;
2663 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2664 	txd_last = txd;
2665 	map = txd->tx_dmamap;
2666 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2667 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2668 	if (error == EFBIG) {
2669 		m = m_collapse(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
2670 		if (m == NULL) {
2671 			m_freem(*m_head);
2672 			*m_head = NULL;
2673 			return (ENOBUFS);
2674 		}
2675 		*m_head = m;
2676 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2677 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2678 		if (error != 0) {
2679 			m_freem(*m_head);
2680 			*m_head = NULL;
2681 			return (error);
2682 		}
2683 	} else if (error != 0)
2684 		return (error);
2685 	if (nseg == 0) {
2686 		m_freem(*m_head);
2687 		*m_head = NULL;
2688 		return (EIO);
2689 	}
2690 
2691 	/* Check number of available descriptors. */
2692 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2693 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2694 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2695 		return (ENOBUFS);
2696 	}
2697 
2698 	control = 0;
2699 	tso = 0;
2700 	tx_le = NULL;
2701 
2702 	/* Check TSO support. */
2703 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2704 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2705 			tso_mtu = m->m_pkthdr.tso_segsz;
2706 		else
2707 			tso_mtu = offset + m->m_pkthdr.tso_segsz;
2708 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2709 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2710 			tx_le->msk_addr = htole32(tso_mtu);
2711 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2712 				tx_le->msk_control = htole32(OP_MSS | HW_OWNER);
2713 			else
2714 				tx_le->msk_control =
2715 				    htole32(OP_LRGLEN | HW_OWNER);
2716 			sc_if->msk_cdata.msk_tx_cnt++;
2717 			MSK_INC(prod, MSK_TX_RING_CNT);
2718 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2719 		}
2720 		tso++;
2721 	}
2722 	/* Check if we have a VLAN tag to insert. */
2723 	if ((m->m_flags & M_VLANTAG) != 0) {
2724 		if (tx_le == NULL) {
2725 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2726 			tx_le->msk_addr = htole32(0);
2727 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2728 			    htons(m->m_pkthdr.ether_vtag));
2729 			sc_if->msk_cdata.msk_tx_cnt++;
2730 			MSK_INC(prod, MSK_TX_RING_CNT);
2731 		} else {
2732 			tx_le->msk_control |= htole32(OP_VLAN |
2733 			    htons(m->m_pkthdr.ether_vtag));
2734 		}
2735 		control |= INS_VLAN;
2736 	}
2737 	/* Check if we have to handle checksum offload. */
2738 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2739 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0)
2740 			control |= CALSUM;
2741 		else {
2742 			control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2743 			if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2744 				control |= UDPTCP;
2745 			/* Checksum write position. */
2746 			csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff;
2747 			/* Checksum start position. */
2748 			csum |= (uint32_t)tcp_offset << 16;
2749 			if (csum != sc_if->msk_cdata.msk_last_csum) {
2750 				tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2751 				tx_le->msk_addr = htole32(csum);
2752 				tx_le->msk_control = htole32(1 << 16 |
2753 				    (OP_TCPLISW | HW_OWNER));
2754 				sc_if->msk_cdata.msk_tx_cnt++;
2755 				MSK_INC(prod, MSK_TX_RING_CNT);
2756 				sc_if->msk_cdata.msk_last_csum = csum;
2757 			}
2758 		}
2759 	}
2760 
2761 	si = prod;
2762 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2763 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2764 	if (tso == 0)
2765 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2766 		    OP_PACKET);
2767 	else
2768 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2769 		    OP_LARGESEND);
2770 	sc_if->msk_cdata.msk_tx_cnt++;
2771 	MSK_INC(prod, MSK_TX_RING_CNT);
2772 
2773 	for (i = 1; i < nseg; i++) {
2774 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2775 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2776 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2777 		    OP_BUFFER | HW_OWNER);
2778 		sc_if->msk_cdata.msk_tx_cnt++;
2779 		MSK_INC(prod, MSK_TX_RING_CNT);
2780 	}
2781 	/* Update producer index. */
2782 	sc_if->msk_cdata.msk_tx_prod = prod;
2783 
2784 	/* Set EOP on the last desciptor. */
2785 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2786 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2787 	tx_le->msk_control |= htole32(EOP);
2788 
2789 	/* Turn the first descriptor ownership to hardware. */
2790 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2791 	tx_le->msk_control |= htole32(HW_OWNER);
2792 
2793 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2794 	map = txd_last->tx_dmamap;
2795 	txd_last->tx_dmamap = txd->tx_dmamap;
2796 	txd->tx_dmamap = map;
2797 	txd->tx_m = m;
2798 
2799 	/* Sync descriptors. */
2800 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2801 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2802 	    sc_if->msk_cdata.msk_tx_ring_map,
2803 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2804 
2805 	return (0);
2806 }
2807 
2808 static void
2809 msk_start(struct ifnet *ifp)
2810 {
2811 	struct msk_if_softc *sc_if;
2812 
2813 	sc_if = ifp->if_softc;
2814 	MSK_IF_LOCK(sc_if);
2815 	msk_start_locked(ifp);
2816 	MSK_IF_UNLOCK(sc_if);
2817 }
2818 
2819 static void
2820 msk_start_locked(struct ifnet *ifp)
2821 {
2822 	struct msk_if_softc *sc_if;
2823 	struct mbuf *m_head;
2824 	int enq;
2825 
2826 	sc_if = ifp->if_softc;
2827 	MSK_IF_LOCK_ASSERT(sc_if);
2828 
2829 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2830 	    IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0)
2831 		return;
2832 
2833 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2834 	    sc_if->msk_cdata.msk_tx_cnt <
2835 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2836 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2837 		if (m_head == NULL)
2838 			break;
2839 		/*
2840 		 * Pack the data into the transmit ring. If we
2841 		 * don't have room, set the OACTIVE flag and wait
2842 		 * for the NIC to drain the ring.
2843 		 */
2844 		if (msk_encap(sc_if, &m_head) != 0) {
2845 			if (m_head == NULL)
2846 				break;
2847 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2848 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2849 			break;
2850 		}
2851 
2852 		enq++;
2853 		/*
2854 		 * If there's a BPF listener, bounce a copy of this frame
2855 		 * to him.
