1 /****************************************************************************** 2 * 3 * Name : sky2.c 4 * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x 5 * Version: $Revision: 1.23 $ 6 * Date : $Date: 2005/12/22 09:04:11 $ 7 * Purpose: Main driver source file 8 * 9 *****************************************************************************/ 10 11 /****************************************************************************** 12 * 13 * LICENSE: 14 * Copyright (C) Marvell International Ltd. and/or its affiliates 15 * 16 * The computer program files contained in this folder ("Files") 17 * are provided to you under the BSD-type license terms provided 18 * below, and any use of such Files and any derivative works 19 * thereof created by you shall be governed by the following terms 20 * and conditions: 21 * 22 * - Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials provided 27 * with the distribution. 28 * - Neither the name of Marvell nor the names of its contributors 29 * may be used to endorse or promote products derived from this 30 * software without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 35 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 36 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 37 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 38 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 39 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 41 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 42 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 43 * OF THE POSSIBILITY OF SUCH DAMAGE. 44 * /LICENSE 45 * 46 *****************************************************************************/ 47 48 /*- 49 * Copyright (c) 1997, 1998, 1999, 2000 50 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 51 * 52 * Redistribution and use in source and binary forms, with or without 53 * modification, are permitted provided that the following conditions 54 * are met: 55 * 1. Redistributions of source code must retain the above copyright 56 * notice, this list of conditions and the following disclaimer. 57 * 2. Redistributions in binary form must reproduce the above copyright 58 * notice, this list of conditions and the following disclaimer in the 59 * documentation and/or other materials provided with the distribution. 60 * 3. All advertising materials mentioning features or use of this software 61 * must display the following acknowledgement: 62 * This product includes software developed by Bill Paul. 63 * 4. Neither the name of the author nor the names of any co-contributors 64 * may be used to endorse or promote products derived from this software 65 * without specific prior written permission. 66 * 67 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 70 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 71 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 72 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 73 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 74 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 75 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 76 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 77 * THE POSSIBILITY OF SUCH DAMAGE. 78 */ 79 /*- 80 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu> 81 * 82 * Permission to use, copy, modify, and distribute this software for any 83 * purpose with or without fee is hereby granted, provided that the above 84 * copyright notice and this permission notice appear in all copies. 85 * 86 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 87 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 88 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 89 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 90 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 91 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 92 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 93 */ 94 95 /* 96 * Device driver for the Marvell Yukon II Ethernet controller. 97 * Due to lack of documentation, this driver is based on the code from 98 * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x. 99 */ 100 101 #include <sys/cdefs.h> 102 __FBSDID("$FreeBSD$"); 103 104 #include <sys/param.h> 105 #include <sys/systm.h> 106 #include <sys/bus.h> 107 #include <sys/endian.h> 108 #include <sys/mbuf.h> 109 #include <sys/malloc.h> 110 #include <sys/kernel.h> 111 #include <sys/module.h> 112 #include <sys/socket.h> 113 #include <sys/sockio.h> 114 #include <sys/queue.h> 115 #include <sys/sysctl.h> 116 117 #include <net/bpf.h> 118 #include <net/ethernet.h> 119 #include <net/if.h> 120 #include <net/if_arp.h> 121 #include <net/if_dl.h> 122 #include <net/if_media.h> 123 #include <net/if_types.h> 124 #include <net/if_vlan_var.h> 125 126 #include <netinet/in.h> 127 #include <netinet/in_systm.h> 128 #include <netinet/ip.h> 129 #include <netinet/tcp.h> 130 #include <netinet/udp.h> 131 132 #include <machine/bus.h> 133 #include <machine/in_cksum.h> 134 #include <machine/resource.h> 135 #include <sys/rman.h> 136 137 #include <dev/mii/mii.h> 138 #include <dev/mii/miivar.h> 139 140 #include <dev/pci/pcireg.h> 141 #include <dev/pci/pcivar.h> 142 143 #include <dev/msk/if_mskreg.h> 144 145 MODULE_DEPEND(msk, pci, 1, 1, 1); 146 MODULE_DEPEND(msk, ether, 1, 1, 1); 147 MODULE_DEPEND(msk, miibus, 1, 1, 1); 148 149 /* "device miibus" required. See GENERIC if you get errors here. */ 150 #include "miibus_if.h" 151 152 /* Tunables. */ 153 static int msi_disable = 0; 154 TUNABLE_INT("hw.msk.msi_disable", &msi_disable); 155 static int legacy_intr = 0; 156 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr); 157 static int jumbo_disable = 0; 158 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable); 159 160 #define MSK_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 161 162 /* 163 * Devices supported by this driver. 164 */ 165 static struct msk_product { 166 uint16_t msk_vendorid; 167 uint16_t msk_deviceid; 168 const char *msk_name; 169 } msk_products[] = { 170 { VENDORID_SK, DEVICEID_SK_YUKON2, 171 "SK-9Sxx Gigabit Ethernet" }, 172 { VENDORID_SK, DEVICEID_SK_YUKON2_EXPR, 173 "SK-9Exx Gigabit Ethernet"}, 174 { VENDORID_MARVELL, DEVICEID_MRVL_8021CU, 175 "Marvell Yukon 88E8021CU Gigabit Ethernet" }, 176 { VENDORID_MARVELL, DEVICEID_MRVL_8021X, 177 "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" }, 178 { VENDORID_MARVELL, DEVICEID_MRVL_8022CU, 179 "Marvell Yukon 88E8022CU Gigabit Ethernet" }, 180 { VENDORID_MARVELL, DEVICEID_MRVL_8022X, 181 "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" }, 182 { VENDORID_MARVELL, DEVICEID_MRVL_8061CU, 183 "Marvell Yukon 88E8061CU Gigabit Ethernet" }, 184 { VENDORID_MARVELL, DEVICEID_MRVL_8061X, 185 "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" }, 186 { VENDORID_MARVELL, DEVICEID_MRVL_8062CU, 187 "Marvell Yukon 88E8062CU Gigabit Ethernet" }, 188 { VENDORID_MARVELL, DEVICEID_MRVL_8062X, 189 "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" }, 190 { VENDORID_MARVELL, DEVICEID_MRVL_8035, 191 "Marvell Yukon 88E8035 Fast Ethernet" }, 192 { VENDORID_MARVELL, DEVICEID_MRVL_8036, 193 "Marvell Yukon 88E8036 Fast Ethernet" }, 194 { VENDORID_MARVELL, DEVICEID_MRVL_8038, 195 "Marvell Yukon 88E8038 Fast Ethernet" }, 196 { VENDORID_MARVELL, DEVICEID_MRVL_8039, 197 "Marvell Yukon 88E8039 Fast Ethernet" }, 198 { VENDORID_MARVELL, DEVICEID_MRVL_8040, 199 "Marvell Yukon 88E8040 Fast Ethernet" }, 200 { VENDORID_MARVELL, DEVICEID_MRVL_8040T, 201 "Marvell Yukon 88E8040T Fast Ethernet" }, 202 { VENDORID_MARVELL, DEVICEID_MRVL_8042, 203 "Marvell Yukon 88E8042 Fast Ethernet" }, 204 { VENDORID_MARVELL, DEVICEID_MRVL_8048, 205 "Marvell Yukon 88E8048 Fast Ethernet" }, 206 { VENDORID_MARVELL, DEVICEID_MRVL_4361, 207 "Marvell Yukon 88E8050 Gigabit Ethernet" }, 208 { VENDORID_MARVELL, DEVICEID_MRVL_4360, 209 "Marvell Yukon 88E8052 Gigabit Ethernet" }, 210 { VENDORID_MARVELL, DEVICEID_MRVL_4362, 211 "Marvell Yukon 88E8053 Gigabit Ethernet" }, 212 { VENDORID_MARVELL, DEVICEID_MRVL_4363, 213 "Marvell Yukon 88E8055 Gigabit Ethernet" }, 214 { VENDORID_MARVELL, DEVICEID_MRVL_4364, 215 "Marvell Yukon 88E8056 Gigabit Ethernet" }, 216 { VENDORID_MARVELL, DEVICEID_MRVL_4365, 217 "Marvell Yukon 88E8070 Gigabit Ethernet" }, 218 { VENDORID_MARVELL, DEVICEID_MRVL_436A, 219 "Marvell Yukon 88E8058 Gigabit Ethernet" }, 220 { VENDORID_MARVELL, DEVICEID_MRVL_436B, 221 "Marvell Yukon 88E8071 Gigabit Ethernet" }, 222 { VENDORID_MARVELL, DEVICEID_MRVL_436C, 223 "Marvell Yukon 88E8072 Gigabit Ethernet" }, 224 { VENDORID_MARVELL, DEVICEID_MRVL_436D, 225 "Marvell Yukon 88E8055 Gigabit Ethernet" }, 226 { VENDORID_MARVELL, DEVICEID_MRVL_4370, 227 "Marvell Yukon 88E8075 Gigabit Ethernet" }, 228 { VENDORID_MARVELL, DEVICEID_MRVL_4380, 229 "Marvell Yukon 88E8057 Gigabit Ethernet" }, 230 { VENDORID_MARVELL, DEVICEID_MRVL_4381, 231 "Marvell Yukon 88E8059 Gigabit Ethernet" }, 232 { VENDORID_DLINK, DEVICEID_DLINK_DGE550SX, 233 "D-Link 550SX Gigabit Ethernet" }, 234 { VENDORID_DLINK, DEVICEID_DLINK_DGE560SX, 235 "D-Link 560SX Gigabit Ethernet" }, 236 { VENDORID_DLINK, DEVICEID_DLINK_DGE560T, 237 "D-Link 560T Gigabit Ethernet" } 238 }; 239 240 static const char *model_name[] = { 241 "Yukon XL", 242 "Yukon EC Ultra", 243 "Yukon EX", 244 "Yukon EC", 245 "Yukon FE", 246 "Yukon FE+", 247 "Yukon Supreme", 248 "Yukon Ultra 2", 249 "Yukon Unknown", 250 "Yukon Optima", 251 }; 252 253 static int mskc_probe(device_t); 254 static int mskc_attach(device_t); 255 static int mskc_detach(device_t); 256 static int mskc_shutdown(device_t); 257 static int mskc_setup_rambuffer(struct msk_softc *); 258 static int mskc_suspend(device_t); 259 static int mskc_resume(device_t); 260 static void mskc_reset(struct msk_softc *); 261 262 static int msk_probe(device_t); 263 static int msk_attach(device_t); 264 static int msk_detach(device_t); 265 266 static void msk_tick(void *); 267 static void msk_intr(void *); 268 static void msk_intr_phy(struct msk_if_softc *); 269 static void msk_intr_gmac(struct msk_if_softc *); 270 static __inline void msk_rxput(struct msk_if_softc *); 271 static int msk_handle_events(struct msk_softc *); 272 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t); 273 static void msk_intr_hwerr(struct msk_softc *); 274 #ifndef __NO_STRICT_ALIGNMENT 275 static __inline void msk_fixup_rx(struct mbuf *); 276 #endif 277 static __inline void msk_rxcsum(struct msk_if_softc *, uint32_t, struct mbuf *); 278 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int); 279 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int); 280 static void msk_txeof(struct msk_if_softc *, int); 281 static int msk_encap(struct msk_if_softc *, struct mbuf **); 282 static void msk_start(struct ifnet *); 283 static void msk_start_locked(struct ifnet *); 284 static int msk_ioctl(struct ifnet *, u_long, caddr_t); 285 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t); 286 static void msk_set_rambuffer(struct msk_if_softc *); 287 static void msk_set_tx_stfwd(struct msk_if_softc *); 288 static void msk_init(void *); 289 static void msk_init_locked(struct msk_if_softc *); 290 static void msk_stop(struct msk_if_softc *); 291 static void msk_watchdog(struct msk_if_softc *); 292 static int msk_mediachange(struct ifnet *); 293 static void msk_mediastatus(struct ifnet *, struct ifmediareq *); 294 static void msk_phy_power(struct msk_softc *, int); 295 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int); 296 static int msk_status_dma_alloc(struct msk_softc *); 297 static void msk_status_dma_free(struct msk_softc *); 298 static int msk_txrx_dma_alloc(struct msk_if_softc *); 299 static int msk_rx_dma_jalloc(struct msk_if_softc *); 300 static void msk_txrx_dma_free(struct msk_if_softc *); 301 static void msk_rx_dma_jfree(struct msk_if_softc *); 302 static int msk_rx_fill(struct msk_if_softc *, int); 303 static int msk_init_rx_ring(struct msk_if_softc *); 304 static int msk_init_jumbo_rx_ring(struct msk_if_softc *); 305 static void msk_init_tx_ring(struct msk_if_softc *); 306 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int); 307 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int); 308 static int msk_newbuf(struct msk_if_softc *, int); 309 static int msk_jumbo_newbuf(struct msk_if_softc *, int); 310 311 static int msk_phy_readreg(struct msk_if_softc *, int, int); 312 static int msk_phy_writereg(struct msk_if_softc *, int, int, int); 313 static int msk_miibus_readreg(device_t, int, int); 314 static int msk_miibus_writereg(device_t, int, int, int); 315 static void msk_miibus_statchg(device_t); 316 317 static void msk_rxfilter(struct msk_if_softc *); 318 static void msk_setvlan(struct msk_if_softc *, struct ifnet *); 319 320 static void msk_stats_clear(struct msk_if_softc *); 321 static void msk_stats_update(struct msk_if_softc *); 322 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS); 323 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS); 324 static void msk_sysctl_node(struct msk_if_softc *); 325 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 326 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS); 327 328 static device_method_t mskc_methods[] = { 329 /* Device interface */ 330 DEVMETHOD(device_probe, mskc_probe), 331 DEVMETHOD(device_attach, mskc_attach), 332 DEVMETHOD(device_detach, mskc_detach), 333 DEVMETHOD(device_suspend, mskc_suspend), 334 DEVMETHOD(device_resume, mskc_resume), 335 DEVMETHOD(device_shutdown, mskc_shutdown), 336 337 DEVMETHOD_END 338 }; 339 340 static driver_t mskc_driver = { 341 "mskc", 342 mskc_methods, 343 sizeof(struct msk_softc) 344 }; 345 346 static devclass_t mskc_devclass; 347 348 static device_method_t msk_methods[] = { 349 /* Device interface */ 350 DEVMETHOD(device_probe, msk_probe), 351 DEVMETHOD(device_attach, msk_attach), 352 DEVMETHOD(device_detach, msk_detach), 353 DEVMETHOD(device_shutdown, bus_generic_shutdown), 354 355 /* MII interface */ 356 DEVMETHOD(miibus_readreg, msk_miibus_readreg), 357 DEVMETHOD(miibus_writereg, msk_miibus_writereg), 358 DEVMETHOD(miibus_statchg, msk_miibus_statchg), 359 360 DEVMETHOD_END 361 }; 362 363 static driver_t msk_driver = { 364 "msk", 365 msk_methods, 366 sizeof(struct msk_if_softc) 367 }; 368 369 static devclass_t msk_devclass; 370 371 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0); 372 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0); 373 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0); 374 375 static struct resource_spec msk_res_spec_io[] = { 376 { SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE }, 377 { -1, 0, 0 } 378 }; 379 380 static struct resource_spec msk_res_spec_mem[] = { 381 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 382 { -1, 0, 0 } 383 }; 384 385 static struct resource_spec msk_irq_spec_legacy[] = { 386 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 387 { -1, 0, 0 } 388 }; 389 390 static struct resource_spec msk_irq_spec_msi[] = { 391 { SYS_RES_IRQ, 1, RF_ACTIVE }, 392 { -1, 0, 0 } 393 }; 394 395 static int 396 msk_miibus_readreg(device_t dev, int phy, int reg) 397 { 398 struct msk_if_softc *sc_if; 399 400 sc_if = device_get_softc(dev); 401 402 return (msk_phy_readreg(sc_if, phy, reg)); 403 } 404 405 static int 406 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg) 407 { 408 struct msk_softc *sc; 409 int i, val; 410 411 sc = sc_if->msk_softc; 412 413 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL, 414 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); 415 416 for (i = 0; i < MSK_TIMEOUT; i++) { 417 DELAY(1); 418 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL); 419 if ((val & GM_SMI_CT_RD_VAL) != 0) { 420 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA); 421 break; 422 } 423 } 424 425 if (i == MSK_TIMEOUT) { 426 if_printf(sc_if->msk_ifp, "phy failed to come ready\n"); 427 val = 0; 428 } 429 430 return (val); 431 } 432 433 static int 434 msk_miibus_writereg(device_t dev, int phy, int reg, int val) 435 { 436 struct msk_if_softc *sc_if; 437 438 sc_if = device_get_softc(dev); 439 440 return (msk_phy_writereg(sc_if, phy, reg, val)); 441 } 442 443 static int 444 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val) 445 { 446 struct msk_softc *sc; 447 int i; 448 449 sc = sc_if->msk_softc; 450 451 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val); 452 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL, 453 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg)); 454 for (i = 0; i < MSK_TIMEOUT; i++) { 455 DELAY(1); 456 if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) & 457 GM_SMI_CT_BUSY) == 0) 458 break; 459 } 460 if (i == MSK_TIMEOUT) 461 if_printf(sc_if->msk_ifp, "phy write timeout\n"); 462 463 return (0); 464 } 465 466 static void 467 msk_miibus_statchg(device_t dev) 468 { 469 struct msk_softc *sc; 470 struct msk_if_softc *sc_if; 471 struct mii_data *mii; 472 struct ifnet *ifp; 473 uint32_t gmac; 474 475 sc_if = device_get_softc(dev); 476 sc = sc_if->msk_softc; 477 478 MSK_IF_LOCK_ASSERT(sc_if); 479 480 mii = device_get_softc(sc_if->msk_miibus); 481 ifp = sc_if->msk_ifp; 482 if (mii == NULL || ifp == NULL || 483 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 484 return; 485 486 sc_if->msk_flags &= ~MSK_FLAG_LINK; 487 if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) == 488 (IFM_AVALID | IFM_ACTIVE)) { 489 switch (IFM_SUBTYPE(mii->mii_media_active)) { 490 case IFM_10_T: 491 case IFM_100_TX: 492 sc_if->msk_flags |= MSK_FLAG_LINK; 493 break; 494 case IFM_1000_T: 495 case IFM_1000_SX: 496 case IFM_1000_LX: 497 case IFM_1000_CX: 498 if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0) 499 sc_if->msk_flags |= MSK_FLAG_LINK; 500 break; 501 default: 502 break; 503 } 504 } 505 506 if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) { 507 /* Enable Tx FIFO Underrun. */ 508 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 509 GM_IS_TX_FF_UR | GM_IS_RX_FF_OR); 510 /* 511 * Because mii(4) notify msk(4) that it detected link status 512 * change, there is no need to enable automatic 513 * speed/flow-control/duplex updates. 514 */ 515 gmac = GM_GPCR_AU_ALL_DIS; 516 switch (IFM_SUBTYPE(mii->mii_media_active)) { 517 case IFM_1000_SX: 518 case IFM_1000_T: 519 gmac |= GM_GPCR_SPEED_1000; 520 break; 521 case IFM_100_TX: 522 gmac |= GM_GPCR_SPEED_100; 523 break; 524 case IFM_10_T: 525 break; 526 } 527 528 if ((IFM_OPTIONS(mii->mii_media_active) & 529 IFM_ETH_RXPAUSE) == 0) 530 gmac |= GM_GPCR_FC_RX_DIS; 531 if ((IFM_OPTIONS(mii->mii_media_active) & 532 IFM_ETH_TXPAUSE) == 0) 533 gmac |= GM_GPCR_FC_TX_DIS; 534 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) 535 gmac |= GM_GPCR_DUP_FULL; 536 else 537 gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS; 538 gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; 539 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac); 540 /* Read again to ensure writing. */ 541 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 542 gmac = GMC_PAUSE_OFF; 543 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 544 if ((IFM_OPTIONS(mii->mii_media_active) & 545 IFM_ETH_RXPAUSE) != 0) 546 gmac = GMC_PAUSE_ON; 547 } 548 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac); 549 550 /* Enable PHY interrupt for FIFO underrun/overflow. */ 551 msk_phy_writereg(sc_if, PHY_ADDR_MARV, 552 PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR); 553 } else { 554 /* 555 * Link state changed to down. 556 * Disable PHY interrupts. 