xref: /freebsd/sys/dev/msk/if_msk.c (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * SPDX-License-Identifier: BSD-4-Clause AND BSD-3-Clause
50  *
51  * Copyright (c) 1997, 1998, 1999, 2000
52  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
53  *
54  * Redistribution and use in source and binary forms, with or without
55  * modification, are permitted provided that the following conditions
56  * are met:
57  * 1. Redistributions of source code must retain the above copyright
58  *    notice, this list of conditions and the following disclaimer.
59  * 2. Redistributions in binary form must reproduce the above copyright
60  *    notice, this list of conditions and the following disclaimer in the
61  *    documentation and/or other materials provided with the distribution.
62  * 3. All advertising materials mentioning features or use of this software
63  *    must display the following acknowledgement:
64  *	This product includes software developed by Bill Paul.
65  * 4. Neither the name of the author nor the names of any co-contributors
66  *    may be used to endorse or promote products derived from this software
67  *    without specific prior written permission.
68  *
69  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
70  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
71  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
72  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
79  * THE POSSIBILITY OF SUCH DAMAGE.
80  */
81 /*-
82  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
83  *
84  * Permission to use, copy, modify, and distribute this software for any
85  * purpose with or without fee is hereby granted, provided that the above
86  * copyright notice and this permission notice appear in all copies.
87  *
88  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
89  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
90  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
91  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
92  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
93  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
94  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
95  */
96 
97 /*
98  * Device driver for the Marvell Yukon II Ethernet controller.
99  * Due to lack of documentation, this driver is based on the code from
100  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
101  */
102 
103 #include <sys/cdefs.h>
104 __FBSDID("$FreeBSD$");
105 
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/bus.h>
109 #include <sys/endian.h>
110 #include <sys/mbuf.h>
111 #include <sys/malloc.h>
112 #include <sys/kernel.h>
113 #include <sys/module.h>
114 #include <sys/socket.h>
115 #include <sys/sockio.h>
116 #include <sys/queue.h>
117 #include <sys/sysctl.h>
118 
119 #include <net/bpf.h>
120 #include <net/ethernet.h>
121 #include <net/if.h>
122 #include <net/if_var.h>
123 #include <net/if_arp.h>
124 #include <net/if_dl.h>
125 #include <net/if_media.h>
126 #include <net/if_types.h>
127 #include <net/if_vlan_var.h>
128 
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/tcp.h>
133 #include <netinet/udp.h>
134 
135 #include <machine/bus.h>
136 #include <machine/in_cksum.h>
137 #include <machine/resource.h>
138 #include <sys/rman.h>
139 
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142 
143 #include <dev/pci/pcireg.h>
144 #include <dev/pci/pcivar.h>
145 
146 #include <dev/msk/if_mskreg.h>
147 
148 MODULE_DEPEND(msk, pci, 1, 1, 1);
149 MODULE_DEPEND(msk, ether, 1, 1, 1);
150 MODULE_DEPEND(msk, miibus, 1, 1, 1);
151 
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 /* Tunables. */
156 static int msi_disable = 0;
157 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
158 static int legacy_intr = 0;
159 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
160 static int jumbo_disable = 0;
161 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
162 
163 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
164 
165 /*
166  * Devices supported by this driver.
167  */
168 static const struct msk_product {
169 	uint16_t	msk_vendorid;
170 	uint16_t	msk_deviceid;
171 	const char	*msk_name;
172 } msk_products[] = {
173 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
174 	    "SK-9Sxx Gigabit Ethernet" },
175 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
176 	    "SK-9Exx Gigabit Ethernet"},
177 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
178 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
179 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
180 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
181 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
182 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
183 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
184 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
185 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
186 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
187 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
188 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
189 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
190 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
191 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
192 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
193 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
194 	    "Marvell Yukon 88E8035 Fast Ethernet" },
195 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
196 	    "Marvell Yukon 88E8036 Fast Ethernet" },
197 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
198 	    "Marvell Yukon 88E8038 Fast Ethernet" },
199 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
200 	    "Marvell Yukon 88E8039 Fast Ethernet" },
201 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
202 	    "Marvell Yukon 88E8040 Fast Ethernet" },
203 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
204 	    "Marvell Yukon 88E8040T Fast Ethernet" },
205 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
206 	    "Marvell Yukon 88E8042 Fast Ethernet" },
207 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
208 	    "Marvell Yukon 88E8048 Fast Ethernet" },
209 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
210 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
211 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
212 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
213 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
214 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
215 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
216 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
217 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
218 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
219 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
220 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
221 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
222 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
223 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
224 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
225 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
226 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
227 	{ VENDORID_MARVELL, DEVICEID_MRVL_436D,
228 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
229 	{ VENDORID_MARVELL, DEVICEID_MRVL_4370,
230 	    "Marvell Yukon 88E8075 Gigabit Ethernet" },
231 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
232 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
233 	{ VENDORID_MARVELL, DEVICEID_MRVL_4381,
234 	    "Marvell Yukon 88E8059 Gigabit Ethernet" },
235 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
236 	    "D-Link 550SX Gigabit Ethernet" },
237 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560SX,
238 	    "D-Link 560SX Gigabit Ethernet" },
239 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
240 	    "D-Link 560T Gigabit Ethernet" }
241 };
242 
243 static const char *model_name[] = {
244 	"Yukon XL",
245         "Yukon EC Ultra",
246         "Yukon EX",
247         "Yukon EC",
248         "Yukon FE",
249         "Yukon FE+",
250         "Yukon Supreme",
251         "Yukon Ultra 2",
252         "Yukon Unknown",
253         "Yukon Optima",
254 };
255 
256 static int mskc_probe(device_t);
257 static int mskc_attach(device_t);
258 static int mskc_detach(device_t);
259 static int mskc_shutdown(device_t);
260 static int mskc_setup_rambuffer(struct msk_softc *);
261 static int mskc_suspend(device_t);
262 static int mskc_resume(device_t);
263 static bus_dma_tag_t mskc_get_dma_tag(device_t, device_t);
264 static void mskc_reset(struct msk_softc *);
265 
266 static int msk_probe(device_t);
267 static int msk_attach(device_t);
268 static int msk_detach(device_t);
269 
270 static void msk_tick(void *);
271 static void msk_intr(void *);
272 static void msk_intr_phy(struct msk_if_softc *);
273 static void msk_intr_gmac(struct msk_if_softc *);
274 static __inline void msk_rxput(struct msk_if_softc *);
275 static int msk_handle_events(struct msk_softc *);
276 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
277 static void msk_intr_hwerr(struct msk_softc *);
278 #ifndef __NO_STRICT_ALIGNMENT
279 static __inline void msk_fixup_rx(struct mbuf *);
280 #endif
281 static __inline void msk_rxcsum(struct msk_if_softc *, uint32_t, struct mbuf *);
282 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
283 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
284 static void msk_txeof(struct msk_if_softc *, int);
285 static int msk_encap(struct msk_if_softc *, struct mbuf **);
286 static void msk_start(struct ifnet *);
287 static void msk_start_locked(struct ifnet *);
288 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
289 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
290 static void msk_set_rambuffer(struct msk_if_softc *);
291 static void msk_set_tx_stfwd(struct msk_if_softc *);
292 static void msk_init(void *);
293 static void msk_init_locked(struct msk_if_softc *);
294 static void msk_stop(struct msk_if_softc *);
295 static void msk_watchdog(struct msk_if_softc *);
296 static int msk_mediachange(struct ifnet *);
297 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
298 static void msk_phy_power(struct msk_softc *, int);
299 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
300 static int msk_status_dma_alloc(struct msk_softc *);
301 static void msk_status_dma_free(struct msk_softc *);
302 static int msk_txrx_dma_alloc(struct msk_if_softc *);
303 static int msk_rx_dma_jalloc(struct msk_if_softc *);
304 static void msk_txrx_dma_free(struct msk_if_softc *);
305 static void msk_rx_dma_jfree(struct msk_if_softc *);
306 static int msk_rx_fill(struct msk_if_softc *, int);
307 static int msk_init_rx_ring(struct msk_if_softc *);
308 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
309 static void msk_init_tx_ring(struct msk_if_softc *);
310 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
311 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
312 static int msk_newbuf(struct msk_if_softc *, int);
313 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
314 
315 static int msk_phy_readreg(struct msk_if_softc *, int, int);
316 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
317 static int msk_miibus_readreg(device_t, int, int);
318 static int msk_miibus_writereg(device_t, int, int, int);
319 static void msk_miibus_statchg(device_t);
320 
321 static void msk_rxfilter(struct msk_if_softc *);
322 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
323 
324 static void msk_stats_clear(struct msk_if_softc *);
325 static void msk_stats_update(struct msk_if_softc *);
326 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
327 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
328 static void msk_sysctl_node(struct msk_if_softc *);
329 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
330 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
331 
332 static device_method_t mskc_methods[] = {
333 	/* Device interface */
334 	DEVMETHOD(device_probe,		mskc_probe),
335 	DEVMETHOD(device_attach,	mskc_attach),
336 	DEVMETHOD(device_detach,	mskc_detach),
337 	DEVMETHOD(device_suspend,	mskc_suspend),
338 	DEVMETHOD(device_resume,	mskc_resume),
339 	DEVMETHOD(device_shutdown,	mskc_shutdown),
340 
341 	DEVMETHOD(bus_get_dma_tag,	mskc_get_dma_tag),
342 
343 	DEVMETHOD_END
344 };
345 
346 static driver_t mskc_driver = {
347 	"mskc",
348 	mskc_methods,
349 	sizeof(struct msk_softc)
350 };
351 
352 static devclass_t mskc_devclass;
353 
354 static device_method_t msk_methods[] = {
355 	/* Device interface */
356 	DEVMETHOD(device_probe,		msk_probe),
357 	DEVMETHOD(device_attach,	msk_attach),
358 	DEVMETHOD(device_detach,	msk_detach),
359 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
360 
361 	/* MII interface */
362 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
363 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
364 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
365 
366 	DEVMETHOD_END
367 };
368 
369 static driver_t msk_driver = {
370 	"msk",
371 	msk_methods,
372 	sizeof(struct msk_if_softc)
373 };
374 
375 static devclass_t msk_devclass;
376 
377 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, NULL, NULL);
378 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, NULL, NULL);
379 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, NULL, NULL);
380 
381 static struct resource_spec msk_res_spec_io[] = {
382 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
383 	{ -1,			0,		0 }
384 };
385 
386 static struct resource_spec msk_res_spec_mem[] = {
387 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
388 	{ -1,			0,		0 }
389 };
390 
391 static struct resource_spec msk_irq_spec_legacy[] = {
392 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
393 	{ -1,			0,		0 }
394 };
395 
396 static struct resource_spec msk_irq_spec_msi[] = {
397 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
398 	{ -1,			0,		0 }
399 };
400 
401 static int
402 msk_miibus_readreg(device_t dev, int phy, int reg)
403 {
404 	struct msk_if_softc *sc_if;
405 
406 	sc_if = device_get_softc(dev);
407 
408 	return (msk_phy_readreg(sc_if, phy, reg));
409 }
410 
411 static int
412 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
413 {
414 	struct msk_softc *sc;
415 	int i, val;
416 
417 	sc = sc_if->msk_softc;
418 
419         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
420 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
421 
422 	for (i = 0; i < MSK_TIMEOUT; i++) {
423 		DELAY(1);
424 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
425 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
426 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
427 			break;
428 		}
429 	}
430 
431 	if (i == MSK_TIMEOUT) {
432 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
433 		val = 0;
434 	}
435 
436 	return (val);
437 }
438 
439 static int
440 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
441 {
442 	struct msk_if_softc *sc_if;
443 
444 	sc_if = device_get_softc(dev);
445 
446 	return (msk_phy_writereg(sc_if, phy, reg, val));
447 }
448 
449 static int
450 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
451 {
452 	struct msk_softc *sc;
453 	int i;
454 
455 	sc = sc_if->msk_softc;
456 
457 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
458         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
459 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
460 	for (i = 0; i < MSK_TIMEOUT; i++) {
461 		DELAY(1);
462 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
463 		    GM_SMI_CT_BUSY) == 0)
464 			break;
465 	}
466 	if (i == MSK_TIMEOUT)
467 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
468 
469 	return (0);
470 }
471 
472 static void
473 msk_miibus_statchg(device_t dev)
474 {
475 	struct msk_softc *sc;
476 	struct msk_if_softc *sc_if;
477 	struct mii_data *mii;
478 	struct ifnet *ifp;
479 	uint32_t gmac;
480 
481 	sc_if = device_get_softc(dev);
482 	sc = sc_if->msk_softc;
483 
484 	MSK_IF_LOCK_ASSERT(sc_if);
485 
486 	mii = device_get_softc(sc_if->msk_miibus);
487 	ifp = sc_if->msk_ifp;
488 	if (mii == NULL || ifp == NULL ||
489 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
490 		return;
491 
492 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
493 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
494 	    (IFM_AVALID | IFM_ACTIVE)) {
495 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
496 		case IFM_10_T:
497 		case IFM_100_TX:
498 			sc_if->msk_flags |= MSK_FLAG_LINK;
499 			break;
500 		case IFM_1000_T:
501 		case IFM_1000_SX:
502 		case IFM_1000_LX:
503 		case IFM_1000_CX:
504 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
505 				sc_if->msk_flags |= MSK_FLAG_LINK;
506 			break;
507 		default:
508 			break;
509 		}
510 	}
511 
512 	if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) {
513 		/* Enable Tx FIFO Underrun. */
514 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
515 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
516 		/*
517 		 * Because mii(4) notify msk(4) that it detected link status
518 		 * change, there is no need to enable automatic
519 		 * speed/flow-control/duplex updates.
520 		 */
521 		gmac = GM_GPCR_AU_ALL_DIS;
522 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
523 		case IFM_1000_SX:
524 		case IFM_1000_T:
525 			gmac |= GM_GPCR_SPEED_1000;
526 			break;
527 		case IFM_100_TX:
528 			gmac |= GM_GPCR_SPEED_100;
529 			break;
530 		case IFM_10_T:
531 			break;
532 		}
533 
534 		if ((IFM_OPTIONS(mii->mii_media_active) &
535 		    IFM_ETH_RXPAUSE) == 0)
536 			gmac |= GM_GPCR_FC_RX_DIS;
537 		if ((IFM_OPTIONS(mii->mii_media_active) &
538 		     IFM_ETH_TXPAUSE) == 0)
539 			gmac |= GM_GPCR_FC_TX_DIS;
540 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
541 			gmac |= GM_GPCR_DUP_FULL;
542 		else
543 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
544 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
545 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
546 		/* Read again to ensure writing. */
547 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
548 		gmac = GMC_PAUSE_OFF;
549 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
550 			if ((IFM_OPTIONS(mii->mii_media_active) &
551 			    IFM_ETH_RXPAUSE) != 0)
552 				gmac = GMC_PAUSE_ON;
553 		}
554 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
555 
556 		/* Enable PHY interrupt for FIFO underrun/overflow. */
557 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
558 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
559 	} else {
560 		/*
561 		 * Link state changed to down.
562 		 * Disable PHY interrupts.
563 		 */
564 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
565 		/* Disable Rx/Tx MAC. */
566 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
567 		if ((gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) != 0) {
568 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
569 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
570 			/* Read again to ensure writing. */
571 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
572 		}
573 	}
574 }
575 
576 static u_int
577 msk_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
578 {
579 	uint32_t *mchash = arg;
580 	uint32_t crc;
581 
582 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
583 	/* Just want the 6 least significant bits. */
584 	crc &= 0x3f;
585 	/* Set the corresponding bit in the hash table. */
586 	mchash[crc >> 5] |= 1 << (crc & 0x1f);
587 
588 	return (1);
589 }
590 
591 static void
592 msk_rxfilter(struct msk_if_softc *sc_if)
593 {
594 	struct msk_softc *sc;
595 	struct ifnet *ifp;
596 	uint32_t mchash[2];
597 	uint16_t mode;
598 
599 	sc = sc_if->msk_softc;
600 
601 	MSK_IF_LOCK_ASSERT(sc_if);
602 
603 	ifp = sc_if->msk_ifp;
604 
605 	bzero(mchash, sizeof(mchash));
606 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
607 	if ((ifp->if_flags & IFF_PROMISC) != 0)
608 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
609 	else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
610 		mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
611 		mchash[0] = 0xffff;
612 		mchash[1] = 0xffff;
613 	} else {
614 		mode |= GM_RXCR_UCF_ENA;
615 		if_foreach_llmaddr(ifp, msk_hash_maddr, mchash);
616 		if (mchash[0] != 0 || mchash[1] != 0)
617 			mode |= GM_RXCR_MCF_ENA;
618 	}
619 
620 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
621 	    mchash[0] & 0xffff);
622 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
623 	    (mchash[0] >> 16) & 0xffff);
624 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
625 	    mchash[1] & 0xffff);
626 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
627 	    (mchash[1] >> 16) & 0xffff);
628 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
629 }
630 
631 static void
632 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
633 {
634 	struct msk_softc *sc;
635 
636 	sc = sc_if->msk_softc;
637 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
638 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
639 		    RX_VLAN_STRIP_ON);
640 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
641 		    TX_VLAN_TAG_ON);
642 	} else {
643 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
644 		    RX_VLAN_STRIP_OFF);
645 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
646 		    TX_VLAN_TAG_OFF);
647 	}
648 }
649 
650 static int
651 msk_rx_fill(struct msk_if_softc *sc_if, int jumbo)
652 {
653 	uint16_t idx;
654 	int i;
655 
656 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
657 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
658 		/* Wait until controller executes OP_TCPSTART command. */
659 		for (i = 100; i > 0; i--) {
660 			DELAY(100);
661 			idx = CSR_READ_2(sc_if->msk_softc,
662 			    Y2_PREF_Q_ADDR(sc_if->msk_rxq,
663 			    PREF_UNIT_GET_IDX_REG));
664 			if (idx != 0)
665 				break;
666 		}
667 		if (i == 0) {
668 			device_printf(sc_if->msk_if_dev,
669 			    "prefetch unit stuck?\n");
670 			return (ETIMEDOUT);
671 		}
672 		/*
673 		 * Fill consumed LE with free buffer. This can be done
674 		 * in Rx handler but we don't want to add special code
675 		 * in fast handler.
