xref: /freebsd/sys/dev/msk/if_msk.c (revision 94942af266ac119ede0ca836f9aa5a5ac0582938)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /*
96  * Device driver for the Marvell Yukon II Ethernet controller.
97  * Due to lack of documentation, this driver is based on the code from
98  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
99  */
100 
101 #include <sys/cdefs.h>
102 __FBSDID("$FreeBSD$");
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/module.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/queue.h>
115 #include <sys/sysctl.h>
116 #include <sys/taskqueue.h>
117 
118 #include <net/bpf.h>
119 #include <net/ethernet.h>
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_types.h>
125 #include <net/if_vlan_var.h>
126 
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/tcp.h>
131 #include <netinet/udp.h>
132 
133 #include <machine/bus.h>
134 #include <machine/in_cksum.h>
135 #include <machine/resource.h>
136 #include <sys/rman.h>
137 
138 #include <dev/mii/mii.h>
139 #include <dev/mii/miivar.h>
140 #include <dev/mii/brgphyreg.h>
141 
142 #include <dev/pci/pcireg.h>
143 #include <dev/pci/pcivar.h>
144 
145 #include <dev/msk/if_mskreg.h>
146 
147 MODULE_DEPEND(msk, pci, 1, 1, 1);
148 MODULE_DEPEND(msk, ether, 1, 1, 1);
149 MODULE_DEPEND(msk, miibus, 1, 1, 1);
150 
151 /* "device miibus" required.  See GENERIC if you get errors here. */
152 #include "miibus_if.h"
153 
154 /* Tunables. */
155 static int msi_disable = 0;
156 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
157 
158 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
159 
160 /*
161  * Devices supported by this driver.
162  */
163 static struct msk_product {
164 	uint16_t	msk_vendorid;
165 	uint16_t	msk_deviceid;
166 	const char	*msk_name;
167 } msk_products[] = {
168 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
169 	    "SK-9Sxx Gigabit Ethernet" },
170 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
171 	    "SK-9Exx Gigabit Ethernet"},
172 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
173 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
174 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
175 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
176 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
177 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
178 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
179 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
180 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
181 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
182 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
183 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
184 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
185 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
186 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
187 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
188 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
189 	    "Marvell Yukon 88E8035 Gigabit Ethernet" },
190 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
191 	    "Marvell Yukon 88E8036 Gigabit Ethernet" },
192 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
193 	    "Marvell Yukon 88E8038 Gigabit Ethernet" },
194 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
195 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
196 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
197 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
198 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
199 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
200 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
201 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
202 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
203 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
204 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
205 	    "D-Link 550SX Gigabit Ethernet" },
206 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
207 	    "D-Link 560T Gigabit Ethernet" }
208 };
209 
210 static const char *model_name[] = {
211 	"Yukon XL",
212         "Yukon EC Ultra",
213         "Yukon Unknown",
214         "Yukon EC",
215         "Yukon FE"
216 };
217 
218 static int mskc_probe(device_t);
219 static int mskc_attach(device_t);
220 static int mskc_detach(device_t);
221 static void mskc_shutdown(device_t);
222 static int mskc_setup_rambuffer(struct msk_softc *);
223 static int mskc_suspend(device_t);
224 static int mskc_resume(device_t);
225 static void mskc_reset(struct msk_softc *);
226 
227 static int msk_probe(device_t);
228 static int msk_attach(device_t);
229 static int msk_detach(device_t);
230 
231 static void msk_tick(void *);
232 static int msk_intr(void *);
233 static void msk_int_task(void *, int);
234 static void msk_intr_phy(struct msk_if_softc *);
235 static void msk_intr_gmac(struct msk_if_softc *);
236 static __inline void msk_rxput(struct msk_if_softc *);
237 static int msk_handle_events(struct msk_softc *);
238 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
239 static void msk_intr_hwerr(struct msk_softc *);
240 static void msk_rxeof(struct msk_if_softc *, uint32_t, int);
241 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
242 static void msk_txeof(struct msk_if_softc *, int);
243 static struct mbuf *msk_defrag(struct mbuf *, int, int);
244 static int msk_encap(struct msk_if_softc *, struct mbuf **);
245 static void msk_tx_task(void *, int);
246 static void msk_start(struct ifnet *);
247 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
248 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
249 static void msk_set_rambuffer(struct msk_if_softc *);
250 static void msk_init(void *);
251 static void msk_init_locked(struct msk_if_softc *);
252 static void msk_stop(struct msk_if_softc *);
253 static void msk_watchdog(struct msk_if_softc *);
254 static int msk_mediachange(struct ifnet *);
255 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
256 static void msk_phy_power(struct msk_softc *, int);
257 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
258 static int msk_status_dma_alloc(struct msk_softc *);
259 static void msk_status_dma_free(struct msk_softc *);
260 static int msk_txrx_dma_alloc(struct msk_if_softc *);
261 static void msk_txrx_dma_free(struct msk_if_softc *);
262 static void *msk_jalloc(struct msk_if_softc *);
263 static void msk_jfree(void *, void *);
264 static int msk_init_rx_ring(struct msk_if_softc *);
265 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
266 static void msk_init_tx_ring(struct msk_if_softc *);
267 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
268 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
269 static int msk_newbuf(struct msk_if_softc *, int);
270 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
271 
272 static int msk_phy_readreg(struct msk_if_softc *, int, int);
273 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
274 static int msk_miibus_readreg(device_t, int, int);
275 static int msk_miibus_writereg(device_t, int, int, int);
276 static void msk_miibus_statchg(device_t);
277 static void msk_link_task(void *, int);
278 
279 static void msk_setmulti(struct msk_if_softc *);
280 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
281 static void msk_setpromisc(struct msk_if_softc *);
282 
283 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
284 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
285 
286 static device_method_t mskc_methods[] = {
287 	/* Device interface */
288 	DEVMETHOD(device_probe,		mskc_probe),
289 	DEVMETHOD(device_attach,	mskc_attach),
290 	DEVMETHOD(device_detach,	mskc_detach),
291 	DEVMETHOD(device_suspend,	mskc_suspend),
292 	DEVMETHOD(device_resume,	mskc_resume),
293 	DEVMETHOD(device_shutdown,	mskc_shutdown),
294 
295 	/* bus interface */
296 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
297 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
298 
299 	{ NULL, NULL }
300 };
301 
302 static driver_t mskc_driver = {
303 	"mskc",
304 	mskc_methods,
305 	sizeof(struct msk_softc)
306 };
307 
308 static devclass_t mskc_devclass;
309 
310 static device_method_t msk_methods[] = {
311 	/* Device interface */
312 	DEVMETHOD(device_probe,		msk_probe),
313 	DEVMETHOD(device_attach,	msk_attach),
314 	DEVMETHOD(device_detach,	msk_detach),
315 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
316 
317 	/* bus interface */
318 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
319 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
320 
321 	/* MII interface */
322 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
323 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
324 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
325 
326 	{ NULL, NULL }
327 };
328 
329 static driver_t msk_driver = {
330 	"msk",
331 	msk_methods,
332 	sizeof(struct msk_if_softc)
333 };
334 
335 static devclass_t msk_devclass;
336 
337 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
338 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
339 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
340 
341 static struct resource_spec msk_res_spec_io[] = {
342 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
343 	{ -1,			0,		0 }
344 };
345 
346 static struct resource_spec msk_res_spec_mem[] = {
347 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
348 	{ -1,			0,		0 }
349 };
350 
351 static struct resource_spec msk_irq_spec_legacy[] = {
352 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
353 	{ -1,			0,		0 }
354 };
355 
356 static struct resource_spec msk_irq_spec_msi[] = {
357 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
358 	{ SYS_RES_IRQ,		2,		RF_ACTIVE },
359 	{ -1,			0,		0 }
360 };
361 
362 static int
363 msk_miibus_readreg(device_t dev, int phy, int reg)
364 {
365 	struct msk_if_softc *sc_if;
366 
367 	sc_if = device_get_softc(dev);
368 
369 	return (msk_phy_readreg(sc_if, phy, reg));
370 }
371 
372 static int
373 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
374 {
375 	struct msk_softc *sc;
376 	int i, val;
377 
378 	sc = sc_if->msk_softc;
379 
380         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
381 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
382 
383 	for (i = 0; i < MSK_TIMEOUT; i++) {
384 		DELAY(1);
385 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
386 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
387 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
388 			break;
389 		}
390 	}
391 
392 	if (i == MSK_TIMEOUT) {
393 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
394 		val = 0;
395 	}
396 
397 	return (val);
398 }
399 
400 static int
401 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
402 {
403 	struct msk_if_softc *sc_if;
404 
405 	sc_if = device_get_softc(dev);
406 
407 	return (msk_phy_writereg(sc_if, phy, reg, val));
408 }
409 
410 static int
411 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
412 {
413 	struct msk_softc *sc;
414 	int i;
415 
416 	sc = sc_if->msk_softc;
417 
418 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
419         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
420 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
421 	for (i = 0; i < MSK_TIMEOUT; i++) {
422 		DELAY(1);
423 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
424 		    GM_SMI_CT_BUSY) == 0)
425 			break;
426 	}
427 	if (i == MSK_TIMEOUT)
428 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
429 
430 	return (0);
431 }
432 
433 static void
434 msk_miibus_statchg(device_t dev)
435 {
436 	struct msk_if_softc *sc_if;
437 
438 	sc_if = device_get_softc(dev);
439 	taskqueue_enqueue(taskqueue_swi, &sc_if->msk_link_task);
440 }
441 
442 static void
443 msk_link_task(void *arg, int pending)
444 {
445 	struct msk_softc *sc;
446 	struct msk_if_softc *sc_if;
447 	struct mii_data *mii;
448 	struct ifnet *ifp;
449 	uint32_t gmac;
450 
451 	sc_if = (struct msk_if_softc *)arg;
452 	sc = sc_if->msk_softc;
453 
454 	MSK_IF_LOCK(sc_if);
455 
456 	mii = device_get_softc(sc_if->msk_miibus);
457 	ifp = sc_if->msk_ifp;
458 	if (mii == NULL || ifp == NULL) {
459 		MSK_IF_UNLOCK(sc_if);
460 		return;
461 	}
462 
463 	if (mii->mii_media_status & IFM_ACTIVE) {
464 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
465 			sc_if->msk_link = 1;
466 	} else
467 		sc_if->msk_link = 0;
468 
469 	if (sc_if->msk_link != 0) {
470 		/* Enable Tx FIFO Underrun. */
471 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
472 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
473 		/*
474 		 * Because mii(4) notify msk(4) that it detected link status
475 		 * change, there is no need to enable automatic
476 		 * speed/flow-control/duplex updates.
477 		 */
478 		gmac = GM_GPCR_AU_ALL_DIS;
479 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
480 		case IFM_1000_SX:
481 		case IFM_1000_T:
482 			gmac |= GM_GPCR_SPEED_1000;
483 			break;
484 		case IFM_100_TX:
485 			gmac |= GM_GPCR_SPEED_100;
486 			break;
487 		case IFM_10_T:
488 			break;
489 		}
490 
491 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
492 			gmac |= GM_GPCR_DUP_FULL;
493 		/* Disable Rx flow control. */
494 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
495 			gmac |= GM_GPCR_FC_RX_DIS;
496 		/* Disable Tx flow control. */
497 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
498 			gmac |= GM_GPCR_FC_TX_DIS;
499 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
500 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
501 		/* Read again to ensure writing. */
502 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
503 
504 		gmac = GMC_PAUSE_ON;
505 		if (((mii->mii_media_active & IFM_GMASK) &
506 		    (IFM_FLAG0 | IFM_FLAG1)) == 0)
507 			gmac = GMC_PAUSE_OFF;
508 		/* Diable pause for 10/100 Mbps in half-duplex mode. */
509 		if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
510 		    (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
511 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
512 			gmac = GMC_PAUSE_OFF;
513 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
514 
515 		/* Enable PHY interrupt for FIFO underrun/overflow. */
516 		if (sc->msk_marvell_phy)
517 			msk_phy_writereg(sc_if, PHY_ADDR_MARV,
518 			    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
519 	} else {
520 		/*
521 		 * Link state changed to down.
522 		 * Disable PHY interrupts.