2856 		 */
2857 		ETHER_BPF_MTAP(ifp, m_head);
2858 	}
2859 
2860 	if (enq > 0) {
2861 		/* Transmit */
2862 		CSR_WRITE_2(sc_if->msk_softc,
2863 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2864 		    sc_if->msk_cdata.msk_tx_prod);
2865 
2866 		/* Set a timeout in case the chip goes out to lunch. */
2867 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2868 	}
2869 }
2870 
2871 static void
2872 msk_watchdog(struct msk_if_softc *sc_if)
2873 {
2874 	struct ifnet *ifp;
2875 
2876 	MSK_IF_LOCK_ASSERT(sc_if);
2877 
2878 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2879 		return;
2880 	ifp = sc_if->msk_ifp;
2881 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2882 		if (bootverbose)
2883 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2884 			   "(missed link)\n");
2885 		ifp->if_oerrors++;
2886 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2887 		msk_init_locked(sc_if);
2888 		return;
2889 	}
2890 
2891 	if_printf(ifp, "watchdog timeout\n");
2892 	ifp->if_oerrors++;
2893 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2894 	msk_init_locked(sc_if);
2895 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2896 		msk_start_locked(ifp);
2897 }
2898 
2899 static int
2900 mskc_shutdown(device_t dev)
2901 {
2902 	struct msk_softc *sc;
2903 	int i;
2904 
2905 	sc = device_get_softc(dev);
2906 	MSK_LOCK(sc);
2907 	for (i = 0; i < sc->msk_num_port; i++) {
2908 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2909 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
2910 		    IFF_DRV_RUNNING) != 0))
2911 			msk_stop(sc->msk_if[i]);
2912 	}
2913 	MSK_UNLOCK(sc);
2914 
2915 	/* Put hardware reset. */
2916 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2917 	return (0);
2918 }
2919 
2920 static int
2921 mskc_suspend(device_t dev)
2922 {
2923 	struct msk_softc *sc;
2924 	int i;
2925 
2926 	sc = device_get_softc(dev);
2927 
2928 	MSK_LOCK(sc);
2929 
2930 	for (i = 0; i < sc->msk_num_port; i++) {
2931 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2932 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
2933 		    IFF_DRV_RUNNING) != 0))
2934 			msk_stop(sc->msk_if[i]);
2935 	}
2936 
2937 	/* Disable all interrupts. */
2938 	CSR_WRITE_4(sc, B0_IMSK, 0);
2939 	CSR_READ_4(sc, B0_IMSK);
2940 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2941 	CSR_READ_4(sc, B0_HWE_IMSK);
2942 
2943 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
2944 
2945 	/* Put hardware reset. */
2946 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2947 	sc->msk_pflags |= MSK_FLAG_SUSPEND;
2948 
2949 	MSK_UNLOCK(sc);
2950 
2951 	return (0);
2952 }
2953 
2954 static int
2955 mskc_resume(device_t dev)
2956 {
2957 	struct msk_softc *sc;
2958 	int i;
2959 
2960 	sc = device_get_softc(dev);
2961 
2962 	MSK_LOCK(sc);
2963 
2964 	mskc_reset(sc);
2965 	for (i = 0; i < sc->msk_num_port; i++) {
2966 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2967 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) {
2968 			sc->msk_if[i]->msk_ifp->if_drv_flags &=
2969 			    ~IFF_DRV_RUNNING;
2970 			msk_init_locked(sc->msk_if[i]);
2971 		}
2972 	}
2973 	sc->msk_pflags &= ~MSK_FLAG_SUSPEND;
2974 
2975 	MSK_UNLOCK(sc);
2976 
2977 	return (0);
2978 }
2979 
2980 #ifndef __NO_STRICT_ALIGNMENT
2981 static __inline void
2982 msk_fixup_rx(struct mbuf *m)
2983 {
2984         int i;
2985         uint16_t *src, *dst;
2986 
2987 	src = mtod(m, uint16_t *);
2988 	dst = src - 3;
2989 
2990 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2991 		*dst++ = *src++;
2992 
2993 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
2994 }
2995 #endif
2996 
2997 static __inline void
2998 msk_rxcsum(struct msk_if_softc *sc_if, uint32_t control, struct mbuf *m)
2999 {
3000 	struct ether_header *eh;
3001 	struct ip *ip;
3002 	struct udphdr *uh;
3003 	int32_t hlen, len, pktlen, temp32;
3004 	uint16_t csum, *opts;
3005 
3006 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) {
3007 		if ((control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
3008 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3009 			if ((control & CSS_IPV4_CSUM_OK) != 0)
3010 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3011 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3012 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3013 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3014 				    CSUM_PSEUDO_HDR;
3015 				m->m_pkthdr.csum_data = 0xffff;
3016 			}
3017 		}
3018 		return;
3019 	}
3020 	/*
3021 	 * Marvell Yukon controllers that support OP_RXCHKS has known
3022 	 * to have various Rx checksum offloading bugs. These
3023 	 * controllers can be configured to compute simple checksum
3024 	 * at two different positions. So we can compute IP and TCP/UDP
3025 	 * checksum at the same time. We intentionally have controller
3026 	 * compute TCP/UDP checksum twice by specifying the same
3027 	 * checksum start position and compare the result. If the value
3028 	 * is different it would indicate the hardware logic was wrong.
3029 	 */
3030 	if ((sc_if->msk_csum & 0xFFFF) != (sc_if->msk_csum >> 16)) {
3031 		if (bootverbose)
3032 			device_printf(sc_if->msk_if_dev,
3033 			    "Rx checksum value mismatch!\n");
3034 		return;
3035 	}
3036 	pktlen = m->m_pkthdr.len;
3037 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
3038 		return;
3039 	eh = mtod(m, struct ether_header *);
3040 	if (eh->ether_type != htons(ETHERTYPE_IP))
3041 		return;
3042 	ip = (struct ip *)(eh + 1);
3043 	if (ip->ip_v != IPVERSION)
3044 		return;
3045 
3046 	hlen = ip->ip_hl << 2;
3047 	pktlen -= sizeof(struct ether_header);
3048 	if (hlen < sizeof(struct ip))
3049 		return;
3050 	if (ntohs(ip->ip_len) < hlen)
3051 		return;
3052 	if (ntohs(ip->ip_len) != pktlen)
3053 		return;
3054 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
3055 		return;	/* can't handle fragmented packet. */
3056 
3057 	switch (ip->ip_p) {
3058 	case IPPROTO_TCP:
3059 		if (pktlen < (hlen + sizeof(struct tcphdr)))
3060 			return;
3061 		break;
3062 	case IPPROTO_UDP:
3063 		if (pktlen < (hlen + sizeof(struct udphdr)))
3064 			return;
3065 		uh = (struct udphdr *)((caddr_t)ip + hlen);
3066 		if (uh->uh_sum == 0)
3067 			return; /* no checksum */
3068 		break;
3069 	default:
3070 		return;
3071 	}
3072 	csum = ntohs(sc_if->msk_csum & 0xFFFF);
3073 	/* Checksum fixup for IP options. */
3074 	len = hlen - sizeof(struct ip);
3075 	if (len > 0) {
3076 		opts = (uint16_t *)(ip + 1);
3077 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
3078 			temp32 = csum - *opts;
3079 			temp32 = (temp32 >> 16) + (temp32 & 65535);
3080 			csum = temp32 & 65535;
3081 		}
3082 	}
3083 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
3084 	m->m_pkthdr.csum_data = csum;
3085 }
3086 
3087 static void
3088 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3089     int len)
3090 {
3091 	struct mbuf *m;
3092 	struct ifnet *ifp;
3093 	struct msk_rxdesc *rxd;
3094 	int cons, rxlen;
3095 
3096 	ifp = sc_if->msk_ifp;
3097 
3098 	MSK_IF_LOCK_ASSERT(sc_if);
3099 
3100 	cons = sc_if->msk_cdata.msk_rx_cons;
3101 	do {
3102 		rxlen = status >> 16;
3103 		if ((status & GMR_FS_VLAN) != 0 &&
3104 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3105 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3106 		if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) {
3107 			/*
3108 			 * For controllers that returns bogus status code
3109 			 * just do minimal check and let upper stack
3110 			 * handle this frame.
