xref: /freebsd/sys/dev/msk/if_msk.c (revision 70ed590b393173d4ea697be2a27054ed171f0c1a)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /*
96  * Device driver for the Marvell Yukon II Ethernet controller.
97  * Due to lack of documentation, this driver is based on the code from
98  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
99  */
100 
101 #include <sys/cdefs.h>
102 __FBSDID("$FreeBSD$");
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/module.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/queue.h>
115 #include <sys/sysctl.h>
116 
117 #include <net/bpf.h>
118 #include <net/ethernet.h>
119 #include <net/if.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/if_types.h>
124 #include <net/if_vlan_var.h>
125 
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/tcp.h>
130 #include <netinet/udp.h>
131 
132 #include <machine/bus.h>
133 #include <machine/in_cksum.h>
134 #include <machine/resource.h>
135 #include <sys/rman.h>
136 
137 #include <dev/mii/mii.h>
138 #include <dev/mii/miivar.h>
139 
140 #include <dev/pci/pcireg.h>
141 #include <dev/pci/pcivar.h>
142 
143 #include <dev/msk/if_mskreg.h>
144 
145 MODULE_DEPEND(msk, pci, 1, 1, 1);
146 MODULE_DEPEND(msk, ether, 1, 1, 1);
147 MODULE_DEPEND(msk, miibus, 1, 1, 1);
148 
149 /* "device miibus" required.  See GENERIC if you get errors here. */
150 #include "miibus_if.h"
151 
152 /* Tunables. */
153 static int msi_disable = 0;
154 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
155 static int legacy_intr = 0;
156 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
157 static int jumbo_disable = 0;
158 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
159 
160 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
161 
162 /*
163  * Devices supported by this driver.
164  */
165 static struct msk_product {
166 	uint16_t	msk_vendorid;
167 	uint16_t	msk_deviceid;
168 	const char	*msk_name;
169 } msk_products[] = {
170 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
171 	    "SK-9Sxx Gigabit Ethernet" },
172 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
173 	    "SK-9Exx Gigabit Ethernet"},
174 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
175 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
176 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
177 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
178 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
179 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
180 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
181 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
182 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
183 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
184 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
185 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
186 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
187 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
188 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
189 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
190 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
191 	    "Marvell Yukon 88E8035 Fast Ethernet" },
192 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
193 	    "Marvell Yukon 88E8036 Fast Ethernet" },
194 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
195 	    "Marvell Yukon 88E8038 Fast Ethernet" },
196 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
197 	    "Marvell Yukon 88E8039 Fast Ethernet" },
198 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
199 	    "Marvell Yukon 88E8040 Fast Ethernet" },
200 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
201 	    "Marvell Yukon 88E8040T Fast Ethernet" },
202 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
203 	    "Marvell Yukon 88E8042 Fast Ethernet" },
204 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
205 	    "Marvell Yukon 88E8048 Fast Ethernet" },
206 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
207 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
208 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
209 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
210 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
211 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
212 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
213 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
214 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
215 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
216 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
217 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
218 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
219 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
220 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
221 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
222 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
223 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
224 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
225 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
226 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
227 	    "D-Link 550SX Gigabit Ethernet" },
228 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560SX,
229 	    "D-Link 560SX Gigabit Ethernet" },
230 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
231 	    "D-Link 560T Gigabit Ethernet" }
232 };
233 
234 static const char *model_name[] = {
235 	"Yukon XL",
236         "Yukon EC Ultra",
237         "Yukon EX",
238         "Yukon EC",
239         "Yukon FE",
240         "Yukon FE+",
241         "Yukon Supreme",
242         "Yukon Ultra 2"
243 };
244 
245 static int mskc_probe(device_t);
246 static int mskc_attach(device_t);
247 static int mskc_detach(device_t);
248 static int mskc_shutdown(device_t);
249 static int mskc_setup_rambuffer(struct msk_softc *);
250 static int mskc_suspend(device_t);
251 static int mskc_resume(device_t);
252 static void mskc_reset(struct msk_softc *);
253 
254 static int msk_probe(device_t);
255 static int msk_attach(device_t);
256 static int msk_detach(device_t);
257 
258 static void msk_tick(void *);
259 static void msk_intr(void *);
260 static void msk_intr_phy(struct msk_if_softc *);
261 static void msk_intr_gmac(struct msk_if_softc *);
262 static __inline void msk_rxput(struct msk_if_softc *);
263 static int msk_handle_events(struct msk_softc *);
264 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
265 static void msk_intr_hwerr(struct msk_softc *);
266 #ifndef __NO_STRICT_ALIGNMENT
267 static __inline void msk_fixup_rx(struct mbuf *);
268 #endif
269 static __inline void msk_rxcsum(struct msk_if_softc *, uint32_t, struct mbuf *);
270 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
271 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
272 static void msk_txeof(struct msk_if_softc *, int);
273 static int msk_encap(struct msk_if_softc *, struct mbuf **);
274 static void msk_start(struct ifnet *);
275 static void msk_start_locked(struct ifnet *);
276 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
277 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
278 static void msk_set_rambuffer(struct msk_if_softc *);
279 static void msk_set_tx_stfwd(struct msk_if_softc *);
280 static void msk_init(void *);
281 static void msk_init_locked(struct msk_if_softc *);
282 static void msk_stop(struct msk_if_softc *);
283 static void msk_watchdog(struct msk_if_softc *);
284 static int msk_mediachange(struct ifnet *);
285 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
286 static void msk_phy_power(struct msk_softc *, int);
287 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
288 static int msk_status_dma_alloc(struct msk_softc *);
289 static void msk_status_dma_free(struct msk_softc *);
290 static int msk_txrx_dma_alloc(struct msk_if_softc *);
291 static int msk_rx_dma_jalloc(struct msk_if_softc *);
292 static void msk_txrx_dma_free(struct msk_if_softc *);
293 static void msk_rx_dma_jfree(struct msk_if_softc *);
294 static int msk_rx_fill(struct msk_if_softc *, int);
295 static int msk_init_rx_ring(struct msk_if_softc *);
296 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
297 static void msk_init_tx_ring(struct msk_if_softc *);
298 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
299 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
300 static int msk_newbuf(struct msk_if_softc *, int);
301 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
302 
303 static int msk_phy_readreg(struct msk_if_softc *, int, int);
304 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
305 static int msk_miibus_readreg(device_t, int, int);
306 static int msk_miibus_writereg(device_t, int, int, int);
307 static void msk_miibus_statchg(device_t);
308 
309 static void msk_rxfilter(struct msk_if_softc *);
310 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
311 
312 static void msk_stats_clear(struct msk_if_softc *);
313 static void msk_stats_update(struct msk_if_softc *);
314 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
315 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
316 static void msk_sysctl_node(struct msk_if_softc *);
317 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
318 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
319 
320 static device_method_t mskc_methods[] = {
321 	/* Device interface */
322 	DEVMETHOD(device_probe,		mskc_probe),
323 	DEVMETHOD(device_attach,	mskc_attach),
324 	DEVMETHOD(device_detach,	mskc_detach),
325 	DEVMETHOD(device_suspend,	mskc_suspend),
326 	DEVMETHOD(device_resume,	mskc_resume),
327 	DEVMETHOD(device_shutdown,	mskc_shutdown),
328 
329 	/* bus interface */
330 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
331 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
332 
333 	{ NULL, NULL }
334 };
335 
336 static driver_t mskc_driver = {
337 	"mskc",
338 	mskc_methods,
339 	sizeof(struct msk_softc)
340 };
341 
342 static devclass_t mskc_devclass;
343 
344 static device_method_t msk_methods[] = {
345 	/* Device interface */
346 	DEVMETHOD(device_probe,		msk_probe),
347 	DEVMETHOD(device_attach,	msk_attach),
348 	DEVMETHOD(device_detach,	msk_detach),
349 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
350 
351 	/* bus interface */
352 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
353 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
354 
355 	/* MII interface */
356 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
357 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
358 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
359 
360 	{ NULL, NULL }
361 };
362 
363 static driver_t msk_driver = {
364 	"msk",
365 	msk_methods,
366 	sizeof(struct msk_if_softc)
367 };
368 
369 static devclass_t msk_devclass;
370 
371 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
372 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
373 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
374 
375 static struct resource_spec msk_res_spec_io[] = {
376 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
377 	{ -1,			0,		0 }
378 };
379 
380 static struct resource_spec msk_res_spec_mem[] = {
381 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
382 	{ -1,			0,		0 }
383 };
384 
385 static struct resource_spec msk_irq_spec_legacy[] = {
386 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
387 	{ -1,			0,		0 }
388 };
389 
390 static struct resource_spec msk_irq_spec_msi[] = {
391 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
392 	{ -1,			0,		0 }
393 };
394 
395 static int
396 msk_miibus_readreg(device_t dev, int phy, int reg)
397 {
398 	struct msk_if_softc *sc_if;
399 
400 	if (phy != PHY_ADDR_MARV)
401 		return (0);
402 
403 	sc_if = device_get_softc(dev);
404 
405 	return (msk_phy_readreg(sc_if, phy, reg));
406 }
407 
408 static int
409 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
410 {
411 	struct msk_softc *sc;
412 	int i, val;
413 
414 	sc = sc_if->msk_softc;
415 
416         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
417 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
418 
419 	for (i = 0; i < MSK_TIMEOUT; i++) {
420 		DELAY(1);
421 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
422 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
423 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
424 			break;
425 		}
426 	}
427 
428 	if (i == MSK_TIMEOUT) {
429 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
430 		val = 0;
431 	}
432 
433 	return (val);
434 }
435 
436 static int
437 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
438 {
439 	struct msk_if_softc *sc_if;
440 
441 	if (phy != PHY_ADDR_MARV)
442 		return (0);
443 
444 	sc_if = device_get_softc(dev);
445 
446 	return (msk_phy_writereg(sc_if, phy, reg, val));
447 }
448 
449 static int
450 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
451 {
452 	struct msk_softc *sc;
453 	int i;
454 
455 	sc = sc_if->msk_softc;
456 
457 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
458         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
459 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
460 	for (i = 0; i < MSK_TIMEOUT; i++) {
461 		DELAY(1);
462 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
463 		    GM_SMI_CT_BUSY) == 0)
464 			break;
465 	}
466 	if (i == MSK_TIMEOUT)
467 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
468 
469 	return (0);
470 }
471 
472 static void
473 msk_miibus_statchg(device_t dev)
474 {
475 	struct msk_softc *sc;
476 	struct msk_if_softc *sc_if;
477 	struct mii_data *mii;
478 	struct ifnet *ifp;
479 	uint32_t gmac;
480 
481 	sc_if = device_get_softc(dev);
482 	sc = sc_if->msk_softc;
483 
484 	MSK_IF_LOCK_ASSERT(sc_if);
485 
486 	mii = device_get_softc(sc_if->msk_miibus);
487 	ifp = sc_if->msk_ifp;
488 	if (mii == NULL || ifp == NULL ||
489 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
490 		return;
491 
492 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
493 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
494 	    (IFM_AVALID | IFM_ACTIVE)) {
495 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
496 		case IFM_10_T:
497 		case IFM_100_TX:
498 			sc_if->msk_flags |= MSK_FLAG_LINK;
499 			break;
500 		case IFM_1000_T:
501 		case IFM_1000_SX:
502 		case IFM_1000_LX:
503 		case IFM_1000_CX:
504 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
505 				sc_if->msk_flags |= MSK_FLAG_LINK;
506 			break;
507 		default:
508 			break;
509 		}
510 	}
511 
512 	if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) {
513 		/* Enable Tx FIFO Underrun. */
514 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
515 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
516 		/*
517 		 * Because mii(4) notify msk(4) that it detected link status
518 		 * change, there is no need to enable automatic
519 		 * speed/flow-control/duplex updates.
520 		 */
521 		gmac = GM_GPCR_AU_ALL_DIS;
522 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
523 		case IFM_1000_SX:
524 		case IFM_1000_T:
525 			gmac |= GM_GPCR_SPEED_1000;
526 			break;
527 		case IFM_100_TX:
528 			gmac |= GM_GPCR_SPEED_100;
529 			break;
530 		case IFM_10_T:
531 			break;
532 		}
533 
534 		/* Disable Rx flow control. */
535 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLAG0) == 0)
536 			gmac |= GM_GPCR_FC_RX_DIS;
537 		/* Disable Tx flow control. */
538 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLAG1) == 0)
539 			gmac |= GM_GPCR_FC_TX_DIS;
540 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
541 			gmac |= GM_GPCR_DUP_FULL;
542 		else
543 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
544 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
545 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
546 		/* Read again to ensure writing. */
547 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
548 		gmac = GMC_PAUSE_OFF;
549 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
550 			if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLAG0) != 0)
551 				gmac = GMC_PAUSE_ON;
552 		}
553 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
554 
555 		/* Enable PHY interrupt for FIFO underrun/overflow. */
556 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
557 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
558 	} else {
559 		/*
560 		 * Link state changed to down.
561 		 * Disable PHY interrupts.
562 		 */
563 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
564 		/* Disable Rx/Tx MAC. */
565 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
566 		if ((GM_GPCR_RX_ENA | GM_GPCR_TX_ENA) != 0) {
567 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
568 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
569 			/* Read again to ensure writing. */
570 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
571 		}
572 	}
573 }
574 
575 static void
576 msk_rxfilter(struct msk_if_softc *sc_if)
577 {
578 	struct msk_softc *sc;
579 	struct ifnet *ifp;
580 	struct ifmultiaddr *ifma;
581 	uint32_t mchash[2];
582 	uint32_t crc;
583 	uint16_t mode;
584 
585 	sc = sc_if->msk_softc;
586 
587 	MSK_IF_LOCK_ASSERT(sc_if);
588 
589 	ifp = sc_if->msk_ifp;
590 
591 	bzero(mchash, sizeof(mchash));
592 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
593 	if ((ifp->if_flags & IFF_PROMISC) != 0)
594 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
595 	else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
596 		mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
597 		mchash[0] = 0xffff;
598 		mchash[1] = 0xffff;
599 	} else {
600 		mode |= GM_RXCR_UCF_ENA;
601 		if_maddr_rlock(ifp);
602 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
603 			if (ifma->ifma_addr->sa_family != AF_LINK)
604 				continue;
605 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
606 			    ifma->ifma_addr), ETHER_ADDR_LEN);
607 			/* Just want the 6 least significant bits. */
608 			crc &= 0x3f;
609 			/* Set the corresponding bit in the hash table. */
610 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
611 		}
612 		if_maddr_runlock(ifp);
613 		if (mchash[0] != 0 || mchash[1] != 0)
614 			mode |= GM_RXCR_MCF_ENA;
615 	}
616 
617 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
618 	    mchash[0] & 0xffff);
619 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
620 	    (mchash[0] >> 16) & 0xffff);
621 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
622 	    mchash[1] & 0xffff);
623 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
624 	    (mchash[1] >> 16) & 0xffff);
625 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
626 }
627 
628 static void
629 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
630 {
631 	struct msk_softc *sc;
632 
633 	sc = sc_if->msk_softc;
634 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
635 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
636 		    RX_VLAN_STRIP_ON);
637 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
638 		    TX_VLAN_TAG_ON);
639 	} else {
640 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
641 		    RX_VLAN_STRIP_OFF);
642 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
643 		    TX_VLAN_TAG_OFF);
644 	}
645 }
646 
647 static int
648 msk_rx_fill(struct msk_if_softc *sc_if, int jumbo)
649 {
650 	uint16_t idx;
651 	int i;
652 
653 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
654 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
655 		/* Wait until controller executes OP_TCPSTART command. */
656 		for (i = 10; i > 0; i--) {
657 			DELAY(10);
658 			idx = CSR_READ_2(sc_if->msk_softc,
659 			    Y2_PREF_Q_ADDR(sc_if->msk_rxq,
660 			    PREF_UNIT_GET_IDX_REG));
661 			if (idx != 0)
662 				break;
663 		}
664 		if (i == 0) {
665 			device_printf(sc_if->msk_if_dev,
666 			    "prefetch unit stuck?\n");
667 			return (ETIMEDOUT);
668 		}
669 		/*
670 		 * Fill consumed LE with free buffer. This can be done
671 		 * in Rx handler but we don't want to add special code
672 		 * in fast handler.
