xref: /freebsd/sys/dev/msk/if_msk.c (revision 9fd69f37d28cfd7438cac3eeb45fe9dd46b4d7dd)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /*
96  * Device driver for the Marvell Yukon II Ethernet controller.
97  * Due to lack of documentation, this driver is based on the code from
98  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
99  */
100 
101 #include <sys/cdefs.h>
102 __FBSDID("$FreeBSD$");
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/module.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/queue.h>
115 #include <sys/sysctl.h>
116 #include <sys/taskqueue.h>
117 
118 #include <net/bpf.h>
119 #include <net/ethernet.h>
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_types.h>
125 #include <net/if_vlan_var.h>
126 
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/tcp.h>
131 #include <netinet/udp.h>
132 
133 #include <machine/bus.h>
134 #include <machine/in_cksum.h>
135 #include <machine/resource.h>
136 #include <sys/rman.h>
137 
138 #include <dev/mii/mii.h>
139 #include <dev/mii/miivar.h>
140 
141 #include <dev/pci/pcireg.h>
142 #include <dev/pci/pcivar.h>
143 
144 #include <dev/msk/if_mskreg.h>
145 
146 MODULE_DEPEND(msk, pci, 1, 1, 1);
147 MODULE_DEPEND(msk, ether, 1, 1, 1);
148 MODULE_DEPEND(msk, miibus, 1, 1, 1);
149 
150 /* "device miibus" required.  See GENERIC if you get errors here. */
151 #include "miibus_if.h"
152 
153 /* Tunables. */
154 static int msi_disable = 0;
155 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
156 static int legacy_intr = 0;
157 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
158 static int jumbo_disable = 0;
159 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
160 
161 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
162 
163 /*
164  * Devices supported by this driver.
165  */
166 static struct msk_product {
167 	uint16_t	msk_vendorid;
168 	uint16_t	msk_deviceid;
169 	const char	*msk_name;
170 } msk_products[] = {
171 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
172 	    "SK-9Sxx Gigabit Ethernet" },
173 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
174 	    "SK-9Exx Gigabit Ethernet"},
175 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
176 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
177 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
178 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
179 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
180 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
181 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
182 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
183 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
184 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
185 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
186 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
187 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
188 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
189 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
190 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
191 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
192 	    "Marvell Yukon 88E8035 Fast Ethernet" },
193 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
194 	    "Marvell Yukon 88E8036 Fast Ethernet" },
195 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
196 	    "Marvell Yukon 88E8038 Fast Ethernet" },
197 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
198 	    "Marvell Yukon 88E8039 Fast Ethernet" },
199 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
200 	    "Marvell Yukon 88E8040 Fast Ethernet" },
201 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
202 	    "Marvell Yukon 88E8040T Fast Ethernet" },
203 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
204 	    "Marvell Yukon 88E8042 Fast Ethernet" },
205 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
206 	    "Marvell Yukon 88E8048 Fast Ethernet" },
207 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
208 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
209 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
210 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
211 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
212 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
213 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
214 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
215 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
216 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
217 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
218 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
219 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
220 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
221 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
222 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
223 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
224 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
225 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
226 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
227 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
228 	    "D-Link 550SX Gigabit Ethernet" },
229 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560SX,
230 	    "D-Link 560SX Gigabit Ethernet" },
231 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
232 	    "D-Link 560T Gigabit Ethernet" }
233 };
234 
235 static const char *model_name[] = {
236 	"Yukon XL",
237         "Yukon EC Ultra",
238         "Yukon EX",
239         "Yukon EC",
240         "Yukon FE",
241         "Yukon FE+",
242         "Yukon Supreme",
243         "Yukon Ultra 2"
244 };
245 
246 static int mskc_probe(device_t);
247 static int mskc_attach(device_t);
248 static int mskc_detach(device_t);
249 static int mskc_shutdown(device_t);
250 static int mskc_setup_rambuffer(struct msk_softc *);
251 static int mskc_suspend(device_t);
252 static int mskc_resume(device_t);
253 static void mskc_reset(struct msk_softc *);
254 
255 static int msk_probe(device_t);
256 static int msk_attach(device_t);
257 static int msk_detach(device_t);
258 
259 static void msk_tick(void *);
260 static void msk_legacy_intr(void *);
261 static int msk_intr(void *);
262 static void msk_int_task(void *, int);
263 static void msk_intr_phy(struct msk_if_softc *);
264 static void msk_intr_gmac(struct msk_if_softc *);
265 static __inline void msk_rxput(struct msk_if_softc *);
266 static int msk_handle_events(struct msk_softc *);
267 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
268 static void msk_intr_hwerr(struct msk_softc *);
269 #ifndef __NO_STRICT_ALIGNMENT
270 static __inline void msk_fixup_rx(struct mbuf *);
271 #endif
272 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
273 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
274 static void msk_txeof(struct msk_if_softc *, int);
275 static int msk_encap(struct msk_if_softc *, struct mbuf **);
276 static void msk_tx_task(void *, int);
277 static void msk_start(struct ifnet *);
278 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
279 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
280 static void msk_set_rambuffer(struct msk_if_softc *);
281 static void msk_set_tx_stfwd(struct msk_if_softc *);
282 static void msk_init(void *);
283 static void msk_init_locked(struct msk_if_softc *);
284 static void msk_stop(struct msk_if_softc *);
285 static void msk_watchdog(struct msk_if_softc *);
286 static int msk_mediachange(struct ifnet *);
287 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
288 static void msk_phy_power(struct msk_softc *, int);
289 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
290 static int msk_status_dma_alloc(struct msk_softc *);
291 static void msk_status_dma_free(struct msk_softc *);
292 static int msk_txrx_dma_alloc(struct msk_if_softc *);
293 static int msk_rx_dma_jalloc(struct msk_if_softc *);
294 static void msk_txrx_dma_free(struct msk_if_softc *);
295 static void msk_rx_dma_jfree(struct msk_if_softc *);
296 static int msk_init_rx_ring(struct msk_if_softc *);
297 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
298 static void msk_init_tx_ring(struct msk_if_softc *);
299 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
300 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
301 static int msk_newbuf(struct msk_if_softc *, int);
302 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
303 
304 static int msk_phy_readreg(struct msk_if_softc *, int, int);
305 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
306 static int msk_miibus_readreg(device_t, int, int);
307 static int msk_miibus_writereg(device_t, int, int, int);
308 static void msk_miibus_statchg(device_t);
309 
310 static void msk_rxfilter(struct msk_if_softc *);
311 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
312 
313 static void msk_stats_clear(struct msk_if_softc *);
314 static void msk_stats_update(struct msk_if_softc *);
315 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
316 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
317 static void msk_sysctl_node(struct msk_if_softc *);
318 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
319 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
320 
321 static device_method_t mskc_methods[] = {
322 	/* Device interface */
323 	DEVMETHOD(device_probe,		mskc_probe),
324 	DEVMETHOD(device_attach,	mskc_attach),
325 	DEVMETHOD(device_detach,	mskc_detach),
326 	DEVMETHOD(device_suspend,	mskc_suspend),
327 	DEVMETHOD(device_resume,	mskc_resume),
328 	DEVMETHOD(device_shutdown,	mskc_shutdown),
329 
330 	/* bus interface */
331 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
332 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
333 
334 	{ NULL, NULL }
335 };
336 
337 static driver_t mskc_driver = {
338 	"mskc",
339 	mskc_methods,
340 	sizeof(struct msk_softc)
341 };
342 
343 static devclass_t mskc_devclass;
344 
345 static device_method_t msk_methods[] = {
346 	/* Device interface */
347 	DEVMETHOD(device_probe,		msk_probe),
348 	DEVMETHOD(device_attach,	msk_attach),
349 	DEVMETHOD(device_detach,	msk_detach),
350 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
351 
352 	/* bus interface */
353 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
354 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
355 
356 	/* MII interface */
357 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
358 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
359 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
360 
361 	{ NULL, NULL }
362 };
363 
364 static driver_t msk_driver = {
365 	"msk",
366 	msk_methods,
367 	sizeof(struct msk_if_softc)
368 };
369 
370 static devclass_t msk_devclass;
371 
372 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
373 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
374 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
375 
376 static struct resource_spec msk_res_spec_io[] = {
377 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
378 	{ -1,			0,		0 }
379 };
380 
381 static struct resource_spec msk_res_spec_mem[] = {
382 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
383 	{ -1,			0,		0 }
384 };
385 
386 static struct resource_spec msk_irq_spec_legacy[] = {
387 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
388 	{ -1,			0,		0 }
389 };
390 
391 static struct resource_spec msk_irq_spec_msi[] = {
392 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
393 	{ -1,			0,		0 }
394 };
395 
396 static struct resource_spec msk_irq_spec_msi2[] = {
397 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
398 	{ SYS_RES_IRQ,		2,		RF_ACTIVE },
399 	{ -1,			0,		0 }
400 };
401 
402 static int
403 msk_miibus_readreg(device_t dev, int phy, int reg)
404 {
405 	struct msk_if_softc *sc_if;
406 
407 	if (phy != PHY_ADDR_MARV)
408 		return (0);
409 
410 	sc_if = device_get_softc(dev);
411 
412 	return (msk_phy_readreg(sc_if, phy, reg));
413 }
414 
415 static int
416 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
417 {
418 	struct msk_softc *sc;
419 	int i, val;
420 
421 	sc = sc_if->msk_softc;
422 
423         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
424 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
425 
426 	for (i = 0; i < MSK_TIMEOUT; i++) {
427 		DELAY(1);
428 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
429 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
430 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
431 			break;
432 		}
433 	}
434 
435 	if (i == MSK_TIMEOUT) {
436 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
437 		val = 0;
438 	}
439 
440 	return (val);
441 }
442 
443 static int
444 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
445 {
446 	struct msk_if_softc *sc_if;
447 
448 	if (phy != PHY_ADDR_MARV)
449 		return (0);
450 
451 	sc_if = device_get_softc(dev);
452 
453 	return (msk_phy_writereg(sc_if, phy, reg, val));
454 }
455 
456 static int
457 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
458 {
459 	struct msk_softc *sc;
460 	int i;
461 
462 	sc = sc_if->msk_softc;
463 
464 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
465         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
466 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
467 	for (i = 0; i < MSK_TIMEOUT; i++) {
468 		DELAY(1);
469 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
470 		    GM_SMI_CT_BUSY) == 0)
471 			break;
472 	}
473 	if (i == MSK_TIMEOUT)
474 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
475 
476 	return (0);
477 }
478 
479 static void
480 msk_miibus_statchg(device_t dev)
481 {
482 	struct msk_softc *sc;
483 	struct msk_if_softc *sc_if;
484 	struct mii_data *mii;
485 	struct ifnet *ifp;
486 	uint32_t gmac;
487 
488 	sc_if = device_get_softc(dev);
489 	sc = sc_if->msk_softc;
490 
491 	MSK_IF_LOCK_ASSERT(sc_if);
492 
493 	mii = device_get_softc(sc_if->msk_miibus);
494 	ifp = sc_if->msk_ifp;
495 	if (mii == NULL || ifp == NULL ||
496 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
497 		return;
498 
499 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
500 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
501 	    (IFM_AVALID | IFM_ACTIVE)) {
502 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
503 		case IFM_10_T:
504 		case IFM_100_TX:
505 			sc_if->msk_flags |= MSK_FLAG_LINK;
506 			break;
507 		case IFM_1000_T:
508 		case IFM_1000_SX:
509 		case IFM_1000_LX:
510 		case IFM_1000_CX:
511 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
512 				sc_if->msk_flags |= MSK_FLAG_LINK;
513 			break;
514 		default:
515 			break;
516 		}
517 	}
518 
519 	if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) {
520 		/* Enable Tx FIFO Underrun. */
521 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
522 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
523 		/*
524 		 * Because mii(4) notify msk(4) that it detected link status
525 		 * change, there is no need to enable automatic
526 		 * speed/flow-control/duplex updates.
527 		 */
528 		gmac = GM_GPCR_AU_ALL_DIS;
529 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
530 		case IFM_1000_SX:
531 		case IFM_1000_T:
532 			gmac |= GM_GPCR_SPEED_1000;
533 			break;
534 		case IFM_100_TX:
535 			gmac |= GM_GPCR_SPEED_100;
536 			break;
537 		case IFM_10_T:
538 			break;
539 		}
540 
541 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
542 			gmac |= GM_GPCR_DUP_FULL;
543 		/* Disable Rx flow control. */
544 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
545 			gmac |= GM_GPCR_FC_RX_DIS;
546 		/* Disable Tx flow control. */
547 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
548 			gmac |= GM_GPCR_FC_TX_DIS;
549 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
550 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
551 		/* Read again to ensure writing. */
552 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
553 
554 		gmac = GMC_PAUSE_ON;
555 		if (((mii->mii_media_active & IFM_GMASK) &
556 		    (IFM_FLAG0 | IFM_FLAG1)) == 0)
557 			gmac = GMC_PAUSE_OFF;
558 		/* Diable pause for 10/100 Mbps in half-duplex mode. */
559 		if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
560 		    (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
561 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
562 			gmac = GMC_PAUSE_OFF;
563 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
564 
565 		/* Enable PHY interrupt for FIFO underrun/overflow. */
566 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
567 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
568 	} else {
569 		/*
570 		 * Link state changed to down.
571 		 * Disable PHY interrupts.
