1 /****************************************************************************** 2 * 3 * Name : sky2.c 4 * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x 5 * Version: $Revision: 1.23 $ 6 * Date : $Date: 2005/12/22 09:04:11 $ 7 * Purpose: Main driver source file 8 * 9 *****************************************************************************/ 10 11 /****************************************************************************** 12 * 13 * LICENSE: 14 * Copyright (C) Marvell International Ltd. and/or its affiliates 15 * 16 * The computer program files contained in this folder ("Files") 17 * are provided to you under the BSD-type license terms provided 18 * below, and any use of such Files and any derivative works 19 * thereof created by you shall be governed by the following terms 20 * and conditions: 21 * 22 * - Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials provided 27 * with the distribution. 28 * - Neither the name of Marvell nor the names of its contributors 29 * may be used to endorse or promote products derived from this 30 * software without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 35 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 36 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 37 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 38 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 39 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 41 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 42 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 43 * OF THE POSSIBILITY OF SUCH DAMAGE. 44 * /LICENSE 45 * 46 *****************************************************************************/ 47 48 /*- 49 * Copyright (c) 1997, 1998, 1999, 2000 50 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 51 * 52 * Redistribution and use in source and binary forms, with or without 53 * modification, are permitted provided that the following conditions 54 * are met: 55 * 1. Redistributions of source code must retain the above copyright 56 * notice, this list of conditions and the following disclaimer. 57 * 2. Redistributions in binary form must reproduce the above copyright 58 * notice, this list of conditions and the following disclaimer in the 59 * documentation and/or other materials provided with the distribution. 60 * 3. All advertising materials mentioning features or use of this software 61 * must display the following acknowledgement: 62 * This product includes software developed by Bill Paul. 63 * 4. Neither the name of the author nor the names of any co-contributors 64 * may be used to endorse or promote products derived from this software 65 * without specific prior written permission. 66 * 67 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 70 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 71 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 72 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 73 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 74 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 75 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 76 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 77 * THE POSSIBILITY OF SUCH DAMAGE. 78 */ 79 /*- 80 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu> 81 * 82 * Permission to use, copy, modify, and distribute this software for any 83 * purpose with or without fee is hereby granted, provided that the above 84 * copyright notice and this permission notice appear in all copies. 85 * 86 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 87 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 88 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 89 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 90 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 91 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 92 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 93 */ 94 95 /* 96 * Device driver for the Marvell Yukon II Ethernet controller. 97 * Due to lack of documentation, this driver is based on the code from 98 * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x. 99 */ 100 101 #include <sys/cdefs.h> 102 __FBSDID("$FreeBSD$"); 103 104 #include <sys/param.h> 105 #include <sys/systm.h> 106 #include <sys/bus.h> 107 #include <sys/endian.h> 108 #include <sys/mbuf.h> 109 #include <sys/malloc.h> 110 #include <sys/kernel.h> 111 #include <sys/module.h> 112 #include <sys/socket.h> 113 #include <sys/sockio.h> 114 #include <sys/queue.h> 115 #include <sys/sysctl.h> 116 #include <sys/taskqueue.h> 117 118 #include <net/bpf.h> 119 #include <net/ethernet.h> 120 #include <net/if.h> 121 #include <net/if_arp.h> 122 #include <net/if_dl.h> 123 #include <net/if_media.h> 124 #include <net/if_types.h> 125 #include <net/if_vlan_var.h> 126 127 #include <netinet/in.h> 128 #include <netinet/in_systm.h> 129 #include <netinet/ip.h> 130 #include <netinet/tcp.h> 131 #include <netinet/udp.h> 132 133 #include <machine/bus.h> 134 #include <machine/in_cksum.h> 135 #include <machine/resource.h> 136 #include <sys/rman.h> 137 138 #include <dev/mii/mii.h> 139 #include <dev/mii/miivar.h> 140 #include <dev/mii/brgphyreg.h> 141 142 #include <dev/pci/pcireg.h> 143 #include <dev/pci/pcivar.h> 144 145 #include <dev/msk/if_mskreg.h> 146 147 MODULE_DEPEND(msk, pci, 1, 1, 1); 148 MODULE_DEPEND(msk, ether, 1, 1, 1); 149 MODULE_DEPEND(msk, miibus, 1, 1, 1); 150 151 /* "device miibus" required. See GENERIC if you get errors here. */ 152 #include "miibus_if.h" 153 154 /* Tunables. */ 155 static int msi_disable = 0; 156 TUNABLE_INT("hw.msk.msi_disable", &msi_disable); 157 static int legacy_intr = 0; 158 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr); 159 160 #define MSK_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 161 162 /* 163 * Devices supported by this driver. 164 */ 165 static struct msk_product { 166 uint16_t msk_vendorid; 167 uint16_t msk_deviceid; 168 const char *msk_name; 169 } msk_products[] = { 170 { VENDORID_SK, DEVICEID_SK_YUKON2, 171 "SK-9Sxx Gigabit Ethernet" }, 172 { VENDORID_SK, DEVICEID_SK_YUKON2_EXPR, 173 "SK-9Exx Gigabit Ethernet"}, 174 { VENDORID_MARVELL, DEVICEID_MRVL_8021CU, 175 "Marvell Yukon 88E8021CU Gigabit Ethernet" }, 176 { VENDORID_MARVELL, DEVICEID_MRVL_8021X, 177 "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" }, 178 { VENDORID_MARVELL, DEVICEID_MRVL_8022CU, 179 "Marvell Yukon 88E8022CU Gigabit Ethernet" }, 180 { VENDORID_MARVELL, DEVICEID_MRVL_8022X, 181 "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" }, 182 { VENDORID_MARVELL, DEVICEID_MRVL_8061CU, 183 "Marvell Yukon 88E8061CU Gigabit Ethernet" }, 184 { VENDORID_MARVELL, DEVICEID_MRVL_8061X, 185 "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" }, 186 { VENDORID_MARVELL, DEVICEID_MRVL_8062CU, 187 "Marvell Yukon 88E8062CU Gigabit Ethernet" }, 188 { VENDORID_MARVELL, DEVICEID_MRVL_8062X, 189 "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" }, 190 { VENDORID_MARVELL, DEVICEID_MRVL_8035, 191 "Marvell Yukon 88E8035 Gigabit Ethernet" }, 192 { VENDORID_MARVELL, DEVICEID_MRVL_8036, 193 "Marvell Yukon 88E8036 Gigabit Ethernet" }, 194 { VENDORID_MARVELL, DEVICEID_MRVL_8038, 195 "Marvell Yukon 88E8038 Gigabit Ethernet" }, 196 { VENDORID_MARVELL, DEVICEID_MRVL_8039, 197 "Marvell Yukon 88E8039 Gigabit Ethernet" }, 198 { VENDORID_MARVELL, DEVICEID_MRVL_4361, 199 "Marvell Yukon 88E8050 Gigabit Ethernet" }, 200 { VENDORID_MARVELL, DEVICEID_MRVL_4360, 201 "Marvell Yukon 88E8052 Gigabit Ethernet" }, 202 { VENDORID_MARVELL, DEVICEID_MRVL_4362, 203 "Marvell Yukon 88E8053 Gigabit Ethernet" }, 204 { VENDORID_MARVELL, DEVICEID_MRVL_4363, 205 "Marvell Yukon 88E8055 Gigabit Ethernet" }, 206 { VENDORID_MARVELL, DEVICEID_MRVL_4364, 207 "Marvell Yukon 88E8056 Gigabit Ethernet" }, 208 { VENDORID_MARVELL, DEVICEID_MRVL_436A, 209 "Marvell Yukon 88E8058 Gigabit Ethernet" }, 210 { VENDORID_DLINK, DEVICEID_DLINK_DGE550SX, 211 "D-Link 550SX Gigabit Ethernet" }, 212 { VENDORID_DLINK, DEVICEID_DLINK_DGE560T, 213 "D-Link 560T Gigabit Ethernet" } 214 }; 215 216 static const char *model_name[] = { 217 "Yukon XL", 218 "Yukon EC Ultra", 219 "Yukon Unknown", 220 "Yukon EC", 221 "Yukon FE" 222 }; 223 224 static int mskc_probe(device_t); 225 static int mskc_attach(device_t); 226 static int mskc_detach(device_t); 227 static int mskc_shutdown(device_t); 228 static int mskc_setup_rambuffer(struct msk_softc *); 229 static int mskc_suspend(device_t); 230 static int mskc_resume(device_t); 231 static void mskc_reset(struct msk_softc *); 232 233 static int msk_probe(device_t); 234 static int msk_attach(device_t); 235 static int msk_detach(device_t); 236 237 static void msk_tick(void *); 238 static void msk_legacy_intr(void *); 239 static int msk_intr(void *); 240 static void msk_int_task(void *, int); 241 static void msk_intr_phy(struct msk_if_softc *); 242 static void msk_intr_gmac(struct msk_if_softc *); 243 static __inline void msk_rxput(struct msk_if_softc *); 244 static int msk_handle_events(struct msk_softc *); 245 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t); 246 static void msk_intr_hwerr(struct msk_softc *); 247 #ifndef __NO_STRICT_ALIGNMENT 248 static __inline void msk_fixup_rx(struct mbuf *); 249 #endif 250 static void msk_rxeof(struct msk_if_softc *, uint32_t, int); 251 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int); 252 static void msk_txeof(struct msk_if_softc *, int); 253 static int msk_encap(struct msk_if_softc *, struct mbuf **); 254 static void msk_tx_task(void *, int); 255 static void msk_start(struct ifnet *); 256 static int msk_ioctl(struct ifnet *, u_long, caddr_t); 257 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t); 258 static void msk_set_rambuffer(struct msk_if_softc *); 259 static void msk_init(void *); 260 static void msk_init_locked(struct msk_if_softc *); 261 static void msk_stop(struct msk_if_softc *); 262 static void msk_watchdog(struct msk_if_softc *); 263 static int msk_mediachange(struct ifnet *); 264 static void msk_mediastatus(struct ifnet *, struct ifmediareq *); 265 static void msk_phy_power(struct msk_softc *, int); 266 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int); 267 static int msk_status_dma_alloc(struct msk_softc *); 268 static void msk_status_dma_free(struct msk_softc *); 269 static int msk_txrx_dma_alloc(struct msk_if_softc *); 270 static void msk_txrx_dma_free(struct msk_if_softc *); 271 static void *msk_jalloc(struct msk_if_softc *); 272 static void msk_jfree(void *, void *); 273 static int msk_init_rx_ring(struct msk_if_softc *); 274 static int msk_init_jumbo_rx_ring(struct msk_if_softc *); 275 static void msk_init_tx_ring(struct msk_if_softc *); 276 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int); 277 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int); 278 static int msk_newbuf(struct msk_if_softc *, int); 279 static int msk_jumbo_newbuf(struct msk_if_softc *, int); 280 281 static int msk_phy_readreg(struct msk_if_softc *, int, int); 282 static int msk_phy_writereg(struct msk_if_softc *, int, int, int); 283 static int msk_miibus_readreg(device_t, int, int); 284 static int msk_miibus_writereg(device_t, int, int, int); 285 static void msk_miibus_statchg(device_t); 286 static void msk_link_task(void *, int); 287 288 static void msk_setmulti(struct msk_if_softc *); 289 static void msk_setvlan(struct msk_if_softc *, struct ifnet *); 290 static void msk_setpromisc(struct msk_if_softc *); 291 292 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 293 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS); 294 295 static device_method_t mskc_methods[] = { 296 /* Device interface */ 297 DEVMETHOD(device_probe, mskc_probe), 298 DEVMETHOD(device_attach, mskc_attach), 299 DEVMETHOD(device_detach, mskc_detach), 300 DEVMETHOD(device_suspend, mskc_suspend), 301 DEVMETHOD(device_resume, mskc_resume), 302 DEVMETHOD(device_shutdown, mskc_shutdown), 303 304 /* bus interface */ 305 DEVMETHOD(bus_print_child, bus_generic_print_child), 306 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 307 308 { NULL, NULL } 309 }; 310 311 static driver_t mskc_driver = { 312 "mskc", 313 mskc_methods, 314 sizeof(struct msk_softc) 315 }; 316 317 static devclass_t mskc_devclass; 318 319 static device_method_t msk_methods[] = { 320 /* Device interface */ 321 DEVMETHOD(device_probe, msk_probe), 322 DEVMETHOD(device_attach, msk_attach), 323 DEVMETHOD(device_detach, msk_detach), 324 DEVMETHOD(device_shutdown, bus_generic_shutdown), 325 326 /* bus interface */ 327 DEVMETHOD(bus_print_child, bus_generic_print_child), 328 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 329 330 /* MII interface */ 331 DEVMETHOD(miibus_readreg, msk_miibus_readreg), 332 DEVMETHOD(miibus_writereg, msk_miibus_writereg), 333 DEVMETHOD(miibus_statchg, msk_miibus_statchg), 334 335 { NULL, NULL } 336 }; 337 338 static driver_t msk_driver = { 339 "msk", 340 msk_methods, 341 sizeof(struct msk_if_softc) 342 }; 343 344 static devclass_t msk_devclass; 345 346 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0); 347 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0); 348 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0); 349 350 static struct resource_spec msk_res_spec_io[] = { 351 { SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE }, 352 { -1, 0, 0 } 353 }; 354 355 static struct resource_spec msk_res_spec_mem[] = { 356 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 357 { -1, 0, 0 } 358 }; 359 360 static struct resource_spec msk_irq_spec_legacy[] = { 361 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 362 { -1, 0, 0 } 363 }; 364 365 static struct resource_spec msk_irq_spec_msi[] = { 366 { SYS_RES_IRQ, 1, RF_ACTIVE }, 367 { -1, 0, 0 } 368 }; 369 370 static struct resource_spec msk_irq_spec_msi2[] = { 371 { SYS_RES_IRQ, 1, RF_ACTIVE }, 372 { SYS_RES_IRQ, 2, RF_ACTIVE }, 373 { -1, 0, 0 } 374 }; 375 376 static int 377 msk_miibus_readreg(device_t dev, int phy, int reg) 378 { 379 struct msk_if_softc *sc_if; 380 381 if (phy != PHY_ADDR_MARV) 382 return (0); 383 384 sc_if = device_get_softc(dev); 385 386 return (msk_phy_readreg(sc_if, phy, reg)); 387 } 388 389 static int 390 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg) 391 { 392 struct msk_softc *sc; 393 int i, val; 394 395 sc = sc_if->msk_softc; 396 397 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL, 398 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); 399 400 for (i = 0; i < MSK_TIMEOUT; i++) { 401 DELAY(1); 402 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL); 403 if ((val & GM_SMI_CT_RD_VAL) != 0) { 404 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA); 405 break; 406 } 407 } 408 409 if (i == MSK_TIMEOUT) { 410 if_printf(sc_if->msk_ifp, "phy failed to come ready\n"); 411 val = 0; 412 } 413 414 return (val); 415 } 416 417 static int 418 msk_miibus_writereg(device_t dev, int phy, int reg, int val) 419 { 420 struct msk_if_softc *sc_if; 421 422 if (phy != PHY_ADDR_MARV) 423 return (0); 424 425 sc_if = device_get_softc(dev); 426 427 return (msk_phy_writereg(sc_if, phy, reg, val)); 428 } 429 430 static int 431 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val) 432 { 433 struct msk_softc *sc; 434 int i; 435 436 sc = sc_if->msk_softc; 437 438 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val); 439 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL, 440 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg)); 441 for (i = 0; i < MSK_TIMEOUT; i++) { 442 DELAY(1); 443 if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) & 444 GM_SMI_CT_BUSY) == 0) 445 break; 446 } 447 if (i == MSK_TIMEOUT) 448 if_printf(sc_if->msk_ifp, "phy write timeout\n"); 449 450 return (0); 451 } 452 453 static void 454 msk_miibus_statchg(device_t dev) 455 { 456 struct msk_if_softc *sc_if; 457 458 sc_if = device_get_softc(dev); 459 taskqueue_enqueue(taskqueue_swi, &sc_if->msk_link_task); 460 } 461 462 static void 463 msk_link_task(void *arg, int pending) 464 { 465 struct msk_softc *sc; 466 struct msk_if_softc *sc_if; 467 struct mii_data *mii; 468 struct ifnet *ifp; 469 uint32_t gmac; 470 471 sc_if = (struct msk_if_softc *)arg; 472 sc = sc_if->msk_softc; 473 474 MSK_IF_LOCK(sc_if); 475 476 mii = device_get_softc(sc_if->msk_miibus); 477 ifp = sc_if->msk_ifp; 478 if (mii == NULL || ifp == NULL) { 479 MSK_IF_UNLOCK(sc_if); 480 return; 481 } 482 483 if (mii->mii_media_status & IFM_ACTIVE) { 484 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) 485 sc_if->msk_link = 1; 486 } else 487 sc_if->msk_link = 0; 488 489 if (sc_if->msk_link != 0) { 490 /* Enable Tx FIFO Underrun. */ 491 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 492 GM_IS_TX_FF_UR | GM_IS_RX_FF_OR); 493 /* 494 * Because mii(4) notify msk(4) that it detected link status 495 * change, there is no need to enable automatic 496 * speed/flow-control/duplex updates. 