523 		 */
524 		if (sc->msk_marvell_phy)
525 			msk_phy_writereg(sc_if, PHY_ADDR_MARV,
526 			    PHY_MARV_INT_MASK, 0);
527 		/* Disable Rx/Tx MAC. */
528 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
529 		gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
530 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
531 		/* Read again to ensure writing. */
532 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
533 	}
534 
535 	MSK_IF_UNLOCK(sc_if);
536 }
537 
538 static void
539 msk_setmulti(struct msk_if_softc *sc_if)
540 {
541 	struct msk_softc *sc;
542 	struct ifnet *ifp;
543 	struct ifmultiaddr *ifma;
544 	uint32_t mchash[2];
545 	uint32_t crc;
546 	uint16_t mode;
547 
548 	sc = sc_if->msk_softc;
549 
550 	MSK_IF_LOCK_ASSERT(sc_if);
551 
552 	ifp = sc_if->msk_ifp;
553 
554 	bzero(mchash, sizeof(mchash));
555 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
556 	mode |= GM_RXCR_UCF_ENA;
557 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
558 		if ((ifp->if_flags & IFF_PROMISC) != 0)
559 			mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
560 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
561 			mchash[0] = 0xffff;
562 			mchash[1] = 0xffff;
563 		}
564 	} else {
565 		IF_ADDR_LOCK(ifp);
566 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
567 			if (ifma->ifma_addr->sa_family != AF_LINK)
568 				continue;
569 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
570 			    ifma->ifma_addr), ETHER_ADDR_LEN);
571 			/* Just want the 6 least significant bits. */
572 			crc &= 0x3f;
573 			/* Set the corresponding bit in the hash table. */
574 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
575 		}
576 		IF_ADDR_UNLOCK(ifp);
577 		mode |= GM_RXCR_MCF_ENA;
578 	}
579 
580 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
581 	    mchash[0] & 0xffff);
582 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
583 	    (mchash[0] >> 16) & 0xffff);
584 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
585 	    mchash[1] & 0xffff);
586 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
587 	    (mchash[1] >> 16) & 0xffff);
588 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
589 }
590 
591 static void
592 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
593 {
594 	struct msk_softc *sc;
595 
596 	sc = sc_if->msk_softc;
597 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
598 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
599 		    RX_VLAN_STRIP_ON);
600 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
601 		    TX_VLAN_TAG_ON);
602 	} else {
603 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
604 		    RX_VLAN_STRIP_OFF);
605 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
606 		    TX_VLAN_TAG_OFF);
607 	}
608 }
609 
610 static void
611 msk_setpromisc(struct msk_if_softc *sc_if)
612 {
613 	struct msk_softc *sc;
614 	struct ifnet *ifp;
615 	uint16_t mode;
616 
617 	MSK_IF_LOCK_ASSERT(sc_if);
618 
619 	sc = sc_if->msk_softc;
620 	ifp = sc_if->msk_ifp;
621 
622 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
623 	if (ifp->if_flags & IFF_PROMISC)
624 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
625 	else
626 		mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
627 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
628 }
629 
630 static int
631 msk_init_rx_ring(struct msk_if_softc *sc_if)
632 {
633 	struct msk_ring_data *rd;
634 	struct msk_rxdesc *rxd;
635 	int i, prod;
636 
637 	MSK_IF_LOCK_ASSERT(sc_if);
638 
639 	sc_if->msk_cdata.msk_rx_cons = 0;
640 	sc_if->msk_cdata.msk_rx_prod = 0;
641 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
642 
643 	rd = &sc_if->msk_rdata;
644 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
645 	prod = sc_if->msk_cdata.msk_rx_prod;
646 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
647 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
648 		rxd->rx_m = NULL;
649 		rxd->rx_le = &rd->msk_rx_ring[prod];
650 		if (msk_newbuf(sc_if, prod) != 0)
651 			return (ENOBUFS);
652 		MSK_INC(prod, MSK_RX_RING_CNT);
653 	}
654 
655 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
656 	    sc_if->msk_cdata.msk_rx_ring_map,
657 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
658 
659 	/* Update prefetch unit. */
660 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
661 	CSR_WRITE_2(sc_if->msk_softc,
662 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
663 	    sc_if->msk_cdata.msk_rx_prod);
664 
665 	return (0);
666 }
667 
668 static int
669 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
670 {
671 	struct msk_ring_data *rd;
672 	struct msk_rxdesc *rxd;
673 	int i, prod;
674 
675 	MSK_IF_LOCK_ASSERT(sc_if);
676 
677 	sc_if->msk_cdata.msk_rx_cons = 0;
678 	sc_if->msk_cdata.msk_rx_prod = 0;
679 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
680 
681 	rd = &sc_if->msk_rdata;
682 	bzero(rd->msk_jumbo_rx_ring,
683 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
684 	prod = sc_if->msk_cdata.msk_rx_prod;
685 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
686 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
687 		rxd->rx_m = NULL;
688 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
689 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
690 			return (ENOBUFS);
691 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
692 	}
693 
694 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
695 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
696 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
697 
698 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
699 	CSR_WRITE_2(sc_if->msk_softc,
700 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
701 	    sc_if->msk_cdata.msk_rx_prod);
702 
703 	return (0);
704 }
705 
706 static void
707 msk_init_tx_ring(struct msk_if_softc *sc_if)
708 {
709 	struct msk_ring_data *rd;
710 	struct msk_txdesc *txd;
711 	int i;
712 
713 	sc_if->msk_cdata.msk_tso_mtu = 0;
714 	sc_if->msk_cdata.msk_tx_prod = 0;
715 	sc_if->msk_cdata.msk_tx_cons = 0;
716 	sc_if->msk_cdata.msk_tx_cnt = 0;
717 
718 	rd = &sc_if->msk_rdata;
719 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
720 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
721 		txd = &sc_if->msk_cdata.msk_txdesc[i];
722 		txd->tx_m = NULL;
723 		txd->tx_le = &rd->msk_tx_ring[i];
724 	}
725 
726 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
727 	    sc_if->msk_cdata.msk_tx_ring_map,
728 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
729 }
730 
731 static __inline void
732 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
733 {
734 	struct msk_rx_desc *rx_le;
735 	struct msk_rxdesc *rxd;
736 	struct mbuf *m;
737 
738 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
739 	m = rxd->rx_m;
740 	rx_le = rxd->rx_le;
741 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
742 }
743 
744 static __inline void
745 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
746 {
747 	struct msk_rx_desc *rx_le;
748 	struct msk_rxdesc *rxd;
749 	struct mbuf *m;
750 
751 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
752 	m = rxd->rx_m;
753 	rx_le = rxd->rx_le;
754 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
755 }
756 
757 static int
758 msk_newbuf(struct msk_if_softc *sc_if, int idx)
759 {
760 	struct msk_rx_desc *rx_le;
761 	struct msk_rxdesc *rxd;
762 	struct mbuf *m;
763 	bus_dma_segment_t segs[1];
764 	bus_dmamap_t map;
765 	int nsegs;
766 
767 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
768 	if (m == NULL)
769 		return (ENOBUFS);
770 
771 	m->m_len = m->m_pkthdr.len = MCLBYTES;
772 	m_adj(m, ETHER_ALIGN);
773 
774 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
775 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
776 	    BUS_DMA_NOWAIT) != 0) {
777 		m_freem(m);
778 		return (ENOBUFS);
779 	}
780 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
781 
782 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
783 	if (rxd->rx_m != NULL) {
784 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
785 		    BUS_DMASYNC_POSTREAD);
786 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
787 	}
788 	map = rxd->rx_dmamap;
789 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
790 	sc_if->msk_cdata.msk_rx_sparemap = map;
791 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
792 	    BUS_DMASYNC_PREREAD);
793 	rxd->rx_m = m;
794 	rx_le = rxd->rx_le;
795 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
796 	rx_le->msk_control =
797 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
798 
799 	return (0);
800 }
801 
802 static int
803 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
804 {
805 	struct msk_rx_desc *rx_le;
806 	struct msk_rxdesc *rxd;
807 	struct mbuf *m;
808 	bus_dma_segment_t segs[1];
809 	bus_dmamap_t map;
810 	int nsegs;
811 	void *buf;
812 
813 	MGETHDR(m, M_DONTWAIT, MT_DATA);
814 	if (m == NULL)
815 		return (ENOBUFS);
816 	buf = msk_jalloc(sc_if);
817 	if (buf == NULL) {
818 		m_freem(m);
819 		return (ENOBUFS);
820 	}
821 	/* Attach the buffer to the mbuf. */
822 	MEXTADD(m, buf, MSK_JLEN, msk_jfree, (struct msk_if_softc *)sc_if, 0,
823 	    EXT_NET_DRV);
824 	if ((m->m_flags & M_EXT) == 0) {
825 		m_freem(m);
826 		return (ENOBUFS);
827 	}
828 	m->m_pkthdr.len = m->m_len = MSK_JLEN;
829 	m_adj(m, ETHER_ALIGN);
830 
831 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
832 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
833 	    BUS_DMA_NOWAIT) != 0) {
834 		m_freem(m);
835 		return (ENOBUFS);
836 	}
837 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
838 
839 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
840 	if (rxd->rx_m != NULL) {
841 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
842 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
843 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
844 		    rxd->rx_dmamap);
845 	}
846 	map = rxd->rx_dmamap;
847 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
848 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
849 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
850 	    BUS_DMASYNC_PREREAD);
851 	rxd->rx_m = m;
852 	rx_le = rxd->rx_le;
853 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
854 	rx_le->msk_control =
855 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
856 
857 	return (0);
858 }
859 
860 /*
861  * Set media options.
862  */
863 static int
864 msk_mediachange(struct ifnet *ifp)
865 {
866 	struct msk_if_softc *sc_if;
867 	struct mii_data	*mii;
868 
869 	sc_if = ifp->if_softc;
870 
871 	MSK_IF_LOCK(sc_if);
872 	mii = device_get_softc(sc_if->msk_miibus);
873 	mii_mediachg(mii);
874 	MSK_IF_UNLOCK(sc_if);
875 
876 	return (0);
877 }
878 
879 /*
880  * Report current media status.
881  */
882 static void
883 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
884 {
885 	struct msk_if_softc *sc_if;
886 	struct mii_data	*mii;
887 
888 	sc_if = ifp->if_softc;
889 	MSK_IF_LOCK(sc_if);
890 	mii = device_get_softc(sc_if->msk_miibus);
891 
892 	mii_pollstat(mii);
893 	MSK_IF_UNLOCK(sc_if);
894 	ifmr->ifm_active = mii->mii_media_active;
895 	ifmr->ifm_status = mii->mii_media_status;
896 }
897 
898 static int
899 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
900 {
901 	struct msk_if_softc *sc_if;
902 	struct ifreq *ifr;
903 	struct mii_data	*mii;
904 	int error, mask;
905 
906 	sc_if = ifp->if_softc;
907 	ifr = (struct ifreq *)data;
908 	error = 0;
909 
910 	switch(command) {
911 	case SIOCSIFMTU:
912 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
913 			error = EINVAL;
914 			break;
915 		}
916 		if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
917 		    ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
918 			error = EINVAL;
919 			break;
920 		}
921 		MSK_IF_LOCK(sc_if);
922 		ifp->if_mtu = ifr->ifr_mtu;
923 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
924 			msk_init_locked(sc_if);
925 		MSK_IF_UNLOCK(sc_if);
926 		break;
927 	case SIOCSIFFLAGS:
928 		MSK_IF_LOCK(sc_if);
929 		if ((ifp->if_flags & IFF_UP) != 0) {
930 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
931 				if (((ifp->if_flags ^ sc_if->msk_if_flags)
932 				    & IFF_PROMISC) != 0) {
933 					msk_setpromisc(sc_if);
934 					msk_setmulti(sc_if);
935 				}
936 			} else {
937 				if (sc_if->msk_detach == 0)
938 					msk_init_locked(sc_if);
939 			}
940 		} else {
941 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
942 				msk_stop(sc_if);
943 		}
944 		sc_if->msk_if_flags = ifp->if_flags;
945 		MSK_IF_UNLOCK(sc_if);
946 		break;
947 	case SIOCADDMULTI:
948 	case SIOCDELMULTI:
949 		MSK_IF_LOCK(sc_if);
950 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
951 			msk_setmulti(sc_if);
952 		MSK_IF_UNLOCK(sc_if);
953 		break;
954 	case SIOCGIFMEDIA:
955 	case SIOCSIFMEDIA:
956 		mii = device_get_softc(sc_if->msk_miibus);
957 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
958 		break;
959 	case SIOCSIFCAP:
960 		MSK_IF_LOCK(sc_if);
961 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
962 		if ((mask & IFCAP_TXCSUM) != 0) {
963 			ifp->if_capenable ^= IFCAP_TXCSUM;
964 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
965 			    (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
966 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
967 			else
968 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
969 		}
970 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
971 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
972 			msk_setvlan(sc_if, ifp);
973 		}
974 
975 		if ((mask & IFCAP_TSO4) != 0) {
976 			ifp->if_capenable ^= IFCAP_TSO4;
977 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0 &&
978 			    (IFCAP_TSO4 & ifp->if_capabilities) != 0)
979 				ifp->if_hwassist |= CSUM_TSO;
980 			else
981 				ifp->if_hwassist &= ~CSUM_TSO;
982 		}
983 		VLAN_CAPABILITIES(ifp);
984 		MSK_IF_UNLOCK(sc_if);
985 		break;
986 	default:
987 		error = ether_ioctl(ifp, command, data);
988 		break;
989 	}
990 
991 	return (error);
992 }
993 
994 static int
995 mskc_probe(device_t dev)
996 {
997 	struct msk_product *mp;
998 	uint16_t vendor, devid;
999 	int i;
1000 
1001 	vendor = pci_get_vendor(dev);
1002 	devid = pci_get_device(dev);
1003 	mp = msk_products;
1004 	for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
1005 	    i++, mp++) {
1006 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1007 			device_set_desc(dev, mp->msk_name);
1008 			return (BUS_PROBE_DEFAULT);
1009 		}
1010 	}
1011 
1012 	return (ENXIO);
1013 }
1014 
1015 static int
1016 mskc_setup_rambuffer(struct msk_softc *sc)
1017 {
1018 	int totqsize, minqsize;
1019 	int avail, next;
1020 	int i;
1021 	uint8_t val;
1022 
1023 	/* Get adapter SRAM size. */
1024 	val = CSR_READ_1(sc, B2_E_0);
1025 	sc->msk_ramsize = (val == 0) ? 128 : val * 4;
1026 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE)
1027 		sc->msk_ramsize = 4 * 4;
1028 	if (bootverbose)
1029 		device_printf(sc->msk_dev,
1030 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1031 
1032 	totqsize = sc->msk_ramsize * sc->msk_num_port;
1033 	minqsize = MSK_MIN_RXQ_SIZE + MSK_MIN_TXQ_SIZE;
1034 	if (minqsize > sc->msk_ramsize)
1035 		minqsize = sc->msk_ramsize;
1036 
1037 	if (minqsize * sc->msk_num_port > totqsize) {
1038 		device_printf(sc->msk_dev,
1039 		    "not enough RAM buffer memory : %d/%dKB\n",
1040 		    minqsize * sc->msk_num_port, totqsize);
1041 		return (ENOSPC);
1042 	}
1043 
1044 	avail = totqsize;
1045 	if (sc->msk_num_port > 1) {
1046 		/*
1047 		 * Divide up the memory evenly so that everyone gets a
1048 		 * fair share for dual port adapters.
1049 		 */
1050 		avail = sc->msk_ramsize;
1051 	}
1052 
1053 	/* Take away the minimum memory for active queues. */
1054 	avail -= minqsize;
1055 	/* Rx queue gets the minimum + 80% of the rest. */
1056 	sc->msk_rxqsize =
1057 	    (avail * MSK_RAM_QUOTA_RX) / 100 + MSK_MIN_RXQ_SIZE;
1058 	avail -= (sc->msk_rxqsize - MSK_MIN_RXQ_SIZE);
1059 	sc->msk_txqsize = avail + MSK_MIN_TXQ_SIZE;
1060 
1061 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1062 		sc->msk_rxqstart[i] = next;
1063 		sc->msk_rxqend[i] = next + (sc->msk_rxqsize * 1024) - 1;
1064 		next = sc->msk_rxqend[i] + 1;
1065 		sc->msk_txqstart[i] = next;
1066 		sc->msk_txqend[i] = next + (sc->msk_txqsize * 1024) - 1;
1067 		next = sc->msk_txqend[i] + 1;
1068 		if (bootverbose) {
1069 			device_printf(sc->msk_dev,
1070 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1071 			    sc->msk_rxqsize, sc->msk_rxqstart[i],
1072 			    sc->msk_rxqend[i]);
1073 			device_printf(sc->msk_dev,
1074 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1075 			    sc->msk_txqsize, sc->msk_txqstart[i],
1076 			    sc->msk_txqend[i]);
1077 		}
1078 	}
1079 
1080 	return (0);
1081 }
1082 
1083 static void
1084 msk_phy_power(struct msk_softc *sc, int mode)
1085 {
1086 	uint32_t val;
1087 	int i;
1088 
1089 	switch (mode) {
1090 	case MSK_PHY_POWERUP:
1091 		/* Switch power to VCC (WA for VAUX problem). */
1092 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1093 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1094 		/* Disable Core Clock Division, set Clock Select to 0. */
1095 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1096 
1097 		val = 0;
1098 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1099 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1100 			/* Enable bits are inverted. */
1101 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1102 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1103 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1104 		}
1105 		/*
1106 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1107 		 */
1108 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1109 
1110 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1111 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1112 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1113 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1114 			/* Deassert Low Power for 1st PHY. */
1115 			val |= PCI_Y2_PHY1_COMA;
1116 			if (sc->msk_num_port > 1)
1117 				val |= PCI_Y2_PHY2_COMA;
1118 		} else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
1119 			uint32_t our;
1120 
1121 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1122 
1123 			/* Enable all clocks. */
1124 			pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1125 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1126 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1127 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1128 			/* Set all bits to 0 except bits 15..12. */
1129 			pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1130 			/* Set to default value. */
1131 			pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
1132 		}
1133 		/* Release PHY from PowerDown/COMA mode. */
1134 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1135 		for (i = 0; i < sc->msk_num_port; i++) {
1136 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1137 			    GMLC_RST_SET);
1138 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1139 			    GMLC_RST_CLR);
1140 		}
1141 		break;
1142 	case MSK_PHY_POWERDOWN:
1143 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1144 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1145 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1146 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1147 			val &= ~PCI_Y2_PHY1_COMA;
1148 			if (sc->msk_num_port > 1)
1149 				val &= ~PCI_Y2_PHY2_COMA;
1150 		}
1151 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1152 
1153 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1154 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1155 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1156 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1157 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1158 			/* Enable bits are inverted. */
1159 			val = 0;
1160 		}
1161 		/*
1162 		 * Disable PCI & Core Clock, disable clock gating for
1163 		 * both Links.
