xref: /freebsd/sys/dev/msk/if_msk.c (revision 48855ec75316aaec5538ef22132f96fd04e137d4)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /*
96  * Device driver for the Marvell Yukon II Ethernet controller.
97  * Due to lack of documentation, this driver is based on the code from
98  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
99  */
100 
101 #include <sys/cdefs.h>
102 __FBSDID("$FreeBSD$");
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/module.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/queue.h>
115 #include <sys/sysctl.h>
116 
117 #include <net/bpf.h>
118 #include <net/ethernet.h>
119 #include <net/if.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/if_types.h>
124 #include <net/if_vlan_var.h>
125 
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/tcp.h>
130 #include <netinet/udp.h>
131 
132 #include <machine/bus.h>
133 #include <machine/in_cksum.h>
134 #include <machine/resource.h>
135 #include <sys/rman.h>
136 
137 #include <dev/mii/mii.h>
138 #include <dev/mii/miivar.h>
139 
140 #include <dev/pci/pcireg.h>
141 #include <dev/pci/pcivar.h>
142 
143 #include <dev/msk/if_mskreg.h>
144 
145 MODULE_DEPEND(msk, pci, 1, 1, 1);
146 MODULE_DEPEND(msk, ether, 1, 1, 1);
147 MODULE_DEPEND(msk, miibus, 1, 1, 1);
148 
149 /* "device miibus" required.  See GENERIC if you get errors here. */
150 #include "miibus_if.h"
151 
152 /* Tunables. */
153 static int msi_disable = 0;
154 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
155 static int legacy_intr = 0;
156 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
157 static int jumbo_disable = 0;
158 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
159 
160 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
161 
162 /*
163  * Devices supported by this driver.
164  */
165 static struct msk_product {
166 	uint16_t	msk_vendorid;
167 	uint16_t	msk_deviceid;
168 	const char	*msk_name;
169 } msk_products[] = {
170 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
171 	    "SK-9Sxx Gigabit Ethernet" },
172 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
173 	    "SK-9Exx Gigabit Ethernet"},
174 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
175 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
176 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
177 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
178 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
179 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
180 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
181 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
182 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
183 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
184 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
185 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
186 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
187 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
188 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
189 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
190 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
191 	    "Marvell Yukon 88E8035 Fast Ethernet" },
192 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
193 	    "Marvell Yukon 88E8036 Fast Ethernet" },
194 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
195 	    "Marvell Yukon 88E8038 Fast Ethernet" },
196 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
197 	    "Marvell Yukon 88E8039 Fast Ethernet" },
198 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
199 	    "Marvell Yukon 88E8040 Fast Ethernet" },
200 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
201 	    "Marvell Yukon 88E8040T Fast Ethernet" },
202 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
203 	    "Marvell Yukon 88E8042 Fast Ethernet" },
204 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
205 	    "Marvell Yukon 88E8048 Fast Ethernet" },
206 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
207 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
208 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
209 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
210 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
211 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
212 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
213 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
214 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
215 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
216 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
217 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
218 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
219 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
220 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
221 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
222 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
223 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
224 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
225 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
226 	{ VENDORID_MARVELL, DEVICEID_MRVL_4381,
227 	    "Marvell Yukon 88E8059 Gigabit Ethernet" },
228 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
229 	    "D-Link 550SX Gigabit Ethernet" },
230 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560SX,
231 	    "D-Link 560SX Gigabit Ethernet" },
232 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
233 	    "D-Link 560T Gigabit Ethernet" }
234 };
235 
236 static const char *model_name[] = {
237 	"Yukon XL",
238         "Yukon EC Ultra",
239         "Yukon EX",
240         "Yukon EC",
241         "Yukon FE",
242         "Yukon FE+",
243         "Yukon Supreme",
244         "Yukon Ultra 2",
245         "Yukon Unknown",
246         "Yukon Optima",
247 };
248 
249 static int mskc_probe(device_t);
250 static int mskc_attach(device_t);
251 static int mskc_detach(device_t);
252 static int mskc_shutdown(device_t);
253 static int mskc_setup_rambuffer(struct msk_softc *);
254 static int mskc_suspend(device_t);
255 static int mskc_resume(device_t);
256 static void mskc_reset(struct msk_softc *);
257 
258 static int msk_probe(device_t);
259 static int msk_attach(device_t);
260 static int msk_detach(device_t);
261 
262 static void msk_tick(void *);
263 static void msk_intr(void *);
264 static void msk_intr_phy(struct msk_if_softc *);
265 static void msk_intr_gmac(struct msk_if_softc *);
266 static __inline void msk_rxput(struct msk_if_softc *);
267 static int msk_handle_events(struct msk_softc *);
268 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
269 static void msk_intr_hwerr(struct msk_softc *);
270 #ifndef __NO_STRICT_ALIGNMENT
271 static __inline void msk_fixup_rx(struct mbuf *);
272 #endif
273 static __inline void msk_rxcsum(struct msk_if_softc *, uint32_t, struct mbuf *);
274 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
275 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
276 static void msk_txeof(struct msk_if_softc *, int);
277 static int msk_encap(struct msk_if_softc *, struct mbuf **);
278 static void msk_start(struct ifnet *);
279 static void msk_start_locked(struct ifnet *);
280 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
281 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
282 static void msk_set_rambuffer(struct msk_if_softc *);
283 static void msk_set_tx_stfwd(struct msk_if_softc *);
284 static void msk_init(void *);
285 static void msk_init_locked(struct msk_if_softc *);
286 static void msk_stop(struct msk_if_softc *);
287 static void msk_watchdog(struct msk_if_softc *);
288 static int msk_mediachange(struct ifnet *);
289 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
290 static void msk_phy_power(struct msk_softc *, int);
291 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
292 static int msk_status_dma_alloc(struct msk_softc *);
293 static void msk_status_dma_free(struct msk_softc *);
294 static int msk_txrx_dma_alloc(struct msk_if_softc *);
295 static int msk_rx_dma_jalloc(struct msk_if_softc *);
296 static void msk_txrx_dma_free(struct msk_if_softc *);
297 static void msk_rx_dma_jfree(struct msk_if_softc *);
298 static int msk_rx_fill(struct msk_if_softc *, int);
299 static int msk_init_rx_ring(struct msk_if_softc *);
300 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
301 static void msk_init_tx_ring(struct msk_if_softc *);
302 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
303 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
304 static int msk_newbuf(struct msk_if_softc *, int);
305 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
306 
307 static int msk_phy_readreg(struct msk_if_softc *, int, int);
308 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
309 static int msk_miibus_readreg(device_t, int, int);
310 static int msk_miibus_writereg(device_t, int, int, int);
311 static void msk_miibus_statchg(device_t);
312 
313 static void msk_rxfilter(struct msk_if_softc *);
314 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
315 
316 static void msk_stats_clear(struct msk_if_softc *);
317 static void msk_stats_update(struct msk_if_softc *);
318 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
319 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
320 static void msk_sysctl_node(struct msk_if_softc *);
321 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
322 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
323 
324 static device_method_t mskc_methods[] = {
325 	/* Device interface */
326 	DEVMETHOD(device_probe,		mskc_probe),
327 	DEVMETHOD(device_attach,	mskc_attach),
328 	DEVMETHOD(device_detach,	mskc_detach),
329 	DEVMETHOD(device_suspend,	mskc_suspend),
330 	DEVMETHOD(device_resume,	mskc_resume),
331 	DEVMETHOD(device_shutdown,	mskc_shutdown),
332 
333 	/* bus interface */
334 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
335 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
336 
337 	{ NULL, NULL }
338 };
339 
340 static driver_t mskc_driver = {
341 	"mskc",
342 	mskc_methods,
343 	sizeof(struct msk_softc)
344 };
345 
346 static devclass_t mskc_devclass;
347 
348 static device_method_t msk_methods[] = {
349 	/* Device interface */
350 	DEVMETHOD(device_probe,		msk_probe),
351 	DEVMETHOD(device_attach,	msk_attach),
352 	DEVMETHOD(device_detach,	msk_detach),
353 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
354 
355 	/* bus interface */
356 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
357 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
358 
359 	/* MII interface */
360 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
361 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
362 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
363 
364 	{ NULL, NULL }
365 };
366 
367 static driver_t msk_driver = {
368 	"msk",
369 	msk_methods,
370 	sizeof(struct msk_if_softc)
371 };
372 
373 static devclass_t msk_devclass;
374 
375 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
376 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
377 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
378 
379 static struct resource_spec msk_res_spec_io[] = {
380 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
381 	{ -1,			0,		0 }
382 };
383 
384 static struct resource_spec msk_res_spec_mem[] = {
385 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
386 	{ -1,			0,		0 }
387 };
388 
389 static struct resource_spec msk_irq_spec_legacy[] = {
390 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
391 	{ -1,			0,		0 }
392 };
393 
394 static struct resource_spec msk_irq_spec_msi[] = {
395 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
396 	{ -1,			0,		0 }
397 };
398 
399 static int
400 msk_miibus_readreg(device_t dev, int phy, int reg)
401 {
402 	struct msk_if_softc *sc_if;
403 
404 	sc_if = device_get_softc(dev);
405 
406 	return (msk_phy_readreg(sc_if, phy, reg));
407 }
408 
409 static int
410 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
411 {
412 	struct msk_softc *sc;
413 	int i, val;
414 
415 	sc = sc_if->msk_softc;
416 
417         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
418 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
419 
420 	for (i = 0; i < MSK_TIMEOUT; i++) {
421 		DELAY(1);
422 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
423 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
424 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
425 			break;
426 		}
427 	}
428 
429 	if (i == MSK_TIMEOUT) {
430 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
431 		val = 0;
432 	}
433 
434 	return (val);
435 }
436 
437 static int
438 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
439 {
440 	struct msk_if_softc *sc_if;
441 
442 	sc_if = device_get_softc(dev);
443 
444 	return (msk_phy_writereg(sc_if, phy, reg, val));
445 }
446 
447 static int
448 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
449 {
450 	struct msk_softc *sc;
451 	int i;
452 
453 	sc = sc_if->msk_softc;
454 
455 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
456         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
457 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
458 	for (i = 0; i < MSK_TIMEOUT; i++) {
459 		DELAY(1);
460 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
461 		    GM_SMI_CT_BUSY) == 0)
462 			break;
463 	}
464 	if (i == MSK_TIMEOUT)
465 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
466 
467 	return (0);
468 }
469 
470 static void
471 msk_miibus_statchg(device_t dev)
472 {
473 	struct msk_softc *sc;
474 	struct msk_if_softc *sc_if;
475 	struct mii_data *mii;
476 	struct ifnet *ifp;
477 	uint32_t gmac;
478 
479 	sc_if = device_get_softc(dev);
480 	sc = sc_if->msk_softc;
481 
482 	MSK_IF_LOCK_ASSERT(sc_if);
483 
484 	mii = device_get_softc(sc_if->msk_miibus);
485 	ifp = sc_if->msk_ifp;
486 	if (mii == NULL || ifp == NULL ||
487 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
488 		return;
489 
490 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
491 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
492 	    (IFM_AVALID | IFM_ACTIVE)) {
493 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
494 		case IFM_10_T:
495 		case IFM_100_TX:
496 			sc_if->msk_flags |= MSK_FLAG_LINK;
497 			break;
498 		case IFM_1000_T:
499 		case IFM_1000_SX:
500 		case IFM_1000_LX:
501 		case IFM_1000_CX:
502 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
503 				sc_if->msk_flags |= MSK_FLAG_LINK;
504 			break;
505 		default:
506 			break;
507 		}
508 	}
509 
510 	if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) {
511 		/* Enable Tx FIFO Underrun. */
512 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
513 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
514 		/*
515 		 * Because mii(4) notify msk(4) that it detected link status
516 		 * change, there is no need to enable automatic
517 		 * speed/flow-control/duplex updates.
518 		 */
519 		gmac = GM_GPCR_AU_ALL_DIS;
520 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
521 		case IFM_1000_SX:
522 		case IFM_1000_T:
523 			gmac |= GM_GPCR_SPEED_1000;
524 			break;
525 		case IFM_100_TX:
526 			gmac |= GM_GPCR_SPEED_100;
527 			break;
528 		case IFM_10_T:
529 			break;
530 		}
531 
532 		if ((IFM_OPTIONS(mii->mii_media_active) &
533 		    IFM_ETH_RXPAUSE) == 0)
534 			gmac |= GM_GPCR_FC_RX_DIS;
535 		if ((IFM_OPTIONS(mii->mii_media_active) &
536 		     IFM_ETH_TXPAUSE) == 0)
537 			gmac |= GM_GPCR_FC_TX_DIS;
538 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
539 			gmac |= GM_GPCR_DUP_FULL;
540 		else
541 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
542 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
543 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
544 		/* Read again to ensure writing. */
545 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
546 		gmac = GMC_PAUSE_OFF;
547 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
548 			if ((IFM_OPTIONS(mii->mii_media_active) &
549 			    IFM_ETH_RXPAUSE) != 0)
550 				gmac = GMC_PAUSE_ON;
551 		}
552 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
553 
554 		/* Enable PHY interrupt for FIFO underrun/overflow. */
555 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
556 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
557 	} else {
558 		/*
559 		 * Link state changed to down.
560 		 * Disable PHY interrupts.