676 		 */
677 		if (jumbo > 0) {
678 			if (msk_jumbo_newbuf(sc_if, 0) != 0)
679 				return (ENOBUFS);
680 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
681 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
682 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
683 		} else {
684 			if (msk_newbuf(sc_if, 0) != 0)
685 				return (ENOBUFS);
686 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
687 			    sc_if->msk_cdata.msk_rx_ring_map,
688 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
689 		}
690 		sc_if->msk_cdata.msk_rx_prod = 0;
691 		CSR_WRITE_2(sc_if->msk_softc,
692 		    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
693 		    sc_if->msk_cdata.msk_rx_prod);
694 	}
695 	return (0);
696 }
697 
698 static int
699 msk_init_rx_ring(struct msk_if_softc *sc_if)
700 {
701 	struct msk_ring_data *rd;
702 	struct msk_rxdesc *rxd;
703 	int i, nbuf, prod;
704 
705 	MSK_IF_LOCK_ASSERT(sc_if);
706 
707 	sc_if->msk_cdata.msk_rx_cons = 0;
708 	sc_if->msk_cdata.msk_rx_prod = 0;
709 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
710 
711 	rd = &sc_if->msk_rdata;
712 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
713 	for (i = prod = 0; i < MSK_RX_RING_CNT; i++) {
714 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
715 		rxd->rx_m = NULL;
716 		rxd->rx_le = &rd->msk_rx_ring[prod];
717 		MSK_INC(prod, MSK_RX_RING_CNT);
718 	}
719 	nbuf = MSK_RX_BUF_CNT;
720 	prod = 0;
721 	/* Have controller know how to compute Rx checksum. */
722 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
723 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
724 #ifdef MSK_64BIT_DMA
725 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
726 		rxd->rx_m = NULL;
727 		rxd->rx_le = &rd->msk_rx_ring[prod];
728 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
729 		    ETHER_HDR_LEN);
730 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
731 		MSK_INC(prod, MSK_RX_RING_CNT);
732 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
733 #endif
734 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
735 		rxd->rx_m = NULL;
736 		rxd->rx_le = &rd->msk_rx_ring[prod];
737 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
738 		    ETHER_HDR_LEN);
739 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
740 		MSK_INC(prod, MSK_RX_RING_CNT);
741 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
742 		nbuf--;
743 	}
744 	for (i = 0; i < nbuf; i++) {
745 		if (msk_newbuf(sc_if, prod) != 0)
746 			return (ENOBUFS);
747 		MSK_RX_INC(prod, MSK_RX_RING_CNT);
748 	}
749 
750 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
751 	    sc_if->msk_cdata.msk_rx_ring_map,
752 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
753 
754 	/* Update prefetch unit. */
755 	sc_if->msk_cdata.msk_rx_prod = prod;
756 	CSR_WRITE_2(sc_if->msk_softc,
757 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
758 	    (sc_if->msk_cdata.msk_rx_prod + MSK_RX_RING_CNT - 1) %
759 	    MSK_RX_RING_CNT);
760 	if (msk_rx_fill(sc_if, 0) != 0)
761 		return (ENOBUFS);
762 	return (0);
763 }
764 
765 static int
766 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
767 {
768 	struct msk_ring_data *rd;
769 	struct msk_rxdesc *rxd;
770 	int i, nbuf, prod;
771 
772 	MSK_IF_LOCK_ASSERT(sc_if);
773 
774 	sc_if->msk_cdata.msk_rx_cons = 0;
775 	sc_if->msk_cdata.msk_rx_prod = 0;
776 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
777 
778 	rd = &sc_if->msk_rdata;
779 	bzero(rd->msk_jumbo_rx_ring,
780 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
781 	for (i = prod = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
782 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
783 		rxd->rx_m = NULL;
784 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
785 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
786 	}
787 	nbuf = MSK_RX_BUF_CNT;
788 	prod = 0;
789 	/* Have controller know how to compute Rx checksum. */
790 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
791 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
792 #ifdef MSK_64BIT_DMA
793 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
794 		rxd->rx_m = NULL;
795 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
796 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
797 		    ETHER_HDR_LEN);
798 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
799 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
800 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
801 #endif
802 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
803 		rxd->rx_m = NULL;
804 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
805 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
806 		    ETHER_HDR_LEN);
807 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
808 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
809 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
810 		nbuf--;
811 	}
812 	for (i = 0; i < nbuf; i++) {
813 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
814 			return (ENOBUFS);
815 		MSK_RX_INC(prod, MSK_JUMBO_RX_RING_CNT);
816 	}
817 
818 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
819 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
820 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
821 
822 	/* Update prefetch unit. */
823 	sc_if->msk_cdata.msk_rx_prod = prod;
824 	CSR_WRITE_2(sc_if->msk_softc,
825 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
826 	    (sc_if->msk_cdata.msk_rx_prod + MSK_JUMBO_RX_RING_CNT - 1) %
827 	    MSK_JUMBO_RX_RING_CNT);
828 	if (msk_rx_fill(sc_if, 1) != 0)
829 		return (ENOBUFS);
830 	return (0);
831 }
832 
833 static void
834 msk_init_tx_ring(struct msk_if_softc *sc_if)
835 {
836 	struct msk_ring_data *rd;
837 	struct msk_txdesc *txd;
838 	int i;
839 
840 	sc_if->msk_cdata.msk_tso_mtu = 0;
841 	sc_if->msk_cdata.msk_last_csum = 0;
842 	sc_if->msk_cdata.msk_tx_prod = 0;
843 	sc_if->msk_cdata.msk_tx_cons = 0;
844 	sc_if->msk_cdata.msk_tx_cnt = 0;
845 	sc_if->msk_cdata.msk_tx_high_addr = 0;
846 
847 	rd = &sc_if->msk_rdata;
848 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
849 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
850 		txd = &sc_if->msk_cdata.msk_txdesc[i];
851 		txd->tx_m = NULL;
852 		txd->tx_le = &rd->msk_tx_ring[i];
853 	}
854 
855 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
856 	    sc_if->msk_cdata.msk_tx_ring_map,
857 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
858 }
859 
860 static __inline void
861 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
862 {
863 	struct msk_rx_desc *rx_le;
864 	struct msk_rxdesc *rxd;
865 	struct mbuf *m;
866 
867 #ifdef MSK_64BIT_DMA
868 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
869 	rx_le = rxd->rx_le;
870 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
871 	MSK_INC(idx, MSK_RX_RING_CNT);
872 #endif
873 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
874 	m = rxd->rx_m;
875 	rx_le = rxd->rx_le;
876 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
877 }
878 
879 static __inline void
880 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
881 {
882 	struct msk_rx_desc *rx_le;
883 	struct msk_rxdesc *rxd;
884 	struct mbuf *m;
885 
886 #ifdef MSK_64BIT_DMA
887 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
888 	rx_le = rxd->rx_le;
889 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
890 	MSK_INC(idx, MSK_JUMBO_RX_RING_CNT);
891 #endif
892 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
893 	m = rxd->rx_m;
894 	rx_le = rxd->rx_le;
895 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
896 }
897 
898 static int
899 msk_newbuf(struct msk_if_softc *sc_if, int idx)
900 {
901 	struct msk_rx_desc *rx_le;
902 	struct msk_rxdesc *rxd;
903 	struct mbuf *m;
904 	bus_dma_segment_t segs[1];
905 	bus_dmamap_t map;
906 	int nsegs;
907 
908 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
909 	if (m == NULL)
910 		return (ENOBUFS);
911 
912 	m->m_len = m->m_pkthdr.len = MCLBYTES;
913 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
914 		m_adj(m, ETHER_ALIGN);
915 #ifndef __NO_STRICT_ALIGNMENT
916 	else
917 		m_adj(m, MSK_RX_BUF_ALIGN);
918 #endif
919 
920 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
921 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
922 	    BUS_DMA_NOWAIT) != 0) {
923 		m_freem(m);
924 		return (ENOBUFS);
925 	}
926 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
927 
928 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
929 #ifdef MSK_64BIT_DMA
930 	rx_le = rxd->rx_le;
931 	rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr));
932 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
933 	MSK_INC(idx, MSK_RX_RING_CNT);
934 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
935 #endif
936 	if (rxd->rx_m != NULL) {
937 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
938 		    BUS_DMASYNC_POSTREAD);
939 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
940 		rxd->rx_m = NULL;
941 	}
942 	map = rxd->rx_dmamap;
943 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
944 	sc_if->msk_cdata.msk_rx_sparemap = map;
945 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
946 	    BUS_DMASYNC_PREREAD);
947 	rxd->rx_m = m;
948 	rx_le = rxd->rx_le;
949 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
950 	rx_le->msk_control =
951 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
952 
953 	return (0);
954 }
955 
956 static int
957 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
958 {
959 	struct msk_rx_desc *rx_le;
960 	struct msk_rxdesc *rxd;
961 	struct mbuf *m;
962 	bus_dma_segment_t segs[1];
963 	bus_dmamap_t map;
964 	int nsegs;
965 
966 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
967 	if (m == NULL)
968 		return (ENOBUFS);
969 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
970 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
971 		m_adj(m, ETHER_ALIGN);
972 #ifndef __NO_STRICT_ALIGNMENT
973 	else
974 		m_adj(m, MSK_RX_BUF_ALIGN);
975 #endif
976 
977 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
978 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
979 	    BUS_DMA_NOWAIT) != 0) {
980 		m_freem(m);
981 		return (ENOBUFS);
982 	}
983 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
984 
985 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
986 #ifdef MSK_64BIT_DMA
987 	rx_le = rxd->rx_le;
988 	rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr));
989 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
990 	MSK_INC(idx, MSK_JUMBO_RX_RING_CNT);
991 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
992 #endif
993 	if (rxd->rx_m != NULL) {
994 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
995 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
996 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
997 		    rxd->rx_dmamap);
998 		rxd->rx_m = NULL;
999 	}
1000 	map = rxd->rx_dmamap;
1001 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
1002 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
1003 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
1004 	    BUS_DMASYNC_PREREAD);
1005 	rxd->rx_m = m;
1006 	rx_le = rxd->rx_le;
1007 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
1008 	rx_le->msk_control =
1009 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
1010 
1011 	return (0);
1012 }
1013 
1014 /*
1015  * Set media options.
1016  */
1017 static int
1018 msk_mediachange(struct ifnet *ifp)
1019 {
1020 	struct msk_if_softc *sc_if;
1021 	struct mii_data	*mii;
1022 	int error;
1023 
1024 	sc_if = ifp->if_softc;
1025 
1026 	MSK_IF_LOCK(sc_if);
1027 	mii = device_get_softc(sc_if->msk_miibus);
1028 	error = mii_mediachg(mii);
1029 	MSK_IF_UNLOCK(sc_if);
1030 
1031 	return (error);
1032 }
1033 
1034 /*
1035  * Report current media status.
1036  */
1037 static void
1038 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1039 {
1040 	struct msk_if_softc *sc_if;
1041 	struct mii_data	*mii;
1042 
1043 	sc_if = ifp->if_softc;
1044 	MSK_IF_LOCK(sc_if);
1045 	if ((ifp->if_flags & IFF_UP) == 0) {
1046 		MSK_IF_UNLOCK(sc_if);
1047 		return;
1048 	}
1049 	mii = device_get_softc(sc_if->msk_miibus);
1050 
1051 	mii_pollstat(mii);
1052 	ifmr->ifm_active = mii->mii_media_active;
1053 	ifmr->ifm_status = mii->mii_media_status;
1054 	MSK_IF_UNLOCK(sc_if);
1055 }
1056 
1057 static int
1058 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1059 {
1060 	struct msk_if_softc *sc_if;
1061 	struct ifreq *ifr;
1062 	struct mii_data	*mii;
1063 	int error, mask, reinit;
1064 
1065 	sc_if = ifp->if_softc;
1066 	ifr = (struct ifreq *)data;
1067 	error = 0;
1068 
1069 	switch(command) {
1070 	case SIOCSIFMTU:
1071 		MSK_IF_LOCK(sc_if);
1072 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
1073 			error = EINVAL;
1074 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1075 			if (ifr->ifr_mtu > ETHERMTU) {
1076 				if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
1077 					error = EINVAL;
1078 					MSK_IF_UNLOCK(sc_if);
1079 					break;
1080 				}
1081 				if ((sc_if->msk_flags &
1082 				    MSK_FLAG_JUMBO_NOCSUM) != 0) {
1083 					ifp->if_hwassist &=
1084 					    ~(MSK_CSUM_FEATURES | CSUM_TSO);
1085 					ifp->if_capenable &=
1086 					    ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1087 					VLAN_CAPABILITIES(ifp);
1088 				}
1089 			}
1090 			ifp->if_mtu = ifr->ifr_mtu;
1091 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1092 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1093 				msk_init_locked(sc_if);
1094 			}
1095 		}
1096 		MSK_IF_UNLOCK(sc_if);
1097 		break;
1098 	case SIOCSIFFLAGS:
1099 		MSK_IF_LOCK(sc_if);
1100 		if ((ifp->if_flags & IFF_UP) != 0) {
1101 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1102 			    ((ifp->if_flags ^ sc_if->msk_if_flags) &
1103 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1104 				msk_rxfilter(sc_if);
1105 			else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0)
1106 				msk_init_locked(sc_if);
1107 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1108 			msk_stop(sc_if);
1109 		sc_if->msk_if_flags = ifp->if_flags;
1110 		MSK_IF_UNLOCK(sc_if);
1111 		break;
1112 	case SIOCADDMULTI:
1113 	case SIOCDELMULTI:
1114 		MSK_IF_LOCK(sc_if);
1115 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1116 			msk_rxfilter(sc_if);
1117 		MSK_IF_UNLOCK(sc_if);
1118 		break;
1119 	case SIOCGIFMEDIA:
1120 	case SIOCSIFMEDIA:
1121 		mii = device_get_softc(sc_if->msk_miibus);
1122 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1123 		break;
1124 	case SIOCSIFCAP:
1125 		reinit = 0;
1126 		MSK_IF_LOCK(sc_if);
1127 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1128 		if ((mask & IFCAP_TXCSUM) != 0 &&
1129 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1130 			ifp->if_capenable ^= IFCAP_TXCSUM;
1131 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
1132 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
1133 			else
1134 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
1135 		}
1136 		if ((mask & IFCAP_RXCSUM) != 0 &&
1137 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
1138 			ifp->if_capenable ^= IFCAP_RXCSUM;
1139 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1140 				reinit = 1;
1141 		}
1142 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1143 		    (IFCAP_VLAN_HWCSUM & ifp->if_capabilities) != 0)
1144 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1145 		if ((mask & IFCAP_TSO4) != 0 &&
1146 		    (IFCAP_TSO4 & ifp->if_capabilities) != 0) {
1147 			ifp->if_capenable ^= IFCAP_TSO4;
1148 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1149 				ifp->if_hwassist |= CSUM_TSO;
1150 			else
1151 				ifp->if_hwassist &= ~CSUM_TSO;
1152 		}
1153 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1154 		    (IFCAP_VLAN_HWTSO & ifp->if_capabilities) != 0)
1155 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1156 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1157 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
1158 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1159 			if ((IFCAP_VLAN_HWTAGGING & ifp->if_capenable) == 0)
1160 				ifp->if_capenable &=
1161 				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1162 			msk_setvlan(sc_if, ifp);
1163 		}
1164 		if (ifp->if_mtu > ETHERMTU &&
1165 		    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
1166 			ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
1167 			ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1168 		}
1169 		VLAN_CAPABILITIES(ifp);
1170 		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1171 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1172 			msk_init_locked(sc_if);
1173 		}
1174 		MSK_IF_UNLOCK(sc_if);
1175 		break;
1176 	default:
1177 		error = ether_ioctl(ifp, command, data);
1178 		break;
1179 	}
1180 
1181 	return (error);
1182 }
1183 
1184 static int
1185 mskc_probe(device_t dev)
1186 {
1187 	const struct msk_product *mp;
1188 	uint16_t vendor, devid;
1189 	int i;
1190 
1191 	vendor = pci_get_vendor(dev);
1192 	devid = pci_get_device(dev);
1193 	mp = msk_products;
1194 	for (i = 0; i < nitems(msk_products); i++, mp++) {
1195 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1196 			device_set_desc(dev, mp->msk_name);
1197 			return (BUS_PROBE_DEFAULT);
1198 		}
1199 	}
1200 
1201 	return (ENXIO);
1202 }
1203 
1204 static int
1205 mskc_setup_rambuffer(struct msk_softc *sc)
1206 {
1207 	int next;
1208 	int i;
1209 
1210 	/* Get adapter SRAM size. */
1211 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1212 	if (bootverbose)
1213 		device_printf(sc->msk_dev,
1214 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1215 	if (sc->msk_ramsize == 0)
1216 		return (0);
1217 
1218 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1219 	/*
1220 	 * Give receiver 2/3 of memory and round down to the multiple
1221 	 * of 1024. Tx/Rx RAM buffer size of Yukon II should be multiple
1222 	 * of 1024.