1164 		 */
1165 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1166 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1167 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1168 		break;
1169 	default:
1170 		break;
1171 	}
1172 }
1173 
1174 static void
1175 mskc_reset(struct msk_softc *sc)
1176 {
1177 	bus_addr_t addr;
1178 	uint16_t status;
1179 	uint32_t val;
1180 	int i;
1181 
1182 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1183 
1184 	/* Disable ASF. */
1185 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
1186 		CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1187 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1188 	}
1189 	/*
1190 	 * Since we disabled ASF, S/W reset is required for Power Management.
1191 	 */
1192 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1193 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1194 
1195 	/* Clear all error bits in the PCI status register. */
1196 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1197 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1198 
1199 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1200 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1201 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1202 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1203 
1204 	switch (sc->msk_bustype) {
1205 	case MSK_PEX_BUS:
1206 		/* Clear all PEX errors. */
1207 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1208 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1209 		if ((val & PEX_RX_OV) != 0) {
1210 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1211 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1212 		}
1213 		break;
1214 	case MSK_PCI_BUS:
1215 	case MSK_PCIX_BUS:
1216 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1217 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1218 		if (val == 0)
1219 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1220 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1221 			/* Set Cache Line Size opt. */
1222 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1223 			val |= PCI_CLS_OPT;
1224 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1225 		}
1226 		break;
1227 	}
1228 	/* Set PHY power state. */
1229 	msk_phy_power(sc, MSK_PHY_POWERUP);
1230 
1231 	/* Reset GPHY/GMAC Control */
1232 	for (i = 0; i < sc->msk_num_port; i++) {
1233 		/* GPHY Control reset. */
1234 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1235 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1236 		/* GMAC Control reset. */
1237 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1238 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1239 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1240 	}
1241 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1242 
1243 	/* LED On. */
1244 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1245 
1246 	/* Clear TWSI IRQ. */
1247 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1248 
1249 	/* Turn off hardware timer. */
1250 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1251 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1252 
1253 	/* Turn off descriptor polling. */
1254 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1255 
1256 	/* Turn off time stamps. */
1257 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1258 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1259 
1260 	/* Configure timeout values. */
1261 	for (i = 0; i < sc->msk_num_port; i++) {
1262 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1263 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1264 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1265 		    MSK_RI_TO_53);
1266 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1267 		    MSK_RI_TO_53);
1268 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1269 		    MSK_RI_TO_53);
1270 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1271 		    MSK_RI_TO_53);
1272 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1273 		    MSK_RI_TO_53);
1274 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1275 		    MSK_RI_TO_53);
1276 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1277 		    MSK_RI_TO_53);
1278 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1279 		    MSK_RI_TO_53);
1280 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1281 		    MSK_RI_TO_53);
1282 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1283 		    MSK_RI_TO_53);
1284 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1285 		    MSK_RI_TO_53);
1286 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1287 		    MSK_RI_TO_53);
1288 	}
1289 
1290 	/* Disable all interrupts. */
1291 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1292 	CSR_READ_4(sc, B0_HWE_IMSK);
1293 	CSR_WRITE_4(sc, B0_IMSK, 0);
1294 	CSR_READ_4(sc, B0_IMSK);
1295 
1296         /*
1297          * On dual port PCI-X card, there is an problem where status
1298          * can be received out of order due to split transactions.
1299          */
1300 	if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
1301 		int pcix;
1302 		uint16_t pcix_cmd;
1303 
1304 		if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &pcix) == 0) {
1305 			pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
1306 			/* Clear Max Outstanding Split Transactions. */
1307 			pcix_cmd &= ~0x70;
1308 			CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1309 			pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
1310 			CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1311 		}
1312         }
1313 	if (sc->msk_bustype == MSK_PEX_BUS) {
1314 		uint16_t v, width;
1315 
1316 		v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
1317 		/* Change Max. Read Request Size to 4096 bytes. */
1318 		v &= ~PEX_DC_MAX_RRS_MSK;
1319 		v |= PEX_DC_MAX_RD_RQ_SIZE(5);
1320 		pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
1321 		width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
1322 		width = (width & PEX_LS_LINK_WI_MSK) >> 4;
1323 		v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
1324 		v = (v & PEX_LS_LINK_WI_MSK) >> 4;
1325 		if (v != width)
1326 			device_printf(sc->msk_dev,
1327 			    "negotiated width of link(x%d) != "
1328 			    "max. width of link(x%d)\n", width, v);
1329 	}
1330 
1331 	/* Clear status list. */
1332 	bzero(sc->msk_stat_ring,
1333 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1334 	sc->msk_stat_cons = 0;
1335 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1336 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1337 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1338 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1339 	/* Set the status list base address. */
1340 	addr = sc->msk_stat_ring_paddr;
1341 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1342 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1343 	/* Set the status list last index. */
1344 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1345 	if (HW_FEATURE(sc, HWF_WA_DEV_43_418)) {
1346 		/* WA for dev. #4.3 */
1347 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1348 		/* WA for dev. #4.18 */
1349 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1350 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1351 	} else {
1352 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1353 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1354 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM,
1355 		    HW_FEATURE(sc, HWF_WA_DEV_4109) ? 0x10 : 0x04);
1356 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1357 	}
1358 	/*
1359 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1360 	 */
1361 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1362 
1363 	/* Enable status unit. */
1364 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1365 
1366 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1367 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1368 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1369 }
1370 
1371 static int
1372 msk_probe(device_t dev)
1373 {
1374 	struct msk_softc *sc;
1375 	char desc[100];
1376 
1377 	sc = device_get_softc(device_get_parent(dev));
1378 	/*
1379 	 * Not much to do here. We always know there will be
1380 	 * at least one GMAC present, and if there are two,
1381 	 * mskc_attach() will create a second device instance
1382 	 * for us.
1383 	 */
1384 	snprintf(desc, sizeof(desc),
1385 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1386 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1387 	    sc->msk_hw_rev);
1388 	device_set_desc_copy(dev, desc);
1389 
1390 	return (BUS_PROBE_DEFAULT);
1391 }
1392 
1393 static int
1394 msk_attach(device_t dev)
1395 {
1396 	struct msk_softc *sc;
1397 	struct msk_if_softc *sc_if;
1398 	struct ifnet *ifp;
1399 	int i, port, error;
1400 	uint8_t eaddr[6];
1401 
1402 	if (dev == NULL)
1403 		return (EINVAL);
1404 
1405 	error = 0;
1406 	sc_if = device_get_softc(dev);
1407 	sc = device_get_softc(device_get_parent(dev));
1408 	port = *(int *)device_get_ivars(dev);
1409 
1410 	sc_if->msk_if_dev = dev;
1411 	sc_if->msk_port = port;
1412 	sc_if->msk_softc = sc;
1413 	sc->msk_if[port] = sc_if;
1414 	/* Setup Tx/Rx queue register offsets. */
1415 	if (port == MSK_PORT_A) {
1416 		sc_if->msk_txq = Q_XA1;
1417 		sc_if->msk_txsq = Q_XS1;
1418 		sc_if->msk_rxq = Q_R1;
1419 	} else {
1420 		sc_if->msk_txq = Q_XA2;
1421 		sc_if->msk_txsq = Q_XS2;
1422 		sc_if->msk_rxq = Q_R2;
1423 	}
1424 
1425 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1426 	TASK_INIT(&sc_if->msk_link_task, 0, msk_link_task, sc_if);
1427 
1428 	if ((error = msk_txrx_dma_alloc(sc_if) != 0))
1429 		goto fail;
1430 
1431 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1432 	if (ifp == NULL) {
1433 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1434 		error = ENOSPC;
1435 		goto fail;
1436 	}
1437 	ifp->if_softc = sc_if;
1438 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1439 	ifp->if_mtu = ETHERMTU;
1440 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1441 	/*
1442 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1443 	 * has serious bug in Rx checksum offload for all Yukon II family
1444 	 * hardware. It seems there is a workaround to make it work somtimes.
1445 	 * However, the workaround also have to check OP code sequences to
1446 	 * verify whether the OP code is correct. Sometimes it should compute
1447 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1448 	 * checksum computed by hardware. If you have to compute checksum
1449 	 * with software to verify the hardware's checksum why have hardware
1450 	 * compute the checksum? I think there is no reason to spend time to
1451 	 * make Rx checksum offload work on Yukon II hardware.
1452 	 */
1453 	ifp->if_capabilities = IFCAP_TXCSUM;
1454 	ifp->if_hwassist = MSK_CSUM_FEATURES;
1455 #if 0
1456 	/*
1457 	 * Under certain circumtances, if TSO is active, Yukon II generates
1458 	 * corrupted IP packets. Disable TSO until we find a working
1459 	 * workaround or a new silicon revision that doesn't have this
1460 	 * hardware bug.
1461 	 */
1462 	if (sc->msk_hw_id != CHIP_ID_YUKON_EC_U) {
1463 		/* It seems Yukon EC Ultra doesn't support TSO. */
1464 		ifp->if_capabilities |= IFCAP_TSO4;
1465 		ifp->if_hwassist |= CSUM_TSO;
1466 	}
1467 #endif
1468 	ifp->if_capenable = ifp->if_capabilities;
1469 	ifp->if_ioctl = msk_ioctl;
1470 	ifp->if_start = msk_start;
1471 	ifp->if_timer = 0;
1472 	ifp->if_watchdog = NULL;
1473 	ifp->if_init = msk_init;
1474 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1475 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1476 	IFQ_SET_READY(&ifp->if_snd);
1477 
1478 	TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp);
1479 
1480 	/*
1481 	 * Get station address for this interface. Note that
1482 	 * dual port cards actually come with three station
1483 	 * addresses: one for each port, plus an extra. The
1484 	 * extra one is used by the SysKonnect driver software
1485 	 * as a 'virtual' station address for when both ports
1486 	 * are operating in failover mode. Currently we don't
1487 	 * use this extra address.
1488 	 */
1489 	MSK_IF_LOCK(sc_if);
1490 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1491 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1492 
1493 	/*
1494 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1495 	 */
1496 	MSK_IF_UNLOCK(sc_if);
1497 	ether_ifattach(ifp, eaddr);
1498 	MSK_IF_LOCK(sc_if);
1499 
1500 	/* VLAN capability setup */
1501         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1502 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1503 		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1504 	ifp->if_capenable = ifp->if_capabilities;
1505 
1506 	/*
1507 	 * Tell the upper layer(s) we support long frames.
1508 	 * Must appear after the call to ether_ifattach() because
1509 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1510 	 */
1511         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1512 
1513 	/*
1514 	 * Do miibus setup.
1515 	 */
1516 	MSK_IF_UNLOCK(sc_if);
1517 	error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
1518 	    msk_mediastatus);
1519 	if (error != 0) {
1520 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1521 		ether_ifdetach(ifp);
1522 		error = ENXIO;
1523 		goto fail;
1524 	}
1525 	/* Check whether PHY Id is MARVELL. */
1526 	if (msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_ID0)
1527 	    == PHY_MARV_ID0_VAL)
1528 		sc->msk_marvell_phy = 1;
1529 
1530 fail:
1531 	if (error != 0) {
1532 		/* Access should be ok even though lock has been dropped */
1533 		sc->msk_if[port] = NULL;
1534 		msk_detach(dev);
1535 	}
1536 
1537 	return (error);
1538 }
1539 
1540 /*
1541  * Attach the interface. Allocate softc structures, do ifmedia
1542  * setup and ethernet/BPF attach.
1543  */
1544 static int
1545 mskc_attach(device_t dev)
1546 {
1547 	struct msk_softc *sc;
1548 	int error, msic, *port, reg;
1549 
1550 	sc = device_get_softc(dev);
1551 	sc->msk_dev = dev;
1552 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1553 	    MTX_DEF);
1554 
1555 	/*
1556 	 * Map control/status registers.
1557 	 */
1558 	pci_enable_busmaster(dev);
1559 
1560 	/* Allocate I/O resource */
1561 #ifdef MSK_USEIOSPACE
1562 	sc->msk_res_spec = msk_res_spec_io;
1563 #else
1564 	sc->msk_res_spec = msk_res_spec_mem;
1565 #endif
1566 	sc->msk_irq_spec = msk_irq_spec_legacy;
1567 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1568 	if (error) {
1569 		if (sc->msk_res_spec == msk_res_spec_mem)
1570 			sc->msk_res_spec = msk_res_spec_io;
1571 		else
1572 			sc->msk_res_spec = msk_res_spec_mem;
1573 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1574 		if (error) {
1575 			device_printf(dev, "couldn't allocate %s resources\n",
1576 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1577 			    "I/O");
1578 			mtx_destroy(&sc->msk_mtx);
1579 			return (ENXIO);
1580 		}
1581 	}
1582 
1583 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1584 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1585 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1586 	/* Bail out if chip is not recognized. */
1587 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1588 	    sc->msk_hw_id > CHIP_ID_YUKON_FE) {
1589 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1590 		    sc->msk_hw_id, sc->msk_hw_rev);
1591 		mtx_destroy(&sc->msk_mtx);
1592 		return (ENXIO);
1593 	}
1594 
1595 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1596 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1597 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1598 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1599 	    "max number of Rx events to process");
1600 
1601 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1602 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1603 	    "process_limit", &sc->msk_process_limit);
1604 	if (error == 0) {
1605 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1606 		    sc->msk_process_limit > MSK_PROC_MAX) {
1607 			device_printf(dev, "process_limit value out of range; "
1608 			    "using default: %d\n", MSK_PROC_DEFAULT);
1609 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1610 		}
1611 	}
1612 
1613 	/* Soft reset. */
1614 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1615 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1616 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1617 	 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1618 		 sc->msk_coppertype = 0;
1619 	 else
1620 		 sc->msk_coppertype = 1;
1621 	/* Check number of MACs. */
1622 	sc->msk_num_port = 1;
1623 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1624 	    CFG_DUAL_MAC_MSK) {
1625 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1626 			sc->msk_num_port++;
1627 	}
1628 
1629 	/* Check bus type. */
1630 	if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0)
1631 		sc->msk_bustype = MSK_PEX_BUS;
1632 	else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0)
1633 		sc->msk_bustype = MSK_PCIX_BUS;
1634 	else
1635 		sc->msk_bustype = MSK_PCI_BUS;
1636 
1637 	/* Get H/W features(bugs). */
1638 	switch (sc->msk_hw_id) {
1639 	case CHIP_ID_YUKON_EC:
1640 		sc->msk_clock = 125;	/* 125 Mhz */
1641 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1642 			sc->msk_hw_feature =
1643 			    HWF_WA_DEV_42  | HWF_WA_DEV_46 | HWF_WA_DEV_43_418 |
1644 			    HWF_WA_DEV_420 | HWF_WA_DEV_423 |
1645 			    HWF_WA_DEV_424 | HWF_WA_DEV_425 | HWF_WA_DEV_427 |
1646 			    HWF_WA_DEV_428 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
1647 			    HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
1648 		} else {
1649 			/* A2/A3 */
1650 			sc->msk_hw_feature =
1651 			    HWF_WA_DEV_424 | HWF_WA_DEV_425 | HWF_WA_DEV_427 |
1652 			    HWF_WA_DEV_428 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
1653 			    HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
1654 		}
1655 		break;
1656 	case CHIP_ID_YUKON_EC_U:
1657 		sc->msk_clock = 125;	/* 125 Mhz */
1658 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
1659 			sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_483 |
1660 			    HWF_WA_DEV_4109;
1661 		} else if (sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1662 			uint16_t v;
1663 
1664 			sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_4109 |
1665 			    HWF_WA_DEV_4185;
1666 			v = CSR_READ_2(sc, Q_ADDR(Q_XA1, Q_WM));
1667 			if (v == 0)
1668 				sc->msk_hw_feature |= HWF_WA_DEV_4185CS |
1669 				    HWF_WA_DEV_4200;
1670 		}
1671 		break;
1672 	case CHIP_ID_YUKON_FE:
1673 		sc->msk_clock = 100;	/* 100 Mhz */
1674 		sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_4109 |
1675 		    HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
1676 		break;
1677 	case CHIP_ID_YUKON_XL:
1678 		sc->msk_clock = 156;	/* 156 Mhz */
1679 		switch (sc->msk_hw_rev) {
1680 		case CHIP_REV_YU_XL_A0:
1681 			sc->msk_hw_feature =
1682 			    HWF_WA_DEV_427 | HWF_WA_DEV_463 | HWF_WA_DEV_472 |
1683 			    HWF_WA_DEV_479 | HWF_WA_DEV_483 | HWF_WA_DEV_4115 |
1684 			    HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
1685 			break;
1686 		case CHIP_REV_YU_XL_A1:
1687 			sc->msk_hw_feature =
1688 			    HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
1689 			    HWF_WA_DEV_4115 | HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
1690 			break;
1691 		case CHIP_REV_YU_XL_A2:
1692 			sc->msk_hw_feature =
1693 			    HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
1694 			    HWF_WA_DEV_4115 | HWF_WA_DEV_4167;
1695 			break;
1696 		case CHIP_REV_YU_XL_A3:
1697 			sc->msk_hw_feature =
1698 			    HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
1699 			    HWF_WA_DEV_4115;
1700 		}
1701 		break;
1702 	default:
1703 		sc->msk_clock = 156;	/* 156 Mhz */
1704 		sc->msk_hw_feature = 0;
1705 	}
1706 
1707 	/* Allocate IRQ resources. */
1708 	msic = pci_msi_count(dev);
1709 	if (bootverbose)
1710 		device_printf(dev, "MSI count : %d\n", msic);
1711 	/*
1712 	 * The Yukon II reports it can handle two messages, one for each
1713 	 * possible port.  We go ahead and allocate two messages and only
1714 	 * setup a handler for both if we have a dual port card.
