1 /****************************************************************************** 2 * 3 * Name : sky2.c 4 * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x 5 * Version: $Revision: 1.23 $ 6 * Date : $Date: 2005/12/22 09:04:11 $ 7 * Purpose: Main driver source file 8 * 9 *****************************************************************************/ 10 11 /****************************************************************************** 12 * 13 * LICENSE: 14 * Copyright (C) Marvell International Ltd. and/or its affiliates 15 * 16 * The computer program files contained in this folder ("Files") 17 * are provided to you under the BSD-type license terms provided 18 * below, and any use of such Files and any derivative works 19 * thereof created by you shall be governed by the following terms 20 * and conditions: 21 * 22 * - Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials provided 27 * with the distribution. 28 * - Neither the name of Marvell nor the names of its contributors 29 * may be used to endorse or promote products derived from this 30 * software without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 35 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 36 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 37 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 38 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 39 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 41 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 42 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 43 * OF THE POSSIBILITY OF SUCH DAMAGE. 44 * /LICENSE 45 * 46 *****************************************************************************/ 47 48 /*- 49 * Copyright (c) 1997, 1998, 1999, 2000 50 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 51 * 52 * Redistribution and use in source and binary forms, with or without 53 * modification, are permitted provided that the following conditions 54 * are met: 55 * 1. Redistributions of source code must retain the above copyright 56 * notice, this list of conditions and the following disclaimer. 57 * 2. Redistributions in binary form must reproduce the above copyright 58 * notice, this list of conditions and the following disclaimer in the 59 * documentation and/or other materials provided with the distribution. 60 * 3. All advertising materials mentioning features or use of this software 61 * must display the following acknowledgement: 62 * This product includes software developed by Bill Paul. 63 * 4. Neither the name of the author nor the names of any co-contributors 64 * may be used to endorse or promote products derived from this software 65 * without specific prior written permission. 66 * 67 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 70 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 71 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 72 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 73 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 74 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 75 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 76 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 77 * THE POSSIBILITY OF SUCH DAMAGE. 78 */ 79 /*- 80 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu> 81 * 82 * Permission to use, copy, modify, and distribute this software for any 83 * purpose with or without fee is hereby granted, provided that the above 84 * copyright notice and this permission notice appear in all copies. 85 * 86 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 87 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 88 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 89 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 90 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 91 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 92 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 93 */ 94 95 /* 96 * Device driver for the Marvell Yukon II Ethernet controller. 97 * Due to lack of documentation, this driver is based on the code from 98 * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x. 99 */ 100 101 #include <sys/cdefs.h> 102 __FBSDID("$FreeBSD$"); 103 104 #include <sys/param.h> 105 #include <sys/systm.h> 106 #include <sys/bus.h> 107 #include <sys/endian.h> 108 #include <sys/mbuf.h> 109 #include <sys/malloc.h> 110 #include <sys/kernel.h> 111 #include <sys/module.h> 112 #include <sys/socket.h> 113 #include <sys/sockio.h> 114 #include <sys/queue.h> 115 #include <sys/sysctl.h> 116 117 #include <net/bpf.h> 118 #include <net/ethernet.h> 119 #include <net/if.h> 120 #include <net/if_var.h> 121 #include <net/if_arp.h> 122 #include <net/if_dl.h> 123 #include <net/if_media.h> 124 #include <net/if_types.h> 125 #include <net/if_vlan_var.h> 126 127 #include <netinet/in.h> 128 #include <netinet/in_systm.h> 129 #include <netinet/ip.h> 130 #include <netinet/tcp.h> 131 #include <netinet/udp.h> 132 133 #include <machine/bus.h> 134 #include <machine/in_cksum.h> 135 #include <machine/resource.h> 136 #include <sys/rman.h> 137 138 #include <dev/mii/mii.h> 139 #include <dev/mii/miivar.h> 140 141 #include <dev/pci/pcireg.h> 142 #include <dev/pci/pcivar.h> 143 144 #include <dev/msk/if_mskreg.h> 145 146 MODULE_DEPEND(msk, pci, 1, 1, 1); 147 MODULE_DEPEND(msk, ether, 1, 1, 1); 148 MODULE_DEPEND(msk, miibus, 1, 1, 1); 149 150 /* "device miibus" required. See GENERIC if you get errors here. */ 151 #include "miibus_if.h" 152 153 /* Tunables. */ 154 static int msi_disable = 0; 155 TUNABLE_INT("hw.msk.msi_disable", &msi_disable); 156 static int legacy_intr = 0; 157 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr); 158 static int jumbo_disable = 0; 159 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable); 160 161 #define MSK_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 162 163 /* 164 * Devices supported by this driver. 165 */ 166 static const struct msk_product { 167 uint16_t msk_vendorid; 168 uint16_t msk_deviceid; 169 const char *msk_name; 170 } msk_products[] = { 171 { VENDORID_SK, DEVICEID_SK_YUKON2, 172 "SK-9Sxx Gigabit Ethernet" }, 173 { VENDORID_SK, DEVICEID_SK_YUKON2_EXPR, 174 "SK-9Exx Gigabit Ethernet"}, 175 { VENDORID_MARVELL, DEVICEID_MRVL_8021CU, 176 "Marvell Yukon 88E8021CU Gigabit Ethernet" }, 177 { VENDORID_MARVELL, DEVICEID_MRVL_8021X, 178 "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" }, 179 { VENDORID_MARVELL, DEVICEID_MRVL_8022CU, 180 "Marvell Yukon 88E8022CU Gigabit Ethernet" }, 181 { VENDORID_MARVELL, DEVICEID_MRVL_8022X, 182 "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" }, 183 { VENDORID_MARVELL, DEVICEID_MRVL_8061CU, 184 "Marvell Yukon 88E8061CU Gigabit Ethernet" }, 185 { VENDORID_MARVELL, DEVICEID_MRVL_8061X, 186 "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" }, 187 { VENDORID_MARVELL, DEVICEID_MRVL_8062CU, 188 "Marvell Yukon 88E8062CU Gigabit Ethernet" }, 189 { VENDORID_MARVELL, DEVICEID_MRVL_8062X, 190 "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" }, 191 { VENDORID_MARVELL, DEVICEID_MRVL_8035, 192 "Marvell Yukon 88E8035 Fast Ethernet" }, 193 { VENDORID_MARVELL, DEVICEID_MRVL_8036, 194 "Marvell Yukon 88E8036 Fast Ethernet" }, 195 { VENDORID_MARVELL, DEVICEID_MRVL_8038, 196 "Marvell Yukon 88E8038 Fast Ethernet" }, 197 { VENDORID_MARVELL, DEVICEID_MRVL_8039, 198 "Marvell Yukon 88E8039 Fast Ethernet" }, 199 { VENDORID_MARVELL, DEVICEID_MRVL_8040, 200 "Marvell Yukon 88E8040 Fast Ethernet" }, 201 { VENDORID_MARVELL, DEVICEID_MRVL_8040T, 202 "Marvell Yukon 88E8040T Fast Ethernet" }, 203 { VENDORID_MARVELL, DEVICEID_MRVL_8042, 204 "Marvell Yukon 88E8042 Fast Ethernet" }, 205 { VENDORID_MARVELL, DEVICEID_MRVL_8048, 206 "Marvell Yukon 88E8048 Fast Ethernet" }, 207 { VENDORID_MARVELL, DEVICEID_MRVL_4361, 208 "Marvell Yukon 88E8050 Gigabit Ethernet" }, 209 { VENDORID_MARVELL, DEVICEID_MRVL_4360, 210 "Marvell Yukon 88E8052 Gigabit Ethernet" }, 211 { VENDORID_MARVELL, DEVICEID_MRVL_4362, 212 "Marvell Yukon 88E8053 Gigabit Ethernet" }, 213 { VENDORID_MARVELL, DEVICEID_MRVL_4363, 214 "Marvell Yukon 88E8055 Gigabit Ethernet" }, 215 { VENDORID_MARVELL, DEVICEID_MRVL_4364, 216 "Marvell Yukon 88E8056 Gigabit Ethernet" }, 217 { VENDORID_MARVELL, DEVICEID_MRVL_4365, 218 "Marvell Yukon 88E8070 Gigabit Ethernet" }, 219 { VENDORID_MARVELL, DEVICEID_MRVL_436A, 220 "Marvell Yukon 88E8058 Gigabit Ethernet" }, 221 { VENDORID_MARVELL, DEVICEID_MRVL_436B, 222 "Marvell Yukon 88E8071 Gigabit Ethernet" }, 223 { VENDORID_MARVELL, DEVICEID_MRVL_436C, 224 "Marvell Yukon 88E8072 Gigabit Ethernet" }, 225 { VENDORID_MARVELL, DEVICEID_MRVL_436D, 226 "Marvell Yukon 88E8055 Gigabit Ethernet" }, 227 { VENDORID_MARVELL, DEVICEID_MRVL_4370, 228 "Marvell Yukon 88E8075 Gigabit Ethernet" }, 229 { VENDORID_MARVELL, DEVICEID_MRVL_4380, 230 "Marvell Yukon 88E8057 Gigabit Ethernet" }, 231 { VENDORID_MARVELL, DEVICEID_MRVL_4381, 232 "Marvell Yukon 88E8059 Gigabit Ethernet" }, 233 { VENDORID_DLINK, DEVICEID_DLINK_DGE550SX, 234 "D-Link 550SX Gigabit Ethernet" }, 235 { VENDORID_DLINK, DEVICEID_DLINK_DGE560SX, 236 "D-Link 560SX Gigabit Ethernet" }, 237 { VENDORID_DLINK, DEVICEID_DLINK_DGE560T, 238 "D-Link 560T Gigabit Ethernet" } 239 }; 240 241 static const char *model_name[] = { 242 "Yukon XL", 243 "Yukon EC Ultra", 244 "Yukon EX", 245 "Yukon EC", 246 "Yukon FE", 247 "Yukon FE+", 248 "Yukon Supreme", 249 "Yukon Ultra 2", 250 "Yukon Unknown", 251 "Yukon Optima", 252 }; 253 254 static int mskc_probe(device_t); 255 static int mskc_attach(device_t); 256 static int mskc_detach(device_t); 257 static int mskc_shutdown(device_t); 258 static int mskc_setup_rambuffer(struct msk_softc *); 259 static int mskc_suspend(device_t); 260 static int mskc_resume(device_t); 261 static bus_dma_tag_t mskc_get_dma_tag(device_t, device_t); 262 static void mskc_reset(struct msk_softc *); 263 264 static int msk_probe(device_t); 265 static int msk_attach(device_t); 266 static int msk_detach(device_t); 267 268 static void msk_tick(void *); 269 static void msk_intr(void *); 270 static void msk_intr_phy(struct msk_if_softc *); 271 static void msk_intr_gmac(struct msk_if_softc *); 272 static __inline void msk_rxput(struct msk_if_softc *); 273 static int msk_handle_events(struct msk_softc *); 274 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t); 275 static void msk_intr_hwerr(struct msk_softc *); 276 #ifndef __NO_STRICT_ALIGNMENT 277 static __inline void msk_fixup_rx(struct mbuf *); 278 #endif 279 static __inline void msk_rxcsum(struct msk_if_softc *, uint32_t, struct mbuf *); 280 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int); 281 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int); 282 static void msk_txeof(struct msk_if_softc *, int); 283 static int msk_encap(struct msk_if_softc *, struct mbuf **); 284 static void msk_start(struct ifnet *); 285 static void msk_start_locked(struct ifnet *); 286 static int msk_ioctl(struct ifnet *, u_long, caddr_t); 287 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t); 288 static void msk_set_rambuffer(struct msk_if_softc *); 289 static void msk_set_tx_stfwd(struct msk_if_softc *); 290 static void msk_init(void *); 291 static void msk_init_locked(struct msk_if_softc *); 292 static void msk_stop(struct msk_if_softc *); 293 static void msk_watchdog(struct msk_if_softc *); 294 static int msk_mediachange(struct ifnet *); 295 static void msk_mediastatus(struct ifnet *, struct ifmediareq *); 296 static void msk_phy_power(struct msk_softc *, int); 297 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int); 298 static int msk_status_dma_alloc(struct msk_softc *); 299 static void msk_status_dma_free(struct msk_softc *); 300 static int msk_txrx_dma_alloc(struct msk_if_softc *); 301 static int msk_rx_dma_jalloc(struct msk_if_softc *); 302 static void msk_txrx_dma_free(struct msk_if_softc *); 303 static void msk_rx_dma_jfree(struct msk_if_softc *); 304 static int msk_rx_fill(struct msk_if_softc *, int); 305 static int msk_init_rx_ring(struct msk_if_softc *); 306 static int msk_init_jumbo_rx_ring(struct msk_if_softc *); 307 static void msk_init_tx_ring(struct msk_if_softc *); 308 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int); 309 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int); 310 static int msk_newbuf(struct msk_if_softc *, int); 311 static int msk_jumbo_newbuf(struct msk_if_softc *, int); 312 313 static int msk_phy_readreg(struct msk_if_softc *, int, int); 314 static int msk_phy_writereg(struct msk_if_softc *, int, int, int); 315 static int msk_miibus_readreg(device_t, int, int); 316 static int msk_miibus_writereg(device_t, int, int, int); 317 static void msk_miibus_statchg(device_t); 318 319 static void msk_rxfilter(struct msk_if_softc *); 320 static void msk_setvlan(struct msk_if_softc *, struct ifnet *); 321 322 static void msk_stats_clear(struct msk_if_softc *); 323 static void msk_stats_update(struct msk_if_softc *); 324 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS); 325 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS); 326 static void msk_sysctl_node(struct msk_if_softc *); 327 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 328 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS); 329 330 static device_method_t mskc_methods[] = { 331 /* Device interface */ 332 DEVMETHOD(device_probe, mskc_probe), 333 DEVMETHOD(device_attach, mskc_attach), 334 DEVMETHOD(device_detach, mskc_detach), 335 DEVMETHOD(device_suspend, mskc_suspend), 336 DEVMETHOD(device_resume, mskc_resume), 337 DEVMETHOD(device_shutdown, mskc_shutdown), 338 339 DEVMETHOD(bus_get_dma_tag, mskc_get_dma_tag), 340 341 DEVMETHOD_END 342 }; 343 344 static driver_t mskc_driver = { 345 "mskc", 346 mskc_methods, 347 sizeof(struct msk_softc) 348 }; 349 350 static devclass_t mskc_devclass; 351 352 static device_method_t msk_methods[] = { 353 /* Device interface */ 354 DEVMETHOD(device_probe, msk_probe), 355 DEVMETHOD(device_attach, msk_attach), 356 DEVMETHOD(device_detach, msk_detach), 357 DEVMETHOD(device_shutdown, bus_generic_shutdown), 358 359 /* MII interface */ 360 DEVMETHOD(miibus_readreg, msk_miibus_readreg), 361 DEVMETHOD(miibus_writereg, msk_miibus_writereg), 362 DEVMETHOD(miibus_statchg, msk_miibus_statchg), 363 364 DEVMETHOD_END 365 }; 366 367 static driver_t msk_driver = { 368 "msk", 369 msk_methods, 370 sizeof(struct msk_if_softc) 371 }; 372 373 static devclass_t msk_devclass; 374 375 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, NULL, NULL); 376 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, NULL, NULL); 377 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, NULL, NULL); 378 379 static struct resource_spec msk_res_spec_io[] = { 380 { SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE }, 381 { -1, 0, 0 } 382 }; 383 384 static struct resource_spec msk_res_spec_mem[] = { 385 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 386 { -1, 0, 0 } 387 }; 388 389 static struct resource_spec msk_irq_spec_legacy[] = { 390 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 391 { -1, 0, 0 } 392 }; 393 394 static struct resource_spec msk_irq_spec_msi[] = { 395 { SYS_RES_IRQ, 1, RF_ACTIVE }, 396 { -1, 0, 0 } 397 }; 398 399 static int 400 msk_miibus_readreg(device_t dev, int phy, int reg) 401 { 402 struct msk_if_softc *sc_if; 403 404 sc_if = device_get_softc(dev); 405 406 return (msk_phy_readreg(sc_if, phy, reg)); 407 } 408 409 static int 410 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg) 411 { 412 struct msk_softc *sc; 413 int i, val; 414 415 sc = sc_if->msk_softc; 416 417 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL, 418 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); 419 420 for (i = 0; i < MSK_TIMEOUT; i++) { 421 DELAY(1); 422 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL); 423 if ((val & GM_SMI_CT_RD_VAL) != 0) { 424 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA); 425 break; 426 } 427 } 428 429 if (i == MSK_TIMEOUT) { 430 if_printf(sc_if->msk_ifp, "phy failed to come ready\n"); 431 val = 0; 432 } 433 434 return (val); 435 } 436 437 static int 438 msk_miibus_writereg(device_t dev, int phy, int reg, int val) 439 { 440 struct msk_if_softc *sc_if; 441 442 sc_if = device_get_softc(dev); 443 444 return (msk_phy_writereg(sc_if, phy, reg, val)); 445 } 446 447 static int 448 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val) 449 { 450 struct msk_softc *sc; 451 int i; 452 453 sc = sc_if->msk_softc; 454 455 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val); 456 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL, 457 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg)); 458 for (i = 0; i < MSK_TIMEOUT; i++) { 459 DELAY(1); 460 if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) & 461 GM_SMI_CT_BUSY) == 0) 462 break; 463 } 464 if (i == MSK_TIMEOUT) 465 if_printf(sc_if->msk_ifp, "phy write timeout\n"); 466 467 return (0); 468 } 469 470 static void 471 msk_miibus_statchg(device_t dev) 472 { 473 struct msk_softc *sc; 474 struct msk_if_softc *sc_if; 475 struct mii_data *mii; 476 struct ifnet *ifp; 477 uint32_t gmac; 478 479 sc_if = device_get_softc(dev); 480 sc = sc_if->msk_softc; 481 482 MSK_IF_LOCK_ASSERT(sc_if); 483 484 mii = device_get_softc(sc_if->msk_miibus); 485 ifp = sc_if->msk_ifp; 486 if (mii == NULL || ifp == NULL || 487 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 488 return; 489 490 sc_if->msk_flags &= ~MSK_FLAG_LINK; 491 if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) == 492 (IFM_AVALID | IFM_ACTIVE)) { 493 switch (IFM_SUBTYPE(mii->mii_media_active)) { 494 case IFM_10_T: 495 case IFM_100_TX: 496 sc_if->msk_flags |= MSK_FLAG_LINK; 497 break; 498 case IFM_1000_T: 499 case IFM_1000_SX: 500 case IFM_1000_LX: 501 case IFM_1000_CX: 502 if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0) 503 sc_if->msk_flags |= MSK_FLAG_LINK; 504 break; 505 default: 506 break; 507 } 508 } 509 510 if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) { 511 /* Enable Tx FIFO Underrun. */ 512 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 513 GM_IS_TX_FF_UR | GM_IS_RX_FF_OR); 514 /* 515 * Because mii(4) notify msk(4) that it detected link status 516 * change, there is no need to enable automatic 517 * speed/flow-control/duplex updates. 518 */ 519 gmac = GM_GPCR_AU_ALL_DIS; 520 switch (IFM_SUBTYPE(mii->mii_media_active)) { 521 case IFM_1000_SX: 522 case IFM_1000_T: 523 gmac |= GM_GPCR_SPEED_1000; 524 break; 525 case IFM_100_TX: 526 gmac |= GM_GPCR_SPEED_100; 527 break; 528 case IFM_10_T: 529 break; 530 } 531 532 if ((IFM_OPTIONS(mii->mii_media_active) & 533 IFM_ETH_RXPAUSE) == 0) 534 gmac |= GM_GPCR_FC_RX_DIS; 535 if ((IFM_OPTIONS(mii->mii_media_active) & 536 IFM_ETH_TXPAUSE) == 0) 537 gmac |= GM_GPCR_FC_TX_DIS; 538 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) 539 gmac |= GM_GPCR_DUP_FULL; 540 else 541 gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS; 542 gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; 543 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac); 544 /* Read again to ensure writing. */ 545 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 546 gmac = GMC_PAUSE_OFF; 547 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 548 if ((IFM_OPTIONS(mii->mii_media_active) & 549 IFM_ETH_RXPAUSE) != 0) 550 gmac = GMC_PAUSE_ON; 551 } 552 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac); 553 554 /* Enable PHY interrupt for FIFO underrun/overflow. */ 555 msk_phy_writereg(sc_if, PHY_ADDR_MARV, 556 PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR); 557 } else { 558 /* 559 * Link state changed to down. 560 * Disable PHY interrupts. 