xref: /freebsd/sys/dev/msk/if_msk.c (revision 54ebdd631db8c0bba2baab0155f603a8b5cf014a)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /*
96  * Device driver for the Marvell Yukon II Ethernet controller.
97  * Due to lack of documentation, this driver is based on the code from
98  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
99  */
100 
101 #include <sys/cdefs.h>
102 __FBSDID("$FreeBSD$");
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/module.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/queue.h>
115 #include <sys/sysctl.h>
116 #include <sys/taskqueue.h>
117 
118 #include <net/bpf.h>
119 #include <net/ethernet.h>
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_types.h>
125 #include <net/if_vlan_var.h>
126 
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/tcp.h>
131 #include <netinet/udp.h>
132 
133 #include <machine/bus.h>
134 #include <machine/in_cksum.h>
135 #include <machine/resource.h>
136 #include <sys/rman.h>
137 
138 #include <dev/mii/mii.h>
139 #include <dev/mii/miivar.h>
140 #include <dev/mii/brgphyreg.h>
141 
142 #include <dev/pci/pcireg.h>
143 #include <dev/pci/pcivar.h>
144 
145 #include <dev/msk/if_mskreg.h>
146 
147 MODULE_DEPEND(msk, pci, 1, 1, 1);
148 MODULE_DEPEND(msk, ether, 1, 1, 1);
149 MODULE_DEPEND(msk, miibus, 1, 1, 1);
150 
151 /* "device miibus" required.  See GENERIC if you get errors here. */
152 #include "miibus_if.h"
153 
154 /* Tunables. */
155 static int msi_disable = 0;
156 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
157 static int legacy_intr = 0;
158 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
159 
160 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
161 
162 /*
163  * Devices supported by this driver.
164  */
165 static struct msk_product {
166 	uint16_t	msk_vendorid;
167 	uint16_t	msk_deviceid;
168 	const char	*msk_name;
169 } msk_products[] = {
170 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
171 	    "SK-9Sxx Gigabit Ethernet" },
172 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
173 	    "SK-9Exx Gigabit Ethernet"},
174 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
175 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
176 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
177 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
178 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
179 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
180 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
181 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
182 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
183 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
184 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
185 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
186 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
187 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
188 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
189 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
190 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
191 	    "Marvell Yukon 88E8035 Gigabit Ethernet" },
192 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
193 	    "Marvell Yukon 88E8036 Gigabit Ethernet" },
194 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
195 	    "Marvell Yukon 88E8038 Gigabit Ethernet" },
196 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
197 	    "Marvell Yukon 88E8039 Gigabit Ethernet" },
198 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
199 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
200 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
201 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
202 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
203 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
204 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
205 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
206 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
207 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
208 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
209 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
210 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
211 	    "D-Link 550SX Gigabit Ethernet" },
212 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
213 	    "D-Link 560T Gigabit Ethernet" }
214 };
215 
216 static const char *model_name[] = {
217 	"Yukon XL",
218         "Yukon EC Ultra",
219         "Yukon Unknown",
220         "Yukon EC",
221         "Yukon FE"
222 };
223 
224 static int mskc_probe(device_t);
225 static int mskc_attach(device_t);
226 static int mskc_detach(device_t);
227 static int mskc_shutdown(device_t);
228 static int mskc_setup_rambuffer(struct msk_softc *);
229 static int mskc_suspend(device_t);
230 static int mskc_resume(device_t);
231 static void mskc_reset(struct msk_softc *);
232 
233 static int msk_probe(device_t);
234 static int msk_attach(device_t);
235 static int msk_detach(device_t);
236 
237 static void msk_tick(void *);
238 static void msk_legacy_intr(void *);
239 static int msk_intr(void *);
240 static void msk_int_task(void *, int);
241 static void msk_intr_phy(struct msk_if_softc *);
242 static void msk_intr_gmac(struct msk_if_softc *);
243 static __inline void msk_rxput(struct msk_if_softc *);
244 static int msk_handle_events(struct msk_softc *);
245 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
246 static void msk_intr_hwerr(struct msk_softc *);
247 #ifndef __NO_STRICT_ALIGNMENT
248 static __inline void msk_fixup_rx(struct mbuf *);
249 #endif
250 static void msk_rxeof(struct msk_if_softc *, uint32_t, int);
251 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
252 static void msk_txeof(struct msk_if_softc *, int);
253 static int msk_encap(struct msk_if_softc *, struct mbuf **);
254 static void msk_tx_task(void *, int);
255 static void msk_start(struct ifnet *);
256 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
257 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
258 static void msk_set_rambuffer(struct msk_if_softc *);
259 static void msk_init(void *);
260 static void msk_init_locked(struct msk_if_softc *);
261 static void msk_stop(struct msk_if_softc *);
262 static void msk_watchdog(struct msk_if_softc *);
263 static int msk_mediachange(struct ifnet *);
264 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
265 static void msk_phy_power(struct msk_softc *, int);
266 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
267 static int msk_status_dma_alloc(struct msk_softc *);
268 static void msk_status_dma_free(struct msk_softc *);
269 static int msk_txrx_dma_alloc(struct msk_if_softc *);
270 static void msk_txrx_dma_free(struct msk_if_softc *);
271 static void *msk_jalloc(struct msk_if_softc *);
272 static void msk_jfree(void *, void *);
273 static int msk_init_rx_ring(struct msk_if_softc *);
274 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
275 static void msk_init_tx_ring(struct msk_if_softc *);
276 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
277 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
278 static int msk_newbuf(struct msk_if_softc *, int);
279 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
280 
281 static int msk_phy_readreg(struct msk_if_softc *, int, int);
282 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
283 static int msk_miibus_readreg(device_t, int, int);
284 static int msk_miibus_writereg(device_t, int, int, int);
285 static void msk_miibus_statchg(device_t);
286 static void msk_link_task(void *, int);
287 
288 static void msk_setmulti(struct msk_if_softc *);
289 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
290 static void msk_setpromisc(struct msk_if_softc *);
291 
292 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
293 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
294 
295 static device_method_t mskc_methods[] = {
296 	/* Device interface */
297 	DEVMETHOD(device_probe,		mskc_probe),
298 	DEVMETHOD(device_attach,	mskc_attach),
299 	DEVMETHOD(device_detach,	mskc_detach),
300 	DEVMETHOD(device_suspend,	mskc_suspend),
301 	DEVMETHOD(device_resume,	mskc_resume),
302 	DEVMETHOD(device_shutdown,	mskc_shutdown),
303 
304 	/* bus interface */
305 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
306 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
307 
308 	{ NULL, NULL }
309 };
310 
311 static driver_t mskc_driver = {
312 	"mskc",
313 	mskc_methods,
314 	sizeof(struct msk_softc)
315 };
316 
317 static devclass_t mskc_devclass;
318 
319 static device_method_t msk_methods[] = {
320 	/* Device interface */
321 	DEVMETHOD(device_probe,		msk_probe),
322 	DEVMETHOD(device_attach,	msk_attach),
323 	DEVMETHOD(device_detach,	msk_detach),
324 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
325 
326 	/* bus interface */
327 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
328 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
329 
330 	/* MII interface */
331 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
332 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
333 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
334 
335 	{ NULL, NULL }
336 };
337 
338 static driver_t msk_driver = {
339 	"msk",
340 	msk_methods,
341 	sizeof(struct msk_if_softc)
342 };
343 
344 static devclass_t msk_devclass;
345 
346 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
347 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
348 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
349 
350 static struct resource_spec msk_res_spec_io[] = {
351 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
352 	{ -1,			0,		0 }
353 };
354 
355 static struct resource_spec msk_res_spec_mem[] = {
356 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
357 	{ -1,			0,		0 }
358 };
359 
360 static struct resource_spec msk_irq_spec_legacy[] = {
361 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
362 	{ -1,			0,		0 }
363 };
364 
365 static struct resource_spec msk_irq_spec_msi[] = {
366 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
367 	{ -1,			0,		0 }
368 };
369 
370 static struct resource_spec msk_irq_spec_msi2[] = {
371 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
372 	{ SYS_RES_IRQ,		2,		RF_ACTIVE },
373 	{ -1,			0,		0 }
374 };
375 
376 static int
377 msk_miibus_readreg(device_t dev, int phy, int reg)
378 {
379 	struct msk_if_softc *sc_if;
380 
381 	if (phy != PHY_ADDR_MARV)
382 		return (0);
383 
384 	sc_if = device_get_softc(dev);
385 
386 	return (msk_phy_readreg(sc_if, phy, reg));
387 }
388 
389 static int
390 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
391 {
392 	struct msk_softc *sc;
393 	int i, val;
394 
395 	sc = sc_if->msk_softc;
396 
397         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
398 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
399 
400 	for (i = 0; i < MSK_TIMEOUT; i++) {
401 		DELAY(1);
402 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
403 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
404 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
405 			break;
406 		}
407 	}
408 
409 	if (i == MSK_TIMEOUT) {
410 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
411 		val = 0;
412 	}
413 
414 	return (val);
415 }
416 
417 static int
418 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
419 {
420 	struct msk_if_softc *sc_if;
421 
422 	if (phy != PHY_ADDR_MARV)
423 		return (0);
424 
425 	sc_if = device_get_softc(dev);
426 
427 	return (msk_phy_writereg(sc_if, phy, reg, val));
428 }
429 
430 static int
431 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
432 {
433 	struct msk_softc *sc;
434 	int i;
435 
436 	sc = sc_if->msk_softc;
437 
438 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
439         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
440 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
441 	for (i = 0; i < MSK_TIMEOUT; i++) {
442 		DELAY(1);
443 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
444 		    GM_SMI_CT_BUSY) == 0)
445 			break;
446 	}
447 	if (i == MSK_TIMEOUT)
448 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
449 
450 	return (0);
451 }
452 
453 static void
454 msk_miibus_statchg(device_t dev)
455 {
456 	struct msk_if_softc *sc_if;
457 
458 	sc_if = device_get_softc(dev);
459 	taskqueue_enqueue(taskqueue_swi, &sc_if->msk_link_task);
460 }
461 
462 static void
463 msk_link_task(void *arg, int pending)
464 {
465 	struct msk_softc *sc;
466 	struct msk_if_softc *sc_if;
467 	struct mii_data *mii;
468 	struct ifnet *ifp;
469 	uint32_t gmac;
470 
471 	sc_if = (struct msk_if_softc *)arg;
472 	sc = sc_if->msk_softc;
473 
474 	MSK_IF_LOCK(sc_if);
475 
476 	mii = device_get_softc(sc_if->msk_miibus);
477 	ifp = sc_if->msk_ifp;
478 	if (mii == NULL || ifp == NULL) {
479 		MSK_IF_UNLOCK(sc_if);
480 		return;
481 	}
482 
483 	if (mii->mii_media_status & IFM_ACTIVE) {
484 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
485 			sc_if->msk_link = 1;
486 	} else
487 		sc_if->msk_link = 0;
488 
489 	if (sc_if->msk_link != 0) {
490 		/* Enable Tx FIFO Underrun. */
491 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
492 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
493 		/*
494 		 * Because mii(4) notify msk(4) that it detected link status
495 		 * change, there is no need to enable automatic
496 		 * speed/flow-control/duplex updates.
497 		 */
498 		gmac = GM_GPCR_AU_ALL_DIS;
499 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
500 		case IFM_1000_SX:
501 		case IFM_1000_T:
502 			gmac |= GM_GPCR_SPEED_1000;
503 			break;
504 		case IFM_100_TX:
505 			gmac |= GM_GPCR_SPEED_100;
506 			break;
507 		case IFM_10_T:
508 			break;
509 		}
510 
511 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
512 			gmac |= GM_GPCR_DUP_FULL;
513 		/* Disable Rx flow control. */
514 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
515 			gmac |= GM_GPCR_FC_RX_DIS;
516 		/* Disable Tx flow control. */
517 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
518 			gmac |= GM_GPCR_FC_TX_DIS;
519 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
520 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
521 		/* Read again to ensure writing. */
522 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
523 
524 		gmac = GMC_PAUSE_ON;
525 		if (((mii->mii_media_active & IFM_GMASK) &
526 		    (IFM_FLAG0 | IFM_FLAG1)) == 0)
527 			gmac = GMC_PAUSE_OFF;
528 		/* Diable pause for 10/100 Mbps in half-duplex mode. */
529 		if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
530 		    (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
531 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
532 			gmac = GMC_PAUSE_OFF;
533 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
534 
535 		/* Enable PHY interrupt for FIFO underrun/overflow. */
536 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
537 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
538 	} else {
539 		/*
540 		 * Link state changed to down.
541 		 * Disable PHY interrupts.