557 */ 558 msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0); 559 /* Disable Rx/Tx MAC. */ 560 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 561 if ((gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) != 0) { 562 gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 563 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac); 564 /* Read again to ensure writing. */ 565 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 566 } 567 } 568 } 569 570 static void 571 msk_rxfilter(struct msk_if_softc *sc_if) 572 { 573 struct msk_softc *sc; 574 struct ifnet *ifp; 575 struct ifmultiaddr *ifma; 576 uint32_t mchash[2]; 577 uint32_t crc; 578 uint16_t mode; 579 580 sc = sc_if->msk_softc; 581 582 MSK_IF_LOCK_ASSERT(sc_if); 583 584 ifp = sc_if->msk_ifp; 585 586 bzero(mchash, sizeof(mchash)); 587 mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL); 588 if ((ifp->if_flags & IFF_PROMISC) != 0) 589 mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 590 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) { 591 mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA; 592 mchash[0] = 0xffff; 593 mchash[1] = 0xffff; 594 } else { 595 mode |= GM_RXCR_UCF_ENA; 596 if_maddr_rlock(ifp); 597 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 598 if (ifma->ifma_addr->sa_family != AF_LINK) 599 continue; 600 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 601 ifma->ifma_addr), ETHER_ADDR_LEN); 602 /* Just want the 6 least significant bits. */ 603 crc &= 0x3f; 604 /* Set the corresponding bit in the hash table. */ 605 mchash[crc >> 5] |= 1 << (crc & 0x1f); 606 } 607 if_maddr_runlock(ifp); 608 if (mchash[0] != 0 || mchash[1] != 0) 609 mode |= GM_RXCR_MCF_ENA; 610 } 611 612 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1, 613 mchash[0] & 0xffff); 614 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2, 615 (mchash[0] >> 16) & 0xffff); 616 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3, 617 mchash[1] & 0xffff); 618 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4, 619 (mchash[1] >> 16) & 0xffff); 620 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode); 621 } 622 623 static void 624 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp) 625 { 626 struct msk_softc *sc; 627 628 sc = sc_if->msk_softc; 629 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 630 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 631 RX_VLAN_STRIP_ON); 632 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 633 TX_VLAN_TAG_ON); 634 } else { 635 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 636 RX_VLAN_STRIP_OFF); 637 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 638 TX_VLAN_TAG_OFF); 639 } 640 } 641 642 static int 643 msk_rx_fill(struct msk_if_softc *sc_if, int jumbo) 644 { 645 uint16_t idx; 646 int i; 647 648 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && 649 (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) { 650 /* Wait until controller executes OP_TCPSTART command. */ 651 for (i = 100; i > 0; i--) { 652 DELAY(100); 653 idx = CSR_READ_2(sc_if->msk_softc, 654 Y2_PREF_Q_ADDR(sc_if->msk_rxq, 655 PREF_UNIT_GET_IDX_REG)); 656 if (idx != 0) 657 break; 658 } 659 if (i == 0) { 660 device_printf(sc_if->msk_if_dev, 661 "prefetch unit stuck?\n"); 662 return (ETIMEDOUT); 663 } 664 /* 665 * Fill consumed LE with free buffer. This can be done 666 * in Rx handler but we don't want to add special code 667 * in fast handler. 668 */ 669 if (jumbo > 0) { 670 if (msk_jumbo_newbuf(sc_if, 0) != 0) 671 return (ENOBUFS); 672 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 673 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 674 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 675 } else { 676 if (msk_newbuf(sc_if, 0) != 0) 677 return (ENOBUFS); 678 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag, 679 sc_if->msk_cdata.msk_rx_ring_map, 680 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 681 } 682 sc_if->msk_cdata.msk_rx_prod = 0; 683 CSR_WRITE_2(sc_if->msk_softc, 684 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG), 685 sc_if->msk_cdata.msk_rx_prod); 686 } 687 return (0); 688 } 689 690 static int 691 msk_init_rx_ring(struct msk_if_softc *sc_if) 692 { 693 struct msk_ring_data *rd; 694 struct msk_rxdesc *rxd; 695 int i, nbuf, prod; 696 697 MSK_IF_LOCK_ASSERT(sc_if); 698 699 sc_if->msk_cdata.msk_rx_cons = 0; 700 sc_if->msk_cdata.msk_rx_prod = 0; 701 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM; 702 703 rd = &sc_if->msk_rdata; 704 bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT); 705 for (i = prod = 0; i < MSK_RX_RING_CNT; i++) { 706 rxd = &sc_if->msk_cdata.msk_rxdesc[prod]; 707 rxd->rx_m = NULL; 708 rxd->rx_le = &rd->msk_rx_ring[prod]; 709 MSK_INC(prod, MSK_RX_RING_CNT); 710 } 711 nbuf = MSK_RX_BUF_CNT; 712 prod = 0; 713 /* Have controller know how to compute Rx checksum. */ 714 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && 715 (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) { 716 #ifdef MSK_64BIT_DMA 717 rxd = &sc_if->msk_cdata.msk_rxdesc[prod]; 718 rxd->rx_m = NULL; 719 rxd->rx_le = &rd->msk_rx_ring[prod]; 720 rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 | 721 ETHER_HDR_LEN); 722 rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER); 723 MSK_INC(prod, MSK_RX_RING_CNT); 724 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT); 725 #endif 726 rxd = &sc_if->msk_cdata.msk_rxdesc[prod]; 727 rxd->rx_m = NULL; 728 rxd->rx_le = &rd->msk_rx_ring[prod]; 729 rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 | 730 ETHER_HDR_LEN); 731 rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER); 732 MSK_INC(prod, MSK_RX_RING_CNT); 733 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT); 734 nbuf--; 735 } 736 for (i = 0; i < nbuf; i++) { 737 if (msk_newbuf(sc_if, prod) != 0) 738 return (ENOBUFS); 739 MSK_RX_INC(prod, MSK_RX_RING_CNT); 740 } 741 742 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag, 743 sc_if->msk_cdata.msk_rx_ring_map, 744 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 745 746 /* Update prefetch unit. */ 747 sc_if->msk_cdata.msk_rx_prod = prod; 748 CSR_WRITE_2(sc_if->msk_softc, 749 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG), 750 (sc_if->msk_cdata.msk_rx_prod + MSK_RX_RING_CNT - 1) % 751 MSK_RX_RING_CNT); 752 if (msk_rx_fill(sc_if, 0) != 0) 753 return (ENOBUFS); 754 return (0); 755 } 756 757 static int 758 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if) 759 { 760 struct msk_ring_data *rd; 761 struct msk_rxdesc *rxd; 762 int i, nbuf, prod; 763 764 MSK_IF_LOCK_ASSERT(sc_if); 765 766 sc_if->msk_cdata.msk_rx_cons = 0; 767 sc_if->msk_cdata.msk_rx_prod = 0; 768 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM; 769 770 rd = &sc_if->msk_rdata; 771 bzero(rd->msk_jumbo_rx_ring, 772 sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT); 773 for (i = prod = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 774 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod]; 775 rxd->rx_m = NULL; 776 rxd->rx_le = &rd->msk_jumbo_rx_ring[prod]; 777 MSK_INC(prod, MSK_JUMBO_RX_RING_CNT); 778 } 779 nbuf = MSK_RX_BUF_CNT; 780 prod = 0; 781 /* Have controller know how to compute Rx checksum. */ 782 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && 783 (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) { 784 #ifdef MSK_64BIT_DMA 785 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod]; 786 rxd->rx_m = NULL; 787 rxd->rx_le = &rd->msk_jumbo_rx_ring[prod]; 788 rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 | 789 ETHER_HDR_LEN); 790 rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER); 791 MSK_INC(prod, MSK_JUMBO_RX_RING_CNT); 792 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT); 793 #endif 794 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod]; 795 rxd->rx_m = NULL; 796 rxd->rx_le = &rd->msk_jumbo_rx_ring[prod]; 797 rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 | 798 ETHER_HDR_LEN); 799 rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER); 800 MSK_INC(prod, MSK_JUMBO_RX_RING_CNT); 801 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT); 802 nbuf--; 803 } 804 for (i = 0; i < nbuf; i++) { 805 if (msk_jumbo_newbuf(sc_if, prod) != 0) 806 return (ENOBUFS); 807 MSK_RX_INC(prod, MSK_JUMBO_RX_RING_CNT); 808 } 809 810 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 811 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 812 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 813 814 /* Update prefetch unit. */ 815 sc_if->msk_cdata.msk_rx_prod = prod; 816 CSR_WRITE_2(sc_if->msk_softc, 817 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG), 818 (sc_if->msk_cdata.msk_rx_prod + MSK_JUMBO_RX_RING_CNT - 1) % 819 MSK_JUMBO_RX_RING_CNT); 820 if (msk_rx_fill(sc_if, 1) != 0) 821 return (ENOBUFS); 822 return (0); 823 } 824 825 static void 826 msk_init_tx_ring(struct msk_if_softc *sc_if) 827 { 828 struct msk_ring_data *rd; 829 struct msk_txdesc *txd; 830 int i; 831 832 sc_if->msk_cdata.msk_tso_mtu = 0; 833 sc_if->msk_cdata.msk_last_csum = 0; 834 sc_if->msk_cdata.msk_tx_prod = 0; 835 sc_if->msk_cdata.msk_tx_cons = 0; 836 sc_if->msk_cdata.msk_tx_cnt = 0; 837 sc_if->msk_cdata.msk_tx_high_addr = 0; 838 839 rd = &sc_if->msk_rdata; 840 bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT); 841 for (i = 0; i < MSK_TX_RING_CNT; i++) { 842 txd = &sc_if->msk_cdata.msk_txdesc[i]; 843 txd->tx_m = NULL; 844 txd->tx_le = &rd->msk_tx_ring[i]; 845 } 846 847 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, 848 sc_if->msk_cdata.msk_tx_ring_map, 849 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 850 } 851 852 static __inline void 853 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx) 854 { 855 struct msk_rx_desc *rx_le; 856 struct msk_rxdesc *rxd; 857 struct mbuf *m; 858 859 #ifdef MSK_64BIT_DMA 860 rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; 861 rx_le = rxd->rx_le; 862 rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); 863 MSK_INC(idx, MSK_RX_RING_CNT); 864 #endif 865 rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; 866 m = rxd->rx_m; 867 rx_le = rxd->rx_le; 868 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER); 869 } 870 871 static __inline void 872 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int idx) 873 { 874 struct msk_rx_desc *rx_le; 875 struct msk_rxdesc *rxd; 876 struct mbuf *m; 877 878 #ifdef MSK_64BIT_DMA 879 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; 880 rx_le = rxd->rx_le; 881 rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); 882 MSK_INC(idx, MSK_JUMBO_RX_RING_CNT); 883 #endif 884 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; 885 m = rxd->rx_m; 886 rx_le = rxd->rx_le; 887 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER); 888 } 889 890 static int 891 msk_newbuf(struct msk_if_softc *sc_if, int idx) 892 { 893 struct msk_rx_desc *rx_le; 894 struct msk_rxdesc *rxd; 895 struct mbuf *m; 896 bus_dma_segment_t segs[1]; 897 bus_dmamap_t map; 898 int nsegs; 899 900 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 901 if (m == NULL) 902 return (ENOBUFS); 903 904 m->m_len = m->m_pkthdr.len = MCLBYTES; 905 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) 906 m_adj(m, ETHER_ALIGN); 907 #ifndef __NO_STRICT_ALIGNMENT 908 else 909 m_adj(m, MSK_RX_BUF_ALIGN); 910 #endif 911 912 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag, 913 sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs, 914 BUS_DMA_NOWAIT) != 0) { 915 m_freem(m); 916 return (ENOBUFS); 917 } 918 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 919 920 rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; 921 #ifdef MSK_64BIT_DMA 922 rx_le = rxd->rx_le; 923 rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr)); 924 rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); 925 MSK_INC(idx, MSK_RX_RING_CNT); 926 rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; 927 #endif 928 if (rxd->rx_m != NULL) { 929 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap, 930 BUS_DMASYNC_POSTREAD); 931 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap); 932 rxd->rx_m = NULL; 933 } 934 map = rxd->rx_dmamap; 935 rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap; 936 sc_if->msk_cdata.msk_rx_sparemap = map; 937 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap, 938 BUS_DMASYNC_PREREAD); 939 rxd->rx_m = m; 940 rx_le = rxd->rx_le; 941 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr)); 942 rx_le->msk_control = 943 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER); 944 945 return (0); 946 } 947 948 static int 949 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx) 950 { 951 struct msk_rx_desc *rx_le; 952 struct msk_rxdesc *rxd; 953 struct mbuf *m; 954 bus_dma_segment_t segs[1]; 955 bus_dmamap_t map; 956 int nsegs; 957 958 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 959 if (m == NULL) 960 return (ENOBUFS); 961 if ((m->m_flags & M_EXT) == 0) { 962 m_freem(m); 963 return (ENOBUFS); 964 } 965 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 966 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) 967 m_adj(m, ETHER_ALIGN); 968 #ifndef __NO_STRICT_ALIGNMENT 969 else 970 m_adj(m, MSK_RX_BUF_ALIGN); 971 #endif 972 973 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag, 974 sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs, 975 BUS_DMA_NOWAIT) != 0) { 976 m_freem(m); 977 return (ENOBUFS); 978 } 979 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 980 981 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; 982 #ifdef MSK_64BIT_DMA 983 rx_le = rxd->rx_le; 984 rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr)); 985 rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); 986 MSK_INC(idx, MSK_JUMBO_RX_RING_CNT); 987 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; 988 #endif 989 if (rxd->rx_m != NULL) { 990 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, 991 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 992 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag, 993 rxd->rx_dmamap); 994 rxd->rx_m = NULL; 995 } 996 map = rxd->rx_dmamap; 997 rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap; 998 sc_if->msk_cdata.msk_jumbo_rx_sparemap = map; 999 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap, 1000 BUS_DMASYNC_PREREAD); 1001 rxd->rx_m = m; 1002 rx_le = rxd->rx_le; 1003 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr)); 1004 rx_le->msk_control = 1005 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER); 1006 1007 return (0); 1008 } 1009 1010 /* 1011 * Set media options. 1012 */ 1013 static int 1014 msk_mediachange(struct ifnet *ifp) 1015 { 1016 struct msk_if_softc *sc_if; 1017 struct mii_data *mii; 1018 int error; 1019 1020 sc_if = ifp->if_softc; 1021 1022 MSK_IF_LOCK(sc_if); 1023 mii = device_get_softc(sc_if->msk_miibus); 1024 error = mii_mediachg(mii); 1025 MSK_IF_UNLOCK(sc_if); 1026 1027 return (error); 1028 } 1029 1030 /* 1031 * Report current media status. 1032 */ 1033 static void 1034 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 1035 { 1036 struct msk_if_softc *sc_if; 1037 struct mii_data *mii; 1038 1039 sc_if = ifp->if_softc; 1040 MSK_IF_LOCK(sc_if); 1041 if ((ifp->if_flags & IFF_UP) == 0) { 1042 MSK_IF_UNLOCK(sc_if); 1043 return; 1044 } 1045 mii = device_get_softc(sc_if->msk_miibus); 1046 1047 mii_pollstat(mii); 1048 ifmr->ifm_active = mii->mii_media_active; 1049 ifmr->ifm_status = mii->mii_media_status; 1050 MSK_IF_UNLOCK(sc_if); 1051 } 1052 1053 static int 1054 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1055 { 1056 struct msk_if_softc *sc_if; 1057 struct ifreq *ifr; 1058 struct mii_data *mii; 1059 int error, mask, reinit; 1060 1061 sc_if = ifp->if_softc; 1062 ifr = (struct ifreq *)data; 1063 error = 0; 1064 1065 switch(command) { 1066 case SIOCSIFMTU: 1067 MSK_IF_LOCK(sc_if); 1068 if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) 1069 error = EINVAL; 1070 else if (ifp->if_mtu != ifr->ifr_mtu) { 1071 if (ifr->ifr_mtu > ETHERMTU) { 1072 if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) { 1073 error = EINVAL; 1074 MSK_IF_UNLOCK(sc_if); 1075 break; 1076 } 1077 if ((sc_if->msk_flags & 1078 MSK_FLAG_JUMBO_NOCSUM) != 0) { 1079 ifp->if_hwassist &= 1080 ~(MSK_CSUM_FEATURES | CSUM_TSO); 1081 ifp->if_capenable &= 1082 ~(IFCAP_TSO4 | IFCAP_TXCSUM); 1083 VLAN_CAPABILITIES(ifp); 1084 } 1085 } 1086 ifp->if_mtu = ifr->ifr_mtu; 1087 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1088 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1089 msk_init_locked(sc_if); 1090 } 1091 } 1092 MSK_IF_UNLOCK(sc_if); 1093 break; 1094 case SIOCSIFFLAGS: 1095 MSK_IF_LOCK(sc_if); 1096 if ((ifp->if_flags & IFF_UP) != 0) { 1097 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && 1098 ((ifp->if_flags ^ sc_if->msk_if_flags) & 1099 (IFF_PROMISC | IFF_ALLMULTI)) != 0) 1100 msk_rxfilter(sc_if); 1101 else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0) 1102 msk_init_locked(sc_if); 1103 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1104 msk_stop(sc_if); 1105 sc_if->msk_if_flags = ifp->if_flags; 1106 MSK_IF_UNLOCK(sc_if); 1107 break; 1108 case SIOCADDMULTI: 1109 case SIOCDELMULTI: 1110 MSK_IF_LOCK(sc_if); 1111 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1112 msk_rxfilter(sc_if); 1113 MSK_IF_UNLOCK(sc_if); 1114 break; 1115 case SIOCGIFMEDIA: 1116 case SIOCSIFMEDIA: 1117 mii = device_get_softc(sc_if->msk_miibus); 1118 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1119 break; 1120 case SIOCSIFCAP: 1121 reinit = 0; 1122 MSK_IF_LOCK(sc_if); 1123 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1124 if ((mask & IFCAP_TXCSUM) != 0 && 1125 (IFCAP_TXCSUM & ifp->if_capabilities) != 0) { 1126 ifp->if_capenable ^= IFCAP_TXCSUM; 1127 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) 1128 ifp->if_hwassist |= MSK_CSUM_FEATURES; 1129 else 1130 ifp->if_hwassist &= ~MSK_CSUM_FEATURES; 1131 } 1132 if ((mask & IFCAP_RXCSUM) != 0 && 1133 (IFCAP_RXCSUM & ifp->if_capabilities) != 0) { 1134 ifp->if_capenable ^= IFCAP_RXCSUM; 1135 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0) 1136 reinit = 1; 1137 } 1138 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 1139 (IFCAP_VLAN_HWCSUM & ifp->if_capabilities) != 0) 1140 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 1141 if ((mask & IFCAP_TSO4) != 0 && 1142 (IFCAP_TSO4 & ifp->if_capabilities) != 0) { 1143 ifp->if_capenable ^= IFCAP_TSO4; 1144 if ((IFCAP_TSO4 & ifp->if_capenable) != 0) 1145 ifp->if_hwassist |= CSUM_TSO; 1146 else 1147 ifp->if_hwassist &= ~CSUM_TSO; 1148 } 1149 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 1150 (IFCAP_VLAN_HWTSO & ifp->if_capabilities) != 0) 1151 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 1152 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 1153 (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) { 1154 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 1155 if ((IFCAP_VLAN_HWTAGGING & ifp->if_capenable) == 0) 1156 ifp->if_capenable &= 1157 ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM); 1158 msk_setvlan(sc_if, ifp); 1159 } 1160 if (ifp->if_mtu > ETHERMTU && 1161 (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) { 1162 ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO); 1163 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM); 1164 } 1165 VLAN_CAPABILITIES(ifp); 1166 if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1167 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1168 msk_init_locked(sc_if); 1169 } 1170 MSK_IF_UNLOCK(sc_if); 1171 break; 1172 default: 1173 error = ether_ioctl(ifp, command, data); 1174 break; 1175 } 1176 1177 return (error); 1178 } 1179 1180 static int 1181 mskc_probe(device_t dev) 1182 { 1183 struct msk_product *mp; 1184 uint16_t vendor, devid; 1185 int i; 1186 1187 vendor = pci_get_vendor(dev); 1188 devid = pci_get_device(dev); 1189 mp = msk_products; 1190 for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]); 1191 i++, mp++) { 1192 if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) { 1193 device_set_desc(dev, mp->msk_name); 1194 return (BUS_PROBE_DEFAULT); 1195 } 1196 } 1197 1198 return (ENXIO); 1199 } 1200 1201 static int 1202 mskc_setup_rambuffer(struct msk_softc *sc) 1203 { 1204 int next; 1205 int i; 1206 1207 /* Get adapter SRAM size. */ 1208 sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4; 1209 if (bootverbose) 1210 device_printf(sc->msk_dev, 1211 "RAM buffer size : %dKB\n", sc->msk_ramsize); 1212 if (sc->msk_ramsize == 0) 1213 return (0); 1214 1215 sc->msk_pflags |= MSK_FLAG_RAMBUF; 1216 /* 1217 * Give receiver 2/3 of memory and round down to the multiple 1218 * of 1024. Tx/Rx RAM buffer size of Yukon II should be multiple 1219 * of 1024. 