572 		 */
573 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
574 		/* Disable Rx/Tx MAC. */
575 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
576 		if ((GM_GPCR_RX_ENA | GM_GPCR_TX_ENA) != 0) {
577 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
578 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
579 			/* Read again to ensure writing. */
580 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
581 		}
582 	}
583 }
584 
585 static void
586 msk_rxfilter(struct msk_if_softc *sc_if)
587 {
588 	struct msk_softc *sc;
589 	struct ifnet *ifp;
590 	struct ifmultiaddr *ifma;
591 	uint32_t mchash[2];
592 	uint32_t crc;
593 	uint16_t mode;
594 
595 	sc = sc_if->msk_softc;
596 
597 	MSK_IF_LOCK_ASSERT(sc_if);
598 
599 	ifp = sc_if->msk_ifp;
600 
601 	bzero(mchash, sizeof(mchash));
602 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
603 	if ((ifp->if_flags & IFF_PROMISC) != 0)
604 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
605 	else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
606 		mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
607 		mchash[0] = 0xffff;
608 		mchash[1] = 0xffff;
609 	} else {
610 		mode |= GM_RXCR_UCF_ENA;
611 		if_maddr_rlock(ifp);
612 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
613 			if (ifma->ifma_addr->sa_family != AF_LINK)
614 				continue;
615 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
616 			    ifma->ifma_addr), ETHER_ADDR_LEN);
617 			/* Just want the 6 least significant bits. */
618 			crc &= 0x3f;
619 			/* Set the corresponding bit in the hash table. */
620 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
621 		}
622 		if_maddr_runlock(ifp);
623 		if (mchash[0] != 0 || mchash[1] != 0)
624 			mode |= GM_RXCR_MCF_ENA;
625 	}
626 
627 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
628 	    mchash[0] & 0xffff);
629 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
630 	    (mchash[0] >> 16) & 0xffff);
631 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
632 	    mchash[1] & 0xffff);
633 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
634 	    (mchash[1] >> 16) & 0xffff);
635 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
636 }
637 
638 static void
639 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
640 {
641 	struct msk_softc *sc;
642 
643 	sc = sc_if->msk_softc;
644 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
645 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
646 		    RX_VLAN_STRIP_ON);
647 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
648 		    TX_VLAN_TAG_ON);
649 	} else {
650 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
651 		    RX_VLAN_STRIP_OFF);
652 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
653 		    TX_VLAN_TAG_OFF);
654 	}
655 }
656 
657 static int
658 msk_init_rx_ring(struct msk_if_softc *sc_if)
659 {
660 	struct msk_ring_data *rd;
661 	struct msk_rxdesc *rxd;
662 	int i, prod;
663 
664 	MSK_IF_LOCK_ASSERT(sc_if);
665 
666 	sc_if->msk_cdata.msk_rx_cons = 0;
667 	sc_if->msk_cdata.msk_rx_prod = 0;
668 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
669 
670 	rd = &sc_if->msk_rdata;
671 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
672 	prod = sc_if->msk_cdata.msk_rx_prod;
673 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
674 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
675 		rxd->rx_m = NULL;
676 		rxd->rx_le = &rd->msk_rx_ring[prod];
677 		if (msk_newbuf(sc_if, prod) != 0)
678 			return (ENOBUFS);
679 		MSK_INC(prod, MSK_RX_RING_CNT);
680 	}
681 
682 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
683 	    sc_if->msk_cdata.msk_rx_ring_map,
684 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
685 
686 	/* Update prefetch unit. */
687 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
688 	CSR_WRITE_2(sc_if->msk_softc,
689 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
690 	    sc_if->msk_cdata.msk_rx_prod);
691 
692 	return (0);
693 }
694 
695 static int
696 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
697 {
698 	struct msk_ring_data *rd;
699 	struct msk_rxdesc *rxd;
700 	int i, prod;
701 
702 	MSK_IF_LOCK_ASSERT(sc_if);
703 
704 	sc_if->msk_cdata.msk_rx_cons = 0;
705 	sc_if->msk_cdata.msk_rx_prod = 0;
706 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
707 
708 	rd = &sc_if->msk_rdata;
709 	bzero(rd->msk_jumbo_rx_ring,
710 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
711 	prod = sc_if->msk_cdata.msk_rx_prod;
712 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
713 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
714 		rxd->rx_m = NULL;
715 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
716 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
717 			return (ENOBUFS);
718 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
719 	}
720 
721 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
722 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
723 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
724 
725 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
726 	CSR_WRITE_2(sc_if->msk_softc,
727 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
728 	    sc_if->msk_cdata.msk_rx_prod);
729 
730 	return (0);
731 }
732 
733 static void
734 msk_init_tx_ring(struct msk_if_softc *sc_if)
735 {
736 	struct msk_ring_data *rd;
737 	struct msk_txdesc *txd;
738 	int i;
739 
740 	sc_if->msk_cdata.msk_tso_mtu = 0;
741 	sc_if->msk_cdata.msk_tx_prod = 0;
742 	sc_if->msk_cdata.msk_tx_cons = 0;
743 	sc_if->msk_cdata.msk_tx_cnt = 0;
744 
745 	rd = &sc_if->msk_rdata;
746 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
747 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
748 		txd = &sc_if->msk_cdata.msk_txdesc[i];
749 		txd->tx_m = NULL;
750 		txd->tx_le = &rd->msk_tx_ring[i];
751 	}
752 
753 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
754 	    sc_if->msk_cdata.msk_tx_ring_map,
755 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
756 }
757 
758 static __inline void
759 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
760 {
761 	struct msk_rx_desc *rx_le;
762 	struct msk_rxdesc *rxd;
763 	struct mbuf *m;
764 
765 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
766 	m = rxd->rx_m;
767 	rx_le = rxd->rx_le;
768 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
769 }
770 
771 static __inline void
772 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
773 {
774 	struct msk_rx_desc *rx_le;
775 	struct msk_rxdesc *rxd;
776 	struct mbuf *m;
777 
778 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
779 	m = rxd->rx_m;
780 	rx_le = rxd->rx_le;
781 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
782 }
783 
784 static int
785 msk_newbuf(struct msk_if_softc *sc_if, int idx)
786 {
787 	struct msk_rx_desc *rx_le;
788 	struct msk_rxdesc *rxd;
789 	struct mbuf *m;
790 	bus_dma_segment_t segs[1];
791 	bus_dmamap_t map;
792 	int nsegs;
793 
794 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
795 	if (m == NULL)
796 		return (ENOBUFS);
797 
798 	m->m_len = m->m_pkthdr.len = MCLBYTES;
799 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
800 		m_adj(m, ETHER_ALIGN);
801 #ifndef __NO_STRICT_ALIGNMENT
802 	else
803 		m_adj(m, MSK_RX_BUF_ALIGN);
804 #endif
805 
806 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
807 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
808 	    BUS_DMA_NOWAIT) != 0) {
809 		m_freem(m);
810 		return (ENOBUFS);
811 	}
812 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
813 
814 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
815 	if (rxd->rx_m != NULL) {
816 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
817 		    BUS_DMASYNC_POSTREAD);
818 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
819 	}
820 	map = rxd->rx_dmamap;
821 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
822 	sc_if->msk_cdata.msk_rx_sparemap = map;
823 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
824 	    BUS_DMASYNC_PREREAD);
825 	rxd->rx_m = m;
826 	rx_le = rxd->rx_le;
827 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
828 	rx_le->msk_control =
829 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
830 
831 	return (0);
832 }
833 
834 static int
835 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
836 {
837 	struct msk_rx_desc *rx_le;
838 	struct msk_rxdesc *rxd;
839 	struct mbuf *m;
840 	bus_dma_segment_t segs[1];
841 	bus_dmamap_t map;
842 	int nsegs;
843 
844 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
845 	if (m == NULL)
846 		return (ENOBUFS);
847 	if ((m->m_flags & M_EXT) == 0) {
848 		m_freem(m);
849 		return (ENOBUFS);
850 	}
851 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
852 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
853 		m_adj(m, ETHER_ALIGN);
854 #ifndef __NO_STRICT_ALIGNMENT
855 	else
856 		m_adj(m, MSK_RX_BUF_ALIGN);
857 #endif
858 
859 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
860 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
861 	    BUS_DMA_NOWAIT) != 0) {
862 		m_freem(m);
863 		return (ENOBUFS);
864 	}
865 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
866 
867 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
868 	if (rxd->rx_m != NULL) {
869 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
870 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
871 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
872 		    rxd->rx_dmamap);
873 	}
874 	map = rxd->rx_dmamap;
875 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
876 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
877 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
878 	    BUS_DMASYNC_PREREAD);
879 	rxd->rx_m = m;
880 	rx_le = rxd->rx_le;
881 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
882 	rx_le->msk_control =
883 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
884 
885 	return (0);
886 }
887 
888 /*
889  * Set media options.
890  */
891 static int
892 msk_mediachange(struct ifnet *ifp)
893 {
894 	struct msk_if_softc *sc_if;
895 	struct mii_data	*mii;
896 	int error;
897 
898 	sc_if = ifp->if_softc;
899 
900 	MSK_IF_LOCK(sc_if);
901 	mii = device_get_softc(sc_if->msk_miibus);
902 	error = mii_mediachg(mii);
903 	MSK_IF_UNLOCK(sc_if);
904 
905 	return (error);
906 }
907 
908 /*
909  * Report current media status.
910  */
911 static void
912 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
913 {
914 	struct msk_if_softc *sc_if;
915 	struct mii_data	*mii;
916 
917 	sc_if = ifp->if_softc;
918 	MSK_IF_LOCK(sc_if);
919 	if ((ifp->if_flags & IFF_UP) == 0) {
920 		MSK_IF_UNLOCK(sc_if);
921 		return;
922 	}
923 	mii = device_get_softc(sc_if->msk_miibus);
924 
925 	mii_pollstat(mii);
926 	MSK_IF_UNLOCK(sc_if);
927 	ifmr->ifm_active = mii->mii_media_active;
928 	ifmr->ifm_status = mii->mii_media_status;
929 }
930 
931 static int
932 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
933 {
934 	struct msk_if_softc *sc_if;
935 	struct ifreq *ifr;
936 	struct mii_data	*mii;
937 	int error, mask;
938 
939 	sc_if = ifp->if_softc;
940 	ifr = (struct ifreq *)data;
941 	error = 0;
942 
943 	switch(command) {
944 	case SIOCSIFMTU:
945 		MSK_IF_LOCK(sc_if);
946 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
947 			error = EINVAL;
948 		else if (ifp->if_mtu != ifr->ifr_mtu) {
949  			if (ifr->ifr_mtu > ETHERMTU) {
950 				if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
951 					error = EINVAL;
952 					MSK_IF_UNLOCK(sc_if);
953 					break;
954 				}
955 				if ((sc_if->msk_flags &
956 				    MSK_FLAG_JUMBO_NOCSUM) != 0) {
957 					ifp->if_hwassist &=
958 					    ~(MSK_CSUM_FEATURES | CSUM_TSO);
959 					ifp->if_capenable &=
960 					    ~(IFCAP_TSO4 | IFCAP_TXCSUM);
961 					VLAN_CAPABILITIES(ifp);
962 				}
963 			}
964 			ifp->if_mtu = ifr->ifr_mtu;
965 			msk_init_locked(sc_if);
966 		}
967 		MSK_IF_UNLOCK(sc_if);
968 		break;
969 	case SIOCSIFFLAGS:
970 		MSK_IF_LOCK(sc_if);
971 		if ((ifp->if_flags & IFF_UP) != 0) {
972 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
973 			    ((ifp->if_flags ^ sc_if->msk_if_flags) &
974 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
975 				msk_rxfilter(sc_if);
976 			else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0)
977 				msk_init_locked(sc_if);
978 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
979 			msk_stop(sc_if);
980 		sc_if->msk_if_flags = ifp->if_flags;
981 		MSK_IF_UNLOCK(sc_if);
982 		break;
983 	case SIOCADDMULTI:
984 	case SIOCDELMULTI:
985 		MSK_IF_LOCK(sc_if);
986 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
987 			msk_rxfilter(sc_if);
988 		MSK_IF_UNLOCK(sc_if);
989 		break;
990 	case SIOCGIFMEDIA:
991 	case SIOCSIFMEDIA:
992 		mii = device_get_softc(sc_if->msk_miibus);
993 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
994 		break;
995 	case SIOCSIFCAP:
996 		MSK_IF_LOCK(sc_if);
997 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
998 		if ((mask & IFCAP_TXCSUM) != 0 &&
999 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1000 			ifp->if_capenable ^= IFCAP_TXCSUM;
1001 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
1002 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
1003 			else
1004 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
1005 		}
1006 		if ((mask & IFCAP_RXCSUM) != 0 &&
1007 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
1008 			ifp->if_capenable ^= IFCAP_RXCSUM;
1009 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1010 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
1011 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1012 			msk_setvlan(sc_if, ifp);
1013 		}
1014 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1015 		    (IFCAP_VLAN_HWCSUM & ifp->if_capabilities) != 0)
1016 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1017 		if ((mask & IFCAP_TSO4) != 0 &&
1018 		    (IFCAP_TSO4 & ifp->if_capabilities) != 0) {
1019 			ifp->if_capenable ^= IFCAP_TSO4;
1020 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1021 				ifp->if_hwassist |= CSUM_TSO;
1022 			else
1023 				ifp->if_hwassist &= ~CSUM_TSO;
1024 		}
1025 		if (ifp->if_mtu > ETHERMTU &&
1026 		    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
1027 			ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
1028 			ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1029 		}
1030 
1031 		VLAN_CAPABILITIES(ifp);
1032 		MSK_IF_UNLOCK(sc_if);
1033 		break;
1034 	default:
1035 		error = ether_ioctl(ifp, command, data);
1036 		break;
1037 	}
1038 
1039 	return (error);
1040 }
1041 
1042 static int
1043 mskc_probe(device_t dev)
1044 {
1045 	struct msk_product *mp;
1046 	uint16_t vendor, devid;
1047 	int i;
1048 
1049 	vendor = pci_get_vendor(dev);
1050 	devid = pci_get_device(dev);
1051 	mp = msk_products;
1052 	for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
1053 	    i++, mp++) {
1054 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1055 			device_set_desc(dev, mp->msk_name);
1056 			return (BUS_PROBE_DEFAULT);
1057 		}
1058 	}
1059 
1060 	return (ENXIO);
1061 }
1062 
1063 static int
1064 mskc_setup_rambuffer(struct msk_softc *sc)
1065 {
1066 	int next;
1067 	int i;
1068 
1069 	/* Get adapter SRAM size. */
1070 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1071 	if (bootverbose)
1072 		device_printf(sc->msk_dev,
1073 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1074 	if (sc->msk_ramsize == 0)
1075 		return (0);
1076 
1077 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1078 	/*
1079 	 * Give receiver 2/3 of memory and round down to the multiple
1080 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
1081 	 * of 1024.
1082 	 */
1083 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1084 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1085 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1086 		sc->msk_rxqstart[i] = next;
1087 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1088 		next = sc->msk_rxqend[i] + 1;
1089 		sc->msk_txqstart[i] = next;
1090 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1091 		next = sc->msk_txqend[i] + 1;
1092 		if (bootverbose) {
1093 			device_printf(sc->msk_dev,
1094 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1095 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1096 			    sc->msk_rxqend[i]);
1097 			device_printf(sc->msk_dev,
1098 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1099 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1100 			    sc->msk_txqend[i]);
1101 		}
1102 	}
1103 
1104 	return (0);
1105 }
1106 
1107 static void
1108 msk_phy_power(struct msk_softc *sc, int mode)
1109 {
1110 	uint32_t our, val;
1111 	int i;
1112 
1113 	switch (mode) {
1114 	case MSK_PHY_POWERUP:
1115 		/* Switch power to VCC (WA for VAUX problem). */
1116 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1117 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1118 		/* Disable Core Clock Division, set Clock Select to 0. */
1119 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1120 
1121 		val = 0;
1122 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1123 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1124 			/* Enable bits are inverted. */
1125 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1126 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1127 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1128 		}
1129 		/*
1130 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1131 		 */
1132 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1133 
1134 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1135 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1136 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1137 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1138 				/* Deassert Low Power for 1st PHY. */
1139 				val |= PCI_Y2_PHY1_COMA;
1140 				if (sc->msk_num_port > 1)
1141 					val |= PCI_Y2_PHY2_COMA;
1142 			}
1143 		}
1144 		/* Release PHY from PowerDown/COMA mode. */
1145 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1146 		switch (sc->msk_hw_id) {
1147 		case CHIP_ID_YUKON_EC_U:
1148 		case CHIP_ID_YUKON_EX:
1149 		case CHIP_ID_YUKON_FE_P:
1150 		case CHIP_ID_YUKON_UL_2:
1151 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_OFF);
1152 
1153 			/* Enable all clocks. */
1154 			pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1155 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1156 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1157 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1158 			/* Set all bits to 0 except bits 15..12. */
1159 			pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1160 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_5, 4);
1161 			our &= PCI_CTL_TIM_VMAIN_AV_MSK;
1162 			pci_write_config(sc->msk_dev, PCI_OUR_REG_5, our, 4);
1163 			pci_write_config(sc->msk_dev, PCI_CFG_REG_1, 0, 4);
1164 			/*
1165 			 * Disable status race, workaround for
1166 			 * Yukon EC Ultra & Yukon EX.
1167 			 */
1168 			val = CSR_READ_4(sc, B2_GP_IO);
1169 			val |= GLB_GPIO_STAT_RACE_DIS;
1170 			CSR_WRITE_4(sc, B2_GP_IO, val);
1171 			CSR_READ_4(sc, B2_GP_IO);
1172 			break;
1173 		default:
1174 			break;
1175 		}
1176 		for (i = 0; i < sc->msk_num_port; i++) {
1177 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1178 			    GMLC_RST_SET);
1179 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1180 			    GMLC_RST_CLR);
1181 		}
1182 		break;
1183 	case MSK_PHY_POWERDOWN:
1184 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1185 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1186 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1187 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1188 			val &= ~PCI_Y2_PHY1_COMA;
1189 			if (sc->msk_num_port > 1)
1190 				val &= ~PCI_Y2_PHY2_COMA;
1191 		}
1192 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1193 
1194 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1195 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1196 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1197 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1198 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1199 			/* Enable bits are inverted. */
1200 			val = 0;
1201 		}
1202 		/*
1203 		 * Disable PCI & Core Clock, disable clock gating for
1204 		 * both Links.
1205 		 */
1206 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1207 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1208 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1209 		break;
1210 	default:
1211 		break;
1212 	}
1213 }
1214 
1215 static void
1216 mskc_reset(struct msk_softc *sc)
1217 {
1218 	bus_addr_t addr;
1219 	uint16_t status;
1220 	uint32_t val;
1221 	int i;
1222 
1223 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1224 
1225 	/* Disable ASF. */
1226 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX) {
1227 		status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1228 		/* Clear AHB bridge & microcontroller reset. */
1229 		status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1230 		    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1231 		/* Clear ASF microcontroller state. */
1232 		status &= ~ Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1233 		CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1234 	} else
1235 		CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1236 	CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1237 
1238 	/*
1239 	 * Since we disabled ASF, S/W reset is required for Power Management.