561 */ 562 msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0); 563 /* Disable Rx/Tx MAC. */ 564 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 565 if ((gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) != 0) { 566 gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 567 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac); 568 /* Read again to ensure writing. */ 569 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 570 } 571 } 572 } 573 574 static void 575 msk_rxfilter(struct msk_if_softc *sc_if) 576 { 577 struct msk_softc *sc; 578 struct ifnet *ifp; 579 struct ifmultiaddr *ifma; 580 uint32_t mchash[2]; 581 uint32_t crc; 582 uint16_t mode; 583 584 sc = sc_if->msk_softc; 585 586 MSK_IF_LOCK_ASSERT(sc_if); 587 588 ifp = sc_if->msk_ifp; 589 590 bzero(mchash, sizeof(mchash)); 591 mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL); 592 if ((ifp->if_flags & IFF_PROMISC) != 0) 593 mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 594 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) { 595 mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA; 596 mchash[0] = 0xffff; 597 mchash[1] = 0xffff; 598 } else { 599 mode |= GM_RXCR_UCF_ENA; 600 if_maddr_rlock(ifp); 601 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 602 if (ifma->ifma_addr->sa_family != AF_LINK) 603 continue; 604 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 605 ifma->ifma_addr), ETHER_ADDR_LEN); 606 /* Just want the 6 least significant bits. */ 607 crc &= 0x3f; 608 /* Set the corresponding bit in the hash table. */ 609 mchash[crc >> 5] |= 1 << (crc & 0x1f); 610 } 611 if_maddr_runlock(ifp); 612 if (mchash[0] != 0 || mchash[1] != 0) 613 mode |= GM_RXCR_MCF_ENA; 614 } 615 616 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1, 617 mchash[0] & 0xffff); 618 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2, 619 (mchash[0] >> 16) & 0xffff); 620 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3, 621 mchash[1] & 0xffff); 622 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4, 623 (mchash[1] >> 16) & 0xffff); 624 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode); 625 } 626 627 static void 628 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp) 629 { 630 struct msk_softc *sc; 631 632 sc = sc_if->msk_softc; 633 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 634 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 635 RX_VLAN_STRIP_ON); 636 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 637 TX_VLAN_TAG_ON); 638 } else { 639 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 640 RX_VLAN_STRIP_OFF); 641 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 642 TX_VLAN_TAG_OFF); 643 } 644 } 645 646 static int 647 msk_rx_fill(struct msk_if_softc *sc_if, int jumbo) 648 { 649 uint16_t idx; 650 int i; 651 652 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && 653 (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) { 654 /* Wait until controller executes OP_TCPSTART command. */ 655 for (i = 100; i > 0; i--) { 656 DELAY(100); 657 idx = CSR_READ_2(sc_if->msk_softc, 658 Y2_PREF_Q_ADDR(sc_if->msk_rxq, 659 PREF_UNIT_GET_IDX_REG)); 660 if (idx != 0) 661 break; 662 } 663 if (i == 0) { 664 device_printf(sc_if->msk_if_dev, 665 "prefetch unit stuck?\n"); 666 return (ETIMEDOUT); 667 } 668 /* 669 * Fill consumed LE with free buffer. This can be done 670 * in Rx handler but we don't want to add special code 671 * in fast handler. 672 */ 673 if (jumbo > 0) { 674 if (msk_jumbo_newbuf(sc_if, 0) != 0) 675 return (ENOBUFS); 676 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 677 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 678 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 679 } else { 680 if (msk_newbuf(sc_if, 0) != 0) 681 return (ENOBUFS); 682 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag, 683 sc_if->msk_cdata.msk_rx_ring_map, 684 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 685 } 686 sc_if->msk_cdata.msk_rx_prod = 0; 687 CSR_WRITE_2(sc_if->msk_softc, 688 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG), 689 sc_if->msk_cdata.msk_rx_prod); 690 } 691 return (0); 692 } 693 694 static int 695 msk_init_rx_ring(struct msk_if_softc *sc_if) 696 { 697 struct msk_ring_data *rd; 698 struct msk_rxdesc *rxd; 699 int i, nbuf, prod; 700 701 MSK_IF_LOCK_ASSERT(sc_if); 702 703 sc_if->msk_cdata.msk_rx_cons = 0; 704 sc_if->msk_cdata.msk_rx_prod = 0; 705 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM; 706 707 rd = &sc_if->msk_rdata; 708 bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT); 709 for (i = prod = 0; i < MSK_RX_RING_CNT; i++) { 710 rxd = &sc_if->msk_cdata.msk_rxdesc[prod]; 711 rxd->rx_m = NULL; 712 rxd->rx_le = &rd->msk_rx_ring[prod]; 713 MSK_INC(prod, MSK_RX_RING_CNT); 714 } 715 nbuf = MSK_RX_BUF_CNT; 716 prod = 0; 717 /* Have controller know how to compute Rx checksum. */ 718 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && 719 (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) { 720 #ifdef MSK_64BIT_DMA 721 rxd = &sc_if->msk_cdata.msk_rxdesc[prod]; 722 rxd->rx_m = NULL; 723 rxd->rx_le = &rd->msk_rx_ring[prod]; 724 rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 | 725 ETHER_HDR_LEN); 726 rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER); 727 MSK_INC(prod, MSK_RX_RING_CNT); 728 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT); 729 #endif 730 rxd = &sc_if->msk_cdata.msk_rxdesc[prod]; 731 rxd->rx_m = NULL; 732 rxd->rx_le = &rd->msk_rx_ring[prod]; 733 rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 | 734 ETHER_HDR_LEN); 735 rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER); 736 MSK_INC(prod, MSK_RX_RING_CNT); 737 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT); 738 nbuf--; 739 } 740 for (i = 0; i < nbuf; i++) { 741 if (msk_newbuf(sc_if, prod) != 0) 742 return (ENOBUFS); 743 MSK_RX_INC(prod, MSK_RX_RING_CNT); 744 } 745 746 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag, 747 sc_if->msk_cdata.msk_rx_ring_map, 748 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 749 750 /* Update prefetch unit. */ 751 sc_if->msk_cdata.msk_rx_prod = prod; 752 CSR_WRITE_2(sc_if->msk_softc, 753 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG), 754 (sc_if->msk_cdata.msk_rx_prod + MSK_RX_RING_CNT - 1) % 755 MSK_RX_RING_CNT); 756 if (msk_rx_fill(sc_if, 0) != 0) 757 return (ENOBUFS); 758 return (0); 759 } 760 761 static int 762 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if) 763 { 764 struct msk_ring_data *rd; 765 struct msk_rxdesc *rxd; 766 int i, nbuf, prod; 767 768 MSK_IF_LOCK_ASSERT(sc_if); 769 770 sc_if->msk_cdata.msk_rx_cons = 0; 771 sc_if->msk_cdata.msk_rx_prod = 0; 772 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM; 773 774 rd = &sc_if->msk_rdata; 775 bzero(rd->msk_jumbo_rx_ring, 776 sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT); 777 for (i = prod = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 778 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod]; 779 rxd->rx_m = NULL; 780 rxd->rx_le = &rd->msk_jumbo_rx_ring[prod]; 781 MSK_INC(prod, MSK_JUMBO_RX_RING_CNT); 782 } 783 nbuf = MSK_RX_BUF_CNT; 784 prod = 0; 785 /* Have controller know how to compute Rx checksum. */ 786 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && 787 (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) { 788 #ifdef MSK_64BIT_DMA 789 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod]; 790 rxd->rx_m = NULL; 791 rxd->rx_le = &rd->msk_jumbo_rx_ring[prod]; 792 rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 | 793 ETHER_HDR_LEN); 794 rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER); 795 MSK_INC(prod, MSK_JUMBO_RX_RING_CNT); 796 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT); 797 #endif 798 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod]; 799 rxd->rx_m = NULL; 800 rxd->rx_le = &rd->msk_jumbo_rx_ring[prod]; 801 rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 | 802 ETHER_HDR_LEN); 803 rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER); 804 MSK_INC(prod, MSK_JUMBO_RX_RING_CNT); 805 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT); 806 nbuf--; 807 } 808 for (i = 0; i < nbuf; i++) { 809 if (msk_jumbo_newbuf(sc_if, prod) != 0) 810 return (ENOBUFS); 811 MSK_RX_INC(prod, MSK_JUMBO_RX_RING_CNT); 812 } 813 814 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 815 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 816 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 817 818 /* Update prefetch unit. */ 819 sc_if->msk_cdata.msk_rx_prod = prod; 820 CSR_WRITE_2(sc_if->msk_softc, 821 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG), 822 (sc_if->msk_cdata.msk_rx_prod + MSK_JUMBO_RX_RING_CNT - 1) % 823 MSK_JUMBO_RX_RING_CNT); 824 if (msk_rx_fill(sc_if, 1) != 0) 825 return (ENOBUFS); 826 return (0); 827 } 828 829 static void 830 msk_init_tx_ring(struct msk_if_softc *sc_if) 831 { 832 struct msk_ring_data *rd; 833 struct msk_txdesc *txd; 834 int i; 835 836 sc_if->msk_cdata.msk_tso_mtu = 0; 837 sc_if->msk_cdata.msk_last_csum = 0; 838 sc_if->msk_cdata.msk_tx_prod = 0; 839 sc_if->msk_cdata.msk_tx_cons = 0; 840 sc_if->msk_cdata.msk_tx_cnt = 0; 841 sc_if->msk_cdata.msk_tx_high_addr = 0; 842 843 rd = &sc_if->msk_rdata; 844 bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT); 845 for (i = 0; i < MSK_TX_RING_CNT; i++) { 846 txd = &sc_if->msk_cdata.msk_txdesc[i]; 847 txd->tx_m = NULL; 848 txd->tx_le = &rd->msk_tx_ring[i]; 849 } 850 851 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, 852 sc_if->msk_cdata.msk_tx_ring_map, 853 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 854 } 855 856 static __inline void 857 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx) 858 { 859 struct msk_rx_desc *rx_le; 860 struct msk_rxdesc *rxd; 861 struct mbuf *m; 862 863 #ifdef MSK_64BIT_DMA 864 rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; 865 rx_le = rxd->rx_le; 866 rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); 867 MSK_INC(idx, MSK_RX_RING_CNT); 868 #endif 869 rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; 870 m = rxd->rx_m; 871 rx_le = rxd->rx_le; 872 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER); 873 } 874 875 static __inline void 876 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int idx) 877 { 878 struct msk_rx_desc *rx_le; 879 struct msk_rxdesc *rxd; 880 struct mbuf *m; 881 882 #ifdef MSK_64BIT_DMA 883 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; 884 rx_le = rxd->rx_le; 885 rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); 886 MSK_INC(idx, MSK_JUMBO_RX_RING_CNT); 887 #endif 888 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; 889 m = rxd->rx_m; 890 rx_le = rxd->rx_le; 891 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER); 892 } 893 894 static int 895 msk_newbuf(struct msk_if_softc *sc_if, int idx) 896 { 897 struct msk_rx_desc *rx_le; 898 struct msk_rxdesc *rxd; 899 struct mbuf *m; 900 bus_dma_segment_t segs[1]; 901 bus_dmamap_t map; 902 int nsegs; 903 904 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 905 if (m == NULL) 906 return (ENOBUFS); 907 908 m->m_len = m->m_pkthdr.len = MCLBYTES; 909 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) 910 m_adj(m, ETHER_ALIGN); 911 #ifndef __NO_STRICT_ALIGNMENT 912 else 913 m_adj(m, MSK_RX_BUF_ALIGN); 914 #endif 915 916 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag, 917 sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs, 918 BUS_DMA_NOWAIT) != 0) { 919 m_freem(m); 920 return (ENOBUFS); 921 } 922 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 923 924 rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; 925 #ifdef MSK_64BIT_DMA 926 rx_le = rxd->rx_le; 927 rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr)); 928 rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); 929 MSK_INC(idx, MSK_RX_RING_CNT); 930 rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; 931 #endif 932 if (rxd->rx_m != NULL) { 933 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap, 934 BUS_DMASYNC_POSTREAD); 935 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap); 936 rxd->rx_m = NULL; 937 } 938 map = rxd->rx_dmamap; 939 rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap; 940 sc_if->msk_cdata.msk_rx_sparemap = map; 941 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap, 942 BUS_DMASYNC_PREREAD); 943 rxd->rx_m = m; 944 rx_le = rxd->rx_le; 945 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr)); 946 rx_le->msk_control = 947 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER); 948 949 return (0); 950 } 951 952 static int 953 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx) 954 { 955 struct msk_rx_desc *rx_le; 956 struct msk_rxdesc *rxd; 957 struct mbuf *m; 958 bus_dma_segment_t segs[1]; 959 bus_dmamap_t map; 960 int nsegs; 961 962 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 963 if (m == NULL) 964 return (ENOBUFS); 965 if ((m->m_flags & M_EXT) == 0) { 966 m_freem(m); 967 return (ENOBUFS); 968 } 969 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 970 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) 971 m_adj(m, ETHER_ALIGN); 972 #ifndef __NO_STRICT_ALIGNMENT 973 else 974 m_adj(m, MSK_RX_BUF_ALIGN); 975 #endif 976 977 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag, 978 sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs, 979 BUS_DMA_NOWAIT) != 0) { 980 m_freem(m); 981 return (ENOBUFS); 982 } 983 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 984 985 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; 986 #ifdef MSK_64BIT_DMA 987 rx_le = rxd->rx_le; 988 rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr)); 989 rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); 990 MSK_INC(idx, MSK_JUMBO_RX_RING_CNT); 991 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; 992 #endif 993 if (rxd->rx_m != NULL) { 994 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, 995 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 996 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag, 997 rxd->rx_dmamap); 998 rxd->rx_m = NULL; 999 } 1000 map = rxd->rx_dmamap; 1001 rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap; 1002 sc_if->msk_cdata.msk_jumbo_rx_sparemap = map; 1003 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap, 1004 BUS_DMASYNC_PREREAD); 1005 rxd->rx_m = m; 1006 rx_le = rxd->rx_le; 1007 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr)); 1008 rx_le->msk_control = 1009 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER); 1010 1011 return (0); 1012 } 1013 1014 /* 1015 * Set media options. 1016 */ 1017 static int 1018 msk_mediachange(struct ifnet *ifp) 1019 { 1020 struct msk_if_softc *sc_if; 1021 struct mii_data *mii; 1022 int error; 1023 1024 sc_if = ifp->if_softc; 1025 1026 MSK_IF_LOCK(sc_if); 1027 mii = device_get_softc(sc_if->msk_miibus); 1028 error = mii_mediachg(mii); 1029 MSK_IF_UNLOCK(sc_if); 1030 1031 return (error); 1032 } 1033 1034 /* 1035 * Report current media status. 1036 */ 1037 static void 1038 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 1039 { 1040 struct msk_if_softc *sc_if; 1041 struct mii_data *mii; 1042 1043 sc_if = ifp->if_softc; 1044 MSK_IF_LOCK(sc_if); 1045 if ((ifp->if_flags & IFF_UP) == 0) { 1046 MSK_IF_UNLOCK(sc_if); 1047 return; 1048 } 1049 mii = device_get_softc(sc_if->msk_miibus); 1050 1051 mii_pollstat(mii); 1052 ifmr->ifm_active = mii->mii_media_active; 1053 ifmr->ifm_status = mii->mii_media_status; 1054 MSK_IF_UNLOCK(sc_if); 1055 } 1056 1057 static int 1058 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1059 { 1060 struct msk_if_softc *sc_if; 1061 struct ifreq *ifr; 1062 struct mii_data *mii; 1063 int error, mask, reinit; 1064 1065 sc_if = ifp->if_softc; 1066 ifr = (struct ifreq *)data; 1067 error = 0; 1068 1069 switch(command) { 1070 case SIOCSIFMTU: 1071 MSK_IF_LOCK(sc_if); 1072 if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) 1073 error = EINVAL; 1074 else if (ifp->if_mtu != ifr->ifr_mtu) { 1075 if (ifr->ifr_mtu > ETHERMTU) { 1076 if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) { 1077 error = EINVAL; 1078 MSK_IF_UNLOCK(sc_if); 1079 break; 1080 } 1081 if ((sc_if->msk_flags & 1082 MSK_FLAG_JUMBO_NOCSUM) != 0) { 1083 ifp->if_hwassist &= 1084 ~(MSK_CSUM_FEATURES | CSUM_TSO); 1085 ifp->if_capenable &= 1086 ~(IFCAP_TSO4 | IFCAP_TXCSUM); 1087 VLAN_CAPABILITIES(ifp); 1088 } 1089 } 1090 ifp->if_mtu = ifr->ifr_mtu; 1091 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1092 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1093 msk_init_locked(sc_if); 1094 } 1095 } 1096 MSK_IF_UNLOCK(sc_if); 1097 break; 1098 case SIOCSIFFLAGS: 1099 MSK_IF_LOCK(sc_if); 1100 if ((ifp->if_flags & IFF_UP) != 0) { 1101 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && 1102 ((ifp->if_flags ^ sc_if->msk_if_flags) & 1103 (IFF_PROMISC | IFF_ALLMULTI)) != 0) 1104 msk_rxfilter(sc_if); 1105 else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0) 1106 msk_init_locked(sc_if); 1107 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1108 msk_stop(sc_if); 1109 sc_if->msk_if_flags = ifp->if_flags; 1110 MSK_IF_UNLOCK(sc_if); 1111 break; 1112 case SIOCADDMULTI: 1113 case SIOCDELMULTI: 1114 MSK_IF_LOCK(sc_if); 1115 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1116 msk_rxfilter(sc_if); 1117 MSK_IF_UNLOCK(sc_if); 1118 break; 1119 case SIOCGIFMEDIA: 1120 case SIOCSIFMEDIA: 1121 mii = device_get_softc(sc_if->msk_miibus); 1122 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1123 break; 1124 case SIOCSIFCAP: 1125 reinit = 0; 1126 MSK_IF_LOCK(sc_if); 1127 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1128 if ((mask & IFCAP_TXCSUM) != 0 && 1129 (IFCAP_TXCSUM & ifp->if_capabilities) != 0) { 1130 ifp->if_capenable ^= IFCAP_TXCSUM; 1131 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) 1132 ifp->if_hwassist |= MSK_CSUM_FEATURES; 1133 else 1134 ifp->if_hwassist &= ~MSK_CSUM_FEATURES; 1135 } 1136 if ((mask & IFCAP_RXCSUM) != 0 && 1137 (IFCAP_RXCSUM & ifp->if_capabilities) != 0) { 1138 ifp->if_capenable ^= IFCAP_RXCSUM; 1139 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0) 1140 reinit = 1; 1141 } 1142 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 1143 (IFCAP_VLAN_HWCSUM & ifp->if_capabilities) != 0) 1144 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 1145 if ((mask & IFCAP_TSO4) != 0 && 1146 (IFCAP_TSO4 & ifp->if_capabilities) != 0) { 1147 ifp->if_capenable ^= IFCAP_TSO4; 1148 if ((IFCAP_TSO4 & ifp->if_capenable) != 0) 1149 ifp->if_hwassist |= CSUM_TSO; 1150 else 1151 ifp->if_hwassist &= ~CSUM_TSO; 1152 } 1153 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 1154 (IFCAP_VLAN_HWTSO & ifp->if_capabilities) != 0) 1155 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 1156 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 1157 (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) { 1158 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 1159 if ((IFCAP_VLAN_HWTAGGING & ifp->if_capenable) == 0) 1160 ifp->if_capenable &= 1161 ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM); 1162 msk_setvlan(sc_if, ifp); 1163 } 1164 if (ifp->if_mtu > ETHERMTU && 1165 (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) { 1166 ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO); 1167 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM); 1168 } 1169 VLAN_CAPABILITIES(ifp); 1170 if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1171 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1172 msk_init_locked(sc_if); 1173 } 1174 MSK_IF_UNLOCK(sc_if); 1175 break; 1176 default: 1177 error = ether_ioctl(ifp, command, data); 1178 break; 1179 } 1180 1181 return (error); 1182 } 1183 1184 static int 1185 mskc_probe(device_t dev) 1186 { 1187 const struct msk_product *mp; 1188 uint16_t vendor, devid; 1189 int i; 1190 1191 vendor = pci_get_vendor(dev); 1192 devid = pci_get_device(dev); 1193 mp = msk_products; 1194 for (i = 0; i < nitems(msk_products); i++, mp++) { 1195 if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) { 1196 device_set_desc(dev, mp->msk_name); 1197 return (BUS_PROBE_DEFAULT); 1198 } 1199 } 1200 1201 return (ENXIO); 1202 } 1203 1204 static int 1205 mskc_setup_rambuffer(struct msk_softc *sc) 1206 { 1207 int next; 1208 int i; 1209 1210 /* Get adapter SRAM size. */ 1211 sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4; 1212 if (bootverbose) 1213 device_printf(sc->msk_dev, 1214 "RAM buffer size : %dKB\n", sc->msk_ramsize); 1215 if (sc->msk_ramsize == 0) 1216 return (0); 1217 1218 sc->msk_pflags |= MSK_FLAG_RAMBUF; 1219 /* 1220 * Give receiver 2/3 of memory and round down to the multiple 1221 * of 1024. Tx/Rx RAM buffer size of Yukon II should be multiple 1222 * of 1024. 