497 */ 498 gmac = GM_GPCR_AU_ALL_DIS; 499 switch (IFM_SUBTYPE(mii->mii_media_active)) { 500 case IFM_1000_SX: 501 case IFM_1000_T: 502 gmac |= GM_GPCR_SPEED_1000; 503 break; 504 case IFM_100_TX: 505 gmac |= GM_GPCR_SPEED_100; 506 break; 507 case IFM_10_T: 508 break; 509 } 510 511 if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0) 512 gmac |= GM_GPCR_DUP_FULL; 513 /* Disable Rx flow control. */ 514 if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0) 515 gmac |= GM_GPCR_FC_RX_DIS; 516 /* Disable Tx flow control. */ 517 if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0) 518 gmac |= GM_GPCR_FC_TX_DIS; 519 gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; 520 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac); 521 /* Read again to ensure writing. */ 522 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 523 524 gmac = GMC_PAUSE_ON; 525 if (((mii->mii_media_active & IFM_GMASK) & 526 (IFM_FLAG0 | IFM_FLAG1)) == 0) 527 gmac = GMC_PAUSE_OFF; 528 /* Diable pause for 10/100 Mbps in half-duplex mode. */ 529 if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) && 530 (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX || 531 IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T)) 532 gmac = GMC_PAUSE_OFF; 533 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac); 534 535 /* Enable PHY interrupt for FIFO underrun/overflow. */ 536 msk_phy_writereg(sc_if, PHY_ADDR_MARV, 537 PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR); 538 } else { 539 /* 540 * Link state changed to down. 541 * Disable PHY interrupts. 542 */ 543 msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0); 544 /* Disable Rx/Tx MAC. */ 545 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 546 gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 547 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac); 548 /* Read again to ensure writing. */ 549 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 550 } 551 552 MSK_IF_UNLOCK(sc_if); 553 } 554 555 static void 556 msk_setmulti(struct msk_if_softc *sc_if) 557 { 558 struct msk_softc *sc; 559 struct ifnet *ifp; 560 struct ifmultiaddr *ifma; 561 uint32_t mchash[2]; 562 uint32_t crc; 563 uint16_t mode; 564 565 sc = sc_if->msk_softc; 566 567 MSK_IF_LOCK_ASSERT(sc_if); 568 569 ifp = sc_if->msk_ifp; 570 571 bzero(mchash, sizeof(mchash)); 572 mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL); 573 mode |= GM_RXCR_UCF_ENA; 574 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 575 if ((ifp->if_flags & IFF_PROMISC) != 0) 576 mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 577 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) { 578 mchash[0] = 0xffff; 579 mchash[1] = 0xffff; 580 } 581 } else { 582 IF_ADDR_LOCK(ifp); 583 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 584 if (ifma->ifma_addr->sa_family != AF_LINK) 585 continue; 586 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 587 ifma->ifma_addr), ETHER_ADDR_LEN); 588 /* Just want the 6 least significant bits. */ 589 crc &= 0x3f; 590 /* Set the corresponding bit in the hash table. */ 591 mchash[crc >> 5] |= 1 << (crc & 0x1f); 592 } 593 IF_ADDR_UNLOCK(ifp); 594 mode |= GM_RXCR_MCF_ENA; 595 } 596 597 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1, 598 mchash[0] & 0xffff); 599 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2, 600 (mchash[0] >> 16) & 0xffff); 601 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3, 602 mchash[1] & 0xffff); 603 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4, 604 (mchash[1] >> 16) & 0xffff); 605 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode); 606 } 607 608 static void 609 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp) 610 { 611 struct msk_softc *sc; 612 613 sc = sc_if->msk_softc; 614 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 615 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 616 RX_VLAN_STRIP_ON); 617 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 618 TX_VLAN_TAG_ON); 619 } else { 620 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 621 RX_VLAN_STRIP_OFF); 622 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 623 TX_VLAN_TAG_OFF); 624 } 625 } 626 627 static void 628 msk_setpromisc(struct msk_if_softc *sc_if) 629 { 630 struct msk_softc *sc; 631 struct ifnet *ifp; 632 uint16_t mode; 633 634 MSK_IF_LOCK_ASSERT(sc_if); 635 636 sc = sc_if->msk_softc; 637 ifp = sc_if->msk_ifp; 638 639 mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL); 640 if (ifp->if_flags & IFF_PROMISC) 641 mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 642 else 643 mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 644 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode); 645 } 646 647 static int 648 msk_init_rx_ring(struct msk_if_softc *sc_if) 649 { 650 struct msk_ring_data *rd; 651 struct msk_rxdesc *rxd; 652 int i, prod; 653 654 MSK_IF_LOCK_ASSERT(sc_if); 655 656 sc_if->msk_cdata.msk_rx_cons = 0; 657 sc_if->msk_cdata.msk_rx_prod = 0; 658 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM; 659 660 rd = &sc_if->msk_rdata; 661 bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT); 662 prod = sc_if->msk_cdata.msk_rx_prod; 663 for (i = 0; i < MSK_RX_RING_CNT; i++) { 664 rxd = &sc_if->msk_cdata.msk_rxdesc[prod]; 665 rxd->rx_m = NULL; 666 rxd->rx_le = &rd->msk_rx_ring[prod]; 667 if (msk_newbuf(sc_if, prod) != 0) 668 return (ENOBUFS); 669 MSK_INC(prod, MSK_RX_RING_CNT); 670 } 671 672 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag, 673 sc_if->msk_cdata.msk_rx_ring_map, 674 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 675 676 /* Update prefetch unit. */ 677 sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1; 678 CSR_WRITE_2(sc_if->msk_softc, 679 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG), 680 sc_if->msk_cdata.msk_rx_prod); 681 682 return (0); 683 } 684 685 static int 686 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if) 687 { 688 struct msk_ring_data *rd; 689 struct msk_rxdesc *rxd; 690 int i, prod; 691 692 MSK_IF_LOCK_ASSERT(sc_if); 693 694 sc_if->msk_cdata.msk_rx_cons = 0; 695 sc_if->msk_cdata.msk_rx_prod = 0; 696 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM; 697 698 rd = &sc_if->msk_rdata; 699 bzero(rd->msk_jumbo_rx_ring, 700 sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT); 701 prod = sc_if->msk_cdata.msk_rx_prod; 702 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 703 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod]; 704 rxd->rx_m = NULL; 705 rxd->rx_le = &rd->msk_jumbo_rx_ring[prod]; 706 if (msk_jumbo_newbuf(sc_if, prod) != 0) 707 return (ENOBUFS); 708 MSK_INC(prod, MSK_JUMBO_RX_RING_CNT); 709 } 710 711 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 712 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 713 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 714 715 sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1; 716 CSR_WRITE_2(sc_if->msk_softc, 717 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG), 718 sc_if->msk_cdata.msk_rx_prod); 719 720 return (0); 721 } 722 723 static void 724 msk_init_tx_ring(struct msk_if_softc *sc_if) 725 { 726 struct msk_ring_data *rd; 727 struct msk_txdesc *txd; 728 int i; 729 730 sc_if->msk_cdata.msk_tso_mtu = 0; 731 sc_if->msk_cdata.msk_tx_prod = 0; 732 sc_if->msk_cdata.msk_tx_cons = 0; 733 sc_if->msk_cdata.msk_tx_cnt = 0; 734 735 rd = &sc_if->msk_rdata; 736 bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT); 737 for (i = 0; i < MSK_TX_RING_CNT; i++) { 738 txd = &sc_if->msk_cdata.msk_txdesc[i]; 739 txd->tx_m = NULL; 740 txd->tx_le = &rd->msk_tx_ring[i]; 741 } 742 743 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, 744 sc_if->msk_cdata.msk_tx_ring_map, 745 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 746 } 747 748 static __inline void 749 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx) 750 { 751 struct msk_rx_desc *rx_le; 752 struct msk_rxdesc *rxd; 753 struct mbuf *m; 754 755 rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; 756 m = rxd->rx_m; 757 rx_le = rxd->rx_le; 758 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER); 759 } 760 761 static __inline void 762 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int idx) 763 { 764 struct msk_rx_desc *rx_le; 765 struct msk_rxdesc *rxd; 766 struct mbuf *m; 767 768 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; 769 m = rxd->rx_m; 770 rx_le = rxd->rx_le; 771 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER); 772 } 773 774 static int 775 msk_newbuf(struct msk_if_softc *sc_if, int idx) 776 { 777 struct msk_rx_desc *rx_le; 778 struct msk_rxdesc *rxd; 779 struct mbuf *m; 780 bus_dma_segment_t segs[1]; 781 bus_dmamap_t map; 782 int nsegs; 783 784 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 785 if (m == NULL) 786 return (ENOBUFS); 787 788 m->m_len = m->m_pkthdr.len = MCLBYTES; 789 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) 790 m_adj(m, ETHER_ALIGN); 791 #ifndef __NO_STRICT_ALIGNMENT 792 else 793 m_adj(m, MSK_RX_BUF_ALIGN); 794 #endif 795 796 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag, 797 sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs, 798 BUS_DMA_NOWAIT) != 0) { 799 m_freem(m); 800 return (ENOBUFS); 801 } 802 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 803 804 rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; 805 if (rxd->rx_m != NULL) { 806 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap, 807 BUS_DMASYNC_POSTREAD); 808 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap); 809 } 810 map = rxd->rx_dmamap; 811 rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap; 812 sc_if->msk_cdata.msk_rx_sparemap = map; 813 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap, 814 BUS_DMASYNC_PREREAD); 815 rxd->rx_m = m; 816 rx_le = rxd->rx_le; 817 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr)); 818 rx_le->msk_control = 819 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER); 820 821 return (0); 822 } 823 824 static int 825 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx) 826 { 827 struct msk_rx_desc *rx_le; 828 struct msk_rxdesc *rxd; 829 struct mbuf *m; 830 bus_dma_segment_t segs[1]; 831 bus_dmamap_t map; 832 int nsegs; 833 void *buf; 834 835 MGETHDR(m, M_DONTWAIT, MT_DATA); 836 if (m == NULL) 837 return (ENOBUFS); 838 buf = msk_jalloc(sc_if); 839 if (buf == NULL) { 840 m_freem(m); 841 return (ENOBUFS); 842 } 843 /* Attach the buffer to the mbuf. */ 844 MEXTADD(m, buf, MSK_JLEN, msk_jfree, buf, 845 (struct msk_if_softc *)sc_if, 0, EXT_NET_DRV); 846 if ((m->m_flags & M_EXT) == 0) { 847 m_freem(m); 848 return (ENOBUFS); 849 } 850 m->m_pkthdr.len = m->m_len = MSK_JLEN; 851 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) 852 m_adj(m, ETHER_ALIGN); 853 #ifndef __NO_STRICT_ALIGNMENT 854 else 855 m_adj(m, MSK_RX_BUF_ALIGN); 856 #endif 857 858 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag, 859 sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs, 860 BUS_DMA_NOWAIT) != 0) { 861 m_freem(m); 862 return (ENOBUFS); 863 } 864 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 865 866 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; 867 if (rxd->rx_m != NULL) { 868 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, 869 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 870 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag, 871 rxd->rx_dmamap); 872 } 873 map = rxd->rx_dmamap; 874 rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap; 875 sc_if->msk_cdata.msk_jumbo_rx_sparemap = map; 876 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap, 877 BUS_DMASYNC_PREREAD); 878 rxd->rx_m = m; 879 rx_le = rxd->rx_le; 880 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr)); 881 rx_le->msk_control = 882 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER); 883 884 return (0); 885 } 886 887 /* 888 * Set media options. 889 */ 890 static int 891 msk_mediachange(struct ifnet *ifp) 892 { 893 struct msk_if_softc *sc_if; 894 struct mii_data *mii; 895 896 sc_if = ifp->if_softc; 897 898 MSK_IF_LOCK(sc_if); 899 mii = device_get_softc(sc_if->msk_miibus); 900 mii_mediachg(mii); 901 MSK_IF_UNLOCK(sc_if); 902 903 return (0); 904 } 905 906 /* 907 * Report current media status. 908 */ 909 static void 910 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 911 { 912 struct msk_if_softc *sc_if; 913 struct mii_data *mii; 914 915 sc_if = ifp->if_softc; 916 MSK_IF_LOCK(sc_if); 917 mii = device_get_softc(sc_if->msk_miibus); 918 919 mii_pollstat(mii); 920 MSK_IF_UNLOCK(sc_if); 921 ifmr->ifm_active = mii->mii_media_active; 922 ifmr->ifm_status = mii->mii_media_status; 923 } 924 925 static int 926 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 927 { 928 struct msk_if_softc *sc_if; 929 struct ifreq *ifr; 930 struct mii_data *mii; 931 int error, mask; 932 933 sc_if = ifp->if_softc; 934 ifr = (struct ifreq *)data; 935 error = 0; 936 937 switch(command) { 938 case SIOCSIFMTU: 939 if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) { 940 error = EINVAL; 941 break; 942 } 943 if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE && 944 ifr->ifr_mtu > MSK_MAX_FRAMELEN) { 945 error = EINVAL; 946 break; 947 } 948 MSK_IF_LOCK(sc_if); 949 ifp->if_mtu = ifr->ifr_mtu; 950 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 951 msk_init_locked(sc_if); 952 MSK_IF_UNLOCK(sc_if); 953 break; 954 case SIOCSIFFLAGS: 955 MSK_IF_LOCK(sc_if); 956 if ((ifp->if_flags & IFF_UP) != 0) { 957 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 958 if (((ifp->if_flags ^ sc_if->msk_if_flags) 959 & IFF_PROMISC) != 0) { 960 msk_setpromisc(sc_if); 961 msk_setmulti(sc_if); 962 } 963 } else { 964 if (sc_if->msk_detach == 0) 965 msk_init_locked(sc_if); 966 } 967 } else { 968 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 969 msk_stop(sc_if); 970 } 971 sc_if->msk_if_flags = ifp->if_flags; 972 MSK_IF_UNLOCK(sc_if); 973 break; 974 case SIOCADDMULTI: 975 case SIOCDELMULTI: 976 MSK_IF_LOCK(sc_if); 977 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 978 msk_setmulti(sc_if); 979 MSK_IF_UNLOCK(sc_if); 980 break; 981 case SIOCGIFMEDIA: 982 case SIOCSIFMEDIA: 983 mii = device_get_softc(sc_if->msk_miibus); 984 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 985 break; 986 case SIOCSIFCAP: 987 MSK_IF_LOCK(sc_if); 988 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 989 if ((mask & IFCAP_TXCSUM) != 0) { 990 ifp->if_capenable ^= IFCAP_TXCSUM; 991 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 && 992 (IFCAP_TXCSUM & ifp->if_capabilities) != 0) 993 ifp->if_hwassist |= MSK_CSUM_FEATURES; 994 else 995 ifp->if_hwassist &= ~MSK_CSUM_FEATURES; 996 } 997 if ((mask & IFCAP_VLAN_HWTAGGING) != 0) { 998 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 999 msk_setvlan(sc_if, ifp); 1000 } 1001 1002 if ((mask & IFCAP_TSO4) != 0) { 1003 ifp->if_capenable ^= IFCAP_TSO4; 1004 if ((IFCAP_TSO4 & ifp->if_capenable) != 0 && 1005 (IFCAP_TSO4 & ifp->if_capabilities) != 0) 1006 ifp->if_hwassist |= CSUM_TSO; 1007 else 1008 ifp->if_hwassist &= ~CSUM_TSO; 1009 } 1010 if (sc_if->msk_framesize > MSK_MAX_FRAMELEN && 1011 sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) { 1012 /* 1013 * In Yukon EC Ultra, TSO & checksum offload is not 1014 * supported for jumbo frame. 1015 */ 1016 ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO); 1017 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM); 1018 } 1019 1020 VLAN_CAPABILITIES(ifp); 1021 MSK_IF_UNLOCK(sc_if); 1022 break; 1023 default: 1024 error = ether_ioctl(ifp, command, data); 1025 break; 1026 } 1027 1028 return (error); 1029 } 1030 1031 static int 1032 mskc_probe(device_t dev) 1033 { 1034 struct msk_product *mp; 1035 uint16_t vendor, devid; 1036 int i; 1037 1038 vendor = pci_get_vendor(dev); 1039 devid = pci_get_device(dev); 1040 mp = msk_products; 1041 for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]); 1042 i++, mp++) { 1043 if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) { 1044 device_set_desc(dev, mp->msk_name); 1045 return (BUS_PROBE_DEFAULT); 1046 } 1047 } 1048 1049 return (ENXIO); 1050 } 1051 1052 static int 1053 mskc_setup_rambuffer(struct msk_softc *sc) 1054 { 1055 int next; 1056 int i; 1057 1058 /* Get adapter SRAM size. */ 1059 sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4; 1060 if (bootverbose) 1061 device_printf(sc->msk_dev, 1062 "RAM buffer size : %dKB\n", sc->msk_ramsize); 1063 if (sc->msk_ramsize == 0) 1064 return (0); 1065 1066 sc->msk_pflags |= MSK_FLAG_RAMBUF; 1067 /* 1068 * Give receiver 2/3 of memory and round down to the multiple 1069 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple 1070 * of 1024. 