542 		 */
543 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
544 		/* Disable Rx/Tx MAC. */
545 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
546 		gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
547 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
548 		/* Read again to ensure writing. */
549 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
550 	}
551 
552 	MSK_IF_UNLOCK(sc_if);
553 }
554 
555 static void
556 msk_setmulti(struct msk_if_softc *sc_if)
557 {
558 	struct msk_softc *sc;
559 	struct ifnet *ifp;
560 	struct ifmultiaddr *ifma;
561 	uint32_t mchash[2];
562 	uint32_t crc;
563 	uint16_t mode;
564 
565 	sc = sc_if->msk_softc;
566 
567 	MSK_IF_LOCK_ASSERT(sc_if);
568 
569 	ifp = sc_if->msk_ifp;
570 
571 	bzero(mchash, sizeof(mchash));
572 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
573 	mode |= GM_RXCR_UCF_ENA;
574 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
575 		if ((ifp->if_flags & IFF_PROMISC) != 0)
576 			mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
577 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
578 			mchash[0] = 0xffff;
579 			mchash[1] = 0xffff;
580 		}
581 	} else {
582 		IF_ADDR_LOCK(ifp);
583 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
584 			if (ifma->ifma_addr->sa_family != AF_LINK)
585 				continue;
586 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
587 			    ifma->ifma_addr), ETHER_ADDR_LEN);
588 			/* Just want the 6 least significant bits. */
589 			crc &= 0x3f;
590 			/* Set the corresponding bit in the hash table. */
591 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
592 		}
593 		IF_ADDR_UNLOCK(ifp);
594 		mode |= GM_RXCR_MCF_ENA;
595 	}
596 
597 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
598 	    mchash[0] & 0xffff);
599 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
600 	    (mchash[0] >> 16) & 0xffff);
601 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
602 	    mchash[1] & 0xffff);
603 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
604 	    (mchash[1] >> 16) & 0xffff);
605 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
606 }
607 
608 static void
609 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
610 {
611 	struct msk_softc *sc;
612 
613 	sc = sc_if->msk_softc;
614 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
615 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
616 		    RX_VLAN_STRIP_ON);
617 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
618 		    TX_VLAN_TAG_ON);
619 	} else {
620 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
621 		    RX_VLAN_STRIP_OFF);
622 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
623 		    TX_VLAN_TAG_OFF);
624 	}
625 }
626 
627 static void
628 msk_setpromisc(struct msk_if_softc *sc_if)
629 {
630 	struct msk_softc *sc;
631 	struct ifnet *ifp;
632 	uint16_t mode;
633 
634 	MSK_IF_LOCK_ASSERT(sc_if);
635 
636 	sc = sc_if->msk_softc;
637 	ifp = sc_if->msk_ifp;
638 
639 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
640 	if (ifp->if_flags & IFF_PROMISC)
641 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
642 	else
643 		mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
644 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
645 }
646 
647 static int
648 msk_init_rx_ring(struct msk_if_softc *sc_if)
649 {
650 	struct msk_ring_data *rd;
651 	struct msk_rxdesc *rxd;
652 	int i, prod;
653 
654 	MSK_IF_LOCK_ASSERT(sc_if);
655 
656 	sc_if->msk_cdata.msk_rx_cons = 0;
657 	sc_if->msk_cdata.msk_rx_prod = 0;
658 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
659 
660 	rd = &sc_if->msk_rdata;
661 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
662 	prod = sc_if->msk_cdata.msk_rx_prod;
663 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
664 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
665 		rxd->rx_m = NULL;
666 		rxd->rx_le = &rd->msk_rx_ring[prod];
667 		if (msk_newbuf(sc_if, prod) != 0)
668 			return (ENOBUFS);
669 		MSK_INC(prod, MSK_RX_RING_CNT);
670 	}
671 
672 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
673 	    sc_if->msk_cdata.msk_rx_ring_map,
674 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
675 
676 	/* Update prefetch unit. */
677 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
678 	CSR_WRITE_2(sc_if->msk_softc,
679 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
680 	    sc_if->msk_cdata.msk_rx_prod);
681 
682 	return (0);
683 }
684 
685 static int
686 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
687 {
688 	struct msk_ring_data *rd;
689 	struct msk_rxdesc *rxd;
690 	int i, prod;
691 
692 	MSK_IF_LOCK_ASSERT(sc_if);
693 
694 	sc_if->msk_cdata.msk_rx_cons = 0;
695 	sc_if->msk_cdata.msk_rx_prod = 0;
696 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
697 
698 	rd = &sc_if->msk_rdata;
699 	bzero(rd->msk_jumbo_rx_ring,
700 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
701 	prod = sc_if->msk_cdata.msk_rx_prod;
702 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
703 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
704 		rxd->rx_m = NULL;
705 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
706 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
707 			return (ENOBUFS);
708 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
709 	}
710 
711 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
712 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
713 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
714 
715 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
716 	CSR_WRITE_2(sc_if->msk_softc,
717 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
718 	    sc_if->msk_cdata.msk_rx_prod);
719 
720 	return (0);
721 }
722 
723 static void
724 msk_init_tx_ring(struct msk_if_softc *sc_if)
725 {
726 	struct msk_ring_data *rd;
727 	struct msk_txdesc *txd;
728 	int i;
729 
730 	sc_if->msk_cdata.msk_tso_mtu = 0;
731 	sc_if->msk_cdata.msk_tx_prod = 0;
732 	sc_if->msk_cdata.msk_tx_cons = 0;
733 	sc_if->msk_cdata.msk_tx_cnt = 0;
734 
735 	rd = &sc_if->msk_rdata;
736 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
737 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
738 		txd = &sc_if->msk_cdata.msk_txdesc[i];
739 		txd->tx_m = NULL;
740 		txd->tx_le = &rd->msk_tx_ring[i];
741 	}
742 
743 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
744 	    sc_if->msk_cdata.msk_tx_ring_map,
745 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
746 }
747 
748 static __inline void
749 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
750 {
751 	struct msk_rx_desc *rx_le;
752 	struct msk_rxdesc *rxd;
753 	struct mbuf *m;
754 
755 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
756 	m = rxd->rx_m;
757 	rx_le = rxd->rx_le;
758 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
759 }
760 
761 static __inline void
762 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
763 {
764 	struct msk_rx_desc *rx_le;
765 	struct msk_rxdesc *rxd;
766 	struct mbuf *m;
767 
768 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
769 	m = rxd->rx_m;
770 	rx_le = rxd->rx_le;
771 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
772 }
773 
774 static int
775 msk_newbuf(struct msk_if_softc *sc_if, int idx)
776 {
777 	struct msk_rx_desc *rx_le;
778 	struct msk_rxdesc *rxd;
779 	struct mbuf *m;
780 	bus_dma_segment_t segs[1];
781 	bus_dmamap_t map;
782 	int nsegs;
783 
784 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
785 	if (m == NULL)
786 		return (ENOBUFS);
787 
788 	m->m_len = m->m_pkthdr.len = MCLBYTES;
789 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
790 		m_adj(m, ETHER_ALIGN);
791 #ifndef __NO_STRICT_ALIGNMENT
792 	else
793 		m_adj(m, MSK_RX_BUF_ALIGN);
794 #endif
795 
796 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
797 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
798 	    BUS_DMA_NOWAIT) != 0) {
799 		m_freem(m);
800 		return (ENOBUFS);
801 	}
802 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
803 
804 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
805 	if (rxd->rx_m != NULL) {
806 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
807 		    BUS_DMASYNC_POSTREAD);
808 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
809 	}
810 	map = rxd->rx_dmamap;
811 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
812 	sc_if->msk_cdata.msk_rx_sparemap = map;
813 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
814 	    BUS_DMASYNC_PREREAD);
815 	rxd->rx_m = m;
816 	rx_le = rxd->rx_le;
817 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
818 	rx_le->msk_control =
819 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
820 
821 	return (0);
822 }
823 
824 static int
825 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
826 {
827 	struct msk_rx_desc *rx_le;
828 	struct msk_rxdesc *rxd;
829 	struct mbuf *m;
830 	bus_dma_segment_t segs[1];
831 	bus_dmamap_t map;
832 	int nsegs;
833 	void *buf;
834 
835 	MGETHDR(m, M_DONTWAIT, MT_DATA);
836 	if (m == NULL)
837 		return (ENOBUFS);
838 	buf = msk_jalloc(sc_if);
839 	if (buf == NULL) {
840 		m_freem(m);
841 		return (ENOBUFS);
842 	}
843 	/* Attach the buffer to the mbuf. */
844 	MEXTADD(m, buf, MSK_JLEN, msk_jfree, buf,
845 	    (struct msk_if_softc *)sc_if, 0, EXT_NET_DRV);
846 	if ((m->m_flags & M_EXT) == 0) {
847 		m_freem(m);
848 		return (ENOBUFS);
849 	}
850 	m->m_pkthdr.len = m->m_len = MSK_JLEN;
851 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
852 		m_adj(m, ETHER_ALIGN);
853 #ifndef __NO_STRICT_ALIGNMENT
854 	else
855 		m_adj(m, MSK_RX_BUF_ALIGN);
856 #endif
857 
858 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
859 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
860 	    BUS_DMA_NOWAIT) != 0) {
861 		m_freem(m);
862 		return (ENOBUFS);
863 	}
864 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
865 
866 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
867 	if (rxd->rx_m != NULL) {
868 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
869 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
870 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
871 		    rxd->rx_dmamap);
872 	}
873 	map = rxd->rx_dmamap;
874 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
875 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
876 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
877 	    BUS_DMASYNC_PREREAD);
878 	rxd->rx_m = m;
879 	rx_le = rxd->rx_le;
880 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
881 	rx_le->msk_control =
882 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
883 
884 	return (0);
885 }
886 
887 /*
888  * Set media options.
889  */
890 static int
891 msk_mediachange(struct ifnet *ifp)
892 {
893 	struct msk_if_softc *sc_if;
894 	struct mii_data	*mii;
895 
896 	sc_if = ifp->if_softc;
897 
898 	MSK_IF_LOCK(sc_if);
899 	mii = device_get_softc(sc_if->msk_miibus);
900 	mii_mediachg(mii);
901 	MSK_IF_UNLOCK(sc_if);
902 
903 	return (0);
904 }
905 
906 /*
907  * Report current media status.
908  */
909 static void
910 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
911 {
912 	struct msk_if_softc *sc_if;
913 	struct mii_data	*mii;
914 
915 	sc_if = ifp->if_softc;
916 	MSK_IF_LOCK(sc_if);
917 	mii = device_get_softc(sc_if->msk_miibus);
918 
919 	mii_pollstat(mii);
920 	MSK_IF_UNLOCK(sc_if);
921 	ifmr->ifm_active = mii->mii_media_active;
922 	ifmr->ifm_status = mii->mii_media_status;
923 }
924 
925 static int
926 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
927 {
928 	struct msk_if_softc *sc_if;
929 	struct ifreq *ifr;
930 	struct mii_data	*mii;
931 	int error, mask;
932 
933 	sc_if = ifp->if_softc;
934 	ifr = (struct ifreq *)data;
935 	error = 0;
936 
937 	switch(command) {
938 	case SIOCSIFMTU:
939 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
940 			error = EINVAL;
941 			break;
942 		}
943 		if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE &&
944 		    ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
945 			error = EINVAL;
946 			break;
947 		}
948 		MSK_IF_LOCK(sc_if);
949 		ifp->if_mtu = ifr->ifr_mtu;
950 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
951 			msk_init_locked(sc_if);
952 		MSK_IF_UNLOCK(sc_if);
953 		break;
954 	case SIOCSIFFLAGS:
955 		MSK_IF_LOCK(sc_if);
956 		if ((ifp->if_flags & IFF_UP) != 0) {
957 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
958 				if (((ifp->if_flags ^ sc_if->msk_if_flags)
959 				    & IFF_PROMISC) != 0) {
960 					msk_setpromisc(sc_if);
961 					msk_setmulti(sc_if);
962 				}
963 			} else {
964 				if (sc_if->msk_detach == 0)
965 					msk_init_locked(sc_if);
966 			}
967 		} else {
968 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
969 				msk_stop(sc_if);
970 		}
971 		sc_if->msk_if_flags = ifp->if_flags;
972 		MSK_IF_UNLOCK(sc_if);
973 		break;
974 	case SIOCADDMULTI:
975 	case SIOCDELMULTI:
976 		MSK_IF_LOCK(sc_if);
977 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
978 			msk_setmulti(sc_if);
979 		MSK_IF_UNLOCK(sc_if);
980 		break;
981 	case SIOCGIFMEDIA:
982 	case SIOCSIFMEDIA:
983 		mii = device_get_softc(sc_if->msk_miibus);
984 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
985 		break;
986 	case SIOCSIFCAP:
987 		MSK_IF_LOCK(sc_if);
988 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
989 		if ((mask & IFCAP_TXCSUM) != 0) {
990 			ifp->if_capenable ^= IFCAP_TXCSUM;
991 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
992 			    (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
993 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
994 			else
995 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
996 		}
997 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
998 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
999 			msk_setvlan(sc_if, ifp);
1000 		}
1001 
1002 		if ((mask & IFCAP_TSO4) != 0) {
1003 			ifp->if_capenable ^= IFCAP_TSO4;
1004 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0 &&
1005 			    (IFCAP_TSO4 & ifp->if_capabilities) != 0)
1006 				ifp->if_hwassist |= CSUM_TSO;
1007 			else
1008 				ifp->if_hwassist &= ~CSUM_TSO;
1009 		}
1010 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
1011 		    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
1012 			/*
1013 			 * In Yukon EC Ultra, TSO & checksum offload is not
1014 			 * supported for jumbo frame.
1015 			 */
1016 			ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
1017 			ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1018 		}
1019 
1020 		VLAN_CAPABILITIES(ifp);
1021 		MSK_IF_UNLOCK(sc_if);
1022 		break;
1023 	default:
1024 		error = ether_ioctl(ifp, command, data);
1025 		break;
1026 	}
1027 
1028 	return (error);
1029 }
1030 
1031 static int
1032 mskc_probe(device_t dev)
1033 {
1034 	struct msk_product *mp;
1035 	uint16_t vendor, devid;
1036 	int i;
1037 
1038 	vendor = pci_get_vendor(dev);
1039 	devid = pci_get_device(dev);
1040 	mp = msk_products;
1041 	for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
1042 	    i++, mp++) {
1043 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1044 			device_set_desc(dev, mp->msk_name);
1045 			return (BUS_PROBE_DEFAULT);
1046 		}
1047 	}
1048 
1049 	return (ENXIO);
1050 }
1051 
1052 static int
1053 mskc_setup_rambuffer(struct msk_softc *sc)
1054 {
1055 	int next;
1056 	int i;
1057 
1058 	/* Get adapter SRAM size. */
1059 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1060 	if (bootverbose)
1061 		device_printf(sc->msk_dev,
1062 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1063 	if (sc->msk_ramsize == 0)
1064 		return (0);
1065 
1066 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1067 	/*
1068 	 * Give receiver 2/3 of memory and round down to the multiple
1069 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
1070 	 * of 1024.
1071 	 */
1072 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1073 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1074 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1075 		sc->msk_rxqstart[i] = next;
1076 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1077 		next = sc->msk_rxqend[i] + 1;
1078 		sc->msk_txqstart[i] = next;
1079 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1080 		next = sc->msk_txqend[i] + 1;
1081 		if (bootverbose) {
1082 			device_printf(sc->msk_dev,
1083 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1084 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1085 			    sc->msk_rxqend[i]);
1086 			device_printf(sc->msk_dev,
1087 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1088 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1089 			    sc->msk_txqend[i]);
1090 		}
1091 	}
1092 
1093 	return (0);
1094 }
1095 
1096 static void
1097 msk_phy_power(struct msk_softc *sc, int mode)
1098 {
1099 	uint32_t val;
1100 	int i;
1101 
1102 	switch (mode) {
1103 	case MSK_PHY_POWERUP:
1104 		/* Switch power to VCC (WA for VAUX problem). */
1105 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1106 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1107 		/* Disable Core Clock Division, set Clock Select to 0. */
1108 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1109 
1110 		val = 0;
1111 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1112 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1113 			/* Enable bits are inverted. */
1114 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1115 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1116 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1117 		}
1118 		/*
1119 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1120 		 */
1121 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1122 
1123 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1124 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1125 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1126 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1127 			/* Deassert Low Power for 1st PHY. */
1128 			val |= PCI_Y2_PHY1_COMA;
1129 			if (sc->msk_num_port > 1)
1130 				val |= PCI_Y2_PHY2_COMA;
1131 		} else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
1132 			uint32_t our;
1133 
1134 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1135 
1136 			/* Enable all clocks. */
1137 			pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1138 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1139 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1140 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1141 			/* Set all bits to 0 except bits 15..12. */
1142 			pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1143 			/* Set to default value. */
1144 			pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
1145 		}
1146 		/* Release PHY from PowerDown/COMA mode. */
1147 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1148 		for (i = 0; i < sc->msk_num_port; i++) {
1149 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1150 			    GMLC_RST_SET);
1151 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1152 			    GMLC_RST_CLR);
1153 		}
1154 		break;
1155 	case MSK_PHY_POWERDOWN:
1156 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1157 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1158 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1159 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1160 			val &= ~PCI_Y2_PHY1_COMA;
1161 			if (sc->msk_num_port > 1)
1162 				val &= ~PCI_Y2_PHY2_COMA;
1163 		}
1164 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1165 
1166 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1167 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1168 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1169 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1170 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1171 			/* Enable bits are inverted. */
1172 			val = 0;
1173 		}
1174 		/*
1175 		 * Disable PCI & Core Clock, disable clock gating for
1176 		 * both Links.