673 		 */
674 		if (jumbo > 0) {
675 			if (msk_jumbo_newbuf(sc_if, 0) != 0)
676 				return (ENOBUFS);
677 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
678 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
679 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
680 		} else {
681 			if (msk_newbuf(sc_if, 0) != 0)
682 				return (ENOBUFS);
683 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
684 			    sc_if->msk_cdata.msk_rx_ring_map,
685 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
686 		}
687 		sc_if->msk_cdata.msk_rx_prod = 0;
688 		CSR_WRITE_2(sc_if->msk_softc,
689 		    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
690 		    sc_if->msk_cdata.msk_rx_prod);
691 	}
692 	return (0);
693 }
694 
695 static int
696 msk_init_rx_ring(struct msk_if_softc *sc_if)
697 {
698 	struct msk_ring_data *rd;
699 	struct msk_rxdesc *rxd;
700 	int i, prod;
701 
702 	MSK_IF_LOCK_ASSERT(sc_if);
703 
704 	sc_if->msk_cdata.msk_rx_cons = 0;
705 	sc_if->msk_cdata.msk_rx_prod = 0;
706 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
707 
708 	rd = &sc_if->msk_rdata;
709 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
710 	prod = sc_if->msk_cdata.msk_rx_prod;
711 	i = 0;
712 	/* Have controller know how to compute Rx checksum. */
713 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
714 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
715 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
716 		rxd->rx_m = NULL;
717 		rxd->rx_le = &rd->msk_rx_ring[prod];
718 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
719 		    ETHER_HDR_LEN);
720 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
721 		MSK_INC(prod, MSK_RX_RING_CNT);
722 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
723 		i++;
724 	}
725 	for (; i < MSK_RX_RING_CNT; i++) {
726 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
727 		rxd->rx_m = NULL;
728 		rxd->rx_le = &rd->msk_rx_ring[prod];
729 		if (msk_newbuf(sc_if, prod) != 0)
730 			return (ENOBUFS);
731 		MSK_INC(prod, MSK_RX_RING_CNT);
732 	}
733 
734 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
735 	    sc_if->msk_cdata.msk_rx_ring_map,
736 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
737 
738 	/* Update prefetch unit. */
739 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
740 	CSR_WRITE_2(sc_if->msk_softc,
741 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
742 	    sc_if->msk_cdata.msk_rx_prod);
743 	if (msk_rx_fill(sc_if, 0) != 0)
744 		return (ENOBUFS);
745 	return (0);
746 }
747 
748 static int
749 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
750 {
751 	struct msk_ring_data *rd;
752 	struct msk_rxdesc *rxd;
753 	int i, prod;
754 
755 	MSK_IF_LOCK_ASSERT(sc_if);
756 
757 	sc_if->msk_cdata.msk_rx_cons = 0;
758 	sc_if->msk_cdata.msk_rx_prod = 0;
759 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
760 
761 	rd = &sc_if->msk_rdata;
762 	bzero(rd->msk_jumbo_rx_ring,
763 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
764 	prod = sc_if->msk_cdata.msk_rx_prod;
765 	i = 0;
766 	/* Have controller know how to compute Rx checksum. */
767 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
768 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
769 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
770 		rxd->rx_m = NULL;
771 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
772 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
773 		    ETHER_HDR_LEN);
774 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
775 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
776 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
777 		i++;
778 	}
779 	for (; i < MSK_JUMBO_RX_RING_CNT; i++) {
780 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
781 		rxd->rx_m = NULL;
782 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
783 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
784 			return (ENOBUFS);
785 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
786 	}
787 
788 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
789 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
790 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
791 
792 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
793 	CSR_WRITE_2(sc_if->msk_softc,
794 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
795 	    sc_if->msk_cdata.msk_rx_prod);
796 	if (msk_rx_fill(sc_if, 1) != 0)
797 		return (ENOBUFS);
798 	return (0);
799 }
800 
801 static void
802 msk_init_tx_ring(struct msk_if_softc *sc_if)
803 {
804 	struct msk_ring_data *rd;
805 	struct msk_txdesc *txd;
806 	int i;
807 
808 	sc_if->msk_cdata.msk_tso_mtu = 0;
809 	sc_if->msk_cdata.msk_last_csum = 0;
810 	sc_if->msk_cdata.msk_tx_prod = 0;
811 	sc_if->msk_cdata.msk_tx_cons = 0;
812 	sc_if->msk_cdata.msk_tx_cnt = 0;
813 
814 	rd = &sc_if->msk_rdata;
815 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
816 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
817 		txd = &sc_if->msk_cdata.msk_txdesc[i];
818 		txd->tx_m = NULL;
819 		txd->tx_le = &rd->msk_tx_ring[i];
820 	}
821 
822 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
823 	    sc_if->msk_cdata.msk_tx_ring_map,
824 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
825 }
826 
827 static __inline void
828 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
829 {
830 	struct msk_rx_desc *rx_le;
831 	struct msk_rxdesc *rxd;
832 	struct mbuf *m;
833 
834 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
835 	m = rxd->rx_m;
836 	rx_le = rxd->rx_le;
837 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
838 }
839 
840 static __inline void
841 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
842 {
843 	struct msk_rx_desc *rx_le;
844 	struct msk_rxdesc *rxd;
845 	struct mbuf *m;
846 
847 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
848 	m = rxd->rx_m;
849 	rx_le = rxd->rx_le;
850 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
851 }
852 
853 static int
854 msk_newbuf(struct msk_if_softc *sc_if, int idx)
855 {
856 	struct msk_rx_desc *rx_le;
857 	struct msk_rxdesc *rxd;
858 	struct mbuf *m;
859 	bus_dma_segment_t segs[1];
860 	bus_dmamap_t map;
861 	int nsegs;
862 
863 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
864 	if (m == NULL)
865 		return (ENOBUFS);
866 
867 	m->m_len = m->m_pkthdr.len = MCLBYTES;
868 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
869 		m_adj(m, ETHER_ALIGN);
870 #ifndef __NO_STRICT_ALIGNMENT
871 	else
872 		m_adj(m, MSK_RX_BUF_ALIGN);
873 #endif
874 
875 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
876 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
877 	    BUS_DMA_NOWAIT) != 0) {
878 		m_freem(m);
879 		return (ENOBUFS);
880 	}
881 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
882 
883 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
884 	if (rxd->rx_m != NULL) {
885 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
886 		    BUS_DMASYNC_POSTREAD);
887 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
888 	}
889 	map = rxd->rx_dmamap;
890 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
891 	sc_if->msk_cdata.msk_rx_sparemap = map;
892 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
893 	    BUS_DMASYNC_PREREAD);
894 	rxd->rx_m = m;
895 	rx_le = rxd->rx_le;
896 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
897 	rx_le->msk_control =
898 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
899 
900 	return (0);
901 }
902 
903 static int
904 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
905 {
906 	struct msk_rx_desc *rx_le;
907 	struct msk_rxdesc *rxd;
908 	struct mbuf *m;
909 	bus_dma_segment_t segs[1];
910 	bus_dmamap_t map;
911 	int nsegs;
912 
913 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
914 	if (m == NULL)
915 		return (ENOBUFS);
916 	if ((m->m_flags & M_EXT) == 0) {
917 		m_freem(m);
918 		return (ENOBUFS);
919 	}
920 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
921 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
922 		m_adj(m, ETHER_ALIGN);
923 #ifndef __NO_STRICT_ALIGNMENT
924 	else
925 		m_adj(m, MSK_RX_BUF_ALIGN);
926 #endif
927 
928 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
929 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
930 	    BUS_DMA_NOWAIT) != 0) {
931 		m_freem(m);
932 		return (ENOBUFS);
933 	}
934 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
935 
936 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
937 	if (rxd->rx_m != NULL) {
938 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
939 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
940 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
941 		    rxd->rx_dmamap);
942 	}
943 	map = rxd->rx_dmamap;
944 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
945 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
946 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
947 	    BUS_DMASYNC_PREREAD);
948 	rxd->rx_m = m;
949 	rx_le = rxd->rx_le;
950 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
951 	rx_le->msk_control =
952 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
953 
954 	return (0);
955 }
956 
957 /*
958  * Set media options.
959  */
960 static int
961 msk_mediachange(struct ifnet *ifp)
962 {
963 	struct msk_if_softc *sc_if;
964 	struct mii_data	*mii;
965 	int error;
966 
967 	sc_if = ifp->if_softc;
968 
969 	MSK_IF_LOCK(sc_if);
970 	mii = device_get_softc(sc_if->msk_miibus);
971 	error = mii_mediachg(mii);
972 	MSK_IF_UNLOCK(sc_if);
973 
974 	return (error);
975 }
976 
977 /*
978  * Report current media status.
979  */
980 static void
981 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
982 {
983 	struct msk_if_softc *sc_if;
984 	struct mii_data	*mii;
985 
986 	sc_if = ifp->if_softc;
987 	MSK_IF_LOCK(sc_if);
988 	if ((ifp->if_flags & IFF_UP) == 0) {
989 		MSK_IF_UNLOCK(sc_if);
990 		return;
991 	}
992 	mii = device_get_softc(sc_if->msk_miibus);
993 
994 	mii_pollstat(mii);
995 	MSK_IF_UNLOCK(sc_if);
996 	ifmr->ifm_active = mii->mii_media_active;
997 	ifmr->ifm_status = mii->mii_media_status;
998 }
999 
1000 static int
1001 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1002 {
1003 	struct msk_if_softc *sc_if;
1004 	struct ifreq *ifr;
1005 	struct mii_data	*mii;
1006 	int error, mask, reinit;
1007 
1008 	sc_if = ifp->if_softc;
1009 	ifr = (struct ifreq *)data;
1010 	error = 0;
1011 
1012 	switch(command) {
1013 	case SIOCSIFMTU:
1014 		MSK_IF_LOCK(sc_if);
1015 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
1016 			error = EINVAL;
1017 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1018  			if (ifr->ifr_mtu > ETHERMTU) {
1019 				if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
1020 					error = EINVAL;
1021 					MSK_IF_UNLOCK(sc_if);
1022 					break;
1023 				}
1024 				if ((sc_if->msk_flags &
1025 				    MSK_FLAG_JUMBO_NOCSUM) != 0) {
1026 					ifp->if_hwassist &=
1027 					    ~(MSK_CSUM_FEATURES | CSUM_TSO);
1028 					ifp->if_capenable &=
1029 					    ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1030 					VLAN_CAPABILITIES(ifp);
1031 				}
1032 			}
1033 			ifp->if_mtu = ifr->ifr_mtu;
1034 			msk_init_locked(sc_if);
1035 		}
1036 		MSK_IF_UNLOCK(sc_if);
1037 		break;
1038 	case SIOCSIFFLAGS:
1039 		MSK_IF_LOCK(sc_if);
1040 		if ((ifp->if_flags & IFF_UP) != 0) {
1041 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1042 			    ((ifp->if_flags ^ sc_if->msk_if_flags) &
1043 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1044 				msk_rxfilter(sc_if);
1045 			else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0)
1046 				msk_init_locked(sc_if);
1047 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1048 			msk_stop(sc_if);
1049 		sc_if->msk_if_flags = ifp->if_flags;
1050 		MSK_IF_UNLOCK(sc_if);
1051 		break;
1052 	case SIOCADDMULTI:
1053 	case SIOCDELMULTI:
1054 		MSK_IF_LOCK(sc_if);
1055 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1056 			msk_rxfilter(sc_if);
1057 		MSK_IF_UNLOCK(sc_if);
1058 		break;
1059 	case SIOCGIFMEDIA:
1060 	case SIOCSIFMEDIA:
1061 		mii = device_get_softc(sc_if->msk_miibus);
1062 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1063 		break;
1064 	case SIOCSIFCAP:
1065 		reinit = 0;
1066 		MSK_IF_LOCK(sc_if);
1067 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1068 		if ((mask & IFCAP_TXCSUM) != 0 &&
1069 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1070 			ifp->if_capenable ^= IFCAP_TXCSUM;
1071 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
1072 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
1073 			else
1074 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
1075 		}
1076 		if ((mask & IFCAP_RXCSUM) != 0 &&
1077 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
1078 			ifp->if_capenable ^= IFCAP_RXCSUM;
1079 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1080 				reinit = 1;
1081 		}
1082 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1083 		    (IFCAP_VLAN_HWCSUM & ifp->if_capabilities) != 0)
1084 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1085 		if ((mask & IFCAP_TSO4) != 0 &&
1086 		    (IFCAP_TSO4 & ifp->if_capabilities) != 0) {
1087 			ifp->if_capenable ^= IFCAP_TSO4;
1088 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1089 				ifp->if_hwassist |= CSUM_TSO;
1090 			else
1091 				ifp->if_hwassist &= ~CSUM_TSO;
1092 		}
1093 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1094 		    (IFCAP_VLAN_HWTSO & ifp->if_capabilities) != 0)
1095 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1096 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1097 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
1098 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1099 			if ((IFCAP_VLAN_HWTAGGING & ifp->if_capenable) == 0)
1100 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1101 			msk_setvlan(sc_if, ifp);
1102 		}
1103 		if (ifp->if_mtu > ETHERMTU &&
1104 		    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
1105 			ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
1106 			ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1107 		}
1108 		VLAN_CAPABILITIES(ifp);
1109 		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1110 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1111 			msk_init_locked(sc_if);
1112 		}
1113 		MSK_IF_UNLOCK(sc_if);
1114 		break;
1115 	default:
1116 		error = ether_ioctl(ifp, command, data);
1117 		break;
1118 	}
1119 
1120 	return (error);
1121 }
1122 
1123 static int
1124 mskc_probe(device_t dev)
1125 {
1126 	struct msk_product *mp;
1127 	uint16_t vendor, devid;
1128 	int i;
1129 
1130 	vendor = pci_get_vendor(dev);
1131 	devid = pci_get_device(dev);
1132 	mp = msk_products;
1133 	for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
1134 	    i++, mp++) {
1135 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1136 			device_set_desc(dev, mp->msk_name);
1137 			return (BUS_PROBE_DEFAULT);
1138 		}
1139 	}
1140 
1141 	return (ENXIO);
1142 }
1143 
1144 static int
1145 mskc_setup_rambuffer(struct msk_softc *sc)
1146 {
1147 	int next;
1148 	int i;
1149 
1150 	/* Get adapter SRAM size. */
1151 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1152 	if (bootverbose)
1153 		device_printf(sc->msk_dev,
1154 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1155 	if (sc->msk_ramsize == 0)
1156 		return (0);
1157 
1158 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1159 	/*
1160 	 * Give receiver 2/3 of memory and round down to the multiple
1161 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
1162 	 * of 1024.
1163 	 */
1164 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1165 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1166 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1167 		sc->msk_rxqstart[i] = next;
1168 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1169 		next = sc->msk_rxqend[i] + 1;
1170 		sc->msk_txqstart[i] = next;
1171 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1172 		next = sc->msk_txqend[i] + 1;
1173 		if (bootverbose) {
1174 			device_printf(sc->msk_dev,
1175 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1176 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1177 			    sc->msk_rxqend[i]);
1178 			device_printf(sc->msk_dev,
1179 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1180 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1181 			    sc->msk_txqend[i]);
1182 		}
1183 	}
1184 
1185 	return (0);
1186 }
1187 
1188 static void
1189 msk_phy_power(struct msk_softc *sc, int mode)
1190 {
1191 	uint32_t our, val;
1192 	int i;
1193 
1194 	switch (mode) {
1195 	case MSK_PHY_POWERUP:
1196 		/* Switch power to VCC (WA for VAUX problem). */
1197 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1198 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1199 		/* Disable Core Clock Division, set Clock Select to 0. */
1200 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1201 
1202 		val = 0;
1203 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1204 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1205 			/* Enable bits are inverted. */
1206 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1207 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1208 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1209 		}
1210 		/*
1211 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1212 		 */
1213 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1214 
1215 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1216 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1217 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1218 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1219 				/* Deassert Low Power for 1st PHY. */
1220 				val |= PCI_Y2_PHY1_COMA;
1221 				if (sc->msk_num_port > 1)
1222 					val |= PCI_Y2_PHY2_COMA;
1223 			}
1224 		}
1225 		/* Release PHY from PowerDown/COMA mode. */
1226 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1227 		switch (sc->msk_hw_id) {
1228 		case CHIP_ID_YUKON_EC_U:
1229 		case CHIP_ID_YUKON_EX:
1230 		case CHIP_ID_YUKON_FE_P:
1231 		case CHIP_ID_YUKON_UL_2:
1232 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_OFF);
1233 
1234 			/* Enable all clocks. */
1235 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1236 			our = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1237 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1238 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1239 			/* Set all bits to 0 except bits 15..12. */
1240 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, our);
1241 			our = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1242 			our &= PCI_CTL_TIM_VMAIN_AV_MSK;
1243 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, our);
1244 			CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1245 			/*
1246 			 * Disable status race, workaround for
1247 			 * Yukon EC Ultra & Yukon EX.