1223 */ 1224 sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024); 1225 sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize; 1226 for (i = 0, next = 0; i < sc->msk_num_port; i++) { 1227 sc->msk_rxqstart[i] = next; 1228 sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1; 1229 next = sc->msk_rxqend[i] + 1; 1230 sc->msk_txqstart[i] = next; 1231 sc->msk_txqend[i] = next + sc->msk_txqsize - 1; 1232 next = sc->msk_txqend[i] + 1; 1233 if (bootverbose) { 1234 device_printf(sc->msk_dev, 1235 "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i, 1236 sc->msk_rxqsize / 1024, sc->msk_rxqstart[i], 1237 sc->msk_rxqend[i]); 1238 device_printf(sc->msk_dev, 1239 "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i, 1240 sc->msk_txqsize / 1024, sc->msk_txqstart[i], 1241 sc->msk_txqend[i]); 1242 } 1243 } 1244 1245 return (0); 1246 } 1247 1248 static void 1249 msk_phy_power(struct msk_softc *sc, int mode) 1250 { 1251 uint32_t our, val; 1252 int i; 1253 1254 switch (mode) { 1255 case MSK_PHY_POWERUP: 1256 /* Switch power to VCC (WA for VAUX problem). */ 1257 CSR_WRITE_1(sc, B0_POWER_CTRL, 1258 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); 1259 /* Disable Core Clock Division, set Clock Select to 0. */ 1260 CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS); 1261 1262 val = 0; 1263 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1264 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1265 /* Enable bits are inverted. */ 1266 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | 1267 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | 1268 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS; 1269 } 1270 /* 1271 * Enable PCI & Core Clock, enable clock gating for both Links. 1272 */ 1273 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val); 1274 1275 our = CSR_PCI_READ_4(sc, PCI_OUR_REG_1); 1276 our &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD); 1277 if (sc->msk_hw_id == CHIP_ID_YUKON_XL) { 1278 if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1279 /* Deassert Low Power for 1st PHY. */ 1280 our |= PCI_Y2_PHY1_COMA; 1281 if (sc->msk_num_port > 1) 1282 our |= PCI_Y2_PHY2_COMA; 1283 } 1284 } 1285 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U || 1286 sc->msk_hw_id == CHIP_ID_YUKON_EX || 1287 sc->msk_hw_id >= CHIP_ID_YUKON_FE_P) { 1288 val = CSR_PCI_READ_4(sc, PCI_OUR_REG_4); 1289 val &= (PCI_FORCE_ASPM_REQUEST | 1290 PCI_ASPM_GPHY_LINK_DOWN | PCI_ASPM_INT_FIFO_EMPTY | 1291 PCI_ASPM_CLKRUN_REQUEST); 1292 /* Set all bits to 0 except bits 15..12. */ 1293 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, val); 1294 val = CSR_PCI_READ_4(sc, PCI_OUR_REG_5); 1295 val &= PCI_CTL_TIM_VMAIN_AV_MSK; 1296 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, val); 1297 CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0); 1298 CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON); 1299 /* 1300 * Disable status race, workaround for 1301 * Yukon EC Ultra & Yukon EX. 1302 */ 1303 val = CSR_READ_4(sc, B2_GP_IO); 1304 val |= GLB_GPIO_STAT_RACE_DIS; 1305 CSR_WRITE_4(sc, B2_GP_IO, val); 1306 CSR_READ_4(sc, B2_GP_IO); 1307 } 1308 /* Release PHY from PowerDown/COMA mode. */ 1309 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, our); 1310 1311 for (i = 0; i < sc->msk_num_port; i++) { 1312 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL), 1313 GMLC_RST_SET); 1314 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL), 1315 GMLC_RST_CLR); 1316 } 1317 break; 1318 case MSK_PHY_POWERDOWN: 1319 val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1); 1320 val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD; 1321 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1322 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1323 val &= ~PCI_Y2_PHY1_COMA; 1324 if (sc->msk_num_port > 1) 1325 val &= ~PCI_Y2_PHY2_COMA; 1326 } 1327 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val); 1328 1329 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | 1330 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | 1331 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS; 1332 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1333 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1334 /* Enable bits are inverted. */ 1335 val = 0; 1336 } 1337 /* 1338 * Disable PCI & Core Clock, disable clock gating for 1339 * both Links. 1340 */ 1341 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val); 1342 CSR_WRITE_1(sc, B0_POWER_CTRL, 1343 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF); 1344 break; 1345 default: 1346 break; 1347 } 1348 } 1349 1350 static void 1351 mskc_reset(struct msk_softc *sc) 1352 { 1353 bus_addr_t addr; 1354 uint16_t status; 1355 uint32_t val; 1356 int i, initram; 1357 1358 /* Disable ASF. */ 1359 if (sc->msk_hw_id >= CHIP_ID_YUKON_XL && 1360 sc->msk_hw_id <= CHIP_ID_YUKON_SUPR) { 1361 if (sc->msk_hw_id == CHIP_ID_YUKON_EX || 1362 sc->msk_hw_id == CHIP_ID_YUKON_SUPR) { 1363 CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0); 1364 status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR); 1365 /* Clear AHB bridge & microcontroller reset. */ 1366 status &= ~(Y2_ASF_HCU_CCSR_AHB_RST | 1367 Y2_ASF_HCU_CCSR_CPU_RST_MODE); 1368 /* Clear ASF microcontroller state. */ 1369 status &= ~Y2_ASF_HCU_CCSR_UC_STATE_MSK; 1370 status &= ~Y2_ASF_HCU_CCSR_CPU_CLK_DIVIDE_MSK; 1371 CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status); 1372 CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0); 1373 } else 1374 CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET); 1375 CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE); 1376 /* 1377 * Since we disabled ASF, S/W reset is required for 1378 * Power Management. 1379 */ 1380 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 1381 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); 1382 } 1383 1384 /* Clear all error bits in the PCI status register. */ 1385 status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2); 1386 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 1387 1388 pci_write_config(sc->msk_dev, PCIR_STATUS, status | 1389 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT | 1390 PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2); 1391 CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR); 1392 1393 switch (sc->msk_bustype) { 1394 case MSK_PEX_BUS: 1395 /* Clear all PEX errors. */ 1396 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff); 1397 val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT); 1398 if ((val & PEX_RX_OV) != 0) { 1399 sc->msk_intrmask &= ~Y2_IS_HW_ERR; 1400 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP; 1401 } 1402 break; 1403 case MSK_PCI_BUS: 1404 case MSK_PCIX_BUS: 1405 /* Set Cache Line Size to 2(8bytes) if configured to 0. */ 1406 val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1); 1407 if (val == 0) 1408 pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1); 1409 if (sc->msk_bustype == MSK_PCIX_BUS) { 1410 /* Set Cache Line Size opt. */ 1411 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4); 1412 val |= PCI_CLS_OPT; 1413 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4); 1414 } 1415 break; 1416 } 1417 /* Set PHY power state. */ 1418 msk_phy_power(sc, MSK_PHY_POWERUP); 1419 1420 /* Reset GPHY/GMAC Control */ 1421 for (i = 0; i < sc->msk_num_port; i++) { 1422 /* GPHY Control reset. */ 1423 CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET); 1424 CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR); 1425 /* GMAC Control reset. */ 1426 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET); 1427 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR); 1428 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF); 1429 if (sc->msk_hw_id == CHIP_ID_YUKON_EX || 1430 sc->msk_hw_id == CHIP_ID_YUKON_SUPR) 1431 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), 1432 GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON | 1433 GMC_BYP_RETR_ON); 1434 } 1435 1436 if (sc->msk_hw_id == CHIP_ID_YUKON_SUPR && 1437 sc->msk_hw_rev > CHIP_REV_YU_SU_B0) 1438 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, PCI_CLK_MACSEC_DIS); 1439 if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) { 1440 /* Disable PCIe PHY powerdown(reg 0x80, bit7). */ 1441 CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080); 1442 } 1443 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 1444 1445 /* LED On. */ 1446 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON); 1447 1448 /* Clear TWSI IRQ. */ 1449 CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ); 1450 1451 /* Turn off hardware timer. */ 1452 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP); 1453 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ); 1454 1455 /* Turn off descriptor polling. */ 1456 CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP); 1457 1458 /* Turn off time stamps. */ 1459 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP); 1460 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 1461 1462 initram = 0; 1463 if (sc->msk_hw_id == CHIP_ID_YUKON_XL || 1464 sc->msk_hw_id == CHIP_ID_YUKON_EC || 1465 sc->msk_hw_id == CHIP_ID_YUKON_FE) 1466 initram++; 1467 1468 /* Configure timeout values. */ 1469 for (i = 0; initram > 0 && i < sc->msk_num_port; i++) { 1470 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET); 1471 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR); 1472 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1), 1473 MSK_RI_TO_53); 1474 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1), 1475 MSK_RI_TO_53); 1476 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1), 1477 MSK_RI_TO_53); 1478 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1), 1479 MSK_RI_TO_53); 1480 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1), 1481 MSK_RI_TO_53); 1482 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1), 1483 MSK_RI_TO_53); 1484 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2), 1485 MSK_RI_TO_53); 1486 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2), 1487 MSK_RI_TO_53); 1488 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2), 1489 MSK_RI_TO_53); 1490 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2), 1491 MSK_RI_TO_53); 1492 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2), 1493 MSK_RI_TO_53); 1494 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2), 1495 MSK_RI_TO_53); 1496 } 1497 1498 /* Disable all interrupts. */ 1499 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 1500 CSR_READ_4(sc, B0_HWE_IMSK); 1501 CSR_WRITE_4(sc, B0_IMSK, 0); 1502 CSR_READ_4(sc, B0_IMSK); 1503 1504 /* 1505 * On dual port PCI-X card, there is an problem where status 1506 * can be received out of order due to split transactions. 1507 */ 1508 if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) { 1509 uint16_t pcix_cmd; 1510 1511 pcix_cmd = pci_read_config(sc->msk_dev, 1512 sc->msk_pcixcap + PCIXR_COMMAND, 2); 1513 /* Clear Max Outstanding Split Transactions. */ 1514 pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS; 1515 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 1516 pci_write_config(sc->msk_dev, 1517 sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2); 1518 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 1519 } 1520 if (sc->msk_expcap != 0) { 1521 /* Change Max. Read Request Size to 2048 bytes. */ 1522 if (pci_get_max_read_req(sc->msk_dev) == 512) 1523 pci_set_max_read_req(sc->msk_dev, 2048); 1524 } 1525 1526 /* Clear status list. */ 1527 bzero(sc->msk_stat_ring, 1528 sizeof(struct msk_stat_desc) * sc->msk_stat_count); 1529 sc->msk_stat_cons = 0; 1530 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map, 1531 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1532 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET); 1533 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR); 1534 /* Set the status list base address. */ 1535 addr = sc->msk_stat_ring_paddr; 1536 CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr)); 1537 CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr)); 1538 /* Set the status list last index. */ 1539 CSR_WRITE_2(sc, STAT_LAST_IDX, sc->msk_stat_count - 1); 1540 if (sc->msk_hw_id == CHIP_ID_YUKON_EC && 1541 sc->msk_hw_rev == CHIP_REV_YU_EC_A1) { 1542 /* WA for dev. #4.3 */ 1543 CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK); 1544 /* WA for dev. #4.18 */ 1545 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21); 1546 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07); 1547 } else { 1548 CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a); 1549 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10); 1550 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1551 sc->msk_hw_rev == CHIP_REV_YU_XL_A0) 1552 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04); 1553 else 1554 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10); 1555 CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190); 1556 } 1557 /* 1558 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI. 1559 */ 1560 CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000)); 1561 1562 /* Enable status unit. */ 1563 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON); 1564 1565 CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START); 1566 CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START); 1567 CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START); 1568 } 1569 1570 static int 1571 msk_probe(device_t dev) 1572 { 1573 struct msk_softc *sc; 1574 char desc[100]; 1575 1576 sc = device_get_softc(device_get_parent(dev)); 1577 /* 1578 * Not much to do here. We always know there will be 1579 * at least one GMAC present, and if there are two, 1580 * mskc_attach() will create a second device instance 1581 * for us. 1582 */ 1583 snprintf(desc, sizeof(desc), 1584 "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x", 1585 model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id, 1586 sc->msk_hw_rev); 1587 device_set_desc_copy(dev, desc); 1588 1589 return (BUS_PROBE_DEFAULT); 1590 } 1591 1592 static int 1593 msk_attach(device_t dev) 1594 { 1595 struct msk_softc *sc; 1596 struct msk_if_softc *sc_if; 1597 struct ifnet *ifp; 1598 struct msk_mii_data *mmd; 1599 int i, port, error; 1600 uint8_t eaddr[6]; 1601 1602 if (dev == NULL) 1603 return (EINVAL); 1604 1605 error = 0; 1606 sc_if = device_get_softc(dev); 1607 sc = device_get_softc(device_get_parent(dev)); 1608 mmd = device_get_ivars(dev); 1609 port = mmd->port; 1610 1611 sc_if->msk_if_dev = dev; 1612 sc_if->msk_port = port; 1613 sc_if->msk_softc = sc; 1614 sc_if->msk_flags = sc->msk_pflags; 1615 sc->msk_if[port] = sc_if; 1616 /* Setup Tx/Rx queue register offsets. */ 1617 if (port == MSK_PORT_A) { 1618 sc_if->msk_txq = Q_XA1; 1619 sc_if->msk_txsq = Q_XS1; 1620 sc_if->msk_rxq = Q_R1; 1621 } else { 1622 sc_if->msk_txq = Q_XA2; 1623 sc_if->msk_txsq = Q_XS2; 1624 sc_if->msk_rxq = Q_R2; 1625 } 1626 1627 callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0); 1628 msk_sysctl_node(sc_if); 1629 1630 if ((error = msk_txrx_dma_alloc(sc_if) != 0)) 1631 goto fail; 1632 msk_rx_dma_jalloc(sc_if); 1633 1634 ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER); 1635 if (ifp == NULL) { 1636 device_printf(sc_if->msk_if_dev, "can not if_alloc()\n"); 1637 error = ENOSPC; 1638 goto fail; 1639 } 1640 ifp->if_softc = sc_if; 1641 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1642 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1643 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4; 1644 /* 1645 * Enable Rx checksum offloading if controller supports 1646 * new descriptor formant and controller is not Yukon XL. 1647 */ 1648 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && 1649 sc->msk_hw_id != CHIP_ID_YUKON_XL) 1650 ifp->if_capabilities |= IFCAP_RXCSUM; 1651 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 && 1652 (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0) 1653 ifp->if_capabilities |= IFCAP_RXCSUM; 1654 ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO; 1655 ifp->if_capenable = ifp->if_capabilities; 1656 ifp->if_ioctl = msk_ioctl; 1657 ifp->if_start = msk_start; 1658 ifp->if_init = msk_init; 1659 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1); 1660 ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1; 1661 IFQ_SET_READY(&ifp->if_snd); 1662 /* 1663 * Get station address for this interface. Note that 1664 * dual port cards actually come with three station 1665 * addresses: one for each port, plus an extra. The 1666 * extra one is used by the SysKonnect driver software 1667 * as a 'virtual' station address for when both ports 1668 * are operating in failover mode. Currently we don't 1669 * use this extra address. 1670 */ 1671 MSK_IF_LOCK(sc_if); 1672 for (i = 0; i < ETHER_ADDR_LEN; i++) 1673 eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i); 1674 1675 /* 1676 * Call MI attach routine. Can't hold locks when calling into ether_*. 1677 */ 1678 MSK_IF_UNLOCK(sc_if); 1679 ether_ifattach(ifp, eaddr); 1680 MSK_IF_LOCK(sc_if); 1681 1682 /* VLAN capability setup */ 1683 ifp->if_capabilities |= IFCAP_VLAN_MTU; 1684 if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) { 1685 /* 1686 * Due to Tx checksum offload hardware bugs, msk(4) manually 1687 * computes checksum for short frames. For VLAN tagged frames 1688 * this workaround does not work so disable checksum offload 1689 * for VLAN interface. 1690 */ 1691 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO; 1692 /* 1693 * Enable Rx checksum offloading for VLAN tagged frames 1694 * if controller support new descriptor format. 1695 */ 1696 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 && 1697 (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0) 1698 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 1699 } 1700 ifp->if_capenable = ifp->if_capabilities; 1701 /* 1702 * Disable RX checksum offloading on controllers that don't use 1703 * new descriptor format but give chance to enable it. 1704 */ 1705 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0) 1706 ifp->if_capenable &= ~IFCAP_RXCSUM; 1707 1708 /* 1709 * Tell the upper layer(s) we support long frames. 1710 * Must appear after the call to ether_ifattach() because 1711 * ether_ifattach() sets ifi_hdrlen to the default value. 1712 */ 1713 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 1714 1715 /* 1716 * Do miibus setup. 