1715 	 *
1716 	 * XXX: I haven't untangled the interrupt handler to handle dual
1717 	 * port cards with separate MSI messages, so for now I disable MSI
1718 	 * on dual port cards.
1719 	 */
1720 	if (msic == 2 && msi_disable == 0 && sc->msk_num_port == 1 &&
1721 	    pci_alloc_msi(dev, &msic) == 0) {
1722 		if (msic == 2) {
1723 			sc->msk_msi = 1;
1724 			sc->msk_irq_spec = msk_irq_spec_msi;
1725 		} else
1726 			pci_release_msi(dev);
1727 	}
1728 
1729 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1730 	if (error) {
1731 		device_printf(dev, "couldn't allocate IRQ resources\n");
1732 		goto fail;
1733 	}
1734 
1735 	if ((error = msk_status_dma_alloc(sc)) != 0)
1736 		goto fail;
1737 
1738 	/* Set base interrupt mask. */
1739 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1740 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1741 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1742 
1743 	/* Reset the adapter. */
1744 	mskc_reset(sc);
1745 
1746 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1747 		goto fail;
1748 
1749 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1750 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1751 		device_printf(dev, "failed to add child for PORT_A\n");
1752 		error = ENXIO;
1753 		goto fail;
1754 	}
1755 	port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1756 	if (port == NULL) {
1757 		device_printf(dev, "failed to allocate memory for "
1758 		    "ivars of PORT_A\n");
1759 		error = ENXIO;
1760 		goto fail;
1761 	}
1762 	*port = MSK_PORT_A;
1763 	device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1764 
1765 	if (sc->msk_num_port > 1) {
1766 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1767 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1768 			device_printf(dev, "failed to add child for PORT_B\n");
1769 			error = ENXIO;
1770 			goto fail;
1771 		}
1772 		port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1773 		if (port == NULL) {
1774 			device_printf(dev, "failed to allocate memory for "
1775 			    "ivars of PORT_B\n");
1776 			error = ENXIO;
1777 			goto fail;
1778 		}
1779 		*port = MSK_PORT_B;
1780 		device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1781 	}
1782 
1783 	error = bus_generic_attach(dev);
1784 	if (error) {
1785 		device_printf(dev, "failed to attach port(s)\n");
1786 		goto fail;
1787 	}
1788 
1789 	TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc);
1790 	sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK,
1791 	    taskqueue_thread_enqueue, &sc->msk_tq);
1792 	taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq",
1793 	    device_get_nameunit(sc->msk_dev));
1794 	/* Hook interrupt last to avoid having to lock softc. */
1795 	error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1796 	    INTR_MPSAFE, msk_intr, NULL, sc, &sc->msk_intrhand[0]);
1797 
1798 	if (error != 0) {
1799 		device_printf(dev, "couldn't set up interrupt handler\n");
1800 		taskqueue_free(sc->msk_tq);
1801 		sc->msk_tq = NULL;
1802 		goto fail;
1803 	}
1804 fail:
1805 	if (error != 0)
1806 		mskc_detach(dev);
1807 
1808 	return (error);
1809 }
1810 
1811 /*
1812  * Shutdown hardware and free up resources. This can be called any
1813  * time after the mutex has been initialized. It is called in both
1814  * the error case in attach and the normal detach case so it needs
1815  * to be careful about only freeing resources that have actually been
1816  * allocated.
1817  */
1818 static int
1819 msk_detach(device_t dev)
1820 {
1821 	struct msk_softc *sc;
1822 	struct msk_if_softc *sc_if;
1823 	struct ifnet *ifp;
1824 
1825 	sc_if = device_get_softc(dev);
1826 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
1827 	    ("msk mutex not initialized in msk_detach"));
1828 	MSK_IF_LOCK(sc_if);
1829 
1830 	ifp = sc_if->msk_ifp;
1831 	if (device_is_attached(dev)) {
1832 		/* XXX */
1833 		sc_if->msk_detach = 1;
1834 		msk_stop(sc_if);
1835 		/* Can't hold locks while calling detach. */
1836 		MSK_IF_UNLOCK(sc_if);
1837 		callout_drain(&sc_if->msk_tick_ch);
1838 		taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task);
1839 		taskqueue_drain(taskqueue_swi, &sc_if->msk_link_task);
1840 		ether_ifdetach(ifp);
1841 		MSK_IF_LOCK(sc_if);
1842 	}
1843 
1844 	/*
1845 	 * We're generally called from mskc_detach() which is using
1846 	 * device_delete_child() to get to here. It's already trashed
1847 	 * miibus for us, so don't do it here or we'll panic.
1848 	 *
1849 	 * if (sc_if->msk_miibus != NULL) {
1850 	 * 	device_delete_child(dev, sc_if->msk_miibus);
1851 	 * 	sc_if->msk_miibus = NULL;
1852 	 * }
1853 	 */
1854 
1855 	msk_txrx_dma_free(sc_if);
1856 	bus_generic_detach(dev);
1857 
1858 	if (ifp)
1859 		if_free(ifp);
1860 	sc = sc_if->msk_softc;
1861 	sc->msk_if[sc_if->msk_port] = NULL;
1862 	MSK_IF_UNLOCK(sc_if);
1863 
1864 	return (0);
1865 }
1866 
1867 static int
1868 mskc_detach(device_t dev)
1869 {
1870 	struct msk_softc *sc;
1871 
1872 	sc = device_get_softc(dev);
1873 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
1874 
1875 	if (device_is_alive(dev)) {
1876 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
1877 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
1878 			    M_DEVBUF);
1879 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
1880 		}
1881 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
1882 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
1883 			    M_DEVBUF);
1884 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
1885 		}
1886 		bus_generic_detach(dev);
1887 	}
1888 
1889 	/* Disable all interrupts. */
1890 	CSR_WRITE_4(sc, B0_IMSK, 0);
1891 	CSR_READ_4(sc, B0_IMSK);
1892 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1893 	CSR_READ_4(sc, B0_HWE_IMSK);
1894 
1895 	/* LED Off. */
1896 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1897 
1898 	/* Put hardware reset. */
1899 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1900 
1901 	msk_status_dma_free(sc);
1902 
1903 	if (sc->msk_tq != NULL) {
1904 		taskqueue_drain(sc->msk_tq, &sc->msk_int_task);
1905 		taskqueue_free(sc->msk_tq);
1906 		sc->msk_tq = NULL;
1907 	}
1908 	if (sc->msk_intrhand[0]) {
1909 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1910 		sc->msk_intrhand[0] = NULL;
1911 	}
1912 	if (sc->msk_intrhand[1]) {
1913 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1914 		sc->msk_intrhand[1] = NULL;
1915 	}
1916 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1917 	if (sc->msk_msi)
1918 		pci_release_msi(dev);
1919 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
1920 	mtx_destroy(&sc->msk_mtx);
1921 
1922 	return (0);
1923 }
1924 
1925 struct msk_dmamap_arg {
1926 	bus_addr_t	msk_busaddr;
1927 };
1928 
1929 static void
1930 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1931 {
1932 	struct msk_dmamap_arg *ctx;
1933 
1934 	if (error != 0)
1935 		return;
1936 	ctx = arg;
1937 	ctx->msk_busaddr = segs[0].ds_addr;
1938 }
1939 
1940 /* Create status DMA region. */
1941 static int
1942 msk_status_dma_alloc(struct msk_softc *sc)
1943 {
1944 	struct msk_dmamap_arg ctx;
1945 	int error;
1946 
1947 	error = bus_dma_tag_create(
1948 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
1949 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
1950 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1951 		    BUS_SPACE_MAXADDR,		/* highaddr */
1952 		    NULL, NULL,			/* filter, filterarg */
1953 		    MSK_STAT_RING_SZ,		/* maxsize */
1954 		    1,				/* nsegments */
1955 		    MSK_STAT_RING_SZ,		/* maxsegsize */
1956 		    0,				/* flags */
1957 		    NULL, NULL,			/* lockfunc, lockarg */
1958 		    &sc->msk_stat_tag);
1959 	if (error != 0) {
1960 		device_printf(sc->msk_dev,
1961 		    "failed to create status DMA tag\n");
1962 		return (error);
1963 	}
1964 
1965 	/* Allocate DMA'able memory and load the DMA map for status ring. */
1966 	error = bus_dmamem_alloc(sc->msk_stat_tag,
1967 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
1968 	    BUS_DMA_ZERO, &sc->msk_stat_map);
1969 	if (error != 0) {
1970 		device_printf(sc->msk_dev,
1971 		    "failed to allocate DMA'able memory for status ring\n");
1972 		return (error);
1973 	}
1974 
1975 	ctx.msk_busaddr = 0;
1976 	error = bus_dmamap_load(sc->msk_stat_tag,
1977 	    sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
1978 	    msk_dmamap_cb, &ctx, 0);
1979 	if (error != 0) {
1980 		device_printf(sc->msk_dev,
1981 		    "failed to load DMA'able memory for status ring\n");
1982 		return (error);
1983 	}
1984 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
1985 
1986 	return (0);
1987 }
1988 
1989 static void
1990 msk_status_dma_free(struct msk_softc *sc)
1991 {
1992 
1993 	/* Destroy status block. */
1994 	if (sc->msk_stat_tag) {
1995 		if (sc->msk_stat_map) {
1996 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1997 			if (sc->msk_stat_ring) {
1998 				bus_dmamem_free(sc->msk_stat_tag,
1999 				    sc->msk_stat_ring, sc->msk_stat_map);
2000 				sc->msk_stat_ring = NULL;
2001 			}
2002 			sc->msk_stat_map = NULL;
2003 		}
2004 		bus_dma_tag_destroy(sc->msk_stat_tag);
2005 		sc->msk_stat_tag = NULL;
2006 	}
2007 }
2008 
2009 static int
2010 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2011 {
2012 	struct msk_dmamap_arg ctx;
2013 	struct msk_txdesc *txd;
2014 	struct msk_rxdesc *rxd;
2015 	struct msk_rxdesc *jrxd;
2016 	struct msk_jpool_entry *entry;
2017 	uint8_t *ptr;
2018 	int error, i;
2019 
2020 	mtx_init(&sc_if->msk_jlist_mtx, "msk_jlist_mtx", NULL, MTX_DEF);
2021 	SLIST_INIT(&sc_if->msk_jfree_listhead);
2022 	SLIST_INIT(&sc_if->msk_jinuse_listhead);
2023 
2024 	/* Create parent DMA tag. */
2025 	/*
2026 	 * XXX
2027 	 * It seems that Yukon II supports full 64bits DMA operations. But
2028 	 * it needs two descriptors(list elements) for 64bits DMA operations.
2029 	 * Since we don't know what DMA address mappings(32bits or 64bits)
2030 	 * would be used in advance for each mbufs, we limits its DMA space
2031 	 * to be in range of 32bits address space. Otherwise, we should check
2032 	 * what DMA address is used and chain another descriptor for the
2033 	 * 64bits DMA operation. This also means descriptor ring size is
2034 	 * variable. Limiting DMA address to be in 32bit address space greatly
2035 	 * simplyfies descriptor handling and possibly would increase
2036 	 * performance a bit due to efficient handling of descriptors.
2037 	 * Apart from harassing checksum offloading mechanisms, it seems
2038 	 * it's really bad idea to use a seperate descriptor for 64bit
2039 	 * DMA operation to save small descriptor memory. Anyway, I've
2040 	 * never seen these exotic scheme on ethernet interface hardware.