1177 		 */
1178 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1179 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1180 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1181 		break;
1182 	default:
1183 		break;
1184 	}
1185 }
1186 
1187 static void
1188 mskc_reset(struct msk_softc *sc)
1189 {
1190 	bus_addr_t addr;
1191 	uint16_t status;
1192 	uint32_t val;
1193 	int i;
1194 
1195 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1196 
1197 	/* Disable ASF. */
1198 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
1199 		CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1200 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1201 	}
1202 	/*
1203 	 * Since we disabled ASF, S/W reset is required for Power Management.
1204 	 */
1205 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1206 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1207 
1208 	/* Clear all error bits in the PCI status register. */
1209 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1210 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1211 
1212 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1213 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1214 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1215 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1216 
1217 	switch (sc->msk_bustype) {
1218 	case MSK_PEX_BUS:
1219 		/* Clear all PEX errors. */
1220 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1221 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1222 		if ((val & PEX_RX_OV) != 0) {
1223 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1224 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1225 		}
1226 		break;
1227 	case MSK_PCI_BUS:
1228 	case MSK_PCIX_BUS:
1229 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1230 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1231 		if (val == 0)
1232 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1233 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1234 			/* Set Cache Line Size opt. */
1235 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1236 			val |= PCI_CLS_OPT;
1237 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1238 		}
1239 		break;
1240 	}
1241 	/* Set PHY power state. */
1242 	msk_phy_power(sc, MSK_PHY_POWERUP);
1243 
1244 	/* Reset GPHY/GMAC Control */
1245 	for (i = 0; i < sc->msk_num_port; i++) {
1246 		/* GPHY Control reset. */
1247 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1248 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1249 		/* GMAC Control reset. */
1250 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1251 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1252 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1253 	}
1254 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1255 
1256 	/* LED On. */
1257 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1258 
1259 	/* Clear TWSI IRQ. */
1260 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1261 
1262 	/* Turn off hardware timer. */
1263 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1264 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1265 
1266 	/* Turn off descriptor polling. */
1267 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1268 
1269 	/* Turn off time stamps. */
1270 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1271 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1272 
1273 	/* Configure timeout values. */
1274 	for (i = 0; i < sc->msk_num_port; i++) {
1275 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1276 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1277 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1278 		    MSK_RI_TO_53);
1279 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1280 		    MSK_RI_TO_53);
1281 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1282 		    MSK_RI_TO_53);
1283 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1284 		    MSK_RI_TO_53);
1285 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1286 		    MSK_RI_TO_53);
1287 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1288 		    MSK_RI_TO_53);
1289 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1290 		    MSK_RI_TO_53);
1291 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1292 		    MSK_RI_TO_53);
1293 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1294 		    MSK_RI_TO_53);
1295 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1296 		    MSK_RI_TO_53);
1297 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1298 		    MSK_RI_TO_53);
1299 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1300 		    MSK_RI_TO_53);
1301 	}
1302 
1303 	/* Disable all interrupts. */
1304 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1305 	CSR_READ_4(sc, B0_HWE_IMSK);
1306 	CSR_WRITE_4(sc, B0_IMSK, 0);
1307 	CSR_READ_4(sc, B0_IMSK);
1308 
1309         /*
1310          * On dual port PCI-X card, there is an problem where status
1311          * can be received out of order due to split transactions.
1312          */
1313 	if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
1314 		int pcix;
1315 		uint16_t pcix_cmd;
1316 
1317 		if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &pcix) == 0) {
1318 			pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
1319 			/* Clear Max Outstanding Split Transactions. */
1320 			pcix_cmd &= ~0x70;
1321 			CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1322 			pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
1323 			CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1324 		}
1325         }
1326 	if (sc->msk_bustype == MSK_PEX_BUS) {
1327 		uint16_t v, width;
1328 
1329 		v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
1330 		/* Change Max. Read Request Size to 4096 bytes. */
1331 		v &= ~PEX_DC_MAX_RRS_MSK;
1332 		v |= PEX_DC_MAX_RD_RQ_SIZE(5);
1333 		pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
1334 		width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
1335 		width = (width & PEX_LS_LINK_WI_MSK) >> 4;
1336 		v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
1337 		v = (v & PEX_LS_LINK_WI_MSK) >> 4;
1338 		if (v != width)
1339 			device_printf(sc->msk_dev,
1340 			    "negotiated width of link(x%d) != "
1341 			    "max. width of link(x%d)\n", width, v);
1342 	}
1343 
1344 	/* Clear status list. */
1345 	bzero(sc->msk_stat_ring,
1346 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1347 	sc->msk_stat_cons = 0;
1348 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1349 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1350 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1351 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1352 	/* Set the status list base address. */
1353 	addr = sc->msk_stat_ring_paddr;
1354 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1355 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1356 	/* Set the status list last index. */
1357 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1358 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1359 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1360 		/* WA for dev. #4.3 */
1361 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1362 		/* WA for dev. #4.18 */
1363 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1364 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1365 	} else {
1366 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1367 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1368 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1369 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1370 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1371 		else
1372 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1373 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1374 	}
1375 	/*
1376 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1377 	 */
1378 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1379 
1380 	/* Enable status unit. */
1381 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1382 
1383 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1384 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1385 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1386 }
1387 
1388 static int
1389 msk_probe(device_t dev)
1390 {
1391 	struct msk_softc *sc;
1392 	char desc[100];
1393 
1394 	sc = device_get_softc(device_get_parent(dev));
1395 	/*
1396 	 * Not much to do here. We always know there will be
1397 	 * at least one GMAC present, and if there are two,
1398 	 * mskc_attach() will create a second device instance
1399 	 * for us.
1400 	 */
1401 	snprintf(desc, sizeof(desc),
1402 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1403 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1404 	    sc->msk_hw_rev);
1405 	device_set_desc_copy(dev, desc);
1406 
1407 	return (BUS_PROBE_DEFAULT);
1408 }
1409 
1410 static int
1411 msk_attach(device_t dev)
1412 {
1413 	struct msk_softc *sc;
1414 	struct msk_if_softc *sc_if;
1415 	struct ifnet *ifp;
1416 	int i, port, error;
1417 	uint8_t eaddr[6];
1418 
1419 	if (dev == NULL)
1420 		return (EINVAL);
1421 
1422 	error = 0;
1423 	sc_if = device_get_softc(dev);
1424 	sc = device_get_softc(device_get_parent(dev));
1425 	port = *(int *)device_get_ivars(dev);
1426 
1427 	sc_if->msk_if_dev = dev;
1428 	sc_if->msk_port = port;
1429 	sc_if->msk_softc = sc;
1430 	sc_if->msk_flags = sc->msk_pflags;
1431 	sc->msk_if[port] = sc_if;
1432 	/* Setup Tx/Rx queue register offsets. */
1433 	if (port == MSK_PORT_A) {
1434 		sc_if->msk_txq = Q_XA1;
1435 		sc_if->msk_txsq = Q_XS1;
1436 		sc_if->msk_rxq = Q_R1;
1437 	} else {
1438 		sc_if->msk_txq = Q_XA2;
1439 		sc_if->msk_txsq = Q_XS2;
1440 		sc_if->msk_rxq = Q_R2;
1441 	}
1442 
1443 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1444 	TASK_INIT(&sc_if->msk_link_task, 0, msk_link_task, sc_if);
1445 
1446 	if ((error = msk_txrx_dma_alloc(sc_if) != 0))
1447 		goto fail;
1448 
1449 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1450 	if (ifp == NULL) {
1451 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1452 		error = ENOSPC;
1453 		goto fail;
1454 	}
1455 	ifp->if_softc = sc_if;
1456 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1457 	ifp->if_mtu = ETHERMTU;
1458 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1459 	/*
1460 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1461 	 * has serious bug in Rx checksum offload for all Yukon II family
1462 	 * hardware. It seems there is a workaround to make it work somtimes.
1463 	 * However, the workaround also have to check OP code sequences to
1464 	 * verify whether the OP code is correct. Sometimes it should compute
1465 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1466 	 * checksum computed by hardware. If you have to compute checksum
1467 	 * with software to verify the hardware's checksum why have hardware
1468 	 * compute the checksum? I think there is no reason to spend time to
1469 	 * make Rx checksum offload work on Yukon II hardware.
1470 	 */
1471 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1472 	ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1473 	ifp->if_capenable = ifp->if_capabilities;
1474 	ifp->if_ioctl = msk_ioctl;
1475 	ifp->if_start = msk_start;
1476 	ifp->if_timer = 0;
1477 	ifp->if_watchdog = NULL;
1478 	ifp->if_init = msk_init;
1479 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1480 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1481 	IFQ_SET_READY(&ifp->if_snd);
1482 
1483 	TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp);
1484 
1485 	/*
1486 	 * Get station address for this interface. Note that
1487 	 * dual port cards actually come with three station
1488 	 * addresses: one for each port, plus an extra. The
1489 	 * extra one is used by the SysKonnect driver software
1490 	 * as a 'virtual' station address for when both ports
1491 	 * are operating in failover mode. Currently we don't
1492 	 * use this extra address.
1493 	 */
1494 	MSK_IF_LOCK(sc_if);
1495 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1496 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1497 
1498 	/*
1499 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1500 	 */
1501 	MSK_IF_UNLOCK(sc_if);
1502 	ether_ifattach(ifp, eaddr);
1503 	MSK_IF_LOCK(sc_if);
1504 
1505 	/*
1506 	 * VLAN capability setup
1507 	 * Due to Tx checksum offload hardware bugs, msk(4) manually
1508 	 * computes checksum for short frames. For VLAN tagged frames
1509 	 * this workaround does not work so disable checksum offload
1510 	 * for VLAN interface.
1511 	 */
1512 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1513 	ifp->if_capenable = ifp->if_capabilities;
1514 
1515 	/*
1516 	 * Tell the upper layer(s) we support long frames.
1517 	 * Must appear after the call to ether_ifattach() because
1518 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1519 	 */
1520         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1521 
1522 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN +
1523 	    ETHER_VLAN_ENCAP_LEN;
1524 
1525 	/*
1526 	 * Do miibus setup.
1527 	 */
1528 	MSK_IF_UNLOCK(sc_if);
1529 	error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
1530 	    msk_mediastatus);
1531 	if (error != 0) {
1532 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1533 		ether_ifdetach(ifp);
1534 		error = ENXIO;
1535 		goto fail;
1536 	}
1537 
1538 fail:
1539 	if (error != 0) {
1540 		/* Access should be ok even though lock has been dropped */
1541 		sc->msk_if[port] = NULL;
1542 		msk_detach(dev);
1543 	}
1544 
1545 	return (error);
1546 }
1547 
1548 /*
1549  * Attach the interface. Allocate softc structures, do ifmedia
1550  * setup and ethernet/BPF attach.
1551  */
1552 static int
1553 mskc_attach(device_t dev)
1554 {
1555 	struct msk_softc *sc;
1556 	int error, msic, msir, *port, reg;
1557 
1558 	sc = device_get_softc(dev);
1559 	sc->msk_dev = dev;
1560 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1561 	    MTX_DEF);
1562 
1563 	/*
1564 	 * Map control/status registers.
1565 	 */
1566 	pci_enable_busmaster(dev);
1567 
1568 	/* Allocate I/O resource */
1569 #ifdef MSK_USEIOSPACE
1570 	sc->msk_res_spec = msk_res_spec_io;
1571 #else
1572 	sc->msk_res_spec = msk_res_spec_mem;
1573 #endif
1574 	sc->msk_irq_spec = msk_irq_spec_legacy;
1575 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1576 	if (error) {
1577 		if (sc->msk_res_spec == msk_res_spec_mem)
1578 			sc->msk_res_spec = msk_res_spec_io;
1579 		else
1580 			sc->msk_res_spec = msk_res_spec_mem;
1581 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1582 		if (error) {
1583 			device_printf(dev, "couldn't allocate %s resources\n",
1584 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1585 			    "I/O");
1586 			mtx_destroy(&sc->msk_mtx);
1587 			return (ENXIO);
1588 		}
1589 	}
1590 
1591 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1592 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1593 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1594 	/* Bail out if chip is not recognized. */
1595 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1596 	    sc->msk_hw_id > CHIP_ID_YUKON_FE) {
1597 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1598 		    sc->msk_hw_id, sc->msk_hw_rev);
1599 		mtx_destroy(&sc->msk_mtx);
1600 		return (ENXIO);
1601 	}
1602 
1603 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1604 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1605 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1606 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1607 	    "max number of Rx events to process");
1608 
1609 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1610 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1611 	    "process_limit", &sc->msk_process_limit);
1612 	if (error == 0) {
1613 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1614 		    sc->msk_process_limit > MSK_PROC_MAX) {
1615 			device_printf(dev, "process_limit value out of range; "
1616 			    "using default: %d\n", MSK_PROC_DEFAULT);
1617 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1618 		}
1619 	}
1620 
1621 	/* Soft reset. */
1622 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1623 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1624 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1625 	 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1626 		 sc->msk_coppertype = 0;
1627 	 else
1628 		 sc->msk_coppertype = 1;
1629 	/* Check number of MACs. */
1630 	sc->msk_num_port = 1;
1631 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1632 	    CFG_DUAL_MAC_MSK) {
1633 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1634 			sc->msk_num_port++;
1635 	}
1636 
1637 	/* Check bus type. */
1638 	if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0)
1639 		sc->msk_bustype = MSK_PEX_BUS;
1640 	else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0)
1641 		sc->msk_bustype = MSK_PCIX_BUS;
1642 	else
1643 		sc->msk_bustype = MSK_PCI_BUS;
1644 
1645 	switch (sc->msk_hw_id) {
1646 	case CHIP_ID_YUKON_EC:
1647 	case CHIP_ID_YUKON_EC_U:
1648 		sc->msk_clock = 125;	/* 125 Mhz */
1649 		break;
1650 	case CHIP_ID_YUKON_FE:
1651 		sc->msk_clock = 100;	/* 100 Mhz */
1652 		break;
1653 	case CHIP_ID_YUKON_XL:
1654 		sc->msk_clock = 156;	/* 156 Mhz */
1655 		break;
1656 	default:
1657 		sc->msk_clock = 156;	/* 156 Mhz */
1658 		break;
1659 	}
1660 
1661 	/* Allocate IRQ resources. */
1662 	msic = pci_msi_count(dev);
1663 	if (bootverbose)
1664 		device_printf(dev, "MSI count : %d\n", msic);
1665 	/*
1666 	 * The Yukon II reports it can handle two messages, one for each
1667 	 * possible port.  We go ahead and allocate two messages and only
1668 	 * setup a handler for both if we have a dual port card.
1669 	 *
1670 	 * XXX: I haven't untangled the interrupt handler to handle dual
1671 	 * port cards with separate MSI messages, so for now I disable MSI
1672 	 * on dual port cards.
1673 	 */
1674 	if (legacy_intr != 0)
1675 		msi_disable = 1;
1676 	if (msi_disable == 0) {
1677 		switch (msic) {
1678 		case 2:
1679 		case 1: /* 88E8058 reports 1 MSI message */
1680 			msir = msic;
1681 			if (sc->msk_num_port == 1 &&
1682 			    pci_alloc_msi(dev, &msir) == 0) {
1683 				if (msic == msir) {
1684 					sc->msk_msi = 1;
1685 					sc->msk_irq_spec = msic == 2 ?