1071 */ 1072 sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024); 1073 sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize; 1074 for (i = 0, next = 0; i < sc->msk_num_port; i++) { 1075 sc->msk_rxqstart[i] = next; 1076 sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1; 1077 next = sc->msk_rxqend[i] + 1; 1078 sc->msk_txqstart[i] = next; 1079 sc->msk_txqend[i] = next + sc->msk_txqsize - 1; 1080 next = sc->msk_txqend[i] + 1; 1081 if (bootverbose) { 1082 device_printf(sc->msk_dev, 1083 "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i, 1084 sc->msk_rxqsize / 1024, sc->msk_rxqstart[i], 1085 sc->msk_rxqend[i]); 1086 device_printf(sc->msk_dev, 1087 "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i, 1088 sc->msk_txqsize / 1024, sc->msk_txqstart[i], 1089 sc->msk_txqend[i]); 1090 } 1091 } 1092 1093 return (0); 1094 } 1095 1096 static void 1097 msk_phy_power(struct msk_softc *sc, int mode) 1098 { 1099 uint32_t val; 1100 int i; 1101 1102 switch (mode) { 1103 case MSK_PHY_POWERUP: 1104 /* Switch power to VCC (WA for VAUX problem). */ 1105 CSR_WRITE_1(sc, B0_POWER_CTRL, 1106 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); 1107 /* Disable Core Clock Division, set Clock Select to 0. */ 1108 CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS); 1109 1110 val = 0; 1111 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1112 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1113 /* Enable bits are inverted. */ 1114 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | 1115 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | 1116 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS; 1117 } 1118 /* 1119 * Enable PCI & Core Clock, enable clock gating for both Links. 1120 */ 1121 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val); 1122 1123 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4); 1124 val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD); 1125 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1126 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1127 /* Deassert Low Power for 1st PHY. */ 1128 val |= PCI_Y2_PHY1_COMA; 1129 if (sc->msk_num_port > 1) 1130 val |= PCI_Y2_PHY2_COMA; 1131 } else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) { 1132 uint32_t our; 1133 1134 CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON); 1135 1136 /* Enable all clocks. */ 1137 pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4); 1138 our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4); 1139 our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN| 1140 PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST); 1141 /* Set all bits to 0 except bits 15..12. */ 1142 pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4); 1143 /* Set to default value. */ 1144 pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4); 1145 } 1146 /* Release PHY from PowerDown/COMA mode. */ 1147 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4); 1148 for (i = 0; i < sc->msk_num_port; i++) { 1149 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL), 1150 GMLC_RST_SET); 1151 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL), 1152 GMLC_RST_CLR); 1153 } 1154 break; 1155 case MSK_PHY_POWERDOWN: 1156 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4); 1157 val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD; 1158 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1159 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1160 val &= ~PCI_Y2_PHY1_COMA; 1161 if (sc->msk_num_port > 1) 1162 val &= ~PCI_Y2_PHY2_COMA; 1163 } 1164 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4); 1165 1166 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | 1167 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | 1168 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS; 1169 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1170 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1171 /* Enable bits are inverted. */ 1172 val = 0; 1173 } 1174 /* 1175 * Disable PCI & Core Clock, disable clock gating for 1176 * both Links. 1177 */ 1178 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val); 1179 CSR_WRITE_1(sc, B0_POWER_CTRL, 1180 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF); 1181 break; 1182 default: 1183 break; 1184 } 1185 } 1186 1187 static void 1188 mskc_reset(struct msk_softc *sc) 1189 { 1190 bus_addr_t addr; 1191 uint16_t status; 1192 uint32_t val; 1193 int i; 1194 1195 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); 1196 1197 /* Disable ASF. */ 1198 if (sc->msk_hw_id < CHIP_ID_YUKON_XL) { 1199 CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET); 1200 CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE); 1201 } 1202 /* 1203 * Since we disabled ASF, S/W reset is required for Power Management. 1204 */ 1205 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 1206 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); 1207 1208 /* Clear all error bits in the PCI status register. */ 1209 status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2); 1210 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 1211 1212 pci_write_config(sc->msk_dev, PCIR_STATUS, status | 1213 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT | 1214 PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2); 1215 CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR); 1216 1217 switch (sc->msk_bustype) { 1218 case MSK_PEX_BUS: 1219 /* Clear all PEX errors. */ 1220 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff); 1221 val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT); 1222 if ((val & PEX_RX_OV) != 0) { 1223 sc->msk_intrmask &= ~Y2_IS_HW_ERR; 1224 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP; 1225 } 1226 break; 1227 case MSK_PCI_BUS: 1228 case MSK_PCIX_BUS: 1229 /* Set Cache Line Size to 2(8bytes) if configured to 0. */ 1230 val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1); 1231 if (val == 0) 1232 pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1); 1233 if (sc->msk_bustype == MSK_PCIX_BUS) { 1234 /* Set Cache Line Size opt. */ 1235 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4); 1236 val |= PCI_CLS_OPT; 1237 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4); 1238 } 1239 break; 1240 } 1241 /* Set PHY power state. */ 1242 msk_phy_power(sc, MSK_PHY_POWERUP); 1243 1244 /* Reset GPHY/GMAC Control */ 1245 for (i = 0; i < sc->msk_num_port; i++) { 1246 /* GPHY Control reset. */ 1247 CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET); 1248 CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR); 1249 /* GMAC Control reset. */ 1250 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET); 1251 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR); 1252 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF); 1253 } 1254 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 1255 1256 /* LED On. */ 1257 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON); 1258 1259 /* Clear TWSI IRQ. */ 1260 CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ); 1261 1262 /* Turn off hardware timer. */ 1263 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP); 1264 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ); 1265 1266 /* Turn off descriptor polling. */ 1267 CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP); 1268 1269 /* Turn off time stamps. */ 1270 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP); 1271 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 1272 1273 /* Configure timeout values. */ 1274 for (i = 0; i < sc->msk_num_port; i++) { 1275 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET); 1276 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR); 1277 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1), 1278 MSK_RI_TO_53); 1279 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1), 1280 MSK_RI_TO_53); 1281 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1), 1282 MSK_RI_TO_53); 1283 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1), 1284 MSK_RI_TO_53); 1285 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1), 1286 MSK_RI_TO_53); 1287 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1), 1288 MSK_RI_TO_53); 1289 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2), 1290 MSK_RI_TO_53); 1291 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2), 1292 MSK_RI_TO_53); 1293 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2), 1294 MSK_RI_TO_53); 1295 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2), 1296 MSK_RI_TO_53); 1297 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2), 1298 MSK_RI_TO_53); 1299 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2), 1300 MSK_RI_TO_53); 1301 } 1302 1303 /* Disable all interrupts. */ 1304 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 1305 CSR_READ_4(sc, B0_HWE_IMSK); 1306 CSR_WRITE_4(sc, B0_IMSK, 0); 1307 CSR_READ_4(sc, B0_IMSK); 1308 1309 /* 1310 * On dual port PCI-X card, there is an problem where status 1311 * can be received out of order due to split transactions. 1312 */ 1313 if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) { 1314 int pcix; 1315 uint16_t pcix_cmd; 1316 1317 if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &pcix) == 0) { 1318 pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2); 1319 /* Clear Max Outstanding Split Transactions. */ 1320 pcix_cmd &= ~0x70; 1321 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 1322 pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2); 1323 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 1324 } 1325 } 1326 if (sc->msk_bustype == MSK_PEX_BUS) { 1327 uint16_t v, width; 1328 1329 v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2); 1330 /* Change Max. Read Request Size to 4096 bytes. */ 1331 v &= ~PEX_DC_MAX_RRS_MSK; 1332 v |= PEX_DC_MAX_RD_RQ_SIZE(5); 1333 pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2); 1334 width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2); 1335 width = (width & PEX_LS_LINK_WI_MSK) >> 4; 1336 v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2); 1337 v = (v & PEX_LS_LINK_WI_MSK) >> 4; 1338 if (v != width) 1339 device_printf(sc->msk_dev, 1340 "negotiated width of link(x%d) != " 1341 "max. width of link(x%d)\n", width, v); 1342 } 1343 1344 /* Clear status list. */ 1345 bzero(sc->msk_stat_ring, 1346 sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT); 1347 sc->msk_stat_cons = 0; 1348 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map, 1349 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1350 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET); 1351 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR); 1352 /* Set the status list base address. */ 1353 addr = sc->msk_stat_ring_paddr; 1354 CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr)); 1355 CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr)); 1356 /* Set the status list last index. */ 1357 CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1); 1358 if (sc->msk_hw_id == CHIP_ID_YUKON_EC && 1359 sc->msk_hw_rev == CHIP_REV_YU_EC_A1) { 1360 /* WA for dev. #4.3 */ 1361 CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK); 1362 /* WA for dev. #4.18 */ 1363 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21); 1364 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07); 1365 } else { 1366 CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a); 1367 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10); 1368 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1369 sc->msk_hw_rev == CHIP_REV_YU_XL_A0) 1370 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04); 1371 else 1372 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10); 1373 CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190); 1374 } 1375 /* 1376 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI. 1377 */ 1378 CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000)); 1379 1380 /* Enable status unit. */ 1381 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON); 1382 1383 CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START); 1384 CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START); 1385 CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START); 1386 } 1387 1388 static int 1389 msk_probe(device_t dev) 1390 { 1391 struct msk_softc *sc; 1392 char desc[100]; 1393 1394 sc = device_get_softc(device_get_parent(dev)); 1395 /* 1396 * Not much to do here. We always know there will be 1397 * at least one GMAC present, and if there are two, 1398 * mskc_attach() will create a second device instance 1399 * for us. 1400 */ 1401 snprintf(desc, sizeof(desc), 1402 "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x", 1403 model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id, 1404 sc->msk_hw_rev); 1405 device_set_desc_copy(dev, desc); 1406 1407 return (BUS_PROBE_DEFAULT); 1408 } 1409 1410 static int 1411 msk_attach(device_t dev) 1412 { 1413 struct msk_softc *sc; 1414 struct msk_if_softc *sc_if; 1415 struct ifnet *ifp; 1416 int i, port, error; 1417 uint8_t eaddr[6]; 1418 1419 if (dev == NULL) 1420 return (EINVAL); 1421 1422 error = 0; 1423 sc_if = device_get_softc(dev); 1424 sc = device_get_softc(device_get_parent(dev)); 1425 port = *(int *)device_get_ivars(dev); 1426 1427 sc_if->msk_if_dev = dev; 1428 sc_if->msk_port = port; 1429 sc_if->msk_softc = sc; 1430 sc_if->msk_flags = sc->msk_pflags; 1431 sc->msk_if[port] = sc_if; 1432 /* Setup Tx/Rx queue register offsets. */ 1433 if (port == MSK_PORT_A) { 1434 sc_if->msk_txq = Q_XA1; 1435 sc_if->msk_txsq = Q_XS1; 1436 sc_if->msk_rxq = Q_R1; 1437 } else { 1438 sc_if->msk_txq = Q_XA2; 1439 sc_if->msk_txsq = Q_XS2; 1440 sc_if->msk_rxq = Q_R2; 1441 } 1442 1443 callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0); 1444 TASK_INIT(&sc_if->msk_link_task, 0, msk_link_task, sc_if); 1445 1446 if ((error = msk_txrx_dma_alloc(sc_if) != 0)) 1447 goto fail; 1448 1449 ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER); 1450 if (ifp == NULL) { 1451 device_printf(sc_if->msk_if_dev, "can not if_alloc()\n"); 1452 error = ENOSPC; 1453 goto fail; 1454 } 1455 ifp->if_softc = sc_if; 1456 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1457 ifp->if_mtu = ETHERMTU; 1458 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1459 /* 1460 * IFCAP_RXCSUM capability is intentionally disabled as the hardware 1461 * has serious bug in Rx checksum offload for all Yukon II family 1462 * hardware. It seems there is a workaround to make it work somtimes. 1463 * However, the workaround also have to check OP code sequences to 1464 * verify whether the OP code is correct. Sometimes it should compute 1465 * IP/TCP/UDP checksum in driver in order to verify correctness of 1466 * checksum computed by hardware. If you have to compute checksum 1467 * with software to verify the hardware's checksum why have hardware 1468 * compute the checksum? I think there is no reason to spend time to 1469 * make Rx checksum offload work on Yukon II hardware. 1470 */ 1471 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4; 1472 ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO; 1473 ifp->if_capenable = ifp->if_capabilities; 1474 ifp->if_ioctl = msk_ioctl; 1475 ifp->if_start = msk_start; 1476 ifp->if_timer = 0; 1477 ifp->if_watchdog = NULL; 1478 ifp->if_init = msk_init; 1479 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1); 1480 ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1; 1481 IFQ_SET_READY(&ifp->if_snd); 1482 1483 TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp); 1484 1485 /* 1486 * Get station address for this interface. Note that 1487 * dual port cards actually come with three station 1488 * addresses: one for each port, plus an extra. The 1489 * extra one is used by the SysKonnect driver software 1490 * as a 'virtual' station address for when both ports 1491 * are operating in failover mode. Currently we don't 1492 * use this extra address. 1493 */ 1494 MSK_IF_LOCK(sc_if); 1495 for (i = 0; i < ETHER_ADDR_LEN; i++) 1496 eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i); 1497 1498 /* 1499 * Call MI attach routine. Can't hold locks when calling into ether_*. 1500 */ 1501 MSK_IF_UNLOCK(sc_if); 1502 ether_ifattach(ifp, eaddr); 1503 MSK_IF_LOCK(sc_if); 1504 1505 /* 1506 * VLAN capability setup 1507 * Due to Tx checksum offload hardware bugs, msk(4) manually 1508 * computes checksum for short frames. For VLAN tagged frames 1509 * this workaround does not work so disable checksum offload 1510 * for VLAN interface. 1511 */ 1512 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING; 1513 ifp->if_capenable = ifp->if_capabilities; 1514 1515 /* 1516 * Tell the upper layer(s) we support long frames. 1517 * Must appear after the call to ether_ifattach() because 1518 * ether_ifattach() sets ifi_hdrlen to the default value. 1519 */ 1520 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 1521 1522 sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + 1523 ETHER_VLAN_ENCAP_LEN; 1524 1525 /* 1526 * Do miibus setup. 