1220 */ 1221 sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024); 1222 sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize; 1223 for (i = 0, next = 0; i < sc->msk_num_port; i++) { 1224 sc->msk_rxqstart[i] = next; 1225 sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1; 1226 next = sc->msk_rxqend[i] + 1; 1227 sc->msk_txqstart[i] = next; 1228 sc->msk_txqend[i] = next + sc->msk_txqsize - 1; 1229 next = sc->msk_txqend[i] + 1; 1230 if (bootverbose) { 1231 device_printf(sc->msk_dev, 1232 "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i, 1233 sc->msk_rxqsize / 1024, sc->msk_rxqstart[i], 1234 sc->msk_rxqend[i]); 1235 device_printf(sc->msk_dev, 1236 "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i, 1237 sc->msk_txqsize / 1024, sc->msk_txqstart[i], 1238 sc->msk_txqend[i]); 1239 } 1240 } 1241 1242 return (0); 1243 } 1244 1245 static void 1246 msk_phy_power(struct msk_softc *sc, int mode) 1247 { 1248 uint32_t our, val; 1249 int i; 1250 1251 switch (mode) { 1252 case MSK_PHY_POWERUP: 1253 /* Switch power to VCC (WA for VAUX problem). */ 1254 CSR_WRITE_1(sc, B0_POWER_CTRL, 1255 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); 1256 /* Disable Core Clock Division, set Clock Select to 0. */ 1257 CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS); 1258 1259 val = 0; 1260 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1261 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1262 /* Enable bits are inverted. */ 1263 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | 1264 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | 1265 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS; 1266 } 1267 /* 1268 * Enable PCI & Core Clock, enable clock gating for both Links. 1269 */ 1270 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val); 1271 1272 our = CSR_PCI_READ_4(sc, PCI_OUR_REG_1); 1273 our &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD); 1274 if (sc->msk_hw_id == CHIP_ID_YUKON_XL) { 1275 if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1276 /* Deassert Low Power for 1st PHY. */ 1277 our |= PCI_Y2_PHY1_COMA; 1278 if (sc->msk_num_port > 1) 1279 our |= PCI_Y2_PHY2_COMA; 1280 } 1281 } 1282 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U || 1283 sc->msk_hw_id == CHIP_ID_YUKON_EX || 1284 sc->msk_hw_id >= CHIP_ID_YUKON_FE_P) { 1285 val = CSR_PCI_READ_4(sc, PCI_OUR_REG_4); 1286 val &= (PCI_FORCE_ASPM_REQUEST | 1287 PCI_ASPM_GPHY_LINK_DOWN | PCI_ASPM_INT_FIFO_EMPTY | 1288 PCI_ASPM_CLKRUN_REQUEST); 1289 /* Set all bits to 0 except bits 15..12. */ 1290 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, val); 1291 val = CSR_PCI_READ_4(sc, PCI_OUR_REG_5); 1292 val &= PCI_CTL_TIM_VMAIN_AV_MSK; 1293 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, val); 1294 CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0); 1295 CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON); 1296 /* 1297 * Disable status race, workaround for 1298 * Yukon EC Ultra & Yukon EX. 1299 */ 1300 val = CSR_READ_4(sc, B2_GP_IO); 1301 val |= GLB_GPIO_STAT_RACE_DIS; 1302 CSR_WRITE_4(sc, B2_GP_IO, val); 1303 CSR_READ_4(sc, B2_GP_IO); 1304 } 1305 /* Release PHY from PowerDown/COMA mode. */ 1306 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, our); 1307 1308 for (i = 0; i < sc->msk_num_port; i++) { 1309 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL), 1310 GMLC_RST_SET); 1311 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL), 1312 GMLC_RST_CLR); 1313 } 1314 break; 1315 case MSK_PHY_POWERDOWN: 1316 val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1); 1317 val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD; 1318 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1319 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1320 val &= ~PCI_Y2_PHY1_COMA; 1321 if (sc->msk_num_port > 1) 1322 val &= ~PCI_Y2_PHY2_COMA; 1323 } 1324 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val); 1325 1326 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | 1327 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | 1328 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS; 1329 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1330 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1331 /* Enable bits are inverted. */ 1332 val = 0; 1333 } 1334 /* 1335 * Disable PCI & Core Clock, disable clock gating for 1336 * both Links. 1337 */ 1338 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val); 1339 CSR_WRITE_1(sc, B0_POWER_CTRL, 1340 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF); 1341 break; 1342 default: 1343 break; 1344 } 1345 } 1346 1347 static void 1348 mskc_reset(struct msk_softc *sc) 1349 { 1350 bus_addr_t addr; 1351 uint16_t status; 1352 uint32_t val; 1353 int i, initram; 1354 1355 /* Disable ASF. */ 1356 if (sc->msk_hw_id >= CHIP_ID_YUKON_XL && 1357 sc->msk_hw_id <= CHIP_ID_YUKON_SUPR) { 1358 if (sc->msk_hw_id == CHIP_ID_YUKON_EX || 1359 sc->msk_hw_id == CHIP_ID_YUKON_SUPR) { 1360 CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0); 1361 status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR); 1362 /* Clear AHB bridge & microcontroller reset. */ 1363 status &= ~(Y2_ASF_HCU_CCSR_AHB_RST | 1364 Y2_ASF_HCU_CCSR_CPU_RST_MODE); 1365 /* Clear ASF microcontroller state. */ 1366 status &= ~Y2_ASF_HCU_CCSR_UC_STATE_MSK; 1367 status &= ~Y2_ASF_HCU_CCSR_CPU_CLK_DIVIDE_MSK; 1368 CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status); 1369 CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0); 1370 } else 1371 CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET); 1372 CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE); 1373 /* 1374 * Since we disabled ASF, S/W reset is required for 1375 * Power Management. 1376 */ 1377 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 1378 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); 1379 } 1380 1381 /* Clear all error bits in the PCI status register. */ 1382 status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2); 1383 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 1384 1385 pci_write_config(sc->msk_dev, PCIR_STATUS, status | 1386 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT | 1387 PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2); 1388 CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR); 1389 1390 switch (sc->msk_bustype) { 1391 case MSK_PEX_BUS: 1392 /* Clear all PEX errors. */ 1393 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff); 1394 val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT); 1395 if ((val & PEX_RX_OV) != 0) { 1396 sc->msk_intrmask &= ~Y2_IS_HW_ERR; 1397 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP; 1398 } 1399 break; 1400 case MSK_PCI_BUS: 1401 case MSK_PCIX_BUS: 1402 /* Set Cache Line Size to 2(8bytes) if configured to 0. */ 1403 val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1); 1404 if (val == 0) 1405 pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1); 1406 if (sc->msk_bustype == MSK_PCIX_BUS) { 1407 /* Set Cache Line Size opt. */ 1408 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4); 1409 val |= PCI_CLS_OPT; 1410 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4); 1411 } 1412 break; 1413 } 1414 /* Set PHY power state. */ 1415 msk_phy_power(sc, MSK_PHY_POWERUP); 1416 1417 /* Reset GPHY/GMAC Control */ 1418 for (i = 0; i < sc->msk_num_port; i++) { 1419 /* GPHY Control reset. */ 1420 CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET); 1421 CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR); 1422 /* GMAC Control reset. */ 1423 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET); 1424 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR); 1425 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF); 1426 if (sc->msk_hw_id == CHIP_ID_YUKON_EX || 1427 sc->msk_hw_id == CHIP_ID_YUKON_SUPR) 1428 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), 1429 GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON | 1430 GMC_BYP_RETR_ON); 1431 } 1432 1433 if (sc->msk_hw_id == CHIP_ID_YUKON_SUPR && 1434 sc->msk_hw_rev > CHIP_REV_YU_SU_B0) 1435 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, PCI_CLK_MACSEC_DIS); 1436 if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) { 1437 /* Disable PCIe PHY powerdown(reg 0x80, bit7). */ 1438 CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080); 1439 } 1440 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 1441 1442 /* LED On. */ 1443 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON); 1444 1445 /* Clear TWSI IRQ. */ 1446 CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ); 1447 1448 /* Turn off hardware timer. */ 1449 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP); 1450 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ); 1451 1452 /* Turn off descriptor polling. */ 1453 CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP); 1454 1455 /* Turn off time stamps. */ 1456 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP); 1457 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 1458 1459 initram = 0; 1460 if (sc->msk_hw_id == CHIP_ID_YUKON_XL || 1461 sc->msk_hw_id == CHIP_ID_YUKON_EC || 1462 sc->msk_hw_id == CHIP_ID_YUKON_FE) 1463 initram++; 1464 1465 /* Configure timeout values. */ 1466 for (i = 0; initram > 0 && i < sc->msk_num_port; i++) { 1467 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET); 1468 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR); 1469 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1), 1470 MSK_RI_TO_53); 1471 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1), 1472 MSK_RI_TO_53); 1473 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1), 1474 MSK_RI_TO_53); 1475 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1), 1476 MSK_RI_TO_53); 1477 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1), 1478 MSK_RI_TO_53); 1479 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1), 1480 MSK_RI_TO_53); 1481 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2), 1482 MSK_RI_TO_53); 1483 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2), 1484 MSK_RI_TO_53); 1485 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2), 1486 MSK_RI_TO_53); 1487 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2), 1488 MSK_RI_TO_53); 1489 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2), 1490 MSK_RI_TO_53); 1491 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2), 1492 MSK_RI_TO_53); 1493 } 1494 1495 /* Disable all interrupts. */ 1496 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 1497 CSR_READ_4(sc, B0_HWE_IMSK); 1498 CSR_WRITE_4(sc, B0_IMSK, 0); 1499 CSR_READ_4(sc, B0_IMSK); 1500 1501 /* 1502 * On dual port PCI-X card, there is an problem where status 1503 * can be received out of order due to split transactions. 1504 */ 1505 if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) { 1506 uint16_t pcix_cmd; 1507 1508 pcix_cmd = pci_read_config(sc->msk_dev, 1509 sc->msk_pcixcap + PCIXR_COMMAND, 2); 1510 /* Clear Max Outstanding Split Transactions. */ 1511 pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS; 1512 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 1513 pci_write_config(sc->msk_dev, 1514 sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2); 1515 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 1516 } 1517 if (sc->msk_expcap != 0) { 1518 /* Change Max. Read Request Size to 2048 bytes. */ 1519 if (pci_get_max_read_req(sc->msk_dev) == 512) 1520 pci_set_max_read_req(sc->msk_dev, 2048); 1521 } 1522 1523 /* Clear status list. */ 1524 bzero(sc->msk_stat_ring, 1525 sizeof(struct msk_stat_desc) * sc->msk_stat_count); 1526 sc->msk_stat_cons = 0; 1527 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map, 1528 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1529 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET); 1530 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR); 1531 /* Set the status list base address. */ 1532 addr = sc->msk_stat_ring_paddr; 1533 CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr)); 1534 CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr)); 1535 /* Set the status list last index. */ 1536 CSR_WRITE_2(sc, STAT_LAST_IDX, sc->msk_stat_count - 1); 1537 if (sc->msk_hw_id == CHIP_ID_YUKON_EC && 1538 sc->msk_hw_rev == CHIP_REV_YU_EC_A1) { 1539 /* WA for dev. #4.3 */ 1540 CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK); 1541 /* WA for dev. #4.18 */ 1542 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21); 1543 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07); 1544 } else { 1545 CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a); 1546 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10); 1547 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1548 sc->msk_hw_rev == CHIP_REV_YU_XL_A0) 1549 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04); 1550 else 1551 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10); 1552 CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190); 1553 } 1554 /* 1555 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI. 1556 */ 1557 CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000)); 1558 1559 /* Enable status unit. */ 1560 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON); 1561 1562 CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START); 1563 CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START); 1564 CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START); 1565 } 1566 1567 static int 1568 msk_probe(device_t dev) 1569 { 1570 struct msk_softc *sc; 1571 char desc[100]; 1572 1573 sc = device_get_softc(device_get_parent(dev)); 1574 /* 1575 * Not much to do here. We always know there will be 1576 * at least one GMAC present, and if there are two, 1577 * mskc_attach() will create a second device instance 1578 * for us. 1579 */ 1580 snprintf(desc, sizeof(desc), 1581 "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x", 1582 model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id, 1583 sc->msk_hw_rev); 1584 device_set_desc_copy(dev, desc); 1585 1586 return (BUS_PROBE_DEFAULT); 1587 } 1588 1589 static int 1590 msk_attach(device_t dev) 1591 { 1592 struct msk_softc *sc; 1593 struct msk_if_softc *sc_if; 1594 struct ifnet *ifp; 1595 struct msk_mii_data *mmd; 1596 int i, port, error; 1597 uint8_t eaddr[6]; 1598 1599 if (dev == NULL) 1600 return (EINVAL); 1601 1602 error = 0; 1603 sc_if = device_get_softc(dev); 1604 sc = device_get_softc(device_get_parent(dev)); 1605 mmd = device_get_ivars(dev); 1606 port = mmd->port; 1607 1608 sc_if->msk_if_dev = dev; 1609 sc_if->msk_port = port; 1610 sc_if->msk_softc = sc; 1611 sc_if->msk_flags = sc->msk_pflags; 1612 sc->msk_if[port] = sc_if; 1613 /* Setup Tx/Rx queue register offsets. */ 1614 if (port == MSK_PORT_A) { 1615 sc_if->msk_txq = Q_XA1; 1616 sc_if->msk_txsq = Q_XS1; 1617 sc_if->msk_rxq = Q_R1; 1618 } else { 1619 sc_if->msk_txq = Q_XA2; 1620 sc_if->msk_txsq = Q_XS2; 1621 sc_if->msk_rxq = Q_R2; 1622 } 1623 1624 callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0); 1625 msk_sysctl_node(sc_if); 1626 1627 if ((error = msk_txrx_dma_alloc(sc_if) != 0)) 1628 goto fail; 1629 msk_rx_dma_jalloc(sc_if); 1630 1631 ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER); 1632 if (ifp == NULL) { 1633 device_printf(sc_if->msk_if_dev, "can not if_alloc()\n"); 1634 error = ENOSPC; 1635 goto fail; 1636 } 1637 ifp->if_softc = sc_if; 1638 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1639 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1640 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4; 1641 /* 1642 * Enable Rx checksum offloading if controller supports 1643 * new descriptor formant and controller is not Yukon XL. 1644 */ 1645 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && 1646 sc->msk_hw_id != CHIP_ID_YUKON_XL) 1647 ifp->if_capabilities |= IFCAP_RXCSUM; 1648 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 && 1649 (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0) 1650 ifp->if_capabilities |= IFCAP_RXCSUM; 1651 ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO; 1652 ifp->if_capenable = ifp->if_capabilities; 1653 ifp->if_ioctl = msk_ioctl; 1654 ifp->if_start = msk_start; 1655 ifp->if_init = msk_init; 1656 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1); 1657 ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1; 1658 IFQ_SET_READY(&ifp->if_snd); 1659 /* 1660 * Get station address for this interface. Note that 1661 * dual port cards actually come with three station 1662 * addresses: one for each port, plus an extra. The 1663 * extra one is used by the SysKonnect driver software 1664 * as a 'virtual' station address for when both ports 1665 * are operating in failover mode. Currently we don't 1666 * use this extra address. 1667 */ 1668 MSK_IF_LOCK(sc_if); 1669 for (i = 0; i < ETHER_ADDR_LEN; i++) 1670 eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i); 1671 1672 /* 1673 * Call MI attach routine. Can't hold locks when calling into ether_*. 1674 */ 1675 MSK_IF_UNLOCK(sc_if); 1676 ether_ifattach(ifp, eaddr); 1677 MSK_IF_LOCK(sc_if); 1678 1679 /* VLAN capability setup */ 1680 ifp->if_capabilities |= IFCAP_VLAN_MTU; 1681 if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) { 1682 /* 1683 * Due to Tx checksum offload hardware bugs, msk(4) manually 1684 * computes checksum for short frames. For VLAN tagged frames 1685 * this workaround does not work so disable checksum offload 1686 * for VLAN interface. 1687 */ 1688 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO; 1689 /* 1690 * Enable Rx checksum offloading for VLAN tagged frames 1691 * if controller support new descriptor format. 1692 */ 1693 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 && 1694 (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0) 1695 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 1696 } 1697 ifp->if_capenable = ifp->if_capabilities; 1698 /* 1699 * Disable RX checksum offloading on controllers that don't use 1700 * new descriptor format but give chance to enable it. 1701 */ 1702 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0) 1703 ifp->if_capenable &= ~IFCAP_RXCSUM; 1704 1705 /* 1706 * Tell the upper layer(s) we support long frames. 1707 * Must appear after the call to ether_ifattach() because 1708 * ether_ifattach() sets ifi_hdrlen to the default value. 1709 */ 1710 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 1711 1712 /* 1713 * Do miibus setup. 