561 		 */
562 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
563 		/* Disable Rx/Tx MAC. */
564 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
565 		if ((GM_GPCR_RX_ENA | GM_GPCR_TX_ENA) != 0) {
566 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
567 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
568 			/* Read again to ensure writing. */
569 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
570 		}
571 	}
572 }
573 
574 static void
575 msk_rxfilter(struct msk_if_softc *sc_if)
576 {
577 	struct msk_softc *sc;
578 	struct ifnet *ifp;
579 	struct ifmultiaddr *ifma;
580 	uint32_t mchash[2];
581 	uint32_t crc;
582 	uint16_t mode;
583 
584 	sc = sc_if->msk_softc;
585 
586 	MSK_IF_LOCK_ASSERT(sc_if);
587 
588 	ifp = sc_if->msk_ifp;
589 
590 	bzero(mchash, sizeof(mchash));
591 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
592 	if ((ifp->if_flags & IFF_PROMISC) != 0)
593 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
594 	else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
595 		mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
596 		mchash[0] = 0xffff;
597 		mchash[1] = 0xffff;
598 	} else {
599 		mode |= GM_RXCR_UCF_ENA;
600 		if_maddr_rlock(ifp);
601 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
602 			if (ifma->ifma_addr->sa_family != AF_LINK)
603 				continue;
604 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
605 			    ifma->ifma_addr), ETHER_ADDR_LEN);
606 			/* Just want the 6 least significant bits. */
607 			crc &= 0x3f;
608 			/* Set the corresponding bit in the hash table. */
609 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
610 		}
611 		if_maddr_runlock(ifp);
612 		if (mchash[0] != 0 || mchash[1] != 0)
613 			mode |= GM_RXCR_MCF_ENA;
614 	}
615 
616 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
617 	    mchash[0] & 0xffff);
618 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
619 	    (mchash[0] >> 16) & 0xffff);
620 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
621 	    mchash[1] & 0xffff);
622 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
623 	    (mchash[1] >> 16) & 0xffff);
624 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
625 }
626 
627 static void
628 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
629 {
630 	struct msk_softc *sc;
631 
632 	sc = sc_if->msk_softc;
633 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
634 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
635 		    RX_VLAN_STRIP_ON);
636 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
637 		    TX_VLAN_TAG_ON);
638 	} else {
639 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
640 		    RX_VLAN_STRIP_OFF);
641 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
642 		    TX_VLAN_TAG_OFF);
643 	}
644 }
645 
646 static int
647 msk_rx_fill(struct msk_if_softc *sc_if, int jumbo)
648 {
649 	uint16_t idx;
650 	int i;
651 
652 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
653 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
654 		/* Wait until controller executes OP_TCPSTART command. */
655 		for (i = 10; i > 0; i--) {
656 			DELAY(10);
657 			idx = CSR_READ_2(sc_if->msk_softc,
658 			    Y2_PREF_Q_ADDR(sc_if->msk_rxq,
659 			    PREF_UNIT_GET_IDX_REG));
660 			if (idx != 0)
661 				break;
662 		}
663 		if (i == 0) {
664 			device_printf(sc_if->msk_if_dev,
665 			    "prefetch unit stuck?\n");
666 			return (ETIMEDOUT);
667 		}
668 		/*
669 		 * Fill consumed LE with free buffer. This can be done
670 		 * in Rx handler but we don't want to add special code
671 		 * in fast handler.
672 		 */
673 		if (jumbo > 0) {
674 			if (msk_jumbo_newbuf(sc_if, 0) != 0)
675 				return (ENOBUFS);
676 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
677 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
678 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
679 		} else {
680 			if (msk_newbuf(sc_if, 0) != 0)
681 				return (ENOBUFS);
682 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
683 			    sc_if->msk_cdata.msk_rx_ring_map,
684 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
685 		}
686 		sc_if->msk_cdata.msk_rx_prod = 0;
687 		CSR_WRITE_2(sc_if->msk_softc,
688 		    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
689 		    sc_if->msk_cdata.msk_rx_prod);
690 	}
691 	return (0);
692 }
693 
694 static int
695 msk_init_rx_ring(struct msk_if_softc *sc_if)
696 {
697 	struct msk_ring_data *rd;
698 	struct msk_rxdesc *rxd;
699 	int i, prod;
700 
701 	MSK_IF_LOCK_ASSERT(sc_if);
702 
703 	sc_if->msk_cdata.msk_rx_cons = 0;
704 	sc_if->msk_cdata.msk_rx_prod = 0;
705 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
706 
707 	rd = &sc_if->msk_rdata;
708 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
709 	prod = sc_if->msk_cdata.msk_rx_prod;
710 	i = 0;
711 	/* Have controller know how to compute Rx checksum. */
712 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
713 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
714 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
715 		rxd->rx_m = NULL;
716 		rxd->rx_le = &rd->msk_rx_ring[prod];
717 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
718 		    ETHER_HDR_LEN);
719 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
720 		MSK_INC(prod, MSK_RX_RING_CNT);
721 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
722 		i++;
723 	}
724 	for (; i < MSK_RX_RING_CNT; i++) {
725 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
726 		rxd->rx_m = NULL;
727 		rxd->rx_le = &rd->msk_rx_ring[prod];
728 		if (msk_newbuf(sc_if, prod) != 0)
729 			return (ENOBUFS);
730 		MSK_INC(prod, MSK_RX_RING_CNT);
731 	}
732 
733 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
734 	    sc_if->msk_cdata.msk_rx_ring_map,
735 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
736 
737 	/* Update prefetch unit. */
738 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
739 	CSR_WRITE_2(sc_if->msk_softc,
740 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
741 	    sc_if->msk_cdata.msk_rx_prod);
742 	if (msk_rx_fill(sc_if, 0) != 0)
743 		return (ENOBUFS);
744 	return (0);
745 }
746 
747 static int
748 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
749 {
750 	struct msk_ring_data *rd;
751 	struct msk_rxdesc *rxd;
752 	int i, prod;
753 
754 	MSK_IF_LOCK_ASSERT(sc_if);
755 
756 	sc_if->msk_cdata.msk_rx_cons = 0;
757 	sc_if->msk_cdata.msk_rx_prod = 0;
758 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
759 
760 	rd = &sc_if->msk_rdata;
761 	bzero(rd->msk_jumbo_rx_ring,
762 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
763 	prod = sc_if->msk_cdata.msk_rx_prod;
764 	i = 0;
765 	/* Have controller know how to compute Rx checksum. */
766 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
767 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
768 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
769 		rxd->rx_m = NULL;
770 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
771 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
772 		    ETHER_HDR_LEN);
773 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
774 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
775 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
776 		i++;
777 	}
778 	for (; i < MSK_JUMBO_RX_RING_CNT; i++) {
779 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
780 		rxd->rx_m = NULL;
781 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
782 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
783 			return (ENOBUFS);
784 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
785 	}
786 
787 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
788 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
789 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
790 
791 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
792 	CSR_WRITE_2(sc_if->msk_softc,
793 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
794 	    sc_if->msk_cdata.msk_rx_prod);
795 	if (msk_rx_fill(sc_if, 1) != 0)
796 		return (ENOBUFS);
797 	return (0);
798 }
799 
800 static void
801 msk_init_tx_ring(struct msk_if_softc *sc_if)
802 {
803 	struct msk_ring_data *rd;
804 	struct msk_txdesc *txd;
805 	int i;
806 
807 	sc_if->msk_cdata.msk_tso_mtu = 0;
808 	sc_if->msk_cdata.msk_last_csum = 0;
809 	sc_if->msk_cdata.msk_tx_prod = 0;
810 	sc_if->msk_cdata.msk_tx_cons = 0;
811 	sc_if->msk_cdata.msk_tx_cnt = 0;
812 
813 	rd = &sc_if->msk_rdata;
814 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
815 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
816 		txd = &sc_if->msk_cdata.msk_txdesc[i];
817 		txd->tx_m = NULL;
818 		txd->tx_le = &rd->msk_tx_ring[i];
819 	}
820 
821 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
822 	    sc_if->msk_cdata.msk_tx_ring_map,
823 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
824 }
825 
826 static __inline void
827 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
828 {
829 	struct msk_rx_desc *rx_le;
830 	struct msk_rxdesc *rxd;
831 	struct mbuf *m;
832 
833 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
834 	m = rxd->rx_m;
835 	rx_le = rxd->rx_le;
836 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
837 }
838 
839 static __inline void
840 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
841 {
842 	struct msk_rx_desc *rx_le;
843 	struct msk_rxdesc *rxd;
844 	struct mbuf *m;
845 
846 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
847 	m = rxd->rx_m;
848 	rx_le = rxd->rx_le;
849 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
850 }
851 
852 static int
853 msk_newbuf(struct msk_if_softc *sc_if, int idx)
854 {
855 	struct msk_rx_desc *rx_le;
856 	struct msk_rxdesc *rxd;
857 	struct mbuf *m;
858 	bus_dma_segment_t segs[1];
859 	bus_dmamap_t map;
860 	int nsegs;
861 
862 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
863 	if (m == NULL)
864 		return (ENOBUFS);
865 
866 	m->m_len = m->m_pkthdr.len = MCLBYTES;
867 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
868 		m_adj(m, ETHER_ALIGN);
869 #ifndef __NO_STRICT_ALIGNMENT
870 	else
871 		m_adj(m, MSK_RX_BUF_ALIGN);
872 #endif
873 
874 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
875 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
876 	    BUS_DMA_NOWAIT) != 0) {
877 		m_freem(m);
878 		return (ENOBUFS);
879 	}
880 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
881 
882 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
883 	if (rxd->rx_m != NULL) {
884 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
885 		    BUS_DMASYNC_POSTREAD);
886 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
887 	}
888 	map = rxd->rx_dmamap;
889 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
890 	sc_if->msk_cdata.msk_rx_sparemap = map;
891 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
892 	    BUS_DMASYNC_PREREAD);
893 	rxd->rx_m = m;
894 	rx_le = rxd->rx_le;
895 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
896 	rx_le->msk_control =
897 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
898 
899 	return (0);
900 }
901 
902 static int
903 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
904 {
905 	struct msk_rx_desc *rx_le;
906 	struct msk_rxdesc *rxd;
907 	struct mbuf *m;
908 	bus_dma_segment_t segs[1];
909 	bus_dmamap_t map;
910 	int nsegs;
911 
912 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
913 	if (m == NULL)
914 		return (ENOBUFS);
915 	if ((m->m_flags & M_EXT) == 0) {
916 		m_freem(m);
917 		return (ENOBUFS);
918 	}
919 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
920 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
921 		m_adj(m, ETHER_ALIGN);
922 #ifndef __NO_STRICT_ALIGNMENT
923 	else
924 		m_adj(m, MSK_RX_BUF_ALIGN);
925 #endif
926 
927 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
928 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
929 	    BUS_DMA_NOWAIT) != 0) {
930 		m_freem(m);
931 		return (ENOBUFS);
932 	}
933 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
934 
935 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
936 	if (rxd->rx_m != NULL) {
937 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
938 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
939 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
940 		    rxd->rx_dmamap);
941 	}
942 	map = rxd->rx_dmamap;
943 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
944 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
945 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
946 	    BUS_DMASYNC_PREREAD);
947 	rxd->rx_m = m;
948 	rx_le = rxd->rx_le;
949 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
950 	rx_le->msk_control =
951 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
952 
953 	return (0);
954 }
955 
956 /*
957  * Set media options.
958  */
959 static int
960 msk_mediachange(struct ifnet *ifp)
961 {
962 	struct msk_if_softc *sc_if;
963 	struct mii_data	*mii;
964 	int error;
965 
966 	sc_if = ifp->if_softc;
967 
968 	MSK_IF_LOCK(sc_if);
969 	mii = device_get_softc(sc_if->msk_miibus);
970 	error = mii_mediachg(mii);
971 	MSK_IF_UNLOCK(sc_if);
972 
973 	return (error);
974 }
975 
976 /*
977  * Report current media status.