1686 					    msk_irq_spec_msi2 :
1687 					    msk_irq_spec_msi;
1688 				} else
1689 					pci_release_msi(dev);
1690 			}
1691 			break;
1692 		default:
1693 			device_printf(dev,
1694 			    "Unexpected number of MSI messages : %d\n", msic);
1695 			break;
1696 		}
1697 	}
1698 
1699 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1700 	if (error) {
1701 		device_printf(dev, "couldn't allocate IRQ resources\n");
1702 		goto fail;
1703 	}
1704 
1705 	if ((error = msk_status_dma_alloc(sc)) != 0)
1706 		goto fail;
1707 
1708 	/* Set base interrupt mask. */
1709 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1710 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1711 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1712 
1713 	/* Reset the adapter. */
1714 	mskc_reset(sc);
1715 
1716 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1717 		goto fail;
1718 
1719 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1720 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1721 		device_printf(dev, "failed to add child for PORT_A\n");
1722 		error = ENXIO;
1723 		goto fail;
1724 	}
1725 	port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1726 	if (port == NULL) {
1727 		device_printf(dev, "failed to allocate memory for "
1728 		    "ivars of PORT_A\n");
1729 		error = ENXIO;
1730 		goto fail;
1731 	}
1732 	*port = MSK_PORT_A;
1733 	device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1734 
1735 	if (sc->msk_num_port > 1) {
1736 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1737 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1738 			device_printf(dev, "failed to add child for PORT_B\n");
1739 			error = ENXIO;
1740 			goto fail;
1741 		}
1742 		port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1743 		if (port == NULL) {
1744 			device_printf(dev, "failed to allocate memory for "
1745 			    "ivars of PORT_B\n");
1746 			error = ENXIO;
1747 			goto fail;
1748 		}
1749 		*port = MSK_PORT_B;
1750 		device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1751 	}
1752 
1753 	error = bus_generic_attach(dev);
1754 	if (error) {
1755 		device_printf(dev, "failed to attach port(s)\n");
1756 		goto fail;
1757 	}
1758 
1759 	/* Hook interrupt last to avoid having to lock softc. */
1760 	if (legacy_intr)
1761 		error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1762 		    INTR_MPSAFE, NULL, msk_legacy_intr, sc,
1763 		    &sc->msk_intrhand[0]);
1764 	else {
1765 		TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc);
1766 		sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK,
1767 		    taskqueue_thread_enqueue, &sc->msk_tq);
1768 		taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq",
1769 		    device_get_nameunit(sc->msk_dev));
1770 		error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1771 		    INTR_MPSAFE, msk_intr, NULL, sc, &sc->msk_intrhand[0]);
1772 	}
1773 
1774 	if (error != 0) {
1775 		device_printf(dev, "couldn't set up interrupt handler\n");
1776 		if (legacy_intr == 0)
1777 			taskqueue_free(sc->msk_tq);
1778 		sc->msk_tq = NULL;
1779 		goto fail;
1780 	}
1781 fail:
1782 	if (error != 0)
1783 		mskc_detach(dev);
1784 
1785 	return (error);
1786 }
1787 
1788 /*
1789  * Shutdown hardware and free up resources. This can be called any
1790  * time after the mutex has been initialized. It is called in both
1791  * the error case in attach and the normal detach case so it needs
1792  * to be careful about only freeing resources that have actually been
1793  * allocated.
1794  */
1795 static int
1796 msk_detach(device_t dev)
1797 {
1798 	struct msk_softc *sc;
1799 	struct msk_if_softc *sc_if;
1800 	struct ifnet *ifp;
1801 
1802 	sc_if = device_get_softc(dev);
1803 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
1804 	    ("msk mutex not initialized in msk_detach"));
1805 	MSK_IF_LOCK(sc_if);
1806 
1807 	ifp = sc_if->msk_ifp;
1808 	if (device_is_attached(dev)) {
1809 		/* XXX */
1810 		sc_if->msk_detach = 1;
1811 		msk_stop(sc_if);
1812 		/* Can't hold locks while calling detach. */
1813 		MSK_IF_UNLOCK(sc_if);
1814 		callout_drain(&sc_if->msk_tick_ch);
1815 		taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task);
1816 		taskqueue_drain(taskqueue_swi, &sc_if->msk_link_task);
1817 		ether_ifdetach(ifp);
1818 		MSK_IF_LOCK(sc_if);
1819 	}
1820 
1821 	/*
1822 	 * We're generally called from mskc_detach() which is using
1823 	 * device_delete_child() to get to here. It's already trashed
1824 	 * miibus for us, so don't do it here or we'll panic.
1825 	 *
1826 	 * if (sc_if->msk_miibus != NULL) {
1827 	 * 	device_delete_child(dev, sc_if->msk_miibus);
1828 	 * 	sc_if->msk_miibus = NULL;
1829 	 * }
1830 	 */
1831 
1832 	msk_txrx_dma_free(sc_if);
1833 	bus_generic_detach(dev);
1834 
1835 	if (ifp)
1836 		if_free(ifp);
1837 	sc = sc_if->msk_softc;
1838 	sc->msk_if[sc_if->msk_port] = NULL;
1839 	MSK_IF_UNLOCK(sc_if);
1840 
1841 	return (0);
1842 }
1843 
1844 static int
1845 mskc_detach(device_t dev)
1846 {
1847 	struct msk_softc *sc;
1848 
1849 	sc = device_get_softc(dev);
1850 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
1851 
1852 	if (device_is_alive(dev)) {
1853 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
1854 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
1855 			    M_DEVBUF);
1856 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
1857 		}
1858 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
1859 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
1860 			    M_DEVBUF);
1861 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
1862 		}
1863 		bus_generic_detach(dev);
1864 	}
1865 
1866 	/* Disable all interrupts. */
1867 	CSR_WRITE_4(sc, B0_IMSK, 0);
1868 	CSR_READ_4(sc, B0_IMSK);
1869 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1870 	CSR_READ_4(sc, B0_HWE_IMSK);
1871 
1872 	/* LED Off. */
1873 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1874 
1875 	/* Put hardware reset. */
1876 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1877 
1878 	msk_status_dma_free(sc);
1879 
1880 	if (legacy_intr == 0 && sc->msk_tq != NULL) {
1881 		taskqueue_drain(sc->msk_tq, &sc->msk_int_task);
1882 		taskqueue_free(sc->msk_tq);
1883 		sc->msk_tq = NULL;
1884 	}
1885 	if (sc->msk_intrhand[0]) {
1886 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1887 		sc->msk_intrhand[0] = NULL;
1888 	}
1889 	if (sc->msk_intrhand[1]) {
1890 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1891 		sc->msk_intrhand[1] = NULL;
1892 	}
1893 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1894 	if (sc->msk_msi)
1895 		pci_release_msi(dev);
1896 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
1897 	mtx_destroy(&sc->msk_mtx);
1898 
1899 	return (0);
1900 }
1901 
1902 struct msk_dmamap_arg {
1903 	bus_addr_t	msk_busaddr;
1904 };
1905 
1906 static void
1907 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1908 {
1909 	struct msk_dmamap_arg *ctx;
1910 
1911 	if (error != 0)
1912 		return;
1913 	ctx = arg;
1914 	ctx->msk_busaddr = segs[0].ds_addr;
1915 }
1916 
1917 /* Create status DMA region. */
1918 static int
1919 msk_status_dma_alloc(struct msk_softc *sc)
1920 {
1921 	struct msk_dmamap_arg ctx;
1922 	int error;
1923 
1924 	error = bus_dma_tag_create(
1925 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
1926 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
1927 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1928 		    BUS_SPACE_MAXADDR,		/* highaddr */
1929 		    NULL, NULL,			/* filter, filterarg */
1930 		    MSK_STAT_RING_SZ,		/* maxsize */
1931 		    1,				/* nsegments */
1932 		    MSK_STAT_RING_SZ,		/* maxsegsize */
1933 		    0,				/* flags */
1934 		    NULL, NULL,			/* lockfunc, lockarg */
1935 		    &sc->msk_stat_tag);
1936 	if (error != 0) {
1937 		device_printf(sc->msk_dev,
1938 		    "failed to create status DMA tag\n");
1939 		return (error);
1940 	}
1941 
1942 	/* Allocate DMA'able memory and load the DMA map for status ring. */
1943 	error = bus_dmamem_alloc(sc->msk_stat_tag,
1944 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
1945 	    BUS_DMA_ZERO, &sc->msk_stat_map);
1946 	if (error != 0) {
1947 		device_printf(sc->msk_dev,
1948 		    "failed to allocate DMA'able memory for status ring\n");
1949 		return (error);
1950 	}
1951 
1952 	ctx.msk_busaddr = 0;
1953 	error = bus_dmamap_load(sc->msk_stat_tag,
1954 	    sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
1955 	    msk_dmamap_cb, &ctx, 0);
1956 	if (error != 0) {
1957 		device_printf(sc->msk_dev,
1958 		    "failed to load DMA'able memory for status ring\n");
1959 		return (error);
1960 	}
1961 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
1962 
1963 	return (0);
1964 }
1965 
1966 static void
1967 msk_status_dma_free(struct msk_softc *sc)
1968 {
1969 
1970 	/* Destroy status block. */
1971 	if (sc->msk_stat_tag) {
1972 		if (sc->msk_stat_map) {
1973 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1974 			if (sc->msk_stat_ring) {
1975 				bus_dmamem_free(sc->msk_stat_tag,
1976 				    sc->msk_stat_ring, sc->msk_stat_map);
1977 				sc->msk_stat_ring = NULL;
1978 			}
1979 			sc->msk_stat_map = NULL;
1980 		}
1981 		bus_dma_tag_destroy(sc->msk_stat_tag);
1982 		sc->msk_stat_tag = NULL;
1983 	}
1984 }
1985 
1986 static int
1987 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
1988 {
1989 	struct msk_dmamap_arg ctx;
1990 	struct msk_txdesc *txd;
1991 	struct msk_rxdesc *rxd;
1992 	struct msk_rxdesc *jrxd;
1993 	struct msk_jpool_entry *entry;
1994 	uint8_t *ptr;
1995 	bus_size_t rxalign;
1996 	int error, i;
1997 
1998 	mtx_init(&sc_if->msk_jlist_mtx, "msk_jlist_mtx", NULL, MTX_DEF);
1999 	SLIST_INIT(&sc_if->msk_jfree_listhead);
2000 	SLIST_INIT(&sc_if->msk_jinuse_listhead);
2001 
2002 	/* Create parent DMA tag. */
2003 	/*
2004 	 * XXX
2005 	 * It seems that Yukon II supports full 64bits DMA operations. But
2006 	 * it needs two descriptors(list elements) for 64bits DMA operations.
2007 	 * Since we don't know what DMA address mappings(32bits or 64bits)
2008 	 * would be used in advance for each mbufs, we limits its DMA space
2009 	 * to be in range of 32bits address space. Otherwise, we should check
2010 	 * what DMA address is used and chain another descriptor for the
2011 	 * 64bits DMA operation. This also means descriptor ring size is
2012 	 * variable. Limiting DMA address to be in 32bit address space greatly
2013 	 * simplyfies descriptor handling and possibly would increase
2014 	 * performance a bit due to efficient handling of descriptors.
2015 	 * Apart from harassing checksum offloading mechanisms, it seems
2016 	 * it's really bad idea to use a seperate descriptor for 64bit
2017 	 * DMA operation to save small descriptor memory. Anyway, I've
2018 	 * never seen these exotic scheme on ethernet interface hardware.
2019 	 */
2020 	error = bus_dma_tag_create(
2021 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2022 		    1, 0,			/* alignment, boundary */
2023 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2024 		    BUS_SPACE_MAXADDR,		/* highaddr */
2025 		    NULL, NULL,			/* filter, filterarg */
2026 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2027 		    0,				/* nsegments */
2028 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2029 		    0,				/* flags */
2030 		    NULL, NULL,			/* lockfunc, lockarg */
2031 		    &sc_if->msk_cdata.msk_parent_tag);
2032 	if (error != 0) {
2033 		device_printf(sc_if->msk_if_dev,
2034 		    "failed to create parent DMA tag\n");
2035 		goto fail;
2036 	}
2037 	/* Create tag for Tx ring. */
2038 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2039 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2040 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2041 		    BUS_SPACE_MAXADDR,		/* highaddr */
2042 		    NULL, NULL,			/* filter, filterarg */
2043 		    MSK_TX_RING_SZ,		/* maxsize */
2044 		    1,				/* nsegments */
2045 		    MSK_TX_RING_SZ,		/* maxsegsize */
2046 		    0,				/* flags */
2047 		    NULL, NULL,			/* lockfunc, lockarg */
2048 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2049 	if (error != 0) {
2050 		device_printf(sc_if->msk_if_dev,
2051 		    "failed to create Tx ring DMA tag\n");
2052 		goto fail;
2053 	}
2054 
2055 	/* Create tag for Rx ring. */
2056 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2057 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2058 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2059 		    BUS_SPACE_MAXADDR,		/* highaddr */
2060 		    NULL, NULL,			/* filter, filterarg */
2061 		    MSK_RX_RING_SZ,		/* maxsize */
2062 		    1,				/* nsegments */
2063 		    MSK_RX_RING_SZ,		/* maxsegsize */
2064 		    0,				/* flags */
2065 		    NULL, NULL,			/* lockfunc, lockarg */
2066 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2067 	if (error != 0) {
2068 		device_printf(sc_if->msk_if_dev,
2069 		    "failed to create Rx ring DMA tag\n");
2070 		goto fail;
2071 	}
2072 
2073 	/* Create tag for jumbo Rx ring. */
2074 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2075 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2076 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2077 		    BUS_SPACE_MAXADDR,		/* highaddr */
2078 		    NULL, NULL,			/* filter, filterarg */
2079 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2080 		    1,				/* nsegments */
2081 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2082 		    0,				/* flags */
2083 		    NULL, NULL,			/* lockfunc, lockarg */
2084 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2085 	if (error != 0) {
2086 		device_printf(sc_if->msk_if_dev,
2087 		    "failed to create jumbo Rx ring DMA tag\n");
2088 		goto fail;
2089 	}
2090 
2091 	/* Create tag for jumbo buffer blocks. */
2092 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2093 		    PAGE_SIZE, 0,		/* alignment, boundary */
2094 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2095 		    BUS_SPACE_MAXADDR,		/* highaddr */
2096 		    NULL, NULL,			/* filter, filterarg */
2097 		    MSK_JMEM,			/* maxsize */
2098 		    1,				/* nsegments */
2099 		    MSK_JMEM,			/* maxsegsize */
2100 		    0,				/* flags */
2101 		    NULL, NULL,			/* lockfunc, lockarg */
2102 		    &sc_if->msk_cdata.msk_jumbo_tag);
2103 	if (error != 0) {
2104 		device_printf(sc_if->msk_if_dev,
2105 		    "failed to create jumbo Rx buffer block DMA tag\n");
2106 		goto fail;
2107 	}
2108 
2109 	/* Create tag for Tx buffers. */
2110 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2111 		    1, 0,			/* alignment, boundary */
2112 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2113 		    BUS_SPACE_MAXADDR,		/* highaddr */
2114 		    NULL, NULL,			/* filter, filterarg */
2115 		    MSK_TSO_MAXSIZE,		/* maxsize */
2116 		    MSK_MAXTXSEGS,		/* nsegments */
2117 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2118 		    0,				/* flags */
2119 		    NULL, NULL,			/* lockfunc, lockarg */
2120 		    &sc_if->msk_cdata.msk_tx_tag);
2121 	if (error != 0) {
2122 		device_printf(sc_if->msk_if_dev,
2123 		    "failed to create Tx DMA tag\n");
2124 		goto fail;
2125 	}
2126 
2127 	rxalign = 1;
2128 	/*
2129 	 * Workaround hardware hang which seems to happen when Rx buffer
2130 	 * is not aligned on multiple of FIFO word(8 bytes).