1717 */ 1718 MSK_IF_UNLOCK(sc_if); 1719 error = mii_attach(dev, &sc_if->msk_miibus, ifp, msk_mediachange, 1720 msk_mediastatus, BMSR_DEFCAPMASK, PHY_ADDR_MARV, MII_OFFSET_ANY, 1721 mmd->mii_flags); 1722 if (error != 0) { 1723 device_printf(sc_if->msk_if_dev, "attaching PHYs failed\n"); 1724 ether_ifdetach(ifp); 1725 error = ENXIO; 1726 goto fail; 1727 } 1728 1729 fail: 1730 if (error != 0) { 1731 /* Access should be ok even though lock has been dropped */ 1732 sc->msk_if[port] = NULL; 1733 msk_detach(dev); 1734 } 1735 1736 return (error); 1737 } 1738 1739 /* 1740 * Attach the interface. Allocate softc structures, do ifmedia 1741 * setup and ethernet/BPF attach. 1742 */ 1743 static int 1744 mskc_attach(device_t dev) 1745 { 1746 struct msk_softc *sc; 1747 struct msk_mii_data *mmd; 1748 int error, msic, msir, reg; 1749 1750 sc = device_get_softc(dev); 1751 sc->msk_dev = dev; 1752 mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1753 MTX_DEF); 1754 1755 /* 1756 * Map control/status registers. 1757 */ 1758 pci_enable_busmaster(dev); 1759 1760 /* Allocate I/O resource */ 1761 #ifdef MSK_USEIOSPACE 1762 sc->msk_res_spec = msk_res_spec_io; 1763 #else 1764 sc->msk_res_spec = msk_res_spec_mem; 1765 #endif 1766 sc->msk_irq_spec = msk_irq_spec_legacy; 1767 error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res); 1768 if (error) { 1769 if (sc->msk_res_spec == msk_res_spec_mem) 1770 sc->msk_res_spec = msk_res_spec_io; 1771 else 1772 sc->msk_res_spec = msk_res_spec_mem; 1773 error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res); 1774 if (error) { 1775 device_printf(dev, "couldn't allocate %s resources\n", 1776 sc->msk_res_spec == msk_res_spec_mem ? "memory" : 1777 "I/O"); 1778 mtx_destroy(&sc->msk_mtx); 1779 return (ENXIO); 1780 } 1781 } 1782 1783 /* Enable all clocks before accessing any registers. */ 1784 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0); 1785 1786 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); 1787 sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID); 1788 sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f; 1789 /* Bail out if chip is not recognized. */ 1790 if (sc->msk_hw_id < CHIP_ID_YUKON_XL || 1791 sc->msk_hw_id > CHIP_ID_YUKON_OPT || 1792 sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) { 1793 device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n", 1794 sc->msk_hw_id, sc->msk_hw_rev); 1795 mtx_destroy(&sc->msk_mtx); 1796 return (ENXIO); 1797 } 1798 1799 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 1800 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1801 OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW, 1802 &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I", 1803 "max number of Rx events to process"); 1804 1805 sc->msk_process_limit = MSK_PROC_DEFAULT; 1806 error = resource_int_value(device_get_name(dev), device_get_unit(dev), 1807 "process_limit", &sc->msk_process_limit); 1808 if (error == 0) { 1809 if (sc->msk_process_limit < MSK_PROC_MIN || 1810 sc->msk_process_limit > MSK_PROC_MAX) { 1811 device_printf(dev, "process_limit value out of range; " 1812 "using default: %d\n", MSK_PROC_DEFAULT); 1813 sc->msk_process_limit = MSK_PROC_DEFAULT; 1814 } 1815 } 1816 1817 sc->msk_int_holdoff = MSK_INT_HOLDOFF_DEFAULT; 1818 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 1819 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 1820 "int_holdoff", CTLFLAG_RW, &sc->msk_int_holdoff, 0, 1821 "Maximum number of time to delay interrupts"); 1822 resource_int_value(device_get_name(dev), device_get_unit(dev), 1823 "int_holdoff", &sc->msk_int_holdoff); 1824 1825 sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP); 1826 /* Check number of MACs. */ 1827 sc->msk_num_port = 1; 1828 if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) == 1829 CFG_DUAL_MAC_MSK) { 1830 if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC)) 1831 sc->msk_num_port++; 1832 } 1833 1834 /* Check bus type. */ 1835 if (pci_find_cap(sc->msk_dev, PCIY_EXPRESS, ®) == 0) { 1836 sc->msk_bustype = MSK_PEX_BUS; 1837 sc->msk_expcap = reg; 1838 } else if (pci_find_cap(sc->msk_dev, PCIY_PCIX, ®) == 0) { 1839 sc->msk_bustype = MSK_PCIX_BUS; 1840 sc->msk_pcixcap = reg; 1841 } else 1842 sc->msk_bustype = MSK_PCI_BUS; 1843 1844 switch (sc->msk_hw_id) { 1845 case CHIP_ID_YUKON_EC: 1846 sc->msk_clock = 125; /* 125 MHz */ 1847 sc->msk_pflags |= MSK_FLAG_JUMBO; 1848 break; 1849 case CHIP_ID_YUKON_EC_U: 1850 sc->msk_clock = 125; /* 125 MHz */ 1851 sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM; 1852 break; 1853 case CHIP_ID_YUKON_EX: 1854 sc->msk_clock = 125; /* 125 MHz */ 1855 sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 | 1856 MSK_FLAG_AUTOTX_CSUM; 1857 /* 1858 * Yukon Extreme seems to have silicon bug for 1859 * automatic Tx checksum calculation capability. 1860 */ 1861 if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0) 1862 sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM; 1863 /* 1864 * Yukon Extreme A0 could not use store-and-forward 1865 * for jumbo frames, so disable Tx checksum 1866 * offloading for jumbo frames. 1867 */ 1868 if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0) 1869 sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM; 1870 break; 1871 case CHIP_ID_YUKON_FE: 1872 sc->msk_clock = 100; /* 100 MHz */ 1873 sc->msk_pflags |= MSK_FLAG_FASTETHER; 1874 break; 1875 case CHIP_ID_YUKON_FE_P: 1876 sc->msk_clock = 50; /* 50 MHz */ 1877 sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 | 1878 MSK_FLAG_AUTOTX_CSUM; 1879 if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) { 1880 /* 1881 * XXX 1882 * FE+ A0 has status LE writeback bug so msk(4) 1883 * does not rely on status word of received frame 1884 * in msk_rxeof() which in turn disables all 1885 * hardware assistance bits reported by the status 1886 * word as well as validity of the received frame. 1887 * Just pass received frames to upper stack with 1888 * minimal test and let upper stack handle them. 1889 */ 1890 sc->msk_pflags |= MSK_FLAG_NOHWVLAN | 1891 MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM; 1892 } 1893 break; 1894 case CHIP_ID_YUKON_XL: 1895 sc->msk_clock = 156; /* 156 MHz */ 1896 sc->msk_pflags |= MSK_FLAG_JUMBO; 1897 break; 1898 case CHIP_ID_YUKON_SUPR: 1899 sc->msk_clock = 125; /* 125 MHz */ 1900 sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 | 1901 MSK_FLAG_AUTOTX_CSUM; 1902 break; 1903 case CHIP_ID_YUKON_UL_2: 1904 sc->msk_clock = 125; /* 125 MHz */ 1905 sc->msk_pflags |= MSK_FLAG_JUMBO; 1906 break; 1907 case CHIP_ID_YUKON_OPT: 1908 sc->msk_clock = 125; /* 125 MHz */ 1909 sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2; 1910 break; 1911 default: 1912 sc->msk_clock = 156; /* 156 MHz */ 1913 break; 1914 } 1915 1916 /* Allocate IRQ resources. */ 1917 msic = pci_msi_count(dev); 1918 if (bootverbose) 1919 device_printf(dev, "MSI count : %d\n", msic); 1920 if (legacy_intr != 0) 1921 msi_disable = 1; 1922 if (msi_disable == 0 && msic > 0) { 1923 msir = 1; 1924 if (pci_alloc_msi(dev, &msir) == 0) { 1925 if (msir == 1) { 1926 sc->msk_pflags |= MSK_FLAG_MSI; 1927 sc->msk_irq_spec = msk_irq_spec_msi; 1928 } else 1929 pci_release_msi(dev); 1930 } 1931 } 1932 1933 error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq); 1934 if (error) { 1935 device_printf(dev, "couldn't allocate IRQ resources\n"); 1936 goto fail; 1937 } 1938 1939 if ((error = msk_status_dma_alloc(sc)) != 0) 1940 goto fail; 1941 1942 /* Set base interrupt mask. */ 1943 sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU; 1944 sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR | 1945 Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP; 1946 1947 /* Reset the adapter. */ 1948 mskc_reset(sc); 1949 1950 if ((error = mskc_setup_rambuffer(sc)) != 0) 1951 goto fail; 1952 1953 sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1); 1954 if (sc->msk_devs[MSK_PORT_A] == NULL) { 1955 device_printf(dev, "failed to add child for PORT_A\n"); 1956 error = ENXIO; 1957 goto fail; 1958 } 1959 mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO); 1960 if (mmd == NULL) { 1961 device_printf(dev, "failed to allocate memory for " 1962 "ivars of PORT_A\n"); 1963 error = ENXIO; 1964 goto fail; 1965 } 1966 mmd->port = MSK_PORT_A; 1967 mmd->pmd = sc->msk_pmd; 1968 mmd->mii_flags |= MIIF_DOPAUSE; 1969 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S') 1970 mmd->mii_flags |= MIIF_HAVEFIBER; 1971 if (sc->msk_pmd == 'P') 1972 mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0; 1973 device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd); 1974 1975 if (sc->msk_num_port > 1) { 1976 sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1); 1977 if (sc->msk_devs[MSK_PORT_B] == NULL) { 1978 device_printf(dev, "failed to add child for PORT_B\n"); 1979 error = ENXIO; 1980 goto fail; 1981 } 1982 mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | 1983 M_ZERO); 1984 if (mmd == NULL) { 1985 device_printf(dev, "failed to allocate memory for " 1986 "ivars of PORT_B\n"); 1987 error = ENXIO; 1988 goto fail; 1989 } 1990 mmd->port = MSK_PORT_B; 1991 mmd->pmd = sc->msk_pmd; 1992 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S') 1993 mmd->mii_flags |= MIIF_HAVEFIBER; 1994 if (sc->msk_pmd == 'P') 1995 mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0; 1996 device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd); 1997 } 1998 1999 error = bus_generic_attach(dev); 2000 if (error) { 2001 device_printf(dev, "failed to attach port(s)\n"); 2002 goto fail; 2003 } 2004 2005 /* Hook interrupt last to avoid having to lock softc. */ 2006 error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET | 2007 INTR_MPSAFE, NULL, msk_intr, sc, &sc->msk_intrhand); 2008 if (error != 0) { 2009 device_printf(dev, "couldn't set up interrupt handler\n"); 2010 goto fail; 2011 } 2012 fail: 2013 if (error != 0) 2014 mskc_detach(dev); 2015 2016 return (error); 2017 } 2018 2019 /* 2020 * Shutdown hardware and free up resources. This can be called any 2021 * time after the mutex has been initialized. It is called in both 2022 * the error case in attach and the normal detach case so it needs 2023 * to be careful about only freeing resources that have actually been 2024 * allocated. 2025 */ 2026 static int 2027 msk_detach(device_t dev) 2028 { 2029 struct msk_softc *sc; 2030 struct msk_if_softc *sc_if; 2031 struct ifnet *ifp; 2032 2033 sc_if = device_get_softc(dev); 2034 KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx), 2035 ("msk mutex not initialized in msk_detach")); 2036 MSK_IF_LOCK(sc_if); 2037 2038 ifp = sc_if->msk_ifp; 2039 if (device_is_attached(dev)) { 2040 /* XXX */ 2041 sc_if->msk_flags |= MSK_FLAG_DETACH; 2042 msk_stop(sc_if); 2043 /* Can't hold locks while calling detach. */ 2044 MSK_IF_UNLOCK(sc_if); 2045 callout_drain(&sc_if->msk_tick_ch); 2046 if (ifp) 2047 ether_ifdetach(ifp); 2048 MSK_IF_LOCK(sc_if); 2049 } 2050 2051 /* 2052 * We're generally called from mskc_detach() which is using 2053 * device_delete_child() to get to here. It's already trashed 2054 * miibus for us, so don't do it here or we'll panic. 2055 * 2056 * if (sc_if->msk_miibus != NULL) { 2057 * device_delete_child(dev, sc_if->msk_miibus); 2058 * sc_if->msk_miibus = NULL; 2059 * } 2060 */ 2061 2062 msk_rx_dma_jfree(sc_if); 2063 msk_txrx_dma_free(sc_if); 2064 bus_generic_detach(dev); 2065 2066 if (ifp) 2067 if_free(ifp); 2068 sc = sc_if->msk_softc; 2069 sc->msk_if[sc_if->msk_port] = NULL; 2070 MSK_IF_UNLOCK(sc_if); 2071 2072 return (0); 2073 } 2074 2075 static int 2076 mskc_detach(device_t dev) 2077 { 2078 struct msk_softc *sc; 2079 2080 sc = device_get_softc(dev); 2081 KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized")); 2082 2083 if (device_is_alive(dev)) { 2084 if (sc->msk_devs[MSK_PORT_A] != NULL) { 2085 free(device_get_ivars(sc->msk_devs[MSK_PORT_A]), 2086 M_DEVBUF); 2087 device_delete_child(dev, sc->msk_devs[MSK_PORT_A]); 2088 } 2089 if (sc->msk_devs[MSK_PORT_B] != NULL) { 2090 free(device_get_ivars(sc->msk_devs[MSK_PORT_B]), 2091 M_DEVBUF); 2092 device_delete_child(dev, sc->msk_devs[MSK_PORT_B]); 2093 } 2094 bus_generic_detach(dev); 2095 } 2096 2097 /* Disable all interrupts. */ 2098 CSR_WRITE_4(sc, B0_IMSK, 0); 2099 CSR_READ_4(sc, B0_IMSK); 2100 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 2101 CSR_READ_4(sc, B0_HWE_IMSK); 2102 2103 /* LED Off. */ 2104 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF); 2105 2106 /* Put hardware reset. */ 2107 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 2108 2109 msk_status_dma_free(sc); 2110 2111 if (sc->msk_intrhand) { 2112 bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand); 2113 sc->msk_intrhand = NULL; 2114 } 2115 bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq); 2116 if ((sc->msk_pflags & MSK_FLAG_MSI) != 0) 2117 pci_release_msi(dev); 2118 bus_release_resources(dev, sc->msk_res_spec, sc->msk_res); 2119 mtx_destroy(&sc->msk_mtx); 2120 2121 return (0); 2122 } 2123 2124 static bus_dma_tag_t 2125 mskc_get_dma_tag(device_t bus, device_t child __unused) 2126 { 2127 2128 return (bus_get_dma_tag(bus)); 2129 } 2130 2131 struct msk_dmamap_arg { 2132 bus_addr_t msk_busaddr; 2133 }; 2134 2135 static void 2136 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 2137 { 2138 struct msk_dmamap_arg *ctx; 2139 2140 if (error != 0) 2141 return; 2142 ctx = arg; 2143 ctx->msk_busaddr = segs[0].ds_addr; 2144 } 2145 2146 /* Create status DMA region. */ 2147 static int 2148 msk_status_dma_alloc(struct msk_softc *sc) 2149 { 2150 struct msk_dmamap_arg ctx; 2151 bus_size_t stat_sz; 2152 int count, error; 2153 2154 /* 2155 * It seems controller requires number of status LE entries 2156 * is power of 2 and the maximum number of status LE entries 2157 * is 4096. For dual-port controllers, the number of status 2158 * LE entries should be large enough to hold both port's 2159 * status updates. 2160 */ 2161 count = 3 * MSK_RX_RING_CNT + MSK_TX_RING_CNT; 2162 count = imin(4096, roundup2(count, 1024)); 2163 sc->msk_stat_count = count; 2164 stat_sz = count * sizeof(struct msk_stat_desc); 2165 error = bus_dma_tag_create( 2166 bus_get_dma_tag(sc->msk_dev), /* parent */ 2167 MSK_STAT_ALIGN, 0, /* alignment, boundary */ 2168 BUS_SPACE_MAXADDR, /* lowaddr */ 2169 BUS_SPACE_MAXADDR, /* highaddr */ 2170 NULL, NULL, /* filter, filterarg */ 2171 stat_sz, /* maxsize */ 2172 1, /* nsegments */ 2173 stat_sz, /* maxsegsize */ 2174 0, /* flags */ 2175 NULL, NULL, /* lockfunc, lockarg */ 2176 &sc->msk_stat_tag); 2177 if (error != 0) { 2178 device_printf(sc->msk_dev, 2179 "failed to create status DMA tag\n"); 2180 return (error); 2181 } 2182 2183 /* Allocate DMA'able memory and load the DMA map for status ring. */ 2184 error = bus_dmamem_alloc(sc->msk_stat_tag, 2185 (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | 2186 BUS_DMA_ZERO, &sc->msk_stat_map); 2187 if (error != 0) { 2188 device_printf(sc->msk_dev, 2189 "failed to allocate DMA'able memory for status ring\n"); 2190 return (error); 2191 } 2192 2193 ctx.msk_busaddr = 0; 2194 error = bus_dmamap_load(sc->msk_stat_tag, sc->msk_stat_map, 2195 sc->msk_stat_ring, stat_sz, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2196 if (error != 0) { 2197 device_printf(sc->msk_dev, 2198 "failed to load DMA'able memory for status ring\n"); 2199 return (error); 2200 } 2201 sc->msk_stat_ring_paddr = ctx.msk_busaddr; 2202 2203 return (0); 2204 } 2205 2206 static void 2207 msk_status_dma_free(struct msk_softc *sc) 2208 { 2209 2210 /* Destroy status block. */ 2211 if (sc->msk_stat_tag) { 2212 if (sc->msk_stat_map) { 2213 bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map); 2214 if (sc->msk_stat_ring) { 2215 bus_dmamem_free(sc->msk_stat_tag, 2216 sc->msk_stat_ring, sc->msk_stat_map); 2217 sc->msk_stat_ring = NULL; 2218 } 2219 sc->msk_stat_map = NULL; 2220 } 2221 bus_dma_tag_destroy(sc->msk_stat_tag); 2222 sc->msk_stat_tag = NULL; 2223 } 2224 } 2225 2226 static int 2227 msk_txrx_dma_alloc(struct msk_if_softc *sc_if) 2228 { 2229 struct msk_dmamap_arg ctx; 2230 struct msk_txdesc *txd; 2231 struct msk_rxdesc *rxd; 2232 bus_size_t rxalign; 2233 int error, i; 2234 2235 /* Create parent DMA tag. */ 2236 error = bus_dma_tag_create( 2237 bus_get_dma_tag(sc_if->msk_if_dev), /* parent */ 2238 1, 0, /* alignment, boundary */ 2239 BUS_SPACE_MAXADDR, /* lowaddr */ 2240 BUS_SPACE_MAXADDR, /* highaddr */ 2241 NULL, NULL, /* filter, filterarg */ 2242 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 2243 0, /* nsegments */ 2244 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 2245 0, /* flags */ 2246 NULL, NULL, /* lockfunc, lockarg */ 2247 &sc_if->msk_cdata.msk_parent_tag); 2248 if (error != 0) { 2249 device_printf(sc_if->msk_if_dev, 2250 "failed to create parent DMA tag\n"); 2251 goto fail; 2252 } 2253 /* Create tag for Tx ring. */ 2254 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2255 MSK_RING_ALIGN, 0, /* alignment, boundary */ 2256 BUS_SPACE_MAXADDR, /* lowaddr */ 2257 BUS_SPACE_MAXADDR, /* highaddr */ 2258 NULL, NULL, /* filter, filterarg */ 2259 MSK_TX_RING_SZ, /* maxsize */ 2260 1, /* nsegments */ 2261 MSK_TX_RING_SZ, /* maxsegsize */ 2262 0, /* flags */ 2263 NULL, NULL, /* lockfunc, lockarg */ 2264 &sc_if->msk_cdata.msk_tx_ring_tag); 2265 if (error != 0) { 2266 device_printf(sc_if->msk_if_dev, 2267 "failed to create Tx ring DMA tag\n"); 2268 goto fail; 2269 } 2270 2271 /* Create tag for Rx ring. */ 2272 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2273 MSK_RING_ALIGN, 0, /* alignment, boundary */ 2274 BUS_SPACE_MAXADDR, /* lowaddr */ 2275 BUS_SPACE_MAXADDR, /* highaddr */ 2276 NULL, NULL, /* filter, filterarg */ 2277 MSK_RX_RING_SZ, /* maxsize */ 2278 1, /* nsegments */ 2279 MSK_RX_RING_SZ, /* maxsegsize */ 2280 0, /* flags */ 2281 NULL, NULL, /* lockfunc, lockarg */ 2282 &sc_if->msk_cdata.msk_rx_ring_tag); 2283 if (error != 0) { 2284 device_printf(sc_if->msk_if_dev, 2285 "failed to create Rx ring DMA tag\n"); 2286 goto fail; 2287 } 2288 2289 /* Create tag for Tx buffers. */ 2290 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2291 1, 0, /* alignment, boundary */ 2292 BUS_SPACE_MAXADDR, /* lowaddr */ 2293 BUS_SPACE_MAXADDR, /* highaddr */ 2294 NULL, NULL, /* filter, filterarg */ 2295 MSK_TSO_MAXSIZE, /* maxsize */ 2296 MSK_MAXTXSEGS, /* nsegments */ 2297 MSK_TSO_MAXSGSIZE, /* maxsegsize */ 2298 0, /* flags */ 2299 NULL, NULL, /* lockfunc, lockarg */ 2300 &sc_if->msk_cdata.msk_tx_tag); 2301 if (error != 0) { 2302 device_printf(sc_if->msk_if_dev, 2303 "failed to create Tx DMA tag\n"); 2304 goto fail; 2305 } 2306 2307 rxalign = 1; 2308 /* 2309 * Workaround hardware hang which seems to happen when Rx buffer 2310 * is not aligned on multiple of FIFO word(8 bytes). 