978  */
979 static void
980 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
981 {
982 	struct msk_if_softc *sc_if;
983 	struct mii_data	*mii;
984 
985 	sc_if = ifp->if_softc;
986 	MSK_IF_LOCK(sc_if);
987 	if ((ifp->if_flags & IFF_UP) == 0) {
988 		MSK_IF_UNLOCK(sc_if);
989 		return;
990 	}
991 	mii = device_get_softc(sc_if->msk_miibus);
992 
993 	mii_pollstat(mii);
994 	MSK_IF_UNLOCK(sc_if);
995 	ifmr->ifm_active = mii->mii_media_active;
996 	ifmr->ifm_status = mii->mii_media_status;
997 }
998 
999 static int
1000 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1001 {
1002 	struct msk_if_softc *sc_if;
1003 	struct ifreq *ifr;
1004 	struct mii_data	*mii;
1005 	int error, mask, reinit;
1006 
1007 	sc_if = ifp->if_softc;
1008 	ifr = (struct ifreq *)data;
1009 	error = 0;
1010 
1011 	switch(command) {
1012 	case SIOCSIFMTU:
1013 		MSK_IF_LOCK(sc_if);
1014 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
1015 			error = EINVAL;
1016 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1017  			if (ifr->ifr_mtu > ETHERMTU) {
1018 				if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
1019 					error = EINVAL;
1020 					MSK_IF_UNLOCK(sc_if);
1021 					break;
1022 				}
1023 				if ((sc_if->msk_flags &
1024 				    MSK_FLAG_JUMBO_NOCSUM) != 0) {
1025 					ifp->if_hwassist &=
1026 					    ~(MSK_CSUM_FEATURES | CSUM_TSO);
1027 					ifp->if_capenable &=
1028 					    ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1029 					VLAN_CAPABILITIES(ifp);
1030 				}
1031 			}
1032 			ifp->if_mtu = ifr->ifr_mtu;
1033 			msk_init_locked(sc_if);
1034 		}
1035 		MSK_IF_UNLOCK(sc_if);
1036 		break;
1037 	case SIOCSIFFLAGS:
1038 		MSK_IF_LOCK(sc_if);
1039 		if ((ifp->if_flags & IFF_UP) != 0) {
1040 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1041 			    ((ifp->if_flags ^ sc_if->msk_if_flags) &
1042 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1043 				msk_rxfilter(sc_if);
1044 			else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0)
1045 				msk_init_locked(sc_if);
1046 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1047 			msk_stop(sc_if);
1048 		sc_if->msk_if_flags = ifp->if_flags;
1049 		MSK_IF_UNLOCK(sc_if);
1050 		break;
1051 	case SIOCADDMULTI:
1052 	case SIOCDELMULTI:
1053 		MSK_IF_LOCK(sc_if);
1054 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1055 			msk_rxfilter(sc_if);
1056 		MSK_IF_UNLOCK(sc_if);
1057 		break;
1058 	case SIOCGIFMEDIA:
1059 	case SIOCSIFMEDIA:
1060 		mii = device_get_softc(sc_if->msk_miibus);
1061 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1062 		break;
1063 	case SIOCSIFCAP:
1064 		reinit = 0;
1065 		MSK_IF_LOCK(sc_if);
1066 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1067 		if ((mask & IFCAP_TXCSUM) != 0 &&
1068 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1069 			ifp->if_capenable ^= IFCAP_TXCSUM;
1070 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
1071 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
1072 			else
1073 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
1074 		}
1075 		if ((mask & IFCAP_RXCSUM) != 0 &&
1076 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
1077 			ifp->if_capenable ^= IFCAP_RXCSUM;
1078 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1079 				reinit = 1;
1080 		}
1081 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1082 		    (IFCAP_VLAN_HWCSUM & ifp->if_capabilities) != 0)
1083 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1084 		if ((mask & IFCAP_TSO4) != 0 &&
1085 		    (IFCAP_TSO4 & ifp->if_capabilities) != 0) {
1086 			ifp->if_capenable ^= IFCAP_TSO4;
1087 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1088 				ifp->if_hwassist |= CSUM_TSO;
1089 			else
1090 				ifp->if_hwassist &= ~CSUM_TSO;
1091 		}
1092 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1093 		    (IFCAP_VLAN_HWTSO & ifp->if_capabilities) != 0)
1094 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1095 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1096 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
1097 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1098 			if ((IFCAP_VLAN_HWTAGGING & ifp->if_capenable) == 0)
1099 				ifp->if_capenable &=
1100 				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1101 			msk_setvlan(sc_if, ifp);
1102 		}
1103 		if (ifp->if_mtu > ETHERMTU &&
1104 		    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
1105 			ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
1106 			ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1107 		}
1108 		VLAN_CAPABILITIES(ifp);
1109 		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1110 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1111 			msk_init_locked(sc_if);
1112 		}
1113 		MSK_IF_UNLOCK(sc_if);
1114 		break;
1115 	default:
1116 		error = ether_ioctl(ifp, command, data);
1117 		break;
1118 	}
1119 
1120 	return (error);
1121 }
1122 
1123 static int
1124 mskc_probe(device_t dev)
1125 {
1126 	struct msk_product *mp;
1127 	uint16_t vendor, devid;
1128 	int i;
1129 
1130 	vendor = pci_get_vendor(dev);
1131 	devid = pci_get_device(dev);
1132 	mp = msk_products;
1133 	for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
1134 	    i++, mp++) {
1135 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1136 			device_set_desc(dev, mp->msk_name);
1137 			return (BUS_PROBE_DEFAULT);
1138 		}
1139 	}
1140 
1141 	return (ENXIO);
1142 }
1143 
1144 static int
1145 mskc_setup_rambuffer(struct msk_softc *sc)
1146 {
1147 	int next;
1148 	int i;
1149 
1150 	/* Get adapter SRAM size. */
1151 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1152 	if (bootverbose)
1153 		device_printf(sc->msk_dev,
1154 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1155 	if (sc->msk_ramsize == 0)
1156 		return (0);
1157 
1158 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1159 	/*
1160 	 * Give receiver 2/3 of memory and round down to the multiple
1161 	 * of 1024. Tx/Rx RAM buffer size of Yukon II should be multiple
1162 	 * of 1024.
1163 	 */
1164 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1165 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1166 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1167 		sc->msk_rxqstart[i] = next;
1168 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1169 		next = sc->msk_rxqend[i] + 1;
1170 		sc->msk_txqstart[i] = next;
1171 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1172 		next = sc->msk_txqend[i] + 1;
1173 		if (bootverbose) {
1174 			device_printf(sc->msk_dev,
1175 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1176 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1177 			    sc->msk_rxqend[i]);
1178 			device_printf(sc->msk_dev,
1179 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1180 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1181 			    sc->msk_txqend[i]);
1182 		}
1183 	}
1184 
1185 	return (0);
1186 }
1187 
1188 static void
1189 msk_phy_power(struct msk_softc *sc, int mode)
1190 {
1191 	uint32_t our, val;
1192 	int i;
1193 
1194 	switch (mode) {
1195 	case MSK_PHY_POWERUP:
1196 		/* Switch power to VCC (WA for VAUX problem). */
1197 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1198 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1199 		/* Disable Core Clock Division, set Clock Select to 0. */
1200 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1201 
1202 		val = 0;
1203 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1204 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1205 			/* Enable bits are inverted. */
1206 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1207 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1208 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1209 		}
1210 		/*
1211 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1212 		 */
1213 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1214 
1215 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1216 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1217 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1218 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1219 				/* Deassert Low Power for 1st PHY. */
1220 				val |= PCI_Y2_PHY1_COMA;
1221 				if (sc->msk_num_port > 1)
1222 					val |= PCI_Y2_PHY2_COMA;
1223 			}
1224 		}
1225 		/* Release PHY from PowerDown/COMA mode. */
1226 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1227 		switch (sc->msk_hw_id) {
1228 		case CHIP_ID_YUKON_EC_U:
1229 		case CHIP_ID_YUKON_EX:
1230 		case CHIP_ID_YUKON_FE_P:
1231 		case CHIP_ID_YUKON_UL_2:
1232 		case CHIP_ID_YUKON_OPT:
1233 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_OFF);
1234 
1235 			/* Enable all clocks. */
1236 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1237 			our = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1238 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1239 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1240 			/* Set all bits to 0 except bits 15..12. */
1241 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, our);
1242 			our = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1243 			our &= PCI_CTL_TIM_VMAIN_AV_MSK;
1244 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, our);
1245 			CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1246 			/*
1247 			 * Disable status race, workaround for
1248 			 * Yukon EC Ultra & Yukon EX.
1249 			 */
1250 			val = CSR_READ_4(sc, B2_GP_IO);
1251 			val |= GLB_GPIO_STAT_RACE_DIS;
1252 			CSR_WRITE_4(sc, B2_GP_IO, val);
1253 			CSR_READ_4(sc, B2_GP_IO);
1254 			break;
1255 		default:
1256 			break;
1257 		}
1258 		for (i = 0; i < sc->msk_num_port; i++) {
1259 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1260 			    GMLC_RST_SET);
1261 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1262 			    GMLC_RST_CLR);
1263 		}
1264 		break;
1265 	case MSK_PHY_POWERDOWN:
1266 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1267 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1268 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1269 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1270 			val &= ~PCI_Y2_PHY1_COMA;
1271 			if (sc->msk_num_port > 1)
1272 				val &= ~PCI_Y2_PHY2_COMA;
1273 		}
1274 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1275 
1276 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1277 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1278 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1279 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1280 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1281 			/* Enable bits are inverted. */
1282 			val = 0;
1283 		}
1284 		/*
1285 		 * Disable PCI & Core Clock, disable clock gating for
1286 		 * both Links.
1287 		 */
1288 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1289 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1290 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1291 		break;
1292 	default:
1293 		break;
1294 	}
1295 }
1296 
1297 static void
1298 mskc_reset(struct msk_softc *sc)
1299 {
1300 	bus_addr_t addr;
1301 	uint16_t status;
1302 	uint32_t val;
1303 	int i;
1304 
1305 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1306 
1307 	/* Disable ASF. */
1308 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX) {
1309 		status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1310 		/* Clear AHB bridge & microcontroller reset. */
1311 		status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1312 		    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1313 		/* Clear ASF microcontroller state. */
1314 		status &= ~ Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1315 		CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1316 	} else
1317 		CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1318 	CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1319 
1320 	/*
1321 	 * Since we disabled ASF, S/W reset is required for Power Management.
1322 	 */
1323 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1324 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1325 
1326 	/* Clear all error bits in the PCI status register. */
1327 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1328 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1329 
1330 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1331 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1332 	    PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
1333 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1334 
1335 	switch (sc->msk_bustype) {
1336 	case MSK_PEX_BUS:
1337 		/* Clear all PEX errors. */
1338 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1339 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1340 		if ((val & PEX_RX_OV) != 0) {
1341 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1342 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1343 		}
1344 		break;
1345 	case MSK_PCI_BUS:
1346 	case MSK_PCIX_BUS:
1347 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1348 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1349 		if (val == 0)
1350 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1351 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1352 			/* Set Cache Line Size opt. */
1353 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1354 			val |= PCI_CLS_OPT;
1355 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1356 		}
1357 		break;
1358 	}
1359 	/* Set PHY power state. */
1360 	msk_phy_power(sc, MSK_PHY_POWERUP);
1361 
1362 	/* Reset GPHY/GMAC Control */
1363 	for (i = 0; i < sc->msk_num_port; i++) {
1364 		/* GPHY Control reset. */
1365 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1366 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1367 		/* GMAC Control reset. */
1368 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1369 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1370 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1371 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX)
1372 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1373 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1374 			    GMC_BYP_RETR_ON);
1375 	}
1376 	if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) {
1377 		/* Disable PCIe PHY powerdown(reg 0x80, bit7). */
1378 		CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080);
1379 	}
1380 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1381 
1382 	/* LED On. */
1383 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1384 
1385 	/* Clear TWSI IRQ. */
1386 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1387 
1388 	/* Turn off hardware timer. */
1389 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1390 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1391 
1392 	/* Turn off descriptor polling. */
1393 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1394 
1395 	/* Turn off time stamps. */
1396 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1397 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1398 
1399 	/* Configure timeout values. */
1400 	for (i = 0; i < sc->msk_num_port; i++) {
1401 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1402 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1403 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1404 		    MSK_RI_TO_53);
1405 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1406 		    MSK_RI_TO_53);
1407 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1408 		    MSK_RI_TO_53);
1409 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1410 		    MSK_RI_TO_53);
1411 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1412 		    MSK_RI_TO_53);
1413 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1414 		    MSK_RI_TO_53);
1415 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1416 		    MSK_RI_TO_53);
1417 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1418 		    MSK_RI_TO_53);
1419 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1420 		    MSK_RI_TO_53);
1421 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1422 		    MSK_RI_TO_53);
1423 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1424 		    MSK_RI_TO_53);
1425 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1426 		    MSK_RI_TO_53);
1427 	}
1428 
1429 	/* Disable all interrupts. */
1430 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1431 	CSR_READ_4(sc, B0_HWE_IMSK);
1432 	CSR_WRITE_4(sc, B0_IMSK, 0);
1433 	CSR_READ_4(sc, B0_IMSK);
1434 
1435         /*
1436          * On dual port PCI-X card, there is an problem where status
1437          * can be received out of order due to split transactions.
1438          */
1439 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1440 		uint16_t pcix_cmd;
1441 
1442 		pcix_cmd = pci_read_config(sc->msk_dev,
1443 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1444 		/* Clear Max Outstanding Split Transactions. */
1445 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1446 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1447 		pci_write_config(sc->msk_dev,
1448 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1449 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1450         }
1451 	if (sc->msk_expcap != 0) {
1452 		/* Change Max. Read Request Size to 2048 bytes. */
1453 		if (pci_get_max_read_req(sc->msk_dev) == 512)
1454 			pci_set_max_read_req(sc->msk_dev, 2048);
1455 	}
1456 
1457 	/* Clear status list. */
1458 	bzero(sc->msk_stat_ring,
1459 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1460 	sc->msk_stat_cons = 0;
1461 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1462 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1463 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1464 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1465 	/* Set the status list base address. */
1466 	addr = sc->msk_stat_ring_paddr;
1467 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1468 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1469 	/* Set the status list last index. */
1470 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1471 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1472 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1473 		/* WA for dev. #4.3 */
1474 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1475 		/* WA for dev. #4.18 */
1476 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1477 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1478 	} else {
1479 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1480 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1481 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1482 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1483 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1484 		else
1485 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1486 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1487 	}
1488 	/*
1489 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1490 	 */
1491 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1492 
1493 	/* Enable status unit. */
1494 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1495 
1496 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1497 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1498 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1499 }
1500 
1501 static int
1502 msk_probe(device_t dev)
1503 {
1504 	struct msk_softc *sc;
1505 	char desc[100];
1506 
1507 	sc = device_get_softc(device_get_parent(dev));
1508 	/*
1509 	 * Not much to do here. We always know there will be
1510 	 * at least one GMAC present, and if there are two,
1511 	 * mskc_attach() will create a second device instance
1512 	 * for us.