1223 	 */
1224 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1225 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1226 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1227 		sc->msk_rxqstart[i] = next;
1228 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1229 		next = sc->msk_rxqend[i] + 1;
1230 		sc->msk_txqstart[i] = next;
1231 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1232 		next = sc->msk_txqend[i] + 1;
1233 		if (bootverbose) {
1234 			device_printf(sc->msk_dev,
1235 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1236 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1237 			    sc->msk_rxqend[i]);
1238 			device_printf(sc->msk_dev,
1239 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1240 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1241 			    sc->msk_txqend[i]);
1242 		}
1243 	}
1244 
1245 	return (0);
1246 }
1247 
1248 static void
1249 msk_phy_power(struct msk_softc *sc, int mode)
1250 {
1251 	uint32_t our, val;
1252 	int i;
1253 
1254 	switch (mode) {
1255 	case MSK_PHY_POWERUP:
1256 		/* Switch power to VCC (WA for VAUX problem). */
1257 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1258 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1259 		/* Disable Core Clock Division, set Clock Select to 0. */
1260 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1261 
1262 		val = 0;
1263 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1264 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1265 			/* Enable bits are inverted. */
1266 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1267 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1268 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1269 		}
1270 		/*
1271 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1272 		 */
1273 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1274 
1275 		our = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1276 		our &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1277 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1278 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1279 				/* Deassert Low Power for 1st PHY. */
1280 				our |= PCI_Y2_PHY1_COMA;
1281 				if (sc->msk_num_port > 1)
1282 					our |= PCI_Y2_PHY2_COMA;
1283 			}
1284 		}
1285 		if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U ||
1286 		    sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1287 		    sc->msk_hw_id >= CHIP_ID_YUKON_FE_P) {
1288 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1289 			val &= (PCI_FORCE_ASPM_REQUEST |
1290 			    PCI_ASPM_GPHY_LINK_DOWN | PCI_ASPM_INT_FIFO_EMPTY |
1291 			    PCI_ASPM_CLKRUN_REQUEST);
1292 			/* Set all bits to 0 except bits 15..12. */
1293 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, val);
1294 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1295 			val &= PCI_CTL_TIM_VMAIN_AV_MSK;
1296 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, val);
1297 			CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1298 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1299 			/*
1300 			 * Disable status race, workaround for
1301 			 * Yukon EC Ultra & Yukon EX.
1302 			 */
1303 			val = CSR_READ_4(sc, B2_GP_IO);
1304 			val |= GLB_GPIO_STAT_RACE_DIS;
1305 			CSR_WRITE_4(sc, B2_GP_IO, val);
1306 			CSR_READ_4(sc, B2_GP_IO);
1307 		}
1308 		/* Release PHY from PowerDown/COMA mode. */
1309 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, our);
1310 
1311 		for (i = 0; i < sc->msk_num_port; i++) {
1312 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1313 			    GMLC_RST_SET);
1314 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1315 			    GMLC_RST_CLR);
1316 		}
1317 		break;
1318 	case MSK_PHY_POWERDOWN:
1319 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1320 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1321 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1322 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1323 			val &= ~PCI_Y2_PHY1_COMA;
1324 			if (sc->msk_num_port > 1)
1325 				val &= ~PCI_Y2_PHY2_COMA;
1326 		}
1327 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1328 
1329 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1330 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1331 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1332 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1333 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1334 			/* Enable bits are inverted. */
1335 			val = 0;
1336 		}
1337 		/*
1338 		 * Disable PCI & Core Clock, disable clock gating for
1339 		 * both Links.
1340 		 */
1341 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1342 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1343 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1344 		break;
1345 	default:
1346 		break;
1347 	}
1348 }
1349 
1350 static void
1351 mskc_reset(struct msk_softc *sc)
1352 {
1353 	bus_addr_t addr;
1354 	uint16_t status;
1355 	uint32_t val;
1356 	int i, initram;
1357 
1358 	/* Disable ASF. */
1359 	if (sc->msk_hw_id >= CHIP_ID_YUKON_XL &&
1360 	    sc->msk_hw_id <= CHIP_ID_YUKON_SUPR) {
1361 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1362 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1363 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1364 			status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1365 			/* Clear AHB bridge & microcontroller reset. */
1366 			status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1367 			    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1368 			/* Clear ASF microcontroller state. */
1369 			status &= ~Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1370 			status &= ~Y2_ASF_HCU_CCSR_CPU_CLK_DIVIDE_MSK;
1371 			CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1372 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1373 		} else
1374 			CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1375 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1376 		/*
1377 		 * Since we disabled ASF, S/W reset is required for
1378 		 * Power Management.
1379 		 */
1380 		CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1381 		CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1382 	}
1383 
1384 	/* Clear all error bits in the PCI status register. */
1385 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1386 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1387 
1388 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1389 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1390 	    PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
1391 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1392 
1393 	switch (sc->msk_bustype) {
1394 	case MSK_PEX_BUS:
1395 		/* Clear all PEX errors. */
1396 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1397 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1398 		if ((val & PEX_RX_OV) != 0) {
1399 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1400 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1401 		}
1402 		break;
1403 	case MSK_PCI_BUS:
1404 	case MSK_PCIX_BUS:
1405 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1406 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1407 		if (val == 0)
1408 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1409 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1410 			/* Set Cache Line Size opt. */
1411 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1412 			val |= PCI_CLS_OPT;
1413 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1414 		}
1415 		break;
1416 	}
1417 	/* Set PHY power state. */
1418 	msk_phy_power(sc, MSK_PHY_POWERUP);
1419 
1420 	/* Reset GPHY/GMAC Control */
1421 	for (i = 0; i < sc->msk_num_port; i++) {
1422 		/* GPHY Control reset. */
1423 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1424 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1425 		/* GMAC Control reset. */
1426 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1427 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1428 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1429 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1430 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR)
1431 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1432 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1433 			    GMC_BYP_RETR_ON);
1434 	}
1435 
1436 	if (sc->msk_hw_id == CHIP_ID_YUKON_SUPR &&
1437 	    sc->msk_hw_rev > CHIP_REV_YU_SU_B0)
1438 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, PCI_CLK_MACSEC_DIS);
1439 	if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) {
1440 		/* Disable PCIe PHY powerdown(reg 0x80, bit7). */
1441 		CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080);
1442 	}
1443 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1444 
1445 	/* LED On. */
1446 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1447 
1448 	/* Clear TWSI IRQ. */
1449 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1450 
1451 	/* Turn off hardware timer. */
1452 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1453 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1454 
1455 	/* Turn off descriptor polling. */
1456 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1457 
1458 	/* Turn off time stamps. */
1459 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1460 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1461 
1462 	initram = 0;
1463 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL ||
1464 	    sc->msk_hw_id == CHIP_ID_YUKON_EC ||
1465 	    sc->msk_hw_id == CHIP_ID_YUKON_FE)
1466 		initram++;
1467 
1468 	/* Configure timeout values. */
1469 	for (i = 0; initram > 0 && i < sc->msk_num_port; i++) {
1470 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1471 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1472 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1473 		    MSK_RI_TO_53);
1474 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1475 		    MSK_RI_TO_53);
1476 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1477 		    MSK_RI_TO_53);
1478 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1479 		    MSK_RI_TO_53);
1480 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1481 		    MSK_RI_TO_53);
1482 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1483 		    MSK_RI_TO_53);
1484 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1485 		    MSK_RI_TO_53);
1486 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1487 		    MSK_RI_TO_53);
1488 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1489 		    MSK_RI_TO_53);
1490 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1491 		    MSK_RI_TO_53);
1492 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1493 		    MSK_RI_TO_53);
1494 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1495 		    MSK_RI_TO_53);
1496 	}
1497 
1498 	/* Disable all interrupts. */
1499 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1500 	CSR_READ_4(sc, B0_HWE_IMSK);
1501 	CSR_WRITE_4(sc, B0_IMSK, 0);
1502 	CSR_READ_4(sc, B0_IMSK);
1503 
1504         /*
1505          * On dual port PCI-X card, there is an problem where status
1506          * can be received out of order due to split transactions.
1507          */
1508 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1509 		uint16_t pcix_cmd;
1510 
1511 		pcix_cmd = pci_read_config(sc->msk_dev,
1512 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1513 		/* Clear Max Outstanding Split Transactions. */
1514 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1515 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1516 		pci_write_config(sc->msk_dev,
1517 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1518 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1519         }
1520 	if (sc->msk_expcap != 0) {
1521 		/* Change Max. Read Request Size to 2048 bytes. */
1522 		if (pci_get_max_read_req(sc->msk_dev) == 512)
1523 			pci_set_max_read_req(sc->msk_dev, 2048);
1524 	}
1525 
1526 	/* Clear status list. */
1527 	bzero(sc->msk_stat_ring,
1528 	    sizeof(struct msk_stat_desc) * sc->msk_stat_count);
1529 	sc->msk_stat_cons = 0;
1530 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1531 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1532 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1533 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1534 	/* Set the status list base address. */
1535 	addr = sc->msk_stat_ring_paddr;
1536 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1537 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1538 	/* Set the status list last index. */
1539 	CSR_WRITE_2(sc, STAT_LAST_IDX, sc->msk_stat_count - 1);
1540 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1541 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1542 		/* WA for dev. #4.3 */
1543 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1544 		/* WA for dev. #4.18 */
1545 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1546 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1547 	} else {
1548 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1549 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1550 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1551 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1552 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1553 		else
1554 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1555 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1556 	}
1557 	/*
1558 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1559 	 */
1560 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1561 
1562 	/* Enable status unit. */
1563 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1564 
1565 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1566 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1567 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1568 }
1569 
1570 static int
1571 msk_probe(device_t dev)
1572 {
1573 	struct msk_softc *sc;
1574 	char desc[100];
1575 
1576 	sc = device_get_softc(device_get_parent(dev));
1577 	/*
1578 	 * Not much to do here. We always know there will be
1579 	 * at least one GMAC present, and if there are two,
1580 	 * mskc_attach() will create a second device instance
1581 	 * for us.
1582 	 */
1583 	snprintf(desc, sizeof(desc),
1584 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1585 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1586 	    sc->msk_hw_rev);
1587 	device_set_desc_copy(dev, desc);
1588 
1589 	return (BUS_PROBE_DEFAULT);
1590 }
1591 
1592 static int
1593 msk_attach(device_t dev)
1594 {
1595 	struct msk_softc *sc;
1596 	struct msk_if_softc *sc_if;
1597 	struct ifnet *ifp;
1598 	struct msk_mii_data *mmd;
1599 	int i, port, error;
1600 	uint8_t eaddr[6];
1601 
1602 	if (dev == NULL)
1603 		return (EINVAL);
1604 
1605 	error = 0;
1606 	sc_if = device_get_softc(dev);
1607 	sc = device_get_softc(device_get_parent(dev));
1608 	mmd = device_get_ivars(dev);
1609 	port = mmd->port;
1610 
1611 	sc_if->msk_if_dev = dev;
1612 	sc_if->msk_port = port;
1613 	sc_if->msk_softc = sc;
1614 	sc_if->msk_flags = sc->msk_pflags;
1615 	sc->msk_if[port] = sc_if;
1616 	/* Setup Tx/Rx queue register offsets. */
1617 	if (port == MSK_PORT_A) {
1618 		sc_if->msk_txq = Q_XA1;
1619 		sc_if->msk_txsq = Q_XS1;
1620 		sc_if->msk_rxq = Q_R1;
1621 	} else {
1622 		sc_if->msk_txq = Q_XA2;
1623 		sc_if->msk_txsq = Q_XS2;
1624 		sc_if->msk_rxq = Q_R2;
1625 	}
1626 
1627 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1628 	msk_sysctl_node(sc_if);
1629 
1630 	if ((error = msk_txrx_dma_alloc(sc_if)) != 0)
1631 		goto fail;
1632 	msk_rx_dma_jalloc(sc_if);
1633 
1634 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1635 	if (ifp == NULL) {
1636 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1637 		error = ENOSPC;
1638 		goto fail;
1639 	}
1640 	ifp->if_softc = sc_if;
1641 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1642 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1643 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1644 	/*
1645 	 * Enable Rx checksum offloading if controller supports
1646 	 * new descriptor formant and controller is not Yukon XL.
1647 	 */
1648 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
1649 	    sc->msk_hw_id != CHIP_ID_YUKON_XL)
1650 		ifp->if_capabilities |= IFCAP_RXCSUM;
1651 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1652 	    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1653 		ifp->if_capabilities |= IFCAP_RXCSUM;
1654 	ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1655 	ifp->if_capenable = ifp->if_capabilities;
1656 	ifp->if_ioctl = msk_ioctl;
1657 	ifp->if_start = msk_start;
1658 	ifp->if_init = msk_init;
1659 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1660 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1661 	IFQ_SET_READY(&ifp->if_snd);
1662 	/*
1663 	 * Get station address for this interface. Note that
1664 	 * dual port cards actually come with three station
1665 	 * addresses: one for each port, plus an extra. The
1666 	 * extra one is used by the SysKonnect driver software
1667 	 * as a 'virtual' station address for when both ports
1668 	 * are operating in failover mode. Currently we don't
1669 	 * use this extra address.
1670 	 */
1671 	MSK_IF_LOCK(sc_if);
1672 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1673 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1674 
1675 	/*
1676 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1677 	 */
1678 	MSK_IF_UNLOCK(sc_if);
1679 	ether_ifattach(ifp, eaddr);
1680 	MSK_IF_LOCK(sc_if);
1681 
1682 	/* VLAN capability setup */
1683 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1684 	if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) {
1685 		/*
1686 		 * Due to Tx checksum offload hardware bugs, msk(4) manually
1687 		 * computes checksum for short frames. For VLAN tagged frames
1688 		 * this workaround does not work so disable checksum offload
1689 		 * for VLAN interface.
1690 		 */
1691 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO;
1692 		/*
1693 		 * Enable Rx checksum offloading for VLAN tagged frames
1694 		 * if controller support new descriptor format.
1695 		 */
1696 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1697 		    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1698 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1699 	}
1700 	ifp->if_capenable = ifp->if_capabilities;
1701 	/*
1702 	 * Disable RX checksum offloading on controllers that don't use
1703 	 * new descriptor format but give chance to enable it.
1704 	 */
1705 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1706 		ifp->if_capenable &= ~IFCAP_RXCSUM;
1707 
1708 	/*
1709 	 * Tell the upper layer(s) we support long frames.
1710 	 * Must appear after the call to ether_ifattach() because
1711 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1712 	 */
1713         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1714 
1715 	/*
1716 	 * Do miibus setup.
1717 	 */
1718 	MSK_IF_UNLOCK(sc_if);
1719 	error = mii_attach(dev, &sc_if->msk_miibus, ifp, msk_mediachange,
1720 	    msk_mediastatus, BMSR_DEFCAPMASK, PHY_ADDR_MARV, MII_OFFSET_ANY,
1721 	    mmd->mii_flags);
1722 	if (error != 0) {
1723 		device_printf(sc_if->msk_if_dev, "attaching PHYs failed\n");
1724 		ether_ifdetach(ifp);
1725 		error = ENXIO;
1726 		goto fail;
1727 	}
1728 
1729 fail:
1730 	if (error != 0) {
1731 		/* Access should be ok even though lock has been dropped */
1732 		sc->msk_if[port] = NULL;
1733 		msk_detach(dev);
1734 	}
1735 
1736 	return (error);
1737 }
1738 
1739 /*
1740  * Attach the interface. Allocate softc structures, do ifmedia
1741  * setup and ethernet/BPF attach.
1742  */
1743 static int
1744 mskc_attach(device_t dev)
1745 {
1746 	struct msk_softc *sc;
1747 	struct msk_mii_data *mmd;
1748 	int error, msic, msir, reg;
1749 
1750 	sc = device_get_softc(dev);
1751 	sc->msk_dev = dev;
1752 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1753 	    MTX_DEF);
1754 
1755 	/*
1756 	 * Map control/status registers.
1757 	 */
1758 	pci_enable_busmaster(dev);
1759 
1760 	/* Allocate I/O resource */
1761 #ifdef MSK_USEIOSPACE
1762 	sc->msk_res_spec = msk_res_spec_io;
1763 #else
1764 	sc->msk_res_spec = msk_res_spec_mem;
1765 #endif
1766 	sc->msk_irq_spec = msk_irq_spec_legacy;
1767 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1768 	if (error) {
1769 		if (sc->msk_res_spec == msk_res_spec_mem)
1770 			sc->msk_res_spec = msk_res_spec_io;
1771 		else
1772 			sc->msk_res_spec = msk_res_spec_mem;
1773 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1774 		if (error) {
1775 			device_printf(dev, "couldn't allocate %s resources\n",
1776 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1777 			    "I/O");
1778 			mtx_destroy(&sc->msk_mtx);
1779 			return (ENXIO);
1780 		}
1781 	}
1782 
1783 	/* Enable all clocks before accessing any registers. */
1784 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1785 
1786 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1787 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1788 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1789 	/* Bail out if chip is not recognized. */
1790 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1791 	    sc->msk_hw_id > CHIP_ID_YUKON_OPT ||
1792 	    sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) {
1793 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1794 		    sc->msk_hw_id, sc->msk_hw_rev);
1795 		mtx_destroy(&sc->msk_mtx);
1796 		return (ENXIO);
1797 	}
1798 
1799 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1800 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1801 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1802 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1803 	    "max number of Rx events to process");
1804 
1805 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1806 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1807 	    "process_limit", &sc->msk_process_limit);
1808 	if (error == 0) {
1809 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1810 		    sc->msk_process_limit > MSK_PROC_MAX) {
1811 			device_printf(dev, "process_limit value out of range; "
1812 			    "using default: %d\n", MSK_PROC_DEFAULT);
1813 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1814 		}
1815 	}
1816 
1817 	sc->msk_int_holdoff = MSK_INT_HOLDOFF_DEFAULT;
1818 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
1819 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
1820 	    "int_holdoff", CTLFLAG_RW, &sc->msk_int_holdoff, 0,
1821 	    "Maximum number of time to delay interrupts");
1822 	resource_int_value(device_get_name(dev), device_get_unit(dev),
1823 	    "int_holdoff", &sc->msk_int_holdoff);
1824 
1825 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1826 	/* Check number of MACs. */
1827 	sc->msk_num_port = 1;
1828 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1829 	    CFG_DUAL_MAC_MSK) {
1830 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1831 			sc->msk_num_port++;
1832 	}
1833 
1834 	/* Check bus type. */
1835 	if (pci_find_cap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0) {
1836 		sc->msk_bustype = MSK_PEX_BUS;
1837 		sc->msk_expcap = reg;
1838 	} else if (pci_find_cap(sc->msk_dev, PCIY_PCIX, &reg) == 0) {
1839 		sc->msk_bustype = MSK_PCIX_BUS;
1840 		sc->msk_pcixcap = reg;
1841 	} else
1842 		sc->msk_bustype = MSK_PCI_BUS;
1843 
1844 	switch (sc->msk_hw_id) {
1845 	case CHIP_ID_YUKON_EC:
1846 		sc->msk_clock = 125;	/* 125 MHz */
1847 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1848 		break;
1849 	case CHIP_ID_YUKON_EC_U:
1850 		sc->msk_clock = 125;	/* 125 MHz */
1851 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM;
1852 		break;
1853 	case CHIP_ID_YUKON_EX:
1854 		sc->msk_clock = 125;	/* 125 MHz */
1855 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1856 		    MSK_FLAG_AUTOTX_CSUM;
1857 		/*
1858 		 * Yukon Extreme seems to have silicon bug for
1859 		 * automatic Tx checksum calculation capability.