1248 			 */
1249 			val = CSR_READ_4(sc, B2_GP_IO);
1250 			val |= GLB_GPIO_STAT_RACE_DIS;
1251 			CSR_WRITE_4(sc, B2_GP_IO, val);
1252 			CSR_READ_4(sc, B2_GP_IO);
1253 			break;
1254 		default:
1255 			break;
1256 		}
1257 		for (i = 0; i < sc->msk_num_port; i++) {
1258 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1259 			    GMLC_RST_SET);
1260 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1261 			    GMLC_RST_CLR);
1262 		}
1263 		break;
1264 	case MSK_PHY_POWERDOWN:
1265 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1266 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1267 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1268 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1269 			val &= ~PCI_Y2_PHY1_COMA;
1270 			if (sc->msk_num_port > 1)
1271 				val &= ~PCI_Y2_PHY2_COMA;
1272 		}
1273 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1274 
1275 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1276 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1277 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1278 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1279 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1280 			/* Enable bits are inverted. */
1281 			val = 0;
1282 		}
1283 		/*
1284 		 * Disable PCI & Core Clock, disable clock gating for
1285 		 * both Links.
1286 		 */
1287 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1288 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1289 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1290 		break;
1291 	default:
1292 		break;
1293 	}
1294 }
1295 
1296 static void
1297 mskc_reset(struct msk_softc *sc)
1298 {
1299 	bus_addr_t addr;
1300 	uint16_t status;
1301 	uint32_t val;
1302 	int i;
1303 
1304 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1305 
1306 	/* Disable ASF. */
1307 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX) {
1308 		status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1309 		/* Clear AHB bridge & microcontroller reset. */
1310 		status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1311 		    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1312 		/* Clear ASF microcontroller state. */
1313 		status &= ~ Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1314 		CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1315 	} else
1316 		CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1317 	CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1318 
1319 	/*
1320 	 * Since we disabled ASF, S/W reset is required for Power Management.
1321 	 */
1322 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1323 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1324 
1325 	/* Clear all error bits in the PCI status register. */
1326 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1327 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1328 
1329 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1330 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1331 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1332 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1333 
1334 	switch (sc->msk_bustype) {
1335 	case MSK_PEX_BUS:
1336 		/* Clear all PEX errors. */
1337 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1338 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1339 		if ((val & PEX_RX_OV) != 0) {
1340 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1341 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1342 		}
1343 		break;
1344 	case MSK_PCI_BUS:
1345 	case MSK_PCIX_BUS:
1346 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1347 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1348 		if (val == 0)
1349 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1350 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1351 			/* Set Cache Line Size opt. */
1352 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1353 			val |= PCI_CLS_OPT;
1354 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1355 		}
1356 		break;
1357 	}
1358 	/* Set PHY power state. */
1359 	msk_phy_power(sc, MSK_PHY_POWERUP);
1360 
1361 	/* Reset GPHY/GMAC Control */
1362 	for (i = 0; i < sc->msk_num_port; i++) {
1363 		/* GPHY Control reset. */
1364 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1365 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1366 		/* GMAC Control reset. */
1367 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1368 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1369 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1370 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX)
1371 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1372 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1373 			    GMC_BYP_RETR_ON);
1374 	}
1375 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1376 
1377 	/* LED On. */
1378 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1379 
1380 	/* Clear TWSI IRQ. */
1381 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1382 
1383 	/* Turn off hardware timer. */
1384 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1385 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1386 
1387 	/* Turn off descriptor polling. */
1388 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1389 
1390 	/* Turn off time stamps. */
1391 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1392 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1393 
1394 	/* Configure timeout values. */
1395 	for (i = 0; i < sc->msk_num_port; i++) {
1396 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1397 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1398 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1399 		    MSK_RI_TO_53);
1400 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1401 		    MSK_RI_TO_53);
1402 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1403 		    MSK_RI_TO_53);
1404 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1405 		    MSK_RI_TO_53);
1406 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1407 		    MSK_RI_TO_53);
1408 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1409 		    MSK_RI_TO_53);
1410 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1411 		    MSK_RI_TO_53);
1412 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1413 		    MSK_RI_TO_53);
1414 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1415 		    MSK_RI_TO_53);
1416 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1417 		    MSK_RI_TO_53);
1418 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1419 		    MSK_RI_TO_53);
1420 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1421 		    MSK_RI_TO_53);
1422 	}
1423 
1424 	/* Disable all interrupts. */
1425 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1426 	CSR_READ_4(sc, B0_HWE_IMSK);
1427 	CSR_WRITE_4(sc, B0_IMSK, 0);
1428 	CSR_READ_4(sc, B0_IMSK);
1429 
1430         /*
1431          * On dual port PCI-X card, there is an problem where status
1432          * can be received out of order due to split transactions.
1433          */
1434 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1435 		uint16_t pcix_cmd;
1436 
1437 		pcix_cmd = pci_read_config(sc->msk_dev,
1438 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1439 		/* Clear Max Outstanding Split Transactions. */
1440 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1441 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1442 		pci_write_config(sc->msk_dev,
1443 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1444 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1445         }
1446 	if (sc->msk_expcap != 0) {
1447 		/* Change Max. Read Request Size to 2048 bytes. */
1448 		if (pci_get_max_read_req(sc->msk_dev) == 512)
1449 			pci_set_max_read_req(sc->msk_dev, 2048);
1450 	}
1451 
1452 	/* Clear status list. */
1453 	bzero(sc->msk_stat_ring,
1454 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1455 	sc->msk_stat_cons = 0;
1456 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1457 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1458 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1459 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1460 	/* Set the status list base address. */
1461 	addr = sc->msk_stat_ring_paddr;
1462 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1463 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1464 	/* Set the status list last index. */
1465 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1466 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1467 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1468 		/* WA for dev. #4.3 */
1469 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1470 		/* WA for dev. #4.18 */
1471 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1472 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1473 	} else {
1474 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1475 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1476 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1477 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1478 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1479 		else
1480 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1481 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1482 	}
1483 	/*
1484 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1485 	 */
1486 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1487 
1488 	/* Enable status unit. */
1489 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1490 
1491 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1492 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1493 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1494 }
1495 
1496 static int
1497 msk_probe(device_t dev)
1498 {
1499 	struct msk_softc *sc;
1500 	char desc[100];
1501 
1502 	sc = device_get_softc(device_get_parent(dev));
1503 	/*
1504 	 * Not much to do here. We always know there will be
1505 	 * at least one GMAC present, and if there are two,
1506 	 * mskc_attach() will create a second device instance
1507 	 * for us.
1508 	 */
1509 	snprintf(desc, sizeof(desc),
1510 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1511 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1512 	    sc->msk_hw_rev);
1513 	device_set_desc_copy(dev, desc);
1514 
1515 	return (BUS_PROBE_DEFAULT);
1516 }
1517 
1518 static int
1519 msk_attach(device_t dev)
1520 {
1521 	struct msk_softc *sc;
1522 	struct msk_if_softc *sc_if;
1523 	struct ifnet *ifp;
1524 	struct msk_mii_data *mmd;
1525 	int i, port, error;
1526 	uint8_t eaddr[6];
1527 
1528 	if (dev == NULL)
1529 		return (EINVAL);
1530 
1531 	error = 0;
1532 	sc_if = device_get_softc(dev);
1533 	sc = device_get_softc(device_get_parent(dev));
1534 	mmd = device_get_ivars(dev);
1535 	port = mmd->port;
1536 
1537 	sc_if->msk_if_dev = dev;
1538 	sc_if->msk_port = port;
1539 	sc_if->msk_softc = sc;
1540 	sc_if->msk_flags = sc->msk_pflags;
1541 	sc->msk_if[port] = sc_if;
1542 	/* Setup Tx/Rx queue register offsets. */
1543 	if (port == MSK_PORT_A) {
1544 		sc_if->msk_txq = Q_XA1;
1545 		sc_if->msk_txsq = Q_XS1;
1546 		sc_if->msk_rxq = Q_R1;
1547 	} else {
1548 		sc_if->msk_txq = Q_XA2;
1549 		sc_if->msk_txsq = Q_XS2;
1550 		sc_if->msk_rxq = Q_R2;
1551 	}
1552 
1553 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1554 	msk_sysctl_node(sc_if);
1555 
1556 	if ((error = msk_txrx_dma_alloc(sc_if) != 0))
1557 		goto fail;
1558 	msk_rx_dma_jalloc(sc_if);
1559 
1560 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1561 	if (ifp == NULL) {
1562 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1563 		error = ENOSPC;
1564 		goto fail;
1565 	}
1566 	ifp->if_softc = sc_if;
1567 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1568 	ifp->if_mtu = ETHERMTU;
1569 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1570 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1571 	/*
1572 	 * Enable Rx checksum offloading if controller supports
1573 	 * new descriptor formant and controller is not Yukon XL.
1574 	 */
1575 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
1576 	    sc->msk_hw_id != CHIP_ID_YUKON_XL)
1577 		ifp->if_capabilities |= IFCAP_RXCSUM;
1578 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1579 	    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1580 		ifp->if_capabilities |= IFCAP_RXCSUM;
1581 	ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1582 	ifp->if_capenable = ifp->if_capabilities;
1583 	ifp->if_ioctl = msk_ioctl;
1584 	ifp->if_start = msk_start;
1585 	ifp->if_init = msk_init;
1586 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1587 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1588 	IFQ_SET_READY(&ifp->if_snd);
1589 	/*
1590 	 * Get station address for this interface. Note that
1591 	 * dual port cards actually come with three station
1592 	 * addresses: one for each port, plus an extra. The
1593 	 * extra one is used by the SysKonnect driver software
1594 	 * as a 'virtual' station address for when both ports
1595 	 * are operating in failover mode. Currently we don't
1596 	 * use this extra address.
1597 	 */
1598 	MSK_IF_LOCK(sc_if);
1599 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1600 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1601 
1602 	/*
1603 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1604 	 */
1605 	MSK_IF_UNLOCK(sc_if);
1606 	ether_ifattach(ifp, eaddr);
1607 	MSK_IF_LOCK(sc_if);
1608 
1609 	/* VLAN capability setup */
1610 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1611 	if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) {
1612 		/*
1613 		 * Due to Tx checksum offload hardware bugs, msk(4) manually
1614 		 * computes checksum for short frames. For VLAN tagged frames
1615 		 * this workaround does not work so disable checksum offload
1616 		 * for VLAN interface.
1617 		 */
1618         	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO;
1619 		/*
1620 		 * Enable Rx checksum offloading for VLAN taggedd frames
1621 		 * if controller support new descriptor format.
1622 		 */
1623 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1624 		    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1625 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1626 	}
1627 	ifp->if_capenable = ifp->if_capabilities;
1628 
1629 	/*
1630 	 * Tell the upper layer(s) we support long frames.
1631 	 * Must appear after the call to ether_ifattach() because
1632 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1633 	 */
1634         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1635 
1636 	/*
1637 	 * Do miibus setup.
1638 	 */
1639 	MSK_IF_UNLOCK(sc_if);
1640 	error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
1641 	    msk_mediastatus);
1642 	if (error != 0) {
1643 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1644 		ether_ifdetach(ifp);
1645 		error = ENXIO;
1646 		goto fail;
1647 	}
1648 
1649 fail:
1650 	if (error != 0) {
1651 		/* Access should be ok even though lock has been dropped */
1652 		sc->msk_if[port] = NULL;
1653 		msk_detach(dev);
1654 	}
1655 
1656 	return (error);
1657 }
1658 
1659 /*
1660  * Attach the interface. Allocate softc structures, do ifmedia
1661  * setup and ethernet/BPF attach.
1662  */
1663 static int
1664 mskc_attach(device_t dev)
1665 {
1666 	struct msk_softc *sc;
1667 	struct msk_mii_data *mmd;
1668 	int error, msic, msir, reg;
1669 
1670 	sc = device_get_softc(dev);
1671 	sc->msk_dev = dev;
1672 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1673 	    MTX_DEF);
1674 
1675 	/*
1676 	 * Map control/status registers.
1677 	 */
1678 	pci_enable_busmaster(dev);
1679 
1680 	/* Allocate I/O resource */
1681 #ifdef MSK_USEIOSPACE
1682 	sc->msk_res_spec = msk_res_spec_io;
1683 #else
1684 	sc->msk_res_spec = msk_res_spec_mem;
1685 #endif
1686 	sc->msk_irq_spec = msk_irq_spec_legacy;
1687 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1688 	if (error) {
1689 		if (sc->msk_res_spec == msk_res_spec_mem)
1690 			sc->msk_res_spec = msk_res_spec_io;
1691 		else
1692 			sc->msk_res_spec = msk_res_spec_mem;
1693 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1694 		if (error) {
1695 			device_printf(dev, "couldn't allocate %s resources\n",
1696 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1697 			    "I/O");
1698 			mtx_destroy(&sc->msk_mtx);
1699 			return (ENXIO);
1700 		}
1701 	}
1702 
1703 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1704 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1705 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1706 	/* Bail out if chip is not recognized. */
1707 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1708 	    sc->msk_hw_id > CHIP_ID_YUKON_UL_2 ||
1709 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1710 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1711 		    sc->msk_hw_id, sc->msk_hw_rev);
1712 		mtx_destroy(&sc->msk_mtx);
1713 		return (ENXIO);
1714 	}
1715 
1716 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1717 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1718 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1719 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1720 	    "max number of Rx events to process");
1721 
1722 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1723 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1724 	    "process_limit", &sc->msk_process_limit);
1725 	if (error == 0) {
1726 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1727 		    sc->msk_process_limit > MSK_PROC_MAX) {
1728 			device_printf(dev, "process_limit value out of range; "
1729 			    "using default: %d\n", MSK_PROC_DEFAULT);
1730 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1731 		}
1732 	}
1733 
1734 	sc->msk_int_holdoff = MSK_INT_HOLDOFF_DEFAULT;
1735 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
1736 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
1737 	    "int_holdoff", CTLFLAG_RW, &sc->msk_int_holdoff, 0,
1738 	    "Maximum number of time to delay interrupts");
1739 	resource_int_value(device_get_name(dev), device_get_unit(dev),
1740 	    "int_holdoff", &sc->msk_int_holdoff);
1741 
1742 	/* Soft reset. */
1743 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1744 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1745 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1746 	/* Check number of MACs. */
1747 	sc->msk_num_port = 1;
1748 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1749 	    CFG_DUAL_MAC_MSK) {
1750 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1751 			sc->msk_num_port++;
1752 	}
1753 
1754 	/* Check bus type. */
1755 	if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0) {
1756 		sc->msk_bustype = MSK_PEX_BUS;
1757 		sc->msk_expcap = reg;
1758 	} else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0) {
1759 		sc->msk_bustype = MSK_PCIX_BUS;
1760 		sc->msk_pcixcap = reg;
1761 	} else
1762 		sc->msk_bustype = MSK_PCI_BUS;
1763 
1764 	switch (sc->msk_hw_id) {
1765 	case CHIP_ID_YUKON_EC:
1766 		sc->msk_clock = 125;	/* 125 MHz */
1767 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1768 		break;
1769 	case CHIP_ID_YUKON_EC_U:
1770 		sc->msk_clock = 125;	/* 125 MHz */
1771 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM;
1772 		break;
1773 	case CHIP_ID_YUKON_EX:
1774 		sc->msk_clock = 125;	/* 125 MHz */
1775 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1776 		    MSK_FLAG_AUTOTX_CSUM;
1777 		/*
1778 		 * Yukon Extreme seems to have silicon bug for
1779 		 * automatic Tx checksum calculation capability.
1780 		 */
1781 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
1782 			sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM;
1783 		/*
1784 		 * Yukon Extreme A0 could not use store-and-forward
1785 		 * for jumbo frames, so disable Tx checksum
1786 		 * offloading for jumbo frames.
1787 		 */
1788 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
1789 			sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM;
1790 		break;
1791 	case CHIP_ID_YUKON_FE:
1792 		sc->msk_clock = 100;	/* 100 MHz */
1793 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1794 		break;
1795 	case CHIP_ID_YUKON_FE_P:
1796 		sc->msk_clock = 50;	/* 50 MHz */
1797 		sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 |
1798 		    MSK_FLAG_AUTOTX_CSUM;
1799 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1800 			/*
1801 			 * XXX
1802 			 * FE+ A0 has status LE writeback bug so msk(4)
1803 			 * does not rely on status word of received frame
1804 			 * in msk_rxeof() which in turn disables all
1805 			 * hardware assistance bits reported by the status
1806 			 * word as well as validity of the recevied frame.
1807 			 * Just pass received frames to upper stack with
1808 			 * minimal test and let upper stack handle them.