1513 	 */
1514 	snprintf(desc, sizeof(desc),
1515 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1516 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1517 	    sc->msk_hw_rev);
1518 	device_set_desc_copy(dev, desc);
1519 
1520 	return (BUS_PROBE_DEFAULT);
1521 }
1522 
1523 static int
1524 msk_attach(device_t dev)
1525 {
1526 	struct msk_softc *sc;
1527 	struct msk_if_softc *sc_if;
1528 	struct ifnet *ifp;
1529 	struct msk_mii_data *mmd;
1530 	int i, port, error;
1531 	uint8_t eaddr[6];
1532 
1533 	if (dev == NULL)
1534 		return (EINVAL);
1535 
1536 	error = 0;
1537 	sc_if = device_get_softc(dev);
1538 	sc = device_get_softc(device_get_parent(dev));
1539 	mmd = device_get_ivars(dev);
1540 	port = mmd->port;
1541 
1542 	sc_if->msk_if_dev = dev;
1543 	sc_if->msk_port = port;
1544 	sc_if->msk_softc = sc;
1545 	sc_if->msk_flags = sc->msk_pflags;
1546 	sc->msk_if[port] = sc_if;
1547 	/* Setup Tx/Rx queue register offsets. */
1548 	if (port == MSK_PORT_A) {
1549 		sc_if->msk_txq = Q_XA1;
1550 		sc_if->msk_txsq = Q_XS1;
1551 		sc_if->msk_rxq = Q_R1;
1552 	} else {
1553 		sc_if->msk_txq = Q_XA2;
1554 		sc_if->msk_txsq = Q_XS2;
1555 		sc_if->msk_rxq = Q_R2;
1556 	}
1557 
1558 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1559 	msk_sysctl_node(sc_if);
1560 
1561 	if ((error = msk_txrx_dma_alloc(sc_if) != 0))
1562 		goto fail;
1563 	msk_rx_dma_jalloc(sc_if);
1564 
1565 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1566 	if (ifp == NULL) {
1567 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1568 		error = ENOSPC;
1569 		goto fail;
1570 	}
1571 	ifp->if_softc = sc_if;
1572 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1573 	ifp->if_mtu = ETHERMTU;
1574 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1575 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1576 	/*
1577 	 * Enable Rx checksum offloading if controller supports
1578 	 * new descriptor formant and controller is not Yukon XL.
1579 	 */
1580 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
1581 	    sc->msk_hw_id != CHIP_ID_YUKON_XL)
1582 		ifp->if_capabilities |= IFCAP_RXCSUM;
1583 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1584 	    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1585 		ifp->if_capabilities |= IFCAP_RXCSUM;
1586 	ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1587 	ifp->if_capenable = ifp->if_capabilities;
1588 	ifp->if_ioctl = msk_ioctl;
1589 	ifp->if_start = msk_start;
1590 	ifp->if_init = msk_init;
1591 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1592 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1593 	IFQ_SET_READY(&ifp->if_snd);
1594 	/*
1595 	 * Get station address for this interface. Note that
1596 	 * dual port cards actually come with three station
1597 	 * addresses: one for each port, plus an extra. The
1598 	 * extra one is used by the SysKonnect driver software
1599 	 * as a 'virtual' station address for when both ports
1600 	 * are operating in failover mode. Currently we don't
1601 	 * use this extra address.
1602 	 */
1603 	MSK_IF_LOCK(sc_if);
1604 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1605 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1606 
1607 	/*
1608 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1609 	 */
1610 	MSK_IF_UNLOCK(sc_if);
1611 	ether_ifattach(ifp, eaddr);
1612 	MSK_IF_LOCK(sc_if);
1613 
1614 	/* VLAN capability setup */
1615 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1616 	if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) {
1617 		/*
1618 		 * Due to Tx checksum offload hardware bugs, msk(4) manually
1619 		 * computes checksum for short frames. For VLAN tagged frames
1620 		 * this workaround does not work so disable checksum offload
1621 		 * for VLAN interface.
1622 		 */
1623         	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO;
1624 		/*
1625 		 * Enable Rx checksum offloading for VLAN tagged frames
1626 		 * if controller support new descriptor format.
1627 		 */
1628 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1629 		    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1630 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1631 	}
1632 	ifp->if_capenable = ifp->if_capabilities;
1633 
1634 	/*
1635 	 * Tell the upper layer(s) we support long frames.
1636 	 * Must appear after the call to ether_ifattach() because
1637 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1638 	 */
1639         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1640 
1641 	/*
1642 	 * Do miibus setup.
1643 	 */
1644 	MSK_IF_UNLOCK(sc_if);
1645 	error = mii_attach(dev, &sc_if->msk_miibus, ifp, msk_mediachange,
1646 	    msk_mediastatus, BMSR_DEFCAPMASK, PHY_ADDR_MARV, MII_OFFSET_ANY,
1647 	    mmd->mii_flags);
1648 	if (error != 0) {
1649 		device_printf(sc_if->msk_if_dev, "attaching PHYs failed\n");
1650 		ether_ifdetach(ifp);
1651 		error = ENXIO;
1652 		goto fail;
1653 	}
1654 
1655 fail:
1656 	if (error != 0) {
1657 		/* Access should be ok even though lock has been dropped */
1658 		sc->msk_if[port] = NULL;
1659 		msk_detach(dev);
1660 	}
1661 
1662 	return (error);
1663 }
1664 
1665 /*
1666  * Attach the interface. Allocate softc structures, do ifmedia
1667  * setup and ethernet/BPF attach.
1668  */
1669 static int
1670 mskc_attach(device_t dev)
1671 {
1672 	struct msk_softc *sc;
1673 	struct msk_mii_data *mmd;
1674 	int error, msic, msir, reg;
1675 
1676 	sc = device_get_softc(dev);
1677 	sc->msk_dev = dev;
1678 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1679 	    MTX_DEF);
1680 
1681 	/*
1682 	 * Map control/status registers.
1683 	 */
1684 	pci_enable_busmaster(dev);
1685 
1686 	/* Allocate I/O resource */
1687 #ifdef MSK_USEIOSPACE
1688 	sc->msk_res_spec = msk_res_spec_io;
1689 #else
1690 	sc->msk_res_spec = msk_res_spec_mem;
1691 #endif
1692 	sc->msk_irq_spec = msk_irq_spec_legacy;
1693 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1694 	if (error) {
1695 		if (sc->msk_res_spec == msk_res_spec_mem)
1696 			sc->msk_res_spec = msk_res_spec_io;
1697 		else
1698 			sc->msk_res_spec = msk_res_spec_mem;
1699 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1700 		if (error) {
1701 			device_printf(dev, "couldn't allocate %s resources\n",
1702 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1703 			    "I/O");
1704 			mtx_destroy(&sc->msk_mtx);
1705 			return (ENXIO);
1706 		}
1707 	}
1708 
1709 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1710 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1711 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1712 	/* Bail out if chip is not recognized. */
1713 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1714 	    sc->msk_hw_id > CHIP_ID_YUKON_OPT ||
1715 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR ||
1716 	    sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) {
1717 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1718 		    sc->msk_hw_id, sc->msk_hw_rev);
1719 		mtx_destroy(&sc->msk_mtx);
1720 		return (ENXIO);
1721 	}
1722 
1723 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1724 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1725 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1726 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1727 	    "max number of Rx events to process");
1728 
1729 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1730 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1731 	    "process_limit", &sc->msk_process_limit);
1732 	if (error == 0) {
1733 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1734 		    sc->msk_process_limit > MSK_PROC_MAX) {
1735 			device_printf(dev, "process_limit value out of range; "
1736 			    "using default: %d\n", MSK_PROC_DEFAULT);
1737 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1738 		}
1739 	}
1740 
1741 	sc->msk_int_holdoff = MSK_INT_HOLDOFF_DEFAULT;
1742 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
1743 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
1744 	    "int_holdoff", CTLFLAG_RW, &sc->msk_int_holdoff, 0,
1745 	    "Maximum number of time to delay interrupts");
1746 	resource_int_value(device_get_name(dev), device_get_unit(dev),
1747 	    "int_holdoff", &sc->msk_int_holdoff);
1748 
1749 	/* Soft reset. */
1750 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1751 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1752 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1753 	/* Check number of MACs. */
1754 	sc->msk_num_port = 1;
1755 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1756 	    CFG_DUAL_MAC_MSK) {
1757 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1758 			sc->msk_num_port++;
1759 	}
1760 
1761 	/* Check bus type. */
1762 	if (pci_find_cap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0) {
1763 		sc->msk_bustype = MSK_PEX_BUS;
1764 		sc->msk_expcap = reg;
1765 	} else if (pci_find_cap(sc->msk_dev, PCIY_PCIX, &reg) == 0) {
1766 		sc->msk_bustype = MSK_PCIX_BUS;
1767 		sc->msk_pcixcap = reg;
1768 	} else
1769 		sc->msk_bustype = MSK_PCI_BUS;
1770 
1771 	switch (sc->msk_hw_id) {
1772 	case CHIP_ID_YUKON_EC:
1773 		sc->msk_clock = 125;	/* 125 MHz */
1774 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1775 		break;
1776 	case CHIP_ID_YUKON_EC_U:
1777 		sc->msk_clock = 125;	/* 125 MHz */
1778 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM;
1779 		break;
1780 	case CHIP_ID_YUKON_EX:
1781 		sc->msk_clock = 125;	/* 125 MHz */
1782 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1783 		    MSK_FLAG_AUTOTX_CSUM;
1784 		/*
1785 		 * Yukon Extreme seems to have silicon bug for
1786 		 * automatic Tx checksum calculation capability.
1787 		 */
1788 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
1789 			sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM;
1790 		/*
1791 		 * Yukon Extreme A0 could not use store-and-forward
1792 		 * for jumbo frames, so disable Tx checksum
1793 		 * offloading for jumbo frames.
1794 		 */
1795 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
1796 			sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM;
1797 		break;
1798 	case CHIP_ID_YUKON_FE:
1799 		sc->msk_clock = 100;	/* 100 MHz */
1800 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1801 		break;
1802 	case CHIP_ID_YUKON_FE_P:
1803 		sc->msk_clock = 50;	/* 50 MHz */
1804 		sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 |
1805 		    MSK_FLAG_AUTOTX_CSUM;
1806 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1807 			/*
1808 			 * XXX
1809 			 * FE+ A0 has status LE writeback bug so msk(4)
1810 			 * does not rely on status word of received frame
1811 			 * in msk_rxeof() which in turn disables all
1812 			 * hardware assistance bits reported by the status
1813 			 * word as well as validity of the received frame.
1814 			 * Just pass received frames to upper stack with
1815 			 * minimal test and let upper stack handle them.
1816 			 */
1817 			sc->msk_pflags |= MSK_FLAG_NOHWVLAN |
1818 			    MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM;
1819 		}
1820 		break;
1821 	case CHIP_ID_YUKON_XL:
1822 		sc->msk_clock = 156;	/* 156 MHz */
1823 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1824 		break;
1825 	case CHIP_ID_YUKON_UL_2:
1826 		sc->msk_clock = 125;	/* 125 MHz */
1827 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1828 		break;
1829 	case CHIP_ID_YUKON_OPT:
1830 		sc->msk_clock = 125;	/* 125 MHz */
1831 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2;
1832 		break;
1833 	default:
1834 		sc->msk_clock = 156;	/* 156 MHz */
1835 		break;
1836 	}
1837 
1838 	/* Allocate IRQ resources. */
1839 	msic = pci_msi_count(dev);
1840 	if (bootverbose)
1841 		device_printf(dev, "MSI count : %d\n", msic);
1842 	if (legacy_intr != 0)
1843 		msi_disable = 1;
1844 	if (msi_disable == 0 && msic > 0) {
1845 		msir = 1;
1846 		if (pci_alloc_msi(dev, &msir) == 0) {
1847 			if (msir == 1) {
1848 				sc->msk_pflags |= MSK_FLAG_MSI;
1849 				sc->msk_irq_spec = msk_irq_spec_msi;
1850 			} else
1851 				pci_release_msi(dev);
1852 		}
1853 	}
1854 
1855 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1856 	if (error) {
1857 		device_printf(dev, "couldn't allocate IRQ resources\n");
1858 		goto fail;
1859 	}
1860 
1861 	if ((error = msk_status_dma_alloc(sc)) != 0)
1862 		goto fail;
1863 
1864 	/* Set base interrupt mask. */
1865 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1866 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1867 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1868 
1869 	/* Reset the adapter. */
1870 	mskc_reset(sc);
1871 
1872 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1873 		goto fail;
1874 
1875 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1876 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1877 		device_printf(dev, "failed to add child for PORT_A\n");
1878 		error = ENXIO;
1879 		goto fail;
1880 	}
1881 	mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1882 	if (mmd == NULL) {
1883 		device_printf(dev, "failed to allocate memory for "
1884 		    "ivars of PORT_A\n");
1885 		error = ENXIO;
1886 		goto fail;
1887 	}
1888 	mmd->port = MSK_PORT_A;
1889 	mmd->pmd = sc->msk_pmd;
1890 	mmd->mii_flags |= MIIF_DOPAUSE;
1891 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1892 		mmd->mii_flags |= MIIF_HAVEFIBER;
1893 	if (sc->msk_pmd == 'P')
1894 		mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1895 	device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd);
1896 
1897 	if (sc->msk_num_port > 1) {
1898 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1899 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1900 			device_printf(dev, "failed to add child for PORT_B\n");
1901 			error = ENXIO;
1902 			goto fail;
1903 		}
1904 		mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1905 		if (mmd == NULL) {
1906 			device_printf(dev, "failed to allocate memory for "
1907 			    "ivars of PORT_B\n");
1908 			error = ENXIO;
1909 			goto fail;
1910 		}
1911 		mmd->port = MSK_PORT_B;
1912 		mmd->pmd = sc->msk_pmd;
1913 	 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1914 			mmd->mii_flags |= MIIF_HAVEFIBER;
1915 	 	if (sc->msk_pmd == 'P')
1916 			mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1917 		device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd);
1918 	}
1919 
1920 	error = bus_generic_attach(dev);
1921 	if (error) {
1922 		device_printf(dev, "failed to attach port(s)\n");
1923 		goto fail;
1924 	}
1925 
1926 	/* Hook interrupt last to avoid having to lock softc. */
1927 	error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1928 	    INTR_MPSAFE, NULL, msk_intr, sc, &sc->msk_intrhand);
1929 	if (error != 0) {
1930 		device_printf(dev, "couldn't set up interrupt handler\n");
1931 		goto fail;
1932 	}
1933 fail:
1934 	if (error != 0)
1935 		mskc_detach(dev);
1936 
1937 	return (error);
1938 }
1939 
1940 /*
1941  * Shutdown hardware and free up resources. This can be called any
1942  * time after the mutex has been initialized. It is called in both
1943  * the error case in attach and the normal detach case so it needs
1944  * to be careful about only freeing resources that have actually been
1945  * allocated.