1240 	 */
1241 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1242 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1243 
1244 	/* Clear all error bits in the PCI status register. */
1245 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1246 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1247 
1248 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1249 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1250 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1251 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1252 
1253 	switch (sc->msk_bustype) {
1254 	case MSK_PEX_BUS:
1255 		/* Clear all PEX errors. */
1256 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1257 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1258 		if ((val & PEX_RX_OV) != 0) {
1259 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1260 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1261 		}
1262 		break;
1263 	case MSK_PCI_BUS:
1264 	case MSK_PCIX_BUS:
1265 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1266 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1267 		if (val == 0)
1268 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1269 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1270 			/* Set Cache Line Size opt. */
1271 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1272 			val |= PCI_CLS_OPT;
1273 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1274 		}
1275 		break;
1276 	}
1277 	/* Set PHY power state. */
1278 	msk_phy_power(sc, MSK_PHY_POWERUP);
1279 
1280 	/* Reset GPHY/GMAC Control */
1281 	for (i = 0; i < sc->msk_num_port; i++) {
1282 		/* GPHY Control reset. */
1283 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1284 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1285 		/* GMAC Control reset. */
1286 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1287 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1288 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1289 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX)
1290 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1291 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1292 			    GMC_BYP_RETR_ON);
1293 	}
1294 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1295 
1296 	/* LED On. */
1297 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1298 
1299 	/* Clear TWSI IRQ. */
1300 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1301 
1302 	/* Turn off hardware timer. */
1303 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1304 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1305 
1306 	/* Turn off descriptor polling. */
1307 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1308 
1309 	/* Turn off time stamps. */
1310 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1311 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1312 
1313 	/* Configure timeout values. */
1314 	for (i = 0; i < sc->msk_num_port; i++) {
1315 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1316 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1317 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1318 		    MSK_RI_TO_53);
1319 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1320 		    MSK_RI_TO_53);
1321 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1322 		    MSK_RI_TO_53);
1323 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1324 		    MSK_RI_TO_53);
1325 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1326 		    MSK_RI_TO_53);
1327 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1328 		    MSK_RI_TO_53);
1329 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1330 		    MSK_RI_TO_53);
1331 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1332 		    MSK_RI_TO_53);
1333 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1334 		    MSK_RI_TO_53);
1335 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1336 		    MSK_RI_TO_53);
1337 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1338 		    MSK_RI_TO_53);
1339 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1340 		    MSK_RI_TO_53);
1341 	}
1342 
1343 	/* Disable all interrupts. */
1344 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1345 	CSR_READ_4(sc, B0_HWE_IMSK);
1346 	CSR_WRITE_4(sc, B0_IMSK, 0);
1347 	CSR_READ_4(sc, B0_IMSK);
1348 
1349         /*
1350          * On dual port PCI-X card, there is an problem where status
1351          * can be received out of order due to split transactions.
1352          */
1353 	if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
1354 		int pcix;
1355 		uint16_t pcix_cmd;
1356 
1357 		if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &pcix) == 0) {
1358 			pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
1359 			/* Clear Max Outstanding Split Transactions. */
1360 			pcix_cmd &= ~0x70;
1361 			CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1362 			pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
1363 			CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1364 		}
1365         }
1366 	if (sc->msk_bustype == MSK_PEX_BUS) {
1367 		uint16_t v, width;
1368 
1369 		v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
1370 		/* Change Max. Read Request Size to 4096 bytes. */
1371 		v &= ~PEX_DC_MAX_RRS_MSK;
1372 		v |= PEX_DC_MAX_RD_RQ_SIZE(5);
1373 		pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
1374 		width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
1375 		width = (width & PEX_LS_LINK_WI_MSK) >> 4;
1376 		v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
1377 		v = (v & PEX_LS_LINK_WI_MSK) >> 4;
1378 		if (v != width)
1379 			device_printf(sc->msk_dev,
1380 			    "negotiated width of link(x%d) != "
1381 			    "max. width of link(x%d)\n", width, v);
1382 	}
1383 
1384 	/* Clear status list. */
1385 	bzero(sc->msk_stat_ring,
1386 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1387 	sc->msk_stat_cons = 0;
1388 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1389 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1390 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1391 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1392 	/* Set the status list base address. */
1393 	addr = sc->msk_stat_ring_paddr;
1394 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1395 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1396 	/* Set the status list last index. */
1397 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1398 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1399 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1400 		/* WA for dev. #4.3 */
1401 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1402 		/* WA for dev. #4.18 */
1403 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1404 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1405 	} else {
1406 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1407 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1408 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1409 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1410 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1411 		else
1412 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1413 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1414 	}
1415 	/*
1416 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1417 	 */
1418 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1419 
1420 	/* Enable status unit. */
1421 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1422 
1423 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1424 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1425 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1426 }
1427 
1428 static int
1429 msk_probe(device_t dev)
1430 {
1431 	struct msk_softc *sc;
1432 	char desc[100];
1433 
1434 	sc = device_get_softc(device_get_parent(dev));
1435 	/*
1436 	 * Not much to do here. We always know there will be
1437 	 * at least one GMAC present, and if there are two,
1438 	 * mskc_attach() will create a second device instance
1439 	 * for us.
1440 	 */
1441 	snprintf(desc, sizeof(desc),
1442 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1443 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1444 	    sc->msk_hw_rev);
1445 	device_set_desc_copy(dev, desc);
1446 
1447 	return (BUS_PROBE_DEFAULT);
1448 }
1449 
1450 static int
1451 msk_attach(device_t dev)
1452 {
1453 	struct msk_softc *sc;
1454 	struct msk_if_softc *sc_if;
1455 	struct ifnet *ifp;
1456 	struct msk_mii_data *mmd;
1457 	int i, port, error;
1458 	uint8_t eaddr[6];
1459 
1460 	if (dev == NULL)
1461 		return (EINVAL);
1462 
1463 	error = 0;
1464 	sc_if = device_get_softc(dev);
1465 	sc = device_get_softc(device_get_parent(dev));
1466 	mmd = device_get_ivars(dev);
1467 	port = mmd->port;
1468 
1469 	sc_if->msk_if_dev = dev;
1470 	sc_if->msk_port = port;
1471 	sc_if->msk_softc = sc;
1472 	sc_if->msk_flags = sc->msk_pflags;
1473 	sc->msk_if[port] = sc_if;
1474 	/* Setup Tx/Rx queue register offsets. */
1475 	if (port == MSK_PORT_A) {
1476 		sc_if->msk_txq = Q_XA1;
1477 		sc_if->msk_txsq = Q_XS1;
1478 		sc_if->msk_rxq = Q_R1;
1479 	} else {
1480 		sc_if->msk_txq = Q_XA2;
1481 		sc_if->msk_txsq = Q_XS2;
1482 		sc_if->msk_rxq = Q_R2;
1483 	}
1484 
1485 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1486 	msk_sysctl_node(sc_if);
1487 
1488 	if ((error = msk_txrx_dma_alloc(sc_if) != 0))
1489 		goto fail;
1490 	msk_rx_dma_jalloc(sc_if);
1491 
1492 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1493 	if (ifp == NULL) {
1494 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1495 		error = ENOSPC;
1496 		goto fail;
1497 	}
1498 	ifp->if_softc = sc_if;
1499 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1500 	ifp->if_mtu = ETHERMTU;
1501 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1502 	/*
1503 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1504 	 * has serious bug in Rx checksum offload for all Yukon II family
1505 	 * hardware. It seems there is a workaround to make it work somtimes.
1506 	 * However, the workaround also have to check OP code sequences to
1507 	 * verify whether the OP code is correct. Sometimes it should compute
1508 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1509 	 * checksum computed by hardware. If you have to compute checksum
1510 	 * with software to verify the hardware's checksum why have hardware
1511 	 * compute the checksum? I think there is no reason to spend time to
1512 	 * make Rx checksum offload work on Yukon II hardware.
1513 	 */
1514 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1515 	/*
1516 	 * Enable Rx checksum offloading if controller support new
1517 	 * descriptor format.
1518 	 */
1519 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1520 	    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1521 		ifp->if_capabilities |= IFCAP_RXCSUM;
1522 	ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1523 	ifp->if_capenable = ifp->if_capabilities;
1524 	ifp->if_ioctl = msk_ioctl;
1525 	ifp->if_start = msk_start;
1526 	ifp->if_init = msk_init;
1527 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1528 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1529 	IFQ_SET_READY(&ifp->if_snd);
1530 
1531 	TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp);
1532 
1533 	/*
1534 	 * Get station address for this interface. Note that
1535 	 * dual port cards actually come with three station
1536 	 * addresses: one for each port, plus an extra. The
1537 	 * extra one is used by the SysKonnect driver software
1538 	 * as a 'virtual' station address for when both ports
1539 	 * are operating in failover mode. Currently we don't
1540 	 * use this extra address.
1541 	 */
1542 	MSK_IF_LOCK(sc_if);
1543 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1544 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1545 
1546 	/*
1547 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1548 	 */
1549 	MSK_IF_UNLOCK(sc_if);
1550 	ether_ifattach(ifp, eaddr);
1551 	MSK_IF_LOCK(sc_if);
1552 
1553 	/* VLAN capability setup */
1554 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1555 	if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) {
1556 		/*
1557 		 * Due to Tx checksum offload hardware bugs, msk(4) manually
1558 		 * computes checksum for short frames. For VLAN tagged frames
1559 		 * this workaround does not work so disable checksum offload
1560 		 * for VLAN interface.
1561 		 */
1562         	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
1563 		/*
1564 		 * Enable Rx checksum offloading for VLAN taggedd frames
1565 		 * if controller support new descriptor format.
1566 		 */
1567 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1568 		    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1569 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1570 	}
1571 	ifp->if_capenable = ifp->if_capabilities;
1572 
1573 	/*
1574 	 * Tell the upper layer(s) we support long frames.
1575 	 * Must appear after the call to ether_ifattach() because
1576 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1577 	 */
1578         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1579 
1580 	/*
1581 	 * Do miibus setup.
1582 	 */
1583 	MSK_IF_UNLOCK(sc_if);
1584 	error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
1585 	    msk_mediastatus);
1586 	if (error != 0) {
1587 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1588 		ether_ifdetach(ifp);
1589 		error = ENXIO;
1590 		goto fail;
1591 	}
1592 
1593 fail:
1594 	if (error != 0) {
1595 		/* Access should be ok even though lock has been dropped */
1596 		sc->msk_if[port] = NULL;
1597 		msk_detach(dev);
1598 	}
1599 
1600 	return (error);
1601 }
1602 
1603 /*
1604  * Attach the interface. Allocate softc structures, do ifmedia
1605  * setup and ethernet/BPF attach.
1606  */
1607 static int
1608 mskc_attach(device_t dev)
1609 {
1610 	struct msk_softc *sc;
1611 	struct msk_mii_data *mmd;
1612 	int error, msic, msir, reg;
1613 
1614 	sc = device_get_softc(dev);
1615 	sc->msk_dev = dev;
1616 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1617 	    MTX_DEF);
1618 
1619 	/*
1620 	 * Map control/status registers.
1621 	 */
1622 	pci_enable_busmaster(dev);
1623 
1624 	/* Allocate I/O resource */
1625 #ifdef MSK_USEIOSPACE
1626 	sc->msk_res_spec = msk_res_spec_io;
1627 #else
1628 	sc->msk_res_spec = msk_res_spec_mem;
1629 #endif
1630 	sc->msk_irq_spec = msk_irq_spec_legacy;
1631 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1632 	if (error) {
1633 		if (sc->msk_res_spec == msk_res_spec_mem)
1634 			sc->msk_res_spec = msk_res_spec_io;
1635 		else
1636 			sc->msk_res_spec = msk_res_spec_mem;
1637 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1638 		if (error) {
1639 			device_printf(dev, "couldn't allocate %s resources\n",
1640 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1641 			    "I/O");
1642 			mtx_destroy(&sc->msk_mtx);
1643 			return (ENXIO);
1644 		}
1645 	}
1646 
1647 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1648 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1649 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1650 	/* Bail out if chip is not recognized. */
1651 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1652 	    sc->msk_hw_id > CHIP_ID_YUKON_UL_2 ||
1653 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1654 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1655 		    sc->msk_hw_id, sc->msk_hw_rev);
1656 		mtx_destroy(&sc->msk_mtx);
1657 		return (ENXIO);
1658 	}
1659 
1660 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1661 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1662 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1663 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1664 	    "max number of Rx events to process");
1665 
1666 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1667 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1668 	    "process_limit", &sc->msk_process_limit);
1669 	if (error == 0) {
1670 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1671 		    sc->msk_process_limit > MSK_PROC_MAX) {
1672 			device_printf(dev, "process_limit value out of range; "
1673 			    "using default: %d\n", MSK_PROC_DEFAULT);
1674 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1675 		}
1676 	}
1677 
1678 	/* Soft reset. */
1679 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1680 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1681 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1682 	/* Check number of MACs. */
1683 	sc->msk_num_port = 1;
1684 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1685 	    CFG_DUAL_MAC_MSK) {
1686 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1687 			sc->msk_num_port++;
1688 	}
1689 
1690 	/* Check bus type. */
1691 	if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0)
1692 		sc->msk_bustype = MSK_PEX_BUS;
1693 	else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0)
1694 		sc->msk_bustype = MSK_PCIX_BUS;
1695 	else
1696 		sc->msk_bustype = MSK_PCI_BUS;
1697 
1698 	switch (sc->msk_hw_id) {
1699 	case CHIP_ID_YUKON_EC:
1700 		sc->msk_clock = 125;	/* 125 MHz */
1701 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1702 		break;
1703 	case CHIP_ID_YUKON_EC_U:
1704 		sc->msk_clock = 125;	/* 125 MHz */
1705 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM;
1706 		break;
1707 	case CHIP_ID_YUKON_EX:
1708 		sc->msk_clock = 125;	/* 125 MHz */
1709 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1710 		    MSK_FLAG_AUTOTX_CSUM;
1711 		/*
1712 		 * Yukon Extreme seems to have silicon bug for
1713 		 * automatic Tx checksum calculation capability.
1714 		 */
1715 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
1716 			sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM;
1717 		/*
1718 		 * Yukon Extreme A0 could not use store-and-forward
1719 		 * for jumbo frames, so disable Tx checksum
1720 		 * offloading for jumbo frames.
1721 		 */
1722 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
1723 			sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM;
1724 		break;
1725 	case CHIP_ID_YUKON_FE:
1726 		sc->msk_clock = 100;	/* 100 MHz */
1727 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1728 		break;
1729 	case CHIP_ID_YUKON_FE_P:
1730 		sc->msk_clock = 50;	/* 50 MHz */
1731 		sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 |
1732 		    MSK_FLAG_AUTOTX_CSUM;
1733 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1734 			/*
1735 			 * XXX
1736 			 * FE+ A0 has status LE writeback bug so msk(4)
1737 			 * does not rely on status word of received frame
1738 			 * in msk_rxeof() which in turn disables all
1739 			 * hardware assistance bits reported by the status
1740 			 * word as well as validity of the recevied frame.
1741 			 * Just pass received frames to upper stack with
1742 			 * minimal test and let upper stack handle them.
1743 			 */
1744 			sc->msk_pflags |= MSK_FLAG_NOHWVLAN |
1745 			    MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM;
1746 		}
1747 		break;
1748 	case CHIP_ID_YUKON_XL:
1749 		sc->msk_clock = 156;	/* 156 MHz */
1750 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1751 		break;
1752 	case CHIP_ID_YUKON_UL_2:
1753 		sc->msk_clock = 125;	/* 125 MHz */
1754 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1755 		break;
1756 	default:
1757 		sc->msk_clock = 156;	/* 156 MHz */
1758 		break;
1759 	}
1760 
1761 	/* Allocate IRQ resources. */
1762 	msic = pci_msi_count(dev);
1763 	if (bootverbose)
1764 		device_printf(dev, "MSI count : %d\n", msic);
1765 	/*
1766 	 * The Yukon II reports it can handle two messages, one for each
1767 	 * possible port.  We go ahead and allocate two messages and only
1768 	 * setup a handler for both if we have a dual port card.
1769 	 *
1770 	 * XXX: I haven't untangled the interrupt handler to handle dual
1771 	 * port cards with separate MSI messages, so for now I disable MSI
1772 	 * on dual port cards.
1773 	 */
1774 	if (legacy_intr != 0)
1775 		msi_disable = 1;
1776 	if (msi_disable == 0) {
1777 		switch (msic) {
1778 		case 2:
1779 		case 1: /* 88E8058 reports 1 MSI message */
1780 			msir = msic;
1781 			if (sc->msk_num_port == 1 &&
1782 			    pci_alloc_msi(dev, &msir) == 0) {
1783 				if (msic == msir) {
1784 					sc->msk_pflags |= MSK_FLAG_MSI;
1785 					sc->msk_irq_spec = msic == 2 ?