1809 			 */
1810 			sc->msk_pflags |= MSK_FLAG_NOHWVLAN |
1811 			    MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM;
1812 		}
1813 		break;
1814 	case CHIP_ID_YUKON_XL:
1815 		sc->msk_clock = 156;	/* 156 MHz */
1816 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1817 		break;
1818 	case CHIP_ID_YUKON_UL_2:
1819 		sc->msk_clock = 125;	/* 125 MHz */
1820 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1821 		break;
1822 	default:
1823 		sc->msk_clock = 156;	/* 156 MHz */
1824 		break;
1825 	}
1826 
1827 	/* Allocate IRQ resources. */
1828 	msic = pci_msi_count(dev);
1829 	if (bootverbose)
1830 		device_printf(dev, "MSI count : %d\n", msic);
1831 	if (legacy_intr != 0)
1832 		msi_disable = 1;
1833 	if (msi_disable == 0 && msic > 0) {
1834 		msir = 1;
1835 		if (pci_alloc_msi(dev, &msir) == 0) {
1836 			if (msir == 1) {
1837 				sc->msk_pflags |= MSK_FLAG_MSI;
1838 				sc->msk_irq_spec = msk_irq_spec_msi;
1839 			} else
1840 				pci_release_msi(dev);
1841 		}
1842 	}
1843 
1844 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1845 	if (error) {
1846 		device_printf(dev, "couldn't allocate IRQ resources\n");
1847 		goto fail;
1848 	}
1849 
1850 	if ((error = msk_status_dma_alloc(sc)) != 0)
1851 		goto fail;
1852 
1853 	/* Set base interrupt mask. */
1854 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1855 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1856 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1857 
1858 	/* Reset the adapter. */
1859 	mskc_reset(sc);
1860 
1861 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1862 		goto fail;
1863 
1864 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1865 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1866 		device_printf(dev, "failed to add child for PORT_A\n");
1867 		error = ENXIO;
1868 		goto fail;
1869 	}
1870 	mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1871 	if (mmd == NULL) {
1872 		device_printf(dev, "failed to allocate memory for "
1873 		    "ivars of PORT_A\n");
1874 		error = ENXIO;
1875 		goto fail;
1876 	}
1877 	mmd->port = MSK_PORT_A;
1878 	mmd->pmd = sc->msk_pmd;
1879 	 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S' || sc->msk_pmd == 'P')
1880 		mmd->mii_flags |= MIIF_HAVEFIBER;
1881 	device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd);
1882 
1883 	if (sc->msk_num_port > 1) {
1884 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1885 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1886 			device_printf(dev, "failed to add child for PORT_B\n");
1887 			error = ENXIO;
1888 			goto fail;
1889 		}
1890 		mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1891 		if (mmd == NULL) {
1892 			device_printf(dev, "failed to allocate memory for "
1893 			    "ivars of PORT_B\n");
1894 			error = ENXIO;
1895 			goto fail;
1896 		}
1897 		mmd->port = MSK_PORT_B;
1898 		mmd->pmd = sc->msk_pmd;
1899 	 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S' || sc->msk_pmd == 'P')
1900 			mmd->mii_flags |= MIIF_HAVEFIBER;
1901 		device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd);
1902 	}
1903 
1904 	error = bus_generic_attach(dev);
1905 	if (error) {
1906 		device_printf(dev, "failed to attach port(s)\n");
1907 		goto fail;
1908 	}
1909 
1910 	/* Hook interrupt last to avoid having to lock softc. */
1911 	error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1912 	    INTR_MPSAFE, NULL, msk_intr, sc, &sc->msk_intrhand);
1913 	if (error != 0) {
1914 		device_printf(dev, "couldn't set up interrupt handler\n");
1915 		goto fail;
1916 	}
1917 fail:
1918 	if (error != 0)
1919 		mskc_detach(dev);
1920 
1921 	return (error);
1922 }
1923 
1924 /*
1925  * Shutdown hardware and free up resources. This can be called any
1926  * time after the mutex has been initialized. It is called in both
1927  * the error case in attach and the normal detach case so it needs
1928  * to be careful about only freeing resources that have actually been
1929  * allocated.
1930  */
1931 static int
1932 msk_detach(device_t dev)
1933 {
1934 	struct msk_softc *sc;
1935 	struct msk_if_softc *sc_if;
1936 	struct ifnet *ifp;
1937 
1938 	sc_if = device_get_softc(dev);
1939 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
1940 	    ("msk mutex not initialized in msk_detach"));
1941 	MSK_IF_LOCK(sc_if);
1942 
1943 	ifp = sc_if->msk_ifp;
1944 	if (device_is_attached(dev)) {
1945 		/* XXX */
1946 		sc_if->msk_flags |= MSK_FLAG_DETACH;
1947 		msk_stop(sc_if);
1948 		/* Can't hold locks while calling detach. */
1949 		MSK_IF_UNLOCK(sc_if);
1950 		callout_drain(&sc_if->msk_tick_ch);
1951 		ether_ifdetach(ifp);
1952 		MSK_IF_LOCK(sc_if);
1953 	}
1954 
1955 	/*
1956 	 * We're generally called from mskc_detach() which is using
1957 	 * device_delete_child() to get to here. It's already trashed
1958 	 * miibus for us, so don't do it here or we'll panic.
1959 	 *
1960 	 * if (sc_if->msk_miibus != NULL) {
1961 	 * 	device_delete_child(dev, sc_if->msk_miibus);
1962 	 * 	sc_if->msk_miibus = NULL;
1963 	 * }
1964 	 */
1965 
1966 	msk_rx_dma_jfree(sc_if);
1967 	msk_txrx_dma_free(sc_if);
1968 	bus_generic_detach(dev);
1969 
1970 	if (ifp)
1971 		if_free(ifp);
1972 	sc = sc_if->msk_softc;
1973 	sc->msk_if[sc_if->msk_port] = NULL;
1974 	MSK_IF_UNLOCK(sc_if);
1975 
1976 	return (0);
1977 }
1978 
1979 static int
1980 mskc_detach(device_t dev)
1981 {
1982 	struct msk_softc *sc;
1983 
1984 	sc = device_get_softc(dev);
1985 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
1986 
1987 	if (device_is_alive(dev)) {
1988 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
1989 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
1990 			    M_DEVBUF);
1991 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
1992 		}
1993 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
1994 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
1995 			    M_DEVBUF);
1996 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
1997 		}
1998 		bus_generic_detach(dev);
1999 	}
2000 
2001 	/* Disable all interrupts. */
2002 	CSR_WRITE_4(sc, B0_IMSK, 0);
2003 	CSR_READ_4(sc, B0_IMSK);
2004 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2005 	CSR_READ_4(sc, B0_HWE_IMSK);
2006 
2007 	/* LED Off. */
2008 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
2009 
2010 	/* Put hardware reset. */
2011 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2012 
2013 	msk_status_dma_free(sc);
2014 
2015 	if (sc->msk_intrhand) {
2016 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand);
2017 		sc->msk_intrhand = NULL;
2018 	}
2019 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
2020 	if ((sc->msk_pflags & MSK_FLAG_MSI) != 0)
2021 		pci_release_msi(dev);
2022 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
2023 	mtx_destroy(&sc->msk_mtx);
2024 
2025 	return (0);
2026 }
2027 
2028 struct msk_dmamap_arg {
2029 	bus_addr_t	msk_busaddr;
2030 };
2031 
2032 static void
2033 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2034 {
2035 	struct msk_dmamap_arg *ctx;
2036 
2037 	if (error != 0)
2038 		return;
2039 	ctx = arg;
2040 	ctx->msk_busaddr = segs[0].ds_addr;
2041 }
2042 
2043 /* Create status DMA region. */
2044 static int
2045 msk_status_dma_alloc(struct msk_softc *sc)
2046 {
2047 	struct msk_dmamap_arg ctx;
2048 	int error;
2049 
2050 	error = bus_dma_tag_create(
2051 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
2052 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
2053 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2054 		    BUS_SPACE_MAXADDR,		/* highaddr */
2055 		    NULL, NULL,			/* filter, filterarg */
2056 		    MSK_STAT_RING_SZ,		/* maxsize */
2057 		    1,				/* nsegments */
2058 		    MSK_STAT_RING_SZ,		/* maxsegsize */
2059 		    0,				/* flags */
2060 		    NULL, NULL,			/* lockfunc, lockarg */
2061 		    &sc->msk_stat_tag);
2062 	if (error != 0) {
2063 		device_printf(sc->msk_dev,
2064 		    "failed to create status DMA tag\n");
2065 		return (error);
2066 	}
2067 
2068 	/* Allocate DMA'able memory and load the DMA map for status ring. */
2069 	error = bus_dmamem_alloc(sc->msk_stat_tag,
2070 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
2071 	    BUS_DMA_ZERO, &sc->msk_stat_map);
2072 	if (error != 0) {
2073 		device_printf(sc->msk_dev,
2074 		    "failed to allocate DMA'able memory for status ring\n");
2075 		return (error);
2076 	}
2077 
2078 	ctx.msk_busaddr = 0;
2079 	error = bus_dmamap_load(sc->msk_stat_tag,
2080 	    sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
2081 	    msk_dmamap_cb, &ctx, 0);
2082 	if (error != 0) {
2083 		device_printf(sc->msk_dev,
2084 		    "failed to load DMA'able memory for status ring\n");
2085 		return (error);
2086 	}
2087 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
2088 
2089 	return (0);
2090 }
2091 
2092 static void
2093 msk_status_dma_free(struct msk_softc *sc)
2094 {
2095 
2096 	/* Destroy status block. */
2097 	if (sc->msk_stat_tag) {
2098 		if (sc->msk_stat_map) {
2099 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
2100 			if (sc->msk_stat_ring) {
2101 				bus_dmamem_free(sc->msk_stat_tag,
2102 				    sc->msk_stat_ring, sc->msk_stat_map);
2103 				sc->msk_stat_ring = NULL;
2104 			}
2105 			sc->msk_stat_map = NULL;
2106 		}
2107 		bus_dma_tag_destroy(sc->msk_stat_tag);
2108 		sc->msk_stat_tag = NULL;
2109 	}
2110 }
2111 
2112 static int
2113 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2114 {
2115 	struct msk_dmamap_arg ctx;
2116 	struct msk_txdesc *txd;
2117 	struct msk_rxdesc *rxd;
2118 	bus_size_t rxalign;
2119 	int error, i;
2120 
2121 	/* Create parent DMA tag. */
2122 	/*
2123 	 * XXX
2124 	 * It seems that Yukon II supports full 64bits DMA operations. But
2125 	 * it needs two descriptors(list elements) for 64bits DMA operations.
2126 	 * Since we don't know what DMA address mappings(32bits or 64bits)
2127 	 * would be used in advance for each mbufs, we limits its DMA space
2128 	 * to be in range of 32bits address space. Otherwise, we should check
2129 	 * what DMA address is used and chain another descriptor for the
2130 	 * 64bits DMA operation. This also means descriptor ring size is
2131 	 * variable. Limiting DMA address to be in 32bit address space greatly
2132 	 * simplyfies descriptor handling and possibly would increase
2133 	 * performance a bit due to efficient handling of descriptors.
2134 	 * Apart from harassing checksum offloading mechanisms, it seems
2135 	 * it's really bad idea to use a seperate descriptor for 64bit
2136 	 * DMA operation to save small descriptor memory. Anyway, I've
2137 	 * never seen these exotic scheme on ethernet interface hardware.
2138 	 */
2139 	error = bus_dma_tag_create(
2140 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2141 		    1, 0,			/* alignment, boundary */
2142 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2143 		    BUS_SPACE_MAXADDR,		/* highaddr */
2144 		    NULL, NULL,			/* filter, filterarg */
2145 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2146 		    0,				/* nsegments */
2147 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2148 		    0,				/* flags */
2149 		    NULL, NULL,			/* lockfunc, lockarg */
2150 		    &sc_if->msk_cdata.msk_parent_tag);
2151 	if (error != 0) {
2152 		device_printf(sc_if->msk_if_dev,
2153 		    "failed to create parent DMA tag\n");
2154 		goto fail;
2155 	}
2156 	/* Create tag for Tx ring. */
2157 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2158 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2159 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2160 		    BUS_SPACE_MAXADDR,		/* highaddr */
2161 		    NULL, NULL,			/* filter, filterarg */
2162 		    MSK_TX_RING_SZ,		/* maxsize */
2163 		    1,				/* nsegments */
2164 		    MSK_TX_RING_SZ,		/* maxsegsize */
2165 		    0,				/* flags */
2166 		    NULL, NULL,			/* lockfunc, lockarg */
2167 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2168 	if (error != 0) {
2169 		device_printf(sc_if->msk_if_dev,
2170 		    "failed to create Tx ring DMA tag\n");
2171 		goto fail;
2172 	}
2173 
2174 	/* Create tag for Rx ring. */
2175 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2176 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2177 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2178 		    BUS_SPACE_MAXADDR,		/* highaddr */
2179 		    NULL, NULL,			/* filter, filterarg */
2180 		    MSK_RX_RING_SZ,		/* maxsize */
2181 		    1,				/* nsegments */
2182 		    MSK_RX_RING_SZ,		/* maxsegsize */
2183 		    0,				/* flags */
2184 		    NULL, NULL,			/* lockfunc, lockarg */
2185 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2186 	if (error != 0) {
2187 		device_printf(sc_if->msk_if_dev,
2188 		    "failed to create Rx ring DMA tag\n");
2189 		goto fail;
2190 	}
2191 
2192 	/* Create tag for Tx buffers. */
2193 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2194 		    1, 0,			/* alignment, boundary */
2195 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2196 		    BUS_SPACE_MAXADDR,		/* highaddr */
2197 		    NULL, NULL,			/* filter, filterarg */
2198 		    MSK_TSO_MAXSIZE,		/* maxsize */
2199 		    MSK_MAXTXSEGS,		/* nsegments */
2200 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2201 		    0,				/* flags */
2202 		    NULL, NULL,			/* lockfunc, lockarg */
2203 		    &sc_if->msk_cdata.msk_tx_tag);
2204 	if (error != 0) {
2205 		device_printf(sc_if->msk_if_dev,
2206 		    "failed to create Tx DMA tag\n");
2207 		goto fail;
2208 	}
2209 
2210 	rxalign = 1;
2211 	/*
2212 	 * Workaround hardware hang which seems to happen when Rx buffer
2213 	 * is not aligned on multiple of FIFO word(8 bytes).
2214 	 */
2215 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2216 		rxalign = MSK_RX_BUF_ALIGN;
2217 	/* Create tag for Rx buffers. */
2218 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2219 		    rxalign, 0,			/* alignment, boundary */
2220 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2221 		    BUS_SPACE_MAXADDR,		/* highaddr */
2222 		    NULL, NULL,			/* filter, filterarg */
2223 		    MCLBYTES,			/* maxsize */
2224 		    1,				/* nsegments */
2225 		    MCLBYTES,			/* maxsegsize */
2226 		    0,				/* flags */
2227 		    NULL, NULL,			/* lockfunc, lockarg */
2228 		    &sc_if->msk_cdata.msk_rx_tag);
2229 	if (error != 0) {
2230 		device_printf(sc_if->msk_if_dev,
2231 		    "failed to create Rx DMA tag\n");
2232 		goto fail;
2233 	}
2234 
2235 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2236 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2237 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2238 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2239 	if (error != 0) {
2240 		device_printf(sc_if->msk_if_dev,
2241 		    "failed to allocate DMA'able memory for Tx ring\n");
2242 		goto fail;
2243 	}
2244 
2245 	ctx.msk_busaddr = 0;
2246 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2247 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2248 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2249 	if (error != 0) {
2250 		device_printf(sc_if->msk_if_dev,
2251 		    "failed to load DMA'able memory for Tx ring\n");
2252 		goto fail;
2253 	}
2254 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2255 
2256 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2257 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2258 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2259 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2260 	if (error != 0) {
2261 		device_printf(sc_if->msk_if_dev,
2262 		    "failed to allocate DMA'able memory for Rx ring\n");
2263 		goto fail;
2264 	}
2265 
2266 	ctx.msk_busaddr = 0;
2267 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2268 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2269 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2270 	if (error != 0) {
2271 		device_printf(sc_if->msk_if_dev,
2272 		    "failed to load DMA'able memory for Rx ring\n");
2273 		goto fail;
2274 	}
2275 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2276 
2277 	/* Create DMA maps for Tx buffers. */
2278 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2279 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2280 		txd->tx_m = NULL;
2281 		txd->tx_dmamap = NULL;
2282 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2283 		    &txd->tx_dmamap);
2284 		if (error != 0) {
2285 			device_printf(sc_if->msk_if_dev,
2286 			    "failed to create Tx dmamap\n");
2287 			goto fail;
2288 		}
2289 	}
2290 	/* Create DMA maps for Rx buffers. */
2291 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2292 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2293 		device_printf(sc_if->msk_if_dev,
2294 		    "failed to create spare Rx dmamap\n");
2295 		goto fail;
2296 	}
2297 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2298 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2299 		rxd->rx_m = NULL;
2300 		rxd->rx_dmamap = NULL;
2301 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2302 		    &rxd->rx_dmamap);
2303 		if (error != 0) {
2304 			device_printf(sc_if->msk_if_dev,
2305 			    "failed to create Rx dmamap\n");
2306 			goto fail;
2307 		}
2308 	}
2309 
2310 fail:
2311 	return (error);
2312 }
2313 
2314 static int
2315 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2316 {
2317 	struct msk_dmamap_arg ctx;
2318 	struct msk_rxdesc *jrxd;
2319 	bus_size_t rxalign;
2320 	int error, i;
2321 
2322 	if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
2323 		sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2324 		device_printf(sc_if->msk_if_dev,
2325 		    "disabling jumbo frame support\n");
2326 		return (0);
2327 	}
2328 	/* Create tag for jumbo Rx ring. */
2329 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2330 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2331 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2332 		    BUS_SPACE_MAXADDR,		/* highaddr */
2333 		    NULL, NULL,			/* filter, filterarg */
2334 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2335 		    1,				/* nsegments */
2336 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2337 		    0,				/* flags */
2338 		    NULL, NULL,			/* lockfunc, lockarg */
2339 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2340 	if (error != 0) {
2341 		device_printf(sc_if->msk_if_dev,
2342 		    "failed to create jumbo Rx ring DMA tag\n");
2343 		goto jumbo_fail;
2344 	}
2345 
2346 	rxalign = 1;
2347 	/*
2348 	 * Workaround hardware hang which seems to happen when Rx buffer
2349 	 * is not aligned on multiple of FIFO word(8 bytes).