1946  */
1947 static int
1948 msk_detach(device_t dev)
1949 {
1950 	struct msk_softc *sc;
1951 	struct msk_if_softc *sc_if;
1952 	struct ifnet *ifp;
1953 
1954 	sc_if = device_get_softc(dev);
1955 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
1956 	    ("msk mutex not initialized in msk_detach"));
1957 	MSK_IF_LOCK(sc_if);
1958 
1959 	ifp = sc_if->msk_ifp;
1960 	if (device_is_attached(dev)) {
1961 		/* XXX */
1962 		sc_if->msk_flags |= MSK_FLAG_DETACH;
1963 		msk_stop(sc_if);
1964 		/* Can't hold locks while calling detach. */
1965 		MSK_IF_UNLOCK(sc_if);
1966 		callout_drain(&sc_if->msk_tick_ch);
1967 		if (ifp)
1968 			ether_ifdetach(ifp);
1969 		MSK_IF_LOCK(sc_if);
1970 	}
1971 
1972 	/*
1973 	 * We're generally called from mskc_detach() which is using
1974 	 * device_delete_child() to get to here. It's already trashed
1975 	 * miibus for us, so don't do it here or we'll panic.
1976 	 *
1977 	 * if (sc_if->msk_miibus != NULL) {
1978 	 * 	device_delete_child(dev, sc_if->msk_miibus);
1979 	 * 	sc_if->msk_miibus = NULL;
1980 	 * }
1981 	 */
1982 
1983 	msk_rx_dma_jfree(sc_if);
1984 	msk_txrx_dma_free(sc_if);
1985 	bus_generic_detach(dev);
1986 
1987 	if (ifp)
1988 		if_free(ifp);
1989 	sc = sc_if->msk_softc;
1990 	sc->msk_if[sc_if->msk_port] = NULL;
1991 	MSK_IF_UNLOCK(sc_if);
1992 
1993 	return (0);
1994 }
1995 
1996 static int
1997 mskc_detach(device_t dev)
1998 {
1999 	struct msk_softc *sc;
2000 
2001 	sc = device_get_softc(dev);
2002 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
2003 
2004 	if (device_is_alive(dev)) {
2005 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
2006 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
2007 			    M_DEVBUF);
2008 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
2009 		}
2010 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
2011 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
2012 			    M_DEVBUF);
2013 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
2014 		}
2015 		bus_generic_detach(dev);
2016 	}
2017 
2018 	/* Disable all interrupts. */
2019 	CSR_WRITE_4(sc, B0_IMSK, 0);
2020 	CSR_READ_4(sc, B0_IMSK);
2021 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2022 	CSR_READ_4(sc, B0_HWE_IMSK);
2023 
2024 	/* LED Off. */
2025 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
2026 
2027 	/* Put hardware reset. */
2028 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2029 
2030 	msk_status_dma_free(sc);
2031 
2032 	if (sc->msk_intrhand) {
2033 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand);
2034 		sc->msk_intrhand = NULL;
2035 	}
2036 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
2037 	if ((sc->msk_pflags & MSK_FLAG_MSI) != 0)
2038 		pci_release_msi(dev);
2039 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
2040 	mtx_destroy(&sc->msk_mtx);
2041 
2042 	return (0);
2043 }
2044 
2045 struct msk_dmamap_arg {
2046 	bus_addr_t	msk_busaddr;
2047 };
2048 
2049 static void
2050 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2051 {
2052 	struct msk_dmamap_arg *ctx;
2053 
2054 	if (error != 0)
2055 		return;
2056 	ctx = arg;
2057 	ctx->msk_busaddr = segs[0].ds_addr;
2058 }
2059 
2060 /* Create status DMA region. */
2061 static int
2062 msk_status_dma_alloc(struct msk_softc *sc)
2063 {
2064 	struct msk_dmamap_arg ctx;
2065 	int error;
2066 
2067 	error = bus_dma_tag_create(
2068 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
2069 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
2070 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2071 		    BUS_SPACE_MAXADDR,		/* highaddr */
2072 		    NULL, NULL,			/* filter, filterarg */
2073 		    MSK_STAT_RING_SZ,		/* maxsize */
2074 		    1,				/* nsegments */
2075 		    MSK_STAT_RING_SZ,		/* maxsegsize */
2076 		    0,				/* flags */
2077 		    NULL, NULL,			/* lockfunc, lockarg */
2078 		    &sc->msk_stat_tag);
2079 	if (error != 0) {
2080 		device_printf(sc->msk_dev,
2081 		    "failed to create status DMA tag\n");
2082 		return (error);
2083 	}
2084 
2085 	/* Allocate DMA'able memory and load the DMA map for status ring. */
2086 	error = bus_dmamem_alloc(sc->msk_stat_tag,
2087 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
2088 	    BUS_DMA_ZERO, &sc->msk_stat_map);
2089 	if (error != 0) {
2090 		device_printf(sc->msk_dev,
2091 		    "failed to allocate DMA'able memory for status ring\n");
2092 		return (error);
2093 	}
2094 
2095 	ctx.msk_busaddr = 0;
2096 	error = bus_dmamap_load(sc->msk_stat_tag,
2097 	    sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
2098 	    msk_dmamap_cb, &ctx, 0);
2099 	if (error != 0) {
2100 		device_printf(sc->msk_dev,
2101 		    "failed to load DMA'able memory for status ring\n");
2102 		return (error);
2103 	}
2104 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
2105 
2106 	return (0);
2107 }
2108 
2109 static void
2110 msk_status_dma_free(struct msk_softc *sc)
2111 {
2112 
2113 	/* Destroy status block. */
2114 	if (sc->msk_stat_tag) {
2115 		if (sc->msk_stat_map) {
2116 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
2117 			if (sc->msk_stat_ring) {
2118 				bus_dmamem_free(sc->msk_stat_tag,
2119 				    sc->msk_stat_ring, sc->msk_stat_map);
2120 				sc->msk_stat_ring = NULL;
2121 			}
2122 			sc->msk_stat_map = NULL;
2123 		}
2124 		bus_dma_tag_destroy(sc->msk_stat_tag);
2125 		sc->msk_stat_tag = NULL;
2126 	}
2127 }
2128 
2129 static int
2130 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2131 {
2132 	struct msk_dmamap_arg ctx;
2133 	struct msk_txdesc *txd;
2134 	struct msk_rxdesc *rxd;
2135 	bus_size_t rxalign;
2136 	int error, i;
2137 
2138 	/* Create parent DMA tag. */
2139 	/*
2140 	 * XXX
2141 	 * It seems that Yukon II supports full 64bits DMA operations. But
2142 	 * it needs two descriptors(list elements) for 64bits DMA operations.
2143 	 * Since we don't know what DMA address mappings(32bits or 64bits)
2144 	 * would be used in advance for each mbufs, we limits its DMA space
2145 	 * to be in range of 32bits address space. Otherwise, we should check
2146 	 * what DMA address is used and chain another descriptor for the
2147 	 * 64bits DMA operation. This also means descriptor ring size is
2148 	 * variable. Limiting DMA address to be in 32bit address space greatly
2149 	 * simplifies descriptor handling and possibly would increase
2150 	 * performance a bit due to efficient handling of descriptors.
2151 	 * Apart from harassing checksum offloading mechanisms, it seems
2152 	 * it's really bad idea to use a separate descriptor for 64bit
2153 	 * DMA operation to save small descriptor memory. Anyway, I've
2154 	 * never seen these exotic scheme on ethernet interface hardware.
2155 	 */
2156 	error = bus_dma_tag_create(
2157 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2158 		    1, 0,			/* alignment, boundary */
2159 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2160 		    BUS_SPACE_MAXADDR,		/* highaddr */
2161 		    NULL, NULL,			/* filter, filterarg */
2162 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2163 		    0,				/* nsegments */
2164 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2165 		    0,				/* flags */
2166 		    NULL, NULL,			/* lockfunc, lockarg */
2167 		    &sc_if->msk_cdata.msk_parent_tag);
2168 	if (error != 0) {
2169 		device_printf(sc_if->msk_if_dev,
2170 		    "failed to create parent DMA tag\n");
2171 		goto fail;
2172 	}
2173 	/* Create tag for Tx ring. */
2174 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2175 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2176 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2177 		    BUS_SPACE_MAXADDR,		/* highaddr */
2178 		    NULL, NULL,			/* filter, filterarg */
2179 		    MSK_TX_RING_SZ,		/* maxsize */
2180 		    1,				/* nsegments */
2181 		    MSK_TX_RING_SZ,		/* maxsegsize */
2182 		    0,				/* flags */
2183 		    NULL, NULL,			/* lockfunc, lockarg */
2184 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2185 	if (error != 0) {
2186 		device_printf(sc_if->msk_if_dev,
2187 		    "failed to create Tx ring DMA tag\n");
2188 		goto fail;
2189 	}
2190 
2191 	/* Create tag for Rx ring. */
2192 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2193 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2194 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2195 		    BUS_SPACE_MAXADDR,		/* highaddr */
2196 		    NULL, NULL,			/* filter, filterarg */
2197 		    MSK_RX_RING_SZ,		/* maxsize */
2198 		    1,				/* nsegments */
2199 		    MSK_RX_RING_SZ,		/* maxsegsize */
2200 		    0,				/* flags */
2201 		    NULL, NULL,			/* lockfunc, lockarg */
2202 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2203 	if (error != 0) {
2204 		device_printf(sc_if->msk_if_dev,
2205 		    "failed to create Rx ring DMA tag\n");
2206 		goto fail;
2207 	}
2208 
2209 	/* Create tag for Tx buffers. */
2210 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2211 		    1, 0,			/* alignment, boundary */
2212 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2213 		    BUS_SPACE_MAXADDR,		/* highaddr */
2214 		    NULL, NULL,			/* filter, filterarg */
2215 		    MSK_TSO_MAXSIZE,		/* maxsize */
2216 		    MSK_MAXTXSEGS,		/* nsegments */
2217 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2218 		    0,				/* flags */
2219 		    NULL, NULL,			/* lockfunc, lockarg */
2220 		    &sc_if->msk_cdata.msk_tx_tag);
2221 	if (error != 0) {
2222 		device_printf(sc_if->msk_if_dev,
2223 		    "failed to create Tx DMA tag\n");
2224 		goto fail;
2225 	}
2226 
2227 	rxalign = 1;
2228 	/*
2229 	 * Workaround hardware hang which seems to happen when Rx buffer
2230 	 * is not aligned on multiple of FIFO word(8 bytes).