1786 					    msk_irq_spec_msi2 :
1787 					    msk_irq_spec_msi;
1788 				} else
1789 					pci_release_msi(dev);
1790 			}
1791 			break;
1792 		default:
1793 			device_printf(dev,
1794 			    "Unexpected number of MSI messages : %d\n", msic);
1795 			break;
1796 		}
1797 	}
1798 
1799 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1800 	if (error) {
1801 		device_printf(dev, "couldn't allocate IRQ resources\n");
1802 		goto fail;
1803 	}
1804 
1805 	if ((error = msk_status_dma_alloc(sc)) != 0)
1806 		goto fail;
1807 
1808 	/* Set base interrupt mask. */
1809 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1810 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1811 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1812 
1813 	/* Reset the adapter. */
1814 	mskc_reset(sc);
1815 
1816 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1817 		goto fail;
1818 
1819 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1820 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1821 		device_printf(dev, "failed to add child for PORT_A\n");
1822 		error = ENXIO;
1823 		goto fail;
1824 	}
1825 	mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1826 	if (mmd == NULL) {
1827 		device_printf(dev, "failed to allocate memory for "
1828 		    "ivars of PORT_A\n");
1829 		error = ENXIO;
1830 		goto fail;
1831 	}
1832 	mmd->port = MSK_PORT_A;
1833 	mmd->pmd = sc->msk_pmd;
1834 	 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S' || sc->msk_pmd == 'P')
1835 		mmd->mii_flags |= MIIF_HAVEFIBER;
1836 	device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd);
1837 
1838 	if (sc->msk_num_port > 1) {
1839 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1840 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1841 			device_printf(dev, "failed to add child for PORT_B\n");
1842 			error = ENXIO;
1843 			goto fail;
1844 		}
1845 		mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1846 		if (mmd == NULL) {
1847 			device_printf(dev, "failed to allocate memory for "
1848 			    "ivars of PORT_B\n");
1849 			error = ENXIO;
1850 			goto fail;
1851 		}
1852 		mmd->port = MSK_PORT_B;
1853 		mmd->pmd = sc->msk_pmd;
1854 	 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S' || sc->msk_pmd == 'P')
1855 			mmd->mii_flags |= MIIF_HAVEFIBER;
1856 		device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd);
1857 	}
1858 
1859 	error = bus_generic_attach(dev);
1860 	if (error) {
1861 		device_printf(dev, "failed to attach port(s)\n");
1862 		goto fail;
1863 	}
1864 
1865 	/* Hook interrupt last to avoid having to lock softc. */
1866 	if (legacy_intr)
1867 		error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1868 		    INTR_MPSAFE, NULL, msk_legacy_intr, sc,
1869 		    &sc->msk_intrhand[0]);
1870 	else {
1871 		TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc);
1872 		sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK,
1873 		    taskqueue_thread_enqueue, &sc->msk_tq);
1874 		taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq",
1875 		    device_get_nameunit(sc->msk_dev));
1876 		error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1877 		    INTR_MPSAFE, msk_intr, NULL, sc, &sc->msk_intrhand[0]);
1878 	}
1879 
1880 	if (error != 0) {
1881 		device_printf(dev, "couldn't set up interrupt handler\n");
1882 		if (legacy_intr == 0)
1883 			taskqueue_free(sc->msk_tq);
1884 		sc->msk_tq = NULL;
1885 		goto fail;
1886 	}
1887 fail:
1888 	if (error != 0)
1889 		mskc_detach(dev);
1890 
1891 	return (error);
1892 }
1893 
1894 /*
1895  * Shutdown hardware and free up resources. This can be called any
1896  * time after the mutex has been initialized. It is called in both
1897  * the error case in attach and the normal detach case so it needs
1898  * to be careful about only freeing resources that have actually been
1899  * allocated.
1900  */
1901 static int
1902 msk_detach(device_t dev)
1903 {
1904 	struct msk_softc *sc;
1905 	struct msk_if_softc *sc_if;
1906 	struct ifnet *ifp;
1907 
1908 	sc_if = device_get_softc(dev);
1909 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
1910 	    ("msk mutex not initialized in msk_detach"));
1911 	MSK_IF_LOCK(sc_if);
1912 
1913 	ifp = sc_if->msk_ifp;
1914 	if (device_is_attached(dev)) {
1915 		/* XXX */
1916 		sc_if->msk_flags |= MSK_FLAG_DETACH;
1917 		msk_stop(sc_if);
1918 		/* Can't hold locks while calling detach. */
1919 		MSK_IF_UNLOCK(sc_if);
1920 		callout_drain(&sc_if->msk_tick_ch);
1921 		taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task);
1922 		ether_ifdetach(ifp);
1923 		MSK_IF_LOCK(sc_if);
1924 	}
1925 
1926 	/*
1927 	 * We're generally called from mskc_detach() which is using
1928 	 * device_delete_child() to get to here. It's already trashed
1929 	 * miibus for us, so don't do it here or we'll panic.
1930 	 *
1931 	 * if (sc_if->msk_miibus != NULL) {
1932 	 * 	device_delete_child(dev, sc_if->msk_miibus);
1933 	 * 	sc_if->msk_miibus = NULL;
1934 	 * }
1935 	 */
1936 
1937 	msk_rx_dma_jfree(sc_if);
1938 	msk_txrx_dma_free(sc_if);
1939 	bus_generic_detach(dev);
1940 
1941 	if (ifp)
1942 		if_free(ifp);
1943 	sc = sc_if->msk_softc;
1944 	sc->msk_if[sc_if->msk_port] = NULL;
1945 	MSK_IF_UNLOCK(sc_if);
1946 
1947 	return (0);
1948 }
1949 
1950 static int
1951 mskc_detach(device_t dev)
1952 {
1953 	struct msk_softc *sc;
1954 
1955 	sc = device_get_softc(dev);
1956 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
1957 
1958 	if (device_is_alive(dev)) {
1959 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
1960 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
1961 			    M_DEVBUF);
1962 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
1963 		}
1964 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
1965 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
1966 			    M_DEVBUF);
1967 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
1968 		}
1969 		bus_generic_detach(dev);
1970 	}
1971 
1972 	/* Disable all interrupts. */
1973 	CSR_WRITE_4(sc, B0_IMSK, 0);
1974 	CSR_READ_4(sc, B0_IMSK);
1975 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1976 	CSR_READ_4(sc, B0_HWE_IMSK);
1977 
1978 	/* LED Off. */
1979 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1980 
1981 	/* Put hardware reset. */
1982 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1983 
1984 	msk_status_dma_free(sc);
1985 
1986 	if (legacy_intr == 0 && sc->msk_tq != NULL) {
1987 		taskqueue_drain(sc->msk_tq, &sc->msk_int_task);
1988 		taskqueue_free(sc->msk_tq);
1989 		sc->msk_tq = NULL;
1990 	}
1991 	if (sc->msk_intrhand[0]) {
1992 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1993 		sc->msk_intrhand[0] = NULL;
1994 	}
1995 	if (sc->msk_intrhand[1]) {
1996 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1997 		sc->msk_intrhand[1] = NULL;
1998 	}
1999 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
2000 	if ((sc->msk_pflags & MSK_FLAG_MSI) != 0)
2001 		pci_release_msi(dev);
2002 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
2003 	mtx_destroy(&sc->msk_mtx);
2004 
2005 	return (0);
2006 }
2007 
2008 struct msk_dmamap_arg {
2009 	bus_addr_t	msk_busaddr;
2010 };
2011 
2012 static void
2013 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2014 {
2015 	struct msk_dmamap_arg *ctx;
2016 
2017 	if (error != 0)
2018 		return;
2019 	ctx = arg;
2020 	ctx->msk_busaddr = segs[0].ds_addr;
2021 }
2022 
2023 /* Create status DMA region. */
2024 static int
2025 msk_status_dma_alloc(struct msk_softc *sc)
2026 {
2027 	struct msk_dmamap_arg ctx;
2028 	int error;
2029 
2030 	error = bus_dma_tag_create(
2031 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
2032 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
2033 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2034 		    BUS_SPACE_MAXADDR,		/* highaddr */
2035 		    NULL, NULL,			/* filter, filterarg */
2036 		    MSK_STAT_RING_SZ,		/* maxsize */
2037 		    1,				/* nsegments */
2038 		    MSK_STAT_RING_SZ,		/* maxsegsize */
2039 		    0,				/* flags */
2040 		    NULL, NULL,			/* lockfunc, lockarg */
2041 		    &sc->msk_stat_tag);
2042 	if (error != 0) {
2043 		device_printf(sc->msk_dev,
2044 		    "failed to create status DMA tag\n");
2045 		return (error);
2046 	}
2047 
2048 	/* Allocate DMA'able memory and load the DMA map for status ring. */
2049 	error = bus_dmamem_alloc(sc->msk_stat_tag,
2050 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
2051 	    BUS_DMA_ZERO, &sc->msk_stat_map);
2052 	if (error != 0) {
2053 		device_printf(sc->msk_dev,
2054 		    "failed to allocate DMA'able memory for status ring\n");
2055 		return (error);
2056 	}
2057 
2058 	ctx.msk_busaddr = 0;
2059 	error = bus_dmamap_load(sc->msk_stat_tag,
2060 	    sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
2061 	    msk_dmamap_cb, &ctx, 0);
2062 	if (error != 0) {
2063 		device_printf(sc->msk_dev,
2064 		    "failed to load DMA'able memory for status ring\n");
2065 		return (error);
2066 	}
2067 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
2068 
2069 	return (0);
2070 }
2071 
2072 static void
2073 msk_status_dma_free(struct msk_softc *sc)
2074 {
2075 
2076 	/* Destroy status block. */
2077 	if (sc->msk_stat_tag) {
2078 		if (sc->msk_stat_map) {
2079 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
2080 			if (sc->msk_stat_ring) {
2081 				bus_dmamem_free(sc->msk_stat_tag,
2082 				    sc->msk_stat_ring, sc->msk_stat_map);
2083 				sc->msk_stat_ring = NULL;
2084 			}
2085 			sc->msk_stat_map = NULL;
2086 		}
2087 		bus_dma_tag_destroy(sc->msk_stat_tag);
2088 		sc->msk_stat_tag = NULL;
2089 	}
2090 }
2091 
2092 static int
2093 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2094 {
2095 	struct msk_dmamap_arg ctx;
2096 	struct msk_txdesc *txd;
2097 	struct msk_rxdesc *rxd;
2098 	bus_size_t rxalign;
2099 	int error, i;
2100 
2101 	/* Create parent DMA tag. */
2102 	/*
2103 	 * XXX
2104 	 * It seems that Yukon II supports full 64bits DMA operations. But
2105 	 * it needs two descriptors(list elements) for 64bits DMA operations.
2106 	 * Since we don't know what DMA address mappings(32bits or 64bits)
2107 	 * would be used in advance for each mbufs, we limits its DMA space
2108 	 * to be in range of 32bits address space. Otherwise, we should check
2109 	 * what DMA address is used and chain another descriptor for the
2110 	 * 64bits DMA operation. This also means descriptor ring size is
2111 	 * variable. Limiting DMA address to be in 32bit address space greatly
2112 	 * simplyfies descriptor handling and possibly would increase
2113 	 * performance a bit due to efficient handling of descriptors.
2114 	 * Apart from harassing checksum offloading mechanisms, it seems
2115 	 * it's really bad idea to use a seperate descriptor for 64bit
2116 	 * DMA operation to save small descriptor memory. Anyway, I've
2117 	 * never seen these exotic scheme on ethernet interface hardware.
2118 	 */
2119 	error = bus_dma_tag_create(
2120 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2121 		    1, 0,			/* alignment, boundary */
2122 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2123 		    BUS_SPACE_MAXADDR,		/* highaddr */
2124 		    NULL, NULL,			/* filter, filterarg */
2125 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2126 		    0,				/* nsegments */
2127 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2128 		    0,				/* flags */
2129 		    NULL, NULL,			/* lockfunc, lockarg */
2130 		    &sc_if->msk_cdata.msk_parent_tag);
2131 	if (error != 0) {
2132 		device_printf(sc_if->msk_if_dev,
2133 		    "failed to create parent DMA tag\n");
2134 		goto fail;
2135 	}
2136 	/* Create tag for Tx ring. */
2137 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2138 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2139 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2140 		    BUS_SPACE_MAXADDR,		/* highaddr */
2141 		    NULL, NULL,			/* filter, filterarg */
2142 		    MSK_TX_RING_SZ,		/* maxsize */
2143 		    1,				/* nsegments */
2144 		    MSK_TX_RING_SZ,		/* maxsegsize */
2145 		    0,				/* flags */
2146 		    NULL, NULL,			/* lockfunc, lockarg */
2147 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2148 	if (error != 0) {
2149 		device_printf(sc_if->msk_if_dev,
2150 		    "failed to create Tx ring DMA tag\n");
2151 		goto fail;
2152 	}
2153 
2154 	/* Create tag for Rx ring. */
2155 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2156 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2157 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2158 		    BUS_SPACE_MAXADDR,		/* highaddr */
2159 		    NULL, NULL,			/* filter, filterarg */
2160 		    MSK_RX_RING_SZ,		/* maxsize */
2161 		    1,				/* nsegments */
2162 		    MSK_RX_RING_SZ,		/* maxsegsize */
2163 		    0,				/* flags */
2164 		    NULL, NULL,			/* lockfunc, lockarg */
2165 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2166 	if (error != 0) {
2167 		device_printf(sc_if->msk_if_dev,
2168 		    "failed to create Rx ring DMA tag\n");
2169 		goto fail;
2170 	}
2171 
2172 	/* Create tag for Tx buffers. */
2173 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2174 		    1, 0,			/* alignment, boundary */
2175 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2176 		    BUS_SPACE_MAXADDR,		/* highaddr */
2177 		    NULL, NULL,			/* filter, filterarg */
2178 		    MSK_TSO_MAXSIZE,		/* maxsize */
2179 		    MSK_MAXTXSEGS,		/* nsegments */
2180 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2181 		    0,				/* flags */
2182 		    NULL, NULL,			/* lockfunc, lockarg */
2183 		    &sc_if->msk_cdata.msk_tx_tag);
2184 	if (error != 0) {
2185 		device_printf(sc_if->msk_if_dev,
2186 		    "failed to create Tx DMA tag\n");
2187 		goto fail;
2188 	}
2189 
2190 	rxalign = 1;
2191 	/*
2192 	 * Workaround hardware hang which seems to happen when Rx buffer
2193 	 * is not aligned on multiple of FIFO word(8 bytes).
2194 	 */
2195 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2196 		rxalign = MSK_RX_BUF_ALIGN;
2197 	/* Create tag for Rx buffers. */
2198 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2199 		    rxalign, 0,			/* alignment, boundary */
2200 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2201 		    BUS_SPACE_MAXADDR,		/* highaddr */
2202 		    NULL, NULL,			/* filter, filterarg */
2203 		    MCLBYTES,			/* maxsize */
2204 		    1,				/* nsegments */
2205 		    MCLBYTES,			/* maxsegsize */
2206 		    0,				/* flags */
2207 		    NULL, NULL,			/* lockfunc, lockarg */
2208 		    &sc_if->msk_cdata.msk_rx_tag);
2209 	if (error != 0) {
2210 		device_printf(sc_if->msk_if_dev,
2211 		    "failed to create Rx DMA tag\n");
2212 		goto fail;
2213 	}
2214 
2215 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2216 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2217 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2218 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2219 	if (error != 0) {
2220 		device_printf(sc_if->msk_if_dev,
2221 		    "failed to allocate DMA'able memory for Tx ring\n");
2222 		goto fail;
2223 	}
2224 
2225 	ctx.msk_busaddr = 0;
2226 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2227 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2228 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2229 	if (error != 0) {
2230 		device_printf(sc_if->msk_if_dev,
2231 		    "failed to load DMA'able memory for Tx ring\n");
2232 		goto fail;
2233 	}
2234 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2235 
2236 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2237 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2238 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2239 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2240 	if (error != 0) {
2241 		device_printf(sc_if->msk_if_dev,
2242 		    "failed to allocate DMA'able memory for Rx ring\n");
2243 		goto fail;
2244 	}
2245 
2246 	ctx.msk_busaddr = 0;
2247 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2248 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2249 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2250 	if (error != 0) {
2251 		device_printf(sc_if->msk_if_dev,
2252 		    "failed to load DMA'able memory for Rx ring\n");
2253 		goto fail;
2254 	}
2255 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2256 
2257 	/* Create DMA maps for Tx buffers. */
2258 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2259 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2260 		txd->tx_m = NULL;
2261 		txd->tx_dmamap = NULL;
2262 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2263 		    &txd->tx_dmamap);
2264 		if (error != 0) {
2265 			device_printf(sc_if->msk_if_dev,
2266 			    "failed to create Tx dmamap\n");
2267 			goto fail;
2268 		}
2269 	}
2270 	/* Create DMA maps for Rx buffers. */
2271 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2272 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2273 		device_printf(sc_if->msk_if_dev,
2274 		    "failed to create spare Rx dmamap\n");
2275 		goto fail;
2276 	}
2277 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2278 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2279 		rxd->rx_m = NULL;
2280 		rxd->rx_dmamap = NULL;
2281 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2282 		    &rxd->rx_dmamap);
2283 		if (error != 0) {
2284 			device_printf(sc_if->msk_if_dev,
2285 			    "failed to create Rx dmamap\n");
2286 			goto fail;
2287 		}
2288 	}
2289 
2290 fail:
2291 	return (error);
2292 }
2293 
2294 static int
2295 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2296 {
2297 	struct msk_dmamap_arg ctx;
2298 	struct msk_rxdesc *jrxd;
2299 	bus_size_t rxalign;
2300 	int error, i;
2301 
2302 	if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
2303 		sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2304 		device_printf(sc_if->msk_if_dev,
2305 		    "disabling jumbo frame support\n");
2306 		return (0);
2307 	}
2308 	/* Create tag for jumbo Rx ring. */
2309 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2310 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2311 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2312 		    BUS_SPACE_MAXADDR,		/* highaddr */
2313 		    NULL, NULL,			/* filter, filterarg */
2314 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2315 		    1,				/* nsegments */
2316 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2317 		    0,				/* flags */
2318 		    NULL, NULL,			/* lockfunc, lockarg */
2319 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2320 	if (error != 0) {
2321 		device_printf(sc_if->msk_if_dev,
2322 		    "failed to create jumbo Rx ring DMA tag\n");
2323 		goto jumbo_fail;
2324 	}
2325 
2326 	rxalign = 1;
2327 	/*
2328 	 * Workaround hardware hang which seems to happen when Rx buffer
2329 	 * is not aligned on multiple of FIFO word(8 bytes).