3111 			 */
3112 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
3113 				ifp->if_ierrors++;
3114 				msk_discard_rxbuf(sc_if, cons);
3115 				break;
3116 			}
3117 		} else if (len > sc_if->msk_framesize ||
3118 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3119 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3120 			/* Don't count flow-control packet as errors. */
3121 			if ((status & GMR_FS_GOOD_FC) == 0)
3122 				ifp->if_ierrors++;
3123 			msk_discard_rxbuf(sc_if, cons);
3124 			break;
3125 		}
3126 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3127 		m = rxd->rx_m;
3128 		if (msk_newbuf(sc_if, cons) != 0) {
3129 			ifp->if_iqdrops++;
3130 			/* Reuse old buffer. */
3131 			msk_discard_rxbuf(sc_if, cons);
3132 			break;
3133 		}
3134 		m->m_pkthdr.rcvif = ifp;
3135 		m->m_pkthdr.len = m->m_len = len;
3136 #ifndef __NO_STRICT_ALIGNMENT
3137 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3138 			msk_fixup_rx(m);
3139 #endif
3140 		ifp->if_ipackets++;
3141 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3142 			msk_rxcsum(sc_if, control, m);
3143 		/* Check for VLAN tagged packets. */
3144 		if ((status & GMR_FS_VLAN) != 0 &&
3145 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3146 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3147 			m->m_flags |= M_VLANTAG;
3148 		}
3149 		MSK_IF_UNLOCK(sc_if);
3150 		(*ifp->if_input)(ifp, m);
3151 		MSK_IF_LOCK(sc_if);
3152 	} while (0);
3153 
3154 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3155 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3156 }
3157 
3158 static void
3159 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3160     int len)
3161 {
3162 	struct mbuf *m;
3163 	struct ifnet *ifp;
3164 	struct msk_rxdesc *jrxd;
3165 	int cons, rxlen;
3166 
3167 	ifp = sc_if->msk_ifp;
3168 
3169 	MSK_IF_LOCK_ASSERT(sc_if);
3170 
3171 	cons = sc_if->msk_cdata.msk_rx_cons;
3172 	do {
3173 		rxlen = status >> 16;
3174 		if ((status & GMR_FS_VLAN) != 0 &&
3175 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3176 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3177 		if (len > sc_if->msk_framesize ||
3178 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3179 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3180 			/* Don't count flow-control packet as errors. */
3181 			if ((status & GMR_FS_GOOD_FC) == 0)
3182 				ifp->if_ierrors++;
3183 			msk_discard_jumbo_rxbuf(sc_if, cons);
3184 			break;
3185 		}
3186 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3187 		m = jrxd->rx_m;
3188 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3189 			ifp->if_iqdrops++;
3190 			/* Reuse old buffer. */
3191 			msk_discard_jumbo_rxbuf(sc_if, cons);
3192 			break;
3193 		}
3194 		m->m_pkthdr.rcvif = ifp;
3195 		m->m_pkthdr.len = m->m_len = len;
3196 #ifndef __NO_STRICT_ALIGNMENT
3197 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3198 			msk_fixup_rx(m);
3199 #endif
3200 		ifp->if_ipackets++;
3201 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3202 			msk_rxcsum(sc_if, control, m);
3203 		/* Check for VLAN tagged packets. */
3204 		if ((status & GMR_FS_VLAN) != 0 &&
3205 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3206 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3207 			m->m_flags |= M_VLANTAG;
3208 		}
3209 		MSK_IF_UNLOCK(sc_if);
3210 		(*ifp->if_input)(ifp, m);
3211 		MSK_IF_LOCK(sc_if);
3212 	} while (0);
3213 
3214 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3215 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3216 }
3217 
3218 static void
3219 msk_txeof(struct msk_if_softc *sc_if, int idx)
3220 {
3221 	struct msk_txdesc *txd;
3222 	struct msk_tx_desc *cur_tx;
3223 	struct ifnet *ifp;
3224 	uint32_t control;
3225 	int cons, prog;
3226 
3227 	MSK_IF_LOCK_ASSERT(sc_if);
3228 
3229 	ifp = sc_if->msk_ifp;
3230 
3231 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3232 	    sc_if->msk_cdata.msk_tx_ring_map,
3233 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3234 	/*
3235 	 * Go through our tx ring and free mbufs for those
3236 	 * frames that have been sent.
3237 	 */
3238 	cons = sc_if->msk_cdata.msk_tx_cons;
3239 	prog = 0;
3240 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3241 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3242 			break;
3243 		prog++;
3244 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3245 		control = le32toh(cur_tx->msk_control);
3246 		sc_if->msk_cdata.msk_tx_cnt--;
3247 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3248 		if ((control & EOP) == 0)
3249 			continue;
3250 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3251 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3252 		    BUS_DMASYNC_POSTWRITE);
3253 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3254 
3255 		ifp->if_opackets++;
3256 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3257 		    __func__));
3258 		m_freem(txd->tx_m);
3259 		txd->tx_m = NULL;
3260 	}
3261 
3262 	if (prog > 0) {
3263 		sc_if->msk_cdata.msk_tx_cons = cons;
3264 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3265 			sc_if->msk_watchdog_timer = 0;
3266 		/* No need to sync LEs as we didn't update LEs. */
3267 	}
3268 }
3269 
3270 static void
3271 msk_tick(void *xsc_if)
3272 {
3273 	struct msk_if_softc *sc_if;
3274 	struct mii_data *mii;
3275 
3276 	sc_if = xsc_if;
3277 
3278 	MSK_IF_LOCK_ASSERT(sc_if);
3279 
3280 	mii = device_get_softc(sc_if->msk_miibus);
3281 
3282 	mii_tick(mii);
3283 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0)
3284 		msk_miibus_statchg(sc_if->msk_if_dev);
3285 	msk_handle_events(sc_if->msk_softc);
3286 	msk_watchdog(sc_if);
3287 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3288 }
3289 
3290 static void
3291 msk_intr_phy(struct msk_if_softc *sc_if)
3292 {
3293 	uint16_t status;
3294 
3295 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3296 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3297 	/* Handle FIFO Underrun/Overflow? */
3298 	if ((status & PHY_M_IS_FIFO_ERROR))
3299 		device_printf(sc_if->msk_if_dev,
3300 		    "PHY FIFO underrun/overflow.\n");
3301 }
3302 
3303 static void
3304 msk_intr_gmac(struct msk_if_softc *sc_if)
3305 {
3306 	struct msk_softc *sc;
3307 	uint8_t status;
3308 
3309 	sc = sc_if->msk_softc;
3310 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3311 
3312 	/* GMAC Rx FIFO overrun. */
3313 	if ((status & GM_IS_RX_FF_OR) != 0)
3314 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3315 		    GMF_CLI_RX_FO);
3316 	/* GMAC Tx FIFO underrun. */
3317 	if ((status & GM_IS_TX_FF_UR) != 0) {
3318 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3319 		    GMF_CLI_TX_FU);
3320 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3321 		/*
3322 		 * XXX
3323 		 * In case of Tx underrun, we may need to flush/reset
3324 		 * Tx MAC but that would also require resynchronization
3325 		 * with status LEs. Reintializing status LEs would
3326 		 * affect other port in dual MAC configuration so it
3327 		 * should be avoided as possible as we can.