1860 		 */
1861 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
1862 			sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM;
1863 		/*
1864 		 * Yukon Extreme A0 could not use store-and-forward
1865 		 * for jumbo frames, so disable Tx checksum
1866 		 * offloading for jumbo frames.
1867 		 */
1868 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
1869 			sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM;
1870 		break;
1871 	case CHIP_ID_YUKON_FE:
1872 		sc->msk_clock = 100;	/* 100 MHz */
1873 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1874 		break;
1875 	case CHIP_ID_YUKON_FE_P:
1876 		sc->msk_clock = 50;	/* 50 MHz */
1877 		sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 |
1878 		    MSK_FLAG_AUTOTX_CSUM;
1879 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1880 			/*
1881 			 * XXX
1882 			 * FE+ A0 has status LE writeback bug so msk(4)
1883 			 * does not rely on status word of received frame
1884 			 * in msk_rxeof() which in turn disables all
1885 			 * hardware assistance bits reported by the status
1886 			 * word as well as validity of the received frame.
1887 			 * Just pass received frames to upper stack with
1888 			 * minimal test and let upper stack handle them.
1889 			 */
1890 			sc->msk_pflags |= MSK_FLAG_NOHWVLAN |
1891 			    MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM;
1892 		}
1893 		break;
1894 	case CHIP_ID_YUKON_XL:
1895 		sc->msk_clock = 156;	/* 156 MHz */
1896 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1897 		break;
1898 	case CHIP_ID_YUKON_SUPR:
1899 		sc->msk_clock = 125;	/* 125 MHz */
1900 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1901 		    MSK_FLAG_AUTOTX_CSUM;
1902 		break;
1903 	case CHIP_ID_YUKON_UL_2:
1904 		sc->msk_clock = 125;	/* 125 MHz */
1905 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1906 		break;
1907 	case CHIP_ID_YUKON_OPT:
1908 		sc->msk_clock = 125;	/* 125 MHz */
1909 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2;
1910 		break;
1911 	default:
1912 		sc->msk_clock = 156;	/* 156 MHz */
1913 		break;
1914 	}
1915 
1916 	/* Allocate IRQ resources. */
1917 	msic = pci_msi_count(dev);
1918 	if (bootverbose)
1919 		device_printf(dev, "MSI count : %d\n", msic);
1920 	if (legacy_intr != 0)
1921 		msi_disable = 1;
1922 	if (msi_disable == 0 && msic > 0) {
1923 		msir = 1;
1924 		if (pci_alloc_msi(dev, &msir) == 0) {
1925 			if (msir == 1) {
1926 				sc->msk_pflags |= MSK_FLAG_MSI;
1927 				sc->msk_irq_spec = msk_irq_spec_msi;
1928 			} else
1929 				pci_release_msi(dev);
1930 		}
1931 	}
1932 
1933 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1934 	if (error) {
1935 		device_printf(dev, "couldn't allocate IRQ resources\n");
1936 		goto fail;
1937 	}
1938 
1939 	if ((error = msk_status_dma_alloc(sc)) != 0)
1940 		goto fail;
1941 
1942 	/* Set base interrupt mask. */
1943 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1944 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1945 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1946 
1947 	/* Reset the adapter. */
1948 	mskc_reset(sc);
1949 
1950 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1951 		goto fail;
1952 
1953 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1954 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1955 		device_printf(dev, "failed to add child for PORT_A\n");
1956 		error = ENXIO;
1957 		goto fail;
1958 	}
1959 	mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1960 	mmd->port = MSK_PORT_A;
1961 	mmd->pmd = sc->msk_pmd;
1962 	mmd->mii_flags |= MIIF_DOPAUSE;
1963 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1964 		mmd->mii_flags |= MIIF_HAVEFIBER;
1965 	if (sc->msk_pmd == 'P')
1966 		mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1967 	device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd);
1968 
1969 	if (sc->msk_num_port > 1) {
1970 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1971 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1972 			device_printf(dev, "failed to add child for PORT_B\n");
1973 			error = ENXIO;
1974 			goto fail;
1975 		}
1976 		mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK |
1977 		    M_ZERO);
1978 		mmd->port = MSK_PORT_B;
1979 		mmd->pmd = sc->msk_pmd;
1980 		if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1981 			mmd->mii_flags |= MIIF_HAVEFIBER;
1982 		if (sc->msk_pmd == 'P')
1983 			mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1984 		device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd);
1985 	}
1986 
1987 	error = bus_generic_attach(dev);
1988 	if (error) {
1989 		device_printf(dev, "failed to attach port(s)\n");
1990 		goto fail;
1991 	}
1992 
1993 	/* Hook interrupt last to avoid having to lock softc. */
1994 	error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1995 	    INTR_MPSAFE, NULL, msk_intr, sc, &sc->msk_intrhand);
1996 	if (error != 0) {
1997 		device_printf(dev, "couldn't set up interrupt handler\n");
1998 		goto fail;
1999 	}
2000 fail:
2001 	if (error != 0)
2002 		mskc_detach(dev);
2003 
2004 	return (error);
2005 }
2006 
2007 /*
2008  * Shutdown hardware and free up resources. This can be called any
2009  * time after the mutex has been initialized. It is called in both
2010  * the error case in attach and the normal detach case so it needs
2011  * to be careful about only freeing resources that have actually been
2012  * allocated.
2013  */
2014 static int
2015 msk_detach(device_t dev)
2016 {
2017 	struct msk_softc *sc;
2018 	struct msk_if_softc *sc_if;
2019 	struct ifnet *ifp;
2020 
2021 	sc_if = device_get_softc(dev);
2022 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
2023 	    ("msk mutex not initialized in msk_detach"));
2024 	MSK_IF_LOCK(sc_if);
2025 
2026 	ifp = sc_if->msk_ifp;
2027 	if (device_is_attached(dev)) {
2028 		/* XXX */
2029 		sc_if->msk_flags |= MSK_FLAG_DETACH;
2030 		msk_stop(sc_if);
2031 		/* Can't hold locks while calling detach. */
2032 		MSK_IF_UNLOCK(sc_if);
2033 		callout_drain(&sc_if->msk_tick_ch);
2034 		if (ifp)
2035 			ether_ifdetach(ifp);
2036 		MSK_IF_LOCK(sc_if);
2037 	}
2038 
2039 	/*
2040 	 * We're generally called from mskc_detach() which is using
2041 	 * device_delete_child() to get to here. It's already trashed
2042 	 * miibus for us, so don't do it here or we'll panic.
2043 	 *
2044 	 * if (sc_if->msk_miibus != NULL) {
2045 	 * 	device_delete_child(dev, sc_if->msk_miibus);
2046 	 * 	sc_if->msk_miibus = NULL;
2047 	 * }
2048 	 */
2049 
2050 	msk_rx_dma_jfree(sc_if);
2051 	msk_txrx_dma_free(sc_if);
2052 	bus_generic_detach(dev);
2053 
2054 	sc = sc_if->msk_softc;
2055 	sc->msk_if[sc_if->msk_port] = NULL;
2056 	MSK_IF_UNLOCK(sc_if);
2057 	if (ifp)
2058 		if_free(ifp);
2059 
2060 	return (0);
2061 }
2062 
2063 static int
2064 mskc_detach(device_t dev)
2065 {
2066 	struct msk_softc *sc;
2067 
2068 	sc = device_get_softc(dev);
2069 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
2070 
2071 	if (device_is_alive(dev)) {
2072 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
2073 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
2074 			    M_DEVBUF);
2075 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
2076 		}
2077 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
2078 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
2079 			    M_DEVBUF);
2080 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
2081 		}
2082 		bus_generic_detach(dev);
2083 	}
2084 
2085 	/* Disable all interrupts. */
2086 	CSR_WRITE_4(sc, B0_IMSK, 0);
2087 	CSR_READ_4(sc, B0_IMSK);
2088 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2089 	CSR_READ_4(sc, B0_HWE_IMSK);
2090 
2091 	/* LED Off. */
2092 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
2093 
2094 	/* Put hardware reset. */
2095 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2096 
2097 	msk_status_dma_free(sc);
2098 
2099 	if (sc->msk_intrhand) {
2100 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand);
2101 		sc->msk_intrhand = NULL;
2102 	}
2103 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
2104 	if ((sc->msk_pflags & MSK_FLAG_MSI) != 0)
2105 		pci_release_msi(dev);
2106 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
2107 	mtx_destroy(&sc->msk_mtx);
2108 
2109 	return (0);
2110 }
2111 
2112 static bus_dma_tag_t
2113 mskc_get_dma_tag(device_t bus, device_t child __unused)
2114 {
2115 
2116 	return (bus_get_dma_tag(bus));
2117 }
2118 
2119 struct msk_dmamap_arg {
2120 	bus_addr_t	msk_busaddr;
2121 };
2122 
2123 static void
2124 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2125 {
2126 	struct msk_dmamap_arg *ctx;
2127 
2128 	if (error != 0)
2129 		return;
2130 	ctx = arg;
2131 	ctx->msk_busaddr = segs[0].ds_addr;
2132 }
2133 
2134 /* Create status DMA region. */
2135 static int
2136 msk_status_dma_alloc(struct msk_softc *sc)
2137 {
2138 	struct msk_dmamap_arg ctx;
2139 	bus_size_t stat_sz;
2140 	int count, error;
2141 
2142 	/*
2143 	 * It seems controller requires number of status LE entries
2144 	 * is power of 2 and the maximum number of status LE entries
2145 	 * is 4096.  For dual-port controllers, the number of status
2146 	 * LE entries should be large enough to hold both port's
2147 	 * status updates.
2148 	 */
2149 	count = 3 * MSK_RX_RING_CNT + MSK_TX_RING_CNT;
2150 	count = imin(4096, roundup2(count, 1024));
2151 	sc->msk_stat_count = count;
2152 	stat_sz = count * sizeof(struct msk_stat_desc);
2153 	error = bus_dma_tag_create(
2154 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
2155 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
2156 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2157 		    BUS_SPACE_MAXADDR,		/* highaddr */
2158 		    NULL, NULL,			/* filter, filterarg */
2159 		    stat_sz,			/* maxsize */
2160 		    1,				/* nsegments */
2161 		    stat_sz,			/* maxsegsize */
2162 		    0,				/* flags */
2163 		    NULL, NULL,			/* lockfunc, lockarg */
2164 		    &sc->msk_stat_tag);
2165 	if (error != 0) {
2166 		device_printf(sc->msk_dev,
2167 		    "failed to create status DMA tag\n");
2168 		return (error);
2169 	}
2170 
2171 	/* Allocate DMA'able memory and load the DMA map for status ring. */
2172 	error = bus_dmamem_alloc(sc->msk_stat_tag,
2173 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
2174 	    BUS_DMA_ZERO, &sc->msk_stat_map);
2175 	if (error != 0) {
2176 		device_printf(sc->msk_dev,
2177 		    "failed to allocate DMA'able memory for status ring\n");
2178 		return (error);
2179 	}
2180 
2181 	ctx.msk_busaddr = 0;
2182 	error = bus_dmamap_load(sc->msk_stat_tag, sc->msk_stat_map,
2183 	    sc->msk_stat_ring, stat_sz, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2184 	if (error != 0) {
2185 		device_printf(sc->msk_dev,
2186 		    "failed to load DMA'able memory for status ring\n");
2187 		return (error);
2188 	}
2189 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
2190 
2191 	return (0);
2192 }
2193 
2194 static void
2195 msk_status_dma_free(struct msk_softc *sc)
2196 {
2197 
2198 	/* Destroy status block. */
2199 	if (sc->msk_stat_tag) {
2200 		if (sc->msk_stat_ring_paddr) {
2201 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
2202 			sc->msk_stat_ring_paddr = 0;
2203 		}
2204 		if (sc->msk_stat_ring) {
2205 			bus_dmamem_free(sc->msk_stat_tag,
2206 			    sc->msk_stat_ring, sc->msk_stat_map);
2207 			sc->msk_stat_ring = NULL;
2208 		}
2209 		bus_dma_tag_destroy(sc->msk_stat_tag);
2210 		sc->msk_stat_tag = NULL;
2211 	}
2212 }
2213 
2214 static int
2215 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2216 {
2217 	struct msk_dmamap_arg ctx;
2218 	struct msk_txdesc *txd;
2219 	struct msk_rxdesc *rxd;
2220 	bus_size_t rxalign;
2221 	int error, i;
2222 
2223 	/* Create parent DMA tag. */
2224 	error = bus_dma_tag_create(
2225 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2226 		    1, 0,			/* alignment, boundary */
2227 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2228 		    BUS_SPACE_MAXADDR,		/* highaddr */
2229 		    NULL, NULL,			/* filter, filterarg */
2230 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2231 		    0,				/* nsegments */
2232 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2233 		    0,				/* flags */
2234 		    NULL, NULL,			/* lockfunc, lockarg */
2235 		    &sc_if->msk_cdata.msk_parent_tag);
2236 	if (error != 0) {
2237 		device_printf(sc_if->msk_if_dev,
2238 		    "failed to create parent DMA tag\n");
2239 		goto fail;
2240 	}
2241 	/* Create tag for Tx ring. */
2242 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2243 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2244 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2245 		    BUS_SPACE_MAXADDR,		/* highaddr */
2246 		    NULL, NULL,			/* filter, filterarg */
2247 		    MSK_TX_RING_SZ,		/* maxsize */
2248 		    1,				/* nsegments */
2249 		    MSK_TX_RING_SZ,		/* maxsegsize */
2250 		    0,				/* flags */
2251 		    NULL, NULL,			/* lockfunc, lockarg */
2252 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2253 	if (error != 0) {
2254 		device_printf(sc_if->msk_if_dev,
2255 		    "failed to create Tx ring DMA tag\n");
2256 		goto fail;
2257 	}
2258 
2259 	/* Create tag for Rx ring. */
2260 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2261 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2262 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2263 		    BUS_SPACE_MAXADDR,		/* highaddr */
2264 		    NULL, NULL,			/* filter, filterarg */
2265 		    MSK_RX_RING_SZ,		/* maxsize */
2266 		    1,				/* nsegments */
2267 		    MSK_RX_RING_SZ,		/* maxsegsize */
2268 		    0,				/* flags */
2269 		    NULL, NULL,			/* lockfunc, lockarg */
2270 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2271 	if (error != 0) {
2272 		device_printf(sc_if->msk_if_dev,
2273 		    "failed to create Rx ring DMA tag\n");
2274 		goto fail;
2275 	}
2276 
2277 	/* Create tag for Tx buffers. */
2278 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2279 		    1, 0,			/* alignment, boundary */
2280 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2281 		    BUS_SPACE_MAXADDR,		/* highaddr */
2282 		    NULL, NULL,			/* filter, filterarg */
2283 		    MSK_TSO_MAXSIZE,		/* maxsize */
2284 		    MSK_MAXTXSEGS,		/* nsegments */
2285 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2286 		    0,				/* flags */
2287 		    NULL, NULL,			/* lockfunc, lockarg */
2288 		    &sc_if->msk_cdata.msk_tx_tag);
2289 	if (error != 0) {
2290 		device_printf(sc_if->msk_if_dev,
2291 		    "failed to create Tx DMA tag\n");
2292 		goto fail;
2293 	}
2294 
2295 	rxalign = 1;
2296 	/*
2297 	 * Workaround hardware hang which seems to happen when Rx buffer
2298 	 * is not aligned on multiple of FIFO word(8 bytes).