2041 	 */
2042 	error = bus_dma_tag_create(
2043 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2044 		    1, 0,			/* alignment, boundary */
2045 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2046 		    BUS_SPACE_MAXADDR,		/* highaddr */
2047 		    NULL, NULL,			/* filter, filterarg */
2048 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2049 		    0,				/* nsegments */
2050 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2051 		    0,				/* flags */
2052 		    NULL, NULL,			/* lockfunc, lockarg */
2053 		    &sc_if->msk_cdata.msk_parent_tag);
2054 	if (error != 0) {
2055 		device_printf(sc_if->msk_if_dev,
2056 		    "failed to create parent DMA tag\n");
2057 		goto fail;
2058 	}
2059 	/* Create tag for Tx ring. */
2060 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2061 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2062 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2063 		    BUS_SPACE_MAXADDR,		/* highaddr */
2064 		    NULL, NULL,			/* filter, filterarg */
2065 		    MSK_TX_RING_SZ,		/* maxsize */
2066 		    1,				/* nsegments */
2067 		    MSK_TX_RING_SZ,		/* maxsegsize */
2068 		    0,				/* flags */
2069 		    NULL, NULL,			/* lockfunc, lockarg */
2070 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2071 	if (error != 0) {
2072 		device_printf(sc_if->msk_if_dev,
2073 		    "failed to create Tx ring DMA tag\n");
2074 		goto fail;
2075 	}
2076 
2077 	/* Create tag for Rx ring. */
2078 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2079 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2080 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2081 		    BUS_SPACE_MAXADDR,		/* highaddr */
2082 		    NULL, NULL,			/* filter, filterarg */
2083 		    MSK_RX_RING_SZ,		/* maxsize */
2084 		    1,				/* nsegments */
2085 		    MSK_RX_RING_SZ,		/* maxsegsize */
2086 		    0,				/* flags */
2087 		    NULL, NULL,			/* lockfunc, lockarg */
2088 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2089 	if (error != 0) {
2090 		device_printf(sc_if->msk_if_dev,
2091 		    "failed to create Rx ring DMA tag\n");
2092 		goto fail;
2093 	}
2094 
2095 	/* Create tag for jumbo Rx ring. */
2096 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2097 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2098 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2099 		    BUS_SPACE_MAXADDR,		/* highaddr */
2100 		    NULL, NULL,			/* filter, filterarg */
2101 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2102 		    1,				/* nsegments */
2103 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2104 		    0,				/* flags */
2105 		    NULL, NULL,			/* lockfunc, lockarg */
2106 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2107 	if (error != 0) {
2108 		device_printf(sc_if->msk_if_dev,
2109 		    "failed to create jumbo Rx ring DMA tag\n");
2110 		goto fail;
2111 	}
2112 
2113 	/* Create tag for jumbo buffer blocks. */
2114 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2115 		    PAGE_SIZE, 0,		/* alignment, boundary */
2116 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2117 		    BUS_SPACE_MAXADDR,		/* highaddr */
2118 		    NULL, NULL,			/* filter, filterarg */
2119 		    MSK_JMEM,			/* maxsize */
2120 		    1,				/* nsegments */
2121 		    MSK_JMEM,			/* maxsegsize */
2122 		    0,				/* flags */
2123 		    NULL, NULL,			/* lockfunc, lockarg */
2124 		    &sc_if->msk_cdata.msk_jumbo_tag);
2125 	if (error != 0) {
2126 		device_printf(sc_if->msk_if_dev,
2127 		    "failed to create jumbo Rx buffer block DMA tag\n");
2128 		goto fail;
2129 	}
2130 
2131 	/* Create tag for Tx buffers. */
2132 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2133 		    1, 0,			/* alignment, boundary */
2134 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2135 		    BUS_SPACE_MAXADDR,		/* highaddr */
2136 		    NULL, NULL,			/* filter, filterarg */
2137 		    MCLBYTES * MSK_MAXTXSEGS,	/* maxsize */
2138 		    MSK_MAXTXSEGS,		/* nsegments */
2139 		    MCLBYTES,			/* maxsegsize */
2140 		    0,				/* flags */
2141 		    NULL, NULL,			/* lockfunc, lockarg */
2142 		    &sc_if->msk_cdata.msk_tx_tag);
2143 	if (error != 0) {
2144 		device_printf(sc_if->msk_if_dev,
2145 		    "failed to create Tx DMA tag\n");
2146 		goto fail;
2147 	}
2148 
2149 	/* Create tag for Rx buffers. */
2150 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2151 		    1, 0,			/* alignment, boundary */
2152 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2153 		    BUS_SPACE_MAXADDR,		/* highaddr */
2154 		    NULL, NULL,			/* filter, filterarg */
2155 		    MCLBYTES,			/* maxsize */
2156 		    1,				/* nsegments */
2157 		    MCLBYTES,			/* maxsegsize */
2158 		    0,				/* flags */
2159 		    NULL, NULL,			/* lockfunc, lockarg */
2160 		    &sc_if->msk_cdata.msk_rx_tag);
2161 	if (error != 0) {
2162 		device_printf(sc_if->msk_if_dev,
2163 		    "failed to create Rx DMA tag\n");
2164 		goto fail;
2165 	}
2166 
2167 	/* Create tag for jumbo Rx buffers. */
2168 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2169 		    PAGE_SIZE, 0,		/* alignment, boundary */
2170 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2171 		    BUS_SPACE_MAXADDR,		/* highaddr */
2172 		    NULL, NULL,			/* filter, filterarg */
2173 		    MCLBYTES * MSK_MAXRXSEGS,	/* maxsize */
2174 		    MSK_MAXRXSEGS,		/* nsegments */
2175 		    MSK_JLEN,			/* maxsegsize */
2176 		    0,				/* flags */
2177 		    NULL, NULL,			/* lockfunc, lockarg */
2178 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2179 	if (error != 0) {
2180 		device_printf(sc_if->msk_if_dev,
2181 		    "failed to create jumbo Rx DMA tag\n");
2182 		goto fail;
2183 	}
2184 
2185 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2186 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2187 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2188 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2189 	if (error != 0) {
2190 		device_printf(sc_if->msk_if_dev,
2191 		    "failed to allocate DMA'able memory for Tx ring\n");
2192 		goto fail;
2193 	}
2194 
2195 	ctx.msk_busaddr = 0;
2196 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2197 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2198 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2199 	if (error != 0) {
2200 		device_printf(sc_if->msk_if_dev,
2201 		    "failed to load DMA'able memory for Tx ring\n");
2202 		goto fail;
2203 	}
2204 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2205 
2206 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2207 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2208 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2209 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2210 	if (error != 0) {
2211 		device_printf(sc_if->msk_if_dev,
2212 		    "failed to allocate DMA'able memory for Rx ring\n");
2213 		goto fail;
2214 	}
2215 
2216 	ctx.msk_busaddr = 0;
2217 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2218 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2219 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2220 	if (error != 0) {
2221 		device_printf(sc_if->msk_if_dev,
2222 		    "failed to load DMA'able memory for Rx ring\n");
2223 		goto fail;
2224 	}
2225 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2226 
2227 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2228 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2229 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2230 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2231 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2232 	if (error != 0) {
2233 		device_printf(sc_if->msk_if_dev,
2234 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2235 		goto fail;
2236 	}
2237 
2238 	ctx.msk_busaddr = 0;
2239 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2240 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2241 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2242 	    msk_dmamap_cb, &ctx, 0);
2243 	if (error != 0) {
2244 		device_printf(sc_if->msk_if_dev,
2245 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2246 		goto fail;
2247 	}
2248 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2249 
2250 	/* Create DMA maps for Tx buffers. */
2251 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2252 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2253 		txd->tx_m = NULL;
2254 		txd->tx_dmamap = NULL;
2255 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2256 		    &txd->tx_dmamap);
2257 		if (error != 0) {
2258 			device_printf(sc_if->msk_if_dev,
2259 			    "failed to create Tx dmamap\n");
2260 			goto fail;
2261 		}
2262 	}
2263 	/* Create DMA maps for Rx buffers. */
2264 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2265 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2266 		device_printf(sc_if->msk_if_dev,
2267 		    "failed to create spare Rx dmamap\n");
2268 		goto fail;
2269 	}
2270 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2271 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2272 		rxd->rx_m = NULL;
2273 		rxd->rx_dmamap = NULL;
2274 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2275 		    &rxd->rx_dmamap);
2276 		if (error != 0) {
2277 			device_printf(sc_if->msk_if_dev,
2278 			    "failed to create Rx dmamap\n");
2279 			goto fail;
2280 		}
2281 	}
2282 	/* Create DMA maps for jumbo Rx buffers. */
2283 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2284 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2285 		device_printf(sc_if->msk_if_dev,
2286 		    "failed to create spare jumbo Rx dmamap\n");
2287 		goto fail;
2288 	}
2289 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2290 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2291 		jrxd->rx_m = NULL;
2292 		jrxd->rx_dmamap = NULL;
2293 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2294 		    &jrxd->rx_dmamap);
2295 		if (error != 0) {
2296 			device_printf(sc_if->msk_if_dev,
2297 			    "failed to create jumbo Rx dmamap\n");
2298 			goto fail;
2299 		}
2300 	}
2301 
2302 	/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
2303 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
2304 	    (void **)&sc_if->msk_rdata.msk_jumbo_buf,
2305 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2306 	    &sc_if->msk_cdata.msk_jumbo_map);
2307 	if (error != 0) {
2308 		device_printf(sc_if->msk_if_dev,
2309 		    "failed to allocate DMA'able memory for jumbo buf\n");
2310 		goto fail;
2311 	}
2312 
2313 	ctx.msk_busaddr = 0;
2314 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
2315 	    sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
2316 	    MSK_JMEM, msk_dmamap_cb, &ctx, 0);
2317 	if (error != 0) {
2318 		device_printf(sc_if->msk_if_dev,
2319 		    "failed to load DMA'able memory for jumbobuf\n");
2320 		goto fail;
2321 	}
2322 	sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
2323 
2324 	/*
2325 	 * Now divide it up into 9K pieces and save the addresses
2326 	 * in an array.
2327 	 */
2328 	ptr = sc_if->msk_rdata.msk_jumbo_buf;
2329 	for (i = 0; i < MSK_JSLOTS; i++) {
2330 		sc_if->msk_cdata.msk_jslots[i] = ptr;
2331 		ptr += MSK_JLEN;
2332 		entry = malloc(sizeof(struct msk_jpool_entry),
2333 		    M_DEVBUF, M_WAITOK);
2334 		if (entry == NULL) {
2335 			device_printf(sc_if->msk_if_dev,
2336 			    "no memory for jumbo buffers!\n");
2337 			error = ENOMEM;
2338 			goto fail;
2339 		}
2340 		entry->slot = i;
2341 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2342 		    jpool_entries);
2343 	}
2344 
2345 fail:
2346 	return (error);
2347 }
2348 
2349 static void
2350 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2351 {
2352 	struct msk_txdesc *txd;
2353 	struct msk_rxdesc *rxd;
2354 	struct msk_rxdesc *jrxd;
2355 	struct msk_jpool_entry *entry;
2356 	int i;
2357 
2358 	MSK_JLIST_LOCK(sc_if);
2359 	while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
2360 		device_printf(sc_if->msk_if_dev,
2361 		    "asked to free buffer that is in use!\n");
2362 		SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2363 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2364 		    jpool_entries);
2365 	}
2366 
2367 	while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
2368 		entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2369 		SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2370 		free(entry, M_DEVBUF);
2371 	}
2372 	MSK_JLIST_UNLOCK(sc_if);
2373 
2374 	/* Destroy jumbo buffer block. */
2375 	if (sc_if->msk_cdata.msk_jumbo_map)
2376 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
2377 		    sc_if->msk_cdata.msk_jumbo_map);
2378 
2379 	if (sc_if->msk_rdata.msk_jumbo_buf) {
2380 		bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
2381 		    sc_if->msk_rdata.msk_jumbo_buf,
2382 		    sc_if->msk_cdata.msk_jumbo_map);
2383 		sc_if->msk_rdata.msk_jumbo_buf = NULL;
2384 		sc_if->msk_cdata.msk_jumbo_map = NULL;
2385 	}
2386 
2387 	/* Tx ring. */
2388 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2389 		if (sc_if->msk_cdata.msk_tx_ring_map)
2390 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2391 			    sc_if->msk_cdata.msk_tx_ring_map);
2392 		if (sc_if->msk_cdata.msk_tx_ring_map &&
2393 		    sc_if->msk_rdata.msk_tx_ring)
2394 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2395 			    sc_if->msk_rdata.msk_tx_ring,
2396 			    sc_if->msk_cdata.msk_tx_ring_map);
2397 		sc_if->msk_rdata.msk_tx_ring = NULL;
2398 		sc_if->msk_cdata.msk_tx_ring_map = NULL;
2399 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2400 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2401 	}
2402 	/* Rx ring. */
2403 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2404 		if (sc_if->msk_cdata.msk_rx_ring_map)
2405 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2406 			    sc_if->msk_cdata.msk_rx_ring_map);
2407 		if (sc_if->msk_cdata.msk_rx_ring_map &&
2408 		    sc_if->msk_rdata.msk_rx_ring)
2409 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2410 			    sc_if->msk_rdata.msk_rx_ring,
2411 			    sc_if->msk_cdata.msk_rx_ring_map);
2412 		sc_if->msk_rdata.msk_rx_ring = NULL;
2413 		sc_if->msk_cdata.msk_rx_ring_map = NULL;
2414 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2415 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2416 	}
2417 	/* Jumbo Rx ring. */
2418 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2419 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2420 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2421 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2422 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2423 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2424 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2425 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2426 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2427 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2428 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2429 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2430 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2431 	}
2432 	/* Tx buffers. */
2433 	if (sc_if->msk_cdata.msk_tx_tag) {
2434 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2435 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2436 			if (txd->tx_dmamap) {
2437 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2438 				    txd->tx_dmamap);
2439 				txd->tx_dmamap = NULL;
2440 			}
2441 		}
2442 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2443 		sc_if->msk_cdata.msk_tx_tag = NULL;
2444 	}
2445 	/* Rx buffers. */
2446 	if (sc_if->msk_cdata.msk_rx_tag) {
2447 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2448 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2449 			if (rxd->rx_dmamap) {
2450 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2451 				    rxd->rx_dmamap);
2452 				rxd->rx_dmamap = NULL;
2453 			}
2454 		}
2455 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2456 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2457 			    sc_if->msk_cdata.msk_rx_sparemap);
2458 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2459 		}
2460 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2461 		sc_if->msk_cdata.msk_rx_tag = NULL;
2462 	}
2463 	/* Jumbo Rx buffers. */
2464 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2465 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2466 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2467 			if (jrxd->rx_dmamap) {
2468 				bus_dmamap_destroy(
2469 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2470 				    jrxd->rx_dmamap);
2471 				jrxd->rx_dmamap = NULL;
2472 			}
2473 		}
2474 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2475 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2476 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2477 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2478 		}
2479 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2480 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2481 	}
2482 
2483 	if (sc_if->msk_cdata.msk_parent_tag) {
2484 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2485 		sc_if->msk_cdata.msk_parent_tag = NULL;
2486 	}
2487 	mtx_destroy(&sc_if->msk_jlist_mtx);
2488 }
2489 
2490 /*
2491  * Allocate a jumbo buffer.
2492  */
2493 static void *
2494 msk_jalloc(struct msk_if_softc *sc_if)
2495 {
2496 	struct msk_jpool_entry *entry;
2497 
2498 	MSK_JLIST_LOCK(sc_if);
2499 
2500 	entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2501 
2502 	if (entry == NULL) {
2503 		MSK_JLIST_UNLOCK(sc_if);
2504 		return (NULL);
2505 	}
2506 
2507 	SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2508 	SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
2509 
2510 	MSK_JLIST_UNLOCK(sc_if);
2511 
2512 	return (sc_if->msk_cdata.msk_jslots[entry->slot]);
2513 }
2514 
2515 /*
2516  * Release a jumbo buffer.
2517  */
2518 static void
2519 msk_jfree(void *buf, void *args)
2520 {
2521 	struct msk_if_softc *sc_if;
2522 	struct msk_jpool_entry *entry;
2523 	int i;
2524 
2525 	/* Extract the softc struct pointer. */
2526 	sc_if = (struct msk_if_softc *)args;
2527 	KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
2528 
2529 	MSK_JLIST_LOCK(sc_if);
2530 	/* Calculate the slot this buffer belongs to. */
2531 	i = ((vm_offset_t)buf
2532 	     - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
2533 	KASSERT(i >= 0 && i < MSK_JSLOTS,
2534 	    ("%s: asked to free buffer that we don't manage!", __func__));
2535 
2536 	entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
2537 	KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
2538 	entry->slot = i;
2539 	SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2540 	SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
2541 	if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
2542 		wakeup(sc_if);
2543 
2544 	MSK_JLIST_UNLOCK(sc_if);
2545 }
2546 
2547 /*
2548  * It's copy of ath_defrag(ath(4)).
2549  *
2550  * Defragment an mbuf chain, returning at most maxfrags separate
2551  * mbufs+clusters.  If this is not possible NULL is returned and
2552  * the original mbuf chain is left in it's present (potentially
2553  * modified) state.  We use two techniques: collapsing consecutive
2554  * mbufs and replacing consecutive mbufs by a cluster.
2555  */
2556 static struct mbuf *
2557 msk_defrag(struct mbuf *m0, int how, int maxfrags)
2558 {
2559 	struct mbuf *m, *n, *n2, **prev;
2560 	u_int curfrags;
2561 
2562 	/*
2563 	 * Calculate the current number of frags.