3328 		 * Due to lack of documentation it's all vague guess but
3329 		 * it needs more investigation.
3330 		 */
3331 	}
3332 }
3333 
3334 static void
3335 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3336 {
3337 	struct msk_softc *sc;
3338 
3339 	sc = sc_if->msk_softc;
3340 	if ((status & Y2_IS_PAR_RD1) != 0) {
3341 		device_printf(sc_if->msk_if_dev,
3342 		    "RAM buffer read parity error\n");
3343 		/* Clear IRQ. */
3344 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3345 		    RI_CLR_RD_PERR);
3346 	}
3347 	if ((status & Y2_IS_PAR_WR1) != 0) {
3348 		device_printf(sc_if->msk_if_dev,
3349 		    "RAM buffer write parity error\n");
3350 		/* Clear IRQ. */
3351 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3352 		    RI_CLR_WR_PERR);
3353 	}
3354 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3355 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3356 		/* Clear IRQ. */
3357 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3358 		    GMF_CLI_TX_PE);
3359 	}
3360 	if ((status & Y2_IS_PAR_RX1) != 0) {
3361 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3362 		/* Clear IRQ. */
3363 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3364 	}
3365 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3366 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3367 		/* Clear IRQ. */
3368 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3369 	}
3370 }
3371 
3372 static void
3373 msk_intr_hwerr(struct msk_softc *sc)
3374 {
3375 	uint32_t status;
3376 	uint32_t tlphead[4];
3377 
3378 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3379 	/* Time Stamp timer overflow. */
3380 	if ((status & Y2_IS_TIST_OV) != 0)
3381 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3382 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3383 		/*
3384 		 * PCI Express Error occured which is not described in PEX
3385 		 * spec.
3386 		 * This error is also mapped either to Master Abort(
3387 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3388 		 * can only be cleared there.
3389                  */
3390 		device_printf(sc->msk_dev,
3391 		    "PCI Express protocol violation error\n");
3392 	}
3393 
3394 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3395 		uint16_t v16;
3396 
3397 		if ((status & Y2_IS_MST_ERR) != 0)
3398 			device_printf(sc->msk_dev,
3399 			    "unexpected IRQ Status error\n");
3400 		else
3401 			device_printf(sc->msk_dev,
3402 			    "unexpected IRQ Master error\n");
3403 		/* Reset all bits in the PCI status register. */
3404 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3405 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3406 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3407 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3408 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3409 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3410 	}
3411 
3412 	/* Check for PCI Express Uncorrectable Error. */
3413 	if ((status & Y2_IS_PCI_EXP) != 0) {
3414 		uint32_t v32;
3415 
3416 		/*
3417 		 * On PCI Express bus bridges are called root complexes (RC).
3418 		 * PCI Express errors are recognized by the root complex too,
3419 		 * which requests the system to handle the problem. After
3420 		 * error occurence it may be that no access to the adapter
3421 		 * may be performed any longer.
3422 		 */
3423 
3424 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3425 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3426 			/* Ignore unsupported request error. */
3427 			device_printf(sc->msk_dev,
3428 			    "Uncorrectable PCI Express error\n");
3429 		}
3430 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3431 			int i;
3432 
3433 			/* Get TLP header form Log Registers. */
3434 			for (i = 0; i < 4; i++)
3435 				tlphead[i] = CSR_PCI_READ_4(sc,
3436 				    PEX_HEADER_LOG + i * 4);
3437 			/* Check for vendor defined broadcast message. */
3438 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3439 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3440 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3441 				    sc->msk_intrhwemask);
3442 				CSR_READ_4(sc, B0_HWE_IMSK);
3443 			}
3444 		}
3445 		/* Clear the interrupt. */
3446 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3447 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3448 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3449 	}
3450 
3451 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3452 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3453 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3454 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3455 }
3456 
3457 static __inline void
3458 msk_rxput(struct msk_if_softc *sc_if)
3459 {
3460 	struct msk_softc *sc;
3461 
3462 	sc = sc_if->msk_softc;
3463 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3464 		bus_dmamap_sync(
3465 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3466 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3467 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3468 	else
3469 		bus_dmamap_sync(
3470 		    sc_if->msk_cdata.msk_rx_ring_tag,
3471 		    sc_if->msk_cdata.msk_rx_ring_map,
3472 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3473 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3474 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3475 }
3476 
3477 static int
3478 msk_handle_events(struct msk_softc *sc)
3479 {
3480 	struct msk_if_softc *sc_if;
3481 	int rxput[2];
3482 	struct msk_stat_desc *sd;
3483 	uint32_t control, status;
3484 	int cons, len, port, rxprog;
3485 
3486 	if (sc->msk_stat_cons == CSR_READ_2(sc, STAT_PUT_IDX))
3487 		return (0);
3488 
3489 	/* Sync status LEs. */
3490 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3491 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3492 
3493 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3494 	rxprog = 0;
3495 	cons = sc->msk_stat_cons;
3496 	for (;;) {
3497 		sd = &sc->msk_stat_ring[cons];
3498 		control = le32toh(sd->msk_control);
3499 		if ((control & HW_OWNER) == 0)
3500 			break;
3501 		control &= ~HW_OWNER;
3502 		sd->msk_control = htole32(control);
3503 		status = le32toh(sd->msk_status);
3504 		len = control & STLE_LEN_MASK;
3505 		port = (control >> 16) & 0x01;
3506 		sc_if = sc->msk_if[port];
3507 		if (sc_if == NULL) {
3508 			device_printf(sc->msk_dev, "invalid port opcode "
3509 			    "0x%08x\n", control & STLE_OP_MASK);
3510 			continue;
3511 		}
3512 
3513 		switch (control & STLE_OP_MASK) {
3514 		case OP_RXVLAN:
3515 			sc_if->msk_vtag = ntohs(len);
3516 			break;
3517 		case OP_RXCHKSVLAN:
3518 			sc_if->msk_vtag = ntohs(len);
3519 			/* FALLTHROUGH */
3520 		case OP_RXCHKS:
3521 			sc_if->msk_csum = status;
3522 			break;
3523 		case OP_RXSTAT:
3524 			if (!(sc_if->msk_ifp->if_drv_flags & IFF_DRV_RUNNING))
3525 				break;
3526 			if (sc_if->msk_framesize >
3527 			    (MCLBYTES - MSK_RX_BUF_ALIGN))
3528 				msk_jumbo_rxeof(sc_if, status, control, len);
3529 			else
3530 				msk_rxeof(sc_if, status, control, len);
3531 			rxprog++;
3532 			/*
3533 			 * Because there is no way to sync single Rx LE
3534 			 * put the DMA sync operation off until the end of
3535 			 * event processing.