1527 */ 1528 MSK_IF_UNLOCK(sc_if); 1529 error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange, 1530 msk_mediastatus); 1531 if (error != 0) { 1532 device_printf(sc_if->msk_if_dev, "no PHY found!\n"); 1533 ether_ifdetach(ifp); 1534 error = ENXIO; 1535 goto fail; 1536 } 1537 1538 fail: 1539 if (error != 0) { 1540 /* Access should be ok even though lock has been dropped */ 1541 sc->msk_if[port] = NULL; 1542 msk_detach(dev); 1543 } 1544 1545 return (error); 1546 } 1547 1548 /* 1549 * Attach the interface. Allocate softc structures, do ifmedia 1550 * setup and ethernet/BPF attach. 1551 */ 1552 static int 1553 mskc_attach(device_t dev) 1554 { 1555 struct msk_softc *sc; 1556 int error, msic, msir, *port, reg; 1557 1558 sc = device_get_softc(dev); 1559 sc->msk_dev = dev; 1560 mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1561 MTX_DEF); 1562 1563 /* 1564 * Map control/status registers. 1565 */ 1566 pci_enable_busmaster(dev); 1567 1568 /* Allocate I/O resource */ 1569 #ifdef MSK_USEIOSPACE 1570 sc->msk_res_spec = msk_res_spec_io; 1571 #else 1572 sc->msk_res_spec = msk_res_spec_mem; 1573 #endif 1574 sc->msk_irq_spec = msk_irq_spec_legacy; 1575 error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res); 1576 if (error) { 1577 if (sc->msk_res_spec == msk_res_spec_mem) 1578 sc->msk_res_spec = msk_res_spec_io; 1579 else 1580 sc->msk_res_spec = msk_res_spec_mem; 1581 error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res); 1582 if (error) { 1583 device_printf(dev, "couldn't allocate %s resources\n", 1584 sc->msk_res_spec == msk_res_spec_mem ? "memory" : 1585 "I/O"); 1586 mtx_destroy(&sc->msk_mtx); 1587 return (ENXIO); 1588 } 1589 } 1590 1591 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); 1592 sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID); 1593 sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f; 1594 /* Bail out if chip is not recognized. */ 1595 if (sc->msk_hw_id < CHIP_ID_YUKON_XL || 1596 sc->msk_hw_id > CHIP_ID_YUKON_FE) { 1597 device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n", 1598 sc->msk_hw_id, sc->msk_hw_rev); 1599 mtx_destroy(&sc->msk_mtx); 1600 return (ENXIO); 1601 } 1602 1603 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 1604 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1605 OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW, 1606 &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I", 1607 "max number of Rx events to process"); 1608 1609 sc->msk_process_limit = MSK_PROC_DEFAULT; 1610 error = resource_int_value(device_get_name(dev), device_get_unit(dev), 1611 "process_limit", &sc->msk_process_limit); 1612 if (error == 0) { 1613 if (sc->msk_process_limit < MSK_PROC_MIN || 1614 sc->msk_process_limit > MSK_PROC_MAX) { 1615 device_printf(dev, "process_limit value out of range; " 1616 "using default: %d\n", MSK_PROC_DEFAULT); 1617 sc->msk_process_limit = MSK_PROC_DEFAULT; 1618 } 1619 } 1620 1621 /* Soft reset. */ 1622 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 1623 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); 1624 sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP); 1625 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S') 1626 sc->msk_coppertype = 0; 1627 else 1628 sc->msk_coppertype = 1; 1629 /* Check number of MACs. */ 1630 sc->msk_num_port = 1; 1631 if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) == 1632 CFG_DUAL_MAC_MSK) { 1633 if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC)) 1634 sc->msk_num_port++; 1635 } 1636 1637 /* Check bus type. */ 1638 if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, ®) == 0) 1639 sc->msk_bustype = MSK_PEX_BUS; 1640 else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, ®) == 0) 1641 sc->msk_bustype = MSK_PCIX_BUS; 1642 else 1643 sc->msk_bustype = MSK_PCI_BUS; 1644 1645 switch (sc->msk_hw_id) { 1646 case CHIP_ID_YUKON_EC: 1647 case CHIP_ID_YUKON_EC_U: 1648 sc->msk_clock = 125; /* 125 Mhz */ 1649 break; 1650 case CHIP_ID_YUKON_FE: 1651 sc->msk_clock = 100; /* 100 Mhz */ 1652 break; 1653 case CHIP_ID_YUKON_XL: 1654 sc->msk_clock = 156; /* 156 Mhz */ 1655 break; 1656 default: 1657 sc->msk_clock = 156; /* 156 Mhz */ 1658 break; 1659 } 1660 1661 /* Allocate IRQ resources. */ 1662 msic = pci_msi_count(dev); 1663 if (bootverbose) 1664 device_printf(dev, "MSI count : %d\n", msic); 1665 /* 1666 * The Yukon II reports it can handle two messages, one for each 1667 * possible port. We go ahead and allocate two messages and only 1668 * setup a handler for both if we have a dual port card. 1669 * 1670 * XXX: I haven't untangled the interrupt handler to handle dual 1671 * port cards with separate MSI messages, so for now I disable MSI 1672 * on dual port cards. 1673 */ 1674 if (legacy_intr != 0) 1675 msi_disable = 1; 1676 if (msi_disable == 0) { 1677 switch (msic) { 1678 case 2: 1679 case 1: /* 88E8058 reports 1 MSI message */ 1680 msir = msic; 1681 if (sc->msk_num_port == 1 && 1682 pci_alloc_msi(dev, &msir) == 0) { 1683 if (msic == msir) { 1684 sc->msk_msi = 1; 1685 sc->msk_irq_spec = msic == 2 ? 1686 msk_irq_spec_msi2 : 1687 msk_irq_spec_msi; 1688 } else 1689 pci_release_msi(dev); 1690 } 1691 break; 1692 default: 1693 device_printf(dev, 1694 "Unexpected number of MSI messages : %d\n", msic); 1695 break; 1696 } 1697 } 1698 1699 error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq); 1700 if (error) { 1701 device_printf(dev, "couldn't allocate IRQ resources\n"); 1702 goto fail; 1703 } 1704 1705 if ((error = msk_status_dma_alloc(sc)) != 0) 1706 goto fail; 1707 1708 /* Set base interrupt mask. */ 1709 sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU; 1710 sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR | 1711 Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP; 1712 1713 /* Reset the adapter. */ 1714 mskc_reset(sc); 1715 1716 if ((error = mskc_setup_rambuffer(sc)) != 0) 1717 goto fail; 1718 1719 sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1); 1720 if (sc->msk_devs[MSK_PORT_A] == NULL) { 1721 device_printf(dev, "failed to add child for PORT_A\n"); 1722 error = ENXIO; 1723 goto fail; 1724 } 1725 port = malloc(sizeof(int), M_DEVBUF, M_WAITOK); 1726 if (port == NULL) { 1727 device_printf(dev, "failed to allocate memory for " 1728 "ivars of PORT_A\n"); 1729 error = ENXIO; 1730 goto fail; 1731 } 1732 *port = MSK_PORT_A; 1733 device_set_ivars(sc->msk_devs[MSK_PORT_A], port); 1734 1735 if (sc->msk_num_port > 1) { 1736 sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1); 1737 if (sc->msk_devs[MSK_PORT_B] == NULL) { 1738 device_printf(dev, "failed to add child for PORT_B\n"); 1739 error = ENXIO; 1740 goto fail; 1741 } 1742 port = malloc(sizeof(int), M_DEVBUF, M_WAITOK); 1743 if (port == NULL) { 1744 device_printf(dev, "failed to allocate memory for " 1745 "ivars of PORT_B\n"); 1746 error = ENXIO; 1747 goto fail; 1748 } 1749 *port = MSK_PORT_B; 1750 device_set_ivars(sc->msk_devs[MSK_PORT_B], port); 1751 } 1752 1753 error = bus_generic_attach(dev); 1754 if (error) { 1755 device_printf(dev, "failed to attach port(s)\n"); 1756 goto fail; 1757 } 1758 1759 /* Hook interrupt last to avoid having to lock softc. */ 1760 if (legacy_intr) 1761 error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET | 1762 INTR_MPSAFE, NULL, msk_legacy_intr, sc, 1763 &sc->msk_intrhand[0]); 1764 else { 1765 TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc); 1766 sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK, 1767 taskqueue_thread_enqueue, &sc->msk_tq); 1768 taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq", 1769 device_get_nameunit(sc->msk_dev)); 1770 error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET | 1771 INTR_MPSAFE, msk_intr, NULL, sc, &sc->msk_intrhand[0]); 1772 } 1773 1774 if (error != 0) { 1775 device_printf(dev, "couldn't set up interrupt handler\n"); 1776 if (legacy_intr == 0) 1777 taskqueue_free(sc->msk_tq); 1778 sc->msk_tq = NULL; 1779 goto fail; 1780 } 1781 fail: 1782 if (error != 0) 1783 mskc_detach(dev); 1784 1785 return (error); 1786 } 1787 1788 /* 1789 * Shutdown hardware and free up resources. This can be called any 1790 * time after the mutex has been initialized. It is called in both 1791 * the error case in attach and the normal detach case so it needs 1792 * to be careful about only freeing resources that have actually been 1793 * allocated. 1794 */ 1795 static int 1796 msk_detach(device_t dev) 1797 { 1798 struct msk_softc *sc; 1799 struct msk_if_softc *sc_if; 1800 struct ifnet *ifp; 1801 1802 sc_if = device_get_softc(dev); 1803 KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx), 1804 ("msk mutex not initialized in msk_detach")); 1805 MSK_IF_LOCK(sc_if); 1806 1807 ifp = sc_if->msk_ifp; 1808 if (device_is_attached(dev)) { 1809 /* XXX */ 1810 sc_if->msk_detach = 1; 1811 msk_stop(sc_if); 1812 /* Can't hold locks while calling detach. */ 1813 MSK_IF_UNLOCK(sc_if); 1814 callout_drain(&sc_if->msk_tick_ch); 1815 taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task); 1816 taskqueue_drain(taskqueue_swi, &sc_if->msk_link_task); 1817 ether_ifdetach(ifp); 1818 MSK_IF_LOCK(sc_if); 1819 } 1820 1821 /* 1822 * We're generally called from mskc_detach() which is using 1823 * device_delete_child() to get to here. It's already trashed 1824 * miibus for us, so don't do it here or we'll panic. 1825 * 1826 * if (sc_if->msk_miibus != NULL) { 1827 * device_delete_child(dev, sc_if->msk_miibus); 1828 * sc_if->msk_miibus = NULL; 1829 * } 1830 */ 1831 1832 msk_txrx_dma_free(sc_if); 1833 bus_generic_detach(dev); 1834 1835 if (ifp) 1836 if_free(ifp); 1837 sc = sc_if->msk_softc; 1838 sc->msk_if[sc_if->msk_port] = NULL; 1839 MSK_IF_UNLOCK(sc_if); 1840 1841 return (0); 1842 } 1843 1844 static int 1845 mskc_detach(device_t dev) 1846 { 1847 struct msk_softc *sc; 1848 1849 sc = device_get_softc(dev); 1850 KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized")); 1851 1852 if (device_is_alive(dev)) { 1853 if (sc->msk_devs[MSK_PORT_A] != NULL) { 1854 free(device_get_ivars(sc->msk_devs[MSK_PORT_A]), 1855 M_DEVBUF); 1856 device_delete_child(dev, sc->msk_devs[MSK_PORT_A]); 1857 } 1858 if (sc->msk_devs[MSK_PORT_B] != NULL) { 1859 free(device_get_ivars(sc->msk_devs[MSK_PORT_B]), 1860 M_DEVBUF); 1861 device_delete_child(dev, sc->msk_devs[MSK_PORT_B]); 1862 } 1863 bus_generic_detach(dev); 1864 } 1865 1866 /* Disable all interrupts. */ 1867 CSR_WRITE_4(sc, B0_IMSK, 0); 1868 CSR_READ_4(sc, B0_IMSK); 1869 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 1870 CSR_READ_4(sc, B0_HWE_IMSK); 1871 1872 /* LED Off. */ 1873 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF); 1874 1875 /* Put hardware reset. */ 1876 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 1877 1878 msk_status_dma_free(sc); 1879 1880 if (legacy_intr == 0 && sc->msk_tq != NULL) { 1881 taskqueue_drain(sc->msk_tq, &sc->msk_int_task); 1882 taskqueue_free(sc->msk_tq); 1883 sc->msk_tq = NULL; 1884 } 1885 if (sc->msk_intrhand[0]) { 1886 bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]); 1887 sc->msk_intrhand[0] = NULL; 1888 } 1889 if (sc->msk_intrhand[1]) { 1890 bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]); 1891 sc->msk_intrhand[1] = NULL; 1892 } 1893 bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq); 1894 if (sc->msk_msi) 1895 pci_release_msi(dev); 1896 bus_release_resources(dev, sc->msk_res_spec, sc->msk_res); 1897 mtx_destroy(&sc->msk_mtx); 1898 1899 return (0); 1900 } 1901 1902 struct msk_dmamap_arg { 1903 bus_addr_t msk_busaddr; 1904 }; 1905 1906 static void 1907 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1908 { 1909 struct msk_dmamap_arg *ctx; 1910 1911 if (error != 0) 1912 return; 1913 ctx = arg; 1914 ctx->msk_busaddr = segs[0].ds_addr; 1915 } 1916 1917 /* Create status DMA region. */ 1918 static int 1919 msk_status_dma_alloc(struct msk_softc *sc) 1920 { 1921 struct msk_dmamap_arg ctx; 1922 int error; 1923 1924 error = bus_dma_tag_create( 1925 bus_get_dma_tag(sc->msk_dev), /* parent */ 1926 MSK_STAT_ALIGN, 0, /* alignment, boundary */ 1927 BUS_SPACE_MAXADDR, /* lowaddr */ 1928 BUS_SPACE_MAXADDR, /* highaddr */ 1929 NULL, NULL, /* filter, filterarg */ 1930 MSK_STAT_RING_SZ, /* maxsize */ 1931 1, /* nsegments */ 1932 MSK_STAT_RING_SZ, /* maxsegsize */ 1933 0, /* flags */ 1934 NULL, NULL, /* lockfunc, lockarg */ 1935 &sc->msk_stat_tag); 1936 if (error != 0) { 1937 device_printf(sc->msk_dev, 1938 "failed to create status DMA tag\n"); 1939 return (error); 1940 } 1941 1942 /* Allocate DMA'able memory and load the DMA map for status ring. */ 1943 error = bus_dmamem_alloc(sc->msk_stat_tag, 1944 (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | 1945 BUS_DMA_ZERO, &sc->msk_stat_map); 1946 if (error != 0) { 1947 device_printf(sc->msk_dev, 1948 "failed to allocate DMA'able memory for status ring\n"); 1949 return (error); 1950 } 1951 1952 ctx.msk_busaddr = 0; 1953 error = bus_dmamap_load(sc->msk_stat_tag, 1954 sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ, 1955 msk_dmamap_cb, &ctx, 0); 1956 if (error != 0) { 1957 device_printf(sc->msk_dev, 1958 "failed to load DMA'able memory for status ring\n"); 1959 return (error); 1960 } 1961 sc->msk_stat_ring_paddr = ctx.msk_busaddr; 1962 1963 return (0); 1964 } 1965 1966 static void 1967 msk_status_dma_free(struct msk_softc *sc) 1968 { 1969 1970 /* Destroy status block. */ 1971 if (sc->msk_stat_tag) { 1972 if (sc->msk_stat_map) { 1973 bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map); 1974 if (sc->msk_stat_ring) { 1975 bus_dmamem_free(sc->msk_stat_tag, 1976 sc->msk_stat_ring, sc->msk_stat_map); 1977 sc->msk_stat_ring = NULL; 1978 } 1979 sc->msk_stat_map = NULL; 1980 } 1981 bus_dma_tag_destroy(sc->msk_stat_tag); 1982 sc->msk_stat_tag = NULL; 1983 } 1984 } 1985 1986 static int 1987 msk_txrx_dma_alloc(struct msk_if_softc *sc_if) 1988 { 1989 struct msk_dmamap_arg ctx; 1990 struct msk_txdesc *txd; 1991 struct msk_rxdesc *rxd; 1992 struct msk_rxdesc *jrxd; 1993 struct msk_jpool_entry *entry; 1994 uint8_t *ptr; 1995 bus_size_t rxalign; 1996 int error, i; 1997 1998 mtx_init(&sc_if->msk_jlist_mtx, "msk_jlist_mtx", NULL, MTX_DEF); 1999 SLIST_INIT(&sc_if->msk_jfree_listhead); 2000 SLIST_INIT(&sc_if->msk_jinuse_listhead); 2001 2002 /* Create parent DMA tag. */ 2003 /* 2004 * XXX 2005 * It seems that Yukon II supports full 64bits DMA operations. But 2006 * it needs two descriptors(list elements) for 64bits DMA operations. 2007 * Since we don't know what DMA address mappings(32bits or 64bits) 2008 * would be used in advance for each mbufs, we limits its DMA space 2009 * to be in range of 32bits address space. Otherwise, we should check 2010 * what DMA address is used and chain another descriptor for the 2011 * 64bits DMA operation. This also means descriptor ring size is 2012 * variable. Limiting DMA address to be in 32bit address space greatly 2013 * simplyfies descriptor handling and possibly would increase 2014 * performance a bit due to efficient handling of descriptors. 2015 * Apart from harassing checksum offloading mechanisms, it seems 2016 * it's really bad idea to use a seperate descriptor for 64bit 2017 * DMA operation to save small descriptor memory. Anyway, I've 2018 * never seen these exotic scheme on ethernet interface hardware. 