2231 	 */
2232 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2233 		rxalign = MSK_RX_BUF_ALIGN;
2234 	/* Create tag for Rx buffers. */
2235 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2236 		    rxalign, 0,			/* alignment, boundary */
2237 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2238 		    BUS_SPACE_MAXADDR,		/* highaddr */
2239 		    NULL, NULL,			/* filter, filterarg */
2240 		    MCLBYTES,			/* maxsize */
2241 		    1,				/* nsegments */
2242 		    MCLBYTES,			/* maxsegsize */
2243 		    0,				/* flags */
2244 		    NULL, NULL,			/* lockfunc, lockarg */
2245 		    &sc_if->msk_cdata.msk_rx_tag);
2246 	if (error != 0) {
2247 		device_printf(sc_if->msk_if_dev,
2248 		    "failed to create Rx DMA tag\n");
2249 		goto fail;
2250 	}
2251 
2252 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2253 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2254 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2255 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2256 	if (error != 0) {
2257 		device_printf(sc_if->msk_if_dev,
2258 		    "failed to allocate DMA'able memory for Tx ring\n");
2259 		goto fail;
2260 	}
2261 
2262 	ctx.msk_busaddr = 0;
2263 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2264 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2265 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2266 	if (error != 0) {
2267 		device_printf(sc_if->msk_if_dev,
2268 		    "failed to load DMA'able memory for Tx ring\n");
2269 		goto fail;
2270 	}
2271 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2272 
2273 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2274 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2275 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2276 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2277 	if (error != 0) {
2278 		device_printf(sc_if->msk_if_dev,
2279 		    "failed to allocate DMA'able memory for Rx ring\n");
2280 		goto fail;
2281 	}
2282 
2283 	ctx.msk_busaddr = 0;
2284 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2285 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2286 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2287 	if (error != 0) {
2288 		device_printf(sc_if->msk_if_dev,
2289 		    "failed to load DMA'able memory for Rx ring\n");
2290 		goto fail;
2291 	}
2292 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2293 
2294 	/* Create DMA maps for Tx buffers. */
2295 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2296 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2297 		txd->tx_m = NULL;
2298 		txd->tx_dmamap = NULL;
2299 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2300 		    &txd->tx_dmamap);
2301 		if (error != 0) {
2302 			device_printf(sc_if->msk_if_dev,
2303 			    "failed to create Tx dmamap\n");
2304 			goto fail;
2305 		}
2306 	}
2307 	/* Create DMA maps for Rx buffers. */
2308 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2309 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2310 		device_printf(sc_if->msk_if_dev,
2311 		    "failed to create spare Rx dmamap\n");
2312 		goto fail;
2313 	}
2314 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2315 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2316 		rxd->rx_m = NULL;
2317 		rxd->rx_dmamap = NULL;
2318 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2319 		    &rxd->rx_dmamap);
2320 		if (error != 0) {
2321 			device_printf(sc_if->msk_if_dev,
2322 			    "failed to create Rx dmamap\n");
2323 			goto fail;
2324 		}
2325 	}
2326 
2327 fail:
2328 	return (error);
2329 }
2330 
2331 static int
2332 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2333 {
2334 	struct msk_dmamap_arg ctx;
2335 	struct msk_rxdesc *jrxd;
2336 	bus_size_t rxalign;
2337 	int error, i;
2338 
2339 	if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
2340 		sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2341 		device_printf(sc_if->msk_if_dev,
2342 		    "disabling jumbo frame support\n");
2343 		return (0);
2344 	}
2345 	/* Create tag for jumbo Rx ring. */
2346 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2347 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2348 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2349 		    BUS_SPACE_MAXADDR,		/* highaddr */
2350 		    NULL, NULL,			/* filter, filterarg */
2351 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2352 		    1,				/* nsegments */
2353 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2354 		    0,				/* flags */
2355 		    NULL, NULL,			/* lockfunc, lockarg */
2356 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2357 	if (error != 0) {
2358 		device_printf(sc_if->msk_if_dev,
2359 		    "failed to create jumbo Rx ring DMA tag\n");
2360 		goto jumbo_fail;
2361 	}
2362 
2363 	rxalign = 1;
2364 	/*
2365 	 * Workaround hardware hang which seems to happen when Rx buffer
2366 	 * is not aligned on multiple of FIFO word(8 bytes).
2367 	 */
2368 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2369 		rxalign = MSK_RX_BUF_ALIGN;
2370 	/* Create tag for jumbo Rx buffers. */
2371 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2372 		    rxalign, 0,			/* alignment, boundary */
2373 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2374 		    BUS_SPACE_MAXADDR,		/* highaddr */
2375 		    NULL, NULL,			/* filter, filterarg */
2376 		    MJUM9BYTES,			/* maxsize */
2377 		    1,				/* nsegments */
2378 		    MJUM9BYTES,			/* maxsegsize */
2379 		    0,				/* flags */
2380 		    NULL, NULL,			/* lockfunc, lockarg */
2381 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2382 	if (error != 0) {
2383 		device_printf(sc_if->msk_if_dev,
2384 		    "failed to create jumbo Rx DMA tag\n");
2385 		goto jumbo_fail;
2386 	}
2387 
2388 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2389 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2390 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2391 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2392 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2393 	if (error != 0) {
2394 		device_printf(sc_if->msk_if_dev,
2395 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2396 		goto jumbo_fail;
2397 	}
2398 
2399 	ctx.msk_busaddr = 0;
2400 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2401 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2402 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2403 	    msk_dmamap_cb, &ctx, 0);
2404 	if (error != 0) {
2405 		device_printf(sc_if->msk_if_dev,
2406 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2407 		goto jumbo_fail;
2408 	}
2409 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2410 
2411 	/* Create DMA maps for jumbo Rx buffers. */
2412 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2413 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2414 		device_printf(sc_if->msk_if_dev,
2415 		    "failed to create spare jumbo Rx dmamap\n");
2416 		goto jumbo_fail;
2417 	}
2418 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2419 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2420 		jrxd->rx_m = NULL;
2421 		jrxd->rx_dmamap = NULL;
2422 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2423 		    &jrxd->rx_dmamap);
2424 		if (error != 0) {
2425 			device_printf(sc_if->msk_if_dev,
2426 			    "failed to create jumbo Rx dmamap\n");
2427 			goto jumbo_fail;
2428 		}
2429 	}
2430 
2431 	return (0);
2432 
2433 jumbo_fail:
2434 	msk_rx_dma_jfree(sc_if);
2435 	device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2436 	    "due to resource shortage\n");
2437 	sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2438 	return (error);
2439 }
2440 
2441 static void
2442 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2443 {
2444 	struct msk_txdesc *txd;
2445 	struct msk_rxdesc *rxd;
2446 	int i;
2447 
2448 	/* Tx ring. */
2449 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2450 		if (sc_if->msk_cdata.msk_tx_ring_map)
2451 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2452 			    sc_if->msk_cdata.msk_tx_ring_map);
2453 		if (sc_if->msk_cdata.msk_tx_ring_map &&
2454 		    sc_if->msk_rdata.msk_tx_ring)
2455 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2456 			    sc_if->msk_rdata.msk_tx_ring,
2457 			    sc_if->msk_cdata.msk_tx_ring_map);
2458 		sc_if->msk_rdata.msk_tx_ring = NULL;
2459 		sc_if->msk_cdata.msk_tx_ring_map = NULL;
2460 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2461 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2462 	}
2463 	/* Rx ring. */
2464 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2465 		if (sc_if->msk_cdata.msk_rx_ring_map)
2466 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2467 			    sc_if->msk_cdata.msk_rx_ring_map);
2468 		if (sc_if->msk_cdata.msk_rx_ring_map &&
2469 		    sc_if->msk_rdata.msk_rx_ring)
2470 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2471 			    sc_if->msk_rdata.msk_rx_ring,
2472 			    sc_if->msk_cdata.msk_rx_ring_map);
2473 		sc_if->msk_rdata.msk_rx_ring = NULL;
2474 		sc_if->msk_cdata.msk_rx_ring_map = NULL;
2475 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2476 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2477 	}
2478 	/* Tx buffers. */
2479 	if (sc_if->msk_cdata.msk_tx_tag) {
2480 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2481 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2482 			if (txd->tx_dmamap) {
2483 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2484 				    txd->tx_dmamap);
2485 				txd->tx_dmamap = NULL;
2486 			}
2487 		}
2488 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2489 		sc_if->msk_cdata.msk_tx_tag = NULL;
2490 	}
2491 	/* Rx buffers. */
2492 	if (sc_if->msk_cdata.msk_rx_tag) {
2493 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2494 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2495 			if (rxd->rx_dmamap) {
2496 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2497 				    rxd->rx_dmamap);
2498 				rxd->rx_dmamap = NULL;
2499 			}
2500 		}
2501 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2502 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2503 			    sc_if->msk_cdata.msk_rx_sparemap);
2504 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2505 		}
2506 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2507 		sc_if->msk_cdata.msk_rx_tag = NULL;
2508 	}
2509 	if (sc_if->msk_cdata.msk_parent_tag) {
2510 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2511 		sc_if->msk_cdata.msk_parent_tag = NULL;
2512 	}
2513 }
2514 
2515 static void
2516 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2517 {
2518 	struct msk_rxdesc *jrxd;
2519 	int i;
2520 
2521 	/* Jumbo Rx ring. */
2522 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2523 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2524 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2525 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2526 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2527 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2528 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2529 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2530 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2531 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2532 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2533 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2534 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2535 	}
2536 	/* Jumbo Rx buffers. */
2537 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2538 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2539 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2540 			if (jrxd->rx_dmamap) {
2541 				bus_dmamap_destroy(
2542 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2543 				    jrxd->rx_dmamap);
2544 				jrxd->rx_dmamap = NULL;
2545 			}
2546 		}
2547 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2548 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2549 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2550 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2551 		}
2552 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2553 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2554 	}
2555 }
2556 
2557 static int
2558 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2559 {
2560 	struct msk_txdesc *txd, *txd_last;
2561 	struct msk_tx_desc *tx_le;
2562 	struct mbuf *m;
2563 	bus_dmamap_t map;
2564 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2565 	uint32_t control, csum, prod, si;
2566 	uint16_t offset, tcp_offset, tso_mtu;
2567 	int error, i, nseg, tso;
2568 
2569 	MSK_IF_LOCK_ASSERT(sc_if);
2570 
2571 	tcp_offset = offset = 0;
2572 	m = *m_head;
2573 	if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2574 	    (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) ||
2575 	    ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
2576 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) {
2577 		/*
2578 		 * Since mbuf has no protocol specific structure information
2579 		 * in it we have to inspect protocol information here to
2580 		 * setup TSO and checksum offload. I don't know why Marvell
2581 		 * made a such decision in chip design because other GigE
2582 		 * hardwares normally takes care of all these chores in
2583 		 * hardware. However, TSO performance of Yukon II is very
2584 		 * good such that it's worth to implement it.
2585 		 */
2586 		struct ether_header *eh;
2587 		struct ip *ip;
2588 		struct tcphdr *tcp;
2589 
2590 		if (M_WRITABLE(m) == 0) {
2591 			/* Get a writable copy. */
2592 			m = m_dup(*m_head, M_DONTWAIT);
2593 			m_freem(*m_head);
2594 			if (m == NULL) {
2595 				*m_head = NULL;
2596 				return (ENOBUFS);
2597 			}
2598 			*m_head = m;
2599 		}
2600 
2601 		offset = sizeof(struct ether_header);
2602 		m = m_pullup(m, offset);
2603 		if (m == NULL) {
2604 			*m_head = NULL;
2605 			return (ENOBUFS);
2606 		}
2607 		eh = mtod(m, struct ether_header *);
2608 		/* Check if hardware VLAN insertion is off. */
2609 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2610 			offset = sizeof(struct ether_vlan_header);
2611 			m = m_pullup(m, offset);
2612 			if (m == NULL) {
2613 				*m_head = NULL;
2614 				return (ENOBUFS);
2615 			}
2616 		}
2617 		m = m_pullup(m, offset + sizeof(struct ip));
2618 		if (m == NULL) {
2619 			*m_head = NULL;
2620 			return (ENOBUFS);
2621 		}
2622 		ip = (struct ip *)(mtod(m, char *) + offset);
2623 		offset += (ip->ip_hl << 2);
2624 		tcp_offset = offset;
2625 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2626 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2627 			if (m == NULL) {
2628 				*m_head = NULL;
2629 				return (ENOBUFS);
2630 			}
2631 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2632 			offset += (tcp->th_off << 2);
2633 		} else if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2634 		    (m->m_pkthdr.len < MSK_MIN_FRAMELEN) &&
2635 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2636 			/*
2637 			 * It seems that Yukon II has Tx checksum offload bug
2638 			 * for small TCP packets that's less than 60 bytes in
2639 			 * size (e.g. TCP window probe packet, pure ACK packet).
2640 			 * Common work around like padding with zeros to make
2641 			 * the frame minimum ethernet frame size didn't work at
2642 			 * all.
2643 			 * Instead of disabling checksum offload completely we
2644 			 * resort to S/W checksum routine when we encounter
2645 			 * short TCP frames.
2646 			 * Short UDP packets appear to be handled correctly by
2647 			 * Yukon II. Also I assume this bug does not happen on
2648 			 * controllers that use newer descriptor format or
2649 			 * automatic Tx checksum calculation.