2299 	 */
2300 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2301 		rxalign = MSK_RX_BUF_ALIGN;
2302 	/* Create tag for Rx buffers. */
2303 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2304 		    rxalign, 0,			/* alignment, boundary */
2305 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2306 		    BUS_SPACE_MAXADDR,		/* highaddr */
2307 		    NULL, NULL,			/* filter, filterarg */
2308 		    MCLBYTES,			/* maxsize */
2309 		    1,				/* nsegments */
2310 		    MCLBYTES,			/* maxsegsize */
2311 		    0,				/* flags */
2312 		    NULL, NULL,			/* lockfunc, lockarg */
2313 		    &sc_if->msk_cdata.msk_rx_tag);
2314 	if (error != 0) {
2315 		device_printf(sc_if->msk_if_dev,
2316 		    "failed to create Rx DMA tag\n");
2317 		goto fail;
2318 	}
2319 
2320 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2321 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2322 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2323 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2324 	if (error != 0) {
2325 		device_printf(sc_if->msk_if_dev,
2326 		    "failed to allocate DMA'able memory for Tx ring\n");
2327 		goto fail;
2328 	}
2329 
2330 	ctx.msk_busaddr = 0;
2331 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2332 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2333 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2334 	if (error != 0) {
2335 		device_printf(sc_if->msk_if_dev,
2336 		    "failed to load DMA'able memory for Tx ring\n");
2337 		goto fail;
2338 	}
2339 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2340 
2341 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2342 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2343 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2344 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2345 	if (error != 0) {
2346 		device_printf(sc_if->msk_if_dev,
2347 		    "failed to allocate DMA'able memory for Rx ring\n");
2348 		goto fail;
2349 	}
2350 
2351 	ctx.msk_busaddr = 0;
2352 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2353 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2354 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2355 	if (error != 0) {
2356 		device_printf(sc_if->msk_if_dev,
2357 		    "failed to load DMA'able memory for Rx ring\n");
2358 		goto fail;
2359 	}
2360 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2361 
2362 	/* Create DMA maps for Tx buffers. */
2363 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2364 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2365 		txd->tx_m = NULL;
2366 		txd->tx_dmamap = NULL;
2367 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2368 		    &txd->tx_dmamap);
2369 		if (error != 0) {
2370 			device_printf(sc_if->msk_if_dev,
2371 			    "failed to create Tx dmamap\n");
2372 			goto fail;
2373 		}
2374 	}
2375 	/* Create DMA maps for Rx buffers. */
2376 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2377 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2378 		device_printf(sc_if->msk_if_dev,
2379 		    "failed to create spare Rx dmamap\n");
2380 		goto fail;
2381 	}
2382 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2383 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2384 		rxd->rx_m = NULL;
2385 		rxd->rx_dmamap = NULL;
2386 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2387 		    &rxd->rx_dmamap);
2388 		if (error != 0) {
2389 			device_printf(sc_if->msk_if_dev,
2390 			    "failed to create Rx dmamap\n");
2391 			goto fail;
2392 		}
2393 	}
2394 
2395 fail:
2396 	return (error);
2397 }
2398 
2399 static int
2400 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2401 {
2402 	struct msk_dmamap_arg ctx;
2403 	struct msk_rxdesc *jrxd;
2404 	bus_size_t rxalign;
2405 	int error, i;
2406 
2407 	if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
2408 		sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2409 		device_printf(sc_if->msk_if_dev,
2410 		    "disabling jumbo frame support\n");
2411 		return (0);
2412 	}
2413 	/* Create tag for jumbo Rx ring. */
2414 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2415 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2416 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2417 		    BUS_SPACE_MAXADDR,		/* highaddr */
2418 		    NULL, NULL,			/* filter, filterarg */
2419 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2420 		    1,				/* nsegments */
2421 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2422 		    0,				/* flags */
2423 		    NULL, NULL,			/* lockfunc, lockarg */
2424 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2425 	if (error != 0) {
2426 		device_printf(sc_if->msk_if_dev,
2427 		    "failed to create jumbo Rx ring DMA tag\n");
2428 		goto jumbo_fail;
2429 	}
2430 
2431 	rxalign = 1;
2432 	/*
2433 	 * Workaround hardware hang which seems to happen when Rx buffer
2434 	 * is not aligned on multiple of FIFO word(8 bytes).
2435 	 */
2436 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2437 		rxalign = MSK_RX_BUF_ALIGN;
2438 	/* Create tag for jumbo Rx buffers. */
2439 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2440 		    rxalign, 0,			/* alignment, boundary */
2441 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2442 		    BUS_SPACE_MAXADDR,		/* highaddr */
2443 		    NULL, NULL,			/* filter, filterarg */
2444 		    MJUM9BYTES,			/* maxsize */
2445 		    1,				/* nsegments */
2446 		    MJUM9BYTES,			/* maxsegsize */
2447 		    0,				/* flags */
2448 		    NULL, NULL,			/* lockfunc, lockarg */
2449 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2450 	if (error != 0) {
2451 		device_printf(sc_if->msk_if_dev,
2452 		    "failed to create jumbo Rx DMA tag\n");
2453 		goto jumbo_fail;
2454 	}
2455 
2456 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2457 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2458 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2459 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2460 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2461 	if (error != 0) {
2462 		device_printf(sc_if->msk_if_dev,
2463 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2464 		goto jumbo_fail;
2465 	}
2466 
2467 	ctx.msk_busaddr = 0;
2468 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2469 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2470 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2471 	    msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2472 	if (error != 0) {
2473 		device_printf(sc_if->msk_if_dev,
2474 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2475 		goto jumbo_fail;
2476 	}
2477 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2478 
2479 	/* Create DMA maps for jumbo Rx buffers. */
2480 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2481 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2482 		device_printf(sc_if->msk_if_dev,
2483 		    "failed to create spare jumbo Rx dmamap\n");
2484 		goto jumbo_fail;
2485 	}
2486 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2487 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2488 		jrxd->rx_m = NULL;
2489 		jrxd->rx_dmamap = NULL;
2490 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2491 		    &jrxd->rx_dmamap);
2492 		if (error != 0) {
2493 			device_printf(sc_if->msk_if_dev,
2494 			    "failed to create jumbo Rx dmamap\n");
2495 			goto jumbo_fail;
2496 		}
2497 	}
2498 
2499 	return (0);
2500 
2501 jumbo_fail:
2502 	msk_rx_dma_jfree(sc_if);
2503 	device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2504 	    "due to resource shortage\n");
2505 	sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2506 	return (error);
2507 }
2508 
2509 static void
2510 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2511 {
2512 	struct msk_txdesc *txd;
2513 	struct msk_rxdesc *rxd;
2514 	int i;
2515 
2516 	/* Tx ring. */
2517 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2518 		if (sc_if->msk_rdata.msk_tx_ring_paddr)
2519 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2520 			    sc_if->msk_cdata.msk_tx_ring_map);
2521 		if (sc_if->msk_rdata.msk_tx_ring)
2522 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2523 			    sc_if->msk_rdata.msk_tx_ring,
2524 			    sc_if->msk_cdata.msk_tx_ring_map);
2525 		sc_if->msk_rdata.msk_tx_ring = NULL;
2526 		sc_if->msk_rdata.msk_tx_ring_paddr = 0;
2527 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2528 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2529 	}
2530 	/* Rx ring. */
2531 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2532 		if (sc_if->msk_rdata.msk_rx_ring_paddr)
2533 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2534 			    sc_if->msk_cdata.msk_rx_ring_map);
2535 		if (sc_if->msk_rdata.msk_rx_ring)
2536 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2537 			    sc_if->msk_rdata.msk_rx_ring,
2538 			    sc_if->msk_cdata.msk_rx_ring_map);
2539 		sc_if->msk_rdata.msk_rx_ring = NULL;
2540 		sc_if->msk_rdata.msk_rx_ring_paddr = 0;
2541 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2542 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2543 	}
2544 	/* Tx buffers. */
2545 	if (sc_if->msk_cdata.msk_tx_tag) {
2546 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2547 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2548 			if (txd->tx_dmamap) {
2549 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2550 				    txd->tx_dmamap);
2551 				txd->tx_dmamap = NULL;
2552 			}
2553 		}
2554 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2555 		sc_if->msk_cdata.msk_tx_tag = NULL;
2556 	}
2557 	/* Rx buffers. */
2558 	if (sc_if->msk_cdata.msk_rx_tag) {
2559 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2560 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2561 			if (rxd->rx_dmamap) {
2562 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2563 				    rxd->rx_dmamap);
2564 				rxd->rx_dmamap = NULL;
2565 			}
2566 		}
2567 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2568 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2569 			    sc_if->msk_cdata.msk_rx_sparemap);
2570 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2571 		}
2572 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2573 		sc_if->msk_cdata.msk_rx_tag = NULL;
2574 	}
2575 	if (sc_if->msk_cdata.msk_parent_tag) {
2576 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2577 		sc_if->msk_cdata.msk_parent_tag = NULL;
2578 	}
2579 }
2580 
2581 static void
2582 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2583 {
2584 	struct msk_rxdesc *jrxd;
2585 	int i;
2586 
2587 	/* Jumbo Rx ring. */
2588 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2589 		if (sc_if->msk_rdata.msk_jumbo_rx_ring_paddr)
2590 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2591 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2592 		if (sc_if->msk_rdata.msk_jumbo_rx_ring)
2593 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2594 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2595 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2596 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2597 		sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = 0;
2598 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2599 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2600 	}
2601 	/* Jumbo Rx buffers. */
2602 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2603 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2604 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2605 			if (jrxd->rx_dmamap) {
2606 				bus_dmamap_destroy(
2607 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2608 				    jrxd->rx_dmamap);
2609 				jrxd->rx_dmamap = NULL;
2610 			}
2611 		}
2612 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2613 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2614 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2615 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2616 		}
2617 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2618 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2619 	}
2620 }
2621 
2622 static int
2623 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2624 {
2625 	struct msk_txdesc *txd, *txd_last;
2626 	struct msk_tx_desc *tx_le;
2627 	struct mbuf *m;
2628 	bus_dmamap_t map;
2629 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2630 	uint32_t control, csum, prod, si;
2631 	uint16_t offset, tcp_offset, tso_mtu;
2632 	int error, i, nseg, tso;
2633 
2634 	MSK_IF_LOCK_ASSERT(sc_if);
2635 
2636 	tcp_offset = offset = 0;
2637 	m = *m_head;
2638 	if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2639 	    (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) ||
2640 	    ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
2641 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) {
2642 		/*
2643 		 * Since mbuf has no protocol specific structure information
2644 		 * in it we have to inspect protocol information here to
2645 		 * setup TSO and checksum offload. I don't know why Marvell
2646 		 * made a such decision in chip design because other GigE
2647 		 * hardwares normally takes care of all these chores in
2648 		 * hardware. However, TSO performance of Yukon II is very
2649 		 * good such that it's worth to implement it.
2650 		 */
2651 		struct ether_header *eh;
2652 		struct ip *ip;
2653 		struct tcphdr *tcp;
2654 
2655 		if (M_WRITABLE(m) == 0) {
2656 			/* Get a writable copy. */
2657 			m = m_dup(*m_head, M_NOWAIT);
2658 			m_freem(*m_head);
2659 			if (m == NULL) {
2660 				*m_head = NULL;
2661 				return (ENOBUFS);
2662 			}
2663 			*m_head = m;
2664 		}
2665 
2666 		offset = sizeof(struct ether_header);
2667 		m = m_pullup(m, offset);
2668 		if (m == NULL) {
2669 			*m_head = NULL;
2670 			return (ENOBUFS);
2671 		}
2672 		eh = mtod(m, struct ether_header *);
2673 		/* Check if hardware VLAN insertion is off. */
2674 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2675 			offset = sizeof(struct ether_vlan_header);
2676 			m = m_pullup(m, offset);
2677 			if (m == NULL) {
2678 				*m_head = NULL;
2679 				return (ENOBUFS);
2680 			}
2681 		}
2682 		m = m_pullup(m, offset + sizeof(struct ip));
2683 		if (m == NULL) {
2684 			*m_head = NULL;
2685 			return (ENOBUFS);
2686 		}
2687 		ip = (struct ip *)(mtod(m, char *) + offset);
2688 		offset += (ip->ip_hl << 2);
2689 		tcp_offset = offset;
2690 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2691 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2692 			if (m == NULL) {
2693 				*m_head = NULL;
2694 				return (ENOBUFS);
2695 			}
2696 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2697 			offset += (tcp->th_off << 2);
2698 		} else if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2699 		    (m->m_pkthdr.len < MSK_MIN_FRAMELEN) &&
2700 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2701 			/*
2702 			 * It seems that Yukon II has Tx checksum offload bug
2703 			 * for small TCP packets that's less than 60 bytes in
2704 			 * size (e.g. TCP window probe packet, pure ACK packet).
2705 			 * Common work around like padding with zeros to make
2706 			 * the frame minimum ethernet frame size didn't work at
2707 			 * all.
2708 			 * Instead of disabling checksum offload completely we
2709 			 * resort to S/W checksum routine when we encounter
2710 			 * short TCP frames.
2711 			 * Short UDP packets appear to be handled correctly by
2712 			 * Yukon II. Also I assume this bug does not happen on
2713 			 * controllers that use newer descriptor format or
2714 			 * automatic Tx checksum calculation.
2715 			 */
2716 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2717 			if (m == NULL) {
2718 				*m_head = NULL;
2719 				return (ENOBUFS);
2720 			}
2721 			*(uint16_t *)(m->m_data + offset +
2722 			    m->m_pkthdr.csum_data) = in_cksum_skip(m,
2723 			    m->m_pkthdr.len, offset);
2724 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2725 		}
2726 		*m_head = m;
2727 	}
2728 
2729 	prod = sc_if->msk_cdata.msk_tx_prod;
2730 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2731 	txd_last = txd;
2732 	map = txd->tx_dmamap;
2733 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2734 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2735 	if (error == EFBIG) {
2736 		m = m_collapse(*m_head, M_NOWAIT, MSK_MAXTXSEGS);
2737 		if (m == NULL) {
2738 			m_freem(*m_head);
2739 			*m_head = NULL;
2740 			return (ENOBUFS);
2741 		}
2742 		*m_head = m;
2743 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2744 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2745 		if (error != 0) {
2746 			m_freem(*m_head);
2747 			*m_head = NULL;
2748 			return (error);
2749 		}
2750 	} else if (error != 0)
2751 		return (error);
2752 	if (nseg == 0) {
2753 		m_freem(*m_head);
2754 		*m_head = NULL;
2755 		return (EIO);
2756 	}
2757 
2758 	/* Check number of available descriptors. */
2759 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2760 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2761 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2762 		return (ENOBUFS);
2763 	}
2764 
2765 	control = 0;
2766 	tso = 0;
2767 	tx_le = NULL;
2768 
2769 	/* Check TSO support. */
2770 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2771 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2772 			tso_mtu = m->m_pkthdr.tso_segsz;
2773 		else
2774 			tso_mtu = offset + m->m_pkthdr.tso_segsz;
2775 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2776 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2777 			tx_le->msk_addr = htole32(tso_mtu);
2778 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2779 				tx_le->msk_control = htole32(OP_MSS | HW_OWNER);
2780 			else
2781 				tx_le->msk_control =
2782 				    htole32(OP_LRGLEN | HW_OWNER);
2783 			sc_if->msk_cdata.msk_tx_cnt++;
2784 			MSK_INC(prod, MSK_TX_RING_CNT);
2785 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2786 		}
2787 		tso++;
2788 	}
2789 	/* Check if we have a VLAN tag to insert. */
2790 	if ((m->m_flags & M_VLANTAG) != 0) {
2791 		if (tx_le == NULL) {
2792 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2793 			tx_le->msk_addr = htole32(0);
2794 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2795 			    htons(m->m_pkthdr.ether_vtag));
2796 			sc_if->msk_cdata.msk_tx_cnt++;
2797 			MSK_INC(prod, MSK_TX_RING_CNT);
2798 		} else {
2799 			tx_le->msk_control |= htole32(OP_VLAN |
2800 			    htons(m->m_pkthdr.ether_vtag));
2801 		}
2802 		control |= INS_VLAN;
2803 	}
2804 	/* Check if we have to handle checksum offload. */
2805 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2806 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0)
2807 			control |= CALSUM;
2808 		else {
2809 			control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2810 			if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2811 				control |= UDPTCP;
2812 			/* Checksum write position. */
2813 			csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff;
2814 			/* Checksum start position. */
2815 			csum |= (uint32_t)tcp_offset << 16;
2816 			if (csum != sc_if->msk_cdata.msk_last_csum) {
2817 				tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2818 				tx_le->msk_addr = htole32(csum);
2819 				tx_le->msk_control = htole32(1 << 16 |
2820 				    (OP_TCPLISW | HW_OWNER));
2821 				sc_if->msk_cdata.msk_tx_cnt++;
2822 				MSK_INC(prod, MSK_TX_RING_CNT);
2823 				sc_if->msk_cdata.msk_last_csum = csum;
2824 			}
2825 		}
2826 	}
2827 
2828 #ifdef MSK_64BIT_DMA
2829 	if (MSK_ADDR_HI(txsegs[0].ds_addr) !=
2830 	    sc_if->msk_cdata.msk_tx_high_addr) {
2831 		sc_if->msk_cdata.msk_tx_high_addr =
2832 		    MSK_ADDR_HI(txsegs[0].ds_addr);
2833 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2834 		tx_le->msk_addr = htole32(MSK_ADDR_HI(txsegs[0].ds_addr));
2835 		tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
2836 		sc_if->msk_cdata.msk_tx_cnt++;
2837 		MSK_INC(prod, MSK_TX_RING_CNT);
2838 	}
2839 #endif
2840 	si = prod;
2841 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2842 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2843 	if (tso == 0)
2844 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2845 		    OP_PACKET);
2846 	else
2847 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2848 		    OP_LARGESEND);
2849 	sc_if->msk_cdata.msk_tx_cnt++;
2850 	MSK_INC(prod, MSK_TX_RING_CNT);
2851 
2852 	for (i = 1; i < nseg; i++) {
2853 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2854 #ifdef MSK_64BIT_DMA
2855 		if (MSK_ADDR_HI(txsegs[i].ds_addr) !=
2856 		    sc_if->msk_cdata.msk_tx_high_addr) {
2857 			sc_if->msk_cdata.msk_tx_high_addr =
2858 			    MSK_ADDR_HI(txsegs[i].ds_addr);
2859 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2860 			tx_le->msk_addr =
2861 			    htole32(MSK_ADDR_HI(txsegs[i].ds_addr));
2862 			tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
2863 			sc_if->msk_cdata.msk_tx_cnt++;
2864 			MSK_INC(prod, MSK_TX_RING_CNT);
2865 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2866 		}
2867 #endif
2868 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2869 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2870 		    OP_BUFFER | HW_OWNER);
2871 		sc_if->msk_cdata.msk_tx_cnt++;
2872 		MSK_INC(prod, MSK_TX_RING_CNT);
2873 	}
2874 	/* Update producer index. */
2875 	sc_if->msk_cdata.msk_tx_prod = prod;
2876 
2877 	/* Set EOP on the last descriptor. */
2878 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2879 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2880 	tx_le->msk_control |= htole32(EOP);
2881 
2882 	/* Turn the first descriptor ownership to hardware. */
2883 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2884 	tx_le->msk_control |= htole32(HW_OWNER);
2885 
2886 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2887 	map = txd_last->tx_dmamap;
2888 	txd_last->tx_dmamap = txd->tx_dmamap;
2889 	txd->tx_dmamap = map;
2890 	txd->tx_m = m;
2891 
2892 	/* Sync descriptors. */
2893 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2894 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2895 	    sc_if->msk_cdata.msk_tx_ring_map,
2896 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2897 
2898 	return (0);
2899 }
2900 
2901 static void
2902 msk_start(struct ifnet *ifp)
2903 {
2904 	struct msk_if_softc *sc_if;
2905 
2906 	sc_if = ifp->if_softc;
2907 	MSK_IF_LOCK(sc_if);
2908 	msk_start_locked(ifp);
2909 	MSK_IF_UNLOCK(sc_if);
2910 }
2911 
2912 static void
2913 msk_start_locked(struct ifnet *ifp)
2914 {
2915 	struct msk_if_softc *sc_if;
2916 	struct mbuf *m_head;
2917 	int enq;
2918 
2919 	sc_if = ifp->if_softc;
2920 	MSK_IF_LOCK_ASSERT(sc_if);
2921 
2922 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2923 	    IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0)
2924 		return;
2925 
2926 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2927 	    sc_if->msk_cdata.msk_tx_cnt <
2928 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2929 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2930 		if (m_head == NULL)
2931 			break;
2932 		/*
2933 		 * Pack the data into the transmit ring. If we
2934 		 * don't have room, set the OACTIVE flag and wait
2935 		 * for the NIC to drain the ring.