1714 */ 1715 MSK_IF_UNLOCK(sc_if); 1716 error = mii_attach(dev, &sc_if->msk_miibus, ifp, msk_mediachange, 1717 msk_mediastatus, BMSR_DEFCAPMASK, PHY_ADDR_MARV, MII_OFFSET_ANY, 1718 mmd->mii_flags); 1719 if (error != 0) { 1720 device_printf(sc_if->msk_if_dev, "attaching PHYs failed\n"); 1721 ether_ifdetach(ifp); 1722 error = ENXIO; 1723 goto fail; 1724 } 1725 1726 fail: 1727 if (error != 0) { 1728 /* Access should be ok even though lock has been dropped */ 1729 sc->msk_if[port] = NULL; 1730 msk_detach(dev); 1731 } 1732 1733 return (error); 1734 } 1735 1736 /* 1737 * Attach the interface. Allocate softc structures, do ifmedia 1738 * setup and ethernet/BPF attach. 1739 */ 1740 static int 1741 mskc_attach(device_t dev) 1742 { 1743 struct msk_softc *sc; 1744 struct msk_mii_data *mmd; 1745 int error, msic, msir, reg; 1746 1747 sc = device_get_softc(dev); 1748 sc->msk_dev = dev; 1749 mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1750 MTX_DEF); 1751 1752 /* 1753 * Map control/status registers. 1754 */ 1755 pci_enable_busmaster(dev); 1756 1757 /* Allocate I/O resource */ 1758 #ifdef MSK_USEIOSPACE 1759 sc->msk_res_spec = msk_res_spec_io; 1760 #else 1761 sc->msk_res_spec = msk_res_spec_mem; 1762 #endif 1763 sc->msk_irq_spec = msk_irq_spec_legacy; 1764 error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res); 1765 if (error) { 1766 if (sc->msk_res_spec == msk_res_spec_mem) 1767 sc->msk_res_spec = msk_res_spec_io; 1768 else 1769 sc->msk_res_spec = msk_res_spec_mem; 1770 error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res); 1771 if (error) { 1772 device_printf(dev, "couldn't allocate %s resources\n", 1773 sc->msk_res_spec == msk_res_spec_mem ? "memory" : 1774 "I/O"); 1775 mtx_destroy(&sc->msk_mtx); 1776 return (ENXIO); 1777 } 1778 } 1779 1780 /* Enable all clocks before accessing any registers. */ 1781 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0); 1782 1783 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); 1784 sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID); 1785 sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f; 1786 /* Bail out if chip is not recognized. */ 1787 if (sc->msk_hw_id < CHIP_ID_YUKON_XL || 1788 sc->msk_hw_id > CHIP_ID_YUKON_OPT || 1789 sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) { 1790 device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n", 1791 sc->msk_hw_id, sc->msk_hw_rev); 1792 mtx_destroy(&sc->msk_mtx); 1793 return (ENXIO); 1794 } 1795 1796 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 1797 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1798 OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW, 1799 &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I", 1800 "max number of Rx events to process"); 1801 1802 sc->msk_process_limit = MSK_PROC_DEFAULT; 1803 error = resource_int_value(device_get_name(dev), device_get_unit(dev), 1804 "process_limit", &sc->msk_process_limit); 1805 if (error == 0) { 1806 if (sc->msk_process_limit < MSK_PROC_MIN || 1807 sc->msk_process_limit > MSK_PROC_MAX) { 1808 device_printf(dev, "process_limit value out of range; " 1809 "using default: %d\n", MSK_PROC_DEFAULT); 1810 sc->msk_process_limit = MSK_PROC_DEFAULT; 1811 } 1812 } 1813 1814 sc->msk_int_holdoff = MSK_INT_HOLDOFF_DEFAULT; 1815 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 1816 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 1817 "int_holdoff", CTLFLAG_RW, &sc->msk_int_holdoff, 0, 1818 "Maximum number of time to delay interrupts"); 1819 resource_int_value(device_get_name(dev), device_get_unit(dev), 1820 "int_holdoff", &sc->msk_int_holdoff); 1821 1822 sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP); 1823 /* Check number of MACs. */ 1824 sc->msk_num_port = 1; 1825 if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) == 1826 CFG_DUAL_MAC_MSK) { 1827 if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC)) 1828 sc->msk_num_port++; 1829 } 1830 1831 /* Check bus type. */ 1832 if (pci_find_cap(sc->msk_dev, PCIY_EXPRESS, ®) == 0) { 1833 sc->msk_bustype = MSK_PEX_BUS; 1834 sc->msk_expcap = reg; 1835 } else if (pci_find_cap(sc->msk_dev, PCIY_PCIX, ®) == 0) { 1836 sc->msk_bustype = MSK_PCIX_BUS; 1837 sc->msk_pcixcap = reg; 1838 } else 1839 sc->msk_bustype = MSK_PCI_BUS; 1840 1841 switch (sc->msk_hw_id) { 1842 case CHIP_ID_YUKON_EC: 1843 sc->msk_clock = 125; /* 125 MHz */ 1844 sc->msk_pflags |= MSK_FLAG_JUMBO; 1845 break; 1846 case CHIP_ID_YUKON_EC_U: 1847 sc->msk_clock = 125; /* 125 MHz */ 1848 sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM; 1849 break; 1850 case CHIP_ID_YUKON_EX: 1851 sc->msk_clock = 125; /* 125 MHz */ 1852 sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 | 1853 MSK_FLAG_AUTOTX_CSUM; 1854 /* 1855 * Yukon Extreme seems to have silicon bug for 1856 * automatic Tx checksum calculation capability. 1857 */ 1858 if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0) 1859 sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM; 1860 /* 1861 * Yukon Extreme A0 could not use store-and-forward 1862 * for jumbo frames, so disable Tx checksum 1863 * offloading for jumbo frames. 1864 */ 1865 if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0) 1866 sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM; 1867 break; 1868 case CHIP_ID_YUKON_FE: 1869 sc->msk_clock = 100; /* 100 MHz */ 1870 sc->msk_pflags |= MSK_FLAG_FASTETHER; 1871 break; 1872 case CHIP_ID_YUKON_FE_P: 1873 sc->msk_clock = 50; /* 50 MHz */ 1874 sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 | 1875 MSK_FLAG_AUTOTX_CSUM; 1876 if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) { 1877 /* 1878 * XXX 1879 * FE+ A0 has status LE writeback bug so msk(4) 1880 * does not rely on status word of received frame 1881 * in msk_rxeof() which in turn disables all 1882 * hardware assistance bits reported by the status 1883 * word as well as validity of the received frame. 1884 * Just pass received frames to upper stack with 1885 * minimal test and let upper stack handle them. 1886 */ 1887 sc->msk_pflags |= MSK_FLAG_NOHWVLAN | 1888 MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM; 1889 } 1890 break; 1891 case CHIP_ID_YUKON_XL: 1892 sc->msk_clock = 156; /* 156 MHz */ 1893 sc->msk_pflags |= MSK_FLAG_JUMBO; 1894 break; 1895 case CHIP_ID_YUKON_SUPR: 1896 sc->msk_clock = 125; /* 125 MHz */ 1897 sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 | 1898 MSK_FLAG_AUTOTX_CSUM; 1899 break; 1900 case CHIP_ID_YUKON_UL_2: 1901 sc->msk_clock = 125; /* 125 MHz */ 1902 sc->msk_pflags |= MSK_FLAG_JUMBO; 1903 break; 1904 case CHIP_ID_YUKON_OPT: 1905 sc->msk_clock = 125; /* 125 MHz */ 1906 sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2; 1907 break; 1908 default: 1909 sc->msk_clock = 156; /* 156 MHz */ 1910 break; 1911 } 1912 1913 /* Allocate IRQ resources. */ 1914 msic = pci_msi_count(dev); 1915 if (bootverbose) 1916 device_printf(dev, "MSI count : %d\n", msic); 1917 if (legacy_intr != 0) 1918 msi_disable = 1; 1919 if (msi_disable == 0 && msic > 0) { 1920 msir = 1; 1921 if (pci_alloc_msi(dev, &msir) == 0) { 1922 if (msir == 1) { 1923 sc->msk_pflags |= MSK_FLAG_MSI; 1924 sc->msk_irq_spec = msk_irq_spec_msi; 1925 } else 1926 pci_release_msi(dev); 1927 } 1928 } 1929 1930 error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq); 1931 if (error) { 1932 device_printf(dev, "couldn't allocate IRQ resources\n"); 1933 goto fail; 1934 } 1935 1936 if ((error = msk_status_dma_alloc(sc)) != 0) 1937 goto fail; 1938 1939 /* Set base interrupt mask. */ 1940 sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU; 1941 sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR | 1942 Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP; 1943 1944 /* Reset the adapter. */ 1945 mskc_reset(sc); 1946 1947 if ((error = mskc_setup_rambuffer(sc)) != 0) 1948 goto fail; 1949 1950 sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1); 1951 if (sc->msk_devs[MSK_PORT_A] == NULL) { 1952 device_printf(dev, "failed to add child for PORT_A\n"); 1953 error = ENXIO; 1954 goto fail; 1955 } 1956 mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO); 1957 if (mmd == NULL) { 1958 device_printf(dev, "failed to allocate memory for " 1959 "ivars of PORT_A\n"); 1960 error = ENXIO; 1961 goto fail; 1962 } 1963 mmd->port = MSK_PORT_A; 1964 mmd->pmd = sc->msk_pmd; 1965 mmd->mii_flags |= MIIF_DOPAUSE; 1966 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S') 1967 mmd->mii_flags |= MIIF_HAVEFIBER; 1968 if (sc->msk_pmd == 'P') 1969 mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0; 1970 device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd); 1971 1972 if (sc->msk_num_port > 1) { 1973 sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1); 1974 if (sc->msk_devs[MSK_PORT_B] == NULL) { 1975 device_printf(dev, "failed to add child for PORT_B\n"); 1976 error = ENXIO; 1977 goto fail; 1978 } 1979 mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | 1980 M_ZERO); 1981 if (mmd == NULL) { 1982 device_printf(dev, "failed to allocate memory for " 1983 "ivars of PORT_B\n"); 1984 error = ENXIO; 1985 goto fail; 1986 } 1987 mmd->port = MSK_PORT_B; 1988 mmd->pmd = sc->msk_pmd; 1989 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S') 1990 mmd->mii_flags |= MIIF_HAVEFIBER; 1991 if (sc->msk_pmd == 'P') 1992 mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0; 1993 device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd); 1994 } 1995 1996 error = bus_generic_attach(dev); 1997 if (error) { 1998 device_printf(dev, "failed to attach port(s)\n"); 1999 goto fail; 2000 } 2001 2002 /* Hook interrupt last to avoid having to lock softc. */ 2003 error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET | 2004 INTR_MPSAFE, NULL, msk_intr, sc, &sc->msk_intrhand); 2005 if (error != 0) { 2006 device_printf(dev, "couldn't set up interrupt handler\n"); 2007 goto fail; 2008 } 2009 fail: 2010 if (error != 0) 2011 mskc_detach(dev); 2012 2013 return (error); 2014 } 2015 2016 /* 2017 * Shutdown hardware and free up resources. This can be called any 2018 * time after the mutex has been initialized. It is called in both 2019 * the error case in attach and the normal detach case so it needs 2020 * to be careful about only freeing resources that have actually been 2021 * allocated. 2022 */ 2023 static int 2024 msk_detach(device_t dev) 2025 { 2026 struct msk_softc *sc; 2027 struct msk_if_softc *sc_if; 2028 struct ifnet *ifp; 2029 2030 sc_if = device_get_softc(dev); 2031 KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx), 2032 ("msk mutex not initialized in msk_detach")); 2033 MSK_IF_LOCK(sc_if); 2034 2035 ifp = sc_if->msk_ifp; 2036 if (device_is_attached(dev)) { 2037 /* XXX */ 2038 sc_if->msk_flags |= MSK_FLAG_DETACH; 2039 msk_stop(sc_if); 2040 /* Can't hold locks while calling detach. */ 2041 MSK_IF_UNLOCK(sc_if); 2042 callout_drain(&sc_if->msk_tick_ch); 2043 if (ifp) 2044 ether_ifdetach(ifp); 2045 MSK_IF_LOCK(sc_if); 2046 } 2047 2048 /* 2049 * We're generally called from mskc_detach() which is using 2050 * device_delete_child() to get to here. It's already trashed 2051 * miibus for us, so don't do it here or we'll panic. 2052 * 2053 * if (sc_if->msk_miibus != NULL) { 2054 * device_delete_child(dev, sc_if->msk_miibus); 2055 * sc_if->msk_miibus = NULL; 2056 * } 2057 */ 2058 2059 msk_rx_dma_jfree(sc_if); 2060 msk_txrx_dma_free(sc_if); 2061 bus_generic_detach(dev); 2062 2063 if (ifp) 2064 if_free(ifp); 2065 sc = sc_if->msk_softc; 2066 sc->msk_if[sc_if->msk_port] = NULL; 2067 MSK_IF_UNLOCK(sc_if); 2068 2069 return (0); 2070 } 2071 2072 static int 2073 mskc_detach(device_t dev) 2074 { 2075 struct msk_softc *sc; 2076 2077 sc = device_get_softc(dev); 2078 KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized")); 2079 2080 if (device_is_alive(dev)) { 2081 if (sc->msk_devs[MSK_PORT_A] != NULL) { 2082 free(device_get_ivars(sc->msk_devs[MSK_PORT_A]), 2083 M_DEVBUF); 2084 device_delete_child(dev, sc->msk_devs[MSK_PORT_A]); 2085 } 2086 if (sc->msk_devs[MSK_PORT_B] != NULL) { 2087 free(device_get_ivars(sc->msk_devs[MSK_PORT_B]), 2088 M_DEVBUF); 2089 device_delete_child(dev, sc->msk_devs[MSK_PORT_B]); 2090 } 2091 bus_generic_detach(dev); 2092 } 2093 2094 /* Disable all interrupts. */ 2095 CSR_WRITE_4(sc, B0_IMSK, 0); 2096 CSR_READ_4(sc, B0_IMSK); 2097 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 2098 CSR_READ_4(sc, B0_HWE_IMSK); 2099 2100 /* LED Off. */ 2101 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF); 2102 2103 /* Put hardware reset. */ 2104 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 2105 2106 msk_status_dma_free(sc); 2107 2108 if (sc->msk_intrhand) { 2109 bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand); 2110 sc->msk_intrhand = NULL; 2111 } 2112 bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq); 2113 if ((sc->msk_pflags & MSK_FLAG_MSI) != 0) 2114 pci_release_msi(dev); 2115 bus_release_resources(dev, sc->msk_res_spec, sc->msk_res); 2116 mtx_destroy(&sc->msk_mtx); 2117 2118 return (0); 2119 } 2120 2121 struct msk_dmamap_arg { 2122 bus_addr_t msk_busaddr; 2123 }; 2124 2125 static void 2126 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 2127 { 2128 struct msk_dmamap_arg *ctx; 2129 2130 if (error != 0) 2131 return; 2132 ctx = arg; 2133 ctx->msk_busaddr = segs[0].ds_addr; 2134 } 2135 2136 /* Create status DMA region. */ 2137 static int 2138 msk_status_dma_alloc(struct msk_softc *sc) 2139 { 2140 struct msk_dmamap_arg ctx; 2141 bus_size_t stat_sz; 2142 int count, error; 2143 2144 /* 2145 * It seems controller requires number of status LE entries 2146 * is power of 2 and the maximum number of status LE entries 2147 * is 4096. For dual-port controllers, the number of status 2148 * LE entries should be large enough to hold both port's 2149 * status updates. 2150 */ 2151 count = 3 * MSK_RX_RING_CNT + MSK_TX_RING_CNT; 2152 count = imin(4096, roundup2(count, 1024)); 2153 sc->msk_stat_count = count; 2154 stat_sz = count * sizeof(struct msk_stat_desc); 2155 error = bus_dma_tag_create( 2156 bus_get_dma_tag(sc->msk_dev), /* parent */ 2157 MSK_STAT_ALIGN, 0, /* alignment, boundary */ 2158 BUS_SPACE_MAXADDR, /* lowaddr */ 2159 BUS_SPACE_MAXADDR, /* highaddr */ 2160 NULL, NULL, /* filter, filterarg */ 2161 stat_sz, /* maxsize */ 2162 1, /* nsegments */ 2163 stat_sz, /* maxsegsize */ 2164 0, /* flags */ 2165 NULL, NULL, /* lockfunc, lockarg */ 2166 &sc->msk_stat_tag); 2167 if (error != 0) { 2168 device_printf(sc->msk_dev, 2169 "failed to create status DMA tag\n"); 2170 return (error); 2171 } 2172 2173 /* Allocate DMA'able memory and load the DMA map for status ring. */ 2174 error = bus_dmamem_alloc(sc->msk_stat_tag, 2175 (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | 2176 BUS_DMA_ZERO, &sc->msk_stat_map); 2177 if (error != 0) { 2178 device_printf(sc->msk_dev, 2179 "failed to allocate DMA'able memory for status ring\n"); 2180 return (error); 2181 } 2182 2183 ctx.msk_busaddr = 0; 2184 error = bus_dmamap_load(sc->msk_stat_tag, sc->msk_stat_map, 2185 sc->msk_stat_ring, stat_sz, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2186 if (error != 0) { 2187 device_printf(sc->msk_dev, 2188 "failed to load DMA'able memory for status ring\n"); 2189 return (error); 2190 } 2191 sc->msk_stat_ring_paddr = ctx.msk_busaddr; 2192 2193 return (0); 2194 } 2195 2196 static void 2197 msk_status_dma_free(struct msk_softc *sc) 2198 { 2199 2200 /* Destroy status block. */ 2201 if (sc->msk_stat_tag) { 2202 if (sc->msk_stat_map) { 2203 bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map); 2204 if (sc->msk_stat_ring) { 2205 bus_dmamem_free(sc->msk_stat_tag, 2206 sc->msk_stat_ring, sc->msk_stat_map); 2207 sc->msk_stat_ring = NULL; 2208 } 2209 sc->msk_stat_map = NULL; 2210 } 2211 bus_dma_tag_destroy(sc->msk_stat_tag); 2212 sc->msk_stat_tag = NULL; 2213 } 2214 } 2215 2216 static int 2217 msk_txrx_dma_alloc(struct msk_if_softc *sc_if) 2218 { 2219 struct msk_dmamap_arg ctx; 2220 struct msk_txdesc *txd; 2221 struct msk_rxdesc *rxd; 2222 bus_size_t rxalign; 2223 int error, i; 2224 2225 /* Create parent DMA tag. */ 2226 error = bus_dma_tag_create( 2227 bus_get_dma_tag(sc_if->msk_if_dev), /* parent */ 2228 1, 0, /* alignment, boundary */ 2229 BUS_SPACE_MAXADDR, /* lowaddr */ 2230 BUS_SPACE_MAXADDR, /* highaddr */ 2231 NULL, NULL, /* filter, filterarg */ 2232 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 2233 0, /* nsegments */ 2234 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 2235 0, /* flags */ 2236 NULL, NULL, /* lockfunc, lockarg */ 2237 &sc_if->msk_cdata.msk_parent_tag); 2238 if (error != 0) { 2239 device_printf(sc_if->msk_if_dev, 2240 "failed to create parent DMA tag\n"); 2241 goto fail; 2242 } 2243 /* Create tag for Tx ring. */ 2244 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2245 MSK_RING_ALIGN, 0, /* alignment, boundary */ 2246 BUS_SPACE_MAXADDR, /* lowaddr */ 2247 BUS_SPACE_MAXADDR, /* highaddr */ 2248 NULL, NULL, /* filter, filterarg */ 2249 MSK_TX_RING_SZ, /* maxsize */ 2250 1, /* nsegments */ 2251 MSK_TX_RING_SZ, /* maxsegsize */ 2252 0, /* flags */ 2253 NULL, NULL, /* lockfunc, lockarg */ 2254 &sc_if->msk_cdata.msk_tx_ring_tag); 2255 if (error != 0) { 2256 device_printf(sc_if->msk_if_dev, 2257 "failed to create Tx ring DMA tag\n"); 2258 goto fail; 2259 } 2260 2261 /* Create tag for Rx ring. */ 2262 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2263 MSK_RING_ALIGN, 0, /* alignment, boundary */ 2264 BUS_SPACE_MAXADDR, /* lowaddr */ 2265 BUS_SPACE_MAXADDR, /* highaddr */ 2266 NULL, NULL, /* filter, filterarg */ 2267 MSK_RX_RING_SZ, /* maxsize */ 2268 1, /* nsegments */ 2269 MSK_RX_RING_SZ, /* maxsegsize */ 2270 0, /* flags */ 2271 NULL, NULL, /* lockfunc, lockarg */ 2272 &sc_if->msk_cdata.msk_rx_ring_tag); 2273 if (error != 0) { 2274 device_printf(sc_if->msk_if_dev, 2275 "failed to create Rx ring DMA tag\n"); 2276 goto fail; 2277 } 2278 2279 /* Create tag for Tx buffers. */ 2280 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2281 1, 0, /* alignment, boundary */ 2282 BUS_SPACE_MAXADDR, /* lowaddr */ 2283 BUS_SPACE_MAXADDR, /* highaddr */ 2284 NULL, NULL, /* filter, filterarg */ 2285 MSK_TSO_MAXSIZE, /* maxsize */ 2286 MSK_MAXTXSEGS, /* nsegments */ 2287 MSK_TSO_MAXSGSIZE, /* maxsegsize */ 2288 0, /* flags */ 2289 NULL, NULL, /* lockfunc, lockarg */ 2290 &sc_if->msk_cdata.msk_tx_tag); 2291 if (error != 0) { 2292 device_printf(sc_if->msk_if_dev, 2293 "failed to create Tx DMA tag\n"); 2294 goto fail; 2295 } 2296 2297 rxalign = 1; 2298 /* 2299 * Workaround hardware hang which seems to happen when Rx buffer 2300 * is not aligned on multiple of FIFO word(8 bytes). 