2330 	 */
2331 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2332 		rxalign = MSK_RX_BUF_ALIGN;
2333 	/* Create tag for jumbo Rx buffers. */
2334 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2335 		    rxalign, 0,			/* alignment, boundary */
2336 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2337 		    BUS_SPACE_MAXADDR,		/* highaddr */
2338 		    NULL, NULL,			/* filter, filterarg */
2339 		    MJUM9BYTES,			/* maxsize */
2340 		    1,				/* nsegments */
2341 		    MJUM9BYTES,			/* maxsegsize */
2342 		    0,				/* flags */
2343 		    NULL, NULL,			/* lockfunc, lockarg */
2344 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2345 	if (error != 0) {
2346 		device_printf(sc_if->msk_if_dev,
2347 		    "failed to create jumbo Rx DMA tag\n");
2348 		goto jumbo_fail;
2349 	}
2350 
2351 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2352 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2353 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2354 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2355 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2356 	if (error != 0) {
2357 		device_printf(sc_if->msk_if_dev,
2358 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2359 		goto jumbo_fail;
2360 	}
2361 
2362 	ctx.msk_busaddr = 0;
2363 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2364 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2365 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2366 	    msk_dmamap_cb, &ctx, 0);
2367 	if (error != 0) {
2368 		device_printf(sc_if->msk_if_dev,
2369 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2370 		goto jumbo_fail;
2371 	}
2372 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2373 
2374 	/* Create DMA maps for jumbo Rx buffers. */
2375 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2376 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2377 		device_printf(sc_if->msk_if_dev,
2378 		    "failed to create spare jumbo Rx dmamap\n");
2379 		goto jumbo_fail;
2380 	}
2381 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2382 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2383 		jrxd->rx_m = NULL;
2384 		jrxd->rx_dmamap = NULL;
2385 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2386 		    &jrxd->rx_dmamap);
2387 		if (error != 0) {
2388 			device_printf(sc_if->msk_if_dev,
2389 			    "failed to create jumbo Rx dmamap\n");
2390 			goto jumbo_fail;
2391 		}
2392 	}
2393 
2394 	return (0);
2395 
2396 jumbo_fail:
2397 	msk_rx_dma_jfree(sc_if);
2398 	device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2399 	    "due to resource shortage\n");
2400 	sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2401 	return (error);
2402 }
2403 
2404 static void
2405 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2406 {
2407 	struct msk_txdesc *txd;
2408 	struct msk_rxdesc *rxd;
2409 	int i;
2410 
2411 	/* Tx ring. */
2412 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2413 		if (sc_if->msk_cdata.msk_tx_ring_map)
2414 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2415 			    sc_if->msk_cdata.msk_tx_ring_map);
2416 		if (sc_if->msk_cdata.msk_tx_ring_map &&
2417 		    sc_if->msk_rdata.msk_tx_ring)
2418 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2419 			    sc_if->msk_rdata.msk_tx_ring,
2420 			    sc_if->msk_cdata.msk_tx_ring_map);
2421 		sc_if->msk_rdata.msk_tx_ring = NULL;
2422 		sc_if->msk_cdata.msk_tx_ring_map = NULL;
2423 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2424 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2425 	}
2426 	/* Rx ring. */
2427 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2428 		if (sc_if->msk_cdata.msk_rx_ring_map)
2429 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2430 			    sc_if->msk_cdata.msk_rx_ring_map);
2431 		if (sc_if->msk_cdata.msk_rx_ring_map &&
2432 		    sc_if->msk_rdata.msk_rx_ring)
2433 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2434 			    sc_if->msk_rdata.msk_rx_ring,
2435 			    sc_if->msk_cdata.msk_rx_ring_map);
2436 		sc_if->msk_rdata.msk_rx_ring = NULL;
2437 		sc_if->msk_cdata.msk_rx_ring_map = NULL;
2438 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2439 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2440 	}
2441 	/* Tx buffers. */
2442 	if (sc_if->msk_cdata.msk_tx_tag) {
2443 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2444 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2445 			if (txd->tx_dmamap) {
2446 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2447 				    txd->tx_dmamap);
2448 				txd->tx_dmamap = NULL;
2449 			}
2450 		}
2451 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2452 		sc_if->msk_cdata.msk_tx_tag = NULL;
2453 	}
2454 	/* Rx buffers. */
2455 	if (sc_if->msk_cdata.msk_rx_tag) {
2456 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2457 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2458 			if (rxd->rx_dmamap) {
2459 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2460 				    rxd->rx_dmamap);
2461 				rxd->rx_dmamap = NULL;
2462 			}
2463 		}
2464 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2465 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2466 			    sc_if->msk_cdata.msk_rx_sparemap);
2467 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2468 		}
2469 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2470 		sc_if->msk_cdata.msk_rx_tag = NULL;
2471 	}
2472 	if (sc_if->msk_cdata.msk_parent_tag) {
2473 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2474 		sc_if->msk_cdata.msk_parent_tag = NULL;
2475 	}
2476 }
2477 
2478 static void
2479 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2480 {
2481 	struct msk_rxdesc *jrxd;
2482 	int i;
2483 
2484 	/* Jumbo Rx ring. */
2485 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2486 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2487 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2488 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2489 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2490 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2491 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2492 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2493 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2494 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2495 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2496 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2497 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2498 	}
2499 	/* Jumbo Rx buffers. */
2500 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2501 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2502 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2503 			if (jrxd->rx_dmamap) {
2504 				bus_dmamap_destroy(
2505 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2506 				    jrxd->rx_dmamap);
2507 				jrxd->rx_dmamap = NULL;
2508 			}
2509 		}
2510 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2511 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2512 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2513 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2514 		}
2515 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2516 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2517 	}
2518 }
2519 
2520 static int
2521 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2522 {
2523 	struct msk_txdesc *txd, *txd_last;
2524 	struct msk_tx_desc *tx_le;
2525 	struct mbuf *m;
2526 	bus_dmamap_t map;
2527 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2528 	uint32_t control, prod, si;
2529 	uint16_t offset, tcp_offset, tso_mtu;
2530 	int error, i, nseg, tso;
2531 
2532 	MSK_IF_LOCK_ASSERT(sc_if);
2533 
2534 	tcp_offset = offset = 0;
2535 	m = *m_head;
2536 	if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2537 	    (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) ||
2538 	    ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
2539 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) {
2540 		/*
2541 		 * Since mbuf has no protocol specific structure information
2542 		 * in it we have to inspect protocol information here to
2543 		 * setup TSO and checksum offload. I don't know why Marvell
2544 		 * made a such decision in chip design because other GigE
2545 		 * hardwares normally takes care of all these chores in
2546 		 * hardware. However, TSO performance of Yukon II is very
2547 		 * good such that it's worth to implement it.
2548 		 */
2549 		struct ether_header *eh;
2550 		struct ip *ip;
2551 		struct tcphdr *tcp;
2552 
2553 		if (M_WRITABLE(m) == 0) {
2554 			/* Get a writable copy. */
2555 			m = m_dup(*m_head, M_DONTWAIT);
2556 			m_freem(*m_head);
2557 			if (m == NULL) {
2558 				*m_head = NULL;
2559 				return (ENOBUFS);
2560 			}
2561 			*m_head = m;
2562 		}
2563 
2564 		offset = sizeof(struct ether_header);
2565 		m = m_pullup(m, offset);
2566 		if (m == NULL) {
2567 			*m_head = NULL;
2568 			return (ENOBUFS);
2569 		}
2570 		eh = mtod(m, struct ether_header *);
2571 		/* Check if hardware VLAN insertion is off. */
2572 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2573 			offset = sizeof(struct ether_vlan_header);
2574 			m = m_pullup(m, offset);
2575 			if (m == NULL) {
2576 				*m_head = NULL;
2577 				return (ENOBUFS);
2578 			}
2579 		}
2580 		m = m_pullup(m, offset + sizeof(struct ip));
2581 		if (m == NULL) {
2582 			*m_head = NULL;
2583 			return (ENOBUFS);
2584 		}
2585 		ip = (struct ip *)(mtod(m, char *) + offset);
2586 		offset += (ip->ip_hl << 2);
2587 		tcp_offset = offset;
2588 		/*
2589 		 * It seems that Yukon II has Tx checksum offload bug for
2590 		 * small TCP packets that's less than 60 bytes in size
2591 		 * (e.g. TCP window probe packet, pure ACK packet).
2592 		 * Common work around like padding with zeros to make the
2593 		 * frame minimum ethernet frame size didn't work at all.
2594 		 * Instead of disabling checksum offload completely we
2595 		 * resort to S/W checksum routine when we encounter short
2596 		 * TCP frames.
2597 		 * Short UDP packets appear to be handled correctly by
2598 		 * Yukon II. Also I assume this bug does not happen on
2599 		 * controllers that use newer descriptor format or
2600 		 * automatic Tx checksum calaulcation.
2601 		 */
2602 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2603 		    (m->m_pkthdr.len < MSK_MIN_FRAMELEN) &&
2604 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2605 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2606 			if (m == NULL) {
2607 				*m_head = NULL;
2608 				return (ENOBUFS);
2609 			}
2610 			*(uint16_t *)(m->m_data + offset +
2611 			    m->m_pkthdr.csum_data) = in_cksum_skip(m,
2612 			    m->m_pkthdr.len, offset);
2613 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2614 		}
2615 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2616 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2617 			if (m == NULL) {
2618 				*m_head = NULL;
2619 				return (ENOBUFS);
2620 			}
2621 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2622 			offset += (tcp->th_off << 2);
2623 		}
2624 		*m_head = m;
2625 	}
2626 
2627 	prod = sc_if->msk_cdata.msk_tx_prod;
2628 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2629 	txd_last = txd;
2630 	map = txd->tx_dmamap;
2631 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2632 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2633 	if (error == EFBIG) {
2634 		m = m_collapse(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
2635 		if (m == NULL) {
2636 			m_freem(*m_head);
2637 			*m_head = NULL;
2638 			return (ENOBUFS);
2639 		}
2640 		*m_head = m;
2641 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2642 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2643 		if (error != 0) {
2644 			m_freem(*m_head);
2645 			*m_head = NULL;
2646 			return (error);
2647 		}
2648 	} else if (error != 0)
2649 		return (error);
2650 	if (nseg == 0) {
2651 		m_freem(*m_head);
2652 		*m_head = NULL;
2653 		return (EIO);
2654 	}
2655 
2656 	/* Check number of available descriptors. */
2657 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2658 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2659 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2660 		return (ENOBUFS);
2661 	}
2662 
2663 	control = 0;
2664 	tso = 0;
2665 	tx_le = NULL;
2666 
2667 	/* Check TSO support. */
2668 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2669 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2670 			tso_mtu = m->m_pkthdr.tso_segsz;
2671 		else
2672 			tso_mtu = offset + m->m_pkthdr.tso_segsz;
2673 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2674 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2675 			tx_le->msk_addr = htole32(tso_mtu);
2676 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2677 				tx_le->msk_control = htole32(OP_MSS | HW_OWNER);
2678 			else
2679 				tx_le->msk_control =
2680 				    htole32(OP_LRGLEN | HW_OWNER);
2681 			sc_if->msk_cdata.msk_tx_cnt++;
2682 			MSK_INC(prod, MSK_TX_RING_CNT);
2683 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2684 		}
2685 		tso++;
2686 	}
2687 	/* Check if we have a VLAN tag to insert. */
2688 	if ((m->m_flags & M_VLANTAG) != 0) {
2689 		if (tso == 0) {
2690 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2691 			tx_le->msk_addr = htole32(0);
2692 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2693 			    htons(m->m_pkthdr.ether_vtag));
2694 			sc_if->msk_cdata.msk_tx_cnt++;
2695 			MSK_INC(prod, MSK_TX_RING_CNT);
2696 		} else {
2697 			tx_le->msk_control |= htole32(OP_VLAN |
2698 			    htons(m->m_pkthdr.ether_vtag));
2699 		}
2700 		control |= INS_VLAN;
2701 	}
2702 	/* Check if we have to handle checksum offload. */
2703 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2704 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0)
2705 			control |= CALSUM;
2706 		else {
2707 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2708 			tx_le->msk_addr = htole32(((tcp_offset +
2709 			    m->m_pkthdr.csum_data) & 0xffff) |
2710 			    ((uint32_t)tcp_offset << 16));
2711 			tx_le->msk_control = htole32(1 << 16 |
2712 			    (OP_TCPLISW | HW_OWNER));
2713 			control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2714 			if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2715 				control |= UDPTCP;
2716 			sc_if->msk_cdata.msk_tx_cnt++;
2717 			MSK_INC(prod, MSK_TX_RING_CNT);
2718 		}
2719 	}
2720 
2721 	si = prod;
2722 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2723 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2724 	if (tso == 0)
2725 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2726 		    OP_PACKET);
2727 	else
2728 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2729 		    OP_LARGESEND);
2730 	sc_if->msk_cdata.msk_tx_cnt++;
2731 	MSK_INC(prod, MSK_TX_RING_CNT);
2732 
2733 	for (i = 1; i < nseg; i++) {
2734 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2735 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2736 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2737 		    OP_BUFFER | HW_OWNER);
2738 		sc_if->msk_cdata.msk_tx_cnt++;
2739 		MSK_INC(prod, MSK_TX_RING_CNT);
2740 	}
2741 	/* Update producer index. */
2742 	sc_if->msk_cdata.msk_tx_prod = prod;
2743 
2744 	/* Set EOP on the last desciptor. */
2745 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2746 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2747 	tx_le->msk_control |= htole32(EOP);
2748 
2749 	/* Turn the first descriptor ownership to hardware. */
2750 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2751 	tx_le->msk_control |= htole32(HW_OWNER);
2752 
2753 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2754 	map = txd_last->tx_dmamap;
2755 	txd_last->tx_dmamap = txd->tx_dmamap;
2756 	txd->tx_dmamap = map;
2757 	txd->tx_m = m;
2758 
2759 	/* Sync descriptors. */
2760 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2761 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2762 	    sc_if->msk_cdata.msk_tx_ring_map,
2763 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2764 
2765 	return (0);
2766 }
2767 
2768 static void
2769 msk_tx_task(void *arg, int pending)
2770 {
2771 	struct ifnet *ifp;
2772 
2773 	ifp = arg;
2774 	msk_start(ifp);
2775 }
2776 
2777 static void
2778 msk_start(struct ifnet *ifp)
2779 {
2780         struct msk_if_softc *sc_if;
2781         struct mbuf *m_head;
2782 	int enq;
2783 
2784 	sc_if = ifp->if_softc;
2785 
2786 	MSK_IF_LOCK(sc_if);
2787 
2788 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2789 	    IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2790 		MSK_IF_UNLOCK(sc_if);
2791 		return;
2792 	}
2793 
2794 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2795 	    sc_if->msk_cdata.msk_tx_cnt <
2796 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2797 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2798 		if (m_head == NULL)
2799 			break;
2800 		/*
2801 		 * Pack the data into the transmit ring. If we
2802 		 * don't have room, set the OACTIVE flag and wait
2803 		 * for the NIC to drain the ring.
2804 		 */
2805 		if (msk_encap(sc_if, &m_head) != 0) {
2806 			if (m_head == NULL)
2807 				break;
2808 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2809 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2810 			break;
2811 		}
2812 
2813 		enq++;
2814 		/*
2815 		 * If there's a BPF listener, bounce a copy of this frame
2816 		 * to him.