2350 	 */
2351 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2352 		rxalign = MSK_RX_BUF_ALIGN;
2353 	/* Create tag for jumbo Rx buffers. */
2354 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2355 		    rxalign, 0,			/* alignment, boundary */
2356 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2357 		    BUS_SPACE_MAXADDR,		/* highaddr */
2358 		    NULL, NULL,			/* filter, filterarg */
2359 		    MJUM9BYTES,			/* maxsize */
2360 		    1,				/* nsegments */
2361 		    MJUM9BYTES,			/* maxsegsize */
2362 		    0,				/* flags */
2363 		    NULL, NULL,			/* lockfunc, lockarg */
2364 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2365 	if (error != 0) {
2366 		device_printf(sc_if->msk_if_dev,
2367 		    "failed to create jumbo Rx DMA tag\n");
2368 		goto jumbo_fail;
2369 	}
2370 
2371 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2372 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2373 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2374 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2375 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2376 	if (error != 0) {
2377 		device_printf(sc_if->msk_if_dev,
2378 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2379 		goto jumbo_fail;
2380 	}
2381 
2382 	ctx.msk_busaddr = 0;
2383 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2384 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2385 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2386 	    msk_dmamap_cb, &ctx, 0);
2387 	if (error != 0) {
2388 		device_printf(sc_if->msk_if_dev,
2389 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2390 		goto jumbo_fail;
2391 	}
2392 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2393 
2394 	/* Create DMA maps for jumbo Rx buffers. */
2395 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2396 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2397 		device_printf(sc_if->msk_if_dev,
2398 		    "failed to create spare jumbo Rx dmamap\n");
2399 		goto jumbo_fail;
2400 	}
2401 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2402 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2403 		jrxd->rx_m = NULL;
2404 		jrxd->rx_dmamap = NULL;
2405 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2406 		    &jrxd->rx_dmamap);
2407 		if (error != 0) {
2408 			device_printf(sc_if->msk_if_dev,
2409 			    "failed to create jumbo Rx dmamap\n");
2410 			goto jumbo_fail;
2411 		}
2412 	}
2413 
2414 	return (0);
2415 
2416 jumbo_fail:
2417 	msk_rx_dma_jfree(sc_if);
2418 	device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2419 	    "due to resource shortage\n");
2420 	sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2421 	return (error);
2422 }
2423 
2424 static void
2425 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2426 {
2427 	struct msk_txdesc *txd;
2428 	struct msk_rxdesc *rxd;
2429 	int i;
2430 
2431 	/* Tx ring. */
2432 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2433 		if (sc_if->msk_cdata.msk_tx_ring_map)
2434 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2435 			    sc_if->msk_cdata.msk_tx_ring_map);
2436 		if (sc_if->msk_cdata.msk_tx_ring_map &&
2437 		    sc_if->msk_rdata.msk_tx_ring)
2438 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2439 			    sc_if->msk_rdata.msk_tx_ring,
2440 			    sc_if->msk_cdata.msk_tx_ring_map);
2441 		sc_if->msk_rdata.msk_tx_ring = NULL;
2442 		sc_if->msk_cdata.msk_tx_ring_map = NULL;
2443 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2444 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2445 	}
2446 	/* Rx ring. */
2447 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2448 		if (sc_if->msk_cdata.msk_rx_ring_map)
2449 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2450 			    sc_if->msk_cdata.msk_rx_ring_map);
2451 		if (sc_if->msk_cdata.msk_rx_ring_map &&
2452 		    sc_if->msk_rdata.msk_rx_ring)
2453 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2454 			    sc_if->msk_rdata.msk_rx_ring,
2455 			    sc_if->msk_cdata.msk_rx_ring_map);
2456 		sc_if->msk_rdata.msk_rx_ring = NULL;
2457 		sc_if->msk_cdata.msk_rx_ring_map = NULL;
2458 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2459 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2460 	}
2461 	/* Tx buffers. */
2462 	if (sc_if->msk_cdata.msk_tx_tag) {
2463 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2464 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2465 			if (txd->tx_dmamap) {
2466 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2467 				    txd->tx_dmamap);
2468 				txd->tx_dmamap = NULL;
2469 			}
2470 		}
2471 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2472 		sc_if->msk_cdata.msk_tx_tag = NULL;
2473 	}
2474 	/* Rx buffers. */
2475 	if (sc_if->msk_cdata.msk_rx_tag) {
2476 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2477 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2478 			if (rxd->rx_dmamap) {
2479 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2480 				    rxd->rx_dmamap);
2481 				rxd->rx_dmamap = NULL;
2482 			}
2483 		}
2484 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2485 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2486 			    sc_if->msk_cdata.msk_rx_sparemap);
2487 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2488 		}
2489 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2490 		sc_if->msk_cdata.msk_rx_tag = NULL;
2491 	}
2492 	if (sc_if->msk_cdata.msk_parent_tag) {
2493 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2494 		sc_if->msk_cdata.msk_parent_tag = NULL;
2495 	}
2496 }
2497 
2498 static void
2499 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2500 {
2501 	struct msk_rxdesc *jrxd;
2502 	int i;
2503 
2504 	/* Jumbo Rx ring. */
2505 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2506 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2507 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2508 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2509 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2510 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2511 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2512 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2513 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2514 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2515 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2516 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2517 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2518 	}
2519 	/* Jumbo Rx buffers. */
2520 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2521 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2522 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2523 			if (jrxd->rx_dmamap) {
2524 				bus_dmamap_destroy(
2525 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2526 				    jrxd->rx_dmamap);
2527 				jrxd->rx_dmamap = NULL;
2528 			}
2529 		}
2530 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2531 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2532 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2533 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2534 		}
2535 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2536 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2537 	}
2538 }
2539 
2540 static int
2541 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2542 {
2543 	struct msk_txdesc *txd, *txd_last;
2544 	struct msk_tx_desc *tx_le;
2545 	struct mbuf *m;
2546 	bus_dmamap_t map;
2547 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2548 	uint32_t control, csum, prod, si;
2549 	uint16_t offset, tcp_offset, tso_mtu;
2550 	int error, i, nseg, tso;
2551 
2552 	MSK_IF_LOCK_ASSERT(sc_if);
2553 
2554 	tcp_offset = offset = 0;
2555 	m = *m_head;
2556 	if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2557 	    (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) ||
2558 	    ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
2559 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) {
2560 		/*
2561 		 * Since mbuf has no protocol specific structure information
2562 		 * in it we have to inspect protocol information here to
2563 		 * setup TSO and checksum offload. I don't know why Marvell
2564 		 * made a such decision in chip design because other GigE
2565 		 * hardwares normally takes care of all these chores in
2566 		 * hardware. However, TSO performance of Yukon II is very
2567 		 * good such that it's worth to implement it.
2568 		 */
2569 		struct ether_header *eh;
2570 		struct ip *ip;
2571 		struct tcphdr *tcp;
2572 
2573 		if (M_WRITABLE(m) == 0) {
2574 			/* Get a writable copy. */
2575 			m = m_dup(*m_head, M_DONTWAIT);
2576 			m_freem(*m_head);
2577 			if (m == NULL) {
2578 				*m_head = NULL;
2579 				return (ENOBUFS);
2580 			}
2581 			*m_head = m;
2582 		}
2583 
2584 		offset = sizeof(struct ether_header);
2585 		m = m_pullup(m, offset);
2586 		if (m == NULL) {
2587 			*m_head = NULL;
2588 			return (ENOBUFS);
2589 		}
2590 		eh = mtod(m, struct ether_header *);
2591 		/* Check if hardware VLAN insertion is off. */
2592 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2593 			offset = sizeof(struct ether_vlan_header);
2594 			m = m_pullup(m, offset);
2595 			if (m == NULL) {
2596 				*m_head = NULL;
2597 				return (ENOBUFS);
2598 			}
2599 		}
2600 		m = m_pullup(m, offset + sizeof(struct ip));
2601 		if (m == NULL) {
2602 			*m_head = NULL;
2603 			return (ENOBUFS);
2604 		}
2605 		ip = (struct ip *)(mtod(m, char *) + offset);
2606 		offset += (ip->ip_hl << 2);
2607 		tcp_offset = offset;
2608 		/*
2609 		 * It seems that Yukon II has Tx checksum offload bug for
2610 		 * small TCP packets that's less than 60 bytes in size
2611 		 * (e.g. TCP window probe packet, pure ACK packet).
2612 		 * Common work around like padding with zeros to make the
2613 		 * frame minimum ethernet frame size didn't work at all.
2614 		 * Instead of disabling checksum offload completely we
2615 		 * resort to S/W checksum routine when we encounter short
2616 		 * TCP frames.
2617 		 * Short UDP packets appear to be handled correctly by
2618 		 * Yukon II. Also I assume this bug does not happen on
2619 		 * controllers that use newer descriptor format or
2620 		 * automatic Tx checksum calaulcation.
2621 		 */
2622 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2623 		    (m->m_pkthdr.len < MSK_MIN_FRAMELEN) &&
2624 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2625 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2626 			if (m == NULL) {
2627 				*m_head = NULL;
2628 				return (ENOBUFS);
2629 			}
2630 			*(uint16_t *)(m->m_data + offset +
2631 			    m->m_pkthdr.csum_data) = in_cksum_skip(m,
2632 			    m->m_pkthdr.len, offset);
2633 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2634 		}
2635 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2636 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2637 			if (m == NULL) {
2638 				*m_head = NULL;
2639 				return (ENOBUFS);
2640 			}
2641 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2642 			offset += (tcp->th_off << 2);
2643 		}
2644 		*m_head = m;
2645 	}
2646 
2647 	prod = sc_if->msk_cdata.msk_tx_prod;
2648 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2649 	txd_last = txd;
2650 	map = txd->tx_dmamap;
2651 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2652 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2653 	if (error == EFBIG) {
2654 		m = m_collapse(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
2655 		if (m == NULL) {
2656 			m_freem(*m_head);
2657 			*m_head = NULL;
2658 			return (ENOBUFS);
2659 		}
2660 		*m_head = m;
2661 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2662 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2663 		if (error != 0) {
2664 			m_freem(*m_head);
2665 			*m_head = NULL;
2666 			return (error);
2667 		}
2668 	} else if (error != 0)
2669 		return (error);
2670 	if (nseg == 0) {
2671 		m_freem(*m_head);
2672 		*m_head = NULL;
2673 		return (EIO);
2674 	}
2675 
2676 	/* Check number of available descriptors. */
2677 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2678 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2679 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2680 		return (ENOBUFS);
2681 	}
2682 
2683 	control = 0;
2684 	tso = 0;
2685 	tx_le = NULL;
2686 
2687 	/* Check TSO support. */
2688 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2689 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2690 			tso_mtu = m->m_pkthdr.tso_segsz;
2691 		else
2692 			tso_mtu = offset + m->m_pkthdr.tso_segsz;
2693 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2694 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2695 			tx_le->msk_addr = htole32(tso_mtu);
2696 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2697 				tx_le->msk_control = htole32(OP_MSS | HW_OWNER);
2698 			else
2699 				tx_le->msk_control =
2700 				    htole32(OP_LRGLEN | HW_OWNER);
2701 			sc_if->msk_cdata.msk_tx_cnt++;
2702 			MSK_INC(prod, MSK_TX_RING_CNT);
2703 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2704 		}
2705 		tso++;
2706 	}
2707 	/* Check if we have a VLAN tag to insert. */
2708 	if ((m->m_flags & M_VLANTAG) != 0) {
2709 		if (tx_le == NULL) {
2710 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2711 			tx_le->msk_addr = htole32(0);
2712 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2713 			    htons(m->m_pkthdr.ether_vtag));
2714 			sc_if->msk_cdata.msk_tx_cnt++;
2715 			MSK_INC(prod, MSK_TX_RING_CNT);
2716 		} else {
2717 			tx_le->msk_control |= htole32(OP_VLAN |
2718 			    htons(m->m_pkthdr.ether_vtag));
2719 		}
2720 		control |= INS_VLAN;
2721 	}
2722 	/* Check if we have to handle checksum offload. */
2723 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2724 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0)
2725 			control |= CALSUM;
2726 		else {
2727 			control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2728 			if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2729 				control |= UDPTCP;
2730 			/* Checksum write position. */
2731 			csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff;
2732 			/* Checksum start position. */
2733 			csum |= (uint32_t)tcp_offset << 16;
2734 			if (csum != sc_if->msk_cdata.msk_last_csum) {
2735 				tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2736 				tx_le->msk_addr = htole32(csum);
2737 				tx_le->msk_control = htole32(1 << 16 |
2738 				    (OP_TCPLISW | HW_OWNER));
2739 				sc_if->msk_cdata.msk_tx_cnt++;
2740 				MSK_INC(prod, MSK_TX_RING_CNT);
2741 				sc_if->msk_cdata.msk_last_csum = csum;
2742 			}
2743 		}
2744 	}
2745 
2746 	si = prod;
2747 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2748 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2749 	if (tso == 0)
2750 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2751 		    OP_PACKET);
2752 	else
2753 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2754 		    OP_LARGESEND);
2755 	sc_if->msk_cdata.msk_tx_cnt++;
2756 	MSK_INC(prod, MSK_TX_RING_CNT);
2757 
2758 	for (i = 1; i < nseg; i++) {
2759 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2760 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2761 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2762 		    OP_BUFFER | HW_OWNER);
2763 		sc_if->msk_cdata.msk_tx_cnt++;
2764 		MSK_INC(prod, MSK_TX_RING_CNT);
2765 	}
2766 	/* Update producer index. */
2767 	sc_if->msk_cdata.msk_tx_prod = prod;
2768 
2769 	/* Set EOP on the last desciptor. */
2770 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2771 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2772 	tx_le->msk_control |= htole32(EOP);
2773 
2774 	/* Turn the first descriptor ownership to hardware. */
2775 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2776 	tx_le->msk_control |= htole32(HW_OWNER);
2777 
2778 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2779 	map = txd_last->tx_dmamap;
2780 	txd_last->tx_dmamap = txd->tx_dmamap;
2781 	txd->tx_dmamap = map;
2782 	txd->tx_m = m;
2783 
2784 	/* Sync descriptors. */
2785 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2786 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2787 	    sc_if->msk_cdata.msk_tx_ring_map,
2788 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2789 
2790 	return (0);
2791 }
2792 
2793 static void
2794 msk_start(struct ifnet *ifp)
2795 {
2796 	struct msk_if_softc *sc_if;
2797 
2798 	sc_if = ifp->if_softc;
2799 	MSK_IF_LOCK(sc_if);
2800 	msk_start_locked(ifp);
2801 	MSK_IF_UNLOCK(sc_if);
2802 }
2803 
2804 static void
2805 msk_start_locked(struct ifnet *ifp)
2806 {
2807 	struct msk_if_softc *sc_if;
2808 	struct mbuf *m_head;
2809 	int enq;
2810 
2811 	sc_if = ifp->if_softc;
2812 	MSK_IF_LOCK_ASSERT(sc_if);
2813 
2814 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2815 	    IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0)
2816 		return;
2817 
2818 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2819 	    sc_if->msk_cdata.msk_tx_cnt <
2820 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2821 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2822 		if (m_head == NULL)
2823 			break;
2824 		/*
2825 		 * Pack the data into the transmit ring. If we
2826 		 * don't have room, set the OACTIVE flag and wait
2827 		 * for the NIC to drain the ring.
2828 		 */
2829 		if (msk_encap(sc_if, &m_head) != 0) {
2830 			if (m_head == NULL)
2831 				break;
2832 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2833 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2834 			break;
2835 		}
2836 
2837 		enq++;
2838 		/*
2839 		 * If there's a BPF listener, bounce a copy of this frame
2840 		 * to him.