2301 */ 2302 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0) 2303 rxalign = MSK_RX_BUF_ALIGN; 2304 /* Create tag for Rx buffers. */ 2305 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2306 rxalign, 0, /* alignment, boundary */ 2307 BUS_SPACE_MAXADDR, /* lowaddr */ 2308 BUS_SPACE_MAXADDR, /* highaddr */ 2309 NULL, NULL, /* filter, filterarg */ 2310 MCLBYTES, /* maxsize */ 2311 1, /* nsegments */ 2312 MCLBYTES, /* maxsegsize */ 2313 0, /* flags */ 2314 NULL, NULL, /* lockfunc, lockarg */ 2315 &sc_if->msk_cdata.msk_rx_tag); 2316 if (error != 0) { 2317 device_printf(sc_if->msk_if_dev, 2318 "failed to create Rx DMA tag\n"); 2319 goto fail; 2320 } 2321 2322 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 2323 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag, 2324 (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK | 2325 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map); 2326 if (error != 0) { 2327 device_printf(sc_if->msk_if_dev, 2328 "failed to allocate DMA'able memory for Tx ring\n"); 2329 goto fail; 2330 } 2331 2332 ctx.msk_busaddr = 0; 2333 error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag, 2334 sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring, 2335 MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2336 if (error != 0) { 2337 device_printf(sc_if->msk_if_dev, 2338 "failed to load DMA'able memory for Tx ring\n"); 2339 goto fail; 2340 } 2341 sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr; 2342 2343 /* Allocate DMA'able memory and load the DMA map for Rx ring. */ 2344 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag, 2345 (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK | 2346 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map); 2347 if (error != 0) { 2348 device_printf(sc_if->msk_if_dev, 2349 "failed to allocate DMA'able memory for Rx ring\n"); 2350 goto fail; 2351 } 2352 2353 ctx.msk_busaddr = 0; 2354 error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag, 2355 sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring, 2356 MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2357 if (error != 0) { 2358 device_printf(sc_if->msk_if_dev, 2359 "failed to load DMA'able memory for Rx ring\n"); 2360 goto fail; 2361 } 2362 sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr; 2363 2364 /* Create DMA maps for Tx buffers. */ 2365 for (i = 0; i < MSK_TX_RING_CNT; i++) { 2366 txd = &sc_if->msk_cdata.msk_txdesc[i]; 2367 txd->tx_m = NULL; 2368 txd->tx_dmamap = NULL; 2369 error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0, 2370 &txd->tx_dmamap); 2371 if (error != 0) { 2372 device_printf(sc_if->msk_if_dev, 2373 "failed to create Tx dmamap\n"); 2374 goto fail; 2375 } 2376 } 2377 /* Create DMA maps for Rx buffers. */ 2378 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0, 2379 &sc_if->msk_cdata.msk_rx_sparemap)) != 0) { 2380 device_printf(sc_if->msk_if_dev, 2381 "failed to create spare Rx dmamap\n"); 2382 goto fail; 2383 } 2384 for (i = 0; i < MSK_RX_RING_CNT; i++) { 2385 rxd = &sc_if->msk_cdata.msk_rxdesc[i]; 2386 rxd->rx_m = NULL; 2387 rxd->rx_dmamap = NULL; 2388 error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0, 2389 &rxd->rx_dmamap); 2390 if (error != 0) { 2391 device_printf(sc_if->msk_if_dev, 2392 "failed to create Rx dmamap\n"); 2393 goto fail; 2394 } 2395 } 2396 2397 fail: 2398 return (error); 2399 } 2400 2401 static int 2402 msk_rx_dma_jalloc(struct msk_if_softc *sc_if) 2403 { 2404 struct msk_dmamap_arg ctx; 2405 struct msk_rxdesc *jrxd; 2406 bus_size_t rxalign; 2407 int error, i; 2408 2409 if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) { 2410 sc_if->msk_flags &= ~MSK_FLAG_JUMBO; 2411 device_printf(sc_if->msk_if_dev, 2412 "disabling jumbo frame support\n"); 2413 return (0); 2414 } 2415 /* Create tag for jumbo Rx ring. */ 2416 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2417 MSK_RING_ALIGN, 0, /* alignment, boundary */ 2418 BUS_SPACE_MAXADDR, /* lowaddr */ 2419 BUS_SPACE_MAXADDR, /* highaddr */ 2420 NULL, NULL, /* filter, filterarg */ 2421 MSK_JUMBO_RX_RING_SZ, /* maxsize */ 2422 1, /* nsegments */ 2423 MSK_JUMBO_RX_RING_SZ, /* maxsegsize */ 2424 0, /* flags */ 2425 NULL, NULL, /* lockfunc, lockarg */ 2426 &sc_if->msk_cdata.msk_jumbo_rx_ring_tag); 2427 if (error != 0) { 2428 device_printf(sc_if->msk_if_dev, 2429 "failed to create jumbo Rx ring DMA tag\n"); 2430 goto jumbo_fail; 2431 } 2432 2433 rxalign = 1; 2434 /* 2435 * Workaround hardware hang which seems to happen when Rx buffer 2436 * is not aligned on multiple of FIFO word(8 bytes). 2437 */ 2438 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0) 2439 rxalign = MSK_RX_BUF_ALIGN; 2440 /* Create tag for jumbo Rx buffers. */ 2441 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2442 rxalign, 0, /* alignment, boundary */ 2443 BUS_SPACE_MAXADDR, /* lowaddr */ 2444 BUS_SPACE_MAXADDR, /* highaddr */ 2445 NULL, NULL, /* filter, filterarg */ 2446 MJUM9BYTES, /* maxsize */ 2447 1, /* nsegments */ 2448 MJUM9BYTES, /* maxsegsize */ 2449 0, /* flags */ 2450 NULL, NULL, /* lockfunc, lockarg */ 2451 &sc_if->msk_cdata.msk_jumbo_rx_tag); 2452 if (error != 0) { 2453 device_printf(sc_if->msk_if_dev, 2454 "failed to create jumbo Rx DMA tag\n"); 2455 goto jumbo_fail; 2456 } 2457 2458 /* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */ 2459 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2460 (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring, 2461 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 2462 &sc_if->msk_cdata.msk_jumbo_rx_ring_map); 2463 if (error != 0) { 2464 device_printf(sc_if->msk_if_dev, 2465 "failed to allocate DMA'able memory for jumbo Rx ring\n"); 2466 goto jumbo_fail; 2467 } 2468 2469 ctx.msk_busaddr = 0; 2470 error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2471 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 2472 sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ, 2473 msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2474 if (error != 0) { 2475 device_printf(sc_if->msk_if_dev, 2476 "failed to load DMA'able memory for jumbo Rx ring\n"); 2477 goto jumbo_fail; 2478 } 2479 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr; 2480 2481 /* Create DMA maps for jumbo Rx buffers. */ 2482 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0, 2483 &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) { 2484 device_printf(sc_if->msk_if_dev, 2485 "failed to create spare jumbo Rx dmamap\n"); 2486 goto jumbo_fail; 2487 } 2488 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 2489 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; 2490 jrxd->rx_m = NULL; 2491 jrxd->rx_dmamap = NULL; 2492 error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0, 2493 &jrxd->rx_dmamap); 2494 if (error != 0) { 2495 device_printf(sc_if->msk_if_dev, 2496 "failed to create jumbo Rx dmamap\n"); 2497 goto jumbo_fail; 2498 } 2499 } 2500 2501 return (0); 2502 2503 jumbo_fail: 2504 msk_rx_dma_jfree(sc_if); 2505 device_printf(sc_if->msk_if_dev, "disabling jumbo frame support " 2506 "due to resource shortage\n"); 2507 sc_if->msk_flags &= ~MSK_FLAG_JUMBO; 2508 return (error); 2509 } 2510 2511 static void 2512 msk_txrx_dma_free(struct msk_if_softc *sc_if) 2513 { 2514 struct msk_txdesc *txd; 2515 struct msk_rxdesc *rxd; 2516 int i; 2517 2518 /* Tx ring. */ 2519 if (sc_if->msk_cdata.msk_tx_ring_tag) { 2520 if (sc_if->msk_cdata.msk_tx_ring_map) 2521 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag, 2522 sc_if->msk_cdata.msk_tx_ring_map); 2523 if (sc_if->msk_cdata.msk_tx_ring_map && 2524 sc_if->msk_rdata.msk_tx_ring) 2525 bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag, 2526 sc_if->msk_rdata.msk_tx_ring, 2527 sc_if->msk_cdata.msk_tx_ring_map); 2528 sc_if->msk_rdata.msk_tx_ring = NULL; 2529 sc_if->msk_cdata.msk_tx_ring_map = NULL; 2530 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag); 2531 sc_if->msk_cdata.msk_tx_ring_tag = NULL; 2532 } 2533 /* Rx ring. */ 2534 if (sc_if->msk_cdata.msk_rx_ring_tag) { 2535 if (sc_if->msk_cdata.msk_rx_ring_map) 2536 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag, 2537 sc_if->msk_cdata.msk_rx_ring_map); 2538 if (sc_if->msk_cdata.msk_rx_ring_map && 2539 sc_if->msk_rdata.msk_rx_ring) 2540 bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag, 2541 sc_if->msk_rdata.msk_rx_ring, 2542 sc_if->msk_cdata.msk_rx_ring_map); 2543 sc_if->msk_rdata.msk_rx_ring = NULL; 2544 sc_if->msk_cdata.msk_rx_ring_map = NULL; 2545 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag); 2546 sc_if->msk_cdata.msk_rx_ring_tag = NULL; 2547 } 2548 /* Tx buffers. */ 2549 if (sc_if->msk_cdata.msk_tx_tag) { 2550 for (i = 0; i < MSK_TX_RING_CNT; i++) { 2551 txd = &sc_if->msk_cdata.msk_txdesc[i]; 2552 if (txd->tx_dmamap) { 2553 bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag, 2554 txd->tx_dmamap); 2555 txd->tx_dmamap = NULL; 2556 } 2557 } 2558 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag); 2559 sc_if->msk_cdata.msk_tx_tag = NULL; 2560 } 2561 /* Rx buffers. */ 2562 if (sc_if->msk_cdata.msk_rx_tag) { 2563 for (i = 0; i < MSK_RX_RING_CNT; i++) { 2564 rxd = &sc_if->msk_cdata.msk_rxdesc[i]; 2565 if (rxd->rx_dmamap) { 2566 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag, 2567 rxd->rx_dmamap); 2568 rxd->rx_dmamap = NULL; 2569 } 2570 } 2571 if (sc_if->msk_cdata.msk_rx_sparemap) { 2572 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag, 2573 sc_if->msk_cdata.msk_rx_sparemap); 2574 sc_if->msk_cdata.msk_rx_sparemap = 0; 2575 } 2576 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag); 2577 sc_if->msk_cdata.msk_rx_tag = NULL; 2578 } 2579 if (sc_if->msk_cdata.msk_parent_tag) { 2580 bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag); 2581 sc_if->msk_cdata.msk_parent_tag = NULL; 2582 } 2583 } 2584 2585 static void 2586 msk_rx_dma_jfree(struct msk_if_softc *sc_if) 2587 { 2588 struct msk_rxdesc *jrxd; 2589 int i; 2590 2591 /* Jumbo Rx ring. */ 2592 if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) { 2593 if (sc_if->msk_cdata.msk_jumbo_rx_ring_map) 2594 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2595 sc_if->msk_cdata.msk_jumbo_rx_ring_map); 2596 if (sc_if->msk_cdata.msk_jumbo_rx_ring_map && 2597 sc_if->msk_rdata.msk_jumbo_rx_ring) 2598 bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2599 sc_if->msk_rdata.msk_jumbo_rx_ring, 2600 sc_if->msk_cdata.msk_jumbo_rx_ring_map); 2601 sc_if->msk_rdata.msk_jumbo_rx_ring = NULL; 2602 sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL; 2603 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag); 2604 sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL; 2605 } 2606 /* Jumbo Rx buffers. */ 2607 if (sc_if->msk_cdata.msk_jumbo_rx_tag) { 2608 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 2609 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; 2610 if (jrxd->rx_dmamap) { 2611 bus_dmamap_destroy( 2612 sc_if->msk_cdata.msk_jumbo_rx_tag, 2613 jrxd->rx_dmamap); 2614 jrxd->rx_dmamap = NULL; 2615 } 2616 } 2617 if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) { 2618 bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag, 2619 sc_if->msk_cdata.msk_jumbo_rx_sparemap); 2620 sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0; 2621 } 2622 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag); 2623 sc_if->msk_cdata.msk_jumbo_rx_tag = NULL; 2624 } 2625 } 2626 2627 static int 2628 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head) 2629 { 2630 struct msk_txdesc *txd, *txd_last; 2631 struct msk_tx_desc *tx_le; 2632 struct mbuf *m; 2633 bus_dmamap_t map; 2634 bus_dma_segment_t txsegs[MSK_MAXTXSEGS]; 2635 uint32_t control, csum, prod, si; 2636 uint16_t offset, tcp_offset, tso_mtu; 2637 int error, i, nseg, tso; 2638 2639 MSK_IF_LOCK_ASSERT(sc_if); 2640 2641 tcp_offset = offset = 0; 2642 m = *m_head; 2643 if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 && 2644 (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) || 2645 ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && 2646 (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) { 2647 /* 2648 * Since mbuf has no protocol specific structure information 2649 * in it we have to inspect protocol information here to 2650 * setup TSO and checksum offload. I don't know why Marvell 2651 * made a such decision in chip design because other GigE 2652 * hardwares normally takes care of all these chores in 2653 * hardware. However, TSO performance of Yukon II is very 2654 * good such that it's worth to implement it. 2655 */ 2656 struct ether_header *eh; 2657 struct ip *ip; 2658 struct tcphdr *tcp; 2659 2660 if (M_WRITABLE(m) == 0) { 2661 /* Get a writable copy. */ 2662 m = m_dup(*m_head, M_NOWAIT); 2663 m_freem(*m_head); 2664 if (m == NULL) { 2665 *m_head = NULL; 2666 return (ENOBUFS); 2667 } 2668 *m_head = m; 2669 } 2670 2671 offset = sizeof(struct ether_header); 2672 m = m_pullup(m, offset); 2673 if (m == NULL) { 2674 *m_head = NULL; 2675 return (ENOBUFS); 2676 } 2677 eh = mtod(m, struct ether_header *); 2678 /* Check if hardware VLAN insertion is off. */ 2679 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 2680 offset = sizeof(struct ether_vlan_header); 2681 m = m_pullup(m, offset); 2682 if (m == NULL) { 2683 *m_head = NULL; 2684 return (ENOBUFS); 2685 } 2686 } 2687 m = m_pullup(m, offset + sizeof(struct ip)); 2688 if (m == NULL) { 2689 *m_head = NULL; 2690 return (ENOBUFS); 2691 } 2692 ip = (struct ip *)(mtod(m, char *) + offset); 2693 offset += (ip->ip_hl << 2); 2694 tcp_offset = offset; 2695 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2696 m = m_pullup(m, offset + sizeof(struct tcphdr)); 2697 if (m == NULL) { 2698 *m_head = NULL; 2699 return (ENOBUFS); 2700 } 2701 tcp = (struct tcphdr *)(mtod(m, char *) + offset); 2702 offset += (tcp->th_off << 2); 2703 } else if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 && 2704 (m->m_pkthdr.len < MSK_MIN_FRAMELEN) && 2705 (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) { 2706 /* 2707 * It seems that Yukon II has Tx checksum offload bug 2708 * for small TCP packets that's less than 60 bytes in 2709 * size (e.g. TCP window probe packet, pure ACK packet). 2710 * Common work around like padding with zeros to make 2711 * the frame minimum ethernet frame size didn't work at 2712 * all. 2713 * Instead of disabling checksum offload completely we 2714 * resort to S/W checksum routine when we encounter 2715 * short TCP frames. 2716 * Short UDP packets appear to be handled correctly by 2717 * Yukon II. Also I assume this bug does not happen on 2718 * controllers that use newer descriptor format or 2719 * automatic Tx checksum calculation. 2720 */ 2721 m = m_pullup(m, offset + sizeof(struct tcphdr)); 2722 if (m == NULL) { 2723 *m_head = NULL; 2724 return (ENOBUFS); 2725 } 2726 *(uint16_t *)(m->m_data + offset + 2727 m->m_pkthdr.csum_data) = in_cksum_skip(m, 2728 m->m_pkthdr.len, offset); 2729 m->m_pkthdr.csum_flags &= ~CSUM_TCP; 2730 } 2731 *m_head = m; 2732 } 2733 2734 prod = sc_if->msk_cdata.msk_tx_prod; 2735 txd = &sc_if->msk_cdata.msk_txdesc[prod]; 2736 txd_last = txd; 2737 map = txd->tx_dmamap; 2738 error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map, 2739 *m_head, txsegs, &nseg, BUS_DMA_NOWAIT); 2740 if (error == EFBIG) { 2741 m = m_collapse(*m_head, M_NOWAIT, MSK_MAXTXSEGS); 2742 if (m == NULL) { 2743 m_freem(*m_head); 2744 *m_head = NULL; 2745 return (ENOBUFS); 2746 } 2747 *m_head = m; 2748 error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, 2749 map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT); 2750 if (error != 0) { 2751 m_freem(*m_head); 2752 *m_head = NULL; 2753 return (error); 2754 } 2755 } else if (error != 0) 2756 return (error); 2757 if (nseg == 0) { 2758 m_freem(*m_head); 2759 *m_head = NULL; 2760 return (EIO); 2761 } 2762 2763 /* Check number of available descriptors. */ 2764 if (sc_if->msk_cdata.msk_tx_cnt + nseg >= 2765 (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) { 2766 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map); 2767 return (ENOBUFS); 2768 } 2769 2770 control = 0; 2771 tso = 0; 2772 tx_le = NULL; 2773 2774 /* Check TSO support. */ 2775 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2776 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) 2777 tso_mtu = m->m_pkthdr.tso_segsz; 2778 else 2779 tso_mtu = offset + m->m_pkthdr.tso_segsz; 2780 if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) { 2781 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2782 tx_le->msk_addr = htole32(tso_mtu); 2783 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) 2784 tx_le->msk_control = htole32(OP_MSS | HW_OWNER); 2785 else 2786 tx_le->msk_control = 2787 htole32(OP_LRGLEN | HW_OWNER); 2788 sc_if->msk_cdata.msk_tx_cnt++; 2789 MSK_INC(prod, MSK_TX_RING_CNT); 2790 sc_if->msk_cdata.msk_tso_mtu = tso_mtu; 2791 } 2792 tso++; 2793 } 2794 /* Check if we have a VLAN tag to insert. */ 2795 if ((m->m_flags & M_VLANTAG) != 0) { 2796 if (tx_le == NULL) { 2797 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2798 tx_le->msk_addr = htole32(0); 2799 tx_le->msk_control = htole32(OP_VLAN | HW_OWNER | 2800 htons(m->m_pkthdr.ether_vtag)); 2801 sc_if->msk_cdata.msk_tx_cnt++; 2802 MSK_INC(prod, MSK_TX_RING_CNT); 2803 } else { 2804 tx_le->msk_control |= htole32(OP_VLAN | 2805 htons(m->m_pkthdr.ether_vtag)); 2806 } 2807 control |= INS_VLAN; 2808 } 2809 /* Check if we have to handle checksum offload. */ 2810 if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) { 2811 if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0) 2812 control |= CALSUM; 2813 else { 2814 control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM; 2815 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 2816 control |= UDPTCP; 2817 /* Checksum write position. */ 2818 csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff; 2819 /* Checksum start position. */ 2820 csum |= (uint32_t)tcp_offset << 16; 2821 if (csum != sc_if->msk_cdata.msk_last_csum) { 2822 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2823 tx_le->msk_addr = htole32(csum); 2824 tx_le->msk_control = htole32(1 << 16 | 2825 (OP_TCPLISW | HW_OWNER)); 2826 sc_if->msk_cdata.msk_tx_cnt++; 2827 MSK_INC(prod, MSK_TX_RING_CNT); 2828 sc_if->msk_cdata.msk_last_csum = csum; 2829 } 2830 } 2831 } 2832 2833 #ifdef MSK_64BIT_DMA 2834 if (MSK_ADDR_HI(txsegs[0].ds_addr) != 2835 sc_if->msk_cdata.msk_tx_high_addr) { 2836 sc_if->msk_cdata.msk_tx_high_addr = 2837 MSK_ADDR_HI(txsegs[0].ds_addr); 2838 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2839 tx_le->msk_addr = htole32(MSK_ADDR_HI(txsegs[0].ds_addr)); 2840 tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); 2841 sc_if->msk_cdata.msk_tx_cnt++; 2842 MSK_INC(prod, MSK_TX_RING_CNT); 2843 } 2844 #endif 2845 si = prod; 2846 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2847 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr)); 2848 if (tso == 0) 2849 tx_le->msk_control = htole32(txsegs[0].ds_len | control | 2850 OP_PACKET); 2851 else 2852 tx_le->msk_control = htole32(txsegs[0].ds_len | control | 2853 OP_LARGESEND); 2854 sc_if->msk_cdata.msk_tx_cnt++; 2855 MSK_INC(prod, MSK_TX_RING_CNT); 2856 2857 for (i = 1; i < nseg; i++) { 2858 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2859 #ifdef MSK_64BIT_DMA 2860 if (MSK_ADDR_HI(txsegs[i].ds_addr) != 2861 sc_if->msk_cdata.msk_tx_high_addr) { 2862 sc_if->msk_cdata.msk_tx_high_addr = 2863 MSK_ADDR_HI(txsegs[i].ds_addr); 2864 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2865 tx_le->msk_addr = 2866 htole32(MSK_ADDR_HI(txsegs[i].ds_addr)); 2867 tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); 2868 sc_if->msk_cdata.msk_tx_cnt++; 2869 MSK_INC(prod, MSK_TX_RING_CNT); 2870 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2871 } 2872 #endif 2873 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr)); 2874 tx_le->msk_control = htole32(txsegs[i].ds_len | control | 2875 OP_BUFFER | HW_OWNER); 2876 sc_if->msk_cdata.msk_tx_cnt++; 2877 MSK_INC(prod, MSK_TX_RING_CNT); 2878 } 2879 /* Update producer index. */ 2880 sc_if->msk_cdata.msk_tx_prod = prod; 2881 2882 /* Set EOP on the last descriptor. */ 2883 prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT; 2884 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2885 tx_le->msk_control |= htole32(EOP); 2886 2887 /* Turn the first descriptor ownership to hardware. */ 2888 tx_le = &sc_if->msk_rdata.msk_tx_ring[si]; 2889 tx_le->msk_control |= htole32(HW_OWNER); 2890 2891 txd = &sc_if->msk_cdata.msk_txdesc[prod]; 2892 map = txd_last->tx_dmamap; 2893 txd_last->tx_dmamap = txd->tx_dmamap; 2894 txd->tx_dmamap = map; 2895 txd->tx_m = m; 2896 2897 /* Sync descriptors. */ 2898 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE); 2899 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, 2900 sc_if->msk_cdata.msk_tx_ring_map, 2901 