2564 	 */
2565 	curfrags = 0;
2566 	for (m = m0; m != NULL; m = m->m_next)
2567 		curfrags++;
2568 	/*
2569 	 * First, try to collapse mbufs.  Note that we always collapse
2570 	 * towards the front so we don't need to deal with moving the
2571 	 * pkthdr.  This may be suboptimal if the first mbuf has much
2572 	 * less data than the following.
2573 	 */
2574 	m = m0;
2575 again:
2576 	for (;;) {
2577 		n = m->m_next;
2578 		if (n == NULL)
2579 			break;
2580 		if ((m->m_flags & M_RDONLY) == 0 &&
2581 		    n->m_len < M_TRAILINGSPACE(m)) {
2582 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
2583 				n->m_len);
2584 			m->m_len += n->m_len;
2585 			m->m_next = n->m_next;
2586 			m_free(n);
2587 			if (--curfrags <= maxfrags)
2588 				return (m0);
2589 		} else
2590 			m = n;
2591 	}
2592 	KASSERT(maxfrags > 1,
2593 		("maxfrags %u, but normal collapse failed", maxfrags));
2594 	/*
2595 	 * Collapse consecutive mbufs to a cluster.
2596 	 */
2597 	prev = &m0->m_next;		/* NB: not the first mbuf */
2598 	while ((n = *prev) != NULL) {
2599 		if ((n2 = n->m_next) != NULL &&
2600 		    n->m_len + n2->m_len < MCLBYTES) {
2601 			m = m_getcl(how, MT_DATA, 0);
2602 			if (m == NULL)
2603 				goto bad;
2604 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
2605 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
2606 				n2->m_len);
2607 			m->m_len = n->m_len + n2->m_len;
2608 			m->m_next = n2->m_next;
2609 			*prev = m;
2610 			m_free(n);
2611 			m_free(n2);
2612 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
2613 				return m0;
2614 			/*
2615 			 * Still not there, try the normal collapse
2616 			 * again before we allocate another cluster.
2617 			 */
2618 			goto again;
2619 		}
2620 		prev = &n->m_next;
2621 	}
2622 	/*
2623 	 * No place where we can collapse to a cluster; punt.
2624 	 * This can occur if, for example, you request 2 frags
2625 	 * but the packet requires that both be clusters (we
2626 	 * never reallocate the first mbuf to avoid moving the
2627 	 * packet header).
2628 	 */
2629 bad:
2630 	return (NULL);
2631 }
2632 
2633 static int
2634 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2635 {
2636 	struct msk_txdesc *txd, *txd_last;
2637 	struct msk_tx_desc *tx_le;
2638 	struct mbuf *m;
2639 	bus_dmamap_t map;
2640 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2641 	uint32_t control, prod, si;
2642 	uint16_t offset, tcp_offset, tso_mtu;
2643 	int error, i, nseg, tso;
2644 
2645 	MSK_IF_LOCK_ASSERT(sc_if);
2646 
2647 	tcp_offset = offset = 0;
2648 	m = *m_head;
2649 	if ((m->m_pkthdr.csum_flags & (MSK_CSUM_FEATURES | CSUM_TSO)) != 0) {
2650 		/*
2651 		 * Since mbuf has no protocol specific structure information
2652 		 * in it we have to inspect protocol information here to
2653 		 * setup TSO and checksum offload. I don't know why Marvell
2654 		 * made a such decision in chip design because other GigE
2655 		 * hardwares normally takes care of all these chores in
2656 		 * hardware. However, TSO performance of Yukon II is very
2657 		 * good such that it's worth to implement it.
2658 		 */
2659 		struct ether_header *eh;
2660 		struct ip *ip;
2661 		struct tcphdr *tcp;
2662 
2663 		/* TODO check for M_WRITABLE(m) */
2664 
2665 		offset = sizeof(struct ether_header);
2666 		m = m_pullup(m, offset);
2667 		if (m == NULL) {
2668 			*m_head = NULL;
2669 			return (ENOBUFS);
2670 		}
2671 		eh = mtod(m, struct ether_header *);
2672 		/* Check if hardware VLAN insertion is off. */
2673 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2674 			offset = sizeof(struct ether_vlan_header);
2675 			m = m_pullup(m, offset);
2676 			if (m == NULL) {
2677 				*m_head = NULL;
2678 				return (ENOBUFS);
2679 			}
2680 		}
2681 		m = m_pullup(m, offset + sizeof(struct ip));
2682 		if (m == NULL) {
2683 			*m_head = NULL;
2684 			return (ENOBUFS);
2685 		}
2686 		ip = (struct ip *)(mtod(m, char *) + offset);
2687 		offset += (ip->ip_hl << 2);
2688 		tcp_offset = offset;
2689 		/*
2690 		 * It seems that Yukon II has Tx checksum offload bug for
2691 		 * small TCP packets that's less than 60 bytes in size
2692 		 * (e.g. TCP window probe packet, pure ACK packet).
2693 		 * Common work around like padding with zeros to make the
2694 		 * frame minimum ethernet frame size didn't work at all.
2695 		 * Instead of disabling checksum offload completely we
2696 		 * resort to S/W checksum routine when we encounter short
2697 		 * TCP frames.
2698 		 * Short UDP packets appear to be handled correctly by
2699 		 * Yukon II.
2700 		 */
2701 		if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2702 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2703 			uint16_t csum;
2704 
2705 			csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset -
2706 			    (ip->ip_hl << 2), offset);
2707 			*(uint16_t *)(m->m_data + offset +
2708 			    m->m_pkthdr.csum_data) = csum;
2709 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2710 		}
2711 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2712 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2713 			if (m == NULL) {
2714 				*m_head = NULL;
2715 				return (ENOBUFS);
2716 			}
2717 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2718 			offset += (tcp->th_off << 2);
2719 		}
2720 		*m_head = m;
2721 	}
2722 
2723 	prod = sc_if->msk_cdata.msk_tx_prod;
2724 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2725 	txd_last = txd;
2726 	map = txd->tx_dmamap;
2727 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2728 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2729 	if (error == EFBIG) {
2730 		m = msk_defrag(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
2731 		if (m == NULL) {
2732 			m_freem(*m_head);
2733 			*m_head = NULL;
2734 			return (ENOBUFS);
2735 		}
2736 		*m_head = m;
2737 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2738 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2739 		if (error != 0) {
2740 			m_freem(*m_head);
2741 			*m_head = NULL;
2742 			return (error);
2743 		}
2744 	} else if (error != 0)
2745 		return (error);
2746 	if (nseg == 0) {
2747 		m_freem(*m_head);
2748 		*m_head = NULL;
2749 		return (EIO);
2750 	}
2751 
2752 	/* Check number of available descriptors. */
2753 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2754 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2755 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2756 		return (ENOBUFS);
2757 	}
2758 
2759 	control = 0;
2760 	tso = 0;
2761 	tx_le = NULL;
2762 
2763 	/* Check TSO support. */
2764 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2765 		tso_mtu = offset + m->m_pkthdr.tso_segsz;
2766 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2767 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2768 			tx_le->msk_addr = htole32(tso_mtu);
2769 			tx_le->msk_control = htole32(OP_LRGLEN | HW_OWNER);
2770 			sc_if->msk_cdata.msk_tx_cnt++;
2771 			MSK_INC(prod, MSK_TX_RING_CNT);
2772 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2773 		}
2774 		tso++;
2775 	}
2776 	/* Check if we have a VLAN tag to insert. */
2777 	if ((m->m_flags & M_VLANTAG) != 0) {
2778 		if (tso == 0) {
2779 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2780 			tx_le->msk_addr = htole32(0);
2781 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2782 			    htons(m->m_pkthdr.ether_vtag));
2783 			sc_if->msk_cdata.msk_tx_cnt++;
2784 			MSK_INC(prod, MSK_TX_RING_CNT);
2785 		} else {
2786 			tx_le->msk_control |= htole32(OP_VLAN |
2787 			    htons(m->m_pkthdr.ether_vtag));
2788 		}
2789 		control |= INS_VLAN;
2790 	}
2791 	/* Check if we have to handle checksum offload. */
2792 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2793 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2794 		tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2795 		    & 0xffff) | ((uint32_t)tcp_offset << 16));
2796 		tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2797 		control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2798 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2799 			control |= UDPTCP;
2800 		sc_if->msk_cdata.msk_tx_cnt++;
2801 		MSK_INC(prod, MSK_TX_RING_CNT);
2802 	}
2803 
2804 	si = prod;
2805 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2806 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2807 	if (tso == 0)
2808 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2809 		    OP_PACKET);
2810 	else
2811 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2812 		    OP_LARGESEND);
2813 	sc_if->msk_cdata.msk_tx_cnt++;
2814 	MSK_INC(prod, MSK_TX_RING_CNT);
2815 
2816 	for (i = 1; i < nseg; i++) {
2817 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2818 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2819 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2820 		    OP_BUFFER | HW_OWNER);
2821 		sc_if->msk_cdata.msk_tx_cnt++;
2822 		MSK_INC(prod, MSK_TX_RING_CNT);
2823 	}
2824 	/* Update producer index. */
2825 	sc_if->msk_cdata.msk_tx_prod = prod;
2826 
2827 	/* Set EOP on the last desciptor. */
2828 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2829 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2830 	tx_le->msk_control |= htole32(EOP);
2831 
2832 	/* Turn the first descriptor ownership to hardware. */
2833 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2834 	tx_le->msk_control |= htole32(HW_OWNER);
2835 
2836 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2837 	map = txd_last->tx_dmamap;
2838 	txd_last->tx_dmamap = txd->tx_dmamap;
2839 	txd->tx_dmamap = map;
2840 	txd->tx_m = m;
2841 
2842 	/* Sync descriptors. */
2843 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2844 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2845 	    sc_if->msk_cdata.msk_tx_ring_map,
2846 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2847 
2848 	return (0);
2849 }
2850 
2851 static void
2852 msk_tx_task(void *arg, int pending)
2853 {
2854 	struct ifnet *ifp;
2855 
2856 	ifp = arg;
2857 	msk_start(ifp);
2858 }
2859 
2860 static void
2861 msk_start(struct ifnet *ifp)
2862 {
2863         struct msk_if_softc *sc_if;
2864         struct mbuf *m_head;
2865 	int enq;
2866 
2867 	sc_if = ifp->if_softc;
2868 
2869 	MSK_IF_LOCK(sc_if);
2870 
2871 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2872 	    IFF_DRV_RUNNING || sc_if->msk_link == 0) {
2873 		MSK_IF_UNLOCK(sc_if);
2874 		return;
2875 	}
2876 
2877 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2878 	    sc_if->msk_cdata.msk_tx_cnt <
2879 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2880 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2881 		if (m_head == NULL)
2882 			break;
2883 		/*
2884 		 * Pack the data into the transmit ring. If we
2885 		 * don't have room, set the OACTIVE flag and wait
2886 		 * for the NIC to drain the ring.
2887 		 */
2888 		if (msk_encap(sc_if, &m_head) != 0) {
2889 			if (m_head == NULL)
2890 				break;
2891 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2892 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2893 			break;
2894 		}
2895 
2896 		enq++;
2897 		/*
2898 		 * If there's a BPF listener, bounce a copy of this frame
2899 		 * to him.
2900 		 */
2901 		ETHER_BPF_MTAP(ifp, m_head);
2902 	}
2903 
2904 	if (enq > 0) {
2905 		/* Transmit */
2906 		CSR_WRITE_2(sc_if->msk_softc,
2907 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2908 		    sc_if->msk_cdata.msk_tx_prod);
2909 
2910 		/* Set a timeout in case the chip goes out to lunch. */
2911 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2912 	}
2913 
2914 	MSK_IF_UNLOCK(sc_if);
2915 }
2916 
2917 static void
2918 msk_watchdog(struct msk_if_softc *sc_if)
2919 {
2920 	struct ifnet *ifp;
2921 	uint32_t ridx;
2922 	int idx;
2923 
2924 	MSK_IF_LOCK_ASSERT(sc_if);
2925 
2926 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2927 		return;
2928 	ifp = sc_if->msk_ifp;
2929 	if (sc_if->msk_link == 0) {
2930 		if (bootverbose)
2931 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2932 			   "(missed link)\n");
2933 		ifp->if_oerrors++;
2934 		msk_init_locked(sc_if);
2935 		return;
2936 	}
2937 
2938 	/*
2939 	 * Reclaim first as there is a possibility of losing Tx completion
2940 	 * interrupts.