2650 			 */
2651 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2652 			if (m == NULL) {
2653 				*m_head = NULL;
2654 				return (ENOBUFS);
2655 			}
2656 			*(uint16_t *)(m->m_data + offset +
2657 			    m->m_pkthdr.csum_data) = in_cksum_skip(m,
2658 			    m->m_pkthdr.len, offset);
2659 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2660 		}
2661 		*m_head = m;
2662 	}
2663 
2664 	prod = sc_if->msk_cdata.msk_tx_prod;
2665 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2666 	txd_last = txd;
2667 	map = txd->tx_dmamap;
2668 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2669 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2670 	if (error == EFBIG) {
2671 		m = m_collapse(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
2672 		if (m == NULL) {
2673 			m_freem(*m_head);
2674 			*m_head = NULL;
2675 			return (ENOBUFS);
2676 		}
2677 		*m_head = m;
2678 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2679 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2680 		if (error != 0) {
2681 			m_freem(*m_head);
2682 			*m_head = NULL;
2683 			return (error);
2684 		}
2685 	} else if (error != 0)
2686 		return (error);
2687 	if (nseg == 0) {
2688 		m_freem(*m_head);
2689 		*m_head = NULL;
2690 		return (EIO);
2691 	}
2692 
2693 	/* Check number of available descriptors. */
2694 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2695 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2696 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2697 		return (ENOBUFS);
2698 	}
2699 
2700 	control = 0;
2701 	tso = 0;
2702 	tx_le = NULL;
2703 
2704 	/* Check TSO support. */
2705 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2706 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2707 			tso_mtu = m->m_pkthdr.tso_segsz;
2708 		else
2709 			tso_mtu = offset + m->m_pkthdr.tso_segsz;
2710 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2711 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2712 			tx_le->msk_addr = htole32(tso_mtu);
2713 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2714 				tx_le->msk_control = htole32(OP_MSS | HW_OWNER);
2715 			else
2716 				tx_le->msk_control =
2717 				    htole32(OP_LRGLEN | HW_OWNER);
2718 			sc_if->msk_cdata.msk_tx_cnt++;
2719 			MSK_INC(prod, MSK_TX_RING_CNT);
2720 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2721 		}
2722 		tso++;
2723 	}
2724 	/* Check if we have a VLAN tag to insert. */
2725 	if ((m->m_flags & M_VLANTAG) != 0) {
2726 		if (tx_le == NULL) {
2727 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2728 			tx_le->msk_addr = htole32(0);
2729 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2730 			    htons(m->m_pkthdr.ether_vtag));
2731 			sc_if->msk_cdata.msk_tx_cnt++;
2732 			MSK_INC(prod, MSK_TX_RING_CNT);
2733 		} else {
2734 			tx_le->msk_control |= htole32(OP_VLAN |
2735 			    htons(m->m_pkthdr.ether_vtag));
2736 		}
2737 		control |= INS_VLAN;
2738 	}
2739 	/* Check if we have to handle checksum offload. */
2740 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2741 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0)
2742 			control |= CALSUM;
2743 		else {
2744 			control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2745 			if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2746 				control |= UDPTCP;
2747 			/* Checksum write position. */
2748 			csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff;
2749 			/* Checksum start position. */
2750 			csum |= (uint32_t)tcp_offset << 16;
2751 			if (csum != sc_if->msk_cdata.msk_last_csum) {
2752 				tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2753 				tx_le->msk_addr = htole32(csum);
2754 				tx_le->msk_control = htole32(1 << 16 |
2755 				    (OP_TCPLISW | HW_OWNER));
2756 				sc_if->msk_cdata.msk_tx_cnt++;
2757 				MSK_INC(prod, MSK_TX_RING_CNT);
2758 				sc_if->msk_cdata.msk_last_csum = csum;
2759 			}
2760 		}
2761 	}
2762 
2763 	si = prod;
2764 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2765 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2766 	if (tso == 0)
2767 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2768 		    OP_PACKET);
2769 	else
2770 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2771 		    OP_LARGESEND);
2772 	sc_if->msk_cdata.msk_tx_cnt++;
2773 	MSK_INC(prod, MSK_TX_RING_CNT);
2774 
2775 	for (i = 1; i < nseg; i++) {
2776 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2777 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2778 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2779 		    OP_BUFFER | HW_OWNER);
2780 		sc_if->msk_cdata.msk_tx_cnt++;
2781 		MSK_INC(prod, MSK_TX_RING_CNT);
2782 	}
2783 	/* Update producer index. */
2784 	sc_if->msk_cdata.msk_tx_prod = prod;
2785 
2786 	/* Set EOP on the last descriptor. */
2787 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2788 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2789 	tx_le->msk_control |= htole32(EOP);
2790 
2791 	/* Turn the first descriptor ownership to hardware. */
2792 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2793 	tx_le->msk_control |= htole32(HW_OWNER);
2794 
2795 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2796 	map = txd_last->tx_dmamap;
2797 	txd_last->tx_dmamap = txd->tx_dmamap;
2798 	txd->tx_dmamap = map;
2799 	txd->tx_m = m;
2800 
2801 	/* Sync descriptors. */
2802 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2803 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2804 	    sc_if->msk_cdata.msk_tx_ring_map,
2805 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2806 
2807 	return (0);
2808 }
2809 
2810 static void
2811 msk_start(struct ifnet *ifp)
2812 {
2813 	struct msk_if_softc *sc_if;
2814 
2815 	sc_if = ifp->if_softc;
2816 	MSK_IF_LOCK(sc_if);
2817 	msk_start_locked(ifp);
2818 	MSK_IF_UNLOCK(sc_if);
2819 }
2820 
2821 static void
2822 msk_start_locked(struct ifnet *ifp)
2823 {
2824 	struct msk_if_softc *sc_if;
2825 	struct mbuf *m_head;
2826 	int enq;
2827 
2828 	sc_if = ifp->if_softc;
2829 	MSK_IF_LOCK_ASSERT(sc_if);
2830 
2831 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2832 	    IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0)
2833 		return;
2834 
2835 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2836 	    sc_if->msk_cdata.msk_tx_cnt <
2837 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2838 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2839 		if (m_head == NULL)
2840 			break;
2841 		/*
2842 		 * Pack the data into the transmit ring. If we
2843 		 * don't have room, set the OACTIVE flag and wait
2844 		 * for the NIC to drain the ring.
2845 		 */
2846 		if (msk_encap(sc_if, &m_head) != 0) {
2847 			if (m_head == NULL)
2848 				break;
2849 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2850 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2851 			break;
2852 		}
2853 
2854 		enq++;
2855 		/*
2856 		 * If there's a BPF listener, bounce a copy of this frame
2857 		 * to him.
2858 		 */
2859 		ETHER_BPF_MTAP(ifp, m_head);
2860 	}
2861 
2862 	if (enq > 0) {
2863 		/* Transmit */
2864 		CSR_WRITE_2(sc_if->msk_softc,
2865 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2866 		    sc_if->msk_cdata.msk_tx_prod);
2867 
2868 		/* Set a timeout in case the chip goes out to lunch. */
2869 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2870 	}
2871 }
2872 
2873 static void
2874 msk_watchdog(struct msk_if_softc *sc_if)
2875 {
2876 	struct ifnet *ifp;
2877 
2878 	MSK_IF_LOCK_ASSERT(sc_if);
2879 
2880 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2881 		return;
2882 	ifp = sc_if->msk_ifp;
2883 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2884 		if (bootverbose)
2885 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2886 			   "(missed link)\n");
2887 		ifp->if_oerrors++;
2888 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2889 		msk_init_locked(sc_if);
2890 		return;
2891 	}
2892 
2893 	if_printf(ifp, "watchdog timeout\n");
2894 	ifp->if_oerrors++;
2895 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2896 	msk_init_locked(sc_if);
2897 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2898 		msk_start_locked(ifp);
2899 }
2900 
2901 static int
2902 mskc_shutdown(device_t dev)
2903 {
2904 	struct msk_softc *sc;
2905 	int i;
2906 
2907 	sc = device_get_softc(dev);
2908 	MSK_LOCK(sc);
2909 	for (i = 0; i < sc->msk_num_port; i++) {
2910 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2911 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
2912 		    IFF_DRV_RUNNING) != 0))
2913 			msk_stop(sc->msk_if[i]);
2914 	}
2915 	MSK_UNLOCK(sc);
2916 
2917 	/* Put hardware reset. */
2918 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2919 	return (0);
2920 }
2921 
2922 static int
2923 mskc_suspend(device_t dev)
2924 {
2925 	struct msk_softc *sc;
2926 	int i;
2927 
2928 	sc = device_get_softc(dev);
2929 
2930 	MSK_LOCK(sc);
2931 
2932 	for (i = 0; i < sc->msk_num_port; i++) {
2933 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2934 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
2935 		    IFF_DRV_RUNNING) != 0))
2936 			msk_stop(sc->msk_if[i]);
2937 	}
2938 
2939 	/* Disable all interrupts. */
2940 	CSR_WRITE_4(sc, B0_IMSK, 0);
2941 	CSR_READ_4(sc, B0_IMSK);
2942 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2943 	CSR_READ_4(sc, B0_HWE_IMSK);
2944 
2945 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
2946 
2947 	/* Put hardware reset. */
2948 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2949 	sc->msk_pflags |= MSK_FLAG_SUSPEND;
2950 
2951 	MSK_UNLOCK(sc);
2952 
2953 	return (0);
2954 }
2955 
2956 static int
2957 mskc_resume(device_t dev)
2958 {
2959 	struct msk_softc *sc;
2960 	int i;
2961 
2962 	sc = device_get_softc(dev);
2963 
2964 	MSK_LOCK(sc);
2965 
2966 	mskc_reset(sc);
2967 	for (i = 0; i < sc->msk_num_port; i++) {
2968 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2969 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) {
2970 			sc->msk_if[i]->msk_ifp->if_drv_flags &=
2971 			    ~IFF_DRV_RUNNING;
2972 			msk_init_locked(sc->msk_if[i]);
2973 		}
2974 	}
2975 	sc->msk_pflags &= ~MSK_FLAG_SUSPEND;
2976 
2977 	MSK_UNLOCK(sc);
2978 
2979 	return (0);
2980 }
2981 
2982 #ifndef __NO_STRICT_ALIGNMENT
2983 static __inline void
2984 msk_fixup_rx(struct mbuf *m)
2985 {
2986         int i;
2987         uint16_t *src, *dst;
2988 
2989 	src = mtod(m, uint16_t *);
2990 	dst = src - 3;
2991 
2992 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2993 		*dst++ = *src++;
2994 
2995 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
2996 }
2997 #endif
2998 
2999 static __inline void
3000 msk_rxcsum(struct msk_if_softc *sc_if, uint32_t control, struct mbuf *m)
3001 {
3002 	struct ether_header *eh;
3003 	struct ip *ip;
3004 	struct udphdr *uh;
3005 	int32_t hlen, len, pktlen, temp32;
3006 	uint16_t csum, *opts;
3007 
3008 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) {
3009 		if ((control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
3010 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3011 			if ((control & CSS_IPV4_CSUM_OK) != 0)
3012 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3013 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3014 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3015 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3016 				    CSUM_PSEUDO_HDR;
3017 				m->m_pkthdr.csum_data = 0xffff;
3018 			}
3019 		}
3020 		return;
3021 	}
3022 	/*
3023 	 * Marvell Yukon controllers that support OP_RXCHKS has known
3024 	 * to have various Rx checksum offloading bugs. These
3025 	 * controllers can be configured to compute simple checksum
3026 	 * at two different positions. So we can compute IP and TCP/UDP
3027 	 * checksum at the same time. We intentionally have controller
3028 	 * compute TCP/UDP checksum twice by specifying the same
3029 	 * checksum start position and compare the result. If the value
3030 	 * is different it would indicate the hardware logic was wrong.
3031 	 */
3032 	if ((sc_if->msk_csum & 0xFFFF) != (sc_if->msk_csum >> 16)) {
3033 		if (bootverbose)
3034 			device_printf(sc_if->msk_if_dev,
3035 			    "Rx checksum value mismatch!\n");
3036 		return;
3037 	}
3038 	pktlen = m->m_pkthdr.len;
3039 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
3040 		return;
3041 	eh = mtod(m, struct ether_header *);
3042 	if (eh->ether_type != htons(ETHERTYPE_IP))
3043 		return;
3044 	ip = (struct ip *)(eh + 1);
3045 	if (ip->ip_v != IPVERSION)
3046 		return;
3047 
3048 	hlen = ip->ip_hl << 2;
3049 	pktlen -= sizeof(struct ether_header);
3050 	if (hlen < sizeof(struct ip))
3051 		return;
3052 	if (ntohs(ip->ip_len) < hlen)
3053 		return;
3054 	if (ntohs(ip->ip_len) != pktlen)
3055 		return;
3056 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
3057 		return;	/* can't handle fragmented packet. */
3058 
3059 	switch (ip->ip_p) {
3060 	case IPPROTO_TCP:
3061 		if (pktlen < (hlen + sizeof(struct tcphdr)))
3062 			return;
3063 		break;
3064 	case IPPROTO_UDP:
3065 		if (pktlen < (hlen + sizeof(struct udphdr)))
3066 			return;
3067 		uh = (struct udphdr *)((caddr_t)ip + hlen);
3068 		if (uh->uh_sum == 0)
3069 			return; /* no checksum */
3070 		break;
3071 	default:
3072 		return;
3073 	}
3074 	csum = bswap16(sc_if->msk_csum & 0xFFFF);
3075 	/* Checksum fixup for IP options. */
3076 	len = hlen - sizeof(struct ip);
3077 	if (len > 0) {
3078 		opts = (uint16_t *)(ip + 1);
3079 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
3080 			temp32 = csum - *opts;
3081 			temp32 = (temp32 >> 16) + (temp32 & 65535);
3082 			csum = temp32 & 65535;
3083 		}
3084 	}
3085 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
3086 	m->m_pkthdr.csum_data = csum;
3087 }
3088 
3089 static void
3090 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3091     int len)
3092 {
3093 	struct mbuf *m;
3094 	struct ifnet *ifp;
3095 	struct msk_rxdesc *rxd;
3096 	int cons, rxlen;
3097 
3098 	ifp = sc_if->msk_ifp;
3099 
3100 	MSK_IF_LOCK_ASSERT(sc_if);
3101 
3102 	cons = sc_if->msk_cdata.msk_rx_cons;
3103 	do {
3104 		rxlen = status >> 16;
3105 		if ((status & GMR_FS_VLAN) != 0 &&
3106 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3107 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3108 		if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) {
3109 			/*
3110 			 * For controllers that returns bogus status code
3111 			 * just do minimal check and let upper stack
3112 			 * handle this frame.