2817 		 */
2818 		ETHER_BPF_MTAP(ifp, m_head);
2819 	}
2820 
2821 	if (enq > 0) {
2822 		/* Transmit */
2823 		CSR_WRITE_2(sc_if->msk_softc,
2824 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2825 		    sc_if->msk_cdata.msk_tx_prod);
2826 
2827 		/* Set a timeout in case the chip goes out to lunch. */
2828 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2829 	}
2830 
2831 	MSK_IF_UNLOCK(sc_if);
2832 }
2833 
2834 static void
2835 msk_watchdog(struct msk_if_softc *sc_if)
2836 {
2837 	struct ifnet *ifp;
2838 	uint32_t ridx;
2839 	int idx;
2840 
2841 	MSK_IF_LOCK_ASSERT(sc_if);
2842 
2843 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2844 		return;
2845 	ifp = sc_if->msk_ifp;
2846 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2847 		if (bootverbose)
2848 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2849 			   "(missed link)\n");
2850 		ifp->if_oerrors++;
2851 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2852 		msk_init_locked(sc_if);
2853 		return;
2854 	}
2855 
2856 	/*
2857 	 * Reclaim first as there is a possibility of losing Tx completion
2858 	 * interrupts.
2859 	 */
2860 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2861 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2862 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2863 		msk_txeof(sc_if, idx);
2864 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2865 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2866 			    "-- recovering\n");
2867 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2868 				taskqueue_enqueue(taskqueue_fast,
2869 				    &sc_if->msk_tx_task);
2870 			return;
2871 		}
2872 	}
2873 
2874 	if_printf(ifp, "watchdog timeout\n");
2875 	ifp->if_oerrors++;
2876 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2877 	msk_init_locked(sc_if);
2878 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2879 		taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task);
2880 }
2881 
2882 static int
2883 mskc_shutdown(device_t dev)
2884 {
2885 	struct msk_softc *sc;
2886 	int i;
2887 
2888 	sc = device_get_softc(dev);
2889 	MSK_LOCK(sc);
2890 	for (i = 0; i < sc->msk_num_port; i++) {
2891 		if (sc->msk_if[i] != NULL)
2892 			msk_stop(sc->msk_if[i]);
2893 	}
2894 
2895 	/* Disable all interrupts. */
2896 	CSR_WRITE_4(sc, B0_IMSK, 0);
2897 	CSR_READ_4(sc, B0_IMSK);
2898 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2899 	CSR_READ_4(sc, B0_HWE_IMSK);
2900 
2901 	/* Put hardware reset. */
2902 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2903 
2904 	MSK_UNLOCK(sc);
2905 	return (0);
2906 }
2907 
2908 static int
2909 mskc_suspend(device_t dev)
2910 {
2911 	struct msk_softc *sc;
2912 	int i;
2913 
2914 	sc = device_get_softc(dev);
2915 
2916 	MSK_LOCK(sc);
2917 
2918 	for (i = 0; i < sc->msk_num_port; i++) {
2919 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2920 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
2921 		    IFF_DRV_RUNNING) != 0))
2922 			msk_stop(sc->msk_if[i]);
2923 	}
2924 
2925 	/* Disable all interrupts. */
2926 	CSR_WRITE_4(sc, B0_IMSK, 0);
2927 	CSR_READ_4(sc, B0_IMSK);
2928 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2929 	CSR_READ_4(sc, B0_HWE_IMSK);
2930 
2931 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
2932 
2933 	/* Put hardware reset. */
2934 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2935 	sc->msk_pflags |= MSK_FLAG_SUSPEND;
2936 
2937 	MSK_UNLOCK(sc);
2938 
2939 	return (0);
2940 }
2941 
2942 static int
2943 mskc_resume(device_t dev)
2944 {
2945 	struct msk_softc *sc;
2946 	int i;
2947 
2948 	sc = device_get_softc(dev);
2949 
2950 	MSK_LOCK(sc);
2951 
2952 	mskc_reset(sc);
2953 	for (i = 0; i < sc->msk_num_port; i++) {
2954 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2955 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) {
2956 			sc->msk_if[i]->msk_ifp->if_drv_flags &=
2957 			    ~IFF_DRV_RUNNING;
2958 			msk_init_locked(sc->msk_if[i]);
2959 		}
2960 	}
2961 	sc->msk_pflags &= ~MSK_FLAG_SUSPEND;
2962 
2963 	MSK_UNLOCK(sc);
2964 
2965 	return (0);
2966 }
2967 
2968 #ifndef __NO_STRICT_ALIGNMENT
2969 static __inline void
2970 msk_fixup_rx(struct mbuf *m)
2971 {
2972         int i;
2973         uint16_t *src, *dst;
2974 
2975 	src = mtod(m, uint16_t *);
2976 	dst = src - 3;
2977 
2978 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2979 		*dst++ = *src++;
2980 
2981 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
2982 }
2983 #endif
2984 
2985 static void
2986 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
2987     int len)
2988 {
2989 	struct mbuf *m;
2990 	struct ifnet *ifp;
2991 	struct msk_rxdesc *rxd;
2992 	int cons, rxlen;
2993 
2994 	ifp = sc_if->msk_ifp;
2995 
2996 	MSK_IF_LOCK_ASSERT(sc_if);
2997 
2998 	cons = sc_if->msk_cdata.msk_rx_cons;
2999 	do {
3000 		rxlen = status >> 16;
3001 		if ((status & GMR_FS_VLAN) != 0 &&
3002 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3003 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3004 		if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) {
3005 			/*
3006 			 * For controllers that returns bogus status code
3007 			 * just do minimal check and let upper stack
3008 			 * handle this frame.
3009 			 */
3010 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
3011 				ifp->if_ierrors++;
3012 				msk_discard_rxbuf(sc_if, cons);
3013 				break;
3014 			}
3015 		} else if (len > sc_if->msk_framesize ||
3016 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3017 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3018 			/* Don't count flow-control packet as errors. */
3019 			if ((status & GMR_FS_GOOD_FC) == 0)
3020 				ifp->if_ierrors++;
3021 			msk_discard_rxbuf(sc_if, cons);
3022 			break;
3023 		}
3024 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3025 		m = rxd->rx_m;
3026 		if (msk_newbuf(sc_if, cons) != 0) {
3027 			ifp->if_iqdrops++;
3028 			/* Reuse old buffer. */
3029 			msk_discard_rxbuf(sc_if, cons);
3030 			break;
3031 		}
3032 		m->m_pkthdr.rcvif = ifp;
3033 		m->m_pkthdr.len = m->m_len = len;
3034 #ifndef __NO_STRICT_ALIGNMENT
3035 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3036 			msk_fixup_rx(m);
3037 #endif
3038 		ifp->if_ipackets++;
3039 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
3040 		    (control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
3041 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3042 			if ((control & CSS_IPV4_CSUM_OK) != 0)
3043 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3044 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3045 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3046 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3047 				    CSUM_PSEUDO_HDR;
3048 				m->m_pkthdr.csum_data = 0xffff;
3049 			}
3050 		}
3051 		/* Check for VLAN tagged packets. */
3052 		if ((status & GMR_FS_VLAN) != 0 &&
3053 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3054 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3055 			m->m_flags |= M_VLANTAG;
3056 		}
3057 		MSK_IF_UNLOCK(sc_if);
3058 		(*ifp->if_input)(ifp, m);
3059 		MSK_IF_LOCK(sc_if);
3060 	} while (0);
3061 
3062 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3063 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3064 }
3065 
3066 static void
3067 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3068     int len)
3069 {
3070 	struct mbuf *m;
3071 	struct ifnet *ifp;
3072 	struct msk_rxdesc *jrxd;
3073 	int cons, rxlen;
3074 
3075 	ifp = sc_if->msk_ifp;
3076 
3077 	MSK_IF_LOCK_ASSERT(sc_if);
3078 
3079 	cons = sc_if->msk_cdata.msk_rx_cons;
3080 	do {
3081 		rxlen = status >> 16;
3082 		if ((status & GMR_FS_VLAN) != 0 &&
3083 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3084 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3085 		if (len > sc_if->msk_framesize ||
3086 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3087 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3088 			/* Don't count flow-control packet as errors. */
3089 			if ((status & GMR_FS_GOOD_FC) == 0)
3090 				ifp->if_ierrors++;
3091 			msk_discard_jumbo_rxbuf(sc_if, cons);
3092 			break;
3093 		}
3094 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3095 		m = jrxd->rx_m;
3096 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3097 			ifp->if_iqdrops++;
3098 			/* Reuse old buffer. */
3099 			msk_discard_jumbo_rxbuf(sc_if, cons);
3100 			break;
3101 		}
3102 		m->m_pkthdr.rcvif = ifp;
3103 		m->m_pkthdr.len = m->m_len = len;
3104 #ifndef __NO_STRICT_ALIGNMENT
3105 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3106 			msk_fixup_rx(m);
3107 #endif
3108 		ifp->if_ipackets++;
3109 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
3110 		    (control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
3111 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3112 			if ((control & CSS_IPV4_CSUM_OK) != 0)
3113 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3114 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3115 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3116 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3117 				    CSUM_PSEUDO_HDR;
3118 				m->m_pkthdr.csum_data = 0xffff;
3119 			}
3120 		}
3121 		/* Check for VLAN tagged packets. */
3122 		if ((status & GMR_FS_VLAN) != 0 &&
3123 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3124 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3125 			m->m_flags |= M_VLANTAG;
3126 		}
3127 		MSK_IF_UNLOCK(sc_if);
3128 		(*ifp->if_input)(ifp, m);
3129 		MSK_IF_LOCK(sc_if);
3130 	} while (0);
3131 
3132 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3133 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3134 }
3135 
3136 static void
3137 msk_txeof(struct msk_if_softc *sc_if, int idx)
3138 {
3139 	struct msk_txdesc *txd;
3140 	struct msk_tx_desc *cur_tx;
3141 	struct ifnet *ifp;
3142 	uint32_t control;
3143 	int cons, prog;
3144 
3145 	MSK_IF_LOCK_ASSERT(sc_if);
3146 
3147 	ifp = sc_if->msk_ifp;
3148 
3149 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3150 	    sc_if->msk_cdata.msk_tx_ring_map,
3151 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3152 	/*
3153 	 * Go through our tx ring and free mbufs for those
3154 	 * frames that have been sent.
3155 	 */
3156 	cons = sc_if->msk_cdata.msk_tx_cons;
3157 	prog = 0;
3158 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3159 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3160 			break;
3161 		prog++;
3162 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3163 		control = le32toh(cur_tx->msk_control);
3164 		sc_if->msk_cdata.msk_tx_cnt--;
3165 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3166 		if ((control & EOP) == 0)
3167 			continue;
3168 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3169 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3170 		    BUS_DMASYNC_POSTWRITE);
3171 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3172 
3173 		ifp->if_opackets++;
3174 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3175 		    __func__));
3176 		m_freem(txd->tx_m);
3177 		txd->tx_m = NULL;
3178 	}
3179 
3180 	if (prog > 0) {
3181 		sc_if->msk_cdata.msk_tx_cons = cons;
3182 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3183 			sc_if->msk_watchdog_timer = 0;
3184 		/* No need to sync LEs as we didn't update LEs. */
3185 	}
3186 }
3187 
3188 static void
3189 msk_tick(void *xsc_if)
3190 {
3191 	struct msk_if_softc *sc_if;
3192 	struct mii_data *mii;
3193 
3194 	sc_if = xsc_if;
3195 
3196 	MSK_IF_LOCK_ASSERT(sc_if);
3197 
3198 	mii = device_get_softc(sc_if->msk_miibus);
3199 
3200 	mii_tick(mii);
3201 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0)
3202 		msk_miibus_statchg(sc_if->msk_if_dev);
3203 	msk_watchdog(sc_if);
3204 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3205 }
3206 
3207 static void
3208 msk_intr_phy(struct msk_if_softc *sc_if)
3209 {
3210 	uint16_t status;
3211 
3212 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3213 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3214 	/* Handle FIFO Underrun/Overflow? */
3215 	if ((status & PHY_M_IS_FIFO_ERROR))
3216 		device_printf(sc_if->msk_if_dev,
3217 		    "PHY FIFO underrun/overflow.\n");
3218 }
3219 
3220 static void
3221 msk_intr_gmac(struct msk_if_softc *sc_if)
3222 {
3223 	struct msk_softc *sc;
3224 	uint8_t status;
3225 
3226 	sc = sc_if->msk_softc;
3227 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3228 
3229 	/* GMAC Rx FIFO overrun. */
3230 	if ((status & GM_IS_RX_FF_OR) != 0)
3231 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3232 		    GMF_CLI_RX_FO);
3233 	/* GMAC Tx FIFO underrun. */
3234 	if ((status & GM_IS_TX_FF_UR) != 0) {
3235 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3236 		    GMF_CLI_TX_FU);
3237 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3238 		/*
3239 		 * XXX
3240 		 * In case of Tx underrun, we may need to flush/reset
3241 		 * Tx MAC but that would also require resynchronization
3242 		 * with status LEs. Reintializing status LEs would
3243 		 * affect other port in dual MAC configuration so it
3244 		 * should be avoided as possible as we can.
3245 		 * Due to lack of documentation it's all vague guess but
3246 		 * it needs more investigation.
3247 		 */
3248 	}
3249 }
3250 
3251 static void
3252 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3253 {
3254 	struct msk_softc *sc;
3255 
3256 	sc = sc_if->msk_softc;
3257 	if ((status & Y2_IS_PAR_RD1) != 0) {
3258 		device_printf(sc_if->msk_if_dev,
3259 		    "RAM buffer read parity error\n");
3260 		/* Clear IRQ. */
3261 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3262 		    RI_CLR_RD_PERR);
3263 	}
3264 	if ((status & Y2_IS_PAR_WR1) != 0) {
3265 		device_printf(sc_if->msk_if_dev,
3266 		    "RAM buffer write parity error\n");
3267 		/* Clear IRQ. */
3268 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3269 		    RI_CLR_WR_PERR);
3270 	}
3271 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3272 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3273 		/* Clear IRQ. */
3274 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3275 		    GMF_CLI_TX_PE);
3276 	}
3277 	if ((status & Y2_IS_PAR_RX1) != 0) {
3278 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3279 		/* Clear IRQ. */
3280 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3281 	}
3282 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3283 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3284 		/* Clear IRQ. */
3285 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3286 	}
3287 }
3288 
3289 static void
3290 msk_intr_hwerr(struct msk_softc *sc)
3291 {
3292 	uint32_t status;
3293 	uint32_t tlphead[4];
3294 
3295 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3296 	/* Time Stamp timer overflow. */
3297 	if ((status & Y2_IS_TIST_OV) != 0)
3298 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3299 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3300 		/*
3301 		 * PCI Express Error occured which is not described in PEX
3302 		 * spec.
3303 		 * This error is also mapped either to Master Abort(
3304 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3305 		 * can only be cleared there.
3306                  */
3307 		device_printf(sc->msk_dev,
3308 		    "PCI Express protocol violation error\n");
3309 	}
3310 
3311 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3312 		uint16_t v16;
3313 
3314 		if ((status & Y2_IS_MST_ERR) != 0)
3315 			device_printf(sc->msk_dev,
3316 			    "unexpected IRQ Status error\n");
3317 		else
3318 			device_printf(sc->msk_dev,
3319 			    "unexpected IRQ Master error\n");
3320 		/* Reset all bits in the PCI status register. */
3321 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3322 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3323 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3324 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3325 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3326 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3327 	}
3328 
3329 	/* Check for PCI Express Uncorrectable Error. */
3330 	if ((status & Y2_IS_PCI_EXP) != 0) {
3331 		uint32_t v32;
3332 
3333 		/*
3334 		 * On PCI Express bus bridges are called root complexes (RC).
3335 		 * PCI Express errors are recognized by the root complex too,
3336 		 * which requests the system to handle the problem. After
3337 		 * error occurence it may be that no access to the adapter
3338 		 * may be performed any longer.