3536 			 */
3537 			rxput[port]++;
3538 			/* Update prefetch unit if we've passed water mark. */
3539 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3540 				msk_rxput(sc_if);
3541 				rxput[port] = 0;
3542 			}
3543 			break;
3544 		case OP_TXINDEXLE:
3545 			if (sc->msk_if[MSK_PORT_A] != NULL)
3546 				msk_txeof(sc->msk_if[MSK_PORT_A],
3547 				    status & STLE_TXA1_MSKL);
3548 			if (sc->msk_if[MSK_PORT_B] != NULL)
3549 				msk_txeof(sc->msk_if[MSK_PORT_B],
3550 				    ((status & STLE_TXA2_MSKL) >>
3551 				    STLE_TXA2_SHIFTL) |
3552 				    ((len & STLE_TXA2_MSKH) <<
3553 				    STLE_TXA2_SHIFTH));
3554 			break;
3555 		default:
3556 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3557 			    control & STLE_OP_MASK);
3558 			break;
3559 		}
3560 		MSK_INC(cons, MSK_STAT_RING_CNT);
3561 		if (rxprog > sc->msk_process_limit)
3562 			break;
3563 	}
3564 
3565 	sc->msk_stat_cons = cons;
3566 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3567 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3568 
3569 	if (rxput[MSK_PORT_A] > 0)
3570 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3571 	if (rxput[MSK_PORT_B] > 0)
3572 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3573 
3574 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3575 }
3576 
3577 static void
3578 msk_intr(void *xsc)
3579 {
3580 	struct msk_softc *sc;
3581 	struct msk_if_softc *sc_if0, *sc_if1;
3582 	struct ifnet *ifp0, *ifp1;
3583 	uint32_t status;
3584 	int domore;
3585 
3586 	sc = xsc;
3587 	MSK_LOCK(sc);
3588 
3589 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3590 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3591 	if (status == 0 || status == 0xffffffff ||
3592 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3593 	    (status & sc->msk_intrmask) == 0) {
3594 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3595 		MSK_UNLOCK(sc);
3596 		return;
3597 	}
3598 
3599 	sc_if0 = sc->msk_if[MSK_PORT_A];
3600 	sc_if1 = sc->msk_if[MSK_PORT_B];
3601 	ifp0 = ifp1 = NULL;
3602 	if (sc_if0 != NULL)
3603 		ifp0 = sc_if0->msk_ifp;
3604 	if (sc_if1 != NULL)
3605 		ifp1 = sc_if1->msk_ifp;
3606 
3607 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3608 		msk_intr_phy(sc_if0);
3609 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3610 		msk_intr_phy(sc_if1);
3611 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3612 		msk_intr_gmac(sc_if0);
3613 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3614 		msk_intr_gmac(sc_if1);
3615 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3616 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3617 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3618 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3619 		CSR_READ_4(sc, B0_IMSK);
3620 	}
3621         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3622 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3623 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3624 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3625 		CSR_READ_4(sc, B0_IMSK);
3626 	}
3627 	if ((status & Y2_IS_HW_ERR) != 0)
3628 		msk_intr_hwerr(sc);
3629 
3630 	domore = msk_handle_events(sc);
3631 	if ((status & Y2_IS_STAT_BMU) != 0 && domore == 0)
3632 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3633 
3634 	/* Reenable interrupts. */
3635 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3636 
3637 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3638 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3639 		msk_start_locked(ifp0);
3640 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3641 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3642 		msk_start_locked(ifp1);
3643 
3644 	MSK_UNLOCK(sc);
3645 }
3646 
3647 static void
3648 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3649 {
3650 	struct msk_softc *sc;
3651 	struct ifnet *ifp;
3652 
3653 	ifp = sc_if->msk_ifp;
3654 	sc = sc_if->msk_softc;
3655 	switch (sc->msk_hw_id) {
3656 	case CHIP_ID_YUKON_EX:
3657 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
3658 			goto yukon_ex_workaround;
3659 		if (ifp->if_mtu > ETHERMTU)
3660 			CSR_WRITE_4(sc,
3661 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3662 			    TX_JUMBO_ENA | TX_STFW_ENA);
3663 		else
3664 			CSR_WRITE_4(sc,
3665 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3666 			    TX_JUMBO_DIS | TX_STFW_ENA);
3667 		break;
3668 	default:
3669 yukon_ex_workaround:
3670 		if (ifp->if_mtu > ETHERMTU) {
3671 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3672 			CSR_WRITE_4(sc,
3673 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3674 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3675 			/* Disable Store & Forward mode for Tx. */
3676 			CSR_WRITE_4(sc,
3677 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3678 			    TX_JUMBO_ENA | TX_STFW_DIS);
3679 		} else {
3680 			/* Enable Store & Forward mode for Tx. */
3681 			CSR_WRITE_4(sc,
3682 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3683 			    TX_JUMBO_DIS | TX_STFW_ENA);
3684 		}
3685 		break;
3686 	}
3687 }
3688 
3689 static void
3690 msk_init(void *xsc)
3691 {
3692 	struct msk_if_softc *sc_if = xsc;
3693 
3694 	MSK_IF_LOCK(sc_if);
3695 	msk_init_locked(sc_if);
3696 	MSK_IF_UNLOCK(sc_if);
3697 }
3698 
3699 static void
3700 msk_init_locked(struct msk_if_softc *sc_if)
3701 {
3702 	struct msk_softc *sc;
3703 	struct ifnet *ifp;
3704 	struct mii_data	 *mii;
3705 	uint8_t *eaddr;
3706 	uint16_t gmac;
3707 	uint32_t reg;
3708 	int error;
3709 
3710 	MSK_IF_LOCK_ASSERT(sc_if);
3711 
3712 	ifp = sc_if->msk_ifp;
3713 	sc = sc_if->msk_softc;
3714 	mii = device_get_softc(sc_if->msk_miibus);
3715 
3716 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3717 		return;
3718 
3719 	error = 0;
3720 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3721 	msk_stop(sc_if);
3722 
3723 	if (ifp->if_mtu < ETHERMTU)
3724 		sc_if->msk_framesize = ETHERMTU;
3725 	else
3726 		sc_if->msk_framesize = ifp->if_mtu;
3727 	sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3728 	if (ifp->if_mtu > ETHERMTU &&
3729 	    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
3730 		ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3731 		ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3732 	}
3733 
3734  	/* GMAC Control reset. */
3735  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3736  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3737  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3738 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX)
3739 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3740 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3741 		    GMC_BYP_RETR_ON);
3742 
3743 	/*
3744 	 * Initialize GMAC first such that speed/duplex/flow-control
3745 	 * parameters are renegotiated when interface is brought up.
3746 	 */
3747 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3748 
3749 	/* Dummy read the Interrupt Source Register. */
3750 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3751 
3752 	/* Clear MIB stats. */
3753 	msk_stats_clear(sc_if);
3754 
3755 	/* Disable FCS. */
3756 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3757 
3758 	/* Setup Transmit Control Register. */
3759 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3760 
3761 	/* Setup Transmit Flow Control Register. */
3762 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3763 
3764 	/* Setup Transmit Parameter Register. */
3765 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3766 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3767 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3768 
3769 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3770 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3771 
3772 	if (ifp->if_mtu > ETHERMTU)
3773 		gmac |= GM_SMOD_JUMBO_ENA;
3774 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3775 
3776 	/* Set station address. */
3777 	eaddr = IF_LLADDR(ifp);
3778 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L,
3779 	    eaddr[0] | (eaddr[1] << 8));
3780 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M,
3781 	    eaddr[2] | (eaddr[3] << 8));
3782 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H,
3783 	    eaddr[4] | (eaddr[5] << 8));
3784 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L,
3785 	    eaddr[0] | (eaddr[1] << 8));
3786 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M,
3787 	    eaddr[2] | (eaddr[3] << 8));
3788 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H,
3789 	    eaddr[4] | (eaddr[5] << 8));
3790 
3791 	/* Disable interrupts for counter overflows. */
3792 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3793 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3794 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3795 
3796 	/* Configure Rx MAC FIFO. */
3797 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3798 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3799 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3800 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3801 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3802 		reg |= GMF_RX_OVER_ON;
3803 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3804 
3805 	/* Set receive filter. */
3806 	msk_rxfilter(sc_if);
3807 
3808 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3809 		/* Clear flush mask - HW bug. */
3810 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3811 	} else {
3812 		/* Flush Rx MAC FIFO on any flow control or error. */
3813 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3814 		    GMR_FS_ANY_ERR);
3815 	}
3816 
3817 	/*
3818 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3819 	 * due to hardware hang on receipt of pause frames.