2841 		 */
2842 		ETHER_BPF_MTAP(ifp, m_head);
2843 	}
2844 
2845 	if (enq > 0) {
2846 		/* Transmit */
2847 		CSR_WRITE_2(sc_if->msk_softc,
2848 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2849 		    sc_if->msk_cdata.msk_tx_prod);
2850 
2851 		/* Set a timeout in case the chip goes out to lunch. */
2852 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2853 	}
2854 }
2855 
2856 static void
2857 msk_watchdog(struct msk_if_softc *sc_if)
2858 {
2859 	struct ifnet *ifp;
2860 
2861 	MSK_IF_LOCK_ASSERT(sc_if);
2862 
2863 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2864 		return;
2865 	ifp = sc_if->msk_ifp;
2866 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2867 		if (bootverbose)
2868 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2869 			   "(missed link)\n");
2870 		ifp->if_oerrors++;
2871 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2872 		msk_init_locked(sc_if);
2873 		return;
2874 	}
2875 
2876 	if_printf(ifp, "watchdog timeout\n");
2877 	ifp->if_oerrors++;
2878 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2879 	msk_init_locked(sc_if);
2880 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2881 		msk_start_locked(ifp);
2882 }
2883 
2884 static int
2885 mskc_shutdown(device_t dev)
2886 {
2887 	struct msk_softc *sc;
2888 	int i;
2889 
2890 	sc = device_get_softc(dev);
2891 	MSK_LOCK(sc);
2892 	for (i = 0; i < sc->msk_num_port; i++) {
2893 		if (sc->msk_if[i] != NULL)
2894 			msk_stop(sc->msk_if[i]);
2895 	}
2896 
2897 	/* Disable all interrupts. */
2898 	CSR_WRITE_4(sc, B0_IMSK, 0);
2899 	CSR_READ_4(sc, B0_IMSK);
2900 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2901 	CSR_READ_4(sc, B0_HWE_IMSK);
2902 
2903 	/* Put hardware reset. */
2904 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2905 
2906 	MSK_UNLOCK(sc);
2907 	return (0);
2908 }
2909 
2910 static int
2911 mskc_suspend(device_t dev)
2912 {
2913 	struct msk_softc *sc;
2914 	int i;
2915 
2916 	sc = device_get_softc(dev);
2917 
2918 	MSK_LOCK(sc);
2919 
2920 	for (i = 0; i < sc->msk_num_port; i++) {
2921 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2922 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
2923 		    IFF_DRV_RUNNING) != 0))
2924 			msk_stop(sc->msk_if[i]);
2925 	}
2926 
2927 	/* Disable all interrupts. */
2928 	CSR_WRITE_4(sc, B0_IMSK, 0);
2929 	CSR_READ_4(sc, B0_IMSK);
2930 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2931 	CSR_READ_4(sc, B0_HWE_IMSK);
2932 
2933 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
2934 
2935 	/* Put hardware reset. */
2936 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2937 	sc->msk_pflags |= MSK_FLAG_SUSPEND;
2938 
2939 	MSK_UNLOCK(sc);
2940 
2941 	return (0);
2942 }
2943 
2944 static int
2945 mskc_resume(device_t dev)
2946 {
2947 	struct msk_softc *sc;
2948 	int i;
2949 
2950 	sc = device_get_softc(dev);
2951 
2952 	MSK_LOCK(sc);
2953 
2954 	mskc_reset(sc);
2955 	for (i = 0; i < sc->msk_num_port; i++) {
2956 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2957 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) {
2958 			sc->msk_if[i]->msk_ifp->if_drv_flags &=
2959 			    ~IFF_DRV_RUNNING;
2960 			msk_init_locked(sc->msk_if[i]);
2961 		}
2962 	}
2963 	sc->msk_pflags &= ~MSK_FLAG_SUSPEND;
2964 
2965 	MSK_UNLOCK(sc);
2966 
2967 	return (0);
2968 }
2969 
2970 #ifndef __NO_STRICT_ALIGNMENT
2971 static __inline void
2972 msk_fixup_rx(struct mbuf *m)
2973 {
2974         int i;
2975         uint16_t *src, *dst;
2976 
2977 	src = mtod(m, uint16_t *);
2978 	dst = src - 3;
2979 
2980 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2981 		*dst++ = *src++;
2982 
2983 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
2984 }
2985 #endif
2986 
2987 static __inline void
2988 msk_rxcsum(struct msk_if_softc *sc_if, uint32_t control, struct mbuf *m)
2989 {
2990 	struct ether_header *eh;
2991 	struct ip *ip;
2992 	struct udphdr *uh;
2993 	int32_t hlen, len, pktlen, temp32;
2994 	uint16_t csum, *opts;
2995 
2996 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) {
2997 		if ((control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
2998 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2999 			if ((control & CSS_IPV4_CSUM_OK) != 0)
3000 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3001 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3002 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3003 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3004 				    CSUM_PSEUDO_HDR;
3005 				m->m_pkthdr.csum_data = 0xffff;
3006 			}
3007 		}
3008 		return;
3009 	}
3010 	/*
3011 	 * Marvell Yukon controllers that support OP_RXCHKS has known
3012 	 * to have various Rx checksum offloading bugs. These
3013 	 * controllers can be configured to compute simple checksum
3014 	 * at two different positions. So we can compute IP and TCP/UDP
3015 	 * checksum at the same time. We intentionally have controller
3016 	 * compute TCP/UDP checksum twice by specifying the same
3017 	 * checksum start position and compare the result. If the value
3018 	 * is different it would indicate the hardware logic was wrong.
3019 	 */
3020 	if ((sc_if->msk_csum & 0xFFFF) != (sc_if->msk_csum >> 16)) {
3021 		if (bootverbose)
3022 			device_printf(sc_if->msk_if_dev,
3023 			    "Rx checksum value mismatch!\n");
3024 		return;
3025 	}
3026 	pktlen = m->m_pkthdr.len;
3027 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
3028 		return;
3029 	eh = mtod(m, struct ether_header *);
3030 	if (eh->ether_type != htons(ETHERTYPE_IP))
3031 		return;
3032 	ip = (struct ip *)(eh + 1);
3033 	if (ip->ip_v != IPVERSION)
3034 		return;
3035 
3036 	hlen = ip->ip_hl << 2;
3037 	pktlen -= sizeof(struct ether_header);
3038 	if (hlen < sizeof(struct ip))
3039 		return;
3040 	if (ntohs(ip->ip_len) < hlen)
3041 		return;
3042 	if (ntohs(ip->ip_len) != pktlen)
3043 		return;
3044 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
3045 		return;	/* can't handle fragmented packet. */
3046 
3047 	switch (ip->ip_p) {
3048 	case IPPROTO_TCP:
3049 		if (pktlen < (hlen + sizeof(struct tcphdr)))
3050 			return;
3051 		break;
3052 	case IPPROTO_UDP:
3053 		if (pktlen < (hlen + sizeof(struct udphdr)))
3054 			return;
3055 		uh = (struct udphdr *)((caddr_t)ip + hlen);
3056 		if (uh->uh_sum == 0)
3057 			return; /* no checksum */
3058 		break;
3059 	default:
3060 		return;
3061 	}
3062 	csum = ntohs(sc_if->msk_csum & 0xFFFF);
3063 	/* Checksum fixup for IP options. */
3064 	len = hlen - sizeof(struct ip);
3065 	if (len > 0) {
3066 		opts = (uint16_t *)(ip + 1);
3067 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
3068 			temp32 = csum - *opts;
3069 			temp32 = (temp32 >> 16) + (temp32 & 65535);
3070 			csum = temp32 & 65535;
3071 		}
3072 	}
3073 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
3074 	m->m_pkthdr.csum_data = csum;
3075 }
3076 
3077 static void
3078 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3079     int len)
3080 {
3081 	struct mbuf *m;
3082 	struct ifnet *ifp;
3083 	struct msk_rxdesc *rxd;
3084 	int cons, rxlen;
3085 
3086 	ifp = sc_if->msk_ifp;
3087 
3088 	MSK_IF_LOCK_ASSERT(sc_if);
3089 
3090 	cons = sc_if->msk_cdata.msk_rx_cons;
3091 	do {
3092 		rxlen = status >> 16;
3093 		if ((status & GMR_FS_VLAN) != 0 &&
3094 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3095 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3096 		if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) {
3097 			/*
3098 			 * For controllers that returns bogus status code
3099 			 * just do minimal check and let upper stack
3100 			 * handle this frame.
3101 			 */
3102 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
3103 				ifp->if_ierrors++;
3104 				msk_discard_rxbuf(sc_if, cons);
3105 				break;
3106 			}
3107 		} else if (len > sc_if->msk_framesize ||
3108 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3109 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3110 			/* Don't count flow-control packet as errors. */
3111 			if ((status & GMR_FS_GOOD_FC) == 0)
3112 				ifp->if_ierrors++;
3113 			msk_discard_rxbuf(sc_if, cons);
3114 			break;
3115 		}
3116 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3117 		m = rxd->rx_m;
3118 		if (msk_newbuf(sc_if, cons) != 0) {
3119 			ifp->if_iqdrops++;
3120 			/* Reuse old buffer. */
3121 			msk_discard_rxbuf(sc_if, cons);
3122 			break;
3123 		}
3124 		m->m_pkthdr.rcvif = ifp;
3125 		m->m_pkthdr.len = m->m_len = len;
3126 #ifndef __NO_STRICT_ALIGNMENT
3127 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3128 			msk_fixup_rx(m);
3129 #endif
3130 		ifp->if_ipackets++;
3131 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3132 			msk_rxcsum(sc_if, control, m);
3133 		/* Check for VLAN tagged packets. */
3134 		if ((status & GMR_FS_VLAN) != 0 &&
3135 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3136 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3137 			m->m_flags |= M_VLANTAG;
3138 		}
3139 		MSK_IF_UNLOCK(sc_if);
3140 		(*ifp->if_input)(ifp, m);
3141 		MSK_IF_LOCK(sc_if);
3142 	} while (0);
3143 
3144 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3145 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3146 }
3147 
3148 static void
3149 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3150     int len)
3151 {
3152 	struct mbuf *m;
3153 	struct ifnet *ifp;
3154 	struct msk_rxdesc *jrxd;
3155 	int cons, rxlen;
3156 
3157 	ifp = sc_if->msk_ifp;
3158 
3159 	MSK_IF_LOCK_ASSERT(sc_if);
3160 
3161 	cons = sc_if->msk_cdata.msk_rx_cons;
3162 	do {
3163 		rxlen = status >> 16;
3164 		if ((status & GMR_FS_VLAN) != 0 &&
3165 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3166 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3167 		if (len > sc_if->msk_framesize ||
3168 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3169 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3170 			/* Don't count flow-control packet as errors. */
3171 			if ((status & GMR_FS_GOOD_FC) == 0)
3172 				ifp->if_ierrors++;
3173 			msk_discard_jumbo_rxbuf(sc_if, cons);
3174 			break;
3175 		}
3176 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3177 		m = jrxd->rx_m;
3178 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3179 			ifp->if_iqdrops++;
3180 			/* Reuse old buffer. */
3181 			msk_discard_jumbo_rxbuf(sc_if, cons);
3182 			break;
3183 		}
3184 		m->m_pkthdr.rcvif = ifp;
3185 		m->m_pkthdr.len = m->m_len = len;
3186 #ifndef __NO_STRICT_ALIGNMENT
3187 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3188 			msk_fixup_rx(m);
3189 #endif
3190 		ifp->if_ipackets++;
3191 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3192 			msk_rxcsum(sc_if, control, m);
3193 		/* Check for VLAN tagged packets. */
3194 		if ((status & GMR_FS_VLAN) != 0 &&
3195 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3196 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3197 			m->m_flags |= M_VLANTAG;
3198 		}
3199 		MSK_IF_UNLOCK(sc_if);
3200 		(*ifp->if_input)(ifp, m);
3201 		MSK_IF_LOCK(sc_if);
3202 	} while (0);
3203 
3204 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3205 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3206 }
3207 
3208 static void
3209 msk_txeof(struct msk_if_softc *sc_if, int idx)
3210 {
3211 	struct msk_txdesc *txd;
3212 	struct msk_tx_desc *cur_tx;
3213 	struct ifnet *ifp;
3214 	uint32_t control;
3215 	int cons, prog;
3216 
3217 	MSK_IF_LOCK_ASSERT(sc_if);
3218 
3219 	ifp = sc_if->msk_ifp;
3220 
3221 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3222 	    sc_if->msk_cdata.msk_tx_ring_map,
3223 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3224 	/*
3225 	 * Go through our tx ring and free mbufs for those
3226 	 * frames that have been sent.
3227 	 */
3228 	cons = sc_if->msk_cdata.msk_tx_cons;
3229 	prog = 0;
3230 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3231 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3232 			break;
3233 		prog++;
3234 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3235 		control = le32toh(cur_tx->msk_control);
3236 		sc_if->msk_cdata.msk_tx_cnt--;
3237 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3238 		if ((control & EOP) == 0)
3239 			continue;
3240 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3241 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3242 		    BUS_DMASYNC_POSTWRITE);
3243 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3244 
3245 		ifp->if_opackets++;
3246 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3247 		    __func__));
3248 		m_freem(txd->tx_m);
3249 		txd->tx_m = NULL;
3250 	}
3251 
3252 	if (prog > 0) {
3253 		sc_if->msk_cdata.msk_tx_cons = cons;
3254 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3255 			sc_if->msk_watchdog_timer = 0;
3256 		/* No need to sync LEs as we didn't update LEs. */
3257 	}
3258 }
3259 
3260 static void
3261 msk_tick(void *xsc_if)
3262 {
3263 	struct msk_if_softc *sc_if;
3264 	struct mii_data *mii;
3265 
3266 	sc_if = xsc_if;
3267 
3268 	MSK_IF_LOCK_ASSERT(sc_if);
3269 
3270 	mii = device_get_softc(sc_if->msk_miibus);
3271 
3272 	mii_tick(mii);
3273 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0)
3274 		msk_miibus_statchg(sc_if->msk_if_dev);
3275 	msk_handle_events(sc_if->msk_softc);
3276 	msk_watchdog(sc_if);
3277 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3278 }
3279 
3280 static void
3281 msk_intr_phy(struct msk_if_softc *sc_if)
3282 {
3283 	uint16_t status;
3284 
3285 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3286 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3287 	/* Handle FIFO Underrun/Overflow? */
3288 	if ((status & PHY_M_IS_FIFO_ERROR))
3289 		device_printf(sc_if->msk_if_dev,
3290 		    "PHY FIFO underrun/overflow.\n");
3291 }
3292 
3293 static void
3294 msk_intr_gmac(struct msk_if_softc *sc_if)
3295 {
3296 	struct msk_softc *sc;
3297 	uint8_t status;
3298 
3299 	sc = sc_if->msk_softc;
3300 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3301 
3302 	/* GMAC Rx FIFO overrun. */
3303 	if ((status & GM_IS_RX_FF_OR) != 0)
3304 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3305 		    GMF_CLI_RX_FO);
3306 	/* GMAC Tx FIFO underrun. */
3307 	if ((status & GM_IS_TX_FF_UR) != 0) {
3308 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3309 		    GMF_CLI_TX_FU);
3310 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3311 		/*
3312 		 * XXX
3313 		 * In case of Tx underrun, we may need to flush/reset
3314 		 * Tx MAC but that would also require resynchronization
3315 		 * with status LEs. Reintializing status LEs would
3316 		 * affect other port in dual MAC configuration so it
3317 		 * should be avoided as possible as we can.
3318 		 * Due to lack of documentation it's all vague guess but
3319 		 * it needs more investigation.
3320 		 */
3321 	}
3322 }
3323 
3324 static void
3325 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3326 {
3327 	struct msk_softc *sc;
3328 
3329 	sc = sc_if->msk_softc;
3330 	if ((status & Y2_IS_PAR_RD1) != 0) {
3331 		device_printf(sc_if->msk_if_dev,
3332 		    "RAM buffer read parity error\n");
3333 		/* Clear IRQ. */
3334 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3335 		    RI_CLR_RD_PERR);
3336 	}
3337 	if ((status & Y2_IS_PAR_WR1) != 0) {
3338 		device_printf(sc_if->msk_if_dev,
3339 		    "RAM buffer write parity error\n");
3340 		/* Clear IRQ. */
3341 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3342 		    RI_CLR_WR_PERR);
3343 	}
3344 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3345 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3346 		/* Clear IRQ. */
3347 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3348 		    GMF_CLI_TX_PE);
3349 	}
3350 	if ((status & Y2_IS_PAR_RX1) != 0) {
3351 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3352 		/* Clear IRQ. */
3353 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3354 	}
3355 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3356 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3357 		/* Clear IRQ. */
3358 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3359 	}
3360 }
3361 
3362 static void
3363 msk_intr_hwerr(struct msk_softc *sc)
3364 {
3365 	uint32_t status;
3366 	uint32_t tlphead[4];
3367 
3368 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3369 	/* Time Stamp timer overflow. */
3370 	if ((status & Y2_IS_TIST_OV) != 0)
3371 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3372 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3373 		/*
3374 		 * PCI Express Error occured which is not described in PEX
3375 		 * spec.