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2902 2903 return (0); 2904 } 2905 2906 static void 2907 msk_start(struct ifnet *ifp) 2908 { 2909 struct msk_if_softc *sc_if; 2910 2911 sc_if = ifp->if_softc; 2912 MSK_IF_LOCK(sc_if); 2913 msk_start_locked(ifp); 2914 MSK_IF_UNLOCK(sc_if); 2915 } 2916 2917 static void 2918 msk_start_locked(struct ifnet *ifp) 2919 { 2920 struct msk_if_softc *sc_if; 2921 struct mbuf *m_head; 2922 int enq; 2923 2924 sc_if = ifp->if_softc; 2925 MSK_IF_LOCK_ASSERT(sc_if); 2926 2927 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 2928 IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0) 2929 return; 2930 2931 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 2932 sc_if->msk_cdata.msk_tx_cnt < 2933 (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) { 2934 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2935 if (m_head == NULL) 2936 break; 2937 /* 2938 * Pack the data into the transmit ring. If we 2939 * don't have room, set the OACTIVE flag and wait 2940 * for the NIC to drain the ring. 2941 */ 2942 if (msk_encap(sc_if, &m_head) != 0) { 2943 if (m_head == NULL) 2944 break; 2945 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2946 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2947 break; 2948 } 2949 2950 enq++; 2951 /* 2952 * If there's a BPF listener, bounce a copy of this frame 2953 * to him. 2954 */ 2955 ETHER_BPF_MTAP(ifp, m_head); 2956 } 2957 2958 if (enq > 0) { 2959 /* Transmit */ 2960 CSR_WRITE_2(sc_if->msk_softc, 2961 Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG), 2962 sc_if->msk_cdata.msk_tx_prod); 2963 2964 /* Set a timeout in case the chip goes out to lunch. */ 2965 sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT; 2966 } 2967 } 2968 2969 static void 2970 msk_watchdog(struct msk_if_softc *sc_if) 2971 { 2972 struct ifnet *ifp; 2973 2974 MSK_IF_LOCK_ASSERT(sc_if); 2975 2976 if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer) 2977 return; 2978 ifp = sc_if->msk_ifp; 2979 if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) { 2980 if (bootverbose) 2981 if_printf(sc_if->msk_ifp, "watchdog timeout " 2982 "(missed link)\n"); 2983 ifp->if_oerrors++; 2984 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2985 msk_init_locked(sc_if); 2986 return; 2987 } 2988 2989 if_printf(ifp, "watchdog timeout\n"); 2990 ifp->if_oerrors++; 2991 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2992 msk_init_locked(sc_if); 2993 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2994 msk_start_locked(ifp); 2995 } 2996 2997 static int 2998 mskc_shutdown(device_t dev) 2999 { 3000 struct msk_softc *sc; 3001 int i; 3002 3003 sc = device_get_softc(dev); 3004 MSK_LOCK(sc); 3005 for (i = 0; i < sc->msk_num_port; i++) { 3006 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL && 3007 ((sc->msk_if[i]->msk_ifp->if_drv_flags & 3008 IFF_DRV_RUNNING) != 0)) 3009 msk_stop(sc->msk_if[i]); 3010 } 3011 MSK_UNLOCK(sc); 3012 3013 /* Put hardware reset. */ 3014 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 3015 return (0); 3016 } 3017 3018 static int 3019 mskc_suspend(device_t dev) 3020 { 3021 struct msk_softc *sc; 3022 int i; 3023 3024 sc = device_get_softc(dev); 3025 3026 MSK_LOCK(sc); 3027 3028 for (i = 0; i < sc->msk_num_port; i++) { 3029 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL && 3030 ((sc->msk_if[i]->msk_ifp->if_drv_flags & 3031 IFF_DRV_RUNNING) != 0)) 3032 msk_stop(sc->msk_if[i]); 3033 } 3034 3035 /* Disable all interrupts. */ 3036 CSR_WRITE_4(sc, B0_IMSK, 0); 3037 CSR_READ_4(sc, B0_IMSK); 3038 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 3039 CSR_READ_4(sc, B0_HWE_IMSK); 3040 3041 msk_phy_power(sc, MSK_PHY_POWERDOWN); 3042 3043 /* Put hardware reset. */ 3044 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 3045 sc->msk_pflags |= MSK_FLAG_SUSPEND; 3046 3047 MSK_UNLOCK(sc); 3048 3049 return (0); 3050 } 3051 3052 static int 3053 mskc_resume(device_t dev) 3054 { 3055 struct msk_softc *sc; 3056 int i; 3057 3058 sc = device_get_softc(dev); 3059 3060 MSK_LOCK(sc); 3061 3062 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0); 3063 mskc_reset(sc); 3064 for (i = 0; i < sc->msk_num_port; i++) { 3065 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL && 3066 ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) { 3067 sc->msk_if[i]->msk_ifp->if_drv_flags &= 3068 ~IFF_DRV_RUNNING; 3069 msk_init_locked(sc->msk_if[i]); 3070 } 3071 } 3072 sc->msk_pflags &= ~MSK_FLAG_SUSPEND; 3073 3074 MSK_UNLOCK(sc); 3075 3076 return (0); 3077 } 3078 3079 #ifndef __NO_STRICT_ALIGNMENT 3080 static __inline void 3081 msk_fixup_rx(struct mbuf *m) 3082 { 3083 int i; 3084 uint16_t *src, *dst; 3085 3086 src = mtod(m, uint16_t *); 3087 dst = src - 3; 3088 3089 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 3090 *dst++ = *src++; 3091 3092 m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN); 3093 } 3094 #endif 3095 3096 static __inline void 3097 msk_rxcsum(struct msk_if_softc *sc_if, uint32_t control, struct mbuf *m) 3098 { 3099 struct ether_header *eh; 3100 struct ip *ip; 3101 struct udphdr *uh; 3102 int32_t hlen, len, pktlen, temp32; 3103 uint16_t csum, *opts; 3104 3105 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) { 3106 if ((control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) { 3107 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3108 if ((control & CSS_IPV4_CSUM_OK) != 0) 3109 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3110 if ((control & (CSS_TCP | CSS_UDP)) != 0 && 3111 (control & (CSS_TCPUDP_CSUM_OK)) != 0) { 3112 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 3113 CSUM_PSEUDO_HDR; 3114 m->m_pkthdr.csum_data = 0xffff; 3115 } 3116 } 3117 return; 3118 } 3119 /* 3120 * Marvell Yukon controllers that support OP_RXCHKS has known 3121 * to have various Rx checksum offloading bugs. These 3122 * controllers can be configured to compute simple checksum 3123 * at two different positions. So we can compute IP and TCP/UDP 3124 * checksum at the same time. We intentionally have controller 3125 * compute TCP/UDP checksum twice by specifying the same 3126 * checksum start position and compare the result. If the value 3127 * is different it would indicate the hardware logic was wrong. 3128 */ 3129 if ((sc_if->msk_csum & 0xFFFF) != (sc_if->msk_csum >> 16)) { 3130 if (bootverbose) 3131 device_printf(sc_if->msk_if_dev, 3132 "Rx checksum value mismatch!\n"); 3133 return; 3134 } 3135 pktlen = m->m_pkthdr.len; 3136 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) 3137 return; 3138 eh = mtod(m, struct ether_header *); 3139 if (eh->ether_type != htons(ETHERTYPE_IP)) 3140 return; 3141 ip = (struct ip *)(eh + 1); 3142 if (ip->ip_v != IPVERSION) 3143 return; 3144 3145 hlen = ip->ip_hl << 2; 3146 pktlen -= sizeof(struct ether_header); 3147 if (hlen < sizeof(struct ip)) 3148 return; 3149 if (ntohs(ip->ip_len) < hlen) 3150 return; 3151 if (ntohs(ip->ip_len) != pktlen) 3152 return; 3153 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) 3154 return; /* can't handle fragmented packet. */ 3155 3156 switch (ip->ip_p) { 3157 case IPPROTO_TCP: 3158 if (pktlen < (hlen + sizeof(struct tcphdr))) 3159 return; 3160 break; 3161 case IPPROTO_UDP: 3162 if (pktlen < (hlen + sizeof(struct udphdr))) 3163 return; 3164 uh = (struct udphdr *)((caddr_t)ip + hlen); 3165 if (uh->uh_sum == 0) 3166 return; /* no checksum */ 3167 break; 3168 default: 3169 return; 3170 } 3171 csum = bswap16(sc_if->msk_csum & 0xFFFF); 3172 /* Checksum fixup for IP options. */ 3173 len = hlen - sizeof(struct ip); 3174 if (len > 0) { 3175 opts = (uint16_t *)(ip + 1); 3176 for (; len > 0; len -= sizeof(uint16_t), opts++) { 3177 temp32 = csum - *opts; 3178 temp32 = (temp32 >> 16) + (temp32 & 65535); 3179 csum = temp32 & 65535; 3180 } 3181 } 3182 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 3183 m->m_pkthdr.csum_data = csum; 3184 } 3185 3186 static void 3187 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control, 3188 int len) 3189 { 3190 struct mbuf *m; 3191 struct ifnet *ifp; 3192 struct msk_rxdesc *rxd; 3193 int cons, rxlen; 3194 3195 ifp = sc_if->msk_ifp; 3196 3197 MSK_IF_LOCK_ASSERT(sc_if); 3198 3199 cons = sc_if->msk_cdata.msk_rx_cons; 3200 do { 3201 rxlen = status >> 16; 3202 if ((status & GMR_FS_VLAN) != 0 && 3203 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3204 rxlen -= ETHER_VLAN_ENCAP_LEN; 3205 if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) { 3206 /* 3207 * For controllers that returns bogus status code 3208 * just do minimal check and let upper stack 3209 * handle this frame. 3210 */ 3211 if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) { 3212 ifp->if_ierrors++; 3213 msk_discard_rxbuf(sc_if, cons); 3214 break; 3215 } 3216 } else if (len > sc_if->msk_framesize || 3217 ((status & GMR_FS_ANY_ERR) != 0) || 3218 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) { 3219 /* Don't count flow-control packet as errors. */ 3220 if ((status & GMR_FS_GOOD_FC) == 0) 3221 ifp->if_ierrors++; 3222 msk_discard_rxbuf(sc_if, cons); 3223 break; 3224 } 3225 #ifdef MSK_64BIT_DMA 3226 rxd = &sc_if->msk_cdata.msk_rxdesc[(cons + 1) % 3227 MSK_RX_RING_CNT]; 3228 #else 3229 rxd = &sc_if->msk_cdata.msk_rxdesc[cons]; 3230 #endif 3231 m = rxd->rx_m; 3232 if (msk_newbuf(sc_if, cons) != 0) { 3233 ifp->if_iqdrops++; 3234 /* Reuse old buffer. */ 3235 msk_discard_rxbuf(sc_if, cons); 3236 break; 3237 } 3238 m->m_pkthdr.rcvif = ifp; 3239 m->m_pkthdr.len = m->m_len = len; 3240 #ifndef __NO_STRICT_ALIGNMENT 3241 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0) 3242 msk_fixup_rx(m); 3243 #endif 3244 ifp->if_ipackets++; 3245 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 3246 msk_rxcsum(sc_if, control, m); 3247 /* Check for VLAN tagged packets. */ 3248 if ((status & GMR_FS_VLAN) != 0 && 3249 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 3250 m->m_pkthdr.ether_vtag = sc_if->msk_vtag; 3251 m->m_flags |= M_VLANTAG; 3252 } 3253 MSK_IF_UNLOCK(sc_if); 3254 (*ifp->if_input)(ifp, m); 3255 MSK_IF_LOCK(sc_if); 3256 } while (0); 3257 3258 MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT); 3259 MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT); 3260 } 3261 3262 static void 3263 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control, 3264 int len) 3265 { 3266 struct mbuf *m; 3267 struct ifnet *ifp; 3268 struct msk_rxdesc *jrxd; 3269 int cons, rxlen; 3270 3271 ifp = sc_if->msk_ifp; 3272 3273 MSK_IF_LOCK_ASSERT(sc_if); 3274 3275 cons = sc_if->msk_cdata.msk_rx_cons; 3276 do { 3277 rxlen = status >> 16; 3278 if ((status & GMR_FS_VLAN) != 0 && 3279 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3280 rxlen -= ETHER_VLAN_ENCAP_LEN; 3281 if (len > sc_if->msk_framesize || 3282 ((status & GMR_FS_ANY_ERR) != 0) || 3283 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) { 3284 /* Don't count flow-control packet as errors. */ 3285 if ((status & GMR_FS_GOOD_FC) == 0) 3286 ifp->if_ierrors++; 3287 msk_discard_jumbo_rxbuf(sc_if, cons); 3288 break; 3289 } 3290 #ifdef MSK_64BIT_DMA 3291 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[(cons + 1) % 3292 MSK_JUMBO_RX_RING_CNT]; 3293 #else 3294 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons]; 3295 #endif 3296 m = jrxd->rx_m; 3297 if (msk_jumbo_newbuf(sc_if, cons) != 0) { 3298 ifp->if_iqdrops++; 3299 /* Reuse old buffer. */ 3300 msk_discard_jumbo_rxbuf(sc_if, cons); 3301 break; 3302 } 3303 m->m_pkthdr.rcvif = ifp; 3304 m->m_pkthdr.len = m->m_len = len; 3305 #ifndef __NO_STRICT_ALIGNMENT 3306 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0) 3307 msk_fixup_rx(m); 3308 #endif 3309 ifp->if_ipackets++; 3310 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 3311 msk_rxcsum(sc_if, control, m); 3312 /* Check for VLAN tagged packets. */ 3313 if ((status & GMR_FS_VLAN) != 0 && 3314 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 3315 m->m_pkthdr.ether_vtag = sc_if->msk_vtag; 3316 m->m_flags |= M_VLANTAG; 3317 } 3318 MSK_IF_UNLOCK(sc_if); 3319 (*ifp->if_input)(ifp, m); 3320 MSK_IF_LOCK(sc_if); 3321 } while (0); 3322 3323 MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT); 3324 MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT); 3325 } 3326 3327 static void 3328 msk_txeof(struct msk_if_softc *sc_if, int idx) 3329 { 3330 struct msk_txdesc *txd; 3331 struct msk_tx_desc *cur_tx; 3332 struct ifnet *ifp; 3333 uint32_t control; 3334 int cons, prog; 3335 3336 MSK_IF_LOCK_ASSERT(sc_if); 3337 3338 ifp = sc_if->msk_ifp; 3339 3340 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, 3341 sc_if->msk_cdata.msk_tx_ring_map, 3342 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3343 /* 3344 * Go through our tx ring and free mbufs for those 3345 * frames that have been sent. 3346 */ 3347 cons = sc_if->msk_cdata.msk_tx_cons; 3348 prog = 0; 3349 for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) { 3350 if (sc_if->msk_cdata.msk_tx_cnt <= 0) 3351 break; 3352 prog++; 3353 cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons]; 3354 control = le32toh(cur_tx->msk_control); 3355 sc_if->msk_cdata.msk_tx_cnt--; 3356 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3357 if ((control & EOP) == 0) 3358 continue; 3359 txd = &sc_if->msk_cdata.msk_txdesc[cons]; 3360 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap, 3361 BUS_DMASYNC_POSTWRITE); 3362 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap); 3363 3364 ifp->if_opackets++; 3365 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!", 3366 __func__)); 3367 m_freem(txd->tx_m); 3368 txd->tx_m = NULL; 3369 } 3370 3371 if (prog > 0) { 3372 sc_if->msk_cdata.msk_tx_cons = cons; 3373 if (sc_if->msk_cdata.msk_tx_cnt == 0) 3374 sc_if->msk_watchdog_timer = 0; 3375 /* No need to sync LEs as we didn't update LEs. */ 3376 } 3377 } 3378 3379 static void 3380 msk_tick(void *xsc_if) 3381 { 3382 struct msk_if_softc *sc_if; 3383 struct mii_data *mii; 3384 3385 sc_if = xsc_if; 3386 3387 MSK_IF_LOCK_ASSERT(sc_if); 3388 3389 mii = device_get_softc(sc_if->msk_miibus); 3390 3391 mii_tick(mii); 3392 if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) 3393 msk_miibus_statchg(sc_if->msk_if_dev); 3394 msk_handle_events(sc_if->msk_softc); 3395 msk_watchdog(sc_if); 3396 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if); 3397 } 3398 3399 static void 3400 msk_intr_phy(struct msk_if_softc *sc_if) 3401 { 3402 uint16_t status; 3403 3404 msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT); 3405 status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT); 3406 /* Handle FIFO Underrun/Overflow? */ 3407 if ((status & PHY_M_IS_FIFO_ERROR)) 3408 device_printf(sc_if->msk_if_dev, 3409 "PHY FIFO underrun/overflow.\n"); 3410 } 3411 3412 static void 3413 msk_intr_gmac(struct msk_if_softc *sc_if) 3414 { 3415 struct msk_softc *sc; 3416 uint8_t status; 3417 3418 sc = sc_if->msk_softc; 3419 status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC)); 3420 3421 /* GMAC Rx FIFO overrun. */ 3422 if ((status & GM_IS_RX_FF_OR) != 0) 3423 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 3424 GMF_CLI_RX_FO); 3425 /* GMAC Tx FIFO underrun. */ 3426 if ((status & GM_IS_TX_FF_UR) != 0) { 3427 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3428 GMF_CLI_TX_FU); 3429 device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n"); 3430 /* 3431 * XXX 3432 * In case of Tx underrun, we may need to flush/reset 3433 * Tx MAC but that would also require resynchronization 3434 * with status LEs. Reinitializing status LEs would 3435 * affect other port in dual MAC configuration so it 3436 * should be avoided as possible as we can. 3437 * Due to lack of documentation it's all vague guess but 3438 * it needs more investigation. 3439 */ 3440 } 3441 } 3442 3443 static void 3444 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status) 3445 { 3446 struct msk_softc *sc; 3447 3448 sc = sc_if->msk_softc; 3449 if ((status & Y2_IS_PAR_RD1) != 0) { 3450 device_printf(sc_if->msk_if_dev, 3451 "RAM buffer read parity error\n"); 3452 /* Clear IRQ. */ 3453 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL), 3454 RI_CLR_RD_PERR); 3455 } 3456 if ((status & Y2_IS_PAR_WR1) != 0) { 3457 device_printf(sc_if->msk_if_dev, 3458 "RAM buffer write parity error\n"); 3459 /* Clear IRQ. */ 3460 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL), 3461 RI_CLR_WR_PERR); 3462 } 3463 if ((status & Y2_IS_PAR_MAC1) != 0) { 3464 device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n"); 3465 /* Clear IRQ. */ 3466 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3467 GMF_CLI_TX_PE); 3468 } 3469 if ((status & Y2_IS_PAR_RX1) != 0) { 3470 device_printf(sc_if->msk_if_dev, "Rx parity error\n"); 3471 /* Clear IRQ. */ 3472 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR); 3473 } 3474 if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) { 3475 device_printf(sc_if->msk_if_dev, "TCP segmentation error\n"); 3476 /* Clear IRQ. */ 3477 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP); 3478 } 3479 } 3480 3481 static void 3482 msk_intr_hwerr(struct msk_softc *sc) 3483 { 3484 uint32_t status; 3485 uint32_t tlphead[4]; 3486 3487 status = CSR_READ_4(sc, B0_HWE_ISRC); 3488 /* Time Stamp timer overflow. */ 3489 if ((status & Y2_IS_TIST_OV) != 0) 3490 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 3491 if ((status & Y2_IS_PCI_NEXP) != 0) { 3492 /* 3493 * PCI Express Error occured which is not described in PEX 3494 * spec. 3495 * This error is also mapped either to Master Abort( 3496 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and 3497 * can only be cleared there. 3498 */ 3499 device_printf(sc->msk_dev, 3500 "PCI Express protocol violation error\n"); 3501 } 3502 3503 if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) { 3504 uint16_t v16; 3505 3506 if ((status & Y2_IS_MST_ERR) != 0) 3507 device_printf(sc->msk_dev, 3508 "unexpected IRQ Status error\n"); 3509 else 3510 device_printf(sc->msk_dev, 3511 "unexpected IRQ Master error\n"); 3512 /* Reset all bits in the PCI status register. */ 3513 v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2); 3514 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3515 pci_write_config(sc->msk_dev, PCIR_STATUS, v16 | 3516 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT | 3517 PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2); 3518 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3519 } 3520 3521 /* Check for PCI Express Uncorrectable Error. */ 3522 if ((status & Y2_IS_PCI_EXP) != 0) { 3523 uint32_t v32; 3524 3525 /* 3526 * On PCI Express bus bridges are called root complexes (RC). 3527 * PCI Express errors are recognized by the root complex too, 3528 * which requests the system to handle the problem. After 3529 * error occurrence it may be that no access to the adapter 3530 * may be performed any longer. 