2019 */ 2020 error = bus_dma_tag_create( 2021 bus_get_dma_tag(sc_if->msk_if_dev), /* parent */ 2022 1, 0, /* alignment, boundary */ 2023 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2024 BUS_SPACE_MAXADDR, /* highaddr */ 2025 NULL, NULL, /* filter, filterarg */ 2026 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 2027 0, /* nsegments */ 2028 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 2029 0, /* flags */ 2030 NULL, NULL, /* lockfunc, lockarg */ 2031 &sc_if->msk_cdata.msk_parent_tag); 2032 if (error != 0) { 2033 device_printf(sc_if->msk_if_dev, 2034 "failed to create parent DMA tag\n"); 2035 goto fail; 2036 } 2037 /* Create tag for Tx ring. */ 2038 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2039 MSK_RING_ALIGN, 0, /* alignment, boundary */ 2040 BUS_SPACE_MAXADDR, /* lowaddr */ 2041 BUS_SPACE_MAXADDR, /* highaddr */ 2042 NULL, NULL, /* filter, filterarg */ 2043 MSK_TX_RING_SZ, /* maxsize */ 2044 1, /* nsegments */ 2045 MSK_TX_RING_SZ, /* maxsegsize */ 2046 0, /* flags */ 2047 NULL, NULL, /* lockfunc, lockarg */ 2048 &sc_if->msk_cdata.msk_tx_ring_tag); 2049 if (error != 0) { 2050 device_printf(sc_if->msk_if_dev, 2051 "failed to create Tx ring DMA tag\n"); 2052 goto fail; 2053 } 2054 2055 /* Create tag for Rx ring. */ 2056 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2057 MSK_RING_ALIGN, 0, /* alignment, boundary */ 2058 BUS_SPACE_MAXADDR, /* lowaddr */ 2059 BUS_SPACE_MAXADDR, /* highaddr */ 2060 NULL, NULL, /* filter, filterarg */ 2061 MSK_RX_RING_SZ, /* maxsize */ 2062 1, /* nsegments */ 2063 MSK_RX_RING_SZ, /* maxsegsize */ 2064 0, /* flags */ 2065 NULL, NULL, /* lockfunc, lockarg */ 2066 &sc_if->msk_cdata.msk_rx_ring_tag); 2067 if (error != 0) { 2068 device_printf(sc_if->msk_if_dev, 2069 "failed to create Rx ring DMA tag\n"); 2070 goto fail; 2071 } 2072 2073 /* Create tag for jumbo Rx ring. */ 2074 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2075 MSK_RING_ALIGN, 0, /* alignment, boundary */ 2076 BUS_SPACE_MAXADDR, /* lowaddr */ 2077 BUS_SPACE_MAXADDR, /* highaddr */ 2078 NULL, NULL, /* filter, filterarg */ 2079 MSK_JUMBO_RX_RING_SZ, /* maxsize */ 2080 1, /* nsegments */ 2081 MSK_JUMBO_RX_RING_SZ, /* maxsegsize */ 2082 0, /* flags */ 2083 NULL, NULL, /* lockfunc, lockarg */ 2084 &sc_if->msk_cdata.msk_jumbo_rx_ring_tag); 2085 if (error != 0) { 2086 device_printf(sc_if->msk_if_dev, 2087 "failed to create jumbo Rx ring DMA tag\n"); 2088 goto fail; 2089 } 2090 2091 /* Create tag for jumbo buffer blocks. */ 2092 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2093 PAGE_SIZE, 0, /* alignment, boundary */ 2094 BUS_SPACE_MAXADDR, /* lowaddr */ 2095 BUS_SPACE_MAXADDR, /* highaddr */ 2096 NULL, NULL, /* filter, filterarg */ 2097 MSK_JMEM, /* maxsize */ 2098 1, /* nsegments */ 2099 MSK_JMEM, /* maxsegsize */ 2100 0, /* flags */ 2101 NULL, NULL, /* lockfunc, lockarg */ 2102 &sc_if->msk_cdata.msk_jumbo_tag); 2103 if (error != 0) { 2104 device_printf(sc_if->msk_if_dev, 2105 "failed to create jumbo Rx buffer block DMA tag\n"); 2106 goto fail; 2107 } 2108 2109 /* Create tag for Tx buffers. */ 2110 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2111 1, 0, /* alignment, boundary */ 2112 BUS_SPACE_MAXADDR, /* lowaddr */ 2113 BUS_SPACE_MAXADDR, /* highaddr */ 2114 NULL, NULL, /* filter, filterarg */ 2115 MSK_TSO_MAXSIZE, /* maxsize */ 2116 MSK_MAXTXSEGS, /* nsegments */ 2117 MSK_TSO_MAXSGSIZE, /* maxsegsize */ 2118 0, /* flags */ 2119 NULL, NULL, /* lockfunc, lockarg */ 2120 &sc_if->msk_cdata.msk_tx_tag); 2121 if (error != 0) { 2122 device_printf(sc_if->msk_if_dev, 2123 "failed to create Tx DMA tag\n"); 2124 goto fail; 2125 } 2126 2127 rxalign = 1; 2128 /* 2129 * Workaround hardware hang which seems to happen when Rx buffer 2130 * is not aligned on multiple of FIFO word(8 bytes). 2131 */ 2132 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0) 2133 rxalign = MSK_RX_BUF_ALIGN; 2134 /* Create tag for Rx buffers. */ 2135 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2136 rxalign, 0, /* alignment, boundary */ 2137 BUS_SPACE_MAXADDR, /* lowaddr */ 2138 BUS_SPACE_MAXADDR, /* highaddr */ 2139 NULL, NULL, /* filter, filterarg */ 2140 MCLBYTES, /* maxsize */ 2141 1, /* nsegments */ 2142 MCLBYTES, /* maxsegsize */ 2143 0, /* flags */ 2144 NULL, NULL, /* lockfunc, lockarg */ 2145 &sc_if->msk_cdata.msk_rx_tag); 2146 if (error != 0) { 2147 device_printf(sc_if->msk_if_dev, 2148 "failed to create Rx DMA tag\n"); 2149 goto fail; 2150 } 2151 2152 /* Create tag for jumbo Rx buffers. */ 2153 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2154 PAGE_SIZE, 0, /* alignment, boundary */ 2155 BUS_SPACE_MAXADDR, /* lowaddr */ 2156 BUS_SPACE_MAXADDR, /* highaddr */ 2157 NULL, NULL, /* filter, filterarg */ 2158 MCLBYTES * MSK_MAXRXSEGS, /* maxsize */ 2159 MSK_MAXRXSEGS, /* nsegments */ 2160 MSK_JLEN, /* maxsegsize */ 2161 0, /* flags */ 2162 NULL, NULL, /* lockfunc, lockarg */ 2163 &sc_if->msk_cdata.msk_jumbo_rx_tag); 2164 if (error != 0) { 2165 device_printf(sc_if->msk_if_dev, 2166 "failed to create jumbo Rx DMA tag\n"); 2167 goto fail; 2168 } 2169 2170 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 2171 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag, 2172 (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK | 2173 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map); 2174 if (error != 0) { 2175 device_printf(sc_if->msk_if_dev, 2176 "failed to allocate DMA'able memory for Tx ring\n"); 2177 goto fail; 2178 } 2179 2180 ctx.msk_busaddr = 0; 2181 error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag, 2182 sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring, 2183 MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0); 2184 if (error != 0) { 2185 device_printf(sc_if->msk_if_dev, 2186 "failed to load DMA'able memory for Tx ring\n"); 2187 goto fail; 2188 } 2189 sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr; 2190 2191 /* Allocate DMA'able memory and load the DMA map for Rx ring. */ 2192 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag, 2193 (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK | 2194 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map); 2195 if (error != 0) { 2196 device_printf(sc_if->msk_if_dev, 2197 "failed to allocate DMA'able memory for Rx ring\n"); 2198 goto fail; 2199 } 2200 2201 ctx.msk_busaddr = 0; 2202 error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag, 2203 sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring, 2204 MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0); 2205 if (error != 0) { 2206 device_printf(sc_if->msk_if_dev, 2207 "failed to load DMA'able memory for Rx ring\n"); 2208 goto fail; 2209 } 2210 sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr; 2211 2212 /* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */ 2213 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2214 (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring, 2215 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 2216 &sc_if->msk_cdata.msk_jumbo_rx_ring_map); 2217 if (error != 0) { 2218 device_printf(sc_if->msk_if_dev, 2219 "failed to allocate DMA'able memory for jumbo Rx ring\n"); 2220 goto fail; 2221 } 2222 2223 ctx.msk_busaddr = 0; 2224 error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2225 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 2226 sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ, 2227 msk_dmamap_cb, &ctx, 0); 2228 if (error != 0) { 2229 device_printf(sc_if->msk_if_dev, 2230 "failed to load DMA'able memory for jumbo Rx ring\n"); 2231 goto fail; 2232 } 2233 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr; 2234 2235 /* Create DMA maps for Tx buffers. */ 2236 for (i = 0; i < MSK_TX_RING_CNT; i++) { 2237 txd = &sc_if->msk_cdata.msk_txdesc[i]; 2238 txd->tx_m = NULL; 2239 txd->tx_dmamap = NULL; 2240 error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0, 2241 &txd->tx_dmamap); 2242 if (error != 0) { 2243 device_printf(sc_if->msk_if_dev, 2244 "failed to create Tx dmamap\n"); 2245 goto fail; 2246 } 2247 } 2248 /* Create DMA maps for Rx buffers. */ 2249 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0, 2250 &sc_if->msk_cdata.msk_rx_sparemap)) != 0) { 2251 device_printf(sc_if->msk_if_dev, 2252 "failed to create spare Rx dmamap\n"); 2253 goto fail; 2254 } 2255 for (i = 0; i < MSK_RX_RING_CNT; i++) { 2256 rxd = &sc_if->msk_cdata.msk_rxdesc[i]; 2257 rxd->rx_m = NULL; 2258 rxd->rx_dmamap = NULL; 2259 error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0, 2260 &rxd->rx_dmamap); 2261 if (error != 0) { 2262 device_printf(sc_if->msk_if_dev, 2263 "failed to create Rx dmamap\n"); 2264 goto fail; 2265 } 2266 } 2267 /* Create DMA maps for jumbo Rx buffers. */ 2268 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0, 2269 &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) { 2270 device_printf(sc_if->msk_if_dev, 2271 "failed to create spare jumbo Rx dmamap\n"); 2272 goto fail; 2273 } 2274 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 2275 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; 2276 jrxd->rx_m = NULL; 2277 jrxd->rx_dmamap = NULL; 2278 error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0, 2279 &jrxd->rx_dmamap); 2280 if (error != 0) { 2281 device_printf(sc_if->msk_if_dev, 2282 "failed to create jumbo Rx dmamap\n"); 2283 goto fail; 2284 } 2285 } 2286 2287 /* Allocate DMA'able memory and load the DMA map for jumbo buf. */ 2288 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag, 2289 (void **)&sc_if->msk_rdata.msk_jumbo_buf, 2290 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 2291 &sc_if->msk_cdata.msk_jumbo_map); 2292 if (error != 0) { 2293 device_printf(sc_if->msk_if_dev, 2294 "failed to allocate DMA'able memory for jumbo buf\n"); 2295 goto fail; 2296 } 2297 2298 ctx.msk_busaddr = 0; 2299 error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag, 2300 sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf, 2301 MSK_JMEM, msk_dmamap_cb, &ctx, 0); 2302 if (error != 0) { 2303 device_printf(sc_if->msk_if_dev, 2304 "failed to load DMA'able memory for jumbobuf\n"); 2305 goto fail; 2306 } 2307 sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr; 2308 2309 /* 2310 * Now divide it up into 9K pieces and save the addresses 2311 * in an array. 2312 */ 2313 ptr = sc_if->msk_rdata.msk_jumbo_buf; 2314 for (i = 0; i < MSK_JSLOTS; i++) { 2315 sc_if->msk_cdata.msk_jslots[i] = ptr; 2316 ptr += MSK_JLEN; 2317 entry = malloc(sizeof(struct msk_jpool_entry), 2318 M_DEVBUF, M_WAITOK); 2319 if (entry == NULL) { 2320 device_printf(sc_if->msk_if_dev, 2321 "no memory for jumbo buffers!\n"); 2322 error = ENOMEM; 2323 goto fail; 2324 } 2325 entry->slot = i; 2326 SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, 2327 jpool_entries); 2328 } 2329 2330 fail: 2331 return (error); 2332 } 2333 2334 static void 2335 msk_txrx_dma_free(struct msk_if_softc *sc_if) 2336 { 2337 struct msk_txdesc *txd; 2338 struct msk_rxdesc *rxd; 2339 struct msk_rxdesc *jrxd; 2340 struct msk_jpool_entry *entry; 2341 int i; 2342 2343 MSK_JLIST_LOCK(sc_if); 2344 while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) { 2345 device_printf(sc_if->msk_if_dev, 2346 "asked to free buffer that is in use!\n"); 2347 SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries); 2348 SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, 2349 jpool_entries); 2350 } 2351 2352 while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) { 2353 entry = SLIST_FIRST(&sc_if->msk_jfree_listhead); 2354 SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries); 2355 free(entry, M_DEVBUF); 2356 } 2357 MSK_JLIST_UNLOCK(sc_if); 2358 2359 /* Destroy jumbo buffer block. */ 2360 if (sc_if->msk_cdata.msk_jumbo_map) 2361 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag, 2362 sc_if->msk_cdata.msk_jumbo_map); 2363 2364 if (sc_if->msk_rdata.msk_jumbo_buf) { 2365 bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag, 2366 sc_if->msk_rdata.msk_jumbo_buf, 2367 sc_if->msk_cdata.msk_jumbo_map); 2368 sc_if->msk_rdata.msk_jumbo_buf = NULL; 2369 sc_if->msk_cdata.msk_jumbo_map = NULL; 2370 } 2371 2372 /* Tx ring. */ 2373 if (sc_if->msk_cdata.msk_tx_ring_tag) { 2374 if (sc_if->msk_cdata.msk_tx_ring_map) 2375 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag, 2376 sc_if->msk_cdata.msk_tx_ring_map); 2377 if (sc_if->msk_cdata.msk_tx_ring_map && 2378 sc_if->msk_rdata.msk_tx_ring) 2379 bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag, 2380 sc_if->msk_rdata.msk_tx_ring, 2381 sc_if->msk_cdata.msk_tx_ring_map); 2382 sc_if->msk_rdata.msk_tx_ring = NULL; 2383 sc_if->msk_cdata.msk_tx_ring_map = NULL; 2384 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag); 2385 sc_if->msk_cdata.msk_tx_ring_tag = NULL; 2386 } 2387 /* Rx ring. */ 2388 if (sc_if->msk_cdata.msk_rx_ring_tag) { 2389 if (sc_if->msk_cdata.msk_rx_ring_map) 2390 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag, 2391 sc_if->msk_cdata.msk_rx_ring_map); 2392 if (sc_if->msk_cdata.msk_rx_ring_map && 2393 sc_if->msk_rdata.msk_rx_ring) 2394 bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag, 2395 sc_if->msk_rdata.msk_rx_ring, 2396 sc_if->msk_cdata.msk_rx_ring_map); 2397 sc_if->msk_rdata.msk_rx_ring = NULL; 2398 sc_if->msk_cdata.msk_rx_ring_map = NULL; 2399 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag); 2400 sc_if->msk_cdata.msk_rx_ring_tag = NULL; 2401 } 2402 /* Jumbo Rx ring. */ 2403 if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) { 2404 if (sc_if->msk_cdata.msk_jumbo_rx_ring_map) 2405 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2406 sc_if->msk_cdata.msk_jumbo_rx_ring_map); 2407 if (sc_if->msk_cdata.msk_jumbo_rx_ring_map && 2408 sc_if->msk_rdata.msk_jumbo_rx_ring) 2409 bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2410 sc_if->msk_rdata.msk_jumbo_rx_ring, 2411 sc_if->msk_cdata.msk_jumbo_rx_ring_map); 2412 sc_if->msk_rdata.msk_jumbo_rx_ring = NULL; 2413 sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL; 2414 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag); 2415 sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL; 2416 } 2417 /* Tx buffers. */ 2418 if (sc_if->msk_cdata.msk_tx_tag) { 2419 for (i = 0; i < MSK_TX_RING_CNT; i++) { 2420 txd = &sc_if->msk_cdata.msk_txdesc[i]; 2421 if (txd->tx_dmamap) { 2422 bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag, 2423 txd->tx_dmamap); 2424 txd->tx_dmamap = NULL; 2425 } 2426 } 2427 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag); 2428 sc_if->msk_cdata.msk_tx_tag = NULL; 2429 } 2430 /* Rx buffers. */ 2431 if (sc_if->msk_cdata.msk_rx_tag) { 2432 for (i = 0; i < MSK_RX_RING_CNT; i++) { 2433 rxd = &sc_if->msk_cdata.msk_rxdesc[i]; 2434 if (rxd->rx_dmamap) { 2435 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag, 2436 rxd->rx_dmamap); 2437 rxd->rx_dmamap = NULL; 2438 } 2439 } 2440 if (sc_if->msk_cdata.msk_rx_sparemap) { 2441 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag, 2442 sc_if->msk_cdata.msk_rx_sparemap); 2443 sc_if->msk_cdata.msk_rx_sparemap = 0; 2444 } 2445 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag); 2446 sc_if->msk_cdata.msk_rx_tag = NULL; 2447 } 2448 /* Jumbo Rx buffers. */ 2449 if (sc_if->msk_cdata.msk_jumbo_rx_tag) { 2450 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 2451 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; 2452 if (jrxd->rx_dmamap) { 2453 bus_dmamap_destroy( 2454 sc_if->msk_cdata.msk_jumbo_rx_tag, 2455 jrxd->rx_dmamap); 2456 jrxd->rx_dmamap = NULL; 2457 } 2458 } 2459 if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) { 2460 bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag, 2461 sc_if->msk_cdata.msk_jumbo_rx_sparemap); 2462 sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0; 2463 } 2464 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag); 2465 sc_if->msk_cdata.msk_jumbo_rx_tag = NULL; 2466 } 2467 2468 if (sc_if->msk_cdata.msk_parent_tag) { 2469 bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag); 2470 sc_if->msk_cdata.msk_parent_tag = NULL; 2471 } 2472 mtx_destroy(&sc_if->msk_jlist_mtx); 2473 } 2474 2475 /* 2476 * Allocate a jumbo buffer. 2477 */ 2478 static void * 2479 msk_jalloc(struct msk_if_softc *sc_if) 2480 { 2481 struct msk_jpool_entry *entry; 2482 2483 MSK_JLIST_LOCK(sc_if); 2484 2485 entry = SLIST_FIRST(&sc_if->msk_jfree_listhead); 2486 2487 if (entry == NULL) { 2488 MSK_JLIST_UNLOCK(sc_if); 2489 return (NULL); 2490 } 2491 2492 SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries); 2493 SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries); 2494 2495 MSK_JLIST_UNLOCK(sc_if); 2496 2497 return (sc_if->msk_cdata.msk_jslots[entry->slot]); 2498 } 2499 2500 /* 2501 * Release a jumbo buffer. 2502 */ 2503 static void 2504 msk_jfree(void *buf, void *args) 2505 { 2506 struct msk_if_softc *sc_if; 2507 struct msk_jpool_entry *entry; 2508 int i; 2509 2510 /* Extract the softc struct pointer. */ 2511 sc_if = (struct msk_if_softc *)args; 2512 KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__)); 2513 2514 MSK_JLIST_LOCK(sc_if); 2515 /* Calculate the slot this buffer belongs to. */ 2516 i = ((vm_offset_t)buf 2517 - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN; 2518 KASSERT(i >= 0 && i < MSK_JSLOTS, 2519 ("%s: asked to free buffer that we don't manage!", __func__)); 2520 2521 entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead); 2522 KASSERT(entry != NULL, ("%s: buffer not in use!", __func__)); 2523 entry->slot = i; 2524 SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries); 2525 SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries); 2526 if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead)) 2527 wakeup(sc_if); 2528 2529 MSK_JLIST_UNLOCK(sc_if); 2530 } 2531 2532 static int 2533 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head) 2534 { 2535 struct msk_txdesc *txd, *txd_last; 2536 struct msk_tx_desc *tx_le; 2537 struct mbuf *m; 2538 bus_dmamap_t map; 2539 bus_dma_segment_t txsegs[MSK_MAXTXSEGS]; 2540 uint32_t control, prod, si; 2541 uint16_t offset, tcp_offset, tso_mtu; 2542 int error, i, nseg, tso; 2543 2544 MSK_IF_LOCK_ASSERT(sc_if); 2545 2546 tcp_offset = offset = 0; 2547 m = *m_head; 2548 if ((m->m_pkthdr.csum_flags & (MSK_CSUM_FEATURES | CSUM_TSO)) != 0) { 2549 /* 2550 * Since mbuf has no protocol specific structure information 2551 * in it we have to inspect protocol information here to 2552 * setup TSO and checksum offload. I don't know why Marvell 2553 * made a such decision in chip design because other GigE 2554 * hardwares normally takes care of all these chores in 2555 * hardware. However, TSO performance of Yukon II is very 2556 * good such that it's worth to implement it. 2557 */ 2558 struct ether_header *eh; 2559 struct ip *ip; 2560 struct tcphdr *tcp; 2561 2562 if (M_WRITABLE(m) == 0) { 2563 /* Get a writable copy. */ 2564 m = m_dup(*m_head, M_DONTWAIT); 2565 m_freem(*m_head); 2566 if (m == NULL) { 2567 *m_head = NULL; 2568 return (ENOBUFS); 2569 } 2570 *m_head = m; 2571 } 2572 2573 offset = sizeof(struct ether_header); 2574 m = m_pullup(m, offset); 2575 if (m == NULL) { 2576 *m_head = NULL; 2577 return (ENOBUFS); 2578 } 2579 eh = mtod(m, struct ether_header *); 2580 /* Check if hardware VLAN insertion is off. */ 2581 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 2582 offset = sizeof(struct ether_vlan_header); 2583 m = m_pullup(m, offset); 2584 if (m == NULL) { 2585 *m_head = NULL; 2586 return (ENOBUFS); 2587 } 2588 } 2589 m = m_pullup(m, offset + sizeof(struct ip)); 2590 if (m == NULL) { 2591 *m_head = NULL; 2592 return (ENOBUFS); 2593 } 2594 ip = (struct ip *)(mtod(m, char *) + offset); 2595 offset += (ip->ip_hl << 2); 2596 tcp_offset = offset; 2597 /* 2598 * It seems that Yukon II has Tx checksum offload bug for 2599 * small TCP packets that's less than 60 bytes in size 2600 * (e.g. TCP window probe packet, pure ACK packet). 