3376 		 * This error is also mapped either to Master Abort(
3377 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3378 		 * can only be cleared there.
3379                  */
3380 		device_printf(sc->msk_dev,
3381 		    "PCI Express protocol violation error\n");
3382 	}
3383 
3384 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3385 		uint16_t v16;
3386 
3387 		if ((status & Y2_IS_MST_ERR) != 0)
3388 			device_printf(sc->msk_dev,
3389 			    "unexpected IRQ Status error\n");
3390 		else
3391 			device_printf(sc->msk_dev,
3392 			    "unexpected IRQ Master error\n");
3393 		/* Reset all bits in the PCI status register. */
3394 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3395 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3396 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3397 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3398 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3399 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3400 	}
3401 
3402 	/* Check for PCI Express Uncorrectable Error. */
3403 	if ((status & Y2_IS_PCI_EXP) != 0) {
3404 		uint32_t v32;
3405 
3406 		/*
3407 		 * On PCI Express bus bridges are called root complexes (RC).
3408 		 * PCI Express errors are recognized by the root complex too,
3409 		 * which requests the system to handle the problem. After
3410 		 * error occurence it may be that no access to the adapter
3411 		 * may be performed any longer.
3412 		 */
3413 
3414 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3415 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3416 			/* Ignore unsupported request error. */
3417 			device_printf(sc->msk_dev,
3418 			    "Uncorrectable PCI Express error\n");
3419 		}
3420 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3421 			int i;
3422 
3423 			/* Get TLP header form Log Registers. */
3424 			for (i = 0; i < 4; i++)
3425 				tlphead[i] = CSR_PCI_READ_4(sc,
3426 				    PEX_HEADER_LOG + i * 4);
3427 			/* Check for vendor defined broadcast message. */
3428 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3429 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3430 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3431 				    sc->msk_intrhwemask);
3432 				CSR_READ_4(sc, B0_HWE_IMSK);
3433 			}
3434 		}
3435 		/* Clear the interrupt. */
3436 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3437 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3438 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3439 	}
3440 
3441 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3442 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3443 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3444 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3445 }
3446 
3447 static __inline void
3448 msk_rxput(struct msk_if_softc *sc_if)
3449 {
3450 	struct msk_softc *sc;
3451 
3452 	sc = sc_if->msk_softc;
3453 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3454 		bus_dmamap_sync(
3455 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3456 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3457 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3458 	else
3459 		bus_dmamap_sync(
3460 		    sc_if->msk_cdata.msk_rx_ring_tag,
3461 		    sc_if->msk_cdata.msk_rx_ring_map,
3462 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3463 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3464 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3465 }
3466 
3467 static int
3468 msk_handle_events(struct msk_softc *sc)
3469 {
3470 	struct msk_if_softc *sc_if;
3471 	int rxput[2];
3472 	struct msk_stat_desc *sd;
3473 	uint32_t control, status;
3474 	int cons, len, port, rxprog;
3475 
3476 	if (sc->msk_stat_cons == CSR_READ_2(sc, STAT_PUT_IDX))
3477 		return (0);
3478 
3479 	/* Sync status LEs. */
3480 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3481 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3482 
3483 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3484 	rxprog = 0;
3485 	cons = sc->msk_stat_cons;
3486 	for (;;) {
3487 		sd = &sc->msk_stat_ring[cons];
3488 		control = le32toh(sd->msk_control);
3489 		if ((control & HW_OWNER) == 0)
3490 			break;
3491 		control &= ~HW_OWNER;
3492 		sd->msk_control = htole32(control);
3493 		status = le32toh(sd->msk_status);
3494 		len = control & STLE_LEN_MASK;
3495 		port = (control >> 16) & 0x01;
3496 		sc_if = sc->msk_if[port];
3497 		if (sc_if == NULL) {
3498 			device_printf(sc->msk_dev, "invalid port opcode "
3499 			    "0x%08x\n", control & STLE_OP_MASK);
3500 			continue;
3501 		}
3502 
3503 		switch (control & STLE_OP_MASK) {
3504 		case OP_RXVLAN:
3505 			sc_if->msk_vtag = ntohs(len);
3506 			break;
3507 		case OP_RXCHKSVLAN:
3508 			sc_if->msk_vtag = ntohs(len);
3509 			/* FALLTHROUGH */
3510 		case OP_RXCHKS:
3511 			sc_if->msk_csum = status;
3512 			break;
3513 		case OP_RXSTAT:
3514 			if (sc_if->msk_framesize >
3515 			    (MCLBYTES - MSK_RX_BUF_ALIGN))
3516 				msk_jumbo_rxeof(sc_if, status, control, len);
3517 			else
3518 				msk_rxeof(sc_if, status, control, len);
3519 			rxprog++;
3520 			/*
3521 			 * Because there is no way to sync single Rx LE
3522 			 * put the DMA sync operation off until the end of
3523 			 * event processing.
3524 			 */
3525 			rxput[port]++;
3526 			/* Update prefetch unit if we've passed water mark. */
3527 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3528 				msk_rxput(sc_if);
3529 				rxput[port] = 0;
3530 			}
3531 			break;
3532 		case OP_TXINDEXLE:
3533 			if (sc->msk_if[MSK_PORT_A] != NULL)
3534 				msk_txeof(sc->msk_if[MSK_PORT_A],
3535 				    status & STLE_TXA1_MSKL);
3536 			if (sc->msk_if[MSK_PORT_B] != NULL)
3537 				msk_txeof(sc->msk_if[MSK_PORT_B],
3538 				    ((status & STLE_TXA2_MSKL) >>
3539 				    STLE_TXA2_SHIFTL) |
3540 				    ((len & STLE_TXA2_MSKH) <<
3541 				    STLE_TXA2_SHIFTH));
3542 			break;
3543 		default:
3544 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3545 			    control & STLE_OP_MASK);
3546 			break;
3547 		}
3548 		MSK_INC(cons, MSK_STAT_RING_CNT);
3549 		if (rxprog > sc->msk_process_limit)
3550 			break;
3551 	}
3552 
3553 	sc->msk_stat_cons = cons;
3554 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3555 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3556 
3557 	if (rxput[MSK_PORT_A] > 0)
3558 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3559 	if (rxput[MSK_PORT_B] > 0)
3560 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3561 
3562 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3563 }
3564 
3565 static void
3566 msk_intr(void *xsc)
3567 {
3568 	struct msk_softc *sc;
3569 	struct msk_if_softc *sc_if0, *sc_if1;
3570 	struct ifnet *ifp0, *ifp1;
3571 	uint32_t status;
3572 	int domore;
3573 
3574 	sc = xsc;
3575 	MSK_LOCK(sc);
3576 
3577 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3578 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3579 	if (status == 0 || status == 0xffffffff ||
3580 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3581 	    (status & sc->msk_intrmask) == 0) {
3582 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3583 		return;
3584 	}
3585 
3586 	sc_if0 = sc->msk_if[MSK_PORT_A];
3587 	sc_if1 = sc->msk_if[MSK_PORT_B];
3588 	ifp0 = ifp1 = NULL;
3589 	if (sc_if0 != NULL)
3590 		ifp0 = sc_if0->msk_ifp;
3591 	if (sc_if1 != NULL)
3592 		ifp1 = sc_if1->msk_ifp;
3593 
3594 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3595 		msk_intr_phy(sc_if0);
3596 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3597 		msk_intr_phy(sc_if1);
3598 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3599 		msk_intr_gmac(sc_if0);
3600 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3601 		msk_intr_gmac(sc_if1);
3602 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3603 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3604 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3605 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3606 		CSR_READ_4(sc, B0_IMSK);
3607 	}
3608         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3609 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3610 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3611 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3612 		CSR_READ_4(sc, B0_IMSK);
3613 	}
3614 	if ((status & Y2_IS_HW_ERR) != 0)
3615 		msk_intr_hwerr(sc);
3616 
3617 	domore = msk_handle_events(sc);
3618 	if ((status & Y2_IS_STAT_BMU) != 0 && domore == 0)
3619 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3620 
3621 	/* Reenable interrupts. */
3622 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3623 
3624 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3625 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3626 		msk_start_locked(ifp0);
3627 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3628 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3629 		msk_start_locked(ifp1);
3630 
3631 	MSK_UNLOCK(sc);
3632 }
3633 
3634 static void
3635 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3636 {
3637 	struct msk_softc *sc;
3638 	struct ifnet *ifp;
3639 
3640 	ifp = sc_if->msk_ifp;
3641 	sc = sc_if->msk_softc;
3642 	switch (sc->msk_hw_id) {
3643 	case CHIP_ID_YUKON_EX:
3644 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
3645 			goto yukon_ex_workaround;
3646 		if (ifp->if_mtu > ETHERMTU)
3647 			CSR_WRITE_4(sc,
3648 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3649 			    TX_JUMBO_ENA | TX_STFW_ENA);
3650 		else
3651 			CSR_WRITE_4(sc,
3652 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3653 			    TX_JUMBO_DIS | TX_STFW_ENA);
3654 		break;
3655 	default:
3656 yukon_ex_workaround:
3657 		if (ifp->if_mtu > ETHERMTU) {
3658 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3659 			CSR_WRITE_4(sc,
3660 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3661 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3662 			/* Disable Store & Forward mode for Tx. */
3663 			CSR_WRITE_4(sc,
3664 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3665 			    TX_JUMBO_ENA | TX_STFW_DIS);
3666 		} else {
3667 			/* Enable Store & Forward mode for Tx. */
3668 			CSR_WRITE_4(sc,
3669 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3670 			    TX_JUMBO_DIS | TX_STFW_ENA);
3671 		}
3672 		break;
3673 	}
3674 }
3675 
3676 static void
3677 msk_init(void *xsc)
3678 {
3679 	struct msk_if_softc *sc_if = xsc;
3680 
3681 	MSK_IF_LOCK(sc_if);
3682 	msk_init_locked(sc_if);
3683 	MSK_IF_UNLOCK(sc_if);
3684 }
3685 
3686 static void
3687 msk_init_locked(struct msk_if_softc *sc_if)
3688 {
3689 	struct msk_softc *sc;
3690 	struct ifnet *ifp;
3691 	struct mii_data	 *mii;
3692 	uint8_t *eaddr;
3693 	uint16_t gmac;
3694 	uint32_t reg;
3695 	int error;
3696 
3697 	MSK_IF_LOCK_ASSERT(sc_if);
3698 
3699 	ifp = sc_if->msk_ifp;
3700 	sc = sc_if->msk_softc;
3701 	mii = device_get_softc(sc_if->msk_miibus);
3702 
3703 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3704 		return;
3705 
3706 	error = 0;
3707 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3708 	msk_stop(sc_if);
3709 
3710 	if (ifp->if_mtu < ETHERMTU)
3711 		sc_if->msk_framesize = ETHERMTU;
3712 	else
3713 		sc_if->msk_framesize = ifp->if_mtu;
3714 	sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3715 	if (ifp->if_mtu > ETHERMTU &&
3716 	    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
3717 		ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3718 		ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3719 	}
3720 
3721  	/* GMAC Control reset. */
3722  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3723  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3724  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3725 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX)
3726 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3727 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3728 		    GMC_BYP_RETR_ON);
3729 
3730 	/*
3731 	 * Initialize GMAC first such that speed/duplex/flow-control
3732 	 * parameters are renegotiated when interface is brought up.
3733 	 */
3734 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3735 
3736 	/* Dummy read the Interrupt Source Register. */
3737 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3738 
3739 	/* Clear MIB stats. */
3740 	msk_stats_clear(sc_if);
3741 
3742 	/* Disable FCS. */
3743 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3744 
3745 	/* Setup Transmit Control Register. */
3746 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3747 
3748 	/* Setup Transmit Flow Control Register. */
3749 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3750 
3751 	/* Setup Transmit Parameter Register. */
3752 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3753 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3754 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3755 
3756 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3757 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3758 
3759 	if (ifp->if_mtu > ETHERMTU)
3760 		gmac |= GM_SMOD_JUMBO_ENA;
3761 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3762 
3763 	/* Set station address. */
3764 	eaddr = IF_LLADDR(ifp);
3765 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L,
3766 	    eaddr[0] | (eaddr[1] << 8));
3767 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M,
3768 	    eaddr[2] | (eaddr[3] << 8));
3769 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H,
3770 	    eaddr[4] | (eaddr[5] << 8));
3771 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L,
3772 	    eaddr[0] | (eaddr[1] << 8));
3773 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M,
3774 	    eaddr[2] | (eaddr[3] << 8));
3775 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H,
3776 	    eaddr[4] | (eaddr[5] << 8));
3777 
3778 	/* Disable interrupts for counter overflows. */
3779 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3780 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3781 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3782 
3783 	/* Configure Rx MAC FIFO. */
3784 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3785 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3786 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3787 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3788 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3789 		reg |= GMF_RX_OVER_ON;
3790 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3791 
3792 	/* Set receive filter. */
3793 	msk_rxfilter(sc_if);
3794 
3795 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3796 		/* Clear flush mask - HW bug. */
3797 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3798 	} else {
3799 		/* Flush Rx MAC FIFO on any flow control or error. */
3800 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3801 		    GMR_FS_ANY_ERR);
3802 	}
3803 
3804 	/*
3805 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3806 	 * due to hardware hang on receipt of pause frames.
3807 	 */
3808 	reg = RX_GMF_FL_THR_DEF + 1;
3809 	/* Another magic for Yukon FE+ - From Linux. */
3810 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3811 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3812 		reg = 0x178;
3813 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3814 
3815 	/* Configure Tx MAC FIFO. */
3816 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3817 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3818 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3819 
3820 	/* Configure hardware VLAN tag insertion/stripping. */
3821 	msk_setvlan(sc_if, ifp);
3822 
3823 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3824 		/* Set Rx Pause threshould. */
3825 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3826 		    MSK_ECU_LLPP);
3827 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3828 		    MSK_ECU_ULPP);
3829 		/* Configure store-and-forward for Tx. */
3830 		msk_set_tx_stfwd(sc_if);
3831 	}
3832 
3833  	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3834  	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3835  		/* Disable dynamic watermark - from Linux. */
3836  		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3837  		reg &= ~0x03;
3838  		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3839  	}
3840 
3841 	/*
3842 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3843 	 * arbiter as we don't use Sync Tx queue.
3844 	 */
3845 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3846 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3847 	/* Enable the RAM Interface Arbiter. */
3848 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3849 
3850 	/* Setup RAM buffer. */
3851 	msk_set_rambuffer(sc_if);
3852 
3853 	/* Disable Tx sync Queue. */
3854 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3855 
3856 	/* Setup Tx Queue Bus Memory Interface. */
3857 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3858 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3859 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3860 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3861 	switch (sc->msk_hw_id) {
3862 	case CHIP_ID_YUKON_EC_U:
3863 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3864 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3865 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3866 			    MSK_ECU_TXFF_LEV);
3867 		}
3868 		break;
3869 	case CHIP_ID_YUKON_EX:
3870 		/*
3871 		 * Yukon Extreme seems to have silicon bug for
3872 		 * automatic Tx checksum calculation capability.