2131 	 */
2132 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2133 		rxalign = MSK_RX_BUF_ALIGN;
2134 	/* Create tag for Rx buffers. */
2135 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2136 		    rxalign, 0,			/* alignment, boundary */
2137 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2138 		    BUS_SPACE_MAXADDR,		/* highaddr */
2139 		    NULL, NULL,			/* filter, filterarg */
2140 		    MCLBYTES,			/* maxsize */
2141 		    1,				/* nsegments */
2142 		    MCLBYTES,			/* maxsegsize */
2143 		    0,				/* flags */
2144 		    NULL, NULL,			/* lockfunc, lockarg */
2145 		    &sc_if->msk_cdata.msk_rx_tag);
2146 	if (error != 0) {
2147 		device_printf(sc_if->msk_if_dev,
2148 		    "failed to create Rx DMA tag\n");
2149 		goto fail;
2150 	}
2151 
2152 	/* Create tag for jumbo Rx buffers. */
2153 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2154 		    PAGE_SIZE, 0,		/* alignment, boundary */
2155 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2156 		    BUS_SPACE_MAXADDR,		/* highaddr */
2157 		    NULL, NULL,			/* filter, filterarg */
2158 		    MCLBYTES * MSK_MAXRXSEGS,	/* maxsize */
2159 		    MSK_MAXRXSEGS,		/* nsegments */
2160 		    MSK_JLEN,			/* maxsegsize */
2161 		    0,				/* flags */
2162 		    NULL, NULL,			/* lockfunc, lockarg */
2163 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2164 	if (error != 0) {
2165 		device_printf(sc_if->msk_if_dev,
2166 		    "failed to create jumbo Rx DMA tag\n");
2167 		goto fail;
2168 	}
2169 
2170 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2171 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2172 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2173 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2174 	if (error != 0) {
2175 		device_printf(sc_if->msk_if_dev,
2176 		    "failed to allocate DMA'able memory for Tx ring\n");
2177 		goto fail;
2178 	}
2179 
2180 	ctx.msk_busaddr = 0;
2181 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2182 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2183 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2184 	if (error != 0) {
2185 		device_printf(sc_if->msk_if_dev,
2186 		    "failed to load DMA'able memory for Tx ring\n");
2187 		goto fail;
2188 	}
2189 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2190 
2191 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2192 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2193 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2194 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2195 	if (error != 0) {
2196 		device_printf(sc_if->msk_if_dev,
2197 		    "failed to allocate DMA'able memory for Rx ring\n");
2198 		goto fail;
2199 	}
2200 
2201 	ctx.msk_busaddr = 0;
2202 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2203 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2204 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2205 	if (error != 0) {
2206 		device_printf(sc_if->msk_if_dev,
2207 		    "failed to load DMA'able memory for Rx ring\n");
2208 		goto fail;
2209 	}
2210 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2211 
2212 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2213 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2214 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2215 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2216 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2217 	if (error != 0) {
2218 		device_printf(sc_if->msk_if_dev,
2219 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2220 		goto fail;
2221 	}
2222 
2223 	ctx.msk_busaddr = 0;
2224 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2225 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2226 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2227 	    msk_dmamap_cb, &ctx, 0);
2228 	if (error != 0) {
2229 		device_printf(sc_if->msk_if_dev,
2230 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2231 		goto fail;
2232 	}
2233 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2234 
2235 	/* Create DMA maps for Tx buffers. */
2236 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2237 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2238 		txd->tx_m = NULL;
2239 		txd->tx_dmamap = NULL;
2240 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2241 		    &txd->tx_dmamap);
2242 		if (error != 0) {
2243 			device_printf(sc_if->msk_if_dev,
2244 			    "failed to create Tx dmamap\n");
2245 			goto fail;
2246 		}
2247 	}
2248 	/* Create DMA maps for Rx buffers. */
2249 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2250 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2251 		device_printf(sc_if->msk_if_dev,
2252 		    "failed to create spare Rx dmamap\n");
2253 		goto fail;
2254 	}
2255 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2256 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2257 		rxd->rx_m = NULL;
2258 		rxd->rx_dmamap = NULL;
2259 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2260 		    &rxd->rx_dmamap);
2261 		if (error != 0) {
2262 			device_printf(sc_if->msk_if_dev,
2263 			    "failed to create Rx dmamap\n");
2264 			goto fail;
2265 		}
2266 	}
2267 	/* Create DMA maps for jumbo Rx buffers. */
2268 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2269 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2270 		device_printf(sc_if->msk_if_dev,
2271 		    "failed to create spare jumbo Rx dmamap\n");
2272 		goto fail;
2273 	}
2274 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2275 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2276 		jrxd->rx_m = NULL;
2277 		jrxd->rx_dmamap = NULL;
2278 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2279 		    &jrxd->rx_dmamap);
2280 		if (error != 0) {
2281 			device_printf(sc_if->msk_if_dev,
2282 			    "failed to create jumbo Rx dmamap\n");
2283 			goto fail;
2284 		}
2285 	}
2286 
2287 	/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
2288 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
2289 	    (void **)&sc_if->msk_rdata.msk_jumbo_buf,
2290 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2291 	    &sc_if->msk_cdata.msk_jumbo_map);
2292 	if (error != 0) {
2293 		device_printf(sc_if->msk_if_dev,
2294 		    "failed to allocate DMA'able memory for jumbo buf\n");
2295 		goto fail;
2296 	}
2297 
2298 	ctx.msk_busaddr = 0;
2299 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
2300 	    sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
2301 	    MSK_JMEM, msk_dmamap_cb, &ctx, 0);
2302 	if (error != 0) {
2303 		device_printf(sc_if->msk_if_dev,
2304 		    "failed to load DMA'able memory for jumbobuf\n");
2305 		goto fail;
2306 	}
2307 	sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
2308 
2309 	/*
2310 	 * Now divide it up into 9K pieces and save the addresses
2311 	 * in an array.
2312 	 */
2313 	ptr = sc_if->msk_rdata.msk_jumbo_buf;
2314 	for (i = 0; i < MSK_JSLOTS; i++) {
2315 		sc_if->msk_cdata.msk_jslots[i] = ptr;
2316 		ptr += MSK_JLEN;
2317 		entry = malloc(sizeof(struct msk_jpool_entry),
2318 		    M_DEVBUF, M_WAITOK);
2319 		if (entry == NULL) {
2320 			device_printf(sc_if->msk_if_dev,
2321 			    "no memory for jumbo buffers!\n");
2322 			error = ENOMEM;
2323 			goto fail;
2324 		}
2325 		entry->slot = i;
2326 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2327 		    jpool_entries);
2328 	}
2329 
2330 fail:
2331 	return (error);
2332 }
2333 
2334 static void
2335 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2336 {
2337 	struct msk_txdesc *txd;
2338 	struct msk_rxdesc *rxd;
2339 	struct msk_rxdesc *jrxd;
2340 	struct msk_jpool_entry *entry;
2341 	int i;
2342 
2343 	MSK_JLIST_LOCK(sc_if);
2344 	while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
2345 		device_printf(sc_if->msk_if_dev,
2346 		    "asked to free buffer that is in use!\n");
2347 		SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2348 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2349 		    jpool_entries);
2350 	}
2351 
2352 	while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
2353 		entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2354 		SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2355 		free(entry, M_DEVBUF);
2356 	}
2357 	MSK_JLIST_UNLOCK(sc_if);
2358 
2359 	/* Destroy jumbo buffer block. */
2360 	if (sc_if->msk_cdata.msk_jumbo_map)
2361 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
2362 		    sc_if->msk_cdata.msk_jumbo_map);
2363 
2364 	if (sc_if->msk_rdata.msk_jumbo_buf) {
2365 		bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
2366 		    sc_if->msk_rdata.msk_jumbo_buf,
2367 		    sc_if->msk_cdata.msk_jumbo_map);
2368 		sc_if->msk_rdata.msk_jumbo_buf = NULL;
2369 		sc_if->msk_cdata.msk_jumbo_map = NULL;
2370 	}
2371 
2372 	/* Tx ring. */
2373 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2374 		if (sc_if->msk_cdata.msk_tx_ring_map)
2375 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2376 			    sc_if->msk_cdata.msk_tx_ring_map);
2377 		if (sc_if->msk_cdata.msk_tx_ring_map &&
2378 		    sc_if->msk_rdata.msk_tx_ring)
2379 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2380 			    sc_if->msk_rdata.msk_tx_ring,
2381 			    sc_if->msk_cdata.msk_tx_ring_map);
2382 		sc_if->msk_rdata.msk_tx_ring = NULL;
2383 		sc_if->msk_cdata.msk_tx_ring_map = NULL;
2384 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2385 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2386 	}
2387 	/* Rx ring. */
2388 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2389 		if (sc_if->msk_cdata.msk_rx_ring_map)
2390 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2391 			    sc_if->msk_cdata.msk_rx_ring_map);
2392 		if (sc_if->msk_cdata.msk_rx_ring_map &&
2393 		    sc_if->msk_rdata.msk_rx_ring)
2394 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2395 			    sc_if->msk_rdata.msk_rx_ring,
2396 			    sc_if->msk_cdata.msk_rx_ring_map);
2397 		sc_if->msk_rdata.msk_rx_ring = NULL;
2398 		sc_if->msk_cdata.msk_rx_ring_map = NULL;
2399 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2400 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2401 	}
2402 	/* Jumbo Rx ring. */
2403 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2404 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2405 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2406 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2407 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2408 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2409 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2410 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2411 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2412 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2413 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2414 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2415 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2416 	}
2417 	/* Tx buffers. */
2418 	if (sc_if->msk_cdata.msk_tx_tag) {
2419 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2420 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2421 			if (txd->tx_dmamap) {
2422 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2423 				    txd->tx_dmamap);
2424 				txd->tx_dmamap = NULL;
2425 			}
2426 		}
2427 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2428 		sc_if->msk_cdata.msk_tx_tag = NULL;
2429 	}
2430 	/* Rx buffers. */
2431 	if (sc_if->msk_cdata.msk_rx_tag) {
2432 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2433 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2434 			if (rxd->rx_dmamap) {
2435 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2436 				    rxd->rx_dmamap);
2437 				rxd->rx_dmamap = NULL;
2438 			}
2439 		}
2440 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2441 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2442 			    sc_if->msk_cdata.msk_rx_sparemap);
2443 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2444 		}
2445 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2446 		sc_if->msk_cdata.msk_rx_tag = NULL;
2447 	}
2448 	/* Jumbo Rx buffers. */
2449 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2450 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2451 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2452 			if (jrxd->rx_dmamap) {
2453 				bus_dmamap_destroy(
2454 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2455 				    jrxd->rx_dmamap);
2456 				jrxd->rx_dmamap = NULL;
2457 			}
2458 		}
2459 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2460 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2461 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2462 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2463 		}
2464 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2465 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2466 	}
2467 
2468 	if (sc_if->msk_cdata.msk_parent_tag) {
2469 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2470 		sc_if->msk_cdata.msk_parent_tag = NULL;
2471 	}
2472 	mtx_destroy(&sc_if->msk_jlist_mtx);
2473 }
2474 
2475 /*
2476  * Allocate a jumbo buffer.
2477  */
2478 static void *
2479 msk_jalloc(struct msk_if_softc *sc_if)
2480 {
2481 	struct msk_jpool_entry *entry;
2482 
2483 	MSK_JLIST_LOCK(sc_if);
2484 
2485 	entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2486 
2487 	if (entry == NULL) {
2488 		MSK_JLIST_UNLOCK(sc_if);
2489 		return (NULL);
2490 	}
2491 
2492 	SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2493 	SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
2494 
2495 	MSK_JLIST_UNLOCK(sc_if);
2496 
2497 	return (sc_if->msk_cdata.msk_jslots[entry->slot]);
2498 }
2499 
2500 /*
2501  * Release a jumbo buffer.
2502  */
2503 static void
2504 msk_jfree(void *buf, void *args)
2505 {
2506 	struct msk_if_softc *sc_if;
2507 	struct msk_jpool_entry *entry;
2508 	int i;
2509 
2510 	/* Extract the softc struct pointer. */
2511 	sc_if = (struct msk_if_softc *)args;
2512 	KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
2513 
2514 	MSK_JLIST_LOCK(sc_if);
2515 	/* Calculate the slot this buffer belongs to. */
2516 	i = ((vm_offset_t)buf
2517 	     - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
2518 	KASSERT(i >= 0 && i < MSK_JSLOTS,
2519 	    ("%s: asked to free buffer that we don't manage!", __func__));
2520 
2521 	entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
2522 	KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
2523 	entry->slot = i;
2524 	SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2525 	SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
2526 	if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
2527 		wakeup(sc_if);
2528 
2529 	MSK_JLIST_UNLOCK(sc_if);
2530 }
2531 
2532 static int
2533 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2534 {
2535 	struct msk_txdesc *txd, *txd_last;
2536 	struct msk_tx_desc *tx_le;
2537 	struct mbuf *m;
2538 	bus_dmamap_t map;
2539 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2540 	uint32_t control, prod, si;
2541 	uint16_t offset, tcp_offset, tso_mtu;
2542 	int error, i, nseg, tso;
2543 
2544 	MSK_IF_LOCK_ASSERT(sc_if);
2545 
2546 	tcp_offset = offset = 0;
2547 	m = *m_head;
2548 	if ((m->m_pkthdr.csum_flags & (MSK_CSUM_FEATURES | CSUM_TSO)) != 0) {
2549 		/*
2550 		 * Since mbuf has no protocol specific structure information
2551 		 * in it we have to inspect protocol information here to
2552 		 * setup TSO and checksum offload. I don't know why Marvell
2553 		 * made a such decision in chip design because other GigE
2554 		 * hardwares normally takes care of all these chores in
2555 		 * hardware. However, TSO performance of Yukon II is very
2556 		 * good such that it's worth to implement it.