2936 		 */
2937 		if (msk_encap(sc_if, &m_head) != 0) {
2938 			if (m_head == NULL)
2939 				break;
2940 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2941 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2942 			break;
2943 		}
2944 
2945 		enq++;
2946 		/*
2947 		 * If there's a BPF listener, bounce a copy of this frame
2948 		 * to him.
2949 		 */
2950 		ETHER_BPF_MTAP(ifp, m_head);
2951 	}
2952 
2953 	if (enq > 0) {
2954 		/* Transmit */
2955 		CSR_WRITE_2(sc_if->msk_softc,
2956 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2957 		    sc_if->msk_cdata.msk_tx_prod);
2958 
2959 		/* Set a timeout in case the chip goes out to lunch. */
2960 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2961 	}
2962 }
2963 
2964 static void
2965 msk_watchdog(struct msk_if_softc *sc_if)
2966 {
2967 	struct ifnet *ifp;
2968 
2969 	MSK_IF_LOCK_ASSERT(sc_if);
2970 
2971 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2972 		return;
2973 	ifp = sc_if->msk_ifp;
2974 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2975 		if (bootverbose)
2976 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2977 			   "(missed link)\n");
2978 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2979 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2980 		msk_init_locked(sc_if);
2981 		return;
2982 	}
2983 
2984 	if_printf(ifp, "watchdog timeout\n");
2985 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2986 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2987 	msk_init_locked(sc_if);
2988 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2989 		msk_start_locked(ifp);
2990 }
2991 
2992 static int
2993 mskc_shutdown(device_t dev)
2994 {
2995 	struct msk_softc *sc;
2996 	int i;
2997 
2998 	sc = device_get_softc(dev);
2999 	MSK_LOCK(sc);
3000 	for (i = 0; i < sc->msk_num_port; i++) {
3001 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3002 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
3003 		    IFF_DRV_RUNNING) != 0))
3004 			msk_stop(sc->msk_if[i]);
3005 	}
3006 	MSK_UNLOCK(sc);
3007 
3008 	/* Put hardware reset. */
3009 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3010 	return (0);
3011 }
3012 
3013 static int
3014 mskc_suspend(device_t dev)
3015 {
3016 	struct msk_softc *sc;
3017 	int i;
3018 
3019 	sc = device_get_softc(dev);
3020 
3021 	MSK_LOCK(sc);
3022 
3023 	for (i = 0; i < sc->msk_num_port; i++) {
3024 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3025 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
3026 		    IFF_DRV_RUNNING) != 0))
3027 			msk_stop(sc->msk_if[i]);
3028 	}
3029 
3030 	/* Disable all interrupts. */
3031 	CSR_WRITE_4(sc, B0_IMSK, 0);
3032 	CSR_READ_4(sc, B0_IMSK);
3033 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
3034 	CSR_READ_4(sc, B0_HWE_IMSK);
3035 
3036 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
3037 
3038 	/* Put hardware reset. */
3039 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3040 	sc->msk_pflags |= MSK_FLAG_SUSPEND;
3041 
3042 	MSK_UNLOCK(sc);
3043 
3044 	return (0);
3045 }
3046 
3047 static int
3048 mskc_resume(device_t dev)
3049 {
3050 	struct msk_softc *sc;
3051 	int i;
3052 
3053 	sc = device_get_softc(dev);
3054 
3055 	MSK_LOCK(sc);
3056 
3057 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
3058 	mskc_reset(sc);
3059 	for (i = 0; i < sc->msk_num_port; i++) {
3060 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3061 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) {
3062 			sc->msk_if[i]->msk_ifp->if_drv_flags &=
3063 			    ~IFF_DRV_RUNNING;
3064 			msk_init_locked(sc->msk_if[i]);
3065 		}
3066 	}
3067 	sc->msk_pflags &= ~MSK_FLAG_SUSPEND;
3068 
3069 	MSK_UNLOCK(sc);
3070 
3071 	return (0);
3072 }
3073 
3074 #ifndef __NO_STRICT_ALIGNMENT
3075 static __inline void
3076 msk_fixup_rx(struct mbuf *m)
3077 {
3078         int i;
3079         uint16_t *src, *dst;
3080 
3081 	src = mtod(m, uint16_t *);
3082 	dst = src - 3;
3083 
3084 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
3085 		*dst++ = *src++;
3086 
3087 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
3088 }
3089 #endif
3090 
3091 static __inline void
3092 msk_rxcsum(struct msk_if_softc *sc_if, uint32_t control, struct mbuf *m)
3093 {
3094 	struct ether_header *eh;
3095 	struct ip *ip;
3096 	struct udphdr *uh;
3097 	int32_t hlen, len, pktlen, temp32;
3098 	uint16_t csum, *opts;
3099 
3100 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) {
3101 		if ((control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
3102 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3103 			if ((control & CSS_IPV4_CSUM_OK) != 0)
3104 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3105 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3106 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3107 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3108 				    CSUM_PSEUDO_HDR;
3109 				m->m_pkthdr.csum_data = 0xffff;
3110 			}
3111 		}
3112 		return;
3113 	}
3114 	/*
3115 	 * Marvell Yukon controllers that support OP_RXCHKS has known
3116 	 * to have various Rx checksum offloading bugs. These
3117 	 * controllers can be configured to compute simple checksum
3118 	 * at two different positions. So we can compute IP and TCP/UDP
3119 	 * checksum at the same time. We intentionally have controller
3120 	 * compute TCP/UDP checksum twice by specifying the same
3121 	 * checksum start position and compare the result. If the value
3122 	 * is different it would indicate the hardware logic was wrong.
3123 	 */
3124 	if ((sc_if->msk_csum & 0xFFFF) != (sc_if->msk_csum >> 16)) {
3125 		if (bootverbose)
3126 			device_printf(sc_if->msk_if_dev,
3127 			    "Rx checksum value mismatch!\n");
3128 		return;
3129 	}
3130 	pktlen = m->m_pkthdr.len;
3131 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
3132 		return;
3133 	eh = mtod(m, struct ether_header *);
3134 	if (eh->ether_type != htons(ETHERTYPE_IP))
3135 		return;
3136 	ip = (struct ip *)(eh + 1);
3137 	if (ip->ip_v != IPVERSION)
3138 		return;
3139 
3140 	hlen = ip->ip_hl << 2;
3141 	pktlen -= sizeof(struct ether_header);
3142 	if (hlen < sizeof(struct ip))
3143 		return;
3144 	if (ntohs(ip->ip_len) < hlen)
3145 		return;
3146 	if (ntohs(ip->ip_len) != pktlen)
3147 		return;
3148 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
3149 		return;	/* can't handle fragmented packet. */
3150 
3151 	switch (ip->ip_p) {
3152 	case IPPROTO_TCP:
3153 		if (pktlen < (hlen + sizeof(struct tcphdr)))
3154 			return;
3155 		break;
3156 	case IPPROTO_UDP:
3157 		if (pktlen < (hlen + sizeof(struct udphdr)))
3158 			return;
3159 		uh = (struct udphdr *)((caddr_t)ip + hlen);
3160 		if (uh->uh_sum == 0)
3161 			return; /* no checksum */
3162 		break;
3163 	default:
3164 		return;
3165 	}
3166 	csum = bswap16(sc_if->msk_csum & 0xFFFF);
3167 	/* Checksum fixup for IP options. */
3168 	len = hlen - sizeof(struct ip);
3169 	if (len > 0) {
3170 		opts = (uint16_t *)(ip + 1);
3171 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
3172 			temp32 = csum - *opts;
3173 			temp32 = (temp32 >> 16) + (temp32 & 65535);
3174 			csum = temp32 & 65535;
3175 		}
3176 	}
3177 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
3178 	m->m_pkthdr.csum_data = csum;
3179 }
3180 
3181 static void
3182 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3183     int len)
3184 {
3185 	struct mbuf *m;
3186 	struct ifnet *ifp;
3187 	struct msk_rxdesc *rxd;
3188 	int cons, rxlen;
3189 
3190 	ifp = sc_if->msk_ifp;
3191 
3192 	MSK_IF_LOCK_ASSERT(sc_if);
3193 
3194 	cons = sc_if->msk_cdata.msk_rx_cons;
3195 	do {
3196 		rxlen = status >> 16;
3197 		if ((status & GMR_FS_VLAN) != 0 &&
3198 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3199 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3200 		if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) {
3201 			/*
3202 			 * For controllers that returns bogus status code
3203 			 * just do minimal check and let upper stack
3204 			 * handle this frame.
3205 			 */
3206 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
3207 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3208 				msk_discard_rxbuf(sc_if, cons);
3209 				break;
3210 			}
3211 		} else if (len > sc_if->msk_framesize ||
3212 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3213 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3214 			/* Don't count flow-control packet as errors. */
3215 			if ((status & GMR_FS_GOOD_FC) == 0)
3216 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3217 			msk_discard_rxbuf(sc_if, cons);
3218 			break;
3219 		}
3220 #ifdef MSK_64BIT_DMA
3221 		rxd = &sc_if->msk_cdata.msk_rxdesc[(cons + 1) %
3222 		    MSK_RX_RING_CNT];
3223 #else
3224 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3225 #endif
3226 		m = rxd->rx_m;
3227 		if (msk_newbuf(sc_if, cons) != 0) {
3228 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
3229 			/* Reuse old buffer. */
3230 			msk_discard_rxbuf(sc_if, cons);
3231 			break;
3232 		}
3233 		m->m_pkthdr.rcvif = ifp;
3234 		m->m_pkthdr.len = m->m_len = len;
3235 #ifndef __NO_STRICT_ALIGNMENT
3236 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3237 			msk_fixup_rx(m);
3238 #endif
3239 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3240 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3241 			msk_rxcsum(sc_if, control, m);
3242 		/* Check for VLAN tagged packets. */
3243 		if ((status & GMR_FS_VLAN) != 0 &&
3244 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3245 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3246 			m->m_flags |= M_VLANTAG;
3247 		}
3248 		MSK_IF_UNLOCK(sc_if);
3249 		(*ifp->if_input)(ifp, m);
3250 		MSK_IF_LOCK(sc_if);
3251 	} while (0);
3252 
3253 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3254 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3255 }
3256 
3257 static void
3258 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3259     int len)
3260 {
3261 	struct mbuf *m;
3262 	struct ifnet *ifp;
3263 	struct msk_rxdesc *jrxd;
3264 	int cons, rxlen;
3265 
3266 	ifp = sc_if->msk_ifp;
3267 
3268 	MSK_IF_LOCK_ASSERT(sc_if);
3269 
3270 	cons = sc_if->msk_cdata.msk_rx_cons;
3271 	do {
3272 		rxlen = status >> 16;
3273 		if ((status & GMR_FS_VLAN) != 0 &&
3274 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3275 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3276 		if (len > sc_if->msk_framesize ||
3277 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3278 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3279 			/* Don't count flow-control packet as errors. */
3280 			if ((status & GMR_FS_GOOD_FC) == 0)
3281 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3282 			msk_discard_jumbo_rxbuf(sc_if, cons);
3283 			break;
3284 		}
3285 #ifdef MSK_64BIT_DMA
3286 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[(cons + 1) %
3287 		    MSK_JUMBO_RX_RING_CNT];
3288 #else
3289 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3290 #endif
3291 		m = jrxd->rx_m;
3292 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3293 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
3294 			/* Reuse old buffer. */
3295 			msk_discard_jumbo_rxbuf(sc_if, cons);
3296 			break;
3297 		}
3298 		m->m_pkthdr.rcvif = ifp;
3299 		m->m_pkthdr.len = m->m_len = len;
3300 #ifndef __NO_STRICT_ALIGNMENT
3301 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3302 			msk_fixup_rx(m);
3303 #endif
3304 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3305 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3306 			msk_rxcsum(sc_if, control, m);
3307 		/* Check for VLAN tagged packets. */
3308 		if ((status & GMR_FS_VLAN) != 0 &&
3309 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3310 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3311 			m->m_flags |= M_VLANTAG;
3312 		}
3313 		MSK_IF_UNLOCK(sc_if);
3314 		(*ifp->if_input)(ifp, m);
3315 		MSK_IF_LOCK(sc_if);
3316 	} while (0);
3317 
3318 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3319 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3320 }
3321 
3322 static void
3323 msk_txeof(struct msk_if_softc *sc_if, int idx)
3324 {
3325 	struct msk_txdesc *txd;
3326 	struct msk_tx_desc *cur_tx;
3327 	struct ifnet *ifp;
3328 	uint32_t control;
3329 	int cons, prog;
3330 
3331 	MSK_IF_LOCK_ASSERT(sc_if);
3332 
3333 	ifp = sc_if->msk_ifp;
3334 
3335 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3336 	    sc_if->msk_cdata.msk_tx_ring_map,
3337 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3338 	/*
3339 	 * Go through our tx ring and free mbufs for those
3340 	 * frames that have been sent.
3341 	 */
3342 	cons = sc_if->msk_cdata.msk_tx_cons;
3343 	prog = 0;
3344 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3345 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3346 			break;
3347 		prog++;
3348 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3349 		control = le32toh(cur_tx->msk_control);
3350 		sc_if->msk_cdata.msk_tx_cnt--;
3351 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3352 		if ((control & EOP) == 0)
3353 			continue;
3354 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3355 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3356 		    BUS_DMASYNC_POSTWRITE);
3357 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3358 
3359 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3360 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3361 		    __func__));
3362 		m_freem(txd->tx_m);
3363 		txd->tx_m = NULL;
3364 	}
3365 
3366 	if (prog > 0) {
3367 		sc_if->msk_cdata.msk_tx_cons = cons;
3368 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3369 			sc_if->msk_watchdog_timer = 0;
3370 		/* No need to sync LEs as we didn't update LEs. */
3371 	}
3372 }
3373 
3374 static void
3375 msk_tick(void *xsc_if)
3376 {
3377 	struct msk_if_softc *sc_if;
3378 	struct mii_data *mii;
3379 
3380 	sc_if = xsc_if;
3381 
3382 	MSK_IF_LOCK_ASSERT(sc_if);
3383 
3384 	mii = device_get_softc(sc_if->msk_miibus);
3385 
3386 	mii_tick(mii);
3387 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0)
3388 		msk_miibus_statchg(sc_if->msk_if_dev);
3389 	msk_handle_events(sc_if->msk_softc);
3390 	msk_watchdog(sc_if);
3391 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3392 }
3393 
3394 static void
3395 msk_intr_phy(struct msk_if_softc *sc_if)
3396 {
3397 	uint16_t status;
3398 
3399 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3400 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3401 	/* Handle FIFO Underrun/Overflow? */
3402 	if ((status & PHY_M_IS_FIFO_ERROR))
3403 		device_printf(sc_if->msk_if_dev,
3404 		    "PHY FIFO underrun/overflow.\n");
3405 }
3406 
3407 static void
3408 msk_intr_gmac(struct msk_if_softc *sc_if)
3409 {
3410 	struct msk_softc *sc;
3411 	uint8_t status;
3412 
3413 	sc = sc_if->msk_softc;
3414 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3415 
3416 	/* GMAC Rx FIFO overrun. */
3417 	if ((status & GM_IS_RX_FF_OR) != 0)
3418 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3419 		    GMF_CLI_RX_FO);
3420 	/* GMAC Tx FIFO underrun. */
3421 	if ((status & GM_IS_TX_FF_UR) != 0) {
3422 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3423 		    GMF_CLI_TX_FU);
3424 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3425 		/*
3426 		 * XXX
3427 		 * In case of Tx underrun, we may need to flush/reset
3428 		 * Tx MAC but that would also require resynchronization
3429 		 * with status LEs. Reinitializing status LEs would
3430 		 * affect other port in dual MAC configuration so it
3431 		 * should be avoided as possible as we can.