3531 */ 3532 3533 v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT); 3534 if ((v32 & PEX_UNSUP_REQ) != 0) { 3535 /* Ignore unsupported request error. */ 3536 device_printf(sc->msk_dev, 3537 "Uncorrectable PCI Express error\n"); 3538 } 3539 if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) { 3540 int i; 3541 3542 /* Get TLP header form Log Registers. */ 3543 for (i = 0; i < 4; i++) 3544 tlphead[i] = CSR_PCI_READ_4(sc, 3545 PEX_HEADER_LOG + i * 4); 3546 /* Check for vendor defined broadcast message. */ 3547 if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) { 3548 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP; 3549 CSR_WRITE_4(sc, B0_HWE_IMSK, 3550 sc->msk_intrhwemask); 3551 CSR_READ_4(sc, B0_HWE_IMSK); 3552 } 3553 } 3554 /* Clear the interrupt. */ 3555 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3556 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff); 3557 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3558 } 3559 3560 if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL) 3561 msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status); 3562 if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL) 3563 msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8); 3564 } 3565 3566 static __inline void 3567 msk_rxput(struct msk_if_softc *sc_if) 3568 { 3569 struct msk_softc *sc; 3570 3571 sc = sc_if->msk_softc; 3572 if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) 3573 bus_dmamap_sync( 3574 sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 3575 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 3576 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3577 else 3578 bus_dmamap_sync( 3579 sc_if->msk_cdata.msk_rx_ring_tag, 3580 sc_if->msk_cdata.msk_rx_ring_map, 3581 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3582 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, 3583 PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod); 3584 } 3585 3586 static int 3587 msk_handle_events(struct msk_softc *sc) 3588 { 3589 struct msk_if_softc *sc_if; 3590 int rxput[2]; 3591 struct msk_stat_desc *sd; 3592 uint32_t control, status; 3593 int cons, len, port, rxprog; 3594 3595 if (sc->msk_stat_cons == CSR_READ_2(sc, STAT_PUT_IDX)) 3596 return (0); 3597 3598 /* Sync status LEs. */ 3599 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map, 3600 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3601 3602 rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0; 3603 rxprog = 0; 3604 cons = sc->msk_stat_cons; 3605 for (;;) { 3606 sd = &sc->msk_stat_ring[cons]; 3607 control = le32toh(sd->msk_control); 3608 if ((control & HW_OWNER) == 0) 3609 break; 3610 control &= ~HW_OWNER; 3611 sd->msk_control = htole32(control); 3612 status = le32toh(sd->msk_status); 3613 len = control & STLE_LEN_MASK; 3614 port = (control >> 16) & 0x01; 3615 sc_if = sc->msk_if[port]; 3616 if (sc_if == NULL) { 3617 device_printf(sc->msk_dev, "invalid port opcode " 3618 "0x%08x\n", control & STLE_OP_MASK); 3619 continue; 3620 } 3621 3622 switch (control & STLE_OP_MASK) { 3623 case OP_RXVLAN: 3624 sc_if->msk_vtag = ntohs(len); 3625 break; 3626 case OP_RXCHKSVLAN: 3627 sc_if->msk_vtag = ntohs(len); 3628 /* FALLTHROUGH */ 3629 case OP_RXCHKS: 3630 sc_if->msk_csum = status; 3631 break; 3632 case OP_RXSTAT: 3633 if (!(sc_if->msk_ifp->if_drv_flags & IFF_DRV_RUNNING)) 3634 break; 3635 if (sc_if->msk_framesize > 3636 (MCLBYTES - MSK_RX_BUF_ALIGN)) 3637 msk_jumbo_rxeof(sc_if, status, control, len); 3638 else 3639 msk_rxeof(sc_if, status, control, len); 3640 rxprog++; 3641 /* 3642 * Because there is no way to sync single Rx LE 3643 * put the DMA sync operation off until the end of 3644 * event processing. 3645 */ 3646 rxput[port]++; 3647 /* Update prefetch unit if we've passed water mark. */ 3648 if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) { 3649 msk_rxput(sc_if); 3650 rxput[port] = 0; 3651 } 3652 break; 3653 case OP_TXINDEXLE: 3654 if (sc->msk_if[MSK_PORT_A] != NULL) 3655 msk_txeof(sc->msk_if[MSK_PORT_A], 3656 status & STLE_TXA1_MSKL); 3657 if (sc->msk_if[MSK_PORT_B] != NULL) 3658 msk_txeof(sc->msk_if[MSK_PORT_B], 3659 ((status & STLE_TXA2_MSKL) >> 3660 STLE_TXA2_SHIFTL) | 3661 ((len & STLE_TXA2_MSKH) << 3662 STLE_TXA2_SHIFTH)); 3663 break; 3664 default: 3665 device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n", 3666 control & STLE_OP_MASK); 3667 break; 3668 } 3669 MSK_INC(cons, sc->msk_stat_count); 3670 if (rxprog > sc->msk_process_limit) 3671 break; 3672 } 3673 3674 sc->msk_stat_cons = cons; 3675 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map, 3676 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3677 3678 if (rxput[MSK_PORT_A] > 0) 3679 msk_rxput(sc->msk_if[MSK_PORT_A]); 3680 if (rxput[MSK_PORT_B] > 0) 3681 msk_rxput(sc->msk_if[MSK_PORT_B]); 3682 3683 return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX)); 3684 } 3685 3686 static void 3687 msk_intr(void *xsc) 3688 { 3689 struct msk_softc *sc; 3690 struct msk_if_softc *sc_if0, *sc_if1; 3691 struct ifnet *ifp0, *ifp1; 3692 uint32_t status; 3693 int domore; 3694 3695 sc = xsc; 3696 MSK_LOCK(sc); 3697 3698 /* Reading B0_Y2_SP_ISRC2 masks further interrupts. */ 3699 status = CSR_READ_4(sc, B0_Y2_SP_ISRC2); 3700 if (status == 0 || status == 0xffffffff || 3701 (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 || 3702 (status & sc->msk_intrmask) == 0) { 3703 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2); 3704 MSK_UNLOCK(sc); 3705 return; 3706 } 3707 3708 sc_if0 = sc->msk_if[MSK_PORT_A]; 3709 sc_if1 = sc->msk_if[MSK_PORT_B]; 3710 ifp0 = ifp1 = NULL; 3711 if (sc_if0 != NULL) 3712 ifp0 = sc_if0->msk_ifp; 3713 if (sc_if1 != NULL) 3714 ifp1 = sc_if1->msk_ifp; 3715 3716 if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL) 3717 msk_intr_phy(sc_if0); 3718 if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL) 3719 msk_intr_phy(sc_if1); 3720 if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL) 3721 msk_intr_gmac(sc_if0); 3722 if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL) 3723 msk_intr_gmac(sc_if1); 3724 if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) { 3725 device_printf(sc->msk_dev, "Rx descriptor error\n"); 3726 sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2); 3727 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3728 CSR_READ_4(sc, B0_IMSK); 3729 } 3730 if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) { 3731 device_printf(sc->msk_dev, "Tx descriptor error\n"); 3732 sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2); 3733 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3734 CSR_READ_4(sc, B0_IMSK); 3735 } 3736 if ((status & Y2_IS_HW_ERR) != 0) 3737 msk_intr_hwerr(sc); 3738 3739 domore = msk_handle_events(sc); 3740 if ((status & Y2_IS_STAT_BMU) != 0 && domore == 0) 3741 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ); 3742 3743 /* Clear TWSI IRQ. */ 3744 if ((status & Y2_IS_TWSI_RDY) != 0) 3745 CSR_WRITE_4(sc, B2_I2C_IRQ, 1); 3746 /* Reenable interrupts. */ 3747 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2); 3748 3749 if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 && 3750 !IFQ_DRV_IS_EMPTY(&ifp0->if_snd)) 3751 msk_start_locked(ifp0); 3752 if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 && 3753 !IFQ_DRV_IS_EMPTY(&ifp1->if_snd)) 3754 msk_start_locked(ifp1); 3755 3756 MSK_UNLOCK(sc); 3757 } 3758 3759 static void 3760 msk_set_tx_stfwd(struct msk_if_softc *sc_if) 3761 { 3762 struct msk_softc *sc; 3763 struct ifnet *ifp; 3764 3765 ifp = sc_if->msk_ifp; 3766 sc = sc_if->msk_softc; 3767 if ((sc->msk_hw_id == CHIP_ID_YUKON_EX && 3768 sc->msk_hw_rev != CHIP_REV_YU_EX_A0) || 3769 sc->msk_hw_id >= CHIP_ID_YUKON_SUPR) { 3770 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3771 TX_STFW_ENA); 3772 } else { 3773 if (ifp->if_mtu > ETHERMTU) { 3774 /* Set Tx GMAC FIFO Almost Empty Threshold. */ 3775 CSR_WRITE_4(sc, 3776 MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR), 3777 MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR); 3778 /* Disable Store & Forward mode for Tx. */ 3779 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3780 TX_STFW_DIS); 3781 } else { 3782 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3783 TX_STFW_ENA); 3784 } 3785 } 3786 } 3787 3788 static void 3789 msk_init(void *xsc) 3790 { 3791 struct msk_if_softc *sc_if = xsc; 3792 3793 MSK_IF_LOCK(sc_if); 3794 msk_init_locked(sc_if); 3795 MSK_IF_UNLOCK(sc_if); 3796 } 3797 3798 static void 3799 msk_init_locked(struct msk_if_softc *sc_if) 3800 { 3801 struct msk_softc *sc; 3802 struct ifnet *ifp; 3803 struct mii_data *mii; 3804 uint8_t *eaddr; 3805 uint16_t gmac; 3806 uint32_t reg; 3807 int error; 3808 3809 MSK_IF_LOCK_ASSERT(sc_if); 3810 3811 ifp = sc_if->msk_ifp; 3812 sc = sc_if->msk_softc; 3813 mii = device_get_softc(sc_if->msk_miibus); 3814 3815 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 3816 return; 3817 3818 error = 0; 3819 /* Cancel pending I/O and free all Rx/Tx buffers. */ 3820 msk_stop(sc_if); 3821 3822 if (ifp->if_mtu < ETHERMTU) 3823 sc_if->msk_framesize = ETHERMTU; 3824 else 3825 sc_if->msk_framesize = ifp->if_mtu; 3826 sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 3827 if (ifp->if_mtu > ETHERMTU && 3828 (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) { 3829 ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO); 3830 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM); 3831 } 3832 3833 /* GMAC Control reset. */ 3834 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET); 3835 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR); 3836 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF); 3837 if (sc->msk_hw_id == CHIP_ID_YUKON_EX || 3838 sc->msk_hw_id == CHIP_ID_YUKON_SUPR) 3839 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), 3840 GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON | 3841 GMC_BYP_RETR_ON); 3842 3843 /* 3844 * Initialize GMAC first such that speed/duplex/flow-control 3845 * parameters are renegotiated when interface is brought up. 3846 */ 3847 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0); 3848 3849 /* Dummy read the Interrupt Source Register. */ 3850 CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC)); 3851 3852 /* Clear MIB stats. */ 3853 msk_stats_clear(sc_if); 3854 3855 /* Disable FCS. */ 3856 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS); 3857 3858 /* Setup Transmit Control Register. */ 3859 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); 3860 3861 /* Setup Transmit Flow Control Register. */ 3862 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff); 3863 3864 /* Setup Transmit Parameter Register. */ 3865 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM, 3866 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | 3867 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF)); 3868 3869 gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) | 3870 GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); 3871 3872 if (ifp->if_mtu > ETHERMTU) 3873 gmac |= GM_SMOD_JUMBO_ENA; 3874 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac); 3875 3876 /* Set station address. */ 3877 eaddr = IF_LLADDR(ifp); 3878 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L, 3879 eaddr[0] | (eaddr[1] << 8)); 3880 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M, 3881 eaddr[2] | (eaddr[3] << 8)); 3882 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H, 3883 eaddr[4] | (eaddr[5] << 8)); 3884 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L, 3885 eaddr[0] | (eaddr[1] << 8)); 3886 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M, 3887 eaddr[2] | (eaddr[3] << 8)); 3888 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H, 3889 eaddr[4] | (eaddr[5] << 8)); 3890 3891 /* Disable interrupts for counter overflows. */ 3892 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0); 3893 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0); 3894 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0); 3895 3896 /* Configure Rx MAC FIFO. */ 3897 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET); 3898 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR); 3899 reg = GMF_OPER_ON | GMF_RX_F_FL_ON; 3900 if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P || 3901 sc->msk_hw_id == CHIP_ID_YUKON_EX) 3902 reg |= GMF_RX_OVER_ON; 3903 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg); 3904 3905 /* Set receive filter. */ 3906 msk_rxfilter(sc_if); 3907 3908 if (sc->msk_hw_id == CHIP_ID_YUKON_XL) { 3909 /* Clear flush mask - HW bug. */ 3910 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0); 3911 } else { 3912 /* Flush Rx MAC FIFO on any flow control or error. */ 3913 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 3914 GMR_FS_ANY_ERR); 3915 } 3916 3917 /* 3918 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word 3919 * due to hardware hang on receipt of pause frames. 3920 */ 3921 reg = RX_GMF_FL_THR_DEF + 1; 3922 /* Another magic for Yukon FE+ - From Linux. */ 3923 if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P && 3924 sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) 3925 reg = 0x178; 3926 CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg); 3927 3928 /* Configure Tx MAC FIFO. */ 3929 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET); 3930 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR); 3931 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON); 3932 3933 /* Configure hardware VLAN tag insertion/stripping. */ 3934 msk_setvlan(sc_if, ifp); 3935 3936 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) { 3937 /* Set Rx Pause threshold. */ 3938 CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR), 3939 MSK_ECU_LLPP); 3940 CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR), 3941 MSK_ECU_ULPP); 3942 /* Configure store-and-forward for Tx. */ 3943 msk_set_tx_stfwd(sc_if); 3944 } 3945 3946 if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P && 3947 sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) { 3948 /* Disable dynamic watermark - from Linux. */ 3949 reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA)); 3950 reg &= ~0x03; 3951 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg); 3952 } 3953 3954 /* 3955 * Disable Force Sync bit and Alloc bit in Tx RAM interface 3956 * arbiter as we don't use Sync Tx queue. 3957 */ 3958 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), 3959 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); 3960 /* Enable the RAM Interface Arbiter. */ 3961 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB); 3962 3963 /* Setup RAM buffer. */ 3964 msk_set_rambuffer(sc_if); 3965 3966 /* Disable Tx sync Queue. */ 3967 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET); 3968 3969 /* Setup Tx Queue Bus Memory Interface. */ 3970 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET); 3971 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT); 3972 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON); 3973 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM); 3974 switch (sc->msk_hw_id) { 3975 case CHIP_ID_YUKON_EC_U: 3976 if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) { 3977 /* Fix for Yukon-EC Ultra: set BMU FIFO level */ 3978 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), 3979 MSK_ECU_TXFF_LEV); 3980 } 3981 break; 3982 case CHIP_ID_YUKON_EX: 3983 /* 3984 * Yukon Extreme seems to have silicon bug for 3985 * automatic Tx checksum calculation capability. 3986 */ 3987 if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0) 3988 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F), 3989 F_TX_CHK_AUTO_OFF); 3990 break; 3991 } 3992 3993 /* Setup Rx Queue Bus Memory Interface. */ 3994 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET); 3995 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT); 3996 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON); 3997 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM); 3998 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U && 3999 sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) { 4000 /* MAC Rx RAM Read is controlled by hardware. */ 4001 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS); 4002 } 4003 4004 msk_set_prefetch(sc, sc_if->msk_txq, 4005 sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1); 4006 msk_init_tx_ring(sc_if); 4007 4008 /* Disable Rx checksum offload and RSS hash. */ 4009 reg = BMU_DIS_RX_RSS_HASH; 4010 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && 4011 (ifp->if_capenable & IFCAP_RXCSUM) != 0) 4012 reg |= BMU_ENA_RX_CHKSUM; 4013 else 4014 reg |= BMU_DIS_RX_CHKSUM; 4015 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), reg); 4016 if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) { 4017 msk_set_prefetch(sc, sc_if->msk_rxq, 4018 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr, 4019 MSK_JUMBO_RX_RING_CNT - 1); 4020 error = msk_init_jumbo_rx_ring(sc_if); 4021 } else { 4022 msk_set_prefetch(sc, sc_if->msk_rxq, 4023 sc_if->msk_rdata.msk_rx_ring_paddr, 4024 MSK_RX_RING_CNT - 1); 4025 error = msk_init_rx_ring(sc_if); 4026 } 4027 if (error != 0) { 4028 device_printf(sc_if->msk_if_dev, 4029 "initialization failed: no memory for Rx buffers\n"); 4030 msk_stop(sc_if); 4031 return; 4032 } 4033 if (sc->msk_hw_id == CHIP_ID_YUKON_EX || 4034 sc->msk_hw_id == CHIP_ID_YUKON_SUPR) { 4035 /* Disable flushing of non-ASF packets. */ 4036 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 4037 GMF_RX_MACSEC_FLUSH_OFF); 4038 } 4039 4040 /* Configure interrupt handling. */ 4041 if (sc_if->msk_port == MSK_PORT_A) { 4042 sc->msk_intrmask |= Y2_IS_PORT_A; 4043 sc->msk_intrhwemask |= Y2_HWE_L1_MASK; 4044 } else { 4045 sc->msk_intrmask |= Y2_IS_PORT_B; 4046 sc->msk_intrhwemask |= Y2_HWE_L2_MASK; 4047 } 4048 /* Configure IRQ moderation mask. */ 4049 CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask); 4050 if (sc->msk_int_holdoff > 0) { 4051 /* Configure initial IRQ moderation timer value. */ 4052 CSR_WRITE_4(sc, B2_IRQM_INI, 4053 MSK_USECS(sc, sc->msk_int_holdoff)); 4054 CSR_WRITE_4(sc, B2_IRQM_VAL, 4055 MSK_USECS(sc, sc->msk_int_holdoff)); 4056 /* Start IRQ moderation. */ 4057 CSR_WRITE_1(sc, B2_IRQM_CTRL, TIM_START); 4058 } 4059 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask); 4060 CSR_READ_4(sc, B0_HWE_IMSK); 4061 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 4062 CSR_READ_4(sc, B0_IMSK); 4063 4064 sc_if->msk_flags &= ~MSK_FLAG_LINK; 4065 mii_mediachg(mii); 4066 4067 ifp->if_drv_flags |= IFF_DRV_RUNNING; 4068 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4069 4070 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if); 4071 } 4072 4073 static void 4074 msk_set_rambuffer(struct msk_if_softc *sc_if) 4075 { 4076 struct msk_softc *sc; 4077 int ltpp, utpp; 4078 4079 sc = sc_if->msk_softc; 4080 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) 4081 return; 4082 4083 /* Setup Rx Queue. */ 4084 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR); 4085 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START), 4086 sc->msk_rxqstart[sc_if->msk_port] / 8); 4087 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END), 4088 sc->msk_rxqend[sc_if->msk_port] / 8); 4089 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP), 4090 sc->msk_rxqstart[sc_if->msk_port] / 8); 4091 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP), 4092 sc->msk_rxqstart[sc_if->msk_port] / 8); 4093 4094 utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 - 4095 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8; 4096 ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 - 4097 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8; 4098 if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE) 4099 ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8; 4100 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp); 4101 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp); 4102 /* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */ 4103 4104 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD); 4105 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL)); 4106 4107 /* Setup Tx Queue. */ 4108 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR); 4109 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START), 4110 sc->msk_txqstart[sc_if->msk_port] / 8); 4111 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END), 4112 