3339 		 */
3340 
3341 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3342 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3343 			/* Ignore unsupported request error. */
3344 			device_printf(sc->msk_dev,
3345 			    "Uncorrectable PCI Express error\n");
3346 		}
3347 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3348 			int i;
3349 
3350 			/* Get TLP header form Log Registers. */
3351 			for (i = 0; i < 4; i++)
3352 				tlphead[i] = CSR_PCI_READ_4(sc,
3353 				    PEX_HEADER_LOG + i * 4);
3354 			/* Check for vendor defined broadcast message. */
3355 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3356 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3357 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3358 				    sc->msk_intrhwemask);
3359 				CSR_READ_4(sc, B0_HWE_IMSK);
3360 			}
3361 		}
3362 		/* Clear the interrupt. */
3363 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3364 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3365 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3366 	}
3367 
3368 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3369 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3370 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3371 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3372 }
3373 
3374 static __inline void
3375 msk_rxput(struct msk_if_softc *sc_if)
3376 {
3377 	struct msk_softc *sc;
3378 
3379 	sc = sc_if->msk_softc;
3380 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3381 		bus_dmamap_sync(
3382 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3383 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3384 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3385 	else
3386 		bus_dmamap_sync(
3387 		    sc_if->msk_cdata.msk_rx_ring_tag,
3388 		    sc_if->msk_cdata.msk_rx_ring_map,
3389 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3390 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3391 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3392 }
3393 
3394 static int
3395 msk_handle_events(struct msk_softc *sc)
3396 {
3397 	struct msk_if_softc *sc_if;
3398 	int rxput[2];
3399 	struct msk_stat_desc *sd;
3400 	uint32_t control, status;
3401 	int cons, idx, len, port, rxprog;
3402 
3403 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3404 	if (idx == sc->msk_stat_cons)
3405 		return (0);
3406 
3407 	/* Sync status LEs. */
3408 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3409 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3410 	/* XXX Sync Rx LEs here. */
3411 
3412 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3413 
3414 	rxprog = 0;
3415 	for (cons = sc->msk_stat_cons; cons != idx;) {
3416 		sd = &sc->msk_stat_ring[cons];
3417 		control = le32toh(sd->msk_control);
3418 		if ((control & HW_OWNER) == 0)
3419 			break;
3420 		/*
3421 		 * Marvell's FreeBSD driver updates status LE after clearing
3422 		 * HW_OWNER. However we don't have a way to sync single LE
3423 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3424 		 * an entire DMA map. So don't sync LE until we have a better
3425 		 * way to sync LEs.
3426 		 */
3427 		control &= ~HW_OWNER;
3428 		sd->msk_control = htole32(control);
3429 		status = le32toh(sd->msk_status);
3430 		len = control & STLE_LEN_MASK;
3431 		port = (control >> 16) & 0x01;
3432 		sc_if = sc->msk_if[port];
3433 		if (sc_if == NULL) {
3434 			device_printf(sc->msk_dev, "invalid port opcode "
3435 			    "0x%08x\n", control & STLE_OP_MASK);
3436 			continue;
3437 		}
3438 
3439 		switch (control & STLE_OP_MASK) {
3440 		case OP_RXVLAN:
3441 			sc_if->msk_vtag = ntohs(len);
3442 			break;
3443 		case OP_RXCHKSVLAN:
3444 			sc_if->msk_vtag = ntohs(len);
3445 			break;
3446 		case OP_RXSTAT:
3447 			if (sc_if->msk_framesize >
3448 			    (MCLBYTES - MSK_RX_BUF_ALIGN))
3449 				msk_jumbo_rxeof(sc_if, status, control, len);
3450 			else
3451 				msk_rxeof(sc_if, status, control, len);
3452 			rxprog++;
3453 			/*
3454 			 * Because there is no way to sync single Rx LE
3455 			 * put the DMA sync operation off until the end of
3456 			 * event processing.
3457 			 */
3458 			rxput[port]++;
3459 			/* Update prefetch unit if we've passed water mark. */
3460 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3461 				msk_rxput(sc_if);
3462 				rxput[port] = 0;
3463 			}
3464 			break;
3465 		case OP_TXINDEXLE:
3466 			if (sc->msk_if[MSK_PORT_A] != NULL)
3467 				msk_txeof(sc->msk_if[MSK_PORT_A],
3468 				    status & STLE_TXA1_MSKL);
3469 			if (sc->msk_if[MSK_PORT_B] != NULL)
3470 				msk_txeof(sc->msk_if[MSK_PORT_B],
3471 				    ((status & STLE_TXA2_MSKL) >>
3472 				    STLE_TXA2_SHIFTL) |
3473 				    ((len & STLE_TXA2_MSKH) <<
3474 				    STLE_TXA2_SHIFTH));
3475 			break;
3476 		default:
3477 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3478 			    control & STLE_OP_MASK);
3479 			break;
3480 		}
3481 		MSK_INC(cons, MSK_STAT_RING_CNT);
3482 		if (rxprog > sc->msk_process_limit)
3483 			break;
3484 	}
3485 
3486 	sc->msk_stat_cons = cons;
3487 	/* XXX We should sync status LEs here. See above notes. */
3488 
3489 	if (rxput[MSK_PORT_A] > 0)
3490 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3491 	if (rxput[MSK_PORT_B] > 0)
3492 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3493 
3494 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3495 }
3496 
3497 /* Legacy interrupt handler for shared interrupt. */
3498 static void
3499 msk_legacy_intr(void *xsc)
3500 {
3501 	struct msk_softc *sc;
3502 	struct msk_if_softc *sc_if0, *sc_if1;
3503 	struct ifnet *ifp0, *ifp1;
3504 	uint32_t status;
3505 
3506 	sc = xsc;
3507 	MSK_LOCK(sc);
3508 
3509 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3510 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3511 	if (status == 0 || status == 0xffffffff ||
3512 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3513 	    (status & sc->msk_intrmask) == 0) {
3514 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3515 		return;
3516 	}
3517 
3518 	sc_if0 = sc->msk_if[MSK_PORT_A];
3519 	sc_if1 = sc->msk_if[MSK_PORT_B];
3520 	ifp0 = ifp1 = NULL;
3521 	if (sc_if0 != NULL)
3522 		ifp0 = sc_if0->msk_ifp;
3523 	if (sc_if1 != NULL)
3524 		ifp1 = sc_if1->msk_ifp;
3525 
3526 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3527 		msk_intr_phy(sc_if0);
3528 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3529 		msk_intr_phy(sc_if1);
3530 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3531 		msk_intr_gmac(sc_if0);
3532 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3533 		msk_intr_gmac(sc_if1);
3534 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3535 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3536 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3537 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3538 		CSR_READ_4(sc, B0_IMSK);
3539 	}
3540         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3541 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3542 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3543 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3544 		CSR_READ_4(sc, B0_IMSK);
3545 	}
3546 	if ((status & Y2_IS_HW_ERR) != 0)
3547 		msk_intr_hwerr(sc);
3548 
3549 	while (msk_handle_events(sc) != 0)
3550 		;
3551 	if ((status & Y2_IS_STAT_BMU) != 0)
3552 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3553 
3554 	/* Reenable interrupts. */
3555 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3556 
3557 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3558 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3559 		taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3560 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3561 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3562 		taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3563 
3564 	MSK_UNLOCK(sc);
3565 }
3566 
3567 static int
3568 msk_intr(void *xsc)
3569 {
3570 	struct msk_softc *sc;
3571 	uint32_t status;
3572 
3573 	sc = xsc;
3574 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3575 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3576 	if (status == 0 || status == 0xffffffff) {
3577 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3578 		return (FILTER_STRAY);
3579 	}
3580 
3581 	taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3582 	return (FILTER_HANDLED);
3583 }
3584 
3585 static void
3586 msk_int_task(void *arg, int pending)
3587 {
3588 	struct msk_softc *sc;
3589 	struct msk_if_softc *sc_if0, *sc_if1;
3590 	struct ifnet *ifp0, *ifp1;
3591 	uint32_t status;
3592 	int domore;
3593 
3594 	sc = arg;
3595 	MSK_LOCK(sc);
3596 
3597 	/* Get interrupt source. */
3598 	status = CSR_READ_4(sc, B0_ISRC);
3599 	if (status == 0 || status == 0xffffffff ||
3600 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3601 	    (status & sc->msk_intrmask) == 0)
3602 		goto done;
3603 
3604 	sc_if0 = sc->msk_if[MSK_PORT_A];
3605 	sc_if1 = sc->msk_if[MSK_PORT_B];
3606 	ifp0 = ifp1 = NULL;
3607 	if (sc_if0 != NULL)
3608 		ifp0 = sc_if0->msk_ifp;
3609 	if (sc_if1 != NULL)
3610 		ifp1 = sc_if1->msk_ifp;
3611 
3612 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3613 		msk_intr_phy(sc_if0);
3614 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3615 		msk_intr_phy(sc_if1);
3616 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3617 		msk_intr_gmac(sc_if0);
3618 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3619 		msk_intr_gmac(sc_if1);
3620 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3621 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3622 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3623 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3624 		CSR_READ_4(sc, B0_IMSK);
3625 	}
3626         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3627 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3628 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3629 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3630 		CSR_READ_4(sc, B0_IMSK);
3631 	}
3632 	if ((status & Y2_IS_HW_ERR) != 0)
3633 		msk_intr_hwerr(sc);
3634 
3635 	domore = msk_handle_events(sc);
3636 	if ((status & Y2_IS_STAT_BMU) != 0)
3637 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3638 
3639 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3640 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3641 		taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3642 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3643 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3644 		taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3645 
3646 	if (domore > 0) {
3647 		taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3648 		MSK_UNLOCK(sc);
3649 		return;
3650 	}
3651 done:
3652 	MSK_UNLOCK(sc);
3653 
3654 	/* Reenable interrupts. */
3655 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3656 }
3657 
3658 static void
3659 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3660 {
3661 	struct msk_softc *sc;
3662 	struct ifnet *ifp;
3663 
3664 	ifp = sc_if->msk_ifp;
3665 	sc = sc_if->msk_softc;
3666 	switch (sc->msk_hw_id) {
3667 	case CHIP_ID_YUKON_EX:
3668 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
3669 			goto yukon_ex_workaround;
3670 		if (ifp->if_mtu > ETHERMTU)
3671 			CSR_WRITE_4(sc,
3672 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3673 			    TX_JUMBO_ENA | TX_STFW_ENA);
3674 		else
3675 			CSR_WRITE_4(sc,
3676 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3677 			    TX_JUMBO_DIS | TX_STFW_ENA);
3678 		break;
3679 	default:
3680 yukon_ex_workaround:
3681 		if (ifp->if_mtu > ETHERMTU) {
3682 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3683 			CSR_WRITE_4(sc,
3684 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3685 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3686 			/* Disable Store & Forward mode for Tx. */
3687 			CSR_WRITE_4(sc,
3688 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3689 			    TX_JUMBO_ENA | TX_STFW_DIS);
3690 		} else {
3691 			/* Enable Store & Forward mode for Tx. */
3692 			CSR_WRITE_4(sc,
3693 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3694 			    TX_JUMBO_DIS | TX_STFW_ENA);
3695 		}
3696 		break;
3697 	}
3698 }
3699 
3700 static void
3701 msk_init(void *xsc)
3702 {
3703 	struct msk_if_softc *sc_if = xsc;
3704 
3705 	MSK_IF_LOCK(sc_if);
3706 	msk_init_locked(sc_if);
3707 	MSK_IF_UNLOCK(sc_if);
3708 }
3709 
3710 static void
3711 msk_init_locked(struct msk_if_softc *sc_if)
3712 {
3713 	struct msk_softc *sc;
3714 	struct ifnet *ifp;
3715 	struct mii_data	 *mii;
3716 	uint8_t *eaddr;
3717 	uint16_t gmac;
3718 	uint32_t reg;
3719 	int error;
3720 
3721 	MSK_IF_LOCK_ASSERT(sc_if);
3722 
3723 	ifp = sc_if->msk_ifp;
3724 	sc = sc_if->msk_softc;
3725 	mii = device_get_softc(sc_if->msk_miibus);
3726 
3727 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3728 		return;
3729 
3730 	error = 0;
3731 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3732 	msk_stop(sc_if);
3733 
3734 	if (ifp->if_mtu < ETHERMTU)
3735 		sc_if->msk_framesize = ETHERMTU;
3736 	else
3737 		sc_if->msk_framesize = ifp->if_mtu;
3738 	sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3739 	if (ifp->if_mtu > ETHERMTU &&
3740 	    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
3741 		ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3742 		ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3743 	}
3744 
3745  	/* GMAC Control reset. */
3746  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3747  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3748  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3749 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX)
3750 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3751 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3752 		    GMC_BYP_RETR_ON);
3753 
3754 	/*
3755 	 * Initialize GMAC first such that speed/duplex/flow-control
3756 	 * parameters are renegotiated when interface is brought up.
3757 	 */
3758 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3759 
3760 	/* Dummy read the Interrupt Source Register. */
3761 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3762 
3763 	/* Clear MIB stats. */
3764 	msk_stats_clear(sc_if);
3765 
3766 	/* Disable FCS. */
3767 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3768 
3769 	/* Setup Transmit Control Register. */
3770 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3771 
3772 	/* Setup Transmit Flow Control Register. */
3773 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3774 
3775 	/* Setup Transmit Parameter Register. */
3776 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3777 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3778 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3779 
3780 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3781 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3782 
3783 	if (ifp->if_mtu > ETHERMTU)
3784 		gmac |= GM_SMOD_JUMBO_ENA;
3785 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3786 
3787 	/* Set station address. */
3788 	eaddr = IF_LLADDR(ifp);
3789 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L,
3790 	    eaddr[0] | (eaddr[1] << 8));
3791 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M,
3792 	    eaddr[2] | (eaddr[3] << 8));
3793 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H,
3794 	    eaddr[4] | (eaddr[5] << 8));
3795 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L,
3796 	    eaddr[0] | (eaddr[1] << 8));
3797 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M,
3798 	    eaddr[2] | (eaddr[3] << 8));
3799 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H,
3800 	    eaddr[4] | (eaddr[5] << 8));
3801 
3802 	/* Disable interrupts for counter overflows. */
3803 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3804 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3805 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3806 
3807 	/* Configure Rx MAC FIFO. */
3808 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3809 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3810 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3811 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3812 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3813 		reg |= GMF_RX_OVER_ON;
3814 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3815 
3816 	/* Set receive filter. */
3817 	msk_rxfilter(sc_if);
3818 
3819 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3820 		/* Clear flush mask - HW bug. */
3821 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3822 	} else {
3823 		/* Flush Rx MAC FIFO on any flow control or error. */
3824 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3825 		    GMR_FS_ANY_ERR);
3826 	}
3827 
3828 	/*
3829 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3830 	 * due to hardware hang on receipt of pause frames.
3831 	 */
3832 	reg = RX_GMF_FL_THR_DEF + 1;
3833 	/* Another magic for Yukon FE+ - From Linux. */
3834 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3835 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3836 		reg = 0x178;
3837 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3838 
3839 	/* Configure Tx MAC FIFO. */
3840 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3841 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3842 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3843 
3844 	/* Configure hardware VLAN tag insertion/stripping. */
3845 	msk_setvlan(sc_if, ifp);
3846 
3847 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3848 		/* Set Rx Pause threshould. */
3849 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3850 		    MSK_ECU_LLPP);
3851 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3852 		    MSK_ECU_ULPP);
3853 		/* Configure store-and-forward for Tx. */
3854 		msk_set_tx_stfwd(sc_if);
3855 	}
3856 
3857  	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3858  	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3859  		/* Disable dynamic watermark - from Linux. */
3860  		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3861  		reg &= ~0x03;
3862  		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3863  	}
3864 
3865 	/*
3866 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3867 	 * arbiter as we don't use Sync Tx queue.
3868 	 */
3869 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3870 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3871 	/* Enable the RAM Interface Arbiter. */
3872 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3873 
3874 	/* Setup RAM buffer. */
3875 	msk_set_rambuffer(sc_if);
3876 
3877 	/* Disable Tx sync Queue. */
3878 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3879 
3880 	/* Setup Tx Queue Bus Memory Interface. */
3881 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3882 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3883 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3884 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3885 	switch (sc->msk_hw_id) {
3886 	case CHIP_ID_YUKON_EC_U:
3887 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3888 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3889 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3890 			    MSK_ECU_TXFF_LEV);
3891 		}
3892 		break;
3893 	case CHIP_ID_YUKON_EX:
3894 		/*
3895 		 * Yukon Extreme seems to have silicon bug for
3896 		 * automatic Tx checksum calculation capability.