2601 * Common work around like padding with zeros to make the 2602 * frame minimum ethernet frame size didn't work at all. 2603 * Instead of disabling checksum offload completely we 2604 * resort to S/W checksum routine when we encounter short 2605 * TCP frames. 2606 * Short UDP packets appear to be handled correctly by 2607 * Yukon II. 2608 */ 2609 if (m->m_pkthdr.len < MSK_MIN_FRAMELEN && 2610 (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) { 2611 uint16_t csum; 2612 2613 m = m_pullup(m, offset + sizeof(struct tcphdr)); 2614 if (m == NULL) { 2615 *m_head = NULL; 2616 return (ENOBUFS); 2617 } 2618 csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset - 2619 (ip->ip_hl << 2), offset); 2620 *(uint16_t *)(m->m_data + offset + 2621 m->m_pkthdr.csum_data) = csum; 2622 m->m_pkthdr.csum_flags &= ~CSUM_TCP; 2623 } 2624 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2625 m = m_pullup(m, offset + sizeof(struct tcphdr)); 2626 if (m == NULL) { 2627 *m_head = NULL; 2628 return (ENOBUFS); 2629 } 2630 tcp = (struct tcphdr *)(mtod(m, char *) + offset); 2631 offset += (tcp->th_off << 2); 2632 } 2633 *m_head = m; 2634 } 2635 2636 prod = sc_if->msk_cdata.msk_tx_prod; 2637 txd = &sc_if->msk_cdata.msk_txdesc[prod]; 2638 txd_last = txd; 2639 map = txd->tx_dmamap; 2640 error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map, 2641 *m_head, txsegs, &nseg, BUS_DMA_NOWAIT); 2642 if (error == EFBIG) { 2643 m = m_collapse(*m_head, M_DONTWAIT, MSK_MAXTXSEGS); 2644 if (m == NULL) { 2645 m_freem(*m_head); 2646 *m_head = NULL; 2647 return (ENOBUFS); 2648 } 2649 *m_head = m; 2650 error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, 2651 map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT); 2652 if (error != 0) { 2653 m_freem(*m_head); 2654 *m_head = NULL; 2655 return (error); 2656 } 2657 } else if (error != 0) 2658 return (error); 2659 if (nseg == 0) { 2660 m_freem(*m_head); 2661 *m_head = NULL; 2662 return (EIO); 2663 } 2664 2665 /* Check number of available descriptors. */ 2666 if (sc_if->msk_cdata.msk_tx_cnt + nseg >= 2667 (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) { 2668 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map); 2669 return (ENOBUFS); 2670 } 2671 2672 control = 0; 2673 tso = 0; 2674 tx_le = NULL; 2675 2676 /* Check TSO support. */ 2677 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2678 tso_mtu = offset + m->m_pkthdr.tso_segsz; 2679 if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) { 2680 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2681 tx_le->msk_addr = htole32(tso_mtu); 2682 tx_le->msk_control = htole32(OP_LRGLEN | HW_OWNER); 2683 sc_if->msk_cdata.msk_tx_cnt++; 2684 MSK_INC(prod, MSK_TX_RING_CNT); 2685 sc_if->msk_cdata.msk_tso_mtu = tso_mtu; 2686 } 2687 tso++; 2688 } 2689 /* Check if we have a VLAN tag to insert. */ 2690 if ((m->m_flags & M_VLANTAG) != 0) { 2691 if (tso == 0) { 2692 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2693 tx_le->msk_addr = htole32(0); 2694 tx_le->msk_control = htole32(OP_VLAN | HW_OWNER | 2695 htons(m->m_pkthdr.ether_vtag)); 2696 sc_if->msk_cdata.msk_tx_cnt++; 2697 MSK_INC(prod, MSK_TX_RING_CNT); 2698 } else { 2699 tx_le->msk_control |= htole32(OP_VLAN | 2700 htons(m->m_pkthdr.ether_vtag)); 2701 } 2702 control |= INS_VLAN; 2703 } 2704 /* Check if we have to handle checksum offload. */ 2705 if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) { 2706 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2707 tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data) 2708 & 0xffff) | ((uint32_t)tcp_offset << 16)); 2709 tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER)); 2710 control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM; 2711 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 2712 control |= UDPTCP; 2713 sc_if->msk_cdata.msk_tx_cnt++; 2714 MSK_INC(prod, MSK_TX_RING_CNT); 2715 } 2716 2717 si = prod; 2718 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2719 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr)); 2720 if (tso == 0) 2721 tx_le->msk_control = htole32(txsegs[0].ds_len | control | 2722 OP_PACKET); 2723 else 2724 tx_le->msk_control = htole32(txsegs[0].ds_len | control | 2725 OP_LARGESEND); 2726 sc_if->msk_cdata.msk_tx_cnt++; 2727 MSK_INC(prod, MSK_TX_RING_CNT); 2728 2729 for (i = 1; i < nseg; i++) { 2730 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2731 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr)); 2732 tx_le->msk_control = htole32(txsegs[i].ds_len | control | 2733 OP_BUFFER | HW_OWNER); 2734 sc_if->msk_cdata.msk_tx_cnt++; 2735 MSK_INC(prod, MSK_TX_RING_CNT); 2736 } 2737 /* Update producer index. */ 2738 sc_if->msk_cdata.msk_tx_prod = prod; 2739 2740 /* Set EOP on the last desciptor. */ 2741 prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT; 2742 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2743 tx_le->msk_control |= htole32(EOP); 2744 2745 /* Turn the first descriptor ownership to hardware. */ 2746 tx_le = &sc_if->msk_rdata.msk_tx_ring[si]; 2747 tx_le->msk_control |= htole32(HW_OWNER); 2748 2749 txd = &sc_if->msk_cdata.msk_txdesc[prod]; 2750 map = txd_last->tx_dmamap; 2751 txd_last->tx_dmamap = txd->tx_dmamap; 2752 txd->tx_dmamap = map; 2753 txd->tx_m = m; 2754 2755 /* Sync descriptors. */ 2756 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE); 2757 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, 2758 sc_if->msk_cdata.msk_tx_ring_map, 2759 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2760 2761 return (0); 2762 } 2763 2764 static void 2765 msk_tx_task(void *arg, int pending) 2766 { 2767 struct ifnet *ifp; 2768 2769 ifp = arg; 2770 msk_start(ifp); 2771 } 2772 2773 static void 2774 msk_start(struct ifnet *ifp) 2775 { 2776 struct msk_if_softc *sc_if; 2777 struct mbuf *m_head; 2778 int enq; 2779 2780 sc_if = ifp->if_softc; 2781 2782 MSK_IF_LOCK(sc_if); 2783 2784 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 2785 IFF_DRV_RUNNING || sc_if->msk_link == 0) { 2786 MSK_IF_UNLOCK(sc_if); 2787 return; 2788 } 2789 2790 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 2791 sc_if->msk_cdata.msk_tx_cnt < 2792 (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) { 2793 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2794 if (m_head == NULL) 2795 break; 2796 /* 2797 * Pack the data into the transmit ring. If we 2798 * don't have room, set the OACTIVE flag and wait 2799 * for the NIC to drain the ring. 2800 */ 2801 if (msk_encap(sc_if, &m_head) != 0) { 2802 if (m_head == NULL) 2803 break; 2804 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2805 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2806 break; 2807 } 2808 2809 enq++; 2810 /* 2811 * If there's a BPF listener, bounce a copy of this frame 2812 * to him. 2813 */ 2814 ETHER_BPF_MTAP(ifp, m_head); 2815 } 2816 2817 if (enq > 0) { 2818 /* Transmit */ 2819 CSR_WRITE_2(sc_if->msk_softc, 2820 Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG), 2821 sc_if->msk_cdata.msk_tx_prod); 2822 2823 /* Set a timeout in case the chip goes out to lunch. */ 2824 sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT; 2825 } 2826 2827 MSK_IF_UNLOCK(sc_if); 2828 } 2829 2830 static void 2831 msk_watchdog(struct msk_if_softc *sc_if) 2832 { 2833 struct ifnet *ifp; 2834 uint32_t ridx; 2835 int idx; 2836 2837 MSK_IF_LOCK_ASSERT(sc_if); 2838 2839 if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer) 2840 return; 2841 ifp = sc_if->msk_ifp; 2842 if (sc_if->msk_link == 0) { 2843 if (bootverbose) 2844 if_printf(sc_if->msk_ifp, "watchdog timeout " 2845 "(missed link)\n"); 2846 ifp->if_oerrors++; 2847 msk_init_locked(sc_if); 2848 return; 2849 } 2850 2851 /* 2852 * Reclaim first as there is a possibility of losing Tx completion 2853 * interrupts. 2854 */ 2855 ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX; 2856 idx = CSR_READ_2(sc_if->msk_softc, ridx); 2857 if (sc_if->msk_cdata.msk_tx_cons != idx) { 2858 msk_txeof(sc_if, idx); 2859 if (sc_if->msk_cdata.msk_tx_cnt == 0) { 2860 if_printf(ifp, "watchdog timeout (missed Tx interrupts) " 2861 "-- recovering\n"); 2862 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2863 taskqueue_enqueue(taskqueue_fast, 2864 &sc_if->msk_tx_task); 2865 return; 2866 } 2867 } 2868 2869 if_printf(ifp, "watchdog timeout\n"); 2870 ifp->if_oerrors++; 2871 msk_init_locked(sc_if); 2872 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2873 taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task); 2874 } 2875 2876 static int 2877 mskc_shutdown(device_t dev) 2878 { 2879 struct msk_softc *sc; 2880 int i; 2881 2882 sc = device_get_softc(dev); 2883 MSK_LOCK(sc); 2884 for (i = 0; i < sc->msk_num_port; i++) { 2885 if (sc->msk_if[i] != NULL) 2886 msk_stop(sc->msk_if[i]); 2887 } 2888 2889 /* Disable all interrupts. */ 2890 CSR_WRITE_4(sc, B0_IMSK, 0); 2891 CSR_READ_4(sc, B0_IMSK); 2892 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 2893 CSR_READ_4(sc, B0_HWE_IMSK); 2894 2895 /* Put hardware reset. */ 2896 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 2897 2898 MSK_UNLOCK(sc); 2899 return (0); 2900 } 2901 2902 static int 2903 mskc_suspend(device_t dev) 2904 { 2905 struct msk_softc *sc; 2906 int i; 2907 2908 sc = device_get_softc(dev); 2909 2910 MSK_LOCK(sc); 2911 2912 for (i = 0; i < sc->msk_num_port; i++) { 2913 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL && 2914 ((sc->msk_if[i]->msk_ifp->if_drv_flags & 2915 IFF_DRV_RUNNING) != 0)) 2916 msk_stop(sc->msk_if[i]); 2917 } 2918 2919 /* Disable all interrupts. */ 2920 CSR_WRITE_4(sc, B0_IMSK, 0); 2921 CSR_READ_4(sc, B0_IMSK); 2922 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 2923 CSR_READ_4(sc, B0_HWE_IMSK); 2924 2925 msk_phy_power(sc, MSK_PHY_POWERDOWN); 2926 2927 /* Put hardware reset. */ 2928 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 2929 sc->msk_suspended = 1; 2930 2931 MSK_UNLOCK(sc); 2932 2933 return (0); 2934 } 2935 2936 static int 2937 mskc_resume(device_t dev) 2938 { 2939 struct msk_softc *sc; 2940 int i; 2941 2942 sc = device_get_softc(dev); 2943 2944 MSK_LOCK(sc); 2945 2946 mskc_reset(sc); 2947 for (i = 0; i < sc->msk_num_port; i++) { 2948 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL && 2949 ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) 2950 msk_init_locked(sc->msk_if[i]); 2951 } 2952 sc->msk_suspended = 0; 2953 2954 MSK_UNLOCK(sc); 2955 2956 return (0); 2957 } 2958 2959 #ifndef __NO_STRICT_ALIGNMENT 2960 static __inline void 2961 msk_fixup_rx(struct mbuf *m) 2962 { 2963 int i; 2964 uint16_t *src, *dst; 2965 2966 src = mtod(m, uint16_t *); 2967 dst = src - 3; 2968 2969 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 2970 *dst++ = *src++; 2971 2972 m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN); 2973 } 2974 #endif 2975 2976 static void 2977 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len) 2978 { 2979 struct mbuf *m; 2980 struct ifnet *ifp; 2981 struct msk_rxdesc *rxd; 2982 int cons, rxlen; 2983 2984 ifp = sc_if->msk_ifp; 2985 2986 MSK_IF_LOCK_ASSERT(sc_if); 2987 2988 cons = sc_if->msk_cdata.msk_rx_cons; 2989 do { 2990 rxlen = status >> 16; 2991 if ((status & GMR_FS_VLAN) != 0 && 2992 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 2993 rxlen -= ETHER_VLAN_ENCAP_LEN; 2994 if (len > sc_if->msk_framesize || 2995 ((status & GMR_FS_ANY_ERR) != 0) || 2996 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) { 2997 /* Don't count flow-control packet as errors. */ 2998 if ((status & GMR_FS_GOOD_FC) == 0) 2999 ifp->if_ierrors++; 3000 msk_discard_rxbuf(sc_if, cons); 3001 break; 3002 } 3003 rxd = &sc_if->msk_cdata.msk_rxdesc[cons]; 3004 m = rxd->rx_m; 3005 if (msk_newbuf(sc_if, cons) != 0) { 3006 ifp->if_iqdrops++; 3007 /* Reuse old buffer. */ 3008 msk_discard_rxbuf(sc_if, cons); 3009 break; 3010 } 3011 m->m_pkthdr.rcvif = ifp; 3012 m->m_pkthdr.len = m->m_len = len; 3013 #ifndef __NO_STRICT_ALIGNMENT 3014 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0) 3015 msk_fixup_rx(m); 3016 #endif 3017 ifp->if_ipackets++; 3018 /* Check for VLAN tagged packets. */ 3019 if ((status & GMR_FS_VLAN) != 0 && 3020 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 3021 m->m_pkthdr.ether_vtag = sc_if->msk_vtag; 3022 m->m_flags |= M_VLANTAG; 3023 } 3024 MSK_IF_UNLOCK(sc_if); 3025 (*ifp->if_input)(ifp, m); 3026 MSK_IF_LOCK(sc_if); 3027 } while (0); 3028 3029 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT); 3030 MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT); 3031 } 3032 3033 static void 3034 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len) 3035 { 3036 struct mbuf *m; 3037 struct ifnet *ifp; 3038 struct msk_rxdesc *jrxd; 3039 int cons, rxlen; 3040 3041 ifp = sc_if->msk_ifp; 3042 3043 MSK_IF_LOCK_ASSERT(sc_if); 3044 3045 cons = sc_if->msk_cdata.msk_rx_cons; 3046 do { 3047 rxlen = status >> 16; 3048 if ((status & GMR_FS_VLAN) != 0 && 3049 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3050 rxlen -= ETHER_VLAN_ENCAP_LEN; 3051 if (len > sc_if->msk_framesize || 3052 ((status & GMR_FS_ANY_ERR) != 0) || 3053 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) { 3054 /* Don't count flow-control packet as errors. */ 3055 if ((status & GMR_FS_GOOD_FC) == 0) 3056 ifp->if_ierrors++; 3057 msk_discard_jumbo_rxbuf(sc_if, cons); 3058 break; 3059 } 3060 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons]; 3061 m = jrxd->rx_m; 3062 if (msk_jumbo_newbuf(sc_if, cons) != 0) { 3063 ifp->if_iqdrops++; 3064 /* Reuse old buffer. */ 3065 msk_discard_jumbo_rxbuf(sc_if, cons); 3066 break; 3067 } 3068 m->m_pkthdr.rcvif = ifp; 3069 m->m_pkthdr.len = m->m_len = len; 3070 #ifndef __NO_STRICT_ALIGNMENT 3071 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0) 3072 msk_fixup_rx(m); 3073 #endif 3074 ifp->if_ipackets++; 3075 /* Check for VLAN tagged packets. */ 3076 if ((status & GMR_FS_VLAN) != 0 && 3077 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 3078 m->m_pkthdr.ether_vtag = sc_if->msk_vtag; 3079 m->m_flags |= M_VLANTAG; 3080 } 3081 MSK_IF_UNLOCK(sc_if); 3082 (*ifp->if_input)(ifp, m); 3083 MSK_IF_LOCK(sc_if); 3084 } while (0); 3085 3086 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT); 3087 MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT); 3088 } 3089 3090 static void 3091 msk_txeof(struct msk_if_softc *sc_if, int idx) 3092 { 3093 struct msk_txdesc *txd; 3094 struct msk_tx_desc *cur_tx; 3095 struct ifnet *ifp; 3096 uint32_t control; 3097 int cons, prog; 3098 3099 MSK_IF_LOCK_ASSERT(sc_if); 3100 3101 ifp = sc_if->msk_ifp; 3102 3103 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, 3104 sc_if->msk_cdata.msk_tx_ring_map, 3105 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3106 /* 3107 * Go through our tx ring and free mbufs for those 3108 * frames that have been sent. 3109 */ 3110 cons = sc_if->msk_cdata.msk_tx_cons; 3111 prog = 0; 3112 for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) { 3113 if (sc_if->msk_cdata.msk_tx_cnt <= 0) 3114 break; 3115 prog++; 3116 cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons]; 3117 control = le32toh(cur_tx->msk_control); 3118 sc_if->msk_cdata.msk_tx_cnt--; 3119 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3120 if ((control & EOP) == 0) 3121 continue; 3122 txd = &sc_if->msk_cdata.msk_txdesc[cons]; 3123 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap, 3124 BUS_DMASYNC_POSTWRITE); 3125 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap); 3126 3127 ifp->if_opackets++; 3128 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!", 3129 __func__)); 3130 m_freem(txd->tx_m); 3131 txd->tx_m = NULL; 3132 } 3133 3134 if (prog > 0) { 3135 sc_if->msk_cdata.msk_tx_cons = cons; 3136 if (sc_if->msk_cdata.msk_tx_cnt == 0) 3137 sc_if->msk_watchdog_timer = 0; 3138 /* No need to sync LEs as we didn't update LEs. */ 3139 } 3140 } 3141 3142 static void 3143 msk_tick(void *xsc_if) 3144 { 3145 struct msk_if_softc *sc_if; 3146 struct mii_data *mii; 3147 3148 sc_if = xsc_if; 3149 3150 MSK_IF_LOCK_ASSERT(sc_if); 3151 3152 mii = device_get_softc(sc_if->msk_miibus); 3153 3154 mii_tick(mii); 3155 msk_watchdog(sc_if); 3156 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if); 3157 } 3158 3159 static void 3160 msk_intr_phy(struct msk_if_softc *sc_if) 3161 { 3162 uint16_t status; 3163 3164 msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT); 3165 status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT); 3166 /* Handle FIFO Underrun/Overflow? */ 3167 if ((status & PHY_M_IS_FIFO_ERROR)) 3168 device_printf(sc_if->msk_if_dev, 3169 "PHY FIFO underrun/overflow.