2557 		 */
2558 		struct ether_header *eh;
2559 		struct ip *ip;
2560 		struct tcphdr *tcp;
2561 
2562 		if (M_WRITABLE(m) == 0) {
2563 			/* Get a writable copy. */
2564 			m = m_dup(*m_head, M_DONTWAIT);
2565 			m_freem(*m_head);
2566 			if (m == NULL) {
2567 				*m_head = NULL;
2568 				return (ENOBUFS);
2569 			}
2570 			*m_head = m;
2571 		}
2572 
2573 		offset = sizeof(struct ether_header);
2574 		m = m_pullup(m, offset);
2575 		if (m == NULL) {
2576 			*m_head = NULL;
2577 			return (ENOBUFS);
2578 		}
2579 		eh = mtod(m, struct ether_header *);
2580 		/* Check if hardware VLAN insertion is off. */
2581 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2582 			offset = sizeof(struct ether_vlan_header);
2583 			m = m_pullup(m, offset);
2584 			if (m == NULL) {
2585 				*m_head = NULL;
2586 				return (ENOBUFS);
2587 			}
2588 		}
2589 		m = m_pullup(m, offset + sizeof(struct ip));
2590 		if (m == NULL) {
2591 			*m_head = NULL;
2592 			return (ENOBUFS);
2593 		}
2594 		ip = (struct ip *)(mtod(m, char *) + offset);
2595 		offset += (ip->ip_hl << 2);
2596 		tcp_offset = offset;
2597 		/*
2598 		 * It seems that Yukon II has Tx checksum offload bug for
2599 		 * small TCP packets that's less than 60 bytes in size
2600 		 * (e.g. TCP window probe packet, pure ACK packet).
2601 		 * Common work around like padding with zeros to make the
2602 		 * frame minimum ethernet frame size didn't work at all.
2603 		 * Instead of disabling checksum offload completely we
2604 		 * resort to S/W checksum routine when we encounter short
2605 		 * TCP frames.
2606 		 * Short UDP packets appear to be handled correctly by
2607 		 * Yukon II.
2608 		 */
2609 		if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2610 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2611 			uint16_t csum;
2612 
2613 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2614 			if (m == NULL) {
2615 				*m_head = NULL;
2616 				return (ENOBUFS);
2617 			}
2618 			csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset -
2619 			    (ip->ip_hl << 2), offset);
2620 			*(uint16_t *)(m->m_data + offset +
2621 			    m->m_pkthdr.csum_data) = csum;
2622 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2623 		}
2624 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2625 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2626 			if (m == NULL) {
2627 				*m_head = NULL;
2628 				return (ENOBUFS);
2629 			}
2630 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2631 			offset += (tcp->th_off << 2);
2632 		}
2633 		*m_head = m;
2634 	}
2635 
2636 	prod = sc_if->msk_cdata.msk_tx_prod;
2637 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2638 	txd_last = txd;
2639 	map = txd->tx_dmamap;
2640 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2641 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2642 	if (error == EFBIG) {
2643 		m = m_collapse(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
2644 		if (m == NULL) {
2645 			m_freem(*m_head);
2646 			*m_head = NULL;
2647 			return (ENOBUFS);
2648 		}
2649 		*m_head = m;
2650 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2651 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2652 		if (error != 0) {
2653 			m_freem(*m_head);
2654 			*m_head = NULL;
2655 			return (error);
2656 		}
2657 	} else if (error != 0)
2658 		return (error);
2659 	if (nseg == 0) {
2660 		m_freem(*m_head);
2661 		*m_head = NULL;
2662 		return (EIO);
2663 	}
2664 
2665 	/* Check number of available descriptors. */
2666 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2667 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2668 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2669 		return (ENOBUFS);
2670 	}
2671 
2672 	control = 0;
2673 	tso = 0;
2674 	tx_le = NULL;
2675 
2676 	/* Check TSO support. */
2677 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2678 		tso_mtu = offset + m->m_pkthdr.tso_segsz;
2679 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2680 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2681 			tx_le->msk_addr = htole32(tso_mtu);
2682 			tx_le->msk_control = htole32(OP_LRGLEN | HW_OWNER);
2683 			sc_if->msk_cdata.msk_tx_cnt++;
2684 			MSK_INC(prod, MSK_TX_RING_CNT);
2685 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2686 		}
2687 		tso++;
2688 	}
2689 	/* Check if we have a VLAN tag to insert. */
2690 	if ((m->m_flags & M_VLANTAG) != 0) {
2691 		if (tso == 0) {
2692 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2693 			tx_le->msk_addr = htole32(0);
2694 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2695 			    htons(m->m_pkthdr.ether_vtag));
2696 			sc_if->msk_cdata.msk_tx_cnt++;
2697 			MSK_INC(prod, MSK_TX_RING_CNT);
2698 		} else {
2699 			tx_le->msk_control |= htole32(OP_VLAN |
2700 			    htons(m->m_pkthdr.ether_vtag));
2701 		}
2702 		control |= INS_VLAN;
2703 	}
2704 	/* Check if we have to handle checksum offload. */
2705 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2706 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2707 		tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2708 		    & 0xffff) | ((uint32_t)tcp_offset << 16));
2709 		tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2710 		control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2711 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2712 			control |= UDPTCP;
2713 		sc_if->msk_cdata.msk_tx_cnt++;
2714 		MSK_INC(prod, MSK_TX_RING_CNT);
2715 	}
2716 
2717 	si = prod;
2718 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2719 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2720 	if (tso == 0)
2721 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2722 		    OP_PACKET);
2723 	else
2724 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2725 		    OP_LARGESEND);
2726 	sc_if->msk_cdata.msk_tx_cnt++;
2727 	MSK_INC(prod, MSK_TX_RING_CNT);
2728 
2729 	for (i = 1; i < nseg; i++) {
2730 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2731 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2732 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2733 		    OP_BUFFER | HW_OWNER);
2734 		sc_if->msk_cdata.msk_tx_cnt++;
2735 		MSK_INC(prod, MSK_TX_RING_CNT);
2736 	}
2737 	/* Update producer index. */
2738 	sc_if->msk_cdata.msk_tx_prod = prod;
2739 
2740 	/* Set EOP on the last desciptor. */
2741 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2742 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2743 	tx_le->msk_control |= htole32(EOP);
2744 
2745 	/* Turn the first descriptor ownership to hardware. */
2746 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2747 	tx_le->msk_control |= htole32(HW_OWNER);
2748 
2749 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2750 	map = txd_last->tx_dmamap;
2751 	txd_last->tx_dmamap = txd->tx_dmamap;
2752 	txd->tx_dmamap = map;
2753 	txd->tx_m = m;
2754 
2755 	/* Sync descriptors. */
2756 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2757 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2758 	    sc_if->msk_cdata.msk_tx_ring_map,
2759 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2760 
2761 	return (0);
2762 }
2763 
2764 static void
2765 msk_tx_task(void *arg, int pending)
2766 {
2767 	struct ifnet *ifp;
2768 
2769 	ifp = arg;
2770 	msk_start(ifp);
2771 }
2772 
2773 static void
2774 msk_start(struct ifnet *ifp)
2775 {
2776         struct msk_if_softc *sc_if;
2777         struct mbuf *m_head;
2778 	int enq;
2779 
2780 	sc_if = ifp->if_softc;
2781 
2782 	MSK_IF_LOCK(sc_if);
2783 
2784 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2785 	    IFF_DRV_RUNNING || sc_if->msk_link == 0) {
2786 		MSK_IF_UNLOCK(sc_if);
2787 		return;
2788 	}
2789 
2790 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2791 	    sc_if->msk_cdata.msk_tx_cnt <
2792 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2793 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2794 		if (m_head == NULL)
2795 			break;
2796 		/*
2797 		 * Pack the data into the transmit ring. If we
2798 		 * don't have room, set the OACTIVE flag and wait
2799 		 * for the NIC to drain the ring.
2800 		 */
2801 		if (msk_encap(sc_if, &m_head) != 0) {
2802 			if (m_head == NULL)
2803 				break;
2804 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2805 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2806 			break;
2807 		}
2808 
2809 		enq++;
2810 		/*
2811 		 * If there's a BPF listener, bounce a copy of this frame
2812 		 * to him.
2813 		 */
2814 		ETHER_BPF_MTAP(ifp, m_head);
2815 	}
2816 
2817 	if (enq > 0) {
2818 		/* Transmit */
2819 		CSR_WRITE_2(sc_if->msk_softc,
2820 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2821 		    sc_if->msk_cdata.msk_tx_prod);
2822 
2823 		/* Set a timeout in case the chip goes out to lunch. */
2824 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2825 	}
2826 
2827 	MSK_IF_UNLOCK(sc_if);
2828 }
2829 
2830 static void
2831 msk_watchdog(struct msk_if_softc *sc_if)
2832 {
2833 	struct ifnet *ifp;
2834 	uint32_t ridx;
2835 	int idx;
2836 
2837 	MSK_IF_LOCK_ASSERT(sc_if);
2838 
2839 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2840 		return;
2841 	ifp = sc_if->msk_ifp;
2842 	if (sc_if->msk_link == 0) {
2843 		if (bootverbose)
2844 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2845 			   "(missed link)\n");
2846 		ifp->if_oerrors++;
2847 		msk_init_locked(sc_if);
2848 		return;
2849 	}
2850 
2851 	/*
2852 	 * Reclaim first as there is a possibility of losing Tx completion
2853 	 * interrupts.
2854 	 */
2855 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2856 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2857 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2858 		msk_txeof(sc_if, idx);
2859 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2860 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2861 			    "-- recovering\n");
2862 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2863 				taskqueue_enqueue(taskqueue_fast,
2864 				    &sc_if->msk_tx_task);
2865 			return;
2866 		}
2867 	}
2868 
2869 	if_printf(ifp, "watchdog timeout\n");
2870 	ifp->if_oerrors++;
2871 	msk_init_locked(sc_if);
2872 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2873 		taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task);
2874 }
2875 
2876 static int
2877 mskc_shutdown(device_t dev)
2878 {
2879 	struct msk_softc *sc;
2880 	int i;
2881 
2882 	sc = device_get_softc(dev);
2883 	MSK_LOCK(sc);
2884 	for (i = 0; i < sc->msk_num_port; i++) {
2885 		if (sc->msk_if[i] != NULL)
2886 			msk_stop(sc->msk_if[i]);
2887 	}
2888 
2889 	/* Disable all interrupts. */
2890 	CSR_WRITE_4(sc, B0_IMSK, 0);
2891 	CSR_READ_4(sc, B0_IMSK);
2892 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2893 	CSR_READ_4(sc, B0_HWE_IMSK);
2894 
2895 	/* Put hardware reset. */
2896 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2897 
2898 	MSK_UNLOCK(sc);
2899 	return (0);
2900 }
2901 
2902 static int
2903 mskc_suspend(device_t dev)
2904 {
2905 	struct msk_softc *sc;
2906 	int i;
2907 
2908 	sc = device_get_softc(dev);
2909 
2910 	MSK_LOCK(sc);
2911 
2912 	for (i = 0; i < sc->msk_num_port; i++) {
2913 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2914 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
2915 		    IFF_DRV_RUNNING) != 0))
2916 			msk_stop(sc->msk_if[i]);
2917 	}
2918 
2919 	/* Disable all interrupts. */
2920 	CSR_WRITE_4(sc, B0_IMSK, 0);
2921 	CSR_READ_4(sc, B0_IMSK);
2922 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2923 	CSR_READ_4(sc, B0_HWE_IMSK);
2924 
2925 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
2926 
2927 	/* Put hardware reset. */
2928 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2929 	sc->msk_suspended = 1;
2930 
2931 	MSK_UNLOCK(sc);
2932 
2933 	return (0);
2934 }
2935 
2936 static int
2937 mskc_resume(device_t dev)
2938 {
2939 	struct msk_softc *sc;
2940 	int i;
2941 
2942 	sc = device_get_softc(dev);
2943 
2944 	MSK_LOCK(sc);
2945 
2946 	mskc_reset(sc);
2947 	for (i = 0; i < sc->msk_num_port; i++) {
2948 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2949 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
2950 			msk_init_locked(sc->msk_if[i]);
2951 	}
2952 	sc->msk_suspended = 0;
2953 
2954 	MSK_UNLOCK(sc);
2955 
2956 	return (0);
2957 }
2958 
2959 #ifndef __NO_STRICT_ALIGNMENT
2960 static __inline void
2961 msk_fixup_rx(struct mbuf *m)
2962 {
2963         int i;
2964         uint16_t *src, *dst;
2965 
2966 	src = mtod(m, uint16_t *);
2967 	dst = src - 3;
2968 
2969 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2970 		*dst++ = *src++;
2971 
2972 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
2973 }
2974 #endif
2975 
2976 static void
2977 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2978 {
2979 	struct mbuf *m;
2980 	struct ifnet *ifp;
2981 	struct msk_rxdesc *rxd;
2982 	int cons, rxlen;
2983 
2984 	ifp = sc_if->msk_ifp;
2985 
2986 	MSK_IF_LOCK_ASSERT(sc_if);
2987 
2988 	cons = sc_if->msk_cdata.msk_rx_cons;
2989 	do {
2990 		rxlen = status >> 16;
2991 		if ((status & GMR_FS_VLAN) != 0 &&
2992 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2993 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2994 		if (len > sc_if->msk_framesize ||
2995 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2996 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2997 			/* Don't count flow-control packet as errors. */
2998 			if ((status & GMR_FS_GOOD_FC) == 0)
2999 				ifp->if_ierrors++;
3000 			msk_discard_rxbuf(sc_if, cons);
3001 			break;
3002 		}
3003 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3004 		m = rxd->rx_m;
3005 		if (msk_newbuf(sc_if, cons) != 0) {
3006 			ifp->if_iqdrops++;
3007 			/* Reuse old buffer. */
3008 			msk_discard_rxbuf(sc_if, cons);
3009 			break;
3010 		}
3011 		m->m_pkthdr.rcvif = ifp;
3012 		m->m_pkthdr.len = m->m_len = len;
3013 #ifndef __NO_STRICT_ALIGNMENT
3014 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3015 			msk_fixup_rx(m);
3016 #endif
3017 		ifp->if_ipackets++;
3018 		/* Check for VLAN tagged packets. */
3019 		if ((status & GMR_FS_VLAN) != 0 &&
3020 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3021 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3022 			m->m_flags |= M_VLANTAG;
3023 		}
3024 		MSK_IF_UNLOCK(sc_if);
3025 		(*ifp->if_input)(ifp, m);
3026 		MSK_IF_LOCK(sc_if);
3027 	} while (0);
3028 
3029 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3030 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3031 }
3032 
3033 static void
3034 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
3035 {
3036 	struct mbuf *m;
3037 	struct ifnet *ifp;
3038 	struct msk_rxdesc *jrxd;
3039 	int cons, rxlen;
3040 
3041 	ifp = sc_if->msk_ifp;
3042 
3043 	MSK_IF_LOCK_ASSERT(sc_if);
3044 
3045 	cons = sc_if->msk_cdata.msk_rx_cons;
3046 	do {
3047 		rxlen = status >> 16;
3048 		if ((status & GMR_FS_VLAN) != 0 &&
3049 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3050 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3051 		if (len > sc_if->msk_framesize ||
3052 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3053 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3054 			/* Don't count flow-control packet as errors. */
3055 			if ((status & GMR_FS_GOOD_FC) == 0)
3056 				ifp->if_ierrors++;
3057 			msk_discard_jumbo_rxbuf(sc_if, cons);
3058 			break;
3059 		}
3060 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3061 		m = jrxd->rx_m;
3062 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3063 			ifp->if_iqdrops++;
3064 			/* Reuse old buffer. */
3065 			msk_discard_jumbo_rxbuf(sc_if, cons);
3066 			break;
3067 		}
3068 		m->m_pkthdr.rcvif = ifp;
3069 		m->m_pkthdr.len = m->m_len = len;
3070 #ifndef __NO_STRICT_ALIGNMENT
3071 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3072 			msk_fixup_rx(m);
3073 #endif
3074 		ifp->if_ipackets++;
3075 		/* Check for VLAN tagged packets. */
3076 		if ((status & GMR_FS_VLAN) != 0 &&
3077 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3078 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3079 			m->m_flags |= M_VLANTAG;
3080 		}
3081 		MSK_IF_UNLOCK(sc_if);
3082 		(*ifp->if_input)(ifp, m);
3083 		MSK_IF_LOCK(sc_if);
3084 	} while (0);
3085 
3086 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3087 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3088 }
3089 
3090 static void
3091 msk_txeof(struct msk_if_softc *sc_if, int idx)
3092 {
3093 	struct msk_txdesc *txd;
3094 	struct msk_tx_desc *cur_tx;
3095 	struct ifnet *ifp;
3096 	uint32_t control;
3097 	int cons, prog;
3098 
3099 	MSK_IF_LOCK_ASSERT(sc_if);
3100 
3101 	ifp = sc_if->msk_ifp;
3102 
3103 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3104 	    sc_if->msk_cdata.msk_tx_ring_map,
3105 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3106 	/*
3107 	 * Go through our tx ring and free mbufs for those
3108 	 * frames that have been sent.