2311 */ 2312 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0) 2313 rxalign = MSK_RX_BUF_ALIGN; 2314 /* Create tag for Rx buffers. */ 2315 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2316 rxalign, 0, /* alignment, boundary */ 2317 BUS_SPACE_MAXADDR, /* lowaddr */ 2318 BUS_SPACE_MAXADDR, /* highaddr */ 2319 NULL, NULL, /* filter, filterarg */ 2320 MCLBYTES, /* maxsize */ 2321 1, /* nsegments */ 2322 MCLBYTES, /* maxsegsize */ 2323 0, /* flags */ 2324 NULL, NULL, /* lockfunc, lockarg */ 2325 &sc_if->msk_cdata.msk_rx_tag); 2326 if (error != 0) { 2327 device_printf(sc_if->msk_if_dev, 2328 "failed to create Rx DMA tag\n"); 2329 goto fail; 2330 } 2331 2332 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 2333 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag, 2334 (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK | 2335 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map); 2336 if (error != 0) { 2337 device_printf(sc_if->msk_if_dev, 2338 "failed to allocate DMA'able memory for Tx ring\n"); 2339 goto fail; 2340 } 2341 2342 ctx.msk_busaddr = 0; 2343 error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag, 2344 sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring, 2345 MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2346 if (error != 0) { 2347 device_printf(sc_if->msk_if_dev, 2348 "failed to load DMA'able memory for Tx ring\n"); 2349 goto fail; 2350 } 2351 sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr; 2352 2353 /* Allocate DMA'able memory and load the DMA map for Rx ring. */ 2354 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag, 2355 (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK | 2356 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map); 2357 if (error != 0) { 2358 device_printf(sc_if->msk_if_dev, 2359 "failed to allocate DMA'able memory for Rx ring\n"); 2360 goto fail; 2361 } 2362 2363 ctx.msk_busaddr = 0; 2364 error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag, 2365 sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring, 2366 MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2367 if (error != 0) { 2368 device_printf(sc_if->msk_if_dev, 2369 "failed to load DMA'able memory for Rx ring\n"); 2370 goto fail; 2371 } 2372 sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr; 2373 2374 /* Create DMA maps for Tx buffers. */ 2375 for (i = 0; i < MSK_TX_RING_CNT; i++) { 2376 txd = &sc_if->msk_cdata.msk_txdesc[i]; 2377 txd->tx_m = NULL; 2378 txd->tx_dmamap = NULL; 2379 error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0, 2380 &txd->tx_dmamap); 2381 if (error != 0) { 2382 device_printf(sc_if->msk_if_dev, 2383 "failed to create Tx dmamap\n"); 2384 goto fail; 2385 } 2386 } 2387 /* Create DMA maps for Rx buffers. */ 2388 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0, 2389 &sc_if->msk_cdata.msk_rx_sparemap)) != 0) { 2390 device_printf(sc_if->msk_if_dev, 2391 "failed to create spare Rx dmamap\n"); 2392 goto fail; 2393 } 2394 for (i = 0; i < MSK_RX_RING_CNT; i++) { 2395 rxd = &sc_if->msk_cdata.msk_rxdesc[i]; 2396 rxd->rx_m = NULL; 2397 rxd->rx_dmamap = NULL; 2398 error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0, 2399 &rxd->rx_dmamap); 2400 if (error != 0) { 2401 device_printf(sc_if->msk_if_dev, 2402 "failed to create Rx dmamap\n"); 2403 goto fail; 2404 } 2405 } 2406 2407 fail: 2408 return (error); 2409 } 2410 2411 static int 2412 msk_rx_dma_jalloc(struct msk_if_softc *sc_if) 2413 { 2414 struct msk_dmamap_arg ctx; 2415 struct msk_rxdesc *jrxd; 2416 bus_size_t rxalign; 2417 int error, i; 2418 2419 if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) { 2420 sc_if->msk_flags &= ~MSK_FLAG_JUMBO; 2421 device_printf(sc_if->msk_if_dev, 2422 "disabling jumbo frame support\n"); 2423 return (0); 2424 } 2425 /* Create tag for jumbo Rx ring. */ 2426 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2427 MSK_RING_ALIGN, 0, /* alignment, boundary */ 2428 BUS_SPACE_MAXADDR, /* lowaddr */ 2429 BUS_SPACE_MAXADDR, /* highaddr */ 2430 NULL, NULL, /* filter, filterarg */ 2431 MSK_JUMBO_RX_RING_SZ, /* maxsize */ 2432 1, /* nsegments */ 2433 MSK_JUMBO_RX_RING_SZ, /* maxsegsize */ 2434 0, /* flags */ 2435 NULL, NULL, /* lockfunc, lockarg */ 2436 &sc_if->msk_cdata.msk_jumbo_rx_ring_tag); 2437 if (error != 0) { 2438 device_printf(sc_if->msk_if_dev, 2439 "failed to create jumbo Rx ring DMA tag\n"); 2440 goto jumbo_fail; 2441 } 2442 2443 rxalign = 1; 2444 /* 2445 * Workaround hardware hang which seems to happen when Rx buffer 2446 * is not aligned on multiple of FIFO word(8 bytes). 2447 */ 2448 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0) 2449 rxalign = MSK_RX_BUF_ALIGN; 2450 /* Create tag for jumbo Rx buffers. */ 2451 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2452 rxalign, 0, /* alignment, boundary */ 2453 BUS_SPACE_MAXADDR, /* lowaddr */ 2454 BUS_SPACE_MAXADDR, /* highaddr */ 2455 NULL, NULL, /* filter, filterarg */ 2456 MJUM9BYTES, /* maxsize */ 2457 1, /* nsegments */ 2458 MJUM9BYTES, /* maxsegsize */ 2459 0, /* flags */ 2460 NULL, NULL, /* lockfunc, lockarg */ 2461 &sc_if->msk_cdata.msk_jumbo_rx_tag); 2462 if (error != 0) { 2463 device_printf(sc_if->msk_if_dev, 2464 "failed to create jumbo Rx DMA tag\n"); 2465 goto jumbo_fail; 2466 } 2467 2468 /* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */ 2469 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2470 (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring, 2471 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 2472 &sc_if->msk_cdata.msk_jumbo_rx_ring_map); 2473 if (error != 0) { 2474 device_printf(sc_if->msk_if_dev, 2475 "failed to allocate DMA'able memory for jumbo Rx ring\n"); 2476 goto jumbo_fail; 2477 } 2478 2479 ctx.msk_busaddr = 0; 2480 error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2481 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 2482 sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ, 2483 msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2484 if (error != 0) { 2485 device_printf(sc_if->msk_if_dev, 2486 "failed to load DMA'able memory for jumbo Rx ring\n"); 2487 goto jumbo_fail; 2488 } 2489 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr; 2490 2491 /* Create DMA maps for jumbo Rx buffers. */ 2492 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0, 2493 &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) { 2494 device_printf(sc_if->msk_if_dev, 2495 "failed to create spare jumbo Rx dmamap\n"); 2496 goto jumbo_fail; 2497 } 2498 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 2499 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; 2500 jrxd->rx_m = NULL; 2501 jrxd->rx_dmamap = NULL; 2502 error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0, 2503 &jrxd->rx_dmamap); 2504 if (error != 0) { 2505 device_printf(sc_if->msk_if_dev, 2506 "failed to create jumbo Rx dmamap\n"); 2507 goto jumbo_fail; 2508 } 2509 } 2510 2511 return (0); 2512 2513 jumbo_fail: 2514 msk_rx_dma_jfree(sc_if); 2515 device_printf(sc_if->msk_if_dev, "disabling jumbo frame support " 2516 "due to resource shortage\n"); 2517 sc_if->msk_flags &= ~MSK_FLAG_JUMBO; 2518 return (error); 2519 } 2520 2521 static void 2522 msk_txrx_dma_free(struct msk_if_softc *sc_if) 2523 { 2524 struct msk_txdesc *txd; 2525 struct msk_rxdesc *rxd; 2526 int i; 2527 2528 /* Tx ring. */ 2529 if (sc_if->msk_cdata.msk_tx_ring_tag) { 2530 if (sc_if->msk_cdata.msk_tx_ring_map) 2531 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag, 2532 sc_if->msk_cdata.msk_tx_ring_map); 2533 if (sc_if->msk_cdata.msk_tx_ring_map && 2534 sc_if->msk_rdata.msk_tx_ring) 2535 bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag, 2536 sc_if->msk_rdata.msk_tx_ring, 2537 sc_if->msk_cdata.msk_tx_ring_map); 2538 sc_if->msk_rdata.msk_tx_ring = NULL; 2539 sc_if->msk_cdata.msk_tx_ring_map = NULL; 2540 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag); 2541 sc_if->msk_cdata.msk_tx_ring_tag = NULL; 2542 } 2543 /* Rx ring. */ 2544 if (sc_if->msk_cdata.msk_rx_ring_tag) { 2545 if (sc_if->msk_cdata.msk_rx_ring_map) 2546 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag, 2547 sc_if->msk_cdata.msk_rx_ring_map); 2548 if (sc_if->msk_cdata.msk_rx_ring_map && 2549 sc_if->msk_rdata.msk_rx_ring) 2550 bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag, 2551 sc_if->msk_rdata.msk_rx_ring, 2552 sc_if->msk_cdata.msk_rx_ring_map); 2553 sc_if->msk_rdata.msk_rx_ring = NULL; 2554 sc_if->msk_cdata.msk_rx_ring_map = NULL; 2555 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag); 2556 sc_if->msk_cdata.msk_rx_ring_tag = NULL; 2557 } 2558 /* Tx buffers. */ 2559 if (sc_if->msk_cdata.msk_tx_tag) { 2560 for (i = 0; i < MSK_TX_RING_CNT; i++) { 2561 txd = &sc_if->msk_cdata.msk_txdesc[i]; 2562 if (txd->tx_dmamap) { 2563 bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag, 2564 txd->tx_dmamap); 2565 txd->tx_dmamap = NULL; 2566 } 2567 } 2568 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag); 2569 sc_if->msk_cdata.msk_tx_tag = NULL; 2570 } 2571 /* Rx buffers. */ 2572 if (sc_if->msk_cdata.msk_rx_tag) { 2573 for (i = 0; i < MSK_RX_RING_CNT; i++) { 2574 rxd = &sc_if->msk_cdata.msk_rxdesc[i]; 2575 if (rxd->rx_dmamap) { 2576 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag, 2577 rxd->rx_dmamap); 2578 rxd->rx_dmamap = NULL; 2579 } 2580 } 2581 if (sc_if->msk_cdata.msk_rx_sparemap) { 2582 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag, 2583 sc_if->msk_cdata.msk_rx_sparemap); 2584 sc_if->msk_cdata.msk_rx_sparemap = 0; 2585 } 2586 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag); 2587 sc_if->msk_cdata.msk_rx_tag = NULL; 2588 } 2589 if (sc_if->msk_cdata.msk_parent_tag) { 2590 bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag); 2591 sc_if->msk_cdata.msk_parent_tag = NULL; 2592 } 2593 } 2594 2595 static void 2596 msk_rx_dma_jfree(struct msk_if_softc *sc_if) 2597 { 2598 struct msk_rxdesc *jrxd; 2599 int i; 2600 2601 /* Jumbo Rx ring. */ 2602 if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) { 2603 if (sc_if->msk_cdata.msk_jumbo_rx_ring_map) 2604 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2605 sc_if->msk_cdata.msk_jumbo_rx_ring_map); 2606 if (sc_if->msk_cdata.msk_jumbo_rx_ring_map && 2607 sc_if->msk_rdata.msk_jumbo_rx_ring) 2608 bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2609 sc_if->msk_rdata.msk_jumbo_rx_ring, 2610 sc_if->msk_cdata.msk_jumbo_rx_ring_map); 2611 sc_if->msk_rdata.msk_jumbo_rx_ring = NULL; 2612 sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL; 2613 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag); 2614 sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL; 2615 } 2616 /* Jumbo Rx buffers. */ 2617 if (sc_if->msk_cdata.msk_jumbo_rx_tag) { 2618 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 2619 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; 2620 if (jrxd->rx_dmamap) { 2621 bus_dmamap_destroy( 2622 sc_if->msk_cdata.msk_jumbo_rx_tag, 2623 jrxd->rx_dmamap); 2624 jrxd->rx_dmamap = NULL; 2625 } 2626 } 2627 if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) { 2628 bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag, 2629 sc_if->msk_cdata.msk_jumbo_rx_sparemap); 2630 sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0; 2631 } 2632 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag); 2633 sc_if->msk_cdata.msk_jumbo_rx_tag = NULL; 2634 } 2635 } 2636 2637 static int 2638 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head) 2639 { 2640 struct msk_txdesc *txd, *txd_last; 2641 struct msk_tx_desc *tx_le; 2642 struct mbuf *m; 2643 bus_dmamap_t map; 2644 bus_dma_segment_t txsegs[MSK_MAXTXSEGS]; 2645 uint32_t control, csum, prod, si; 2646 uint16_t offset, tcp_offset, tso_mtu; 2647 int error, i, nseg, tso; 2648 2649 MSK_IF_LOCK_ASSERT(sc_if); 2650 2651 tcp_offset = offset = 0; 2652 m = *m_head; 2653 if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 && 2654 (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) || 2655 ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && 2656 (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) { 2657 /* 2658 * Since mbuf has no protocol specific structure information 2659 * in it we have to inspect protocol information here to 2660 * setup TSO and checksum offload. I don't know why Marvell 2661 * made a such decision in chip design because other GigE 2662 * hardwares normally takes care of all these chores in 2663 * hardware. However, TSO performance of Yukon II is very 2664 * good such that it's worth to implement it. 2665 */ 2666 struct ether_header *eh; 2667 struct ip *ip; 2668 struct tcphdr *tcp; 2669 2670 if (M_WRITABLE(m) == 0) { 2671 /* Get a writable copy. */ 2672 m = m_dup(*m_head, M_NOWAIT); 2673 m_freem(*m_head); 2674 if (m == NULL) { 2675 *m_head = NULL; 2676 return (ENOBUFS); 2677 } 2678 *m_head = m; 2679 } 2680 2681 offset = sizeof(struct ether_header); 2682 m = m_pullup(m, offset); 2683 if (m == NULL) { 2684 *m_head = NULL; 2685 return (ENOBUFS); 2686 } 2687 eh = mtod(m, struct ether_header *); 2688 /* Check if hardware VLAN insertion is off. */ 2689 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 2690 offset = sizeof(struct ether_vlan_header); 2691 m = m_pullup(m, offset); 2692 if (m == NULL) { 2693 *m_head = NULL; 2694 return (ENOBUFS); 2695 } 2696 } 2697 m = m_pullup(m, offset + sizeof(struct ip)); 2698 if (m == NULL) { 2699 *m_head = NULL; 2700 return (ENOBUFS); 2701 } 2702 ip = (struct ip *)(mtod(m, char *) + offset); 2703 offset += (ip->ip_hl << 2); 2704 tcp_offset = offset; 2705 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2706 m = m_pullup(m, offset + sizeof(struct tcphdr)); 2707 if (m == NULL) { 2708 *m_head = NULL; 2709 return (ENOBUFS); 2710 } 2711 tcp = (struct tcphdr *)(mtod(m, char *) + offset); 2712 offset += (tcp->th_off << 2); 2713 } else if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 && 2714 (m->m_pkthdr.len < MSK_MIN_FRAMELEN) && 2715 (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) { 2716 /* 2717 * It seems that Yukon II has Tx checksum offload bug 2718 * for small TCP packets that's less than 60 bytes in 2719 * size (e.g. TCP window probe packet, pure ACK packet). 2720 * Common work around like padding with zeros to make 2721 * the frame minimum ethernet frame size didn't work at 2722 * all. 2723 * Instead of disabling checksum offload completely we 2724 * resort to S/W checksum routine when we encounter 2725 * short TCP frames. 2726 * Short UDP packets appear to be handled correctly by 2727 * Yukon II. Also I assume this bug does not happen on 2728 * controllers that use newer descriptor format or 2729 * automatic Tx checksum calculation. 2730 */ 2731 m = m_pullup(m, offset + sizeof(struct tcphdr)); 2732 if (m == NULL) { 2733 *m_head = NULL; 2734 return (ENOBUFS); 2735 } 2736 *(uint16_t *)(m->m_data + offset + 2737 m->m_pkthdr.csum_data) = in_cksum_skip(m, 2738 m->m_pkthdr.len, offset); 2739 m->m_pkthdr.csum_flags &= ~CSUM_TCP; 2740 } 2741 *m_head = m; 2742 } 2743 2744 prod = sc_if->msk_cdata.msk_tx_prod; 2745 txd = &sc_if->msk_cdata.msk_txdesc[prod]; 2746 txd_last = txd; 2747 map = txd->tx_dmamap; 2748 error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map, 2749 *m_head, txsegs, &nseg, BUS_DMA_NOWAIT); 2750 if (error == EFBIG) { 2751 m = m_collapse(*m_head, M_NOWAIT, MSK_MAXTXSEGS); 2752 if (m == NULL) { 2753 m_freem(*m_head); 2754 *m_head = NULL; 2755 return (ENOBUFS); 2756 } 2757 *m_head = m; 2758 error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, 2759 map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT); 2760 if (error != 0) { 2761 m_freem(*m_head); 2762 *m_head = NULL; 2763 return (error); 2764 } 2765 } else if (error != 0) 2766 return (error); 2767 if (nseg == 0) { 2768 m_freem(*m_head); 2769 *m_head = NULL; 2770 return (EIO); 2771 } 2772 2773 /* Check number of available descriptors. */ 2774 if (sc_if->msk_cdata.msk_tx_cnt + nseg >= 2775 (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) { 2776 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map); 2777 return (ENOBUFS); 2778 } 2779 2780 control = 0; 2781 tso = 0; 2782 tx_le = NULL; 2783 2784 /* Check TSO support. */ 2785 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2786 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) 2787 tso_mtu = m->m_pkthdr.tso_segsz; 2788 else 2789 tso_mtu = offset + m->m_pkthdr.tso_segsz; 2790 if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) { 2791 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2792 tx_le->msk_addr = htole32(tso_mtu); 2793 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) 2794 tx_le->msk_control = htole32(OP_MSS | HW_OWNER); 2795 else 2796 tx_le->msk_control = 2797 htole32(OP_LRGLEN | HW_OWNER); 2798 sc_if->msk_cdata.msk_tx_cnt++; 2799 MSK_INC(prod, MSK_TX_RING_CNT); 2800 sc_if->msk_cdata.msk_tso_mtu = tso_mtu; 2801 } 2802 tso++; 2803 } 2804 /* Check if we have a VLAN tag to insert. */ 2805 if ((m->m_flags & M_VLANTAG) != 0) { 2806 if (tx_le == NULL) { 2807 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2808 tx_le->msk_addr = htole32(0); 2809 tx_le->msk_control = htole32(OP_VLAN | HW_OWNER | 2810 htons(m->m_pkthdr.ether_vtag)); 2811 sc_if->msk_cdata.msk_tx_cnt++; 2812 MSK_INC(prod, MSK_TX_RING_CNT); 2813 } else { 2814 tx_le->msk_control |= htole32(OP_VLAN | 2815 htons(m->m_pkthdr.ether_vtag)); 2816 } 2817 control |= INS_VLAN; 2818 } 2819 /* Check if we have to handle checksum offload. */ 2820 if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) { 2821 if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0) 2822 control |= CALSUM; 2823 else { 2824 control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM; 2825 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 2826 control |= UDPTCP; 2827 /* Checksum write position. */ 2828 csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff; 2829 /* Checksum start position. */ 2830 csum |= (uint32_t)tcp_offset << 16; 2831 if (csum != sc_if->msk_cdata.msk_last_csum) { 2832 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2833 tx_le->msk_addr = htole32(csum); 2834 tx_le->msk_control = htole32(1 << 16 | 2835 (OP_TCPLISW | HW_OWNER)); 2836 sc_if->msk_cdata.msk_tx_cnt++; 2837 MSK_INC(prod, MSK_TX_RING_CNT); 2838 sc_if->msk_cdata.msk_last_csum = csum; 2839 } 2840 } 2841 } 2842 2843 #ifdef MSK_64BIT_DMA 2844 if (MSK_ADDR_HI(txsegs[0].ds_addr) != 2845 sc_if->msk_cdata.msk_tx_high_addr) { 2846 sc_if->msk_cdata.msk_tx_high_addr = 2847 MSK_ADDR_HI(txsegs[0].ds_addr); 2848 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2849 tx_le->msk_addr = htole32(MSK_ADDR_HI(txsegs[0].ds_addr)); 2850 tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); 2851 sc_if->msk_cdata.msk_tx_cnt++; 2852 MSK_INC(prod, MSK_TX_RING_CNT); 2853 } 2854 #endif 2855 si = prod; 2856 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2857 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr)); 2858 if (tso == 0) 2859 tx_le->msk_control = htole32(txsegs[0].ds_len | control | 2860 OP_PACKET); 2861 else 2862 tx_le->msk_control = htole32(txsegs[0].ds_len | control | 2863 OP_LARGESEND); 2864 sc_if->msk_cdata.msk_tx_cnt++; 2865 MSK_INC(prod, MSK_TX_RING_CNT); 2866 2867 for (i = 1; i < nseg; i++) { 2868 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2869 #ifdef MSK_64BIT_DMA 2870 if (MSK_ADDR_HI(txsegs[i].ds_addr) != 2871 sc_if->msk_cdata.msk_tx_high_addr) { 2872 sc_if->msk_cdata.msk_tx_high_addr = 2873 MSK_ADDR_HI(txsegs[i].ds_addr); 2874 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2875 tx_le->msk_addr = 2876 htole32(MSK_ADDR_HI(txsegs[i].ds_addr)); 2877 tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); 2878 sc_if->msk_cdata.msk_tx_cnt++; 2879 MSK_INC(prod, MSK_TX_RING_CNT); 2880 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2881 } 2882 #endif 2883 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr)); 2884 tx_le->msk_control = htole32(txsegs[i].ds_len | control | 2885 OP_BUFFER | HW_OWNER); 2886 sc_if->msk_cdata.msk_tx_cnt++; 2887 MSK_INC(prod, MSK_TX_RING_CNT); 2888 } 2889 /* Update producer index. */ 2890 sc_if->msk_cdata.msk_tx_prod = prod; 2891 2892 /* Set EOP on the last descriptor. */ 2893 prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT; 2894 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2895 tx_le->msk_control |= htole32(EOP); 2896 2897 /* Turn the first descriptor ownership to hardware. */ 2898 tx_le = &sc_if->msk_rdata.msk_tx_ring[si]; 2899 tx_le->msk_control |= htole32(HW_OWNER); 2900 2901 txd = &sc_if->msk_cdata.msk_txdesc[prod]; 2902 map = txd_last->tx_dmamap; 2903 txd_last->tx_dmamap = txd->tx_dmamap; 2904 txd->tx_dmamap = map; 2905 txd->tx_m = m; 2906 2907 /* Sync