\n"); 3170 } 3171 3172 static void 3173 msk_intr_gmac(struct msk_if_softc *sc_if) 3174 { 3175 struct msk_softc *sc; 3176 uint8_t status; 3177 3178 sc = sc_if->msk_softc; 3179 status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC)); 3180 3181 /* GMAC Rx FIFO overrun. */ 3182 if ((status & GM_IS_RX_FF_OR) != 0) { 3183 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 3184 GMF_CLI_RX_FO); 3185 device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n"); 3186 } 3187 /* GMAC Tx FIFO underrun. */ 3188 if ((status & GM_IS_TX_FF_UR) != 0) { 3189 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3190 GMF_CLI_TX_FU); 3191 device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n"); 3192 /* 3193 * XXX 3194 * In case of Tx underrun, we may need to flush/reset 3195 * Tx MAC but that would also require resynchronization 3196 * with status LEs. Reintializing status LEs would 3197 * affect other port in dual MAC configuration so it 3198 * should be avoided as possible as we can. 3199 * Due to lack of documentation it's all vague guess but 3200 * it needs more investigation. 3201 */ 3202 } 3203 } 3204 3205 static void 3206 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status) 3207 { 3208 struct msk_softc *sc; 3209 3210 sc = sc_if->msk_softc; 3211 if ((status & Y2_IS_PAR_RD1) != 0) { 3212 device_printf(sc_if->msk_if_dev, 3213 "RAM buffer read parity error\n"); 3214 /* Clear IRQ. */ 3215 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL), 3216 RI_CLR_RD_PERR); 3217 } 3218 if ((status & Y2_IS_PAR_WR1) != 0) { 3219 device_printf(sc_if->msk_if_dev, 3220 "RAM buffer write parity error\n"); 3221 /* Clear IRQ. */ 3222 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL), 3223 RI_CLR_WR_PERR); 3224 } 3225 if ((status & Y2_IS_PAR_MAC1) != 0) { 3226 device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n"); 3227 /* Clear IRQ. */ 3228 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3229 GMF_CLI_TX_PE); 3230 } 3231 if ((status & Y2_IS_PAR_RX1) != 0) { 3232 device_printf(sc_if->msk_if_dev, "Rx parity error\n"); 3233 /* Clear IRQ. */ 3234 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR); 3235 } 3236 if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) { 3237 device_printf(sc_if->msk_if_dev, "TCP segmentation error\n"); 3238 /* Clear IRQ. */ 3239 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP); 3240 } 3241 } 3242 3243 static void 3244 msk_intr_hwerr(struct msk_softc *sc) 3245 { 3246 uint32_t status; 3247 uint32_t tlphead[4]; 3248 3249 status = CSR_READ_4(sc, B0_HWE_ISRC); 3250 /* Time Stamp timer overflow. */ 3251 if ((status & Y2_IS_TIST_OV) != 0) 3252 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 3253 if ((status & Y2_IS_PCI_NEXP) != 0) { 3254 /* 3255 * PCI Express Error occured which is not described in PEX 3256 * spec. 3257 * This error is also mapped either to Master Abort( 3258 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and 3259 * can only be cleared there. 3260 */ 3261 device_printf(sc->msk_dev, 3262 "PCI Express protocol violation error\n"); 3263 } 3264 3265 if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) { 3266 uint16_t v16; 3267 3268 if ((status & Y2_IS_MST_ERR) != 0) 3269 device_printf(sc->msk_dev, 3270 "unexpected IRQ Status error\n"); 3271 else 3272 device_printf(sc->msk_dev, 3273 "unexpected IRQ Master error\n"); 3274 /* Reset all bits in the PCI status register. */ 3275 v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2); 3276 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3277 pci_write_config(sc->msk_dev, PCIR_STATUS, v16 | 3278 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT | 3279 PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2); 3280 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3281 } 3282 3283 /* Check for PCI Express Uncorrectable Error. */ 3284 if ((status & Y2_IS_PCI_EXP) != 0) { 3285 uint32_t v32; 3286 3287 /* 3288 * On PCI Express bus bridges are called root complexes (RC). 3289 * PCI Express errors are recognized by the root complex too, 3290 * which requests the system to handle the problem. After 3291 * error occurence it may be that no access to the adapter 3292 * may be performed any longer. 3293 */ 3294 3295 v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT); 3296 if ((v32 & PEX_UNSUP_REQ) != 0) { 3297 /* Ignore unsupported request error. */ 3298 device_printf(sc->msk_dev, 3299 "Uncorrectable PCI Express error\n"); 3300 } 3301 if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) { 3302 int i; 3303 3304 /* Get TLP header form Log Registers. */ 3305 for (i = 0; i < 4; i++) 3306 tlphead[i] = CSR_PCI_READ_4(sc, 3307 PEX_HEADER_LOG + i * 4); 3308 /* Check for vendor defined broadcast message. */ 3309 if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) { 3310 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP; 3311 CSR_WRITE_4(sc, B0_HWE_IMSK, 3312 sc->msk_intrhwemask); 3313 CSR_READ_4(sc, B0_HWE_IMSK); 3314 } 3315 } 3316 /* Clear the interrupt. */ 3317 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3318 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff); 3319 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3320 } 3321 3322 if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL) 3323 msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status); 3324 if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL) 3325 msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8); 3326 } 3327 3328 static __inline void 3329 msk_rxput(struct msk_if_softc *sc_if) 3330 { 3331 struct msk_softc *sc; 3332 3333 sc = sc_if->msk_softc; 3334 if (sc_if->msk_framesize >(MCLBYTES - ETHER_HDR_LEN)) 3335 bus_dmamap_sync( 3336 sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 3337 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 3338 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3339 else 3340 bus_dmamap_sync( 3341 sc_if->msk_cdata.msk_rx_ring_tag, 3342 sc_if->msk_cdata.msk_rx_ring_map, 3343 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3344 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, 3345 PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod); 3346 } 3347 3348 static int 3349 msk_handle_events(struct msk_softc *sc) 3350 { 3351 struct msk_if_softc *sc_if; 3352 int rxput[2]; 3353 struct msk_stat_desc *sd; 3354 uint32_t control, status; 3355 int cons, idx, len, port, rxprog; 3356 3357 idx = CSR_READ_2(sc, STAT_PUT_IDX); 3358 if (idx == sc->msk_stat_cons) 3359 return (0); 3360 3361 /* Sync status LEs. */ 3362 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map, 3363 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3364 /* XXX Sync Rx LEs here. */ 3365 3366 rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0; 3367 3368 rxprog = 0; 3369 for (cons = sc->msk_stat_cons; cons != idx;) { 3370 sd = &sc->msk_stat_ring[cons]; 3371 control = le32toh(sd->msk_control); 3372 if ((control & HW_OWNER) == 0) 3373 break; 3374 /* 3375 * Marvell's FreeBSD driver updates status LE after clearing 3376 * HW_OWNER. However we don't have a way to sync single LE 3377 * with bus_dma(9) API. bus_dma(9) provides a way to sync 3378 * an entire DMA map. So don't sync LE until we have a better 3379 * way to sync LEs. 3380 */ 3381 control &= ~HW_OWNER; 3382 sd->msk_control = htole32(control); 3383 status = le32toh(sd->msk_status); 3384 len = control & STLE_LEN_MASK; 3385 port = (control >> 16) & 0x01; 3386 sc_if = sc->msk_if[port]; 3387 if (sc_if == NULL) { 3388 device_printf(sc->msk_dev, "invalid port opcode " 3389 "0x%08x\n", control & STLE_OP_MASK); 3390 continue; 3391 } 3392 3393 switch (control & STLE_OP_MASK) { 3394 case OP_RXVLAN: 3395 sc_if->msk_vtag = ntohs(len); 3396 break; 3397 case OP_RXCHKSVLAN: 3398 sc_if->msk_vtag = ntohs(len); 3399 break; 3400 case OP_RXSTAT: 3401 if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) 3402 msk_jumbo_rxeof(sc_if, status, len); 3403 else 3404 msk_rxeof(sc_if, status, len); 3405 rxprog++; 3406 /* 3407 * Because there is no way to sync single Rx LE 3408 * put the DMA sync operation off until the end of 3409 * event processing. 3410 */ 3411 rxput[port]++; 3412 /* Update prefetch unit if we've passed water mark. */ 3413 if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) { 3414 msk_rxput(sc_if); 3415 rxput[port] = 0; 3416 } 3417 break; 3418 case OP_TXINDEXLE: 3419 if (sc->msk_if[MSK_PORT_A] != NULL) 3420 msk_txeof(sc->msk_if[MSK_PORT_A], 3421 status & STLE_TXA1_MSKL); 3422 if (sc->msk_if[MSK_PORT_B] != NULL) 3423 msk_txeof(sc->msk_if[MSK_PORT_B], 3424 ((status & STLE_TXA2_MSKL) >> 3425 STLE_TXA2_SHIFTL) | 3426 ((len & STLE_TXA2_MSKH) << 3427 STLE_TXA2_SHIFTH)); 3428 break; 3429 default: 3430 device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n", 3431 control & STLE_OP_MASK); 3432 break; 3433 } 3434 MSK_INC(cons, MSK_STAT_RING_CNT); 3435 if (rxprog > sc->msk_process_limit) 3436 break; 3437 } 3438 3439 sc->msk_stat_cons = cons; 3440 /* XXX We should sync status LEs here. See above notes. */ 3441 3442 if (rxput[MSK_PORT_A] > 0) 3443 msk_rxput(sc->msk_if[MSK_PORT_A]); 3444 if (rxput[MSK_PORT_B] > 0) 3445 msk_rxput(sc->msk_if[MSK_PORT_B]); 3446 3447 return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX)); 3448 } 3449 3450 /* Legacy interrupt handler for shared interrupt. */ 3451 static void 3452 msk_legacy_intr(void *xsc) 3453 { 3454 struct msk_softc *sc; 3455 struct msk_if_softc *sc_if0, *sc_if1; 3456 struct ifnet *ifp0, *ifp1; 3457 uint32_t status; 3458 3459 sc = xsc; 3460 MSK_LOCK(sc); 3461 3462 /* Reading B0_Y2_SP_ISRC2 masks further interrupts. */ 3463 status = CSR_READ_4(sc, B0_Y2_SP_ISRC2); 3464 if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 || 3465 (status & sc->msk_intrmask) == 0) { 3466 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2); 3467 return; 3468 } 3469 3470 sc_if0 = sc->msk_if[MSK_PORT_A]; 3471 sc_if1 = sc->msk_if[MSK_PORT_B]; 3472 ifp0 = ifp1 = NULL; 3473 if (sc_if0 != NULL) 3474 ifp0 = sc_if0->msk_ifp; 3475 if (sc_if1 != NULL) 3476 ifp1 = sc_if1->msk_ifp; 3477 3478 if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL) 3479 msk_intr_phy(sc_if0); 3480 if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL) 3481 msk_intr_phy(sc_if1); 3482 if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL) 3483 msk_intr_gmac(sc_if0); 3484 if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL) 3485 msk_intr_gmac(sc_if1); 3486 if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) { 3487 device_printf(sc->msk_dev, "Rx descriptor error\n"); 3488 sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2); 3489 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3490 CSR_READ_4(sc, B0_IMSK); 3491 } 3492 if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) { 3493 device_printf(sc->msk_dev, "Tx descriptor error\n"); 3494 sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2); 3495 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3496 CSR_READ_4(sc, B0_IMSK); 3497 } 3498 if ((status & Y2_IS_HW_ERR) != 0) 3499 msk_intr_hwerr(sc); 3500 3501 while (msk_handle_events(sc) != 0) 3502 ; 3503 if ((status & Y2_IS_STAT_BMU) != 0) 3504 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ); 3505 3506 /* Reenable interrupts. */ 3507 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2); 3508 3509 if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 && 3510 !IFQ_DRV_IS_EMPTY(&ifp0->if_snd)) 3511 taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task); 3512 if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 && 3513 !IFQ_DRV_IS_EMPTY(&ifp1->if_snd)) 3514 taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task); 3515 3516 MSK_UNLOCK(sc); 3517 } 3518 3519 static int 3520 msk_intr(void *xsc) 3521 { 3522 struct msk_softc *sc; 3523 uint32_t status; 3524 3525 sc = xsc; 3526 status = CSR_READ_4(sc, B0_Y2_SP_ISRC2); 3527 /* Reading B0_Y2_SP_ISRC2 masks further interrupts. */ 3528 if (status == 0 || status == 0xffffffff) { 3529 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2); 3530 return (FILTER_STRAY); 3531 } 3532 3533 taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task); 3534 return (FILTER_HANDLED); 3535 } 3536 3537 static void 3538 msk_int_task(void *arg, int pending) 3539 { 3540 struct msk_softc *sc; 3541 struct msk_if_softc *sc_if0, *sc_if1; 3542 struct ifnet *ifp0, *ifp1; 3543 uint32_t status; 3544 int domore; 3545 3546 sc = arg; 3547 MSK_LOCK(sc); 3548 3549 /* Get interrupt source. */ 3550 status = CSR_READ_4(sc, B0_ISRC); 3551 if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 || 3552 (status & sc->msk_intrmask) == 0) 3553 goto done; 3554 3555 sc_if0 = sc->msk_if[MSK_PORT_A]; 3556 sc_if1 = sc->msk_if[MSK_PORT_B]; 3557 ifp0 = ifp1 = NULL; 3558 if (sc_if0 != NULL) 3559 ifp0 = sc_if0->msk_ifp; 3560 if (sc_if1 != NULL) 3561 ifp1 = sc_if1->msk_ifp; 3562 3563 if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL) 3564 msk_intr_phy(sc_if0); 3565 if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL) 3566 msk_intr_phy(sc_if1); 3567 if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL) 3568 msk_intr_gmac(sc_if0); 3569 if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL) 3570 msk_intr_gmac(sc_if1); 3571 if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) { 3572 device_printf(sc->msk_dev, "Rx descriptor error\n"); 3573 sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2); 3574 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3575 CSR_READ_4(sc, B0_IMSK); 3576 } 3577 if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) { 3578 device_printf(sc->msk_dev, "Tx descriptor error\n"); 3579 sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2); 3580 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3581 CSR_READ_4(sc, B0_IMSK); 3582 } 3583 if ((status & Y2_IS_HW_ERR) != 0) 3584 msk_intr_hwerr(sc); 3585 3586 domore = msk_handle_events(sc); 3587 if ((status & Y2_IS_STAT_BMU) != 0) 3588 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ); 3589 3590 if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 && 3591 !IFQ_DRV_IS_EMPTY(&ifp0->if_snd)) 3592 taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task); 3593 if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 && 3594 !IFQ_DRV_IS_EMPTY(&ifp1->if_snd)) 3595 taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task); 3596 3597 if (domore > 0) { 3598 taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task); 3599 MSK_UNLOCK(sc); 3600 return; 3601 } 3602 done: 3603 MSK_UNLOCK(sc); 3604 3605 /* Reenable interrupts. */ 3606 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2); 3607 } 3608 3609 static void 3610 msk_init(void *xsc) 3611 { 3612 struct msk_if_softc *sc_if = xsc; 3613 3614 MSK_IF_LOCK(sc_if); 3615 msk_init_locked(sc_if); 3616 MSK_IF_UNLOCK(sc_if); 3617 } 3618 3619 static void 3620 msk_init_locked(struct msk_if_softc *sc_if) 3621 { 3622 struct msk_softc *sc; 3623 struct ifnet *ifp; 3624 struct mii_data *mii; 3625 uint16_t eaddr[ETHER_ADDR_LEN / 2]; 3626 uint16_t gmac; 3627 int error, i; 3628 3629 MSK_IF_LOCK_ASSERT(sc_if); 3630 3631 ifp = sc_if->msk_ifp; 3632 sc = sc_if->msk_softc; 3633 mii = device_get_softc(sc_if->msk_miibus); 3634 3635 error = 0; 3636 /* Cancel pending I/O and free all Rx/Tx buffers. */ 3637 msk_stop(sc_if); 3638 3639 sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + 3640 ETHER_VLAN_ENCAP_LEN; 3641 if (sc_if->msk_framesize > MSK_MAX_FRAMELEN && 3642 sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) { 3643 /* 3644 * In Yukon EC Ultra, TSO & checksum offload is not 3645 * supported for jumbo frame. 3646 */ 3647 ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO); 3648 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM); 3649 } 3650 3651 /* 3652 * Initialize GMAC first. 3653 * Without this initialization, Rx MAC did not work as expected 3654 * and Rx MAC garbled status LEs and it resulted in out-of-order 3655 * or duplicated frame delivery which in turn showed very poor 3656 * Rx performance.