3897 		 */
3898 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
3899 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3900 			    F_TX_CHK_AUTO_OFF);
3901 		break;
3902 	}
3903 
3904 	/* Setup Rx Queue Bus Memory Interface. */
3905 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3906 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3907 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3908 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3909         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3910 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3911 		/* MAC Rx RAM Read is controlled by hardware. */
3912                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3913 	}
3914 
3915 	msk_set_prefetch(sc, sc_if->msk_txq,
3916 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3917 	msk_init_tx_ring(sc_if);
3918 
3919 	/* Disable Rx checksum offload and RSS hash. */
3920 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3921 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3922 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
3923 		msk_set_prefetch(sc, sc_if->msk_rxq,
3924 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3925 		    MSK_JUMBO_RX_RING_CNT - 1);
3926 		error = msk_init_jumbo_rx_ring(sc_if);
3927 	 } else {
3928 		msk_set_prefetch(sc, sc_if->msk_rxq,
3929 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3930 		    MSK_RX_RING_CNT - 1);
3931 		error = msk_init_rx_ring(sc_if);
3932 	}
3933 	if (error != 0) {
3934 		device_printf(sc_if->msk_if_dev,
3935 		    "initialization failed: no memory for Rx buffers\n");
3936 		msk_stop(sc_if);
3937 		return;
3938 	}
3939 
3940 	/* Configure interrupt handling. */
3941 	if (sc_if->msk_port == MSK_PORT_A) {
3942 		sc->msk_intrmask |= Y2_IS_PORT_A;
3943 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3944 	} else {
3945 		sc->msk_intrmask |= Y2_IS_PORT_B;
3946 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3947 	}
3948 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3949 	CSR_READ_4(sc, B0_HWE_IMSK);
3950 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3951 	CSR_READ_4(sc, B0_IMSK);
3952 
3953 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
3954 	mii_mediachg(mii);
3955 
3956 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3957 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3958 
3959 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3960 }
3961 
3962 static void
3963 msk_set_rambuffer(struct msk_if_softc *sc_if)
3964 {
3965 	struct msk_softc *sc;
3966 	int ltpp, utpp;
3967 
3968 	sc = sc_if->msk_softc;
3969 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3970 		return;
3971 
3972 	/* Setup Rx Queue. */
3973 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3974 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3975 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3976 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3977 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3978 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3979 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3980 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3981 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3982 
3983 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3984 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3985 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3986 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3987 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3988 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3989 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3990 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3991 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3992 
3993 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3994 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3995 
3996 	/* Setup Tx Queue. */
3997 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3998 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3999 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4000 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
4001 	    sc->msk_txqend[sc_if->msk_port] / 8);
4002 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
4003 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4004 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
4005 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4006 	/* Enable Store & Forward for Tx side. */
4007 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
4008 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
4009 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
4010 }
4011 
4012 static void
4013 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
4014     uint32_t count)
4015 {
4016 
4017 	/* Reset the prefetch unit. */
4018 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4019 	    PREF_UNIT_RST_SET);
4020 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4021 	    PREF_UNIT_RST_CLR);
4022 	/* Set LE base address. */
4023 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
4024 	    MSK_ADDR_LO(addr));
4025 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
4026 	    MSK_ADDR_HI(addr));
4027 	/* Set the list last index. */
4028 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
4029 	    count);
4030 	/* Turn on prefetch unit. */
4031 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4032 	    PREF_UNIT_OP_ON);
4033 	/* Dummy read to ensure write. */
4034 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
4035 }
4036 
4037 static void
4038 msk_stop(struct msk_if_softc *sc_if)
4039 {
4040 	struct msk_softc *sc;
4041 	struct msk_txdesc *txd;
4042 	struct msk_rxdesc *rxd;
4043 	struct msk_rxdesc *jrxd;
4044 	struct ifnet *ifp;
4045 	uint32_t val;
4046 	int i;
4047 
4048 	MSK_IF_LOCK_ASSERT(sc_if);
4049 	sc = sc_if->msk_softc;
4050 	ifp = sc_if->msk_ifp;
4051 
4052 	callout_stop(&sc_if->msk_tick_ch);
4053 	sc_if->msk_watchdog_timer = 0;
4054 
4055 	/* Disable interrupts. */
4056 	if (sc_if->msk_port == MSK_PORT_A) {
4057 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
4058 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
4059 	} else {
4060 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
4061 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
4062 	}
4063 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4064 	CSR_READ_4(sc, B0_HWE_IMSK);
4065 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4066 	CSR_READ_4(sc, B0_IMSK);
4067 
4068 	/* Disable Tx/Rx MAC. */
4069 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4070 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
4071 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
4072 	/* Read again to ensure writing. */
4073 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4074 	/* Update stats and clear counters. */
4075 	msk_stats_update(sc_if);
4076 
4077 	/* Stop Tx BMU. */
4078 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
4079 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4080 	for (i = 0; i < MSK_TIMEOUT; i++) {
4081 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
4082 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4083 			    BMU_STOP);
4084 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4085 		} else
4086 			break;
4087 		DELAY(1);
4088 	}
4089 	if (i == MSK_TIMEOUT)
4090 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
4091 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
4092 	    RB_RST_SET | RB_DIS_OP_MD);
4093 
4094 	/* Disable all GMAC interrupt. */
4095 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
4096 	/* Disable PHY interrupt. */
4097 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
4098 
4099 	/* Disable the RAM Interface Arbiter. */
4100 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
4101 
4102 	/* Reset the PCI FIFO of the async Tx queue */
4103 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4104 	    BMU_RST_SET | BMU_FIFO_RST);
4105 
4106 	/* Reset the Tx prefetch units. */
4107 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
4108 	    PREF_UNIT_RST_SET);
4109 
4110 	/* Reset the RAM Buffer async Tx queue. */
4111 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
4112 
4113 	/* Reset Tx MAC FIFO. */
4114 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
4115 	/* Set Pause Off. */
4116 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
4117 
4118 	/*
4119 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
4120 	 * reach the end of packet and since we can't make sure that we have
4121 	 * incoming data, we must reset the BMU while it is not during a DMA
4122 	 * transfer. Since it is possible that the Rx path is still active,
4123 	 * the Rx RAM buffer will be stopped first, so any possible incoming
4124 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
4125 	 * BMU is polled until any DMA in progress is ended and only then it
4126 	 * will be reset.
4127 	 */
4128 
4129 	/* Disable the RAM Buffer receive queue. */
4130 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4131 	for (i = 0; i < MSK_TIMEOUT; i++) {
4132 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4133 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4134 			break;
4135 		DELAY(1);
4136 	}
4137 	if (i == MSK_TIMEOUT)
4138 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4139 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4140 	    BMU_RST_SET | BMU_FIFO_RST);
4141 	/* Reset the Rx prefetch unit. */
4142 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4143 	    PREF_UNIT_RST_SET);
4144 	/* Reset the RAM Buffer receive queue. */
4145 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4146 	/* Reset Rx MAC FIFO. */
4147 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4148 
4149 	/* Free Rx and Tx mbufs still in the queues. */
4150 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4151 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4152 		if (rxd->rx_m != NULL) {
4153 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4154 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4155 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4156 			    rxd->rx_dmamap);
4157 			m_freem(rxd->rx_m);
4158 			rxd->rx_m = NULL;
4159 		}
4160 	}
4161 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4162 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4163 		if (jrxd->rx_m != NULL) {
4164 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4165 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4166 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4167 			    jrxd->rx_dmamap);
4168 			m_freem(jrxd->rx_m);
4169 			jrxd->rx_m = NULL;
4170 		}
4171 	}
4172 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4173 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4174 		if (txd->tx_m != NULL) {
4175 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4176 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4177 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4178 			    txd->tx_dmamap);
4179 			m_freem(txd->tx_m);
4180 			txd->tx_m = NULL;
4181 		}
4182 	}
4183 
4184 	/*
4185 	 * Mark the interface down.
4186 	 */
4187 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4188 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4189 }
4190 
4191 /*
4192  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
4193  * counter clears high 16 bits of the counter such that accessing
4194  * lower 16 bits should be the last operation.
4195  */
4196 #define	MSK_READ_MIB32(x, y)					\
4197 	(((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) +	\
4198 	(uint32_t)GMAC_READ_2(sc, x, y)
4199 #define	MSK_READ_MIB64(x, y)					\
4200 	(((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) +	\
4201 	(uint64_t)MSK_READ_MIB32(x, y)
4202 
4203 static void
4204 msk_stats_clear(struct msk_if_softc *sc_if)
4205 {
4206 	struct msk_softc *sc;
4207 	uint32_t reg;
4208 	uint16_t gmac;
4209 	int i;
4210 
4211 	MSK_IF_LOCK_ASSERT(sc_if);
4212 
4213 	sc = sc_if->msk_softc;
4214 	/* Set MIB Clear Counter Mode. */
4215 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4216 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4217 	/* Read all MIB Counters with Clear Mode set. */
4218 	for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t))
4219 		reg = MSK_READ_MIB32(sc_if->msk_port, i);
4220 	/* Clear MIB Clear Counter Mode. */
4221 	gmac &= ~GM_PAR_MIB_CLR;
4222 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4223 }
4224 
4225 static void
4226 msk_stats_update(struct msk_if_softc *sc_if)
4227 {
4228 	struct msk_softc *sc;
4229 	struct ifnet *ifp;
4230 	struct msk_hw_stats *stats;
4231 	uint16_t gmac;
4232 	uint32_t reg;
4233 
4234 	MSK_IF_LOCK_ASSERT(sc_if);
4235 
4236 	ifp = sc_if->msk_ifp;
4237 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4238 		return;
4239 	sc = sc_if->msk_softc;
4240 	stats = &sc_if->msk_stats;
4241 	/* Set MIB Clear Counter Mode. */
4242 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4243 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4244 
4245 	/* Rx stats. */
4246 	stats->rx_ucast_frames +=
4247 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4248 	stats->rx_bcast_frames +=
4249 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4250 	stats->rx_pause_frames +=
4251 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4252 	stats->rx_mcast_frames +=
4253 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4254 	stats->rx_crc_errs +=
4255 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4256 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1);
4257 	stats->rx_good_octets +=
4258 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4259 	stats->rx_bad_octets +=
4260 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4261 	stats->rx_runts +=
4262 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4263 	stats->rx_runt_errs +=
4264 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4265 	stats->rx_pkts_64 +=
4266 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4267 	stats->rx_pkts_65_127 +=
4268 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4269 	stats->rx_pkts_128_255 +=
4270 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4271 	stats->rx_pkts_256_511 +=
4272 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4273 	stats->rx_pkts_512_1023 +=
4274 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4275 	stats->rx_pkts_1024_1518 +=
4276 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4277 	stats->rx_pkts_1519_max +=
4278 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4279 	stats->rx_pkts_too_long +=
4280 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4281 	stats->rx_pkts_jabbers +=
4282 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4283 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2);
4284 	stats->rx_fifo_oflows +=
4285 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4286 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3);
4287 
4288 	/* Tx stats. */
4289 	stats->tx_ucast_frames +=
4290 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4291 	stats->tx_bcast_frames +=
4292 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4293 	stats->tx_pause_frames +=
4294 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4295 	stats->tx_mcast_frames +=
4296 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4297 	stats->tx_octets +=
4298 	    MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4299 	stats->tx_pkts_64 +=
4300 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4301 	stats->tx_pkts_65_127 +=
4302 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4303 	stats->tx_pkts_128_255 +=
4304 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4305 	stats->tx_pkts_256_511 +=
4306 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4307 	stats->tx_pkts_512_1023 +=
4308 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4309 	stats->tx_pkts_1024_1518 +=
4310 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4311 	stats->tx_pkts_1519_max +=
4312 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4313 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1);
4314 	stats->tx_colls +=
4315 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4316 	stats->tx_late_colls +=
4317 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4318 	stats->tx_excess_colls +=
4319 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4320 	stats->tx_multi_colls +=
4321 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4322 	stats->tx_single_colls +=
4323 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4324 	stats->tx_underflows +=
4325 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4326 	/* Clear MIB Clear Counter Mode. */
4327 	gmac &= ~GM_PAR_MIB_CLR;
4328 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4329 }
4330 
4331 static int
4332 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4333 {
4334 	struct msk_softc *sc;
4335 	struct msk_if_softc *sc_if;
4336 	uint32_t result, *stat;
4337 	int off;
4338 
4339 	sc_if = (struct msk_if_softc *)arg1;
4340 	sc = sc_if->msk_softc;
4341 	off = arg2;
4342 	stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4343 
4344 	MSK_IF_LOCK(sc_if);
4345 	result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4346 	result += *stat;
4347 	MSK_IF_UNLOCK(sc_if);
4348 
4349 	return (sysctl_handle_int(oidp, &result, 0, req));
4350 }
4351 
4352 static int
4353 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4354 {
4355 	struct msk_softc *sc;
4356 	struct msk_if_softc *sc_if;
4357 	uint64_t result, *stat;
4358 	int off;
4359 
4360 	sc_if = (struct msk_if_softc *)arg1;
4361 	sc = sc_if->msk_softc;
4362 	off = arg2;
4363 	stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4364 
4365 	MSK_IF_LOCK(sc_if);
4366 	result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4367 	result += *stat;
4368 	MSK_IF_UNLOCK(sc_if);
4369 
4370 	return (sysctl_handle_quad(oidp, &result, 0, req));
4371 }
4372 
4373 #undef MSK_READ_MIB32
4374 #undef MSK_READ_MIB64
4375 
4376 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) 				\
4377 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4378 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32,	\
4379 	    "IU", d)
4380 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) 				\
4381 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4382 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64,	\
4383 	    "Q", d)
4384 
4385 static void
4386 msk_sysctl_node(struct msk_if_softc *sc_if)
4387 {
4388 	struct sysctl_ctx_list *ctx;
4389 	struct sysctl_oid_list *child, *schild;
4390 	struct sysctl_oid *tree;
4391 
4392 	ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4393 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4394 
4395 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
4396 	    NULL, "MSK Statistics");
4397 	schild = child = SYSCTL_CHILDREN(tree);
4398 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
4399 	    NULL, "MSK RX Statistics");
4400 	child = SYSCTL_CHILDREN(tree);
4401 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4402 	    child, rx_ucast_frames, "Good unicast frames");
4403 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4404 	    child, rx_bcast_frames, "Good broadcast frames");
4405 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4406 	    child, rx_pause_frames, "Pause frames");
4407 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4408 	    child, rx_mcast_frames, "Multicast frames");
4409 	MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4410 	    child, rx_crc_errs, "CRC errors");
4411 	MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4412 	    child, rx_good_octets, "Good octets");
4413 	MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4414 	    child, rx_bad_octets, "Bad octets");
4415 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4416 	    child, rx_pkts_64, "64 bytes frames");
4417 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4418 	    child, rx_pkts_65_127, "65 to 127 bytes frames");
4419 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4420 	    child, rx_pkts_128_255, "128 to 255 bytes frames");
4421 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4422 	    child, rx_pkts_256_511, "256 to 511 bytes frames");
4423 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4424 	    child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4425 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4426 	    child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4427 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4428 	    child, rx_pkts_1519_max, "1519 to max frames");
4429 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4430 	    child, rx_pkts_too_long, "frames too long");
4431 	MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4432 	    child, rx_pkts_jabbers, "Jabber errors");
4433 	MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4434 	    child, rx_fifo_oflows, "FIFO overflows");
4435 
4436 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
4437 	    NULL, "MSK TX Statistics");
4438 	child = SYSCTL_CHILDREN(tree);
4439 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4440 	    child, tx_ucast_frames, "Unicast frames");
4441 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4442 	    child, tx_bcast_frames, "Broadcast frames");
4443 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4444 	    child, tx_pause_frames, "Pause frames");
4445 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4446 	    child, tx_mcast_frames, "Multicast frames");
4447 	MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4448 	    child, tx_octets, "Octets");
4449 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4450 	    child, tx_pkts_64, "64 bytes frames");
4451 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4452 	    child, tx_pkts_65_127, "65 to 127 bytes frames");
4453 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4454 	    child, tx_pkts_128_255, "128 to 255 bytes frames");
4455 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4456 	    child, tx_pkts_256_511, "256 to 511 bytes frames");
4457 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4458 	    child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4459 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4460 	    child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4461 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4462 	    child, tx_pkts_1519_max, "1519 to max frames");
4463 	MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4464 	    child, tx_colls, "Collisions");
4465 	MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4466 	    child, tx_late_colls, "Late collisions");
4467 	MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4468 	    child, tx_excess_colls, "Excessive collisions");
4469 	MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4470 	    child, tx_multi_colls, "Multiple collisions");
4471 	MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4472 	    child, tx_single_colls, "Single collisions");
4473 	MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4474 	    child, tx_underflows, "FIFO underflows");
4475 }
4476 
4477 #undef MSK_SYSCTL_STAT32
4478 #undef MSK_SYSCTL_STAT64
4479 
4480 static int
4481 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4482 {
4483 	int error, value;
4484 
4485 	if (!arg1)
4486 		return (EINVAL);
4487 	value = *(int *)arg1;
4488 	error = sysctl_handle_int(oidp, &value, 0, req);
4489 	if (error || !req->newptr)
4490 		return (error);
4491 	if (value < low || value > high)
4492 		return (EINVAL);
4493 	*(int *)arg1 = value;
4494 
4495 	return (0);
4496 }
4497 
4498 static int
4499 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4500 {
4501 
4502 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4503 	    MSK_PROC_MAX));
4504 }
4505