3873 		 */
3874 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
3875 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3876 			    F_TX_CHK_AUTO_OFF);
3877 		break;
3878 	}
3879 
3880 	/* Setup Rx Queue Bus Memory Interface. */
3881 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3882 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3883 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3884 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3885         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3886 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3887 		/* MAC Rx RAM Read is controlled by hardware. */
3888                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3889 	}
3890 
3891 	msk_set_prefetch(sc, sc_if->msk_txq,
3892 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3893 	msk_init_tx_ring(sc_if);
3894 
3895 	/* Disable Rx checksum offload and RSS hash. */
3896 	reg = BMU_DIS_RX_RSS_HASH;
3897 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
3898 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0)
3899 		reg |= BMU_ENA_RX_CHKSUM;
3900 	else
3901 		reg |= BMU_DIS_RX_CHKSUM;
3902 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), reg);
3903 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
3904 		msk_set_prefetch(sc, sc_if->msk_rxq,
3905 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3906 		    MSK_JUMBO_RX_RING_CNT - 1);
3907 		error = msk_init_jumbo_rx_ring(sc_if);
3908 	 } else {
3909 		msk_set_prefetch(sc, sc_if->msk_rxq,
3910 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3911 		    MSK_RX_RING_CNT - 1);
3912 		error = msk_init_rx_ring(sc_if);
3913 	}
3914 	if (error != 0) {
3915 		device_printf(sc_if->msk_if_dev,
3916 		    "initialization failed: no memory for Rx buffers\n");
3917 		msk_stop(sc_if);
3918 		return;
3919 	}
3920 
3921 	/* Configure interrupt handling. */
3922 	if (sc_if->msk_port == MSK_PORT_A) {
3923 		sc->msk_intrmask |= Y2_IS_PORT_A;
3924 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3925 	} else {
3926 		sc->msk_intrmask |= Y2_IS_PORT_B;
3927 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3928 	}
3929 	/* Configure IRQ moderation mask. */
3930 	CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
3931 	if (sc->msk_int_holdoff > 0) {
3932 		/* Configure initial IRQ moderation timer value. */
3933 		CSR_WRITE_4(sc, B2_IRQM_INI,
3934 		    MSK_USECS(sc, sc->msk_int_holdoff));
3935 		CSR_WRITE_4(sc, B2_IRQM_VAL,
3936 		    MSK_USECS(sc, sc->msk_int_holdoff));
3937 		/* Start IRQ moderation. */
3938 		CSR_WRITE_1(sc, B2_IRQM_CTRL, TIM_START);
3939 	}
3940 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3941 	CSR_READ_4(sc, B0_HWE_IMSK);
3942 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3943 	CSR_READ_4(sc, B0_IMSK);
3944 
3945 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
3946 	mii_mediachg(mii);
3947 
3948 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3949 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3950 
3951 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3952 }
3953 
3954 static void
3955 msk_set_rambuffer(struct msk_if_softc *sc_if)
3956 {
3957 	struct msk_softc *sc;
3958 	int ltpp, utpp;
3959 
3960 	sc = sc_if->msk_softc;
3961 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3962 		return;
3963 
3964 	/* Setup Rx Queue. */
3965 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3966 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3967 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3968 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3969 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3970 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3971 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3972 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3973 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3974 
3975 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3976 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3977 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3978 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3979 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3980 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3981 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3982 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3983 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3984 
3985 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3986 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3987 
3988 	/* Setup Tx Queue. */
3989 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3990 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3991 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3992 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3993 	    sc->msk_txqend[sc_if->msk_port] / 8);
3994 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3995 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3996 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3997 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3998 	/* Enable Store & Forward for Tx side. */
3999 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
4000 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
4001 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
4002 }
4003 
4004 static void
4005 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
4006     uint32_t count)
4007 {
4008 
4009 	/* Reset the prefetch unit. */
4010 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4011 	    PREF_UNIT_RST_SET);
4012 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4013 	    PREF_UNIT_RST_CLR);
4014 	/* Set LE base address. */
4015 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
4016 	    MSK_ADDR_LO(addr));
4017 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
4018 	    MSK_ADDR_HI(addr));
4019 	/* Set the list last index. */
4020 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
4021 	    count);
4022 	/* Turn on prefetch unit. */
4023 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4024 	    PREF_UNIT_OP_ON);
4025 	/* Dummy read to ensure write. */
4026 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
4027 }
4028 
4029 static void
4030 msk_stop(struct msk_if_softc *sc_if)
4031 {
4032 	struct msk_softc *sc;
4033 	struct msk_txdesc *txd;
4034 	struct msk_rxdesc *rxd;
4035 	struct msk_rxdesc *jrxd;
4036 	struct ifnet *ifp;
4037 	uint32_t val;
4038 	int i;
4039 
4040 	MSK_IF_LOCK_ASSERT(sc_if);
4041 	sc = sc_if->msk_softc;
4042 	ifp = sc_if->msk_ifp;
4043 
4044 	callout_stop(&sc_if->msk_tick_ch);
4045 	sc_if->msk_watchdog_timer = 0;
4046 
4047 	/* Disable interrupts. */
4048 	if (sc_if->msk_port == MSK_PORT_A) {
4049 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
4050 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
4051 	} else {
4052 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
4053 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
4054 	}
4055 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4056 	CSR_READ_4(sc, B0_HWE_IMSK);
4057 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4058 	CSR_READ_4(sc, B0_IMSK);
4059 
4060 	/* Disable Tx/Rx MAC. */
4061 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4062 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
4063 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
4064 	/* Read again to ensure writing. */
4065 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4066 	/* Update stats and clear counters. */
4067 	msk_stats_update(sc_if);
4068 
4069 	/* Stop Tx BMU. */
4070 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
4071 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4072 	for (i = 0; i < MSK_TIMEOUT; i++) {
4073 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
4074 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4075 			    BMU_STOP);
4076 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4077 		} else
4078 			break;
4079 		DELAY(1);
4080 	}
4081 	if (i == MSK_TIMEOUT)
4082 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
4083 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
4084 	    RB_RST_SET | RB_DIS_OP_MD);
4085 
4086 	/* Disable all GMAC interrupt. */
4087 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
4088 	/* Disable PHY interrupt. */
4089 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
4090 
4091 	/* Disable the RAM Interface Arbiter. */
4092 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
4093 
4094 	/* Reset the PCI FIFO of the async Tx queue */
4095 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4096 	    BMU_RST_SET | BMU_FIFO_RST);
4097 
4098 	/* Reset the Tx prefetch units. */
4099 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
4100 	    PREF_UNIT_RST_SET);
4101 
4102 	/* Reset the RAM Buffer async Tx queue. */
4103 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
4104 
4105 	/* Reset Tx MAC FIFO. */
4106 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
4107 	/* Set Pause Off. */
4108 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
4109 
4110 	/*
4111 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
4112 	 * reach the end of packet and since we can't make sure that we have
4113 	 * incoming data, we must reset the BMU while it is not during a DMA
4114 	 * transfer. Since it is possible that the Rx path is still active,
4115 	 * the Rx RAM buffer will be stopped first, so any possible incoming
4116 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
4117 	 * BMU is polled until any DMA in progress is ended and only then it
4118 	 * will be reset.
4119 	 */
4120 
4121 	/* Disable the RAM Buffer receive queue. */
4122 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4123 	for (i = 0; i < MSK_TIMEOUT; i++) {
4124 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4125 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4126 			break;
4127 		DELAY(1);
4128 	}
4129 	if (i == MSK_TIMEOUT)
4130 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4131 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4132 	    BMU_RST_SET | BMU_FIFO_RST);
4133 	/* Reset the Rx prefetch unit. */
4134 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4135 	    PREF_UNIT_RST_SET);
4136 	/* Reset the RAM Buffer receive queue. */
4137 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4138 	/* Reset Rx MAC FIFO. */
4139 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4140 
4141 	/* Free Rx and Tx mbufs still in the queues. */
4142 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4143 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4144 		if (rxd->rx_m != NULL) {
4145 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4146 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4147 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4148 			    rxd->rx_dmamap);
4149 			m_freem(rxd->rx_m);
4150 			rxd->rx_m = NULL;
4151 		}
4152 	}
4153 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4154 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4155 		if (jrxd->rx_m != NULL) {
4156 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4157 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4158 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4159 			    jrxd->rx_dmamap);
4160 			m_freem(jrxd->rx_m);
4161 			jrxd->rx_m = NULL;
4162 		}
4163 	}
4164 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4165 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4166 		if (txd->tx_m != NULL) {
4167 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4168 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4169 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4170 			    txd->tx_dmamap);
4171 			m_freem(txd->tx_m);
4172 			txd->tx_m = NULL;
4173 		}
4174 	}
4175 
4176 	/*
4177 	 * Mark the interface down.
4178 	 */
4179 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4180 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4181 }
4182 
4183 /*
4184  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
4185  * counter clears high 16 bits of the counter such that accessing
4186  * lower 16 bits should be the last operation.
4187  */
4188 #define	MSK_READ_MIB32(x, y)					\
4189 	(((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) +	\
4190 	(uint32_t)GMAC_READ_2(sc, x, y)
4191 #define	MSK_READ_MIB64(x, y)					\
4192 	(((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) +	\
4193 	(uint64_t)MSK_READ_MIB32(x, y)
4194 
4195 static void
4196 msk_stats_clear(struct msk_if_softc *sc_if)
4197 {
4198 	struct msk_softc *sc;
4199 	uint32_t reg;
4200 	uint16_t gmac;
4201 	int i;
4202 
4203 	MSK_IF_LOCK_ASSERT(sc_if);
4204 
4205 	sc = sc_if->msk_softc;
4206 	/* Set MIB Clear Counter Mode. */
4207 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4208 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4209 	/* Read all MIB Counters with Clear Mode set. */
4210 	for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t))
4211 		reg = MSK_READ_MIB32(sc_if->msk_port, i);
4212 	/* Clear MIB Clear Counter Mode. */
4213 	gmac &= ~GM_PAR_MIB_CLR;
4214 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4215 }
4216 
4217 static void
4218 msk_stats_update(struct msk_if_softc *sc_if)
4219 {
4220 	struct msk_softc *sc;
4221 	struct ifnet *ifp;
4222 	struct msk_hw_stats *stats;
4223 	uint16_t gmac;
4224 	uint32_t reg;
4225 
4226 	MSK_IF_LOCK_ASSERT(sc_if);
4227 
4228 	ifp = sc_if->msk_ifp;
4229 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4230 		return;
4231 	sc = sc_if->msk_softc;
4232 	stats = &sc_if->msk_stats;
4233 	/* Set MIB Clear Counter Mode. */
4234 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4235 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4236 
4237 	/* Rx stats. */
4238 	stats->rx_ucast_frames +=
4239 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4240 	stats->rx_bcast_frames +=
4241 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4242 	stats->rx_pause_frames +=
4243 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4244 	stats->rx_mcast_frames +=
4245 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4246 	stats->rx_crc_errs +=
4247 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4248 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1);
4249 	stats->rx_good_octets +=
4250 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4251 	stats->rx_bad_octets +=
4252 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4253 	stats->rx_runts +=
4254 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4255 	stats->rx_runt_errs +=
4256 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4257 	stats->rx_pkts_64 +=
4258 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4259 	stats->rx_pkts_65_127 +=
4260 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4261 	stats->rx_pkts_128_255 +=
4262 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4263 	stats->rx_pkts_256_511 +=
4264 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4265 	stats->rx_pkts_512_1023 +=
4266 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4267 	stats->rx_pkts_1024_1518 +=
4268 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4269 	stats->rx_pkts_1519_max +=
4270 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4271 	stats->rx_pkts_too_long +=
4272 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4273 	stats->rx_pkts_jabbers +=
4274 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4275 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2);
4276 	stats->rx_fifo_oflows +=
4277 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4278 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3);
4279 
4280 	/* Tx stats. */
4281 	stats->tx_ucast_frames +=
4282 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4283 	stats->tx_bcast_frames +=
4284 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4285 	stats->tx_pause_frames +=
4286 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4287 	stats->tx_mcast_frames +=
4288 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4289 	stats->tx_octets +=
4290 	    MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4291 	stats->tx_pkts_64 +=
4292 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4293 	stats->tx_pkts_65_127 +=
4294 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4295 	stats->tx_pkts_128_255 +=
4296 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4297 	stats->tx_pkts_256_511 +=
4298 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4299 	stats->tx_pkts_512_1023 +=
4300 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4301 	stats->tx_pkts_1024_1518 +=
4302 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4303 	stats->tx_pkts_1519_max +=
4304 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4305 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1);
4306 	stats->tx_colls +=
4307 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4308 	stats->tx_late_colls +=
4309 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4310 	stats->tx_excess_colls +=
4311 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4312 	stats->tx_multi_colls +=
4313 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4314 	stats->tx_single_colls +=
4315 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4316 	stats->tx_underflows +=
4317 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4318 	/* Clear MIB Clear Counter Mode. */
4319 	gmac &= ~GM_PAR_MIB_CLR;
4320 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4321 }
4322 
4323 static int
4324 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4325 {
4326 	struct msk_softc *sc;
4327 	struct msk_if_softc *sc_if;
4328 	uint32_t result, *stat;
4329 	int off;
4330 
4331 	sc_if = (struct msk_if_softc *)arg1;
4332 	sc = sc_if->msk_softc;
4333 	off = arg2;
4334 	stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4335 
4336 	MSK_IF_LOCK(sc_if);
4337 	result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4338 	result += *stat;
4339 	MSK_IF_UNLOCK(sc_if);
4340 
4341 	return (sysctl_handle_int(oidp, &result, 0, req));
4342 }
4343 
4344 static int
4345 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4346 {
4347 	struct msk_softc *sc;
4348 	struct msk_if_softc *sc_if;
4349 	uint64_t result, *stat;
4350 	int off;
4351 
4352 	sc_if = (struct msk_if_softc *)arg1;
4353 	sc = sc_if->msk_softc;
4354 	off = arg2;
4355 	stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4356 
4357 	MSK_IF_LOCK(sc_if);
4358 	result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4359 	result += *stat;
4360 	MSK_IF_UNLOCK(sc_if);
4361 
4362 	return (sysctl_handle_quad(oidp, &result, 0, req));
4363 }
4364 
4365 #undef MSK_READ_MIB32
4366 #undef MSK_READ_MIB64
4367 
4368 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) 				\
4369 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4370 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32,	\
4371 	    "IU", d)
4372 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) 				\
4373 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4374 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64,	\
4375 	    "Q", d)
4376 
4377 static void
4378 msk_sysctl_node(struct msk_if_softc *sc_if)
4379 {
4380 	struct sysctl_ctx_list *ctx;
4381 	struct sysctl_oid_list *child, *schild;
4382 	struct sysctl_oid *tree;
4383 
4384 	ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4385 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4386 
4387 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
4388 	    NULL, "MSK Statistics");
4389 	schild = child = SYSCTL_CHILDREN(tree);
4390 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
4391 	    NULL, "MSK RX Statistics");
4392 	child = SYSCTL_CHILDREN(tree);
4393 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4394 	    child, rx_ucast_frames, "Good unicast frames");
4395 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4396 	    child, rx_bcast_frames, "Good broadcast frames");
4397 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4398 	    child, rx_pause_frames, "Pause frames");
4399 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4400 	    child, rx_mcast_frames, "Multicast frames");
4401 	MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4402 	    child, rx_crc_errs, "CRC errors");
4403 	MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4404 	    child, rx_good_octets, "Good octets");
4405 	MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4406 	    child, rx_bad_octets, "Bad octets");
4407 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4408 	    child, rx_pkts_64, "64 bytes frames");
4409 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4410 	    child, rx_pkts_65_127, "65 to 127 bytes frames");
4411 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4412 	    child, rx_pkts_128_255, "128 to 255 bytes frames");
4413 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4414 	    child, rx_pkts_256_511, "256 to 511 bytes frames");
4415 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4416 	    child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4417 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4418 	    child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4419 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4420 	    child, rx_pkts_1519_max, "1519 to max frames");
4421 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4422 	    child, rx_pkts_too_long, "frames too long");
4423 	MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4424 	    child, rx_pkts_jabbers, "Jabber errors");
4425 	MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4426 	    child, rx_fifo_oflows, "FIFO overflows");
4427 
4428 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
4429 	    NULL, "MSK TX Statistics");
4430 	child = SYSCTL_CHILDREN(tree);
4431 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4432 	    child, tx_ucast_frames, "Unicast frames");
4433 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4434 	    child, tx_bcast_frames, "Broadcast frames");
4435 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4436 	    child, tx_pause_frames, "Pause frames");
4437 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4438 	    child, tx_mcast_frames, "Multicast frames");
4439 	MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4440 	    child, tx_octets, "Octets");
4441 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4442 	    child, tx_pkts_64, "64 bytes frames");
4443 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4444 	    child, tx_pkts_65_127, "65 to 127 bytes frames");
4445 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4446 	    child, tx_pkts_128_255, "128 to 255 bytes frames");
4447 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4448 	    child, tx_pkts_256_511, "256 to 511 bytes frames");
4449 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4450 	    child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4451 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4452 	    child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4453 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4454 	    child, tx_pkts_1519_max, "1519 to max frames");
4455 	MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4456 	    child, tx_colls, "Collisions");
4457 	MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4458 	    child, tx_late_colls, "Late collisions");
4459 	MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4460 	    child, tx_excess_colls, "Excessive collisions");
4461 	MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4462 	    child, tx_multi_colls, "Multiple collisions");
4463 	MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4464 	    child, tx_single_colls, "Single collisions");
4465 	MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4466 	    child, tx_underflows, "FIFO underflows");
4467 }
4468 
4469 #undef MSK_SYSCTL_STAT32
4470 #undef MSK_SYSCTL_STAT64
4471 
4472 static int
4473 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4474 {
4475 	int error, value;
4476 
4477 	if (!arg1)
4478 		return (EINVAL);
4479 	value = *(int *)arg1;
4480 	error = sysctl_handle_int(oidp, &value, 0, req);
4481 	if (error || !req->newptr)
4482 		return (error);
4483 	if (value < low || value > high)
4484 		return (EINVAL);
4485 	*(int *)arg1 = value;
4486 
4487 	return (0);
4488 }
4489 
4490 static int
4491 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4492 {
4493 
4494 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4495 	    MSK_PROC_MAX));
4496 }
4497