3820 	 */
3821 	reg = RX_GMF_FL_THR_DEF + 1;
3822 	/* Another magic for Yukon FE+ - From Linux. */
3823 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3824 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3825 		reg = 0x178;
3826 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3827 
3828 	/* Configure Tx MAC FIFO. */
3829 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3830 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3831 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3832 
3833 	/* Configure hardware VLAN tag insertion/stripping. */
3834 	msk_setvlan(sc_if, ifp);
3835 
3836 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3837 		/* Set Rx Pause threshould. */
3838 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3839 		    MSK_ECU_LLPP);
3840 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3841 		    MSK_ECU_ULPP);
3842 		/* Configure store-and-forward for Tx. */
3843 		msk_set_tx_stfwd(sc_if);
3844 	}
3845 
3846  	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3847  	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3848  		/* Disable dynamic watermark - from Linux. */
3849  		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3850  		reg &= ~0x03;
3851  		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3852  	}
3853 
3854 	/*
3855 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3856 	 * arbiter as we don't use Sync Tx queue.
3857 	 */
3858 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3859 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3860 	/* Enable the RAM Interface Arbiter. */
3861 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3862 
3863 	/* Setup RAM buffer. */
3864 	msk_set_rambuffer(sc_if);
3865 
3866 	/* Disable Tx sync Queue. */
3867 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3868 
3869 	/* Setup Tx Queue Bus Memory Interface. */
3870 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3871 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3872 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3873 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3874 	switch (sc->msk_hw_id) {
3875 	case CHIP_ID_YUKON_EC_U:
3876 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3877 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3878 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3879 			    MSK_ECU_TXFF_LEV);
3880 		}
3881 		break;
3882 	case CHIP_ID_YUKON_EX:
3883 		/*
3884 		 * Yukon Extreme seems to have silicon bug for
3885 		 * automatic Tx checksum calculation capability.
3886 		 */
3887 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
3888 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3889 			    F_TX_CHK_AUTO_OFF);
3890 		break;
3891 	}
3892 
3893 	/* Setup Rx Queue Bus Memory Interface. */
3894 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3895 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3896 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3897 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3898         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3899 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3900 		/* MAC Rx RAM Read is controlled by hardware. */
3901                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3902 	}
3903 
3904 	msk_set_prefetch(sc, sc_if->msk_txq,
3905 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3906 	msk_init_tx_ring(sc_if);
3907 
3908 	/* Disable Rx checksum offload and RSS hash. */
3909 	reg = BMU_DIS_RX_RSS_HASH;
3910 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
3911 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0)
3912 		reg |= BMU_ENA_RX_CHKSUM;
3913 	else
3914 		reg |= BMU_DIS_RX_CHKSUM;
3915 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), reg);
3916 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
3917 		msk_set_prefetch(sc, sc_if->msk_rxq,
3918 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3919 		    MSK_JUMBO_RX_RING_CNT - 1);
3920 		error = msk_init_jumbo_rx_ring(sc_if);
3921 	 } else {
3922 		msk_set_prefetch(sc, sc_if->msk_rxq,
3923 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3924 		    MSK_RX_RING_CNT - 1);
3925 		error = msk_init_rx_ring(sc_if);
3926 	}
3927 	if (error != 0) {
3928 		device_printf(sc_if->msk_if_dev,
3929 		    "initialization failed: no memory for Rx buffers\n");
3930 		msk_stop(sc_if);
3931 		return;
3932 	}
3933 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX) {
3934 		/* Disable flushing of non-ASF packets. */
3935 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3936 		    GMF_RX_MACSEC_FLUSH_OFF);
3937 	}
3938 
3939 	/* Configure interrupt handling. */
3940 	if (sc_if->msk_port == MSK_PORT_A) {
3941 		sc->msk_intrmask |= Y2_IS_PORT_A;
3942 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3943 	} else {
3944 		sc->msk_intrmask |= Y2_IS_PORT_B;
3945 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3946 	}
3947 	/* Configure IRQ moderation mask. */
3948 	CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
3949 	if (sc->msk_int_holdoff > 0) {
3950 		/* Configure initial IRQ moderation timer value. */
3951 		CSR_WRITE_4(sc, B2_IRQM_INI,
3952 		    MSK_USECS(sc, sc->msk_int_holdoff));
3953 		CSR_WRITE_4(sc, B2_IRQM_VAL,
3954 		    MSK_USECS(sc, sc->msk_int_holdoff));
3955 		/* Start IRQ moderation. */
3956 		CSR_WRITE_1(sc, B2_IRQM_CTRL, TIM_START);
3957 	}
3958 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3959 	CSR_READ_4(sc, B0_HWE_IMSK);
3960 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3961 	CSR_READ_4(sc, B0_IMSK);
3962 
3963 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
3964 	mii_mediachg(mii);
3965 
3966 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3967 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3968 
3969 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3970 }
3971 
3972 static void
3973 msk_set_rambuffer(struct msk_if_softc *sc_if)
3974 {
3975 	struct msk_softc *sc;
3976 	int ltpp, utpp;
3977 
3978 	sc = sc_if->msk_softc;
3979 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3980 		return;
3981 
3982 	/* Setup Rx Queue. */
3983 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3984 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3985 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3986 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3987 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3988 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3989 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3990 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3991 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3992 
3993 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3994 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3995 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3996 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3997 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3998 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3999 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
4000 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
4001 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
4002 
4003 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
4004 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
4005 
4006 	/* Setup Tx Queue. */
4007 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
4008 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
4009 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4010 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
4011 	    sc->msk_txqend[sc_if->msk_port] / 8);
4012 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
4013 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4014 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
4015 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4016 	/* Enable Store & Forward for Tx side. */
4017 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
4018 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
4019 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
4020 }
4021 
4022 static void
4023 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
4024     uint32_t count)
4025 {
4026 
4027 	/* Reset the prefetch unit. */
4028 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4029 	    PREF_UNIT_RST_SET);
4030 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4031 	    PREF_UNIT_RST_CLR);
4032 	/* Set LE base address. */
4033 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
4034 	    MSK_ADDR_LO(addr));
4035 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
4036 	    MSK_ADDR_HI(addr));
4037 	/* Set the list last index. */
4038 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
4039 	    count);
4040 	/* Turn on prefetch unit. */
4041 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4042 	    PREF_UNIT_OP_ON);
4043 	/* Dummy read to ensure write. */
4044 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
4045 }
4046 
4047 static void
4048 msk_stop(struct msk_if_softc *sc_if)
4049 {
4050 	struct msk_softc *sc;
4051 	struct msk_txdesc *txd;