descriptors. */ 2908 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE); 2909 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, 2910 sc_if->msk_cdata.msk_tx_ring_map, 2911 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2912 2913 return (0); 2914 } 2915 2916 static void 2917 msk_start(struct ifnet *ifp) 2918 { 2919 struct msk_if_softc *sc_if; 2920 2921 sc_if = ifp->if_softc; 2922 MSK_IF_LOCK(sc_if); 2923 msk_start_locked(ifp); 2924 MSK_IF_UNLOCK(sc_if); 2925 } 2926 2927 static void 2928 msk_start_locked(struct ifnet *ifp) 2929 { 2930 struct msk_if_softc *sc_if; 2931 struct mbuf *m_head; 2932 int enq; 2933 2934 sc_if = ifp->if_softc; 2935 MSK_IF_LOCK_ASSERT(sc_if); 2936 2937 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 2938 IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0) 2939 return; 2940 2941 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 2942 sc_if->msk_cdata.msk_tx_cnt < 2943 (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) { 2944 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2945 if (m_head == NULL) 2946 break; 2947 /* 2948 * Pack the data into the transmit ring. If we 2949 * don't have room, set the OACTIVE flag and wait 2950 * for the NIC to drain the ring. 2951 */ 2952 if (msk_encap(sc_if, &m_head) != 0) { 2953 if (m_head == NULL) 2954 break; 2955 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2956 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2957 break; 2958 } 2959 2960 enq++; 2961 /* 2962 * If there's a BPF listener, bounce a copy of this frame 2963 * to him. 2964 */ 2965 ETHER_BPF_MTAP(ifp, m_head); 2966 } 2967 2968 if (enq > 0) { 2969 /* Transmit */ 2970 CSR_WRITE_2(sc_if->msk_softc, 2971 Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG), 2972 sc_if->msk_cdata.msk_tx_prod); 2973 2974 /* Set a timeout in case the chip goes out to lunch. */ 2975 sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT; 2976 } 2977 } 2978 2979 static void 2980 msk_watchdog(struct msk_if_softc *sc_if) 2981 { 2982 struct ifnet *ifp; 2983 2984 MSK_IF_LOCK_ASSERT(sc_if); 2985 2986 if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer) 2987 return; 2988 ifp = sc_if->msk_ifp; 2989 if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) { 2990 if (bootverbose) 2991 if_printf(sc_if->msk_ifp, "watchdog timeout " 2992 "(missed link)\n"); 2993 ifp->if_oerrors++; 2994 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2995 msk_init_locked(sc_if); 2996 return; 2997 } 2998 2999 if_printf(ifp, "watchdog timeout\n"); 3000 ifp->if_oerrors++; 3001 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3002 msk_init_locked(sc_if); 3003 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3004 msk_start_locked(ifp); 3005 } 3006 3007 static int 3008 mskc_shutdown(device_t dev) 3009 { 3010 struct msk_softc *sc; 3011 int i; 3012 3013 sc = device_get_softc(dev); 3014 MSK_LOCK(sc); 3015 for (i = 0; i < sc->msk_num_port; i++) { 3016 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL && 3017 ((sc->msk_if[i]->msk_ifp->if_drv_flags & 3018 IFF_DRV_RUNNING) != 0)) 3019 msk_stop(sc->msk_if[i]); 3020 } 3021 MSK_UNLOCK(sc); 3022 3023 /* Put hardware reset. */ 3024 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 3025 return (0); 3026 } 3027 3028 static int 3029 mskc_suspend(device_t dev) 3030 { 3031 struct msk_softc *sc; 3032 int i; 3033 3034 sc = device_get_softc(dev); 3035 3036 MSK_LOCK(sc); 3037 3038 for (i = 0; i < sc->msk_num_port; i++) { 3039 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL && 3040 ((sc->msk_if[i]->msk_ifp->if_drv_flags & 3041 IFF_DRV_RUNNING) != 0)) 3042 msk_stop(sc->msk_if[i]); 3043 } 3044 3045 /* Disable all interrupts. */ 3046 CSR_WRITE_4(sc, B0_IMSK, 0); 3047 CSR_READ_4(sc, B0_IMSK); 3048 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 3049 CSR_READ_4(sc, B0_HWE_IMSK); 3050 3051 msk_phy_power(sc, MSK_PHY_POWERDOWN); 3052 3053 /* Put hardware reset. */ 3054 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 3055 sc->msk_pflags |= MSK_FLAG_SUSPEND; 3056 3057 MSK_UNLOCK(sc); 3058 3059 return (0); 3060 } 3061 3062 static int 3063 mskc_resume(device_t dev) 3064 { 3065 struct msk_softc *sc; 3066 int i; 3067 3068 sc = device_get_softc(dev); 3069 3070 MSK_LOCK(sc); 3071 3072 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0); 3073 mskc_reset(sc); 3074 for (i = 0; i < sc->msk_num_port; i++) { 3075 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL && 3076 ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) { 3077 sc->msk_if[i]->msk_ifp->if_drv_flags &= 3078 ~IFF_DRV_RUNNING; 3079 msk_init_locked(sc->msk_if[i]); 3080 } 3081 } 3082 sc->msk_pflags &= ~MSK_FLAG_SUSPEND; 3083 3084 MSK_UNLOCK(sc); 3085 3086 return (0); 3087 } 3088 3089 #ifndef __NO_STRICT_ALIGNMENT 3090 static __inline void 3091 msk_fixup_rx(struct mbuf *m) 3092 { 3093 int i; 3094 uint16_t *src, *dst; 3095 3096 src = mtod(m, uint16_t *); 3097 dst = src - 3; 3098 3099 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 3100 *dst++ = *src++; 3101 3102 m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN); 3103 } 3104 #endif 3105 3106 static __inline void 3107 msk_rxcsum(struct msk_if_softc *sc_if, uint32_t control, struct mbuf *m) 3108 { 3109 struct ether_header *eh; 3110 struct ip *ip; 3111 struct udphdr *uh; 3112 int32_t hlen, len, pktlen, temp32; 3113 uint16_t csum, *opts; 3114 3115 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) { 3116 if ((control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) { 3117 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3118 if ((control & CSS_IPV4_CSUM_OK) != 0) 3119 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3120 if ((control & (CSS_TCP | CSS_UDP)) != 0 && 3121 (control & (CSS_TCPUDP_CSUM_OK)) != 0) { 3122 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 3123 CSUM_PSEUDO_HDR; 3124 m->m_pkthdr.csum_data = 0xffff; 3125 } 3126 } 3127 return; 3128 } 3129 /* 3130 * Marvell Yukon controllers that support OP_RXCHKS has known 3131 * to have various Rx checksum offloading bugs. These 3132 * controllers can be configured to compute simple checksum 3133 * at two different positions. So we can compute IP and TCP/UDP 3134 * checksum at the same time. We intentionally have controller 3135 * compute TCP/UDP checksum twice by specifying the same 3136 * checksum start position and compare the result. If the value 3137 * is different it would indicate the hardware logic was wrong. 3138 */ 3139 if ((sc_if->msk_csum & 0xFFFF) != (sc_if->msk_csum >> 16)) { 3140 if (bootverbose) 3141 device_printf(sc_if->msk_if_dev, 3142 "Rx checksum value mismatch!\n"); 3143 return; 3144 } 3145 pktlen = m->m_pkthdr.len; 3146 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) 3147 return; 3148 eh = mtod(m, struct ether_header *); 3149 if (eh->ether_type != htons(ETHERTYPE_IP)) 3150 return; 3151 ip = (struct ip *)(eh + 1); 3152 if (ip->ip_v != IPVERSION) 3153 return; 3154 3155 hlen = ip->ip_hl << 2; 3156 pktlen -= sizeof(struct ether_header); 3157 if (hlen < sizeof(struct ip)) 3158 return; 3159 if (ntohs(ip->ip_len) < hlen) 3160 return; 3161 if (ntohs(ip->ip_len) != pktlen) 3162 return; 3163 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) 3164 return; /* can't handle fragmented packet. */ 3165 3166 switch (ip->ip_p) { 3167 case IPPROTO_TCP: 3168 if (pktlen < (hlen + sizeof(struct tcphdr))) 3169 return; 3170 break; 3171 case IPPROTO_UDP: 3172 if (pktlen < (hlen + sizeof(struct udphdr))) 3173 return; 3174 uh = (struct udphdr *)((caddr_t)ip + hlen); 3175 if (uh->uh_sum == 0) 3176 return; /* no checksum */ 3177 break; 3178 default: 3179 return; 3180 } 3181 csum = bswap16(sc_if->msk_csum & 0xFFFF); 3182 /* Checksum fixup for IP options. */ 3183 len = hlen - sizeof(struct ip); 3184 if (len > 0) { 3185 opts = (uint16_t *)(ip + 1); 3186 for (; len > 0; len -= sizeof(uint16_t), opts++) { 3187 temp32 = csum - *opts; 3188 temp32 = (temp32 >> 16) + (temp32 & 65535); 3189 csum = temp32 & 65535; 3190 } 3191 } 3192 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 3193 m->m_pkthdr.csum_data = csum; 3194 } 3195 3196 static void 3197 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control, 3198 int len) 3199 { 3200 struct mbuf *m; 3201 struct ifnet *ifp; 3202 struct msk_rxdesc *rxd; 3203 int cons, rxlen; 3204 3205 ifp = sc_if->msk_ifp; 3206 3207 MSK_IF_LOCK_ASSERT(sc_if); 3208 3209 cons = sc_if->msk_cdata.msk_rx_cons; 3210 do { 3211 rxlen = status >> 16; 3212 if ((status & GMR_FS_VLAN) != 0 && 3213 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3214 rxlen -= ETHER_VLAN_ENCAP_LEN; 3215 if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) { 3216 /* 3217 * For controllers that returns bogus status code 3218 * just do minimal check and let upper stack 3219 * handle this frame. 3220 */ 3221 if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) { 3222 ifp->if_ierrors++; 3223 msk_discard_rxbuf(sc_if, cons); 3224 break; 3225 } 3226 } else if (len > sc_if->msk_framesize || 3227 ((status & GMR_FS_ANY_ERR) != 0) || 3228 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) { 3229 /* Don't count flow-control packet as errors. */ 3230 if ((status & GMR_FS_GOOD_FC) == 0) 3231 ifp->if_ierrors++; 3232 msk_discard_rxbuf(sc_if, cons); 3233 break; 3234 } 3235 #ifdef MSK_64BIT_DMA 3236 rxd = &sc_if->msk_cdata.msk_rxdesc[(cons + 1) % 3237 MSK_RX_RING_CNT]; 3238 #else 3239 rxd = &sc_if->msk_cdata.msk_rxdesc[cons]; 3240 #endif 3241 m = rxd->rx_m; 3242 if (msk_newbuf(sc_if, cons) != 0) { 3243 ifp->if_iqdrops++; 3244 /* Reuse old buffer. */ 3245 msk_discard_rxbuf(sc_if, cons); 3246 break; 3247 } 3248 m->m_pkthdr.rcvif = ifp; 3249 m->m_pkthdr.len = m->m_len = len; 3250 #ifndef __NO_STRICT_ALIGNMENT 3251 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0) 3252 msk_fixup_rx(m); 3253 #endif 3254 ifp->if_ipackets++; 3255 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 3256 msk_rxcsum(sc_if, control, m); 3257 /* Check for VLAN tagged packets. */ 3258 if ((status & GMR_FS_VLAN) != 0 && 3259 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 3260 m->m_pkthdr.ether_vtag = sc_if->msk_vtag; 3261 m->m_flags |= M_VLANTAG; 3262 } 3263 MSK_IF_UNLOCK(sc_if); 3264 (*ifp->if_input)(ifp, m); 3265 MSK_IF_LOCK(sc_if); 3266 } while (0); 3267 3268 MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT); 3269 MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT); 3270 } 3271 3272 static void 3273 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control, 3274 int len) 3275 { 3276 struct mbuf *m; 3277 struct ifnet *ifp; 3278 struct msk_rxdesc *jrxd; 3279 int cons, rxlen; 3280 3281 ifp = sc_if->msk_ifp; 3282 3283 MSK_IF_LOCK_ASSERT(sc_if); 3284 3285 cons = sc_if->msk_cdata.msk_rx_cons; 3286 do { 3287 rxlen = status >> 16; 3288 if ((status & GMR_FS_VLAN) != 0 && 3289 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3290 rxlen -= ETHER_VLAN_ENCAP_LEN; 3291 if (len > sc_if->msk_framesize || 3292 ((status & GMR_FS_ANY_ERR) != 0) || 3293 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) { 3294 /* Don't count flow-control packet as errors. */ 3295 if ((status & GMR_FS_GOOD_FC) == 0) 3296 ifp->if_ierrors++; 3297 msk_discard_jumbo_rxbuf(sc_if, cons); 3298 break; 3299 } 3300 #ifdef MSK_64BIT_DMA 3301 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[(cons + 1) % 3302 MSK_JUMBO_RX_RING_CNT]; 3303 #else 3304 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons]; 3305 #endif 3306 m = jrxd->rx_m; 3307 if (msk_jumbo_newbuf(sc_if, cons) != 0) { 3308 ifp->if_iqdrops++; 3309 /* Reuse old buffer. */ 3310 msk_discard_jumbo_rxbuf(sc_if, cons); 3311 break; 3312 } 3313 m->m_pkthdr.rcvif = ifp; 3314 m->m_pkthdr.len = m->m_len = len; 3315 #ifndef __NO_STRICT_ALIGNMENT 3316 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0) 3317 msk_fixup_rx(m); 3318 #endif 3319 ifp->if_ipackets++; 3320 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 3321 msk_rxcsum(sc_if, control, m); 3322 /* Check for VLAN tagged packets. */ 3323 if ((status & GMR_FS_VLAN) != 0 && 3324 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 3325 m->m_pkthdr.ether_vtag = sc_if->msk_vtag; 3326 m->m_flags |= M_VLANTAG; 3327 } 3328 MSK_IF_UNLOCK(sc_if); 3329 (*ifp->if_input)(ifp, m); 3330 MSK_IF_LOCK(sc_if); 3331 } while (0); 3332 3333 MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT); 3334 MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT); 3335 } 3336 3337 static void 3338 msk_txeof(struct msk_if_softc *sc_if, int idx) 3339 { 3340 struct msk_txdesc *txd; 3341 struct msk_tx_desc *cur_tx; 3342 struct ifnet *ifp; 3343 uint32_t control; 3344 int cons, prog; 3345 3346 MSK_IF_LOCK_ASSERT(sc_if); 3347 3348 ifp = sc_if->msk_ifp; 3349 3350 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, 3351 sc_if->msk_cdata.msk_tx_ring_map, 3352 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3353 /* 3354 * Go through our tx ring and free mbufs for those 3355 * frames that have been sent. 3356 */ 3357 cons = sc_if->msk_cdata.msk_tx_cons; 3358 prog = 0; 3359 for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) { 3360 if (sc_if->msk_cdata.msk_tx_cnt <= 0) 3361 break; 3362 prog++; 3363 cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons]; 3364 control = le32toh(cur_tx->msk_control); 3365 sc_if->msk_cdata.msk_tx_cnt--; 3366 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3367 if ((control & EOP) == 0) 3368 continue; 3369 txd = &sc_if->msk_cdata.msk_txdesc[cons]; 3370 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap, 3371 BUS_DMASYNC_POSTWRITE); 3372 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap); 3373 3374 ifp->if_opackets++; 3375 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!", 3376 __func__)); 3377 m_freem(txd->tx_m); 3378 txd->tx_m = NULL; 3379 } 3380 3381 if (prog > 0) { 3382 sc_if->msk_cdata.msk_tx_cons = cons; 3383 if (sc_if->msk_cdata.msk_tx_cnt == 0) 3384 sc_if->msk_watchdog_timer = 0; 3385 /* No need to sync LEs as we didn't update LEs. */ 3386 } 3387 } 3388 3389 static void 3390 msk_tick(void *xsc_if) 3391 { 3392 struct msk_if_softc *sc_if; 3393 struct mii_data *mii; 3394 3395 sc_if = xsc_if; 3396 3397 MSK_IF_LOCK_ASSERT(sc_if); 3398 3399 mii = device_get_softc(sc_if->msk_miibus); 3400 3401 mii_tick(mii); 3402 if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) 3403 msk_miibus_statchg(sc_if->msk_if_dev); 3404 msk_handle_events(sc_if->msk_softc); 3405 msk_watchdog(sc_if); 3406 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if); 3407 } 3408 3409 static void 3410 msk_intr_phy(struct msk_if_softc *sc_if) 3411 { 3412 uint16_t status; 3413 3414 msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT); 3415 status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT); 3416 /* Handle FIFO Underrun/Overflow? */ 3417 if ((status & PHY_M_IS_FIFO_ERROR)) 3418 device_printf(sc_if->msk_if_dev, 3419 "PHY FIFO underrun/overflow.\n"); 3420 } 3421 3422 static void 3423 msk_intr_gmac(struct msk_if_softc *sc_if) 3424 { 3425 struct msk_softc *sc; 3426 uint8_t status; 3427 3428 sc = sc_if->msk_softc; 3429 status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC)); 3430 3431 /* GMAC Rx FIFO overrun. */ 3432 if ((status & GM_IS_RX_FF_OR) != 0) 3433 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 3434 GMF_CLI_RX_FO); 3435 /* GMAC Tx FIFO underrun. */ 3436 if ((status & GM_IS_TX_FF_UR) != 0) { 3437 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3438 GMF_CLI_TX_FU); 3439 device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n"); 3440 /* 3441 * XXX 3442 * In case of Tx underrun, we may need to flush/reset 3443 * Tx MAC but that would also require resynchronization 3444 * with status LEs. Reinitializing status LEs would 3445 * affect other port in dual MAC configuration so it 3446 * should be avoided as possible as we can. 3447 * Due to lack of documentation it's all vague guess but 3448 * it needs more investigation. 3449 */ 3450 } 3451 } 3452 3453 static void 3454 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status) 3455 { 3456 struct msk_softc *sc; 3457 3458 sc = sc_if->msk_softc; 3459 if ((status & Y2_IS_PAR_RD1) != 0) { 3460 device_printf(sc_if->msk_if_dev, 3461 "RAM buffer read parity error\n"); 3462 /* Clear IRQ. */ 3463 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL), 3464 RI_CLR_RD_PERR); 3465 } 3466 if ((status & Y2_IS_PAR_WR1) != 0) { 3467 device_printf(sc_if->msk_if_dev, 3468 "RAM buffer write parity error\n"); 3469 /* Clear IRQ. */ 3470 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL), 3471 RI_CLR_WR_PERR); 3472 } 3473 if ((status & Y2_IS_PAR_MAC1) != 0) { 3474 device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n"); 3475 /* Clear IRQ. */ 3476 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3477 GMF_CLI_TX_PE); 3478 } 3479 if ((status & Y2_IS_PAR_RX1) != 0) { 3480 device_printf(sc_if->msk_if_dev, "Rx parity error\n"); 3481 /* Clear IRQ. */ 3482 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR); 3483 } 3484 if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) { 3485 device_printf(sc_if->msk_if_dev, "TCP segmentation error\n"); 3486 /* Clear IRQ. */ 3487 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP); 3488 } 3489 } 3490 3491 static void 3492 msk_intr_hwerr(struct msk_softc *sc) 3493 { 3494 uint32_t status; 3495 uint32_t tlphead[4]; 3496 3497 status = CSR_READ_4(sc, B0_HWE_ISRC); 3498 /* Time Stamp timer overflow. */ 3499 if ((status & Y2_IS_TIST_OV) != 0) 3500 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 3501 if ((status & Y2_IS_PCI_NEXP) != 0) { 3502 /* 3503 * PCI Express Error occured which is not described in PEX 3504 * spec. 3505 * This error is also mapped either to Master Abort( 3506 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and 3507 * can only be cleared there. 3508 */ 3509 device_printf(sc->msk_dev, 3510 "PCI Express protocol violation error\n"); 3511 } 3512 3513 if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) { 3514 uint16_t v16; 3515 3516 if ((status & Y2_IS_MST_ERR) != 0) 3517 device_printf(sc->msk_dev, 3518 "unexpected IRQ Status error\n"); 3519 else 3520 device_printf(sc->msk_dev, 3521 "unexpected IRQ Master error\n"); 3522 /* Reset all bits in the PCI status register. */ 3523 v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2); 3524 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3525 pci_write_config(sc->msk_dev, PCIR_STATUS, v16 | 3526 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT | 3527 PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2); 3528 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3529 } 3530 3531 /* Check for PCI Express Uncorrectable Error. */ 3532 if ((status & Y2_IS_PCI_EXP) != 0) { 3533 uint32_t v32; 3534 3535 /* 3536 * On PCI Express bus bridges are called root complexes (RC). 3537 * PCI Express errors are recognized by the root complex too, 3538 * which requests the system to handle the problem. After 3539 * error occurrence it may be that no access to the adapter 3540 * may be performed any longer. 