3432 		 * Due to lack of documentation it's all vague guess but
3433 		 * it needs more investigation.
3434 		 */
3435 	}
3436 }
3437 
3438 static void
3439 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3440 {
3441 	struct msk_softc *sc;
3442 
3443 	sc = sc_if->msk_softc;
3444 	if ((status & Y2_IS_PAR_RD1) != 0) {
3445 		device_printf(sc_if->msk_if_dev,
3446 		    "RAM buffer read parity error\n");
3447 		/* Clear IRQ. */
3448 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3449 		    RI_CLR_RD_PERR);
3450 	}
3451 	if ((status & Y2_IS_PAR_WR1) != 0) {
3452 		device_printf(sc_if->msk_if_dev,
3453 		    "RAM buffer write parity error\n");
3454 		/* Clear IRQ. */
3455 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3456 		    RI_CLR_WR_PERR);
3457 	}
3458 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3459 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3460 		/* Clear IRQ. */
3461 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3462 		    GMF_CLI_TX_PE);
3463 	}
3464 	if ((status & Y2_IS_PAR_RX1) != 0) {
3465 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3466 		/* Clear IRQ. */
3467 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3468 	}
3469 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3470 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3471 		/* Clear IRQ. */
3472 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3473 	}
3474 }
3475 
3476 static void
3477 msk_intr_hwerr(struct msk_softc *sc)
3478 {
3479 	uint32_t status;
3480 	uint32_t tlphead[4];
3481 
3482 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3483 	/* Time Stamp timer overflow. */
3484 	if ((status & Y2_IS_TIST_OV) != 0)
3485 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3486 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3487 		/*
3488 		 * PCI Express Error occurred which is not described in PEX
3489 		 * spec.
3490 		 * This error is also mapped either to Master Abort(
3491 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3492 		 * can only be cleared there.
3493                  */
3494 		device_printf(sc->msk_dev,
3495 		    "PCI Express protocol violation error\n");
3496 	}
3497 
3498 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3499 		uint16_t v16;
3500 
3501 		if ((status & Y2_IS_MST_ERR) != 0)
3502 			device_printf(sc->msk_dev,
3503 			    "unexpected IRQ Status error\n");
3504 		else
3505 			device_printf(sc->msk_dev,
3506 			    "unexpected IRQ Master error\n");
3507 		/* Reset all bits in the PCI status register. */
3508 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3509 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3510 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3511 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3512 		    PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
3513 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3514 	}
3515 
3516 	/* Check for PCI Express Uncorrectable Error. */
3517 	if ((status & Y2_IS_PCI_EXP) != 0) {
3518 		uint32_t v32;
3519 
3520 		/*
3521 		 * On PCI Express bus bridges are called root complexes (RC).
3522 		 * PCI Express errors are recognized by the root complex too,
3523 		 * which requests the system to handle the problem. After
3524 		 * error occurrence it may be that no access to the adapter
3525 		 * may be performed any longer.
3526 		 */
3527 
3528 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3529 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3530 			/* Ignore unsupported request error. */
3531 			device_printf(sc->msk_dev,
3532 			    "Uncorrectable PCI Express error\n");
3533 		}
3534 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3535 			int i;
3536 
3537 			/* Get TLP header form Log Registers. */
3538 			for (i = 0; i < 4; i++)
3539 				tlphead[i] = CSR_PCI_READ_4(sc,
3540 				    PEX_HEADER_LOG + i * 4);
3541 			/* Check for vendor defined broadcast message. */
3542 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3543 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3544 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3545 				    sc->msk_intrhwemask);
3546 				CSR_READ_4(sc, B0_HWE_IMSK);
3547 			}
3548 		}
3549 		/* Clear the interrupt. */
3550 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3551 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3552 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3553 	}
3554 
3555 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3556 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3557 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3558 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3559 }
3560 
3561 static __inline void
3562 msk_rxput(struct msk_if_softc *sc_if)
3563 {
3564 	struct msk_softc *sc;
3565 
3566 	sc = sc_if->msk_softc;
3567 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3568 		bus_dmamap_sync(
3569 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3570 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3571 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3572 	else
3573 		bus_dmamap_sync(
3574 		    sc_if->msk_cdata.msk_rx_ring_tag,
3575 		    sc_if->msk_cdata.msk_rx_ring_map,
3576 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3577 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3578 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3579 }
3580 
3581 static int
3582 msk_handle_events(struct msk_softc *sc)
3583 {
3584 	struct msk_if_softc *sc_if;
3585 	int rxput[2];
3586 	struct msk_stat_desc *sd;
3587 	uint32_t control, status;
3588 	int cons, len, port, rxprog;
3589 
3590 	if (sc->msk_stat_cons == CSR_READ_2(sc, STAT_PUT_IDX))
3591 		return (0);
3592 
3593 	/* Sync status LEs. */
3594 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3595 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3596 
3597 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3598 	rxprog = 0;
3599 	cons = sc->msk_stat_cons;
3600 	for (;;) {
3601 		sd = &sc->msk_stat_ring[cons];
3602 		control = le32toh(sd->msk_control);
3603 		if ((control & HW_OWNER) == 0)
3604 			break;
3605 		control &= ~HW_OWNER;
3606 		sd->msk_control = htole32(control);
3607 		status = le32toh(sd->msk_status);
3608 		len = control & STLE_LEN_MASK;
3609 		port = (control >> 16) & 0x01;
3610 		sc_if = sc->msk_if[port];
3611 		if (sc_if == NULL) {
3612 			device_printf(sc->msk_dev, "invalid port opcode "
3613 			    "0x%08x\n", control & STLE_OP_MASK);
3614 			continue;
3615 		}
3616 
3617 		switch (control & STLE_OP_MASK) {
3618 		case OP_RXVLAN:
3619 			sc_if->msk_vtag = ntohs(len);
3620 			break;
3621 		case OP_RXCHKSVLAN:
3622 			sc_if->msk_vtag = ntohs(len);
3623 			/* FALLTHROUGH */
3624 		case OP_RXCHKS:
3625 			sc_if->msk_csum = status;
3626 			break;
3627 		case OP_RXSTAT:
3628 			if (!(sc_if->msk_ifp->if_drv_flags & IFF_DRV_RUNNING))
3629 				break;
3630 			if (sc_if->msk_framesize >
3631 			    (MCLBYTES - MSK_RX_BUF_ALIGN))
3632 				msk_jumbo_rxeof(sc_if, status, control, len);
3633 			else
3634 				msk_rxeof(sc_if, status, control, len);
3635 			rxprog++;
3636 			/*
3637 			 * Because there is no way to sync single Rx LE
3638 			 * put the DMA sync operation off until the end of
3639 			 * event processing.
3640 			 */
3641 			rxput[port]++;
3642 			/* Update prefetch unit if we've passed water mark. */
3643 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3644 				msk_rxput(sc_if);
3645 				rxput[port] = 0;
3646 			}
3647 			break;
3648 		case OP_TXINDEXLE:
3649 			if (sc->msk_if[MSK_PORT_A] != NULL)
3650 				msk_txeof(sc->msk_if[MSK_PORT_A],
3651 				    status & STLE_TXA1_MSKL);
3652 			if (sc->msk_if[MSK_PORT_B] != NULL)
3653 				msk_txeof(sc->msk_if[MSK_PORT_B],
3654 				    ((status & STLE_TXA2_MSKL) >>
3655 				    STLE_TXA2_SHIFTL) |
3656 				    ((len & STLE_TXA2_MSKH) <<
3657 				    STLE_TXA2_SHIFTH));
3658 			break;
3659 		default:
3660 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3661 			    control & STLE_OP_MASK);
3662 			break;
3663 		}
3664 		MSK_INC(cons, sc->msk_stat_count);
3665 		if (rxprog > sc->msk_process_limit)
3666 			break;
3667 	}
3668 
3669 	sc->msk_stat_cons = cons;
3670 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3671 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3672 
3673 	if (rxput[MSK_PORT_A] > 0)
3674 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3675 	if (rxput[MSK_PORT_B] > 0)
3676 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3677 
3678 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3679 }
3680 
3681 static void
3682 msk_intr(void *xsc)
3683 {
3684 	struct msk_softc *sc;
3685 	struct msk_if_softc *sc_if0, *sc_if1;
3686 	struct ifnet *ifp0, *ifp1;
3687 	uint32_t status;
3688 	int domore;
3689 
3690 	sc = xsc;
3691 	MSK_LOCK(sc);
3692 
3693 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3694 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3695 	if (status == 0 || status == 0xffffffff ||
3696 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3697 	    (status & sc->msk_intrmask) == 0) {
3698 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3699 		MSK_UNLOCK(sc);
3700 		return;
3701 	}
3702 
3703 	sc_if0 = sc->msk_if[MSK_PORT_A];
3704 	sc_if1 = sc->msk_if[MSK_PORT_B];
3705 	ifp0 = ifp1 = NULL;
3706 	if (sc_if0 != NULL)
3707 		ifp0 = sc_if0->msk_ifp;
3708 	if (sc_if1 != NULL)
3709 		ifp1 = sc_if1->msk_ifp;
3710 
3711 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3712 		msk_intr_phy(sc_if0);
3713 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3714 		msk_intr_phy(sc_if1);
3715 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3716 		msk_intr_gmac(sc_if0);
3717 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3718 		msk_intr_gmac(sc_if1);
3719 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3720 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3721 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3722 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3723 		CSR_READ_4(sc, B0_IMSK);
3724 	}
3725         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3726 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3727 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3728 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3729 		CSR_READ_4(sc, B0_IMSK);
3730 	}
3731 	if ((status & Y2_IS_HW_ERR) != 0)
3732 		msk_intr_hwerr(sc);
3733 
3734 	domore = msk_handle_events(sc);
3735 	if ((status & Y2_IS_STAT_BMU) != 0 && domore == 0)
3736 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3737 
3738 	/* Reenable interrupts. */
3739 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3740 
3741 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3742 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3743 		msk_start_locked(ifp0);
3744 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3745 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3746 		msk_start_locked(ifp1);
3747 
3748 	MSK_UNLOCK(sc);
3749 }
3750 
3751 static void
3752 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3753 {
3754 	struct msk_softc *sc;
3755 	struct ifnet *ifp;
3756 
3757 	ifp = sc_if->msk_ifp;
3758 	sc = sc_if->msk_softc;
3759 	if ((sc->msk_hw_id == CHIP_ID_YUKON_EX &&
3760 	    sc->msk_hw_rev != CHIP_REV_YU_EX_A0) ||
3761 	    sc->msk_hw_id >= CHIP_ID_YUKON_SUPR) {
3762 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3763 		    TX_STFW_ENA);
3764 	} else {
3765 		if (ifp->if_mtu > ETHERMTU) {
3766 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3767 			CSR_WRITE_4(sc,
3768 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3769 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3770 			/* Disable Store & Forward mode for Tx. */
3771 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3772 			    TX_STFW_DIS);
3773 		} else {
3774 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3775 			    TX_STFW_ENA);
3776 		}
3777 	}
3778 }
3779 
3780 static void
3781 msk_init(void *xsc)
3782 {
3783 	struct msk_if_softc *sc_if = xsc;
3784 
3785 	MSK_IF_LOCK(sc_if);
3786 	msk_init_locked(sc_if);
3787 	MSK_IF_UNLOCK(sc_if);
3788 }
3789 
3790 static void
3791 msk_init_locked(struct msk_if_softc *sc_if)
3792 {
3793 	struct msk_softc *sc;
3794 	struct ifnet *ifp;
3795 	struct mii_data	 *mii;
3796 	uint8_t *eaddr;
3797 	uint16_t gmac;
3798 	uint32_t reg;
3799 	int error;
3800 
3801 	MSK_IF_LOCK_ASSERT(sc_if);
3802 
3803 	ifp = sc_if->msk_ifp;
3804 	sc = sc_if->msk_softc;
3805 	mii = device_get_softc(sc_if->msk_miibus);
3806 
3807 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3808 		return;
3809 
3810 	error = 0;
3811 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3812 	msk_stop(sc_if);
3813 
3814 	if (ifp->if_mtu < ETHERMTU)
3815 		sc_if->msk_framesize = ETHERMTU;
3816 	else
3817 		sc_if->msk_framesize = ifp->if_mtu;
3818 	sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3819 	if (ifp->if_mtu > ETHERMTU &&
3820 	    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
3821 		ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3822 		ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3823 	}
3824 
3825 	/* GMAC Control reset. */
3826 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3827 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3828 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3829 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3830 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR)
3831 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3832 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3833 		    GMC_BYP_RETR_ON);
3834 
3835 	/*
3836 	 * Initialize GMAC first such that speed/duplex/flow-control
3837 	 * parameters are renegotiated when interface is brought up.
3838 	 */
3839 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3840 
3841 	/* Dummy read the Interrupt Source Register. */
3842 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3843 
3844 	/* Clear MIB stats. */
3845 	msk_stats_clear(sc_if);
3846 
3847 	/* Disable FCS. */
3848 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3849 
3850 	/* Setup Transmit Control Register. */
3851 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3852 
3853 	/* Setup Transmit Flow Control Register. */
3854 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3855 
3856 	/* Setup Transmit Parameter Register. */
3857 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3858 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3859 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3860 
3861 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3862 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3863 
3864 	if (ifp->if_mtu > ETHERMTU)
3865 		gmac |= GM_SMOD_JUMBO_ENA;
3866 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3867 
3868 	/* Set station address. */
3869 	eaddr = IF_LLADDR(ifp);
3870 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L,
3871 	    eaddr[0] | (eaddr[1] << 8));
3872 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M,
3873 	    eaddr[2] | (eaddr[3] << 8));
3874 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H,
3875 	    eaddr[4] | (eaddr[5] << 8));
3876 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L,
3877 	    eaddr[0] | (eaddr[1] << 8));
3878 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M,
3879 	    eaddr[2] | (eaddr[3] << 8));
3880 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H,
3881 	    eaddr[4] | (eaddr[5] << 8));
3882 
3883 	/* Disable interrupts for counter overflows. */
3884 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3885 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3886 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3887 
3888 	/* Configure Rx MAC FIFO. */
3889 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3890 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3891 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3892 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3893 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3894 		reg |= GMF_RX_OVER_ON;
3895 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3896 
3897 	/* Set receive filter. */
3898 	msk_rxfilter(sc_if);
3899 
3900 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3901 		/* Clear flush mask - HW bug. */
3902 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3903 	} else {
3904 		/* Flush Rx MAC FIFO on any flow control or error. */
3905 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3906 		    GMR_FS_ANY_ERR);
3907 	}
3908 
3909 	/*
3910 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3911 	 * due to hardware hang on receipt of pause frames.
3912 	 */
3913 	reg = RX_GMF_FL_THR_DEF + 1;
3914 	/* Another magic for Yukon FE+ - From Linux. */
3915 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3916 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3917 		reg = 0x178;
3918 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3919 
3920 	/* Configure Tx MAC FIFO. */
3921 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3922 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3923 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3924 
3925 	/* Configure hardware VLAN tag insertion/stripping. */
3926 	msk_setvlan(sc_if, ifp);
3927 
3928 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3929 		/* Set Rx Pause threshold. */
3930 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3931 		    MSK_ECU_LLPP);
3932 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3933 		    MSK_ECU_ULPP);
3934 		/* Configure store-and-forward for Tx. */
3935 		msk_set_tx_stfwd(sc_if);
3936 	}
3937 
3938 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3939 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3940 		/* Disable dynamic watermark - from Linux. */
3941 		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3942 		reg &= ~0x03;
3943 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3944 	}
3945 
3946 	/*
3947 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3948 	 * arbiter as we don't use Sync Tx queue.
3949 	 */
3950 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3951 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3952 	/* Enable the RAM Interface Arbiter. */
3953 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3954 
3955 	/* Setup RAM buffer. */
3956 	msk_set_rambuffer(sc_if);
3957 
3958 	/* Disable Tx sync Queue. */
3959 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3960 
3961 	/* Setup Tx Queue Bus Memory Interface. */
3962 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3963 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3964 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3965 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3966 	switch (sc->msk_hw_id) {
3967 	case CHIP_ID_YUKON_EC_U:
3968 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3969 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3970 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3971 			    MSK_ECU_TXFF_LEV);
3972 		}
3973 		break;
3974 	case CHIP_ID_YUKON_EX:
3975 		/*
3976 		 * Yukon Extreme seems to have silicon bug for
3977 		 * automatic Tx checksum calculation capability.