4052 	struct msk_rxdesc *rxd;
4053 	struct msk_rxdesc *jrxd;
4054 	struct ifnet *ifp;
4055 	uint32_t val;
4056 	int i;
4057 
4058 	MSK_IF_LOCK_ASSERT(sc_if);
4059 	sc = sc_if->msk_softc;
4060 	ifp = sc_if->msk_ifp;
4061 
4062 	callout_stop(&sc_if->msk_tick_ch);
4063 	sc_if->msk_watchdog_timer = 0;
4064 
4065 	/* Disable interrupts. */
4066 	if (sc_if->msk_port == MSK_PORT_A) {
4067 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
4068 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
4069 	} else {
4070 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
4071 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
4072 	}
4073 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4074 	CSR_READ_4(sc, B0_HWE_IMSK);
4075 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4076 	CSR_READ_4(sc, B0_IMSK);
4077 
4078 	/* Disable Tx/Rx MAC. */
4079 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4080 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
4081 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
4082 	/* Read again to ensure writing. */
4083 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4084 	/* Update stats and clear counters. */
4085 	msk_stats_update(sc_if);
4086 
4087 	/* Stop Tx BMU. */
4088 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
4089 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4090 	for (i = 0; i < MSK_TIMEOUT; i++) {
4091 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
4092 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4093 			    BMU_STOP);
4094 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4095 		} else
4096 			break;
4097 		DELAY(1);
4098 	}
4099 	if (i == MSK_TIMEOUT)
4100 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
4101 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
4102 	    RB_RST_SET | RB_DIS_OP_MD);
4103 
4104 	/* Disable all GMAC interrupt. */
4105 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
4106 	/* Disable PHY interrupt. */
4107 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
4108 
4109 	/* Disable the RAM Interface Arbiter. */
4110 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
4111 
4112 	/* Reset the PCI FIFO of the async Tx queue */
4113 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4114 	    BMU_RST_SET | BMU_FIFO_RST);
4115 
4116 	/* Reset the Tx prefetch units. */
4117 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
4118 	    PREF_UNIT_RST_SET);
4119 
4120 	/* Reset the RAM Buffer async Tx queue. */
4121 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
4122 
4123 	/* Reset Tx MAC FIFO. */
4124 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
4125 	/* Set Pause Off. */
4126 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
4127 
4128 	/*
4129 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
4130 	 * reach the end of packet and since we can't make sure that we have
4131 	 * incoming data, we must reset the BMU while it is not during a DMA
4132 	 * transfer. Since it is possible that the Rx path is still active,
4133 	 * the Rx RAM buffer will be stopped first, so any possible incoming
4134 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
4135 	 * BMU is polled until any DMA in progress is ended and only then it
4136 	 * will be reset.
4137 	 */
4138 
4139 	/* Disable the RAM Buffer receive queue. */
4140 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4141 	for (i = 0; i < MSK_TIMEOUT; i++) {
4142 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4143 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4144 			break;
4145 		DELAY(1);
4146 	}
4147 	if (i == MSK_TIMEOUT)
4148 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4149 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4150 	    BMU_RST_SET | BMU_FIFO_RST);
4151 	/* Reset the Rx prefetch unit. */
4152 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4153 	    PREF_UNIT_RST_SET);
4154 	/* Reset the RAM Buffer receive queue. */
4155 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4156 	/* Reset Rx MAC FIFO. */
4157 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4158 
4159 	/* Free Rx and Tx mbufs still in the queues. */
4160 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4161 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4162 		if (rxd->rx_m != NULL) {
4163 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4164 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4165 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4166 			    rxd->rx_dmamap);
4167 			m_freem(rxd->rx_m);
4168 			rxd->rx_m = NULL;
4169 		}
4170 	}
4171 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4172 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4173 		if (jrxd->rx_m != NULL) {
4174 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4175 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4176 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4177 			    jrxd->rx_dmamap);
4178 			m_freem(jrxd->rx_m);
4179 			jrxd->rx_m = NULL;
4180 		}
4181 	}
4182 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4183 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4184 		if (txd->tx_m != NULL) {
4185 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4186 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4187 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4188 			    txd->tx_dmamap);
4189 			m_freem(txd->tx_m);
4190 			txd->tx_m = NULL;
4191 		}
4192 	}
4193 
4194 	/*
4195 	 * Mark the interface down.
4196 	 */
4197 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4198 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4199 }
4200 
4201 /*
4202  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
4203  * counter clears high 16 bits of the counter such that accessing
4204  * lower 16 bits should be the last operation.
4205  */
4206 #define	MSK_READ_MIB32(x, y)					\
4207 	(((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) +	\
4208 	(uint32_t)GMAC_READ_2(sc, x, y)
4209 #define	MSK_READ_MIB64(x, y)					\
4210 	(((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) +	\
4211 	(uint64_t)MSK_READ_MIB32(x, y)
4212 
4213 static void
4214 msk_stats_clear(struct msk_if_softc *sc_if)
4215 {
4216 	struct msk_softc *sc;
4217 	uint32_t reg;
4218 	uint16_t gmac;
4219 	int i;
4220 
4221 	MSK_IF_LOCK_ASSERT(sc_if);
4222 
4223 	sc = sc_if->msk_softc;
4224 	/* Set MIB Clear Counter Mode. */
4225 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4226 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4227 	/* Read all MIB Counters with Clear Mode set. */
4228 	for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t))
4229 		reg = MSK_READ_MIB32(sc_if->msk_port, i);
4230 	/* Clear MIB Clear Counter Mode. */
4231 	gmac &= ~GM_PAR_MIB_CLR;
4232 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4233 }
4234 
4235 static void
4236 msk_stats_update(struct msk_if_softc *sc_if)
4237 {
4238 	struct msk_softc *sc;
4239 	struct ifnet *ifp;
4240 	struct msk_hw_stats *stats;
4241 	uint16_t gmac;
4242 	uint32_t reg;
4243 
4244 	MSK_IF_LOCK_ASSERT(sc_if);
4245 
4246 	ifp = sc_if->msk_ifp;
4247 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4248 		return;
4249 	sc = sc_if->msk_softc;
4250 	stats = &sc_if->msk_stats;
4251 	/* Set MIB Clear Counter Mode. */
4252 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4253 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4254 
4255 	/* Rx stats. */
4256 	stats->rx_ucast_frames +=
4257 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4258 	stats->rx_bcast_frames +=
4259 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4260 	stats->rx_pause_frames +=
4261 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4262 	stats->rx_mcast_frames +=
4263 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4264 	stats->rx_crc_errs +=
4265 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4266 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1);
4267 	stats->rx_good_octets +=
4268 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4269 	stats->rx_bad_octets +=
4270 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4271 	stats->rx_runts +=
4272 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4273 	stats->rx_runt_errs +=
4274 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4275 	stats->rx_pkts_64 +=
4276 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4277 	stats->rx_pkts_65_127 +=
4278 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4279 	stats->rx_pkts_128_255 +=
4280 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4281 	stats->rx_pkts_256_511 +=
4282 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4283 	stats->rx_pkts_512_1023 +=
4284 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4285 	stats->rx_pkts_1024_1518 +=
4286 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4287 	stats->rx_pkts_1519_max +=
4288 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4289 	stats->rx_pkts_too_long +=
4290 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4291 	stats->rx_pkts_jabbers +=
4292 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4293 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2);