(I had to write a packet analysis code that 3657 * could be embeded in driver to diagnose this issue.) 3658 * I've spent almost 2 months to fix this issue. If I have had 3659 * datasheet for Yukon II I wouldn't have encountered this. :-( 3660 */ 3661 gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL; 3662 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac); 3663 3664 /* Dummy read the Interrupt Source Register. */ 3665 CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC)); 3666 3667 /* Set MIB Clear Counter Mode. */ 3668 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR); 3669 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR); 3670 /* Read all MIB Counters with Clear Mode set. */ 3671 for (i = 0; i < GM_MIB_CNT_SIZE; i++) 3672 GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i); 3673 /* Clear MIB Clear Counter Mode. */ 3674 gmac &= ~GM_PAR_MIB_CLR; 3675 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac); 3676 3677 /* Disable FCS. */ 3678 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS); 3679 3680 /* Setup Transmit Control Register. */ 3681 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); 3682 3683 /* Setup Transmit Flow Control Register. */ 3684 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff); 3685 3686 /* Setup Transmit Parameter Register. */ 3687 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM, 3688 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | 3689 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF)); 3690 3691 gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) | 3692 GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); 3693 3694 if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) 3695 gmac |= GM_SMOD_JUMBO_ENA; 3696 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac); 3697 3698 /* Set station address. */ 3699 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 3700 for (i = 0; i < ETHER_ADDR_LEN /2; i++) 3701 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4, 3702 eaddr[i]); 3703 for (i = 0; i < ETHER_ADDR_LEN /2; i++) 3704 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4, 3705 eaddr[i]); 3706 3707 /* Disable interrupts for counter overflows. */ 3708 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0); 3709 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0); 3710 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0); 3711 3712 /* Configure Rx MAC FIFO. */ 3713 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET); 3714 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR); 3715 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 3716 GMF_OPER_ON | GMF_RX_F_FL_ON); 3717 3718 /* Set promiscuous mode. */ 3719 msk_setpromisc(sc_if); 3720 3721 /* Set multicast filter. */ 3722 msk_setmulti(sc_if); 3723 3724 /* Flush Rx MAC FIFO on any flow control or error. */ 3725 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 3726 GMR_FS_ANY_ERR); 3727 3728 /* 3729 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word 3730 * due to hardware hang on receipt of pause frames. 3731 */ 3732 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), 3733 RX_GMF_FL_THR_DEF + 1); 3734 3735 /* Configure Tx MAC FIFO. */ 3736 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET); 3737 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR); 3738 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON); 3739 3740 /* Configure hardware VLAN tag insertion/stripping. */ 3741 msk_setvlan(sc_if, ifp); 3742 3743 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) { 3744 /* Set Rx Pause threshould. */ 3745 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR), 3746 MSK_ECU_LLPP); 3747 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR), 3748 MSK_ECU_ULPP); 3749 if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) { 3750 /* 3751 * Set Tx GMAC FIFO Almost Empty Threshold. 3752 */ 3753 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR), 3754 MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR); 3755 /* Disable Store & Forward mode for Tx. */ 3756 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3757 TX_JUMBO_ENA | TX_STFW_DIS); 3758 } else { 3759 /* Enable Store & Forward mode for Tx. */ 3760 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3761 TX_JUMBO_DIS | TX_STFW_ENA); 3762 } 3763 } 3764 3765 /* 3766 * Disable Force Sync bit and Alloc bit in Tx RAM interface 3767 * arbiter as we don't use Sync Tx queue. 3768 */ 3769 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), 3770 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); 3771 /* Enable the RAM Interface Arbiter. */ 3772 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB); 3773 3774 /* Setup RAM buffer. */ 3775 msk_set_rambuffer(sc_if); 3776 3777 /* Disable Tx sync Queue. */ 3778 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET); 3779 3780 /* Setup Tx Queue Bus Memory Interface. */ 3781 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET); 3782 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT); 3783 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON); 3784 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM); 3785 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U && 3786 sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) { 3787 /* Fix for Yukon-EC Ultra: set BMU FIFO level */ 3788 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV); 3789 } 3790 3791 /* Setup Rx Queue Bus Memory Interface. */ 3792 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET); 3793 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT); 3794 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON); 3795 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM); 3796 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U && 3797 sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) { 3798 /* MAC Rx RAM Read is controlled by hardware. */ 3799 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS); 3800 } 3801 3802 msk_set_prefetch(sc, sc_if->msk_txq, 3803 sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1); 3804 msk_init_tx_ring(sc_if); 3805 3806 /* Disable Rx checksum offload and RSS hash. */ 3807 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), 3808 BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH); 3809 if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) { 3810 msk_set_prefetch(sc, sc_if->msk_rxq, 3811 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr, 3812 MSK_JUMBO_RX_RING_CNT - 1); 3813 error = msk_init_jumbo_rx_ring(sc_if); 3814 } else { 3815 msk_set_prefetch(sc, sc_if->msk_rxq, 3816 sc_if->msk_rdata.msk_rx_ring_paddr, 3817 MSK_RX_RING_CNT - 1); 3818 error = msk_init_rx_ring(sc_if); 3819 } 3820 if (error != 0) { 3821 device_printf(sc_if->msk_if_dev, 3822 "initialization failed: no memory for Rx buffers\n"); 3823 msk_stop(sc_if); 3824 return; 3825 } 3826 3827 /* Configure interrupt handling. */ 3828 if (sc_if->msk_port == MSK_PORT_A) { 3829 sc->msk_intrmask |= Y2_IS_PORT_A; 3830 sc->msk_intrhwemask |= Y2_HWE_L1_MASK; 3831 } else { 3832 sc->msk_intrmask |= Y2_IS_PORT_B; 3833 sc->msk_intrhwemask |= Y2_HWE_L2_MASK; 3834 } 3835 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask); 3836 CSR_READ_4(sc, B0_HWE_IMSK); 3837 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3838 CSR_READ_4(sc, B0_IMSK); 3839 3840 sc_if->msk_link = 0; 3841 mii_mediachg(mii); 3842 3843 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3844 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3845 3846 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if); 3847 } 3848 3849 static void 3850 msk_set_rambuffer(struct msk_if_softc *sc_if) 3851 { 3852 struct msk_softc *sc; 3853 int ltpp, utpp; 3854 3855 sc = sc_if->msk_softc; 3856 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) 3857 return; 3858 3859 /* Setup Rx Queue. */ 3860 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR); 3861 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START), 3862 sc->msk_rxqstart[sc_if->msk_port] / 8); 3863 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END), 3864 sc->msk_rxqend[sc_if->msk_port] / 8); 3865 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP), 3866 sc->msk_rxqstart[sc_if->msk_port] / 8); 3867 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP), 3868 sc->msk_rxqstart[sc_if->msk_port] / 8); 3869 3870 utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 - 3871 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8; 3872 ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 - 3873 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8; 3874 if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE) 3875 ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8; 3876 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp); 3877 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp); 3878 /* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */ 3879 3880 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD); 3881 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL)); 3882 3883 /* Setup Tx Queue. */ 3884 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR); 3885 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START), 3886 sc->msk_txqstart[sc_if->msk_port] / 8); 3887 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END), 3888 sc->msk_txqend[sc_if->msk_port] / 8); 3889 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP), 3890 sc->msk_txqstart[sc_if->msk_port] / 8); 3891 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP), 3892 sc->msk_txqstart[sc_if->msk_port] / 8); 3893 /* Enable Store & Forward for Tx side. */ 3894 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD); 3895 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD); 3896 CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL)); 3897 } 3898 3899 static void 3900 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr, 3901 uint32_t count) 3902 { 3903 3904 /* Reset the prefetch unit. */ 3905 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), 3906 PREF_UNIT_RST_SET); 3907 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), 3908 PREF_UNIT_RST_CLR); 3909 /* Set LE base address. */ 3910 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG), 3911 MSK_ADDR_LO(addr)); 3912 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG), 3913 MSK_ADDR_HI(addr)); 3914 /* Set the list last index. */ 3915 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG), 3916 count); 3917 /* Turn on prefetch unit. */ 3918 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), 3919 PREF_UNIT_OP_ON); 3920 /* Dummy read to ensure write. */ 3921 CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG)); 3922 } 3923 3924 static void 3925 msk_stop(struct msk_if_softc *sc_if) 3926 { 3927 struct msk_softc *sc; 3928 struct msk_txdesc *txd; 3929 struct msk_rxdesc *rxd; 3930 struct msk_rxdesc *jrxd; 3931 struct ifnet *ifp; 3932 uint32_t val; 3933 int i; 3934 3935 MSK_IF_LOCK_ASSERT(sc_if); 3936 sc = sc_if->msk_softc; 3937 ifp = sc_if->msk_ifp; 3938 3939 callout_stop(&sc_if->msk_tick_ch); 3940 sc_if->msk_watchdog_timer = 0; 3941 3942 /* Disable interrupts. */ 3943 if (sc_if->msk_port == MSK_PORT_A) { 3944 sc->msk_intrmask &= ~Y2_IS_PORT_A; 3945 sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK; 3946 } else { 3947 sc->msk_intrmask &= ~Y2_IS_PORT_B; 3948 sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK; 3949 } 3950 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask); 3951 CSR_READ_4(sc, B0_HWE_IMSK); 3952 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3953 CSR_READ_4(sc, B0_IMSK); 3954 3955 /* Disable Tx/Rx MAC. */ 3956 val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 3957 val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 3958 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val); 3959 /* Read again to ensure writing. */ 3960 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 3961 3962 /* Stop Tx BMU. */ 3963 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP); 3964 val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR)); 3965 for (i = 0; i < MSK_TIMEOUT; i++) { 3966 if ((val & (BMU_STOP | BMU_IDLE)) == 0) { 3967 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), 3968 BMU_STOP); 3969 val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR)); 3970 } else 3971 break; 3972 DELAY(1); 3973 } 3974 if (i == MSK_TIMEOUT) 3975 device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n"); 3976 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), 3977 RB_RST_SET | RB_DIS_OP_MD); 3978 3979 /* Disable all GMAC interrupt. */ 3980 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0); 3981 /* Disable PHY interrupt. */ 3982 msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0); 3983 3984 /* Disable the RAM Interface Arbiter. */ 3985 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB); 3986 3987 /* Reset the PCI FIFO of the async Tx queue */ 3988 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), 3989 BMU_RST_SET | BMU_FIFO_RST); 3990 3991 /* Reset the Tx prefetch units. */ 3992 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG), 3993 PREF_UNIT_RST_SET); 3994 3995 /* Reset the RAM Buffer async Tx queue. */ 3996 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET); 3997 3998 /* Reset Tx MAC FIFO. */ 3999 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET); 4000 /* Set Pause Off. */ 4001 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF); 4002 4003 /* 4004 * The Rx Stop command will not work for Yukon-2 if the BMU does not 4005 * reach the end of packet and since we can't make sure that we have 4006 * incoming data, we must reset the BMU while it is not during a DMA 4007 * transfer. Since it is possible that the Rx path is still active, 4008 * the Rx RAM buffer will be stopped first, so any possible incoming 4009 * data will not trigger a DMA. After the RAM buffer is stopped, the 4010 * BMU is polled until any DMA in progress is ended and only then it 4011 * will be reset. 4012 */ 4013 4014 /* Disable the RAM Buffer receive queue. */ 4015 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD); 4016 for (i = 0; i < MSK_TIMEOUT; i++) { 4017 if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) == 4018 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL))) 4019 break; 4020 DELAY(1); 4021 } 4022 if (i == MSK_TIMEOUT) 4023 device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n"); 4024 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), 4025 BMU_RST_SET | BMU_FIFO_RST); 4026 /* Reset the Rx prefetch unit. */ 4027 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG), 4028 PREF_UNIT_RST_SET); 4029 /* Reset the RAM Buffer receive queue. */ 4030 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET); 4031 /* Reset Rx MAC FIFO. */ 4032 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET); 4033 4034 /* Free Rx and Tx mbufs still in the queues. */ 4035 for (i = 0; i < MSK_RX_RING_CNT; i++) { 4036 rxd = &sc_if->msk_cdata.msk_rxdesc[i]; 4037 if (rxd->rx_m != NULL) { 4038 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, 4039 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 4040 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, 4041 rxd->rx_dmamap); 4042 m_freem(rxd->rx_m); 4043 rxd->rx_m = NULL; 4044 } 4045 } 4046 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 4047 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; 4048 if (jrxd->rx_m != NULL) { 4049 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, 4050 jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 4051 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag, 4052 jrxd->rx_dmamap); 4053 m_freem(jrxd->rx_m); 4054 jrxd->rx_m = NULL; 4055 } 4056 } 4057 for (i = 0; i < MSK_TX_RING_CNT; i++) { 4058 txd = &sc_if->msk_cdata.msk_txdesc[i]; 4059 if (txd->tx_m != NULL) { 4060 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, 4061 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 4062 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, 4063 txd->tx_dmamap); 4064 m_freem(txd->tx_m); 4065 txd->tx_m = NULL; 4066 } 4067 } 4068 4069 /* 4070 * Mark the interface down. 4071 */ 4072 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 4073 sc_if->msk_link = 0; 4074 } 4075 4076 static int 4077 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 4078 { 4079 int error, value; 4080 4081 if (!arg1) 4082 return (EINVAL); 4083 value = *(int *)arg1; 4084 error = sysctl_handle_int(oidp, &value, 0, req); 4085 if (error || !req->newptr) 4086 return (error); 4087 if (value < low || value > high) 4088 return (EINVAL); 4089 *(int *)arg1 = value; 4090 4091 return (0); 4092 } 4093 4094 static int 4095 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS) 4096 { 4097 4098 return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN, 4099 MSK_PROC_MAX)); 4100 } 4101