3109 	 */
3110 	cons = sc_if->msk_cdata.msk_tx_cons;
3111 	prog = 0;
3112 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3113 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3114 			break;
3115 		prog++;
3116 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3117 		control = le32toh(cur_tx->msk_control);
3118 		sc_if->msk_cdata.msk_tx_cnt--;
3119 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3120 		if ((control & EOP) == 0)
3121 			continue;
3122 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3123 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3124 		    BUS_DMASYNC_POSTWRITE);
3125 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3126 
3127 		ifp->if_opackets++;
3128 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3129 		    __func__));
3130 		m_freem(txd->tx_m);
3131 		txd->tx_m = NULL;
3132 	}
3133 
3134 	if (prog > 0) {
3135 		sc_if->msk_cdata.msk_tx_cons = cons;
3136 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3137 			sc_if->msk_watchdog_timer = 0;
3138 		/* No need to sync LEs as we didn't update LEs. */
3139 	}
3140 }
3141 
3142 static void
3143 msk_tick(void *xsc_if)
3144 {
3145 	struct msk_if_softc *sc_if;
3146 	struct mii_data *mii;
3147 
3148 	sc_if = xsc_if;
3149 
3150 	MSK_IF_LOCK_ASSERT(sc_if);
3151 
3152 	mii = device_get_softc(sc_if->msk_miibus);
3153 
3154 	mii_tick(mii);
3155 	msk_watchdog(sc_if);
3156 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3157 }
3158 
3159 static void
3160 msk_intr_phy(struct msk_if_softc *sc_if)
3161 {
3162 	uint16_t status;
3163 
3164 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3165 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3166 	/* Handle FIFO Underrun/Overflow? */
3167 	if ((status & PHY_M_IS_FIFO_ERROR))
3168 		device_printf(sc_if->msk_if_dev,
3169 		    "PHY FIFO underrun/overflow.\n");
3170 }
3171 
3172 static void
3173 msk_intr_gmac(struct msk_if_softc *sc_if)
3174 {
3175 	struct msk_softc *sc;
3176 	uint8_t status;
3177 
3178 	sc = sc_if->msk_softc;
3179 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3180 
3181 	/* GMAC Rx FIFO overrun. */
3182 	if ((status & GM_IS_RX_FF_OR) != 0) {
3183 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3184 		    GMF_CLI_RX_FO);
3185 		device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
3186 	}
3187 	/* GMAC Tx FIFO underrun. */
3188 	if ((status & GM_IS_TX_FF_UR) != 0) {
3189 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3190 		    GMF_CLI_TX_FU);
3191 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3192 		/*
3193 		 * XXX
3194 		 * In case of Tx underrun, we may need to flush/reset
3195 		 * Tx MAC but that would also require resynchronization
3196 		 * with status LEs. Reintializing status LEs would
3197 		 * affect other port in dual MAC configuration so it
3198 		 * should be avoided as possible as we can.
3199 		 * Due to lack of documentation it's all vague guess but
3200 		 * it needs more investigation.
3201 		 */
3202 	}
3203 }
3204 
3205 static void
3206 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3207 {
3208 	struct msk_softc *sc;
3209 
3210 	sc = sc_if->msk_softc;
3211 	if ((status & Y2_IS_PAR_RD1) != 0) {
3212 		device_printf(sc_if->msk_if_dev,
3213 		    "RAM buffer read parity error\n");
3214 		/* Clear IRQ. */
3215 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3216 		    RI_CLR_RD_PERR);
3217 	}
3218 	if ((status & Y2_IS_PAR_WR1) != 0) {
3219 		device_printf(sc_if->msk_if_dev,
3220 		    "RAM buffer write parity error\n");
3221 		/* Clear IRQ. */
3222 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3223 		    RI_CLR_WR_PERR);
3224 	}
3225 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3226 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3227 		/* Clear IRQ. */
3228 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3229 		    GMF_CLI_TX_PE);
3230 	}
3231 	if ((status & Y2_IS_PAR_RX1) != 0) {
3232 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3233 		/* Clear IRQ. */
3234 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3235 	}
3236 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3237 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3238 		/* Clear IRQ. */
3239 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3240 	}
3241 }
3242 
3243 static void
3244 msk_intr_hwerr(struct msk_softc *sc)
3245 {
3246 	uint32_t status;
3247 	uint32_t tlphead[4];
3248 
3249 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3250 	/* Time Stamp timer overflow. */
3251 	if ((status & Y2_IS_TIST_OV) != 0)
3252 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3253 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3254 		/*
3255 		 * PCI Express Error occured which is not described in PEX
3256 		 * spec.
3257 		 * This error is also mapped either to Master Abort(
3258 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3259 		 * can only be cleared there.
3260                  */
3261 		device_printf(sc->msk_dev,
3262 		    "PCI Express protocol violation error\n");
3263 	}
3264 
3265 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3266 		uint16_t v16;
3267 
3268 		if ((status & Y2_IS_MST_ERR) != 0)
3269 			device_printf(sc->msk_dev,
3270 			    "unexpected IRQ Status error\n");
3271 		else
3272 			device_printf(sc->msk_dev,
3273 			    "unexpected IRQ Master error\n");
3274 		/* Reset all bits in the PCI status register. */
3275 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3276 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3277 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3278 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3279 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3280 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3281 	}
3282 
3283 	/* Check for PCI Express Uncorrectable Error. */
3284 	if ((status & Y2_IS_PCI_EXP) != 0) {
3285 		uint32_t v32;
3286 
3287 		/*
3288 		 * On PCI Express bus bridges are called root complexes (RC).
3289 		 * PCI Express errors are recognized by the root complex too,
3290 		 * which requests the system to handle the problem. After
3291 		 * error occurence it may be that no access to the adapter
3292 		 * may be performed any longer.
3293 		 */
3294 
3295 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3296 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3297 			/* Ignore unsupported request error. */
3298 			device_printf(sc->msk_dev,
3299 			    "Uncorrectable PCI Express error\n");
3300 		}
3301 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3302 			int i;
3303 
3304 			/* Get TLP header form Log Registers. */
3305 			for (i = 0; i < 4; i++)
3306 				tlphead[i] = CSR_PCI_READ_4(sc,
3307 				    PEX_HEADER_LOG + i * 4);
3308 			/* Check for vendor defined broadcast message. */
3309 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3310 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3311 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3312 				    sc->msk_intrhwemask);
3313 				CSR_READ_4(sc, B0_HWE_IMSK);
3314 			}
3315 		}
3316 		/* Clear the interrupt. */
3317 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3318 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3319 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3320 	}
3321 
3322 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3323 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3324 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3325 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3326 }
3327 
3328 static __inline void
3329 msk_rxput(struct msk_if_softc *sc_if)
3330 {
3331 	struct msk_softc *sc;
3332 
3333 	sc = sc_if->msk_softc;
3334 	if (sc_if->msk_framesize >(MCLBYTES - ETHER_HDR_LEN))
3335 		bus_dmamap_sync(
3336 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3337 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3338 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3339 	else
3340 		bus_dmamap_sync(
3341 		    sc_if->msk_cdata.msk_rx_ring_tag,
3342 		    sc_if->msk_cdata.msk_rx_ring_map,
3343 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3344 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3345 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3346 }
3347 
3348 static int
3349 msk_handle_events(struct msk_softc *sc)
3350 {
3351 	struct msk_if_softc *sc_if;
3352 	int rxput[2];
3353 	struct msk_stat_desc *sd;
3354 	uint32_t control, status;
3355 	int cons, idx, len, port, rxprog;
3356 
3357 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3358 	if (idx == sc->msk_stat_cons)
3359 		return (0);
3360 
3361 	/* Sync status LEs. */
3362 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3363 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3364 	/* XXX Sync Rx LEs here. */
3365 
3366 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3367 
3368 	rxprog = 0;
3369 	for (cons = sc->msk_stat_cons; cons != idx;) {
3370 		sd = &sc->msk_stat_ring[cons];
3371 		control = le32toh(sd->msk_control);
3372 		if ((control & HW_OWNER) == 0)
3373 			break;
3374 		/*
3375 		 * Marvell's FreeBSD driver updates status LE after clearing
3376 		 * HW_OWNER. However we don't have a way to sync single LE
3377 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3378 		 * an entire DMA map. So don't sync LE until we have a better
3379 		 * way to sync LEs.
3380 		 */
3381 		control &= ~HW_OWNER;
3382 		sd->msk_control = htole32(control);
3383 		status = le32toh(sd->msk_status);
3384 		len = control & STLE_LEN_MASK;
3385 		port = (control >> 16) & 0x01;
3386 		sc_if = sc->msk_if[port];
3387 		if (sc_if == NULL) {
3388 			device_printf(sc->msk_dev, "invalid port opcode "
3389 			    "0x%08x\n", control & STLE_OP_MASK);
3390 			continue;
3391 		}
3392 
3393 		switch (control & STLE_OP_MASK) {
3394 		case OP_RXVLAN:
3395 			sc_if->msk_vtag = ntohs(len);
3396 			break;
3397 		case OP_RXCHKSVLAN:
3398 			sc_if->msk_vtag = ntohs(len);
3399 			break;
3400 		case OP_RXSTAT:
3401 			if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
3402 				msk_jumbo_rxeof(sc_if, status, len);
3403 			else
3404 				msk_rxeof(sc_if, status, len);
3405 			rxprog++;
3406 			/*
3407 			 * Because there is no way to sync single Rx LE
3408 			 * put the DMA sync operation off until the end of
3409 			 * event processing.
3410 			 */
3411 			rxput[port]++;
3412 			/* Update prefetch unit if we've passed water mark. */
3413 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3414 				msk_rxput(sc_if);
3415 				rxput[port] = 0;
3416 			}
3417 			break;
3418 		case OP_TXINDEXLE:
3419 			if (sc->msk_if[MSK_PORT_A] != NULL)
3420 				msk_txeof(sc->msk_if[MSK_PORT_A],
3421 				    status & STLE_TXA1_MSKL);
3422 			if (sc->msk_if[MSK_PORT_B] != NULL)
3423 				msk_txeof(sc->msk_if[MSK_PORT_B],
3424 				    ((status & STLE_TXA2_MSKL) >>
3425 				    STLE_TXA2_SHIFTL) |
3426 				    ((len & STLE_TXA2_MSKH) <<
3427 				    STLE_TXA2_SHIFTH));
3428 			break;
3429 		default:
3430 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3431 			    control & STLE_OP_MASK);
3432 			break;
3433 		}
3434 		MSK_INC(cons, MSK_STAT_RING_CNT);
3435 		if (rxprog > sc->msk_process_limit)
3436 			break;
3437 	}
3438 
3439 	sc->msk_stat_cons = cons;
3440 	/* XXX We should sync status LEs here. See above notes. */
3441 
3442 	if (rxput[MSK_PORT_A] > 0)
3443 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3444 	if (rxput[MSK_PORT_B] > 0)
3445 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3446 
3447 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3448 }
3449 
3450 /* Legacy interrupt handler for shared interrupt. */
3451 static void
3452 msk_legacy_intr(void *xsc)
3453 {
3454 	struct msk_softc *sc;
3455 	struct msk_if_softc *sc_if0, *sc_if1;
3456 	struct ifnet *ifp0, *ifp1;
3457 	uint32_t status;
3458 
3459 	sc = xsc;
3460 	MSK_LOCK(sc);
3461 
3462 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3463 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3464 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3465 	    (status & sc->msk_intrmask) == 0) {
3466 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3467 		return;
3468 	}
3469 
3470 	sc_if0 = sc->msk_if[MSK_PORT_A];
3471 	sc_if1 = sc->msk_if[MSK_PORT_B];
3472 	ifp0 = ifp1 = NULL;
3473 	if (sc_if0 != NULL)
3474 		ifp0 = sc_if0->msk_ifp;
3475 	if (sc_if1 != NULL)
3476 		ifp1 = sc_if1->msk_ifp;
3477 
3478 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3479 		msk_intr_phy(sc_if0);
3480 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3481 		msk_intr_phy(sc_if1);
3482 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3483 		msk_intr_gmac(sc_if0);
3484 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3485 		msk_intr_gmac(sc_if1);
3486 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3487 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3488 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3489 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3490 		CSR_READ_4(sc, B0_IMSK);
3491 	}
3492         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3493 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3494 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3495 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3496 		CSR_READ_4(sc, B0_IMSK);
3497 	}
3498 	if ((status & Y2_IS_HW_ERR) != 0)
3499 		msk_intr_hwerr(sc);
3500 
3501 	while (msk_handle_events(sc) != 0)
3502 		;
3503 	if ((status & Y2_IS_STAT_BMU) != 0)
3504 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3505 
3506 	/* Reenable interrupts. */
3507 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3508 
3509 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3510 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3511 		taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3512 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3513 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3514 		taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3515 
3516 	MSK_UNLOCK(sc);
3517 }
3518 
3519 static int
3520 msk_intr(void *xsc)
3521 {
3522 	struct msk_softc *sc;
3523 	uint32_t status;
3524 
3525 	sc = xsc;
3526 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3527 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3528 	if (status == 0 || status == 0xffffffff) {
3529 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3530 		return (FILTER_STRAY);
3531 	}
3532 
3533 	taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3534 	return (FILTER_HANDLED);
3535 }
3536 
3537 static void
3538 msk_int_task(void *arg, int pending)
3539 {
3540 	struct msk_softc *sc;
3541 	struct msk_if_softc *sc_if0, *sc_if1;
3542 	struct ifnet *ifp0, *ifp1;
3543 	uint32_t status;
3544 	int domore;
3545 
3546 	sc = arg;
3547 	MSK_LOCK(sc);
3548 
3549 	/* Get interrupt source. */
3550 	status = CSR_READ_4(sc, B0_ISRC);
3551 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3552 	    (status & sc->msk_intrmask) == 0)
3553 		goto done;
3554 
3555 	sc_if0 = sc->msk_if[MSK_PORT_A];
3556 	sc_if1 = sc->msk_if[MSK_PORT_B];
3557 	ifp0 = ifp1 = NULL;
3558 	if (sc_if0 != NULL)
3559 		ifp0 = sc_if0->msk_ifp;
3560 	if (sc_if1 != NULL)
3561 		ifp1 = sc_if1->msk_ifp;
3562 
3563 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3564 		msk_intr_phy(sc_if0);
3565 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3566 		msk_intr_phy(sc_if1);
3567 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3568 		msk_intr_gmac(sc_if0);
3569 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3570 		msk_intr_gmac(sc_if1);
3571 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3572 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3573 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3574 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3575 		CSR_READ_4(sc, B0_IMSK);
3576 	}
3577         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3578 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3579 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3580 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3581 		CSR_READ_4(sc, B0_IMSK);
3582 	}
3583 	if ((status & Y2_IS_HW_ERR) != 0)
3584 		msk_intr_hwerr(sc);
3585 
3586 	domore = msk_handle_events(sc);
3587 	if ((status & Y2_IS_STAT_BMU) != 0)
3588 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3589 
3590 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3591 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3592 		taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3593 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3594 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3595 		taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3596 
3597 	if (domore > 0) {
3598 		taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3599 		MSK_UNLOCK(sc);
3600 		return;
3601 	}
3602 done:
3603 	MSK_UNLOCK(sc);
3604 
3605 	/* Reenable interrupts. */
3606 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3607 }
3608 
3609 static void
3610 msk_init(void *xsc)
3611 {
3612 	struct msk_if_softc *sc_if = xsc;
3613 
3614 	MSK_IF_LOCK(sc_if);
3615 	msk_init_locked(sc_if);
3616 	MSK_IF_UNLOCK(sc_if);
3617 }
3618 
3619 static void
3620 msk_init_locked(struct msk_if_softc *sc_if)
3621 {
3622 	struct msk_softc *sc;
3623 	struct ifnet *ifp;
3624 	struct mii_data	 *mii;
3625 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
3626 	uint16_t gmac;
3627 	int error, i;
3628 
3629 	MSK_IF_LOCK_ASSERT(sc_if);
3630 
3631 	ifp = sc_if->msk_ifp;
3632 	sc = sc_if->msk_softc;
3633 	mii = device_get_softc(sc_if->msk_miibus);
3634 
3635 	error = 0;
3636 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3637 	msk_stop(sc_if);
3638 
3639 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN +
3640 	    ETHER_VLAN_ENCAP_LEN;
3641 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
3642 	    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3643 		/*
3644 		 * In Yukon EC Ultra, TSO & checksum offload is not
3645 		 * supported for jumbo frame.