3978 		 */
3979 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
3980 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3981 			    F_TX_CHK_AUTO_OFF);
3982 		break;
3983 	}
3984 
3985 	/* Setup Rx Queue Bus Memory Interface. */
3986 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3987 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3988 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3989 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3990         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3991 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3992 		/* MAC Rx RAM Read is controlled by hardware. */
3993                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3994 	}
3995 
3996 	msk_set_prefetch(sc, sc_if->msk_txq,
3997 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3998 	msk_init_tx_ring(sc_if);
3999 
4000 	/* Disable Rx checksum offload and RSS hash. */
4001 	reg = BMU_DIS_RX_RSS_HASH;
4002 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
4003 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0)
4004 		reg |= BMU_ENA_RX_CHKSUM;
4005 	else
4006 		reg |= BMU_DIS_RX_CHKSUM;
4007 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), reg);
4008 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
4009 		msk_set_prefetch(sc, sc_if->msk_rxq,
4010 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
4011 		    MSK_JUMBO_RX_RING_CNT - 1);
4012 		error = msk_init_jumbo_rx_ring(sc_if);
4013 	 } else {
4014 		msk_set_prefetch(sc, sc_if->msk_rxq,
4015 		    sc_if->msk_rdata.msk_rx_ring_paddr,
4016 		    MSK_RX_RING_CNT - 1);
4017 		error = msk_init_rx_ring(sc_if);
4018 	}
4019 	if (error != 0) {
4020 		device_printf(sc_if->msk_if_dev,
4021 		    "initialization failed: no memory for Rx buffers\n");
4022 		msk_stop(sc_if);
4023 		return;
4024 	}
4025 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
4026 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
4027 		/* Disable flushing of non-ASF packets. */
4028 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
4029 		    GMF_RX_MACSEC_FLUSH_OFF);
4030 	}
4031 
4032 	/* Configure interrupt handling. */
4033 	if (sc_if->msk_port == MSK_PORT_A) {
4034 		sc->msk_intrmask |= Y2_IS_PORT_A;
4035 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
4036 	} else {
4037 		sc->msk_intrmask |= Y2_IS_PORT_B;
4038 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
4039 	}
4040 	/* Configure IRQ moderation mask. */
4041 	CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
4042 	if (sc->msk_int_holdoff > 0) {
4043 		/* Configure initial IRQ moderation timer value. */
4044 		CSR_WRITE_4(sc, B2_IRQM_INI,
4045 		    MSK_USECS(sc, sc->msk_int_holdoff));
4046 		CSR_WRITE_4(sc, B2_IRQM_VAL,
4047 		    MSK_USECS(sc, sc->msk_int_holdoff));
4048 		/* Start IRQ moderation. */
4049 		CSR_WRITE_1(sc, B2_IRQM_CTRL, TIM_START);
4050 	}
4051 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4052 	CSR_READ_4(sc, B0_HWE_IMSK);
4053 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4054 	CSR_READ_4(sc, B0_IMSK);
4055 
4056 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4057 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4058 
4059 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4060 	mii_mediachg(mii);
4061 
4062 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
4063 }
4064 
4065 static void
4066 msk_set_rambuffer(struct msk_if_softc *sc_if)
4067 {
4068 	struct msk_softc *sc;
4069 	int ltpp, utpp;
4070 
4071 	sc = sc_if->msk_softc;
4072 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
4073 		return;
4074 
4075 	/* Setup Rx Queue. */
4076 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
4077 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
4078 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4079 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
4080 	    sc->msk_rxqend[sc_if->msk_port] / 8);
4081 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
4082 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4083 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
4084 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4085 
4086 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
4087 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
4088 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
4089 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
4090 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
4091 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
4092 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
4093 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
4094 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
4095 
4096 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
4097 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
4098 
4099 	/* Setup Tx Queue. */
4100 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
4101 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
4102 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4103 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
4104 	    sc->msk_txqend[sc_if->msk_port] / 8);
4105 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
4106 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4107 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
4108 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4109 	/* Enable Store & Forward for Tx side. */
4110 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
4111 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
4112 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
4113 }
4114 
4115 static void
4116 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
4117     uint32_t count)
4118 {
4119 
4120 	/* Reset the prefetch unit. */
4121 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4122 	    PREF_UNIT_RST_SET);
4123 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4124 	    PREF_UNIT_RST_CLR);
4125 	/* Set LE base address. */
4126 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
4127 	    MSK_ADDR_LO(addr));
4128 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
4129 	    MSK_ADDR_HI(addr));
4130 	/* Set the list last index. */
4131 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
4132 	    count);
4133 	/* Turn on prefetch unit. */
4134 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4135 	    PREF_UNIT_OP_ON);
4136 	/* Dummy read to ensure write. */
4137 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
4138 }
4139 
4140 static void
4141 msk_stop(struct msk_if_softc *sc_if)
4142 {
4143 	struct msk_softc *sc;
4144 	struct msk_txdesc *txd;
4145 	struct msk_rxdesc *rxd;
4146 	struct msk_rxdesc *jrxd;
4147 	struct ifnet *ifp;
4148 	uint32_t val;
4149 	int i;
4150 
4151 	MSK_IF_LOCK_ASSERT(sc_if);
4152 	sc = sc_if->msk_softc;
4153 	ifp = sc_if->msk_ifp;
4154 
4155 	callout_stop(&sc_if->msk_tick_ch);
4156 	sc_if->msk_watchdog_timer = 0;
4157 
4158 	/* Disable interrupts. */
4159 	if (sc_if->msk_port == MSK_PORT_A) {
4160 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
4161 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
4162 	} else {
4163 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
4164 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
4165 	}
4166 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4167 	CSR_READ_4(sc, B0_HWE_IMSK);
4168 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4169 	CSR_READ_4(sc, B0_IMSK);
4170 
4171 	/* Disable Tx/Rx MAC. */
4172 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4173 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
4174 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
4175 	/* Read again to ensure writing. */
4176 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4177 	/* Update stats and clear counters. */
4178 	msk_stats_update(sc_if);
4179 
4180 	/* Stop Tx BMU. */
4181 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
4182 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4183 	for (i = 0; i < MSK_TIMEOUT; i++) {
4184 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
4185 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4186 			    BMU_STOP);
4187 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4188 		} else
4189 			break;
4190 		DELAY(1);
4191 	}
4192 	if (i == MSK_TIMEOUT)
4193 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
4194 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
4195 	    RB_RST_SET | RB_DIS_OP_MD);
4196 
4197 	/* Disable all GMAC interrupt. */
4198 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
4199 	/* Disable PHY interrupt. */
4200 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
4201 
4202 	/* Disable the RAM Interface Arbiter. */
4203 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
4204 
4205 	/* Reset the PCI FIFO of the async Tx queue */
4206 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4207 	    BMU_RST_SET | BMU_FIFO_RST);
4208 
4209 	/* Reset the Tx prefetch units. */
4210 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
4211 	    PREF_UNIT_RST_SET);
4212 
4213 	/* Reset the RAM Buffer async Tx queue. */
4214 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
4215 
4216 	/* Reset Tx MAC FIFO. */
4217 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
4218 	/* Set Pause Off. */
4219 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
4220 
4221 	/*
4222 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
4223 	 * reach the end of packet and since we can't make sure that we have
4224 	 * incoming data, we must reset the BMU while it is not during a DMA
4225 	 * transfer. Since it is possible that the Rx path is still active,
4226 	 * the Rx RAM buffer will be stopped first, so any possible incoming
4227 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
4228 	 * BMU is polled until any DMA in progress is ended and only then it
4229 	 * will be reset.
4230 	 */
4231 
4232 	/* Disable the RAM Buffer receive queue. */
4233 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4234 	for (i = 0; i < MSK_TIMEOUT; i++) {
4235 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4236 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4237 			break;
4238 		DELAY(1);
4239 	}
4240 	if (i == MSK_TIMEOUT)
4241 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4242 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4243 	    BMU_RST_SET | BMU_FIFO_RST);
4244 	/* Reset the Rx prefetch unit. */
4245 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4246 	    PREF_UNIT_RST_SET);
4247 	/* Reset the RAM Buffer receive queue. */
4248 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4249 	/* Reset Rx MAC FIFO. */
4250 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4251 
4252 	/* Free Rx and Tx mbufs still in the queues. */
4253 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4254 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4255 		if (rxd->rx_m != NULL) {
4256 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4257 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4258 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4259 			    rxd->rx_dmamap);
4260 			m_freem(rxd->rx_m);
4261 			rxd->rx_m = NULL;
4262 		}
4263 	}
4264 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4265 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4266 		if (jrxd->rx_m != NULL) {
4267 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4268 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4269 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4270 			    jrxd->rx_dmamap);
4271 			m_freem(jrxd->rx_m);
4272 			jrxd->rx_m = NULL;
4273 		}
4274 	}
4275 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4276 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4277 		if (txd->tx_m != NULL) {
4278 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4279 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4280 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4281 			    txd->tx_dmamap);
4282 			m_freem(txd->tx_m);
4283 			txd->tx_m = NULL;
4284 		}
4285 	}
4286 
4287 	/*
4288 	 * Mark the interface down.
4289 	 */
4290 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4291 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4292 }
4293 
4294 /*
4295  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
4296  * counter clears high 16 bits of the counter such that accessing
4297  * lower 16 bits should be the last operation.
4298  */
4299 #define	MSK_READ_MIB32(x, y)					\
4300 	(((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) +	\
4301 	(uint32_t)GMAC_READ_2(sc, x, y)
4302 #define	MSK_READ_MIB64(x, y)					\
4303 	(((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) +	\
4304 	(uint64_t)MSK_READ_MIB32(x, y)
4305 
4306 static void
4307 msk_stats_clear(struct msk_if_softc *sc_if)
4308 {
4309 	struct msk_softc *sc;
4310 	uint32_t reg;
4311 	uint16_t gmac;
4312 	int i;
4313 
4314 	MSK_IF_LOCK_ASSERT(sc_if);
4315 
4316 	sc = sc_if->msk_softc;
4317 	/* Set MIB Clear Counter Mode. */
4318 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4319 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4320 	/* Read all MIB Counters with Clear Mode set. */
4321 	for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t))
4322 		reg = MSK_READ_MIB32(sc_if->msk_port, i);
4323 	/* Clear MIB Clear Counter Mode. */
4324 	gmac &= ~GM_PAR_MIB_CLR;
4325 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4326 }
4327 
4328 static void
4329 msk_stats_update(struct msk_if_softc *sc_if)
4330 {
4331 	struct msk_softc *sc;
4332 	struct ifnet *ifp;
4333 	struct msk_hw_stats *stats;
4334 	uint16_t gmac;
4335 	uint32_t reg;
4336 
4337 	MSK_IF_LOCK_ASSERT(sc_if);
4338 
4339 	ifp = sc_if->msk_ifp;
4340 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4341 		return;
4342 	sc = sc_if->msk_softc;
4343 	stats = &sc_if->msk_stats;
4344 	/* Set MIB Clear Counter Mode. */
4345 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4346 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4347 
4348 	/* Rx stats. */
4349 	stats->rx_ucast_frames +=
4350 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4351 	stats->rx_bcast_frames +=
4352 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4353 	stats->rx_pause_frames +=
4354 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4355 	stats->rx_mcast_frames +=
4356 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4357 	stats->rx_crc_errs +=
4358 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4359 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1);
4360 	stats->rx_good_octets +=
4361 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4362 	stats->rx_bad_octets +=
4363 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4364 	stats->rx_runts +=
4365 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4366 	stats->rx_runt_errs +=
4367 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4368 	stats->rx_pkts_64 +=
4369 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4370 	stats->rx_pkts_65_127 +=
4371 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4372 	stats->rx_pkts_128_255 +=
4373 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4374 	stats->rx_pkts_256_511 +=
4375 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4376 	stats->rx_pkts_512_1023 +=
4377 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4378 	stats->rx_pkts_1024_1518 +=
4379 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4380 	stats->rx_pkts_1519_max +=
4381 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4382 	stats->rx_pkts_too_long +=
4383 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4384 	stats->rx_pkts_jabbers +=
4385 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4386 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2);
4387 	stats->rx_fifo_oflows +=
4388 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4389 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3);
4390 
4391 	/* Tx stats. */
4392 	stats->tx_ucast_frames +=
4393 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4394 	stats->tx_bcast_frames +=
4395 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4396 	stats->tx_pause_frames +=
4397 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4398 	stats->tx_mcast_frames +=
4399 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4400 	stats->tx_octets +=
4401 	    MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4402 	stats->tx_pkts_64 +=
4403 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4404 	stats->tx_pkts_65_127 +=
4405 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4406 	stats->tx_pkts_128_255 +=
4407 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4408 	stats->tx_pkts_256_511 +=
4409 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4410 	stats->tx_pkts_512_1023 +=
4411 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4412 	stats->tx_pkts_1024_1518 +=
4413 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4414 	stats->tx_pkts_1519_max +=
4415 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4416 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1);
4417 	stats->tx_colls +=
4418 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4419 	stats->tx_late_colls +=
4420 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4421 	stats->tx_excess_colls +=
4422 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4423 	stats->tx_multi_colls +=
4424 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4425 	stats->tx_single_colls +=
4426 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4427 	stats->tx_underflows +=
4428 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4429 	/* Clear MIB Clear Counter Mode. */
4430 	gmac &= ~GM_PAR_MIB_CLR;
4431 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4432 }
4433 
4434 static int
4435 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4436 {
4437 	struct msk_softc *sc;
4438 	struct msk_if_softc *sc_if;
4439 	uint32_t result, *stat;
4440 	int off;
4441 
4442 	sc_if = (struct msk_if_softc *)arg1;
4443 	sc = sc_if->msk_softc;
4444 	off = arg2;
4445 	stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4446 
4447 	MSK_IF_LOCK(sc_if);
4448 	result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4449 	result += *stat;
4450 	MSK_IF_UNLOCK(sc_if);
4451 
4452 	return (sysctl_handle_int(oidp, &result, 0, req));
4453 }
4454 
4455 static int
4456 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4457 {
4458 	struct msk_softc *sc;
4459 	struct msk_if_softc *sc_if;
4460 	uint64_t result, *stat;
4461 	int off;
4462 
4463 	sc_if = (struct msk_if_softc *)arg1;
4464 	sc = sc_if->msk_softc;
4465 	off = arg2;
4466 	stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4467 
4468 	MSK_IF_LOCK(sc_if);
4469 	result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4470 	result += *stat;
4471 	MSK_IF_UNLOCK(sc_if);
4472 
4473 	return (sysctl_handle_64(oidp, &result, 0, req));
4474 }
4475 
4476 #undef MSK_READ_MIB32
4477 #undef MSK_READ_MIB64
4478 
4479 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) 				\
4480 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4481 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32,	\
4482 	    "IU", d)
4483 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) 				\
4484 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_U64 | CTLFLAG_RD, 	\
4485 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64,	\
4486 	    "QU", d)
4487 
4488 static void
4489 msk_sysctl_node(struct msk_if_softc *sc_if)
4490 {
4491 	struct sysctl_ctx_list *ctx;
4492 	struct sysctl_oid_list *child, *schild;
4493 	struct sysctl_oid *tree;
4494 
4495 	ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4496 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4497 
4498 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
4499 	    NULL, "MSK Statistics");
4500 	schild = SYSCTL_CHILDREN(tree);
4501 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
4502 	    NULL, "MSK RX Statistics");
4503 	child = SYSCTL_CHILDREN(tree);
4504 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4505 	    child, rx_ucast_frames, "Good unicast frames");
4506 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4507 	    child, rx_bcast_frames, "Good broadcast frames");
4508 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4509 	    child, rx_pause_frames, "Pause frames");
4510 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4511 	    child, rx_mcast_frames, "Multicast frames");
4512 	MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4513 	    child, rx_crc_errs, "CRC errors");
4514 	MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4515 	    child, rx_good_octets, "Good octets");
4516 	MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4517 	    child, rx_bad_octets, "Bad octets");
4518 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4519 	    child, rx_pkts_64, "64 bytes frames");
4520 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4521 	    child, rx_pkts_65_127, "65 to 127 bytes frames");
4522 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4523 	    child, rx_pkts_128_255, "128 to 255 bytes frames");
4524 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4525 	    child, rx_pkts_256_511, "256 to 511 bytes frames");
4526 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4527 	    child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4528 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4529 	    child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4530 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4531 	    child, rx_pkts_1519_max, "1519 to max frames");
4532 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4533 	    child, rx_pkts_too_long, "frames too long");
4534 	MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4535 	    child, rx_pkts_jabbers, "Jabber errors");
4536 	MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4537 	    child, rx_fifo_oflows, "FIFO overflows");
4538 
4539 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
4540 	    NULL, "MSK TX Statistics");
4541 	child = SYSCTL_CHILDREN(tree);
4542 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4543 	    child, tx_ucast_frames, "Unicast frames");
4544 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4545 	    child, tx_bcast_frames, "Broadcast frames");
4546 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4547 	    child, tx_pause_frames, "Pause frames");
4548 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4549 	    child, tx_mcast_frames, "Multicast frames");
4550 	MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4551 	    child, tx_octets, "Octets");
4552 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4553 	    child, tx_pkts_64, "64 bytes frames");
4554 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4555 	    child, tx_pkts_65_127, "65 to 127 bytes frames");
4556 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4557 	    child, tx_pkts_128_255, "128 to 255 bytes frames");
4558 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4559 	    child, tx_pkts_256_511, "256 to 511 bytes frames");
4560 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4561 	    child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4562 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4563 	    child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4564 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4565 	    child, tx_pkts_1519_max, "1519 to max frames");
4566 	MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4567 	    child, tx_colls, "Collisions");
4568 	MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4569 	    child, tx_late_colls, "Late collisions");
4570 	MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4571 	    child, tx_excess_colls, "Excessive collisions");
4572 	MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4573 	    child, tx_multi_colls, "Multiple collisions");
4574 	MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4575 	    child, tx_single_colls, "Single collisions");
4576 	MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4577 	    child, tx_underflows, "FIFO underflows");
4578 }
4579 
4580 #undef MSK_SYSCTL_STAT32
4581 #undef MSK_SYSCTL_STAT64
4582 
4583 static int
4584 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4585 {
4586 	int error, value;
4587 
4588 	if (!arg1)
4589 		return (EINVAL);
4590 	value = *(int *)arg1;
4591 	error = sysctl_handle_int(oidp, &value, 0, req);
4592 	if (error || !req->newptr)
4593 		return (error);
4594 	if (value < low || value > high)
4595 		return (EINVAL);
4596 	*(int *)arg1 = value;
4597 
4598 	return (0);
4599 }
4600 
4601 static int
4602 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4603 {
4604 
4605 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4606 	    MSK_PROC_MAX));
4607 }
4608