2941 	 */
2942 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2943 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2944 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2945 		msk_txeof(sc_if, idx);
2946 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2947 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2948 			    "-- recovering\n");
2949 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2950 				taskqueue_enqueue(taskqueue_fast,
2951 				    &sc_if->msk_tx_task);
2952 			return;
2953 		}
2954 	}
2955 
2956 	if_printf(ifp, "watchdog timeout\n");
2957 	ifp->if_oerrors++;
2958 	msk_init_locked(sc_if);
2959 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2960 		taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task);
2961 }
2962 
2963 static void
2964 mskc_shutdown(device_t dev)
2965 {
2966 	struct msk_softc *sc;
2967 	int i;
2968 
2969 	sc = device_get_softc(dev);
2970 	MSK_LOCK(sc);
2971 	for (i = 0; i < sc->msk_num_port; i++) {
2972 		if (sc->msk_if[i] != NULL)
2973 			msk_stop(sc->msk_if[i]);
2974 	}
2975 
2976 	/* Disable all interrupts. */
2977 	CSR_WRITE_4(sc, B0_IMSK, 0);
2978 	CSR_READ_4(sc, B0_IMSK);
2979 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2980 	CSR_READ_4(sc, B0_HWE_IMSK);
2981 
2982 	/* Put hardware reset. */
2983 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2984 
2985 	MSK_UNLOCK(sc);
2986 }
2987 
2988 static int
2989 mskc_suspend(device_t dev)
2990 {
2991 	struct msk_softc *sc;
2992 	int i;
2993 
2994 	sc = device_get_softc(dev);
2995 
2996 	MSK_LOCK(sc);
2997 
2998 	for (i = 0; i < sc->msk_num_port; i++) {
2999 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3000 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
3001 		    IFF_DRV_RUNNING) != 0))
3002 			msk_stop(sc->msk_if[i]);
3003 	}
3004 
3005 	/* Disable all interrupts. */
3006 	CSR_WRITE_4(sc, B0_IMSK, 0);
3007 	CSR_READ_4(sc, B0_IMSK);
3008 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
3009 	CSR_READ_4(sc, B0_HWE_IMSK);
3010 
3011 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
3012 
3013 	/* Put hardware reset. */
3014 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3015 	sc->msk_suspended = 1;
3016 
3017 	MSK_UNLOCK(sc);
3018 
3019 	return (0);
3020 }
3021 
3022 static int
3023 mskc_resume(device_t dev)
3024 {
3025 	struct msk_softc *sc;
3026 	int i;
3027 
3028 	sc = device_get_softc(dev);
3029 
3030 	MSK_LOCK(sc);
3031 
3032 	mskc_reset(sc);
3033 	for (i = 0; i < sc->msk_num_port; i++) {
3034 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3035 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
3036 			msk_init_locked(sc->msk_if[i]);
3037 	}
3038 	sc->msk_suspended = 0;
3039 
3040 	MSK_UNLOCK(sc);
3041 
3042 	return (0);
3043 }
3044 
3045 static void
3046 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
3047 {
3048 	struct mbuf *m;
3049 	struct ifnet *ifp;
3050 	struct msk_rxdesc *rxd;
3051 	int cons, rxlen;
3052 
3053 	ifp = sc_if->msk_ifp;
3054 
3055 	MSK_IF_LOCK_ASSERT(sc_if);
3056 
3057 	cons = sc_if->msk_cdata.msk_rx_cons;
3058 	do {
3059 		rxlen = status >> 16;
3060 		if ((status & GMR_FS_VLAN) != 0 &&
3061 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3062 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3063 		if (len > sc_if->msk_framesize ||
3064 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3065 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3066 			/* Don't count flow-control packet as errors. */
3067 			if ((status & GMR_FS_GOOD_FC) == 0)
3068 				ifp->if_ierrors++;
3069 			msk_discard_rxbuf(sc_if, cons);
3070 			break;
3071 		}
3072 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3073 		m = rxd->rx_m;
3074 		if (msk_newbuf(sc_if, cons) != 0) {
3075 			ifp->if_iqdrops++;
3076 			/* Reuse old buffer. */
3077 			msk_discard_rxbuf(sc_if, cons);
3078 			break;
3079 		}
3080 		m->m_pkthdr.rcvif = ifp;
3081 		m->m_pkthdr.len = m->m_len = len;
3082 		ifp->if_ipackets++;
3083 		/* Check for VLAN tagged packets. */
3084 		if ((status & GMR_FS_VLAN) != 0 &&
3085 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3086 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3087 			m->m_flags |= M_VLANTAG;
3088 		}
3089 		MSK_IF_UNLOCK(sc_if);
3090 		(*ifp->if_input)(ifp, m);
3091 		MSK_IF_LOCK(sc_if);
3092 	} while (0);
3093 
3094 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3095 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3096 }
3097 
3098 static void
3099 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
3100 {
3101 	struct mbuf *m;
3102 	struct ifnet *ifp;
3103 	struct msk_rxdesc *jrxd;
3104 	int cons, rxlen;
3105 
3106 	ifp = sc_if->msk_ifp;
3107 
3108 	MSK_IF_LOCK_ASSERT(sc_if);
3109 
3110 	cons = sc_if->msk_cdata.msk_rx_cons;
3111 	do {
3112 		rxlen = status >> 16;
3113 		if ((status & GMR_FS_VLAN) != 0 &&
3114 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3115 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3116 		if (len > sc_if->msk_framesize ||
3117 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3118 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3119 			/* Don't count flow-control packet as errors. */
3120 			if ((status & GMR_FS_GOOD_FC) == 0)
3121 				ifp->if_ierrors++;
3122 			msk_discard_jumbo_rxbuf(sc_if, cons);
3123 			break;
3124 		}
3125 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3126 		m = jrxd->rx_m;
3127 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3128 			ifp->if_iqdrops++;
3129 			/* Reuse old buffer. */
3130 			msk_discard_jumbo_rxbuf(sc_if, cons);
3131 			break;
3132 		}
3133 		m->m_pkthdr.rcvif = ifp;
3134 		m->m_pkthdr.len = m->m_len = len;
3135 		ifp->if_ipackets++;
3136 		/* Check for VLAN tagged packets. */
3137 		if ((status & GMR_FS_VLAN) != 0 &&
3138 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3139 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3140 			m->m_flags |= M_VLANTAG;
3141 		}
3142 		MSK_IF_UNLOCK(sc_if);
3143 		(*ifp->if_input)(ifp, m);
3144 		MSK_IF_LOCK(sc_if);
3145 	} while (0);
3146 
3147 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3148 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3149 }
3150 
3151 static void
3152 msk_txeof(struct msk_if_softc *sc_if, int idx)
3153 {
3154 	struct msk_txdesc *txd;
3155 	struct msk_tx_desc *cur_tx;
3156 	struct ifnet *ifp;
3157 	uint32_t control;
3158 	int cons, prog;
3159 
3160 	MSK_IF_LOCK_ASSERT(sc_if);
3161 
3162 	ifp = sc_if->msk_ifp;
3163 
3164 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3165 	    sc_if->msk_cdata.msk_tx_ring_map,
3166 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3167 	/*
3168 	 * Go through our tx ring and free mbufs for those
3169 	 * frames that have been sent.
3170 	 */
3171 	cons = sc_if->msk_cdata.msk_tx_cons;
3172 	prog = 0;
3173 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3174 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3175 			break;
3176 		prog++;
3177 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3178 		control = le32toh(cur_tx->msk_control);
3179 		sc_if->msk_cdata.msk_tx_cnt--;
3180 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3181 		if ((control & EOP) == 0)
3182 			continue;
3183 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3184 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3185 		    BUS_DMASYNC_POSTWRITE);
3186 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3187 
3188 		ifp->if_opackets++;
3189 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3190 		    __func__));
3191 		m_freem(txd->tx_m);
3192 		txd->tx_m = NULL;
3193 	}
3194 
3195 	if (prog > 0) {
3196 		sc_if->msk_cdata.msk_tx_cons = cons;
3197 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3198 			sc_if->msk_watchdog_timer = 0;
3199 		/* No need to sync LEs as we didn't update LEs. */
3200 	}
3201 }
3202 
3203 static void
3204 msk_tick(void *xsc_if)
3205 {
3206 	struct msk_if_softc *sc_if;
3207 	struct mii_data *mii;
3208 
3209 	sc_if = xsc_if;
3210 
3211 	MSK_IF_LOCK_ASSERT(sc_if);
3212 
3213 	mii = device_get_softc(sc_if->msk_miibus);
3214 
3215 	mii_tick(mii);
3216 	msk_watchdog(sc_if);
3217 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3218 }
3219 
3220 static void
3221 msk_intr_phy(struct msk_if_softc *sc_if)
3222 {
3223 	uint16_t status;
3224 
3225 	if (sc_if->msk_softc->msk_marvell_phy) {
3226 		msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3227 		status = msk_phy_readreg(sc_if, PHY_ADDR_MARV,
3228 		    PHY_MARV_INT_STAT);
3229 		/* Handle FIFO Underrun/Overflow? */
3230 		if ((status & PHY_M_IS_FIFO_ERROR))
3231 			device_printf(sc_if->msk_if_dev,
3232 			    "PHY FIFO underrun/overflow.\n");
3233 	}
3234 }
3235 
3236 static void
3237 msk_intr_gmac(struct msk_if_softc *sc_if)
3238 {
3239 	struct msk_softc *sc;
3240 	uint8_t status;
3241 
3242 	sc = sc_if->msk_softc;
3243 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3244 
3245 	/* GMAC Rx FIFO overrun. */
3246 	if ((status & GM_IS_RX_FF_OR) != 0) {
3247 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3248 		    GMF_CLI_RX_FO);
3249 		device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
3250 	}
3251 	/* GMAC Tx FIFO underrun. */
3252 	if ((status & GM_IS_TX_FF_UR) != 0) {
3253 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3254 		    GMF_CLI_TX_FU);
3255 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3256 		/*
3257 		 * XXX
3258 		 * In case of Tx underrun, we may need to flush/reset
3259 		 * Tx MAC but that would also require resynchronization
3260 		 * with status LEs. Reintializing status LEs would
3261 		 * affect other port in dual MAC configuration so it
3262 		 * should be avoided as possible as we can.
3263 		 * Due to lack of documentation it's all vague guess but
3264 		 * it needs more investigation.
3265 		 */
3266 	}
3267 }
3268 
3269 static void
3270 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3271 {
3272 	struct msk_softc *sc;
3273 
3274 	sc = sc_if->msk_softc;
3275 	if ((status & Y2_IS_PAR_RD1) != 0) {
3276 		device_printf(sc_if->msk_if_dev,
3277 		    "RAM buffer read parity error\n");
3278 		/* Clear IRQ. */
3279 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3280 		    RI_CLR_RD_PERR);
3281 	}
3282 	if ((status & Y2_IS_PAR_WR1) != 0) {
3283 		device_printf(sc_if->msk_if_dev,
3284 		    "RAM buffer write parity error\n");
3285 		/* Clear IRQ. */
3286 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3287 		    RI_CLR_WR_PERR);
3288 	}
3289 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3290 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3291 		/* Clear IRQ. */
3292 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3293 		    GMF_CLI_TX_PE);
3294 	}
3295 	if ((status & Y2_IS_PAR_RX1) != 0) {
3296 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3297 		/* Clear IRQ. */
3298 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3299 	}
3300 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3301 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3302 		/* Clear IRQ. */
3303 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3304 	}
3305 }
3306 
3307 static void
3308 msk_intr_hwerr(struct msk_softc *sc)
3309 {
3310 	uint32_t status;
3311 	uint32_t tlphead[4];
3312 
3313 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3314 	/* Time Stamp timer overflow. */
3315 	if ((status & Y2_IS_TIST_OV) != 0)
3316 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3317 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3318 		/*
3319 		 * PCI Express Error occured which is not described in PEX
3320 		 * spec.
3321 		 * This error is also mapped either to Master Abort(
3322 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3323 		 * can only be cleared there.
3324                  */
3325 		device_printf(sc->msk_dev,
3326 		    "PCI Express protocol violation error\n");
3327 	}
3328 
3329 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3330 		uint16_t v16;
3331 
3332 		if ((status & Y2_IS_MST_ERR) != 0)
3333 			device_printf(sc->msk_dev,
3334 			    "unexpected IRQ Status error\n");
3335 		else
3336 			device_printf(sc->msk_dev,
3337 			    "unexpected IRQ Master error\n");
3338 		/* Reset all bits in the PCI status register. */
3339 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3340 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3341 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3342 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3343 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3344 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3345 	}
3346 
3347 	/* Check for PCI Express Uncorrectable Error. */
3348 	if ((status & Y2_IS_PCI_EXP) != 0) {
3349 		uint32_t v32;
3350 
3351 		/*
3352 		 * On PCI Express bus bridges are called root complexes (RC).
3353 		 * PCI Express errors are recognized by the root complex too,
3354 		 * which requests the system to handle the problem. After
3355 		 * error occurence it may be that no access to the adapter
3356 		 * may be performed any longer.
3357 		 */
3358 
3359 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3360 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3361 			/* Ignore unsupported request error. */
3362 			device_printf(sc->msk_dev,
3363 			    "Uncorrectable PCI Express error\n");
3364 		}
3365 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3366 			int i;
3367 
3368 			/* Get TLP header form Log Registers. */
3369 			for (i = 0; i < 4; i++)
3370 				tlphead[i] = CSR_PCI_READ_4(sc,
3371 				    PEX_HEADER_LOG + i * 4);
3372 			/* Check for vendor defined broadcast message. */
3373 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3374 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3375 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3376 				    sc->msk_intrhwemask);
3377 				CSR_READ_4(sc, B0_HWE_IMSK);
3378 			}
3379 		}
3380 		/* Clear the interrupt. */
3381 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3382 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3383 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3384 	}
3385 
3386 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3387 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3388 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3389 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3390 }
3391 
3392 static __inline void
3393 msk_rxput(struct msk_if_softc *sc_if)
3394 {
3395 	struct msk_softc *sc;
3396 
3397 	sc = sc_if->msk_softc;
3398 	if (sc_if->msk_framesize >(MCLBYTES - ETHER_HDR_LEN))
3399 		bus_dmamap_sync(
3400 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3401 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3402 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3403 	else
3404 		bus_dmamap_sync(
3405 		    sc_if->msk_cdata.msk_rx_ring_tag,
3406 		    sc_if->msk_cdata.msk_rx_ring_map,
3407 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3408 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3409 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3410 }
3411 
3412 static int
3413 msk_handle_events(struct msk_softc *sc)
3414 {
3415 	struct msk_if_softc *sc_if;
3416 	int rxput[2];
3417 	struct msk_stat_desc *sd;
3418 	uint32_t control, status;
3419 	int cons, idx, len, port, rxprog;
3420 
3421 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3422 	if (idx == sc->msk_stat_cons)
3423 		return (0);
3424 
3425 	/* Sync status LEs. */
3426 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3427 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3428 	/* XXX Sync Rx LEs here. */
3429 
3430 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3431 
3432 	rxprog = 0;
3433 	for (cons = sc->msk_stat_cons; cons != idx;) {
3434 		sd = &sc->msk_stat_ring[cons];
3435 		control = le32toh(sd->msk_control);
3436 		if ((control & HW_OWNER) == 0)
3437 			break;
3438 		/*
3439 		 * Marvell's FreeBSD driver updates status LE after clearing
3440 		 * HW_OWNER. However we don't have a way to sync single LE
3441 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3442 		 * an entire DMA map. So don't sync LE until we have a better
3443 		 * way to sync LEs.
3444 		 */
3445 		control &= ~HW_OWNER;
3446 		sd->msk_control = htole32(control);
3447 		status = le32toh(sd->msk_status);
3448 		len = control & STLE_LEN_MASK;
3449 		port = (control >> 16) & 0x01;
3450 		sc_if = sc->msk_if[port];
3451 		if (sc_if == NULL) {
3452 			device_printf(sc->msk_dev, "invalid port opcode "
3453 			    "0x%08x\n", control & STLE_OP_MASK);
3454 			continue;
3455 		}
3456 
3457 		switch (control & STLE_OP_MASK) {
3458 		case OP_RXVLAN:
3459 			sc_if->msk_vtag = ntohs(len);
3460 			break;
3461 		case OP_RXCHKSVLAN:
3462 			sc_if->msk_vtag = ntohs(len);
3463 			break;
3464 		case OP_RXSTAT:
3465 			if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
3466 				msk_jumbo_rxeof(sc_if, status, len);
3467 			else
3468 				msk_rxeof(sc_if, status, len);
3469 			rxprog++;
3470 			/*
3471 			 * Because there is no way to sync single Rx LE
3472 			 * put the DMA sync operation off until the end of
3473 			 * event processing.