3541 */ 3542 3543 v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT); 3544 if ((v32 & PEX_UNSUP_REQ) != 0) { 3545 /* Ignore unsupported request error. */ 3546 device_printf(sc->msk_dev, 3547 "Uncorrectable PCI Express error\n"); 3548 } 3549 if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) { 3550 int i; 3551 3552 /* Get TLP header form Log Registers. */ 3553 for (i = 0; i < 4; i++) 3554 tlphead[i] = CSR_PCI_READ_4(sc, 3555 PEX_HEADER_LOG + i * 4); 3556 /* Check for vendor defined broadcast message. */ 3557 if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) { 3558 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP; 3559 CSR_WRITE_4(sc, B0_HWE_IMSK, 3560 sc->msk_intrhwemask); 3561 CSR_READ_4(sc, B0_HWE_IMSK); 3562 } 3563 } 3564 /* Clear the interrupt. */ 3565 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3566 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff); 3567 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3568 } 3569 3570 if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL) 3571 msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status); 3572 if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL) 3573 msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8); 3574 } 3575 3576 static __inline void 3577 msk_rxput(struct msk_if_softc *sc_if) 3578 { 3579 struct msk_softc *sc; 3580 3581 sc = sc_if->msk_softc; 3582 if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) 3583 bus_dmamap_sync( 3584 sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 3585 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 3586 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3587 else 3588 bus_dmamap_sync( 3589 sc_if->msk_cdata.msk_rx_ring_tag, 3590 sc_if->msk_cdata.msk_rx_ring_map, 3591 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3592 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, 3593 PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod); 3594 } 3595 3596 static int 3597 msk_handle_events(struct msk_softc *sc) 3598 { 3599 struct msk_if_softc *sc_if; 3600 int rxput[2]; 3601 struct msk_stat_desc *sd; 3602 uint32_t control, status; 3603 int cons, len, port, rxprog; 3604 3605 if (sc->msk_stat_cons == CSR_READ_2(sc, STAT_PUT_IDX)) 3606 return (0); 3607 3608 /* Sync status LEs. */ 3609 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map, 3610 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3611 3612 rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0; 3613 rxprog = 0; 3614 cons = sc->msk_stat_cons; 3615 for (;;) { 3616 sd = &sc->msk_stat_ring[cons]; 3617 control = le32toh(sd->msk_control); 3618 if ((control & HW_OWNER) == 0) 3619 break; 3620 control &= ~HW_OWNER; 3621 sd->msk_control = htole32(control); 3622 status = le32toh(sd->msk_status); 3623 len = control & STLE_LEN_MASK; 3624 port = (control >> 16) & 0x01; 3625 sc_if = sc->msk_if[port]; 3626 if (sc_if == NULL) { 3627 device_printf(sc->msk_dev, "invalid port opcode " 3628 "0x%08x\n", control & STLE_OP_MASK); 3629 continue; 3630 } 3631 3632 switch (control & STLE_OP_MASK) { 3633 case OP_RXVLAN: 3634 sc_if->msk_vtag = ntohs(len); 3635 break; 3636 case OP_RXCHKSVLAN: 3637 sc_if->msk_vtag = ntohs(len); 3638 /* FALLTHROUGH */ 3639 case OP_RXCHKS: 3640 sc_if->msk_csum = status; 3641 break; 3642 case OP_RXSTAT: 3643 if (!(sc_if->msk_ifp->if_drv_flags & IFF_DRV_RUNNING)) 3644 break; 3645 if (sc_if->msk_framesize > 3646 (MCLBYTES - MSK_RX_BUF_ALIGN)) 3647 msk_jumbo_rxeof(sc_if, status, control, len); 3648 else 3649 msk_rxeof(sc_if, status, control, len); 3650 rxprog++; 3651 /* 3652 * Because there is no way to sync single Rx LE 3653 * put the DMA sync operation off until the end of 3654 * event processing. 3655 */ 3656 rxput[port]++; 3657 /* Update prefetch unit if we've passed water mark. */ 3658 if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) { 3659 msk_rxput(sc_if); 3660 rxput[port] = 0; 3661 } 3662 break; 3663 case OP_TXINDEXLE: 3664 if (sc->msk_if[MSK_PORT_A] != NULL) 3665 msk_txeof(sc->msk_if[MSK_PORT_A], 3666 status & STLE_TXA1_MSKL); 3667 if (sc->msk_if[MSK_PORT_B] != NULL) 3668 msk_txeof(sc->msk_if[MSK_PORT_B], 3669 ((status & STLE_TXA2_MSKL) >> 3670 STLE_TXA2_SHIFTL) | 3671 ((len & STLE_TXA2_MSKH) << 3672 STLE_TXA2_SHIFTH)); 3673 break; 3674 default: 3675 device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n", 3676 control & STLE_OP_MASK); 3677 break; 3678 } 3679 MSK_INC(cons, sc->msk_stat_count); 3680 if (rxprog > sc->msk_process_limit) 3681 break; 3682 } 3683 3684 sc->msk_stat_cons = cons; 3685 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map, 3686 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3687 3688 if (rxput[MSK_PORT_A] > 0) 3689 msk_rxput(sc->msk_if[MSK_PORT_A]); 3690 if (rxput[MSK_PORT_B] > 0) 3691 msk_rxput(sc->msk_if[MSK_PORT_B]); 3692 3693 return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX)); 3694 } 3695 3696 static void 3697 msk_intr(void *xsc) 3698 { 3699 struct msk_softc *sc; 3700 struct msk_if_softc *sc_if0, *sc_if1; 3701 struct ifnet *ifp0, *ifp1; 3702 uint32_t status; 3703 int domore; 3704 3705 sc = xsc; 3706 MSK_LOCK(sc); 3707 3708 /* Reading B0_Y2_SP_ISRC2 masks further interrupts. */ 3709 status = CSR_READ_4(sc, B0_Y2_SP_ISRC2); 3710 if (status == 0 || status == 0xffffffff || 3711 (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 || 3712 (status & sc->msk_intrmask) == 0) { 3713 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2); 3714 MSK_UNLOCK(sc); 3715 return; 3716 } 3717 3718 sc_if0 = sc->msk_if[MSK_PORT_A]; 3719 sc_if1 = sc->msk_if[MSK_PORT_B]; 3720 ifp0 = ifp1 = NULL; 3721 if (sc_if0 != NULL) 3722 ifp0 = sc_if0->msk_ifp; 3723 if (sc_if1 != NULL) 3724 ifp1 = sc_if1->msk_ifp; 3725 3726 if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL) 3727 msk_intr_phy(sc_if0); 3728 if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL) 3729 msk_intr_phy(sc_if1); 3730 if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL) 3731 msk_intr_gmac(sc_if0); 3732 if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL) 3733 msk_intr_gmac(sc_if1); 3734 if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) { 3735 device_printf(sc->msk_dev, "Rx descriptor error\n"); 3736 sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2); 3737 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3738 CSR_READ_4(sc, B0_IMSK); 3739 } 3740 if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) { 3741 device_printf(sc->msk_dev, "Tx descriptor error\n"); 3742 sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2); 3743 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3744 CSR_READ_4(sc, B0_IMSK); 3745 } 3746 if ((status & Y2_IS_HW_ERR) != 0) 3747 msk_intr_hwerr(sc); 3748 3749 domore = msk_handle_events(sc); 3750 if ((status & Y2_IS_STAT_BMU) != 0 && domore == 0) 3751 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ); 3752 3753 /* Reenable interrupts. */ 3754 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2); 3755 3756 if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 && 3757 !IFQ_DRV_IS_EMPTY(&ifp0->if_snd)) 3758 msk_start_locked(ifp0); 3759 if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 && 3760 !IFQ_DRV_IS_EMPTY(&ifp1->if_snd)) 3761 msk_start_locked(ifp1); 3762 3763 MSK_UNLOCK(sc); 3764 } 3765 3766 static void 3767 msk_set_tx_stfwd(struct msk_if_softc *sc_if) 3768 { 3769 struct msk_softc *sc; 3770 struct ifnet *ifp; 3771 3772 ifp = sc_if->msk_ifp; 3773 sc = sc_if->msk_softc; 3774 if ((sc->msk_hw_id == CHIP_ID_YUKON_EX && 3775 sc->msk_hw_rev != CHIP_REV_YU_EX_A0) || 3776 sc->msk_hw_id >= CHIP_ID_YUKON_SUPR) { 3777 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3778 TX_STFW_ENA); 3779 } else { 3780 if (ifp->if_mtu > ETHERMTU) { 3781 /* Set Tx GMAC FIFO Almost Empty Threshold. */ 3782 CSR_WRITE_4(sc, 3783 MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR), 3784 MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR); 3785 /* Disable Store & Forward mode for Tx. */ 3786 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3787 TX_STFW_DIS); 3788 } else { 3789 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3790 TX_STFW_ENA); 3791 } 3792 } 3793 } 3794 3795 static void 3796 msk_init(void *xsc) 3797 { 3798 struct msk_if_softc *sc_if = xsc; 3799 3800 MSK_IF_LOCK(sc_if); 3801 msk_init_locked(sc_if); 3802 MSK_IF_UNLOCK(sc_if); 3803 } 3804 3805 static void 3806 msk_init_locked(struct msk_if_softc *sc_if) 3807 { 3808 struct msk_softc *sc; 3809 struct ifnet *ifp; 3810 struct mii_data *mii; 3811 uint8_t *eaddr; 3812 uint16_t gmac; 3813 uint32_t reg; 3814 int error; 3815 3816 MSK_IF_LOCK_ASSERT(sc_if); 3817 3818 ifp = sc_if->msk_ifp; 3819 sc = sc_if->msk_softc; 3820 mii = device_get_softc(sc_if->msk_miibus); 3821 3822 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 3823 return; 3824 3825 error = 0; 3826 /* Cancel pending I/O and free all Rx/Tx buffers. */ 3827 msk_stop(sc_if); 3828 3829 if (ifp->if_mtu < ETHERMTU) 3830 sc_if->msk_framesize = ETHERMTU; 3831 else 3832 sc_if->msk_framesize = ifp->if_mtu; 3833 sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 3834 if (ifp->if_mtu > ETHERMTU && 3835 (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) { 3836 ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO); 3837 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM); 3838 } 3839 3840 /* GMAC Control reset. */ 3841 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET); 3842 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR); 3843 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF); 3844 if (sc->msk_hw_id == CHIP_ID_YUKON_EX || 3845 sc->msk_hw_id == CHIP_ID_YUKON_SUPR) 3846 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), 3847 GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON | 3848 GMC_BYP_RETR_ON); 3849 3850 /* 3851 * Initialize GMAC first such that speed/duplex/flow-control 3852 * parameters are renegotiated when interface is brought up. 3853 */ 3854 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0); 3855 3856 /* Dummy read the Interrupt Source Register. */ 3857 CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC)); 3858 3859 /* Clear MIB stats. */ 3860 msk_stats_clear(sc_if); 3861 3862 /* Disable FCS. */ 3863 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS); 3864 3865 /* Setup Transmit Control Register. */ 3866 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); 3867 3868 /* Setup Transmit Flow Control Register. */ 3869 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff); 3870 3871 /* Setup Transmit Parameter Register. */ 3872 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM, 3873 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | 3874 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF)); 3875 3876 gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) | 3877 GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); 3878 3879 if (ifp->if_mtu > ETHERMTU) 3880 gmac |= GM_SMOD_JUMBO_ENA; 3881 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac); 3882 3883 /* Set station address. */ 3884 eaddr = IF_LLADDR(ifp); 3885 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L, 3886 eaddr[0] | (eaddr[1] << 8)); 3887 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M, 3888 eaddr[2] | (eaddr[3] << 8)); 3889 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H, 3890 eaddr[4] | (eaddr[5] << 8)); 3891 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L, 3892 eaddr[0] | (eaddr[1] << 8)); 3893 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M, 3894 eaddr[2] | (eaddr[3] << 8)); 3895 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H, 3896 eaddr[4] | (eaddr[5] << 8)); 3897 3898 /* Disable interrupts for counter overflows. */ 3899 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0); 3900 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0); 3901 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0); 3902 3903 /* Configure Rx MAC FIFO. */ 3904 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET); 3905 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR); 3906 reg = GMF_OPER_ON | GMF_RX_F_FL_ON; 3907 if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P || 3908 sc->msk_hw_id == CHIP_ID_YUKON_EX) 3909 reg |= GMF_RX_OVER_ON; 3910 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg); 3911 3912 /* Set receive filter. */ 3913 msk_rxfilter(sc_if); 3914 3915 if (sc->msk_hw_id == CHIP_ID_YUKON_XL) { 3916 /* Clear flush mask - HW bug. */ 3917 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0); 3918 } else { 3919 /* Flush Rx MAC FIFO on any flow control or error. */ 3920 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 3921 GMR_FS_ANY_ERR); 3922 } 3923 3924 /* 3925 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word 3926 * due to hardware hang on receipt of pause frames. 3927 */ 3928 reg = RX_GMF_FL_THR_DEF + 1; 3929 /* Another magic for Yukon FE+ - From Linux. */ 3930 if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P && 3931 sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) 3932 reg = 0x178; 3933 CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg); 3934 3935 /* Configure Tx MAC FIFO. */ 3936 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET); 3937 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR); 3938 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON); 3939 3940 /* Configure hardware VLAN tag insertion/stripping. */ 3941 msk_setvlan(sc_if, ifp); 3942 3943 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) { 3944 /* Set Rx Pause threshold. */ 3945 CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR), 3946 MSK_ECU_LLPP); 3947 CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR), 3948 MSK_ECU_ULPP); 3949 /* Configure store-and-forward for Tx. */ 3950 msk_set_tx_stfwd(sc_if); 3951 } 3952 3953 if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P && 3954 sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) { 3955 /* Disable dynamic watermark - from Linux. */ 3956 reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA)); 3957 reg &= ~0x03; 3958 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg); 3959 } 3960 3961 /* 3962 * Disable Force Sync bit and Alloc bit in Tx RAM interface 3963 * arbiter as we don't use Sync Tx queue. 3964 */ 3965 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), 3966 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); 3967 /* Enable the RAM Interface Arbiter. */ 3968 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB); 3969 3970 /* Setup RAM buffer. */ 3971 msk_set_rambuffer(sc_if); 3972 3973 /* Disable Tx sync Queue. */ 3974 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET); 3975 3976 /* Setup Tx Queue Bus Memory Interface. */ 3977 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET); 3978 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT); 3979 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON); 3980 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM); 3981 switch (sc->msk_hw_id) { 3982 case CHIP_ID_YUKON_EC_U: 3983 if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) { 3984 /* Fix for Yukon-EC Ultra: set BMU FIFO level */ 3985 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), 3986 MSK_ECU_TXFF_LEV); 3987 } 3988 break; 3989 case CHIP_ID_YUKON_EX: 3990 /* 3991 * Yukon Extreme seems to have silicon bug for 3992 * automatic Tx checksum calculation capability. 3993 */ 3994 if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0) 3995 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F), 3996 F_TX_CHK_AUTO_OFF); 3997 break; 3998 } 3999 4000 /* Setup Rx Queue Bus Memory Interface. */ 4001 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET); 4002 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT); 4003 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON); 4004 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM); 4005 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U && 4006 sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) { 4007 /* MAC Rx RAM Read is controlled by hardware. */ 4008 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS); 4009 } 4010 4011 msk_set_prefetch(sc, sc_if->msk_txq, 4012 sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1); 4013 msk_init_tx_ring(sc_if); 4014 4015 /* Disable Rx checksum offload and RSS hash. */ 4016 reg = BMU_DIS_RX_RSS_HASH; 4017 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && 4018 (ifp->if_capenable & IFCAP_RXCSUM) != 0) 4019 reg |= BMU_ENA_RX_CHKSUM; 4020 else 4021 reg |= BMU_DIS_RX_CHKSUM; 4022 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), reg); 4023 if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) { 4024 msk_set_prefetch(sc, sc_if->msk_rxq, 4025 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr, 4026 MSK_JUMBO_RX_RING_CNT - 1); 4027 error = msk_init_jumbo_rx_ring(sc_if); 4028 } else { 4029 msk_set_prefetch(sc, sc_if->msk_rxq, 4030 sc_if->msk_rdata.msk_rx_ring_paddr, 4031 MSK_RX_RING_CNT - 1); 4032 error = msk_init_rx_ring(sc_if); 4033 } 4034 if (error != 0) { 4035 device_printf(sc_if->msk_if_dev, 4036 "initialization failed: no memory for Rx buffers\n"); 4037 msk_stop(sc_if); 4038 return; 4039 } 4040 if (sc->msk_hw_id == CHIP_ID_YUKON_EX || 4041 sc->msk_hw_id == CHIP_ID_YUKON_SUPR) { 4042 /* Disable flushing of non-ASF packets. */ 4043 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 4044 GMF_RX_MACSEC_FLUSH_OFF); 4045 } 4046 4047 /* Configure interrupt handling. */ 4048 if (sc_if->msk_port == MSK_PORT_A) { 4049 sc->msk_intrmask |= Y2_IS_PORT_A; 4050 sc->msk_intrhwemask |= Y2_HWE_L1_MASK; 4051 } else { 4052 sc->msk_intrmask |= Y2_IS_PORT_B; 4053 sc->msk_intrhwemask |= Y2_HWE_L2_MASK; 4054 } 4055 /* Configure IRQ moderation mask. */ 4056 CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask); 4057 if (sc->msk_int_holdoff > 0) { 4058 /* Configure initial IRQ moderation timer value. */ 4059 CSR_WRITE_4(sc, B2_IRQM_INI, 4060 MSK_USECS(sc, sc->msk_int_holdoff)); 4061 CSR_WRITE_4(sc, B2_IRQM_VAL, 4062 MSK_USECS(sc, sc->msk_int_holdoff)); 4063 /* Start IRQ moderation. */ 4064 CSR_WRITE_1(sc, B2_IRQM_CTRL, TIM_START); 4065 } 4066 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask); 4067 CSR_READ_4(sc, B0_HWE_IMSK); 4068 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 4069 CSR_READ_4(sc, B0_IMSK); 4070 4071 ifp->if_drv_flags |= IFF_DRV_RUNNING; 4072 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4073 4074 sc_if->msk_flags &= ~MSK_FLAG_LINK; 4075 mii_mediachg(mii); 4076 4077 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if); 4078 } 4079 4080 static void 4081 msk_set_rambuffer(struct msk_if_softc *sc_if) 4082 { 4083 struct msk_softc *sc; 4084 int ltpp, utpp; 4085 4086 sc = sc_if->msk_softc; 4087 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) 4088 return; 4089 4090 /* Setup Rx Queue. */ 4091 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR); 4092 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START), 4093 sc->msk_rxqstart[sc_if->msk_port] / 8); 4094 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END), 4095 sc->msk_rxqend[sc_if->msk_port] / 8); 4096 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP), 4097 sc->msk_rxqstart[sc_if->msk_port] / 8); 4098 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP), 4099 sc->msk_rxqstart[sc_if->msk_port] / 8); 4100 4101 utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 - 4102 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8; 4103 ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 - 4104 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8; 4105 if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE) 4106 ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8; 4107 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp); 4108 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp); 4109 /* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */ 4110 4111 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD); 4112 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL)); 4113 4114 /* Setup Tx Queue. */ 4115 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR); 4116 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START), 4117 sc->msk_txqstart[sc_if->msk_port] / 8); 4118 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END), 