4294 	stats->rx_fifo_oflows +=
4295 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4296 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3);
4297 
4298 	/* Tx stats. */
4299 	stats->tx_ucast_frames +=
4300 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4301 	stats->tx_bcast_frames +=
4302 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4303 	stats->tx_pause_frames +=
4304 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4305 	stats->tx_mcast_frames +=
4306 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4307 	stats->tx_octets +=
4308 	    MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4309 	stats->tx_pkts_64 +=
4310 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4311 	stats->tx_pkts_65_127 +=
4312 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4313 	stats->tx_pkts_128_255 +=
4314 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4315 	stats->tx_pkts_256_511 +=
4316 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4317 	stats->tx_pkts_512_1023 +=
4318 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4319 	stats->tx_pkts_1024_1518 +=
4320 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4321 	stats->tx_pkts_1519_max +=
4322 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4323 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1);
4324 	stats->tx_colls +=
4325 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4326 	stats->tx_late_colls +=
4327 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4328 	stats->tx_excess_colls +=
4329 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4330 	stats->tx_multi_colls +=
4331 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4332 	stats->tx_single_colls +=
4333 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4334 	stats->tx_underflows +=
4335 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4336 	/* Clear MIB Clear Counter Mode. */
4337 	gmac &= ~GM_PAR_MIB_CLR;
4338 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4339 }
4340 
4341 static int
4342 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4343 {
4344 	struct msk_softc *sc;
4345 	struct msk_if_softc *sc_if;
4346 	uint32_t result, *stat;
4347 	int off;
4348 
4349 	sc_if = (struct msk_if_softc *)arg1;
4350 	sc = sc_if->msk_softc;
4351 	off = arg2;
4352 	stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4353 
4354 	MSK_IF_LOCK(sc_if);
4355 	result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4356 	result += *stat;
4357 	MSK_IF_UNLOCK(sc_if);
4358 
4359 	return (sysctl_handle_int(oidp, &result, 0, req));
4360 }
4361 
4362 static int
4363 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4364 {
4365 	struct msk_softc *sc;
4366 	struct msk_if_softc *sc_if;
4367 	uint64_t result, *stat;
4368 	int off;
4369 
4370 	sc_if = (struct msk_if_softc *)arg1;
4371 	sc = sc_if->msk_softc;
4372 	off = arg2;
4373 	stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4374 
4375 	MSK_IF_LOCK(sc_if);
4376 	result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4377 	result += *stat;
4378 	MSK_IF_UNLOCK(sc_if);
4379 
4380 	return (sysctl_handle_quad(oidp, &result, 0, req));
4381 }
4382 
4383 #undef MSK_READ_MIB32
4384 #undef MSK_READ_MIB64
4385 
4386 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) 				\
4387 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4388 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32,	\
4389 	    "IU", d)
4390 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) 				\
4391 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4392 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64,	\
4393 	    "Q", d)
4394 
4395 static void
4396 msk_sysctl_node(struct msk_if_softc *sc_if)
4397 {
4398 	struct sysctl_ctx_list *ctx;
4399 	struct sysctl_oid_list *child, *schild;
4400 	struct sysctl_oid *tree;
4401 
4402 	ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4403 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4404 
4405 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
4406 	    NULL, "MSK Statistics");
4407 	schild = child = SYSCTL_CHILDREN(tree);
4408 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
4409 	    NULL, "MSK RX Statistics");
4410 	child = SYSCTL_CHILDREN(tree);
4411 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4412 	    child, rx_ucast_frames, "Good unicast frames");
4413 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4414 	    child, rx_bcast_frames, "Good broadcast frames");
4415 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4416 	    child, rx_pause_frames, "Pause frames");
4417 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4418 	    child, rx_mcast_frames, "Multicast frames");
4419 	MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4420 	    child, rx_crc_errs, "CRC errors");
4421 	MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4422 	    child, rx_good_octets, "Good octets");
4423 	MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4424 	    child, rx_bad_octets, "Bad octets");
4425 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4426 	    child, rx_pkts_64, "64 bytes frames");
4427 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4428 	    child, rx_pkts_65_127, "65 to 127 bytes frames");
4429 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4430 	    child, rx_pkts_128_255, "128 to 255 bytes frames");
4431 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4432 	    child, rx_pkts_256_511, "256 to 511 bytes frames");
4433 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4434 	    child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4435 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4436 	    child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4437 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4438 	    child, rx_pkts_1519_max, "1519 to max frames");
4439 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4440 	    child, rx_pkts_too_long, "frames too long");
4441 	MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4442 	    child, rx_pkts_jabbers, "Jabber errors");
4443 	MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4444 	    child, rx_fifo_oflows, "FIFO overflows");
4445 
4446 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
4447 	    NULL, "MSK TX Statistics");
4448 	child = SYSCTL_CHILDREN(tree);
4449 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4450 	    child, tx_ucast_frames, "Unicast frames");
4451 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4452 	    child, tx_bcast_frames, "Broadcast frames");
4453 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4454 	    child, tx_pause_frames, "Pause frames");
4455 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4456 	    child, tx_mcast_frames, "Multicast frames");
4457 	MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4458 	    child, tx_octets, "Octets");
4459 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4460 	    child, tx_pkts_64, "64 bytes frames");
4461 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4462 	    child, tx_pkts_65_127, "65 to 127 bytes frames");
4463 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4464 	    child, tx_pkts_128_255, "128 to 255 bytes frames");
4465 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4466 	    child, tx_pkts_256_511, "256 to 511 bytes frames");
4467 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4468 	    child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4469 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4470 	    child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4471 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4472 	    child, tx_pkts_1519_max, "1519 to max frames");
4473 	MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4474 	    child, tx_colls, "Collisions");
4475 	MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4476 	    child, tx_late_colls, "Late collisions");
4477 	MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4478 	    child, tx_excess_colls, "Excessive collisions");
4479 	MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4480 	    child, tx_multi_colls, "Multiple collisions");
4481 	MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4482 	    child, tx_single_colls, "Single collisions");
4483 	MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4484 	    child, tx_underflows, "FIFO underflows");
4485 }
4486 
4487 #undef MSK_SYSCTL_STAT32
4488 #undef MSK_SYSCTL_STAT64
4489 
4490 static int
4491 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4492 {
4493 	int error, value;
4494 
4495 	if (!arg1)
4496 		return (EINVAL);
4497 	value = *(int *)arg1;
4498 	error = sysctl_handle_int(oidp, &value, 0, req);
4499 	if (error || !req->newptr)
4500 		return (error);
4501 	if (value < low || value > high)
4502 		return (EINVAL);
4503 	*(int *)arg1 = value;
4504 
4505 	return (0);
4506 }
4507 
4508 static int
4509 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4510 {
4511 
4512 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4513 	    MSK_PROC_MAX));
4514 }
4515