3474 			 */
3475 			rxput[port]++;
3476 			/* Update prefetch unit if we've passed water mark. */
3477 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3478 				msk_rxput(sc_if);
3479 				rxput[port] = 0;
3480 			}
3481 			break;
3482 		case OP_TXINDEXLE:
3483 			if (sc->msk_if[MSK_PORT_A] != NULL)
3484 				msk_txeof(sc->msk_if[MSK_PORT_A],
3485 				    status & STLE_TXA1_MSKL);
3486 			if (sc->msk_if[MSK_PORT_B] != NULL)
3487 				msk_txeof(sc->msk_if[MSK_PORT_B],
3488 				    ((status & STLE_TXA2_MSKL) >>
3489 				    STLE_TXA2_SHIFTL) |
3490 				    ((len & STLE_TXA2_MSKH) <<
3491 				    STLE_TXA2_SHIFTH));
3492 			break;
3493 		default:
3494 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3495 			    control & STLE_OP_MASK);
3496 			break;
3497 		}
3498 		MSK_INC(cons, MSK_STAT_RING_CNT);
3499 		if (rxprog > sc->msk_process_limit)
3500 			break;
3501 	}
3502 
3503 	sc->msk_stat_cons = cons;
3504 	/* XXX We should sync status LEs here. See above notes. */
3505 
3506 	if (rxput[MSK_PORT_A] > 0)
3507 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3508 	if (rxput[MSK_PORT_B] > 0)
3509 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3510 
3511 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3512 }
3513 
3514 static int
3515 msk_intr(void *xsc)
3516 {
3517 	struct msk_softc *sc;
3518 	uint32_t status;
3519 
3520 	sc = xsc;
3521 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3522 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3523 	if (status == 0 || status == 0xffffffff) {
3524 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3525 		return (FILTER_STRAY);
3526 	}
3527 
3528 	taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3529 	return (FILTER_HANDLED);
3530 }
3531 
3532 static void
3533 msk_int_task(void *arg, int pending)
3534 {
3535 	struct msk_softc *sc;
3536 	struct msk_if_softc *sc_if0, *sc_if1;
3537 	struct ifnet *ifp0, *ifp1;
3538 	uint32_t status;
3539 	int domore;
3540 
3541 	sc = arg;
3542 	MSK_LOCK(sc);
3543 
3544 	/* Get interrupt source. */
3545 	status = CSR_READ_4(sc, B0_ISRC);
3546 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3547 	    (status & sc->msk_intrmask) == 0)
3548 		goto done;
3549 
3550 	sc_if0 = sc->msk_if[MSK_PORT_A];
3551 	sc_if1 = sc->msk_if[MSK_PORT_B];
3552 	ifp0 = ifp1 = NULL;
3553 	if (sc_if0 != NULL)
3554 		ifp0 = sc_if0->msk_ifp;
3555 	if (sc_if1 != NULL)
3556 		ifp1 = sc_if1->msk_ifp;
3557 
3558 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3559 		msk_intr_phy(sc_if0);
3560 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3561 		msk_intr_phy(sc_if1);
3562 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3563 		msk_intr_gmac(sc_if0);
3564 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3565 		msk_intr_gmac(sc_if1);
3566 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3567 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3568 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3569 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3570 		CSR_READ_4(sc, B0_IMSK);
3571 	}
3572         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3573 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3574 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3575 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3576 		CSR_READ_4(sc, B0_IMSK);
3577 	}
3578 	if ((status & Y2_IS_HW_ERR) != 0)
3579 		msk_intr_hwerr(sc);
3580 
3581 	domore = msk_handle_events(sc);
3582 	if ((status & Y2_IS_STAT_BMU) != 0)
3583 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3584 
3585 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3586 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3587 		taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3588 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3589 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3590 		taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3591 
3592 	if (domore > 0) {
3593 		taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3594 		MSK_UNLOCK(sc);
3595 		return;
3596 	}
3597 done:
3598 	MSK_UNLOCK(sc);
3599 
3600 	/* Reenable interrupts. */
3601 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3602 }
3603 
3604 static void
3605 msk_init(void *xsc)
3606 {
3607 	struct msk_if_softc *sc_if = xsc;
3608 
3609 	MSK_IF_LOCK(sc_if);
3610 	msk_init_locked(sc_if);
3611 	MSK_IF_UNLOCK(sc_if);
3612 }
3613 
3614 static void
3615 msk_init_locked(struct msk_if_softc *sc_if)
3616 {
3617 	struct msk_softc *sc;
3618 	struct ifnet *ifp;
3619 	struct mii_data	 *mii;
3620 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
3621 	uint16_t gmac;
3622 	int error, i;
3623 
3624 	MSK_IF_LOCK_ASSERT(sc_if);
3625 
3626 	ifp = sc_if->msk_ifp;
3627 	sc = sc_if->msk_softc;
3628 	mii = device_get_softc(sc_if->msk_miibus);
3629 
3630 	error = 0;
3631 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3632 	msk_stop(sc_if);
3633 
3634 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN +
3635 	    ETHER_VLAN_ENCAP_LEN;
3636 
3637 	/*
3638 	 * Initialize GMAC first.
3639 	 * Without this initialization, Rx MAC did not work as expected
3640 	 * and Rx MAC garbled status LEs and it resulted in out-of-order
3641 	 * or duplicated frame delivery which in turn showed very poor
3642 	 * Rx performance.(I had to write a packet analysis code that
3643 	 * could be embeded in driver to diagnose this issue.)
3644 	 * I've spent almost 2 months to fix this issue. If I have had
3645 	 * datasheet for Yukon II I wouldn't have encountered this. :-(
3646 	 */
3647 	gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL;
3648 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
3649 
3650 	/* Dummy read the Interrupt Source Register. */
3651 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3652 
3653 	/* Set MIB Clear Counter Mode. */
3654 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3655 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3656 	/* Read all MIB Counters with Clear Mode set. */
3657 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
3658 		GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
3659 	/* Clear MIB Clear Counter Mode. */
3660 	gmac &= ~GM_PAR_MIB_CLR;
3661 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3662 
3663 	/* Disable FCS. */
3664 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3665 
3666 	/* Setup Transmit Control Register. */
3667 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3668 
3669 	/* Setup Transmit Flow Control Register. */
3670 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3671 
3672 	/* Setup Transmit Parameter Register. */
3673 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3674 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3675 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3676 
3677 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3678 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3679 
3680 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
3681 		gmac |= GM_SMOD_JUMBO_ENA;
3682 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3683 
3684 	/* Set station address. */
3685         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3686         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3687 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3688 		    eaddr[i]);
3689         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3690 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3691 		    eaddr[i]);
3692 
3693 	/* Disable interrupts for counter overflows. */
3694 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3695 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3696 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3697 
3698 	/* Configure Rx MAC FIFO. */
3699 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3700 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3701 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3702 	    GMF_OPER_ON | GMF_RX_F_FL_ON);
3703 
3704 	/* Set promiscuous mode. */
3705 	msk_setpromisc(sc_if);
3706 
3707 	/* Set multicast filter. */
3708 	msk_setmulti(sc_if);
3709 
3710 	/* Flush Rx MAC FIFO on any flow control or error. */
3711 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3712 	    GMR_FS_ANY_ERR);
3713 
3714 	/* Set Rx FIFO flush threshold to 64 bytes. */
3715 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR),
3716 	    RX_GMF_FL_THR_DEF);
3717 
3718 	/* Configure Tx MAC FIFO. */
3719 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3720 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3721 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3722 
3723 	/* Configure hardware VLAN tag insertion/stripping. */
3724 	msk_setvlan(sc_if, ifp);
3725 
3726 	/* XXX It seems STFW is requried for all cases. */
3727 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), TX_STFW_ENA);
3728 
3729 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3730 		/* Set Rx Pause threshould. */
3731 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3732 		    MSK_ECU_LLPP);
3733 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3734 		    MSK_ECU_ULPP);
3735 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) {
3736 			/*
3737 			 * Can't sure the following code is needed as Yukon
3738 			 * Yukon EC Ultra may not support jumbo frames.
3739 			 *
3740 			 * Set Tx GMAC FIFO Almost Empty Threshold.
3741 			 */
3742 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3743 			    MSK_ECU_AE_THR);
3744 			/* Disable Store & Forward mode for Tx. */
3745 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3746 			    TX_STFW_DIS);
3747 		}
3748 	}
3749 
3750 	/*
3751 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3752 	 * arbiter as we don't use Sync Tx queue.
3753 	 */
3754 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3755 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3756 	/* Enable the RAM Interface Arbiter. */
3757 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3758 
3759 	/* Setup RAM buffer. */
3760 	msk_set_rambuffer(sc_if);
3761 
3762 	/* Disable Tx sync Queue. */
3763 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3764 
3765 	/* Setup Tx Queue Bus Memory Interface. */
3766 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3767 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3768 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3769 	/* Increase IPID when hardware generates IP packets in TSO. */
3770 	if ((ifp->if_hwassist & CSUM_TSO) != 0)
3771 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3772 		    BMU_TX_IPIDINCR_ON);
3773 	else
3774 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3775 		    BMU_TX_IPIDINCR_OFF);
3776 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3777 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3778 	    sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3779 		/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3780 		CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV);
3781 	}
3782 
3783 	/* Setup Rx Queue Bus Memory Interface. */
3784 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3785 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3786 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3787 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3788         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3789 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3790 		/* MAC Rx RAM Read is controlled by hardware. */
3791                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3792 	}
3793 
3794 	msk_set_prefetch(sc, sc_if->msk_txq,
3795 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3796 	msk_init_tx_ring(sc_if);
3797 
3798 	/* Disable Rx checksum offload and RSS hash. */
3799 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3800 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3801 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3802 		msk_set_prefetch(sc, sc_if->msk_rxq,
3803 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3804 		    MSK_JUMBO_RX_RING_CNT - 1);
3805 		error = msk_init_jumbo_rx_ring(sc_if);
3806 	 } else {
3807 		msk_set_prefetch(sc, sc_if->msk_rxq,
3808 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3809 		    MSK_RX_RING_CNT - 1);
3810 		error = msk_init_rx_ring(sc_if);
3811 	}
3812 	if (error != 0) {
3813 		device_printf(sc_if->msk_if_dev,
3814 		    "initialization failed: no memory for Rx buffers\n");
3815 		msk_stop(sc_if);
3816 		return;
3817 	}
3818 
3819 	/* Configure interrupt handling. */
3820 	if (sc_if->msk_port == MSK_PORT_A) {
3821 		sc->msk_intrmask |= Y2_IS_PORT_A;
3822 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3823 	} else {
3824 		sc->msk_intrmask |= Y2_IS_PORT_B;
3825 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3826 	}
3827 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3828 	CSR_READ_4(sc, B0_HWE_IMSK);
3829 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3830 	CSR_READ_4(sc, B0_IMSK);
3831 
3832 	sc_if->msk_link = 0;
3833 	mii_mediachg(mii);
3834 
3835 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3836 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3837 
3838 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3839 }
3840 
3841 static void
3842 msk_set_rambuffer(struct msk_if_softc *sc_if)
3843 {
3844 	struct msk_softc *sc;
3845 	int ltpp, utpp;
3846 
3847 	sc = sc_if->msk_softc;
3848 
3849 	/* Setup Rx Queue. */
3850 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3851 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3852 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3853 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3854 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3855 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3856 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3857 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3858 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3859 
3860 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3861 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3862 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3863 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3864 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3865 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3866 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3867 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3868 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3869 
3870 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3871 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3872 
3873 	/* Setup Tx Queue. */
3874 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3875 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3876 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3877 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3878 	    sc->msk_txqend[sc_if->msk_port] / 8);
3879 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3880 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3881 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3882 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3883 	/* Enable Store & Forward for Tx side. */
3884 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3885 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3886 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3887 }
3888 
3889 static void
3890 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3891     uint32_t count)
3892 {
3893 
3894 	/* Reset the prefetch unit. */
3895 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3896 	    PREF_UNIT_RST_SET);
3897 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3898 	    PREF_UNIT_RST_CLR);
3899 	/* Set LE base address. */
3900 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3901 	    MSK_ADDR_LO(addr));
3902 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3903 	    MSK_ADDR_HI(addr));
3904 	/* Set the list last index. */
3905 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3906 	    count);
3907 	/* Turn on prefetch unit. */
3908 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3909 	    PREF_UNIT_OP_ON);
3910 	/* Dummy read to ensure write. */
3911 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3912 }
3913 
3914 static void
3915 msk_stop(struct msk_if_softc *sc_if)
3916 {
3917 	struct msk_softc *sc;
3918 	struct msk_txdesc *txd;
3919 	struct msk_rxdesc *rxd;
3920 	struct msk_rxdesc *jrxd;
3921 	struct ifnet *ifp;
3922 	uint32_t val;
3923 	int i;
3924 
3925 	MSK_IF_LOCK_ASSERT(sc_if);
3926 	sc = sc_if->msk_softc;
3927 	ifp = sc_if->msk_ifp;
3928 
3929 	callout_stop(&sc_if->msk_tick_ch);
3930 	sc_if->msk_watchdog_timer = 0;
3931 
3932 	/* Disable interrupts. */
3933 	if (sc_if->msk_port == MSK_PORT_A) {
3934 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
3935 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3936 	} else {
3937 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
3938 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3939 	}
3940 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3941 	CSR_READ_4(sc, B0_HWE_IMSK);
3942 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3943 	CSR_READ_4(sc, B0_IMSK);
3944 
3945 	/* Disable Tx/Rx MAC. */
3946 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3947 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3948 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3949 	/* Read again to ensure writing. */
3950 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3951 
3952 	/* Stop Tx BMU. */
3953 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3954 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3955 	for (i = 0; i < MSK_TIMEOUT; i++) {
3956 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3957 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3958 			    BMU_STOP);
3959 			CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3960 		} else
3961 			break;
3962 		DELAY(1);
3963 	}
3964 	if (i == MSK_TIMEOUT)
3965 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3966 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3967 	    RB_RST_SET | RB_DIS_OP_MD);
3968 
3969 	/* Disable all GMAC interrupt. */
3970 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3971 	/* Disable PHY interrupt. */
3972 	if (sc->msk_marvell_phy)
3973 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3974 
3975 	/* Disable the RAM Interface Arbiter. */
3976 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3977 
3978 	/* Reset the PCI FIFO of the async Tx queue */
3979 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3980 	    BMU_RST_SET | BMU_FIFO_RST);
3981 
3982 	/* Reset the Tx prefetch units. */
3983 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3984 	    PREF_UNIT_RST_SET);
3985 
3986 	/* Reset the RAM Buffer async Tx queue. */
3987 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3988 
3989 	/* Reset Tx MAC FIFO. */
3990 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3991 	/* Set Pause Off. */
3992 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3993 
3994 	/*
3995 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3996 	 * reach the end of packet and since we can't make sure that we have
3997 	 * incoming data, we must reset the BMU while it is not during a DMA
3998 	 * transfer. Since it is possible that the Rx path is still active,
3999 	 * the Rx RAM buffer will be stopped first, so any possible incoming
4000 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
4001 	 * BMU is polled until any DMA in progress is ended and only then it
4002 	 * will be reset.
4003 	 */
4004 
4005 	/* Disable the RAM Buffer receive queue. */
4006 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4007 	for (i = 0; i < MSK_TIMEOUT; i++) {
4008 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4009 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4010 			break;
4011 		DELAY(1);
4012 	}
4013 	if (i == MSK_TIMEOUT)
4014 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4015 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4016 	    BMU_RST_SET | BMU_FIFO_RST);
4017 	/* Reset the Rx prefetch unit. */
4018 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4019 	    PREF_UNIT_RST_SET);
4020 	/* Reset the RAM Buffer receive queue. */
4021 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4022 	/* Reset Rx MAC FIFO. */
4023 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4024 
4025 	/* Free Rx and Tx mbufs still in the queues. */
4026 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4027 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4028 		if (rxd->rx_m != NULL) {
4029 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4030 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4031 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4032 			    rxd->rx_dmamap);
4033 			m_freem(rxd->rx_m);
4034 			rxd->rx_m = NULL;
4035 		}
4036 	}
4037 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4038 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4039 		if (jrxd->rx_m != NULL) {
4040 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4041 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4042 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4043 			    jrxd->rx_dmamap);
4044 			m_freem(jrxd->rx_m);
4045 			jrxd->rx_m = NULL;
4046 		}
4047 	}
4048 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4049 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4050 		if (txd->tx_m != NULL) {
4051 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4052 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4053 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4054 			    txd->tx_dmamap);
4055 			m_freem(txd->tx_m);
4056 			txd->tx_m = NULL;
4057 		}
4058 	}
4059 
4060 	/*
4061 	 * Mark the interface down.
4062 	 */
4063 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4064 	sc_if->msk_link = 0;
4065 }
4066 
4067 static int
4068 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4069 {
4070 	int error, value;
4071 
4072 	if (!arg1)
4073 		return (EINVAL);
4074 	value = *(int *)arg1;
4075 	error = sysctl_handle_int(oidp, &value, 0, req);
4076 	if (error || !req->newptr)
4077 		return (error);
4078 	if (value < low || value > high)
4079 		return (EINVAL);
4080 	*(int *)arg1 = value;
4081 
4082 	return (0);
4083 }
4084 
4085 static int
4086 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4087 {
4088 
4089 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4090 	    MSK_PROC_MAX));
4091 }
4092