sc->msk_txqend[sc_if->msk_port] / 8); 4113 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP), 4114 sc->msk_txqstart[sc_if->msk_port] / 8); 4115 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP), 4116 sc->msk_txqstart[sc_if->msk_port] / 8); 4117 /* Enable Store & Forward for Tx side. */ 4118 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD); 4119 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD); 4120 CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL)); 4121 } 4122 4123 static void 4124 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr, 4125 uint32_t count) 4126 { 4127 4128 /* Reset the prefetch unit. */ 4129 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), 4130 PREF_UNIT_RST_SET); 4131 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), 4132 PREF_UNIT_RST_CLR); 4133 /* Set LE base address. */ 4134 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG), 4135 MSK_ADDR_LO(addr)); 4136 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG), 4137 MSK_ADDR_HI(addr)); 4138 /* Set the list last index. */ 4139 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG), 4140 count); 4141 /* Turn on prefetch unit. */ 4142 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), 4143 PREF_UNIT_OP_ON); 4144 /* Dummy read to ensure write. */ 4145 CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG)); 4146 } 4147 4148 static void 4149 msk_stop(struct msk_if_softc *sc_if) 4150 { 4151 struct msk_softc *sc; 4152 struct msk_txdesc *txd; 4153 struct msk_rxdesc *rxd; 4154 struct msk_rxdesc *jrxd; 4155 struct ifnet *ifp; 4156 uint32_t val; 4157 int i; 4158 4159 MSK_IF_LOCK_ASSERT(sc_if); 4160 sc = sc_if->msk_softc; 4161 ifp = sc_if->msk_ifp; 4162 4163 callout_stop(&sc_if->msk_tick_ch); 4164 sc_if->msk_watchdog_timer = 0; 4165 4166 /* Disable interrupts. */ 4167 if (sc_if->msk_port == MSK_PORT_A) { 4168 sc->msk_intrmask &= ~Y2_IS_PORT_A; 4169 sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK; 4170 } else { 4171 sc->msk_intrmask &= ~Y2_IS_PORT_B; 4172 sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK; 4173 } 4174 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask); 4175 CSR_READ_4(sc, B0_HWE_IMSK); 4176 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 4177 CSR_READ_4(sc, B0_IMSK); 4178 4179 /* Disable Tx/Rx MAC. */ 4180 val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 4181 val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 4182 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val); 4183 /* Read again to ensure writing. */ 4184 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 4185 /* Update stats and clear counters. */ 4186 msk_stats_update(sc_if); 4187 4188 /* Stop Tx BMU. */ 4189 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP); 4190 val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR)); 4191 for (i = 0; i < MSK_TIMEOUT; i++) { 4192 if ((val & (BMU_STOP | BMU_IDLE)) == 0) { 4193 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), 4194 BMU_STOP); 4195 val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR)); 4196 } else 4197 break; 4198 DELAY(1); 4199 } 4200 if (i == MSK_TIMEOUT) 4201 device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n"); 4202 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), 4203 RB_RST_SET | RB_DIS_OP_MD); 4204 4205 /* Disable all GMAC interrupt. */ 4206 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0); 4207 /* Disable PHY interrupt. */ 4208 msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0); 4209 4210 /* Disable the RAM Interface Arbiter. */ 4211 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB); 4212 4213 /* Reset the PCI FIFO of the async Tx queue */ 4214 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), 4215 BMU_RST_SET | BMU_FIFO_RST); 4216 4217 /* Reset the Tx prefetch units. */ 4218 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG), 4219 PREF_UNIT_RST_SET); 4220 4221 /* Reset the RAM Buffer async Tx queue. */ 4222 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET); 4223 4224 /* Reset Tx MAC FIFO. */ 4225 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET); 4226 /* Set Pause Off. */ 4227 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF); 4228 4229 /* 4230 * The Rx Stop command will not work for Yukon-2 if the BMU does not 4231 * reach the end of packet and since we can't make sure that we have 4232 * incoming data, we must reset the BMU while it is not during a DMA 4233 * transfer. Since it is possible that the Rx path is still active, 4234 * the Rx RAM buffer will be stopped first, so any possible incoming 4235 * data will not trigger a DMA. After the RAM buffer is stopped, the 4236 * BMU is polled until any DMA in progress is ended and only then it 4237 * will be reset. 4238 */ 4239 4240 /* Disable the RAM Buffer receive queue. */ 4241 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD); 4242 for (i = 0; i < MSK_TIMEOUT; i++) { 4243 if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) == 4244 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL))) 4245 break; 4246 DELAY(1); 4247 } 4248 if (i == MSK_TIMEOUT) 4249 device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n"); 4250 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), 4251 BMU_RST_SET | BMU_FIFO_RST); 4252 /* Reset the Rx prefetch unit. */ 4253 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG), 4254 PREF_UNIT_RST_SET); 4255 /* Reset the RAM Buffer receive queue. */ 4256 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET); 4257 /* Reset Rx MAC FIFO. */ 4258 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET); 4259 4260 /* Free Rx and Tx mbufs still in the queues. */ 4261 for (i = 0; i < MSK_RX_RING_CNT; i++) { 4262 rxd = &sc_if->msk_cdata.msk_rxdesc[i]; 4263 if (rxd->rx_m != NULL) { 4264 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, 4265 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 4266 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, 4267 rxd->rx_dmamap); 4268 m_freem(rxd->rx_m); 4269 rxd->rx_m = NULL; 4270 } 4271 } 4272 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 4273 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; 4274 if (jrxd->rx_m != NULL) { 4275 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, 4276 jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 4277 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag, 4278 jrxd->rx_dmamap); 4279 m_freem(jrxd->rx_m); 4280 jrxd->rx_m = NULL; 4281 } 4282 } 4283 for (i = 0; i < MSK_TX_RING_CNT; i++) { 4284 txd = &sc_if->msk_cdata.msk_txdesc[i]; 4285 if (txd->tx_m != NULL) { 4286 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, 4287 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 4288 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, 4289 txd->tx_dmamap); 4290 m_freem(txd->tx_m); 4291 txd->tx_m = NULL; 4292 } 4293 } 4294 4295 /* 4296 * Mark the interface down. 4297 */ 4298 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 4299 sc_if->msk_flags &= ~MSK_FLAG_LINK; 4300 } 4301 4302 /* 4303 * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower 4304 * counter clears high 16 bits of the counter such that accessing 4305 * lower 16 bits should be the last operation. 4306 */ 4307 #define MSK_READ_MIB32(x, y) \ 4308 (((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) + \ 4309 (uint32_t)GMAC_READ_2(sc, x, y) 4310 #define MSK_READ_MIB64(x, y) \ 4311 (((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) + \ 4312 (uint64_t)MSK_READ_MIB32(x, y) 4313 4314 static void 4315 msk_stats_clear(struct msk_if_softc *sc_if) 4316 { 4317 struct msk_softc *sc; 4318 uint32_t reg; 4319 uint16_t gmac; 4320 int i; 4321 4322 MSK_IF_LOCK_ASSERT(sc_if); 4323 4324 sc = sc_if->msk_softc; 4325 /* Set MIB Clear Counter Mode. */ 4326 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR); 4327 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR); 4328 /* Read all MIB Counters with Clear Mode set. */ 4329 for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t)) 4330 reg = MSK_READ_MIB32(sc_if->msk_port, i); 4331 /* Clear MIB Clear Counter Mode. */ 4332 gmac &= ~GM_PAR_MIB_CLR; 4333 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac); 4334 } 4335 4336 static void 4337 msk_stats_update(struct msk_if_softc *sc_if) 4338 { 4339 struct msk_softc *sc; 4340 struct ifnet *ifp; 4341 struct msk_hw_stats *stats; 4342 uint16_t gmac; 4343 uint32_t reg; 4344 4345 MSK_IF_LOCK_ASSERT(sc_if); 4346 4347 ifp = sc_if->msk_ifp; 4348 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 4349 return; 4350 sc = sc_if->msk_softc; 4351 stats = &sc_if->msk_stats; 4352 /* Set MIB Clear Counter Mode. */ 4353 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR); 4354 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR); 4355 4356 /* Rx stats. */ 4357 stats->rx_ucast_frames += 4358 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK); 4359 stats->rx_bcast_frames += 4360 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK); 4361 stats->rx_pause_frames += 4362 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE); 4363 stats->rx_mcast_frames += 4364 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK); 4365 stats->rx_crc_errs += 4366 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR); 4367 reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1); 4368 stats->rx_good_octets += 4369 MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO); 4370 stats->rx_bad_octets += 4371 MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO); 4372 stats->rx_runts += 4373 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT); 4374 stats->rx_runt_errs += 4375 MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG); 4376 stats->rx_pkts_64 += 4377 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B); 4378 stats->rx_pkts_65_127 += 4379 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B); 4380 stats->rx_pkts_128_255 += 4381 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B); 4382 stats->rx_pkts_256_511 += 4383 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B); 4384 stats->rx_pkts_512_1023 += 4385 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B); 4386 stats->rx_pkts_1024_1518 += 4387 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B); 4388 stats->rx_pkts_1519_max += 4389 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ); 4390 stats->rx_pkts_too_long += 4391 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR); 4392 stats->rx_pkts_jabbers += 4393 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT); 4394 reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2); 4395 stats->rx_fifo_oflows += 4396 MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV); 4397 reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3); 4398 4399 /* Tx stats. */ 4400 stats->tx_ucast_frames += 4401 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK); 4402 stats->tx_bcast_frames += 4403 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK); 4404 stats->tx_pause_frames += 4405 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE); 4406 stats->tx_mcast_frames += 4407 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK); 4408 stats->tx_octets += 4409 MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO); 4410 stats->tx_pkts_64 += 4411 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B); 4412 stats->tx_pkts_65_127 += 4413 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B); 4414 stats->tx_pkts_128_255 += 4415 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B); 4416 stats->tx_pkts_256_511 += 4417 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B); 4418 stats->tx_pkts_512_1023 += 4419 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B); 4420 stats->tx_pkts_1024_1518 += 4421 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B); 4422 stats->tx_pkts_1519_max += 4423 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ); 4424 reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1); 4425 stats->tx_colls += 4426 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL); 4427 stats->tx_late_colls += 4428 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL); 4429 stats->tx_excess_colls += 4430 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL); 4431 stats->tx_multi_colls += 4432 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL); 4433 stats->tx_single_colls += 4434 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL); 4435 stats->tx_underflows += 4436 MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR); 4437 /* Clear MIB Clear Counter Mode. */ 4438 gmac &= ~GM_PAR_MIB_CLR; 4439 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac); 4440 } 4441 4442 static int 4443 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS) 4444 { 4445 struct msk_softc *sc; 4446 struct msk_if_softc *sc_if; 4447 uint32_t result, *stat; 4448 int off; 4449 4450 sc_if = (struct msk_if_softc *)arg1; 4451 sc = sc_if->msk_softc; 4452 off = arg2; 4453 stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off); 4454 4455 MSK_IF_LOCK(sc_if); 4456 result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2); 4457 result += *stat; 4458 MSK_IF_UNLOCK(sc_if); 4459 4460 return (sysctl_handle_int(oidp, &result, 0, req)); 4461 } 4462 4463 static int 4464 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS) 4465 { 4466 struct msk_softc *sc; 4467 struct msk_if_softc *sc_if; 4468 uint64_t result, *stat; 4469 int off; 4470 4471 sc_if = (struct msk_if_softc *)arg1; 4472 sc = sc_if->msk_softc; 4473 off = arg2; 4474 stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off); 4475 4476 MSK_IF_LOCK(sc_if); 4477 result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2); 4478 result += *stat; 4479 MSK_IF_UNLOCK(sc_if); 4480 4481 return (sysctl_handle_64(oidp, &result, 0, req)); 4482 } 4483 4484 #undef MSK_READ_MIB32 4485 #undef MSK_READ_MIB64 4486 4487 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) \ 4488 SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, \ 4489 sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32, \ 4490 "IU", d) 4491 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) \ 4492 SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_U64 | CTLFLAG_RD, \ 4493 sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64, \ 4494 "QU", d) 4495 4496 static void 4497 msk_sysctl_node(struct msk_if_softc *sc_if) 4498 { 4499 struct sysctl_ctx_list *ctx; 4500 struct sysctl_oid_list *child, *schild; 4501 struct sysctl_oid *tree; 4502 4503 ctx = device_get_sysctl_ctx(sc_if->msk_if_dev); 4504 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev)); 4505 4506 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 4507 NULL, "MSK Statistics"); 4508 schild = child = SYSCTL_CHILDREN(tree); 4509 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD, 4510 NULL, "MSK RX Statistics"); 4511 child = SYSCTL_CHILDREN(tree); 4512 MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames", 4513 child, rx_ucast_frames, "Good unicast frames"); 4514 MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames", 4515 child, rx_bcast_frames, "Good broadcast frames"); 4516 MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames", 4517 child, rx_pause_frames, "Pause frames"); 4518 MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames", 4519 child, rx_mcast_frames, "Multicast frames"); 4520 MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs", 4521 child, rx_crc_errs, "CRC errors"); 4522 MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets", 4523 child, rx_good_octets, "Good octets"); 4524 MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets", 4525 child, rx_bad_octets, "Bad octets"); 4526 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64", 4527 child, rx_pkts_64, "64 bytes frames"); 4528 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127", 4529 child, rx_pkts_65_127, "65 to 127 bytes frames"); 4530 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255", 4531 child, rx_pkts_128_255, "128 to 255 bytes frames"); 4532 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511", 4533 child, rx_pkts_256_511, "256 to 511 bytes frames"); 4534 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023", 4535 child, rx_pkts_512_1023, "512 to 1023 bytes frames"); 4536 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518", 4537 child, rx_pkts_1024_1518, "1024 to 1518 bytes frames"); 4538 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max", 4539 child, rx_pkts_1519_max, "1519 to max frames"); 4540 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long", 4541 child, rx_pkts_too_long, "frames too long"); 4542 MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers", 4543 child, rx_pkts_jabbers, "Jabber errors"); 4544 MSK_SYSCTL_STAT32(sc_if, ctx, "overflows", 4545 child, rx_fifo_oflows, "FIFO overflows"); 4546 4547 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD, 4548 NULL, "MSK TX Statistics"); 4549 child = SYSCTL_CHILDREN(tree); 4550 MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames", 4551 child, tx_ucast_frames, "Unicast frames"); 4552 MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames", 4553 child, tx_bcast_frames, "Broadcast frames"); 4554 MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames", 4555 child, tx_pause_frames, "Pause frames"); 4556 MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames", 4557 child, tx_mcast_frames, "Multicast frames"); 4558 MSK_SYSCTL_STAT64(sc_if, ctx, "octets", 4559 child, tx_octets, "Octets"); 4560 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64", 4561 child, tx_pkts_64, "64 bytes frames"); 4562 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127", 4563 child, tx_pkts_65_127, "65 to 127 bytes frames"); 4564 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255", 4565 child, tx_pkts_128_255, "128 to 255 bytes frames"); 4566 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511", 4567 child, tx_pkts_256_511, "256 to 511 bytes frames"); 4568 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023", 4569 child, tx_pkts_512_1023, "512 to 1023 bytes frames"); 4570 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518", 4571 child, tx_pkts_1024_1518, "1024 to 1518 bytes frames"); 4572 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max", 4573 child, tx_pkts_1519_max, "1519 to max frames"); 4574 MSK_SYSCTL_STAT32(sc_if, ctx, "colls", 4575 child, tx_colls, "Collisions"); 4576 MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls", 4577 child, tx_late_colls, "Late collisions"); 4578 MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls", 4579 child, tx_excess_colls, "Excessive collisions"); 4580 MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls", 4581 child, tx_multi_colls, "Multiple collisions"); 4582 MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls", 4583 child, tx_single_colls, "Single collisions"); 4584 MSK_SYSCTL_STAT32(sc_if, ctx, "underflows", 4585 child, tx_underflows, "FIFO underflows"); 4586 } 4587 4588 #undef MSK_SYSCTL_STAT32 4589 #undef MSK_SYSCTL_STAT64 4590 4591 static int 4592 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 4593 { 4594 int error, value; 4595 4596 if (!arg1) 4597 return (EINVAL); 4598 value = *(int *)arg1; 4599 error = sysctl_handle_int(oidp, &value, 0, req); 4600 if (error || !req->newptr) 4601 return (error); 4602 if (value < low || value > high) 4603 return (EINVAL); 4604 *(int *)arg1 = value; 4605 4606 return (0); 4607 } 4608 4609 static int 4610 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS) 4611 { 4612 4613 return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN, 4614 MSK_PROC_MAX)); 4615 } 4616