3646 		 */
3647 		ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3648 		ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3649 	}
3650 
3651 	/*
3652 	 * Initialize GMAC first.
3653 	 * Without this initialization, Rx MAC did not work as expected
3654 	 * and Rx MAC garbled status LEs and it resulted in out-of-order
3655 	 * or duplicated frame delivery which in turn showed very poor
3656 	 * Rx performance.(I had to write a packet analysis code that
3657 	 * could be embeded in driver to diagnose this issue.)
3658 	 * I've spent almost 2 months to fix this issue. If I have had
3659 	 * datasheet for Yukon II I wouldn't have encountered this. :-(
3660 	 */
3661 	gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL;
3662 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
3663 
3664 	/* Dummy read the Interrupt Source Register. */
3665 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3666 
3667 	/* Set MIB Clear Counter Mode. */
3668 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3669 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3670 	/* Read all MIB Counters with Clear Mode set. */
3671 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
3672 		GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
3673 	/* Clear MIB Clear Counter Mode. */
3674 	gmac &= ~GM_PAR_MIB_CLR;
3675 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3676 
3677 	/* Disable FCS. */
3678 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3679 
3680 	/* Setup Transmit Control Register. */
3681 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3682 
3683 	/* Setup Transmit Flow Control Register. */
3684 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3685 
3686 	/* Setup Transmit Parameter Register. */
3687 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3688 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3689 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3690 
3691 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3692 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3693 
3694 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
3695 		gmac |= GM_SMOD_JUMBO_ENA;
3696 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3697 
3698 	/* Set station address. */
3699         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3700         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3701 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3702 		    eaddr[i]);
3703         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3704 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3705 		    eaddr[i]);
3706 
3707 	/* Disable interrupts for counter overflows. */
3708 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3709 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3710 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3711 
3712 	/* Configure Rx MAC FIFO. */
3713 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3714 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3715 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3716 	    GMF_OPER_ON | GMF_RX_F_FL_ON);
3717 
3718 	/* Set promiscuous mode. */
3719 	msk_setpromisc(sc_if);
3720 
3721 	/* Set multicast filter. */
3722 	msk_setmulti(sc_if);
3723 
3724 	/* Flush Rx MAC FIFO on any flow control or error. */
3725 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3726 	    GMR_FS_ANY_ERR);
3727 
3728 	/*
3729 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3730 	 * due to hardware hang on receipt of pause frames.
3731 	 */
3732 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR),
3733 	    RX_GMF_FL_THR_DEF + 1);
3734 
3735 	/* Configure Tx MAC FIFO. */
3736 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3737 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3738 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3739 
3740 	/* Configure hardware VLAN tag insertion/stripping. */
3741 	msk_setvlan(sc_if, ifp);
3742 
3743 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3744 		/* Set Rx Pause threshould. */
3745 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3746 		    MSK_ECU_LLPP);
3747 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3748 		    MSK_ECU_ULPP);
3749 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) {
3750 			/*
3751 			 * Set Tx GMAC FIFO Almost Empty Threshold.
3752 			 */
3753 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3754 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3755 			/* Disable Store & Forward mode for Tx. */
3756 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3757 			    TX_JUMBO_ENA | TX_STFW_DIS);
3758 		} else {
3759 			/* Enable Store & Forward mode for Tx. */
3760 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3761 			    TX_JUMBO_DIS | TX_STFW_ENA);
3762 		}
3763 	}
3764 
3765 	/*
3766 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3767 	 * arbiter as we don't use Sync Tx queue.
3768 	 */
3769 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3770 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3771 	/* Enable the RAM Interface Arbiter. */
3772 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3773 
3774 	/* Setup RAM buffer. */
3775 	msk_set_rambuffer(sc_if);
3776 
3777 	/* Disable Tx sync Queue. */
3778 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3779 
3780 	/* Setup Tx Queue Bus Memory Interface. */
3781 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3782 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3783 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3784 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3785 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3786 	    sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3787 		/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3788 		CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV);
3789 	}
3790 
3791 	/* Setup Rx Queue Bus Memory Interface. */
3792 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3793 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3794 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3795 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3796         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3797 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3798 		/* MAC Rx RAM Read is controlled by hardware. */
3799                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3800 	}
3801 
3802 	msk_set_prefetch(sc, sc_if->msk_txq,
3803 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3804 	msk_init_tx_ring(sc_if);
3805 
3806 	/* Disable Rx checksum offload and RSS hash. */
3807 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3808 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3809 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3810 		msk_set_prefetch(sc, sc_if->msk_rxq,
3811 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3812 		    MSK_JUMBO_RX_RING_CNT - 1);
3813 		error = msk_init_jumbo_rx_ring(sc_if);
3814 	 } else {
3815 		msk_set_prefetch(sc, sc_if->msk_rxq,
3816 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3817 		    MSK_RX_RING_CNT - 1);
3818 		error = msk_init_rx_ring(sc_if);
3819 	}
3820 	if (error != 0) {
3821 		device_printf(sc_if->msk_if_dev,
3822 		    "initialization failed: no memory for Rx buffers\n");
3823 		msk_stop(sc_if);
3824 		return;
3825 	}
3826 
3827 	/* Configure interrupt handling. */
3828 	if (sc_if->msk_port == MSK_PORT_A) {
3829 		sc->msk_intrmask |= Y2_IS_PORT_A;
3830 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3831 	} else {
3832 		sc->msk_intrmask |= Y2_IS_PORT_B;
3833 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3834 	}
3835 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3836 	CSR_READ_4(sc, B0_HWE_IMSK);
3837 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3838 	CSR_READ_4(sc, B0_IMSK);
3839 
3840 	sc_if->msk_link = 0;
3841 	mii_mediachg(mii);
3842 
3843 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3844 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3845 
3846 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3847 }
3848 
3849 static void
3850 msk_set_rambuffer(struct msk_if_softc *sc_if)
3851 {
3852 	struct msk_softc *sc;
3853 	int ltpp, utpp;
3854 
3855 	sc = sc_if->msk_softc;
3856 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3857 		return;
3858 
3859 	/* Setup Rx Queue. */
3860 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3861 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3862 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3863 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3864 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3865 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3866 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3867 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3868 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3869 
3870 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3871 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3872 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3873 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3874 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3875 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3876 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3877 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3878 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3879 
3880 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3881 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3882 
3883 	/* Setup Tx Queue. */
3884 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3885 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3886 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3887 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3888 	    sc->msk_txqend[sc_if->msk_port] / 8);
3889 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3890 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3891 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3892 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3893 	/* Enable Store & Forward for Tx side. */
3894 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3895 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3896 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3897 }
3898 
3899 static void
3900 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3901     uint32_t count)
3902 {
3903 
3904 	/* Reset the prefetch unit. */
3905 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3906 	    PREF_UNIT_RST_SET);
3907 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3908 	    PREF_UNIT_RST_CLR);
3909 	/* Set LE base address. */
3910 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3911 	    MSK_ADDR_LO(addr));
3912 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3913 	    MSK_ADDR_HI(addr));
3914 	/* Set the list last index. */
3915 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3916 	    count);
3917 	/* Turn on prefetch unit. */
3918 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3919 	    PREF_UNIT_OP_ON);
3920 	/* Dummy read to ensure write. */
3921 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3922 }
3923 
3924 static void
3925 msk_stop(struct msk_if_softc *sc_if)
3926 {
3927 	struct msk_softc *sc;
3928 	struct msk_txdesc *txd;
3929 	struct msk_rxdesc *rxd;
3930 	struct msk_rxdesc *jrxd;
3931 	struct ifnet *ifp;
3932 	uint32_t val;
3933 	int i;
3934 
3935 	MSK_IF_LOCK_ASSERT(sc_if);
3936 	sc = sc_if->msk_softc;
3937 	ifp = sc_if->msk_ifp;
3938 
3939 	callout_stop(&sc_if->msk_tick_ch);
3940 	sc_if->msk_watchdog_timer = 0;
3941 
3942 	/* Disable interrupts. */
3943 	if (sc_if->msk_port == MSK_PORT_A) {
3944 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
3945 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3946 	} else {
3947 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
3948 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3949 	}
3950 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3951 	CSR_READ_4(sc, B0_HWE_IMSK);
3952 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3953 	CSR_READ_4(sc, B0_IMSK);
3954 
3955 	/* Disable Tx/Rx MAC. */
3956 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3957 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3958 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3959 	/* Read again to ensure writing. */
3960 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3961 
3962 	/* Stop Tx BMU. */
3963 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3964 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3965 	for (i = 0; i < MSK_TIMEOUT; i++) {
3966 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3967 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3968 			    BMU_STOP);
3969 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3970 		} else
3971 			break;
3972 		DELAY(1);
3973 	}
3974 	if (i == MSK_TIMEOUT)
3975 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3976 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3977 	    RB_RST_SET | RB_DIS_OP_MD);
3978 
3979 	/* Disable all GMAC interrupt. */
3980 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3981 	/* Disable PHY interrupt. */
3982 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3983 
3984 	/* Disable the RAM Interface Arbiter. */
3985 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3986 
3987 	/* Reset the PCI FIFO of the async Tx queue */
3988 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3989 	    BMU_RST_SET | BMU_FIFO_RST);
3990 
3991 	/* Reset the Tx prefetch units. */
3992 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3993 	    PREF_UNIT_RST_SET);
3994 
3995 	/* Reset the RAM Buffer async Tx queue. */
3996 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3997 
3998 	/* Reset Tx MAC FIFO. */
3999 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
4000 	/* Set Pause Off. */
4001 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
4002 
4003 	/*
4004 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
4005 	 * reach the end of packet and since we can't make sure that we have
4006 	 * incoming data, we must reset the BMU while it is not during a DMA
4007 	 * transfer. Since it is possible that the Rx path is still active,
4008 	 * the Rx RAM buffer will be stopped first, so any possible incoming
4009 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
4010 	 * BMU is polled until any DMA in progress is ended and only then it
4011 	 * will be reset.
4012 	 */
4013 
4014 	/* Disable the RAM Buffer receive queue. */
4015 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4016 	for (i = 0; i < MSK_TIMEOUT; i++) {
4017 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4018 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4019 			break;
4020 		DELAY(1);
4021 	}
4022 	if (i == MSK_TIMEOUT)
4023 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4024 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4025 	    BMU_RST_SET | BMU_FIFO_RST);
4026 	/* Reset the Rx prefetch unit. */
4027 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4028 	    PREF_UNIT_RST_SET);
4029 	/* Reset the RAM Buffer receive queue. */
4030 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4031 	/* Reset Rx MAC FIFO. */
4032 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4033 
4034 	/* Free Rx and Tx mbufs still in the queues. */
4035 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4036 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4037 		if (rxd->rx_m != NULL) {
4038 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4039 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4040 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4041 			    rxd->rx_dmamap);
4042 			m_freem(rxd->rx_m);
4043 			rxd->rx_m = NULL;
4044 		}
4045 	}
4046 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4047 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4048 		if (jrxd->rx_m != NULL) {
4049 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4050 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4051 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4052 			    jrxd->rx_dmamap);
4053 			m_freem(jrxd->rx_m);
4054 			jrxd->rx_m = NULL;
4055 		}
4056 	}
4057 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4058 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4059 		if (txd->tx_m != NULL) {
4060 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4061 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4062 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4063 			    txd->tx_dmamap);
4064 			m_freem(txd->tx_m);
4065 			txd->tx_m = NULL;
4066 		}
4067 	}
4068 
4069 	/*
4070 	 * Mark the interface down.
4071 	 */
4072 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4073 	sc_if->msk_link = 0;
4074 }
4075 
4076 static int
4077 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4078 {
4079 	int error, value;
4080 
4081 	if (!arg1)
4082 		return (EINVAL);
4083 	value = *(int *)arg1;
4084 	error = sysctl_handle_int(oidp, &value, 0, req);
4085 	if (error || !req->newptr)
4086 		return (error);
4087 	if (value < low || value > high)
4088 		return (EINVAL);
4089 	*(int *)arg1 = value;
4090 
4091 	return (0);
4092 }
4093 
4094 static int
4095 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4096 {
4097 
4098 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4099 	    MSK_PROC_MAX));
4100 }
4101