4119 sc->msk_txqend[sc_if->msk_port] / 8); 4120 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP), 4121 sc->msk_txqstart[sc_if->msk_port] / 8); 4122 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP), 4123 sc->msk_txqstart[sc_if->msk_port] / 8); 4124 /* Enable Store & Forward for Tx side. */ 4125 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD); 4126 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD); 4127 CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL)); 4128 } 4129 4130 static void 4131 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr, 4132 uint32_t count) 4133 { 4134 4135 /* Reset the prefetch unit. */ 4136 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), 4137 PREF_UNIT_RST_SET); 4138 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), 4139 PREF_UNIT_RST_CLR); 4140 /* Set LE base address. */ 4141 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG), 4142 MSK_ADDR_LO(addr)); 4143 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG), 4144 MSK_ADDR_HI(addr)); 4145 /* Set the list last index. */ 4146 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG), 4147 count); 4148 /* Turn on prefetch unit. */ 4149 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), 4150 PREF_UNIT_OP_ON); 4151 /* Dummy read to ensure write. */ 4152 CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG)); 4153 } 4154 4155 static void 4156 msk_stop(struct msk_if_softc *sc_if) 4157 { 4158 struct msk_softc *sc; 4159 struct msk_txdesc *txd; 4160 struct msk_rxdesc *rxd; 4161 struct msk_rxdesc *jrxd; 4162 struct ifnet *ifp; 4163 uint32_t val; 4164 int i; 4165 4166 MSK_IF_LOCK_ASSERT(sc_if); 4167 sc = sc_if->msk_softc; 4168 ifp = sc_if->msk_ifp; 4169 4170 callout_stop(&sc_if->msk_tick_ch); 4171 sc_if->msk_watchdog_timer = 0; 4172 4173 /* Disable interrupts. */ 4174 if (sc_if->msk_port == MSK_PORT_A) { 4175 sc->msk_intrmask &= ~Y2_IS_PORT_A; 4176 sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK; 4177 } else { 4178 sc->msk_intrmask &= ~Y2_IS_PORT_B; 4179 sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK; 4180 } 4181 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask); 4182 CSR_READ_4(sc, B0_HWE_IMSK); 4183 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 4184 CSR_READ_4(sc, B0_IMSK); 4185 4186 /* Disable Tx/Rx MAC. */ 4187 val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 4188 val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 4189 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val); 4190 /* Read again to ensure writing. */ 4191 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 4192 /* Update stats and clear counters. */ 4193 msk_stats_update(sc_if); 4194 4195 /* Stop Tx BMU. */ 4196 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP); 4197 val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR)); 4198 for (i = 0; i < MSK_TIMEOUT; i++) { 4199 if ((val & (BMU_STOP | BMU_IDLE)) == 0) { 4200 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), 4201 BMU_STOP); 4202 val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR)); 4203 } else 4204 break; 4205 DELAY(1); 4206 } 4207 if (i == MSK_TIMEOUT) 4208 device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n"); 4209 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), 4210 RB_RST_SET | RB_DIS_OP_MD); 4211 4212 /* Disable all GMAC interrupt. */ 4213 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0); 4214 /* Disable PHY interrupt. */ 4215 msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0); 4216 4217 /* Disable the RAM Interface Arbiter. */ 4218 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB); 4219 4220 /* Reset the PCI FIFO of the async Tx queue */ 4221 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), 4222 BMU_RST_SET | BMU_FIFO_RST); 4223 4224 /* Reset the Tx prefetch units. */ 4225 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG), 4226 PREF_UNIT_RST_SET); 4227 4228 /* Reset the RAM Buffer async Tx queue. */ 4229 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET); 4230 4231 /* Reset Tx MAC FIFO. */ 4232 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET); 4233 /* Set Pause Off. */ 4234 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF); 4235 4236 /* 4237 * The Rx Stop command will not work for Yukon-2 if the BMU does not 4238 * reach the end of packet and since we can't make sure that we have 4239 * incoming data, we must reset the BMU while it is not during a DMA 4240 * transfer. Since it is possible that the Rx path is still active, 4241 * the Rx RAM buffer will be stopped first, so any possible incoming 4242 * data will not trigger a DMA. After the RAM buffer is stopped, the 4243 * BMU is polled until any DMA in progress is ended and only then it 4244 * will be reset. 4245 */ 4246 4247 /* Disable the RAM Buffer receive queue. */ 4248 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD); 4249 for (i = 0; i < MSK_TIMEOUT; i++) { 4250 if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) == 4251 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL))) 4252 break; 4253 DELAY(1); 4254 } 4255 if (i == MSK_TIMEOUT) 4256 device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n"); 4257 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), 4258 BMU_RST_SET | BMU_FIFO_RST); 4259 /* Reset the Rx prefetch unit. */ 4260 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG), 4261 PREF_UNIT_RST_SET); 4262 /* Reset the RAM Buffer receive queue. */ 4263 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET); 4264 /* Reset Rx MAC FIFO. */ 4265 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET); 4266 4267 /* Free Rx and Tx mbufs still in the queues. */ 4268 for (i = 0; i < MSK_RX_RING_CNT; i++) { 4269 rxd = &sc_if->msk_cdata.msk_rxdesc[i]; 4270 if (rxd->rx_m != NULL) { 4271 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, 4272 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 4273 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, 4274 rxd->rx_dmamap); 4275 m_freem(rxd->rx_m); 4276 rxd->rx_m = NULL; 4277 } 4278 } 4279 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 4280 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; 4281 if (jrxd->rx_m != NULL) { 4282 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, 4283 jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 4284 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag, 4285 jrxd->rx_dmamap); 4286 m_freem(jrxd->rx_m); 4287 jrxd->rx_m = NULL; 4288 } 4289 } 4290 for (i = 0; i < MSK_TX_RING_CNT; i++) { 4291 txd = &sc_if->msk_cdata.msk_txdesc[i]; 4292 if (txd->tx_m != NULL) { 4293 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, 4294 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 4295 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, 4296 txd->tx_dmamap); 4297 m_freem(txd->tx_m); 4298 txd->tx_m = NULL; 4299 } 4300 } 4301 4302 /* 4303 * Mark the interface down. 4304 */ 4305 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 4306 sc_if->msk_flags &= ~MSK_FLAG_LINK; 4307 } 4308 4309 /* 4310 * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower 4311 * counter clears high 16 bits of the counter such that accessing 4312 * lower 16 bits should be the last operation. 4313 */ 4314 #define MSK_READ_MIB32(x, y) \ 4315 (((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) + \ 4316 (uint32_t)GMAC_READ_2(sc, x, y) 4317 #define MSK_READ_MIB64(x, y) \ 4318 (((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) + \ 4319 (uint64_t)MSK_READ_MIB32(x, y) 4320 4321 static void 4322 msk_stats_clear(struct msk_if_softc *sc_if) 4323 { 4324 struct msk_softc *sc; 4325 uint32_t reg; 4326 uint16_t gmac; 4327 int i; 4328 4329 MSK_IF_LOCK_ASSERT(sc_if); 4330 4331 sc = sc_if->msk_softc; 4332 /* Set MIB Clear Counter Mode. */ 4333 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR); 4334 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR); 4335 /* Read all MIB Counters with Clear Mode set. */ 4336 for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t)) 4337 reg = MSK_READ_MIB32(sc_if->msk_port, i); 4338 /* Clear MIB Clear Counter Mode. */ 4339 gmac &= ~GM_PAR_MIB_CLR; 4340 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac); 4341 } 4342 4343 static void 4344 msk_stats_update(struct msk_if_softc *sc_if) 4345 { 4346 struct msk_softc *sc; 4347 struct ifnet *ifp; 4348 struct msk_hw_stats *stats; 4349 uint16_t gmac; 4350 uint32_t reg; 4351 4352 MSK_IF_LOCK_ASSERT(sc_if); 4353 4354 ifp = sc_if->msk_ifp; 4355 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 4356 return; 4357 sc = sc_if->msk_softc; 4358 stats = &sc_if->msk_stats; 4359 /* Set MIB Clear Counter Mode. */ 4360 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR); 4361 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR); 4362 4363 /* Rx stats. */ 4364 stats->rx_ucast_frames += 4365 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK); 4366 stats->rx_bcast_frames += 4367 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK); 4368 stats->rx_pause_frames += 4369 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE); 4370 stats->rx_mcast_frames += 4371 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK); 4372 stats->rx_crc_errs += 4373 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR); 4374 reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1); 4375 stats->rx_good_octets += 4376 MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO); 4377 stats->rx_bad_octets += 4378 MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO); 4379 stats->rx_runts += 4380 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT); 4381 stats->rx_runt_errs += 4382 MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG); 4383 stats->rx_pkts_64 += 4384 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B); 4385 stats->rx_pkts_65_127 += 4386 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B); 4387 stats->rx_pkts_128_255 += 4388 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B); 4389 stats->rx_pkts_256_511 += 4390 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B); 4391 stats->rx_pkts_512_1023 += 4392 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B); 4393 stats->rx_pkts_1024_1518 += 4394 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B); 4395 stats->rx_pkts_1519_max += 4396 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ); 4397 stats->rx_pkts_too_long += 4398 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR); 4399 stats->rx_pkts_jabbers += 4400 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT); 4401 reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2); 4402 stats->rx_fifo_oflows += 4403 MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV); 4404 reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3); 4405 4406 /* Tx stats. */ 4407 stats->tx_ucast_frames += 4408 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK); 4409 stats->tx_bcast_frames += 4410 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK); 4411 stats->tx_pause_frames += 4412 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE); 4413 stats->tx_mcast_frames += 4414 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK); 4415 stats->tx_octets += 4416 MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO); 4417 stats->tx_pkts_64 += 4418 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B); 4419 stats->tx_pkts_65_127 += 4420 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B); 4421 stats->tx_pkts_128_255 += 4422 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B); 4423 stats->tx_pkts_256_511 += 4424 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B); 4425 stats->tx_pkts_512_1023 += 4426 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B); 4427 stats->tx_pkts_1024_1518 += 4428 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B); 4429 stats->tx_pkts_1519_max += 4430 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ); 4431 reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1); 4432 stats->tx_colls += 4433 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL); 4434 stats->tx_late_colls += 4435 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL); 4436 stats->tx_excess_colls += 4437 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL); 4438 stats->tx_multi_colls += 4439 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL); 4440 stats->tx_single_colls += 4441 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL); 4442 stats->tx_underflows += 4443 MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR); 4444 /* Clear MIB Clear Counter Mode. */ 4445 gmac &= ~GM_PAR_MIB_CLR; 4446 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac); 4447 } 4448 4449 static int 4450 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS) 4451 { 4452 struct msk_softc *sc; 4453 struct msk_if_softc *sc_if; 4454 uint32_t result, *stat; 4455 int off; 4456 4457 sc_if = (struct msk_if_softc *)arg1; 4458 sc = sc_if->msk_softc; 4459 off = arg2; 4460 stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off); 4461 4462 MSK_IF_LOCK(sc_if); 4463 result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2); 4464 result += *stat; 4465 MSK_IF_UNLOCK(sc_if); 4466 4467 return (sysctl_handle_int(oidp, &result, 0, req)); 4468 } 4469 4470 static int 4471 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS) 4472 { 4473 struct msk_softc *sc; 4474 struct msk_if_softc *sc_if; 4475 uint64_t result, *stat; 4476 int off; 4477 4478 sc_if = (struct msk_if_softc *)arg1; 4479 sc = sc_if->msk_softc; 4480 off = arg2; 4481 stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off); 4482 4483 MSK_IF_LOCK(sc_if); 4484 result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2); 4485 result += *stat; 4486 MSK_IF_UNLOCK(sc_if); 4487 4488 return (sysctl_handle_64(oidp, &result, 0, req)); 4489 } 4490 4491 #undef MSK_READ_MIB32 4492 #undef MSK_READ_MIB64 4493 4494 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) \ 4495 SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, \ 4496 sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32, \ 4497 "IU", d) 4498 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) \ 4499 SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_U64 | CTLFLAG_RD, \ 4500 sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64, \ 4501 "QU", d) 4502 4503 static void 4504 msk_sysctl_node(struct msk_if_softc *sc_if) 4505 { 4506 struct sysctl_ctx_list *ctx; 4507 struct sysctl_oid_list *child, *schild; 4508 struct sysctl_oid *tree; 4509 4510 ctx = device_get_sysctl_ctx(sc_if->msk_if_dev); 4511 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev)); 4512 4513 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 4514 NULL, "MSK Statistics"); 4515 schild = child = SYSCTL_CHILDREN(tree); 4516 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD, 4517 NULL, "MSK RX Statistics"); 4518 child = SYSCTL_CHILDREN(tree); 4519 MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames", 4520 child, rx_ucast_frames, "Good unicast frames"); 4521 MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames", 4522 child, rx_bcast_frames, "Good broadcast frames"); 4523 MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames", 4524 child, rx_pause_frames, "Pause frames"); 4525 MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames", 4526 child, rx_mcast_frames, "Multicast frames"); 4527 MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs", 4528 child, rx_crc_errs, "CRC errors"); 4529 MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets", 4530 child, rx_good_octets, "Good octets"); 4531 MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets", 4532 child, rx_bad_octets, "Bad octets"); 4533 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64", 4534 child, rx_pkts_64, "64 bytes frames"); 4535 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127", 4536 child, rx_pkts_65_127, "65 to 127 bytes frames"); 4537 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255", 4538 child, rx_pkts_128_255, "128 to 255 bytes frames"); 4539 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511", 4540 child, rx_pkts_256_511, "256 to 511 bytes frames"); 4541 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023", 4542 child, rx_pkts_512_1023, "512 to 1023 bytes frames"); 4543 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518", 4544 child, rx_pkts_1024_1518, "1024 to 1518 bytes frames"); 4545 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max", 4546 child, rx_pkts_1519_max, "1519 to max frames"); 4547 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long", 4548 child, rx_pkts_too_long, "frames too long"); 4549 MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers", 4550 child, rx_pkts_jabbers, "Jabber errors"); 4551 MSK_SYSCTL_STAT32(sc_if, ctx, "overflows", 4552 child, rx_fifo_oflows, "FIFO overflows"); 4553 4554 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD, 4555 NULL, "MSK TX Statistics"); 4556 child = SYSCTL_CHILDREN(tree); 4557 MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames", 4558 child, tx_ucast_frames, "Unicast frames"); 4559 MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames", 4560 child, tx_bcast_frames, "Broadcast frames"); 4561 MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames", 4562 child, tx_pause_frames, "Pause frames"); 4563 MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames", 4564 child, tx_mcast_frames, "Multicast frames"); 4565 MSK_SYSCTL_STAT64(sc_if, ctx, "octets", 4566 child, tx_octets, "Octets"); 4567 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64", 4568 child, tx_pkts_64, "64 bytes frames"); 4569 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127", 4570 child, tx_pkts_65_127, "65 to 127 bytes frames"); 4571 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255", 4572 child, tx_pkts_128_255, "128 to 255 bytes frames"); 4573 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511", 4574 child, tx_pkts_256_511, "256 to 511 bytes frames"); 4575 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023", 4576 child, tx_pkts_512_1023, "512 to 1023 bytes frames"); 4577 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518", 4578 child, tx_pkts_1024_1518, "1024 to 1518 bytes frames"); 4579 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max", 4580 child, tx_pkts_1519_max, "1519 to max frames"); 4581 MSK_SYSCTL_STAT32(sc_if, ctx, "colls", 4582 child, tx_colls, "Collisions"); 4583 MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls", 4584 child, tx_late_colls, "Late collisions"); 4585 MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls", 4586 child, tx_excess_colls, "Excessive collisions"); 4587 MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls", 4588 child, tx_multi_colls, "Multiple collisions"); 4589 MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls", 4590 child, tx_single_colls, "Single collisions"); 4591 MSK_SYSCTL_STAT32(sc_if, ctx, "underflows", 4592 child, tx_underflows, "FIFO underflows"); 4593 } 4594 4595 #undef MSK_SYSCTL_STAT32 4596 #undef MSK_SYSCTL_STAT64 4597 4598 static int 4599 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 4600 { 4601 int error, value; 4602 4603 if (!arg1) 4604 return (EINVAL); 4605 value = *(int *)arg1; 4606 error = sysctl_handle_int(oidp, &value, 0, req); 4607 if (error || !req->newptr) 4608 return (error); 4609 if (value < low || value > high) 4610 return (EINVAL); 4611 *(int *)arg1 = value; 4612 4613 return (0); 4614 } 4615 4616 static int 4617 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS) 4618 { 4619 4620 return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN, 4621 MSK_PROC_MAX)); 4622 } 4623