3113 			 */
3114 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
3115 				ifp->if_ierrors++;
3116 				msk_discard_rxbuf(sc_if, cons);
3117 				break;
3118 			}
3119 		} else if (len > sc_if->msk_framesize ||
3120 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3121 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3122 			/* Don't count flow-control packet as errors. */
3123 			if ((status & GMR_FS_GOOD_FC) == 0)
3124 				ifp->if_ierrors++;
3125 			msk_discard_rxbuf(sc_if, cons);
3126 			break;
3127 		}
3128 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3129 		m = rxd->rx_m;
3130 		if (msk_newbuf(sc_if, cons) != 0) {
3131 			ifp->if_iqdrops++;
3132 			/* Reuse old buffer. */
3133 			msk_discard_rxbuf(sc_if, cons);
3134 			break;
3135 		}
3136 		m->m_pkthdr.rcvif = ifp;
3137 		m->m_pkthdr.len = m->m_len = len;
3138 #ifndef __NO_STRICT_ALIGNMENT
3139 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3140 			msk_fixup_rx(m);
3141 #endif
3142 		ifp->if_ipackets++;
3143 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3144 			msk_rxcsum(sc_if, control, m);
3145 		/* Check for VLAN tagged packets. */
3146 		if ((status & GMR_FS_VLAN) != 0 &&
3147 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3148 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3149 			m->m_flags |= M_VLANTAG;
3150 		}
3151 		MSK_IF_UNLOCK(sc_if);
3152 		(*ifp->if_input)(ifp, m);
3153 		MSK_IF_LOCK(sc_if);
3154 	} while (0);
3155 
3156 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3157 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3158 }
3159 
3160 static void
3161 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3162     int len)
3163 {
3164 	struct mbuf *m;
3165 	struct ifnet *ifp;
3166 	struct msk_rxdesc *jrxd;
3167 	int cons, rxlen;
3168 
3169 	ifp = sc_if->msk_ifp;
3170 
3171 	MSK_IF_LOCK_ASSERT(sc_if);
3172 
3173 	cons = sc_if->msk_cdata.msk_rx_cons;
3174 	do {
3175 		rxlen = status >> 16;
3176 		if ((status & GMR_FS_VLAN) != 0 &&
3177 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3178 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3179 		if (len > sc_if->msk_framesize ||
3180 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3181 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3182 			/* Don't count flow-control packet as errors. */
3183 			if ((status & GMR_FS_GOOD_FC) == 0)
3184 				ifp->if_ierrors++;
3185 			msk_discard_jumbo_rxbuf(sc_if, cons);
3186 			break;
3187 		}
3188 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3189 		m = jrxd->rx_m;
3190 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3191 			ifp->if_iqdrops++;
3192 			/* Reuse old buffer. */
3193 			msk_discard_jumbo_rxbuf(sc_if, cons);
3194 			break;
3195 		}
3196 		m->m_pkthdr.rcvif = ifp;
3197 		m->m_pkthdr.len = m->m_len = len;
3198 #ifndef __NO_STRICT_ALIGNMENT
3199 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3200 			msk_fixup_rx(m);
3201 #endif
3202 		ifp->if_ipackets++;
3203 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3204 			msk_rxcsum(sc_if, control, m);
3205 		/* Check for VLAN tagged packets. */
3206 		if ((status & GMR_FS_VLAN) != 0 &&
3207 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3208 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3209 			m->m_flags |= M_VLANTAG;
3210 		}
3211 		MSK_IF_UNLOCK(sc_if);
3212 		(*ifp->if_input)(ifp, m);
3213 		MSK_IF_LOCK(sc_if);
3214 	} while (0);
3215 
3216 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3217 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3218 }
3219 
3220 static void
3221 msk_txeof(struct msk_if_softc *sc_if, int idx)
3222 {
3223 	struct msk_txdesc *txd;
3224 	struct msk_tx_desc *cur_tx;
3225 	struct ifnet *ifp;
3226 	uint32_t control;
3227 	int cons, prog;
3228 
3229 	MSK_IF_LOCK_ASSERT(sc_if);
3230 
3231 	ifp = sc_if->msk_ifp;
3232 
3233 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3234 	    sc_if->msk_cdata.msk_tx_ring_map,
3235 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3236 	/*
3237 	 * Go through our tx ring and free mbufs for those
3238 	 * frames that have been sent.
3239 	 */
3240 	cons = sc_if->msk_cdata.msk_tx_cons;
3241 	prog = 0;
3242 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3243 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3244 			break;
3245 		prog++;
3246 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3247 		control = le32toh(cur_tx->msk_control);
3248 		sc_if->msk_cdata.msk_tx_cnt--;
3249 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3250 		if ((control & EOP) == 0)
3251 			continue;
3252 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3253 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3254 		    BUS_DMASYNC_POSTWRITE);
3255 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3256 
3257 		ifp->if_opackets++;
3258 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3259 		    __func__));
3260 		m_freem(txd->tx_m);
3261 		txd->tx_m = NULL;
3262 	}
3263 
3264 	if (prog > 0) {
3265 		sc_if->msk_cdata.msk_tx_cons = cons;
3266 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3267 			sc_if->msk_watchdog_timer = 0;
3268 		/* No need to sync LEs as we didn't update LEs. */
3269 	}
3270 }
3271 
3272 static void
3273 msk_tick(void *xsc_if)
3274 {
3275 	struct msk_if_softc *sc_if;
3276 	struct mii_data *mii;
3277 
3278 	sc_if = xsc_if;
3279 
3280 	MSK_IF_LOCK_ASSERT(sc_if);
3281 
3282 	mii = device_get_softc(sc_if->msk_miibus);
3283 
3284 	mii_tick(mii);
3285 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0)
3286 		msk_miibus_statchg(sc_if->msk_if_dev);
3287 	msk_handle_events(sc_if->msk_softc);
3288 	msk_watchdog(sc_if);
3289 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3290 }
3291 
3292 static void
3293 msk_intr_phy(struct msk_if_softc *sc_if)
3294 {
3295 	uint16_t status;
3296 
3297 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3298 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3299 	/* Handle FIFO Underrun/Overflow? */
3300 	if ((status & PHY_M_IS_FIFO_ERROR))
3301 		device_printf(sc_if->msk_if_dev,
3302 		    "PHY FIFO underrun/overflow.\n");
3303 }
3304 
3305 static void
3306 msk_intr_gmac(struct msk_if_softc *sc_if)
3307 {
3308 	struct msk_softc *sc;
3309 	uint8_t status;
3310 
3311 	sc = sc_if->msk_softc;
3312 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3313 
3314 	/* GMAC Rx FIFO overrun. */
3315 	if ((status & GM_IS_RX_FF_OR) != 0)
3316 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3317 		    GMF_CLI_RX_FO);
3318 	/* GMAC Tx FIFO underrun. */
3319 	if ((status & GM_IS_TX_FF_UR) != 0) {
3320 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3321 		    GMF_CLI_TX_FU);
3322 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3323 		/*
3324 		 * XXX
3325 		 * In case of Tx underrun, we may need to flush/reset
3326 		 * Tx MAC but that would also require resynchronization
3327 		 * with status LEs. Reinitializing status LEs would
3328 		 * affect other port in dual MAC configuration so it
3329 		 * should be avoided as possible as we can.
3330 		 * Due to lack of documentation it's all vague guess but
3331 		 * it needs more investigation.
3332 		 */
3333 	}
3334 }
3335 
3336 static void
3337 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3338 {
3339 	struct msk_softc *sc;
3340 
3341 	sc = sc_if->msk_softc;
3342 	if ((status & Y2_IS_PAR_RD1) != 0) {
3343 		device_printf(sc_if->msk_if_dev,
3344 		    "RAM buffer read parity error\n");
3345 		/* Clear IRQ. */
3346 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3347 		    RI_CLR_RD_PERR);
3348 	}
3349 	if ((status & Y2_IS_PAR_WR1) != 0) {
3350 		device_printf(sc_if->msk_if_dev,
3351 		    "RAM buffer write parity error\n");
3352 		/* Clear IRQ. */
3353 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3354 		    RI_CLR_WR_PERR);
3355 	}
3356 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3357 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3358 		/* Clear IRQ. */
3359 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3360 		    GMF_CLI_TX_PE);
3361 	}
3362 	if ((status & Y2_IS_PAR_RX1) != 0) {
3363 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3364 		/* Clear IRQ. */
3365 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3366 	}
3367 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3368 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3369 		/* Clear IRQ. */
3370 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3371 	}
3372 }
3373 
3374 static void
3375 msk_intr_hwerr(struct msk_softc *sc)
3376 {
3377 	uint32_t status;
3378 	uint32_t tlphead[4];
3379 
3380 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3381 	/* Time Stamp timer overflow. */
3382 	if ((status & Y2_IS_TIST_OV) != 0)
3383 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3384 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3385 		/*
3386 		 * PCI Express Error occured which is not described in PEX
3387 		 * spec.
3388 		 * This error is also mapped either to Master Abort(
3389 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3390 		 * can only be cleared there.
3391                  */
3392 		device_printf(sc->msk_dev,
3393 		    "PCI Express protocol violation error\n");
3394 	}
3395 
3396 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3397 		uint16_t v16;
3398 
3399 		if ((status & Y2_IS_MST_ERR) != 0)
3400 			device_printf(sc->msk_dev,
3401 			    "unexpected IRQ Status error\n");
3402 		else
3403 			device_printf(sc->msk_dev,
3404 			    "unexpected IRQ Master error\n");
3405 		/* Reset all bits in the PCI status register. */
3406 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3407 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3408 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3409 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3410 		    PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
3411 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3412 	}
3413 
3414 	/* Check for PCI Express Uncorrectable Error. */
3415 	if ((status & Y2_IS_PCI_EXP) != 0) {
3416 		uint32_t v32;
3417 
3418 		/*
3419 		 * On PCI Express bus bridges are called root complexes (RC).
3420 		 * PCI Express errors are recognized by the root complex too,
3421 		 * which requests the system to handle the problem. After
3422 		 * error occurence it may be that no access to the adapter
3423 		 * may be performed any longer.
3424 		 */
3425 
3426 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3427 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3428 			/* Ignore unsupported request error. */
3429 			device_printf(sc->msk_dev,
3430 			    "Uncorrectable PCI Express error\n");
3431 		}
3432 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3433 			int i;
3434 
3435 			/* Get TLP header form Log Registers. */
3436 			for (i = 0; i < 4; i++)
3437 				tlphead[i] = CSR_PCI_READ_4(sc,
3438 				    PEX_HEADER_LOG + i * 4);
3439 			/* Check for vendor defined broadcast message. */
3440 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3441 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3442 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3443 				    sc->msk_intrhwemask);
3444 				CSR_READ_4(sc, B0_HWE_IMSK);
3445 			}
3446 		}
3447 		/* Clear the interrupt. */
3448 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3449 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3450 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3451 	}
3452 
3453 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3454 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3455 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3456 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3457 }
3458 
3459 static __inline void
3460 msk_rxput(struct msk_if_softc *sc_if)
3461 {
3462 	struct msk_softc *sc;
3463 
3464 	sc = sc_if->msk_softc;
3465 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3466 		bus_dmamap_sync(
3467 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3468 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3469 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3470 	else
3471 		bus_dmamap_sync(
3472 		    sc_if->msk_cdata.msk_rx_ring_tag,
3473 		    sc_if->msk_cdata.msk_rx_ring_map,
3474 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3475 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3476 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3477 }
3478 
3479 static int
3480 msk_handle_events(struct msk_softc *sc)
3481 {
3482 	struct msk_if_softc *sc_if;
3483 	int rxput[2];
3484 	struct msk_stat_desc *sd;
3485 	uint32_t control, status;
3486 	int cons, len, port, rxprog;
3487 
3488 	if (sc->msk_stat_cons == CSR_READ_2(sc, STAT_PUT_IDX))
3489 		return (0);
3490 
3491 	/* Sync status LEs. */
3492 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3493 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3494 
3495 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3496 	rxprog = 0;
3497 	cons = sc->msk_stat_cons;
3498 	for (;;) {
3499 		sd = &sc->msk_stat_ring[cons];
3500 		control = le32toh(sd->msk_control);
3501 		if ((control & HW_OWNER) == 0)
3502 			break;
3503 		control &= ~HW_OWNER;
3504 		sd->msk_control = htole32(control);
3505 		status = le32toh(sd->msk_status);
3506 		len = control & STLE_LEN_MASK;
3507 		port = (control >> 16) & 0x01;
3508 		sc_if = sc->msk_if[port];
3509 		if (sc_if == NULL) {
3510 			device_printf(sc->msk_dev, "invalid port opcode "
3511 			    "0x%08x\n", control & STLE_OP_MASK);
3512 			continue;
3513 		}
3514 
3515 		switch (control & STLE_OP_MASK) {
3516 		case OP_RXVLAN:
3517 			sc_if->msk_vtag = ntohs(len);
3518 			break;
3519 		case OP_RXCHKSVLAN:
3520 			sc_if->msk_vtag = ntohs(len);
3521 			/* FALLTHROUGH */
3522 		case OP_RXCHKS:
3523 			sc_if->msk_csum = status;
3524 			break;
3525 		case OP_RXSTAT:
3526 			if (!(sc_if->msk_ifp->if_drv_flags & IFF_DRV_RUNNING))
3527 				break;
3528 			if (sc_if->msk_framesize >
3529 			    (MCLBYTES - MSK_RX_BUF_ALIGN))
3530 				msk_jumbo_rxeof(sc_if, status, control, len);
3531 			else
3532 				msk_rxeof(sc_if, status, control, len);
3533 			rxprog++;
3534 			/*
3535 			 * Because there is no way to sync single Rx LE
3536 			 * put the DMA sync operation off until the end of
3537 			 * event processing.
3538 			 */
3539 			rxput[port]++;
3540 			/* Update prefetch unit if we've passed water mark. */
3541 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3542 				msk_rxput(sc_if);
3543 				rxput[port] = 0;
3544 			}
3545 			break;
3546 		case OP_TXINDEXLE:
3547 			if (sc->msk_if[MSK_PORT_A] != NULL)
3548 				msk_txeof(sc->msk_if[MSK_PORT_A],
3549 				    status & STLE_TXA1_MSKL);
3550 			if (sc->msk_if[MSK_PORT_B] != NULL)
3551 				msk_txeof(sc->msk_if[MSK_PORT_B],
3552 				    ((status & STLE_TXA2_MSKL) >>
3553 				    STLE_TXA2_SHIFTL) |
3554 				    ((len & STLE_TXA2_MSKH) <<
3555 				    STLE_TXA2_SHIFTH));
3556 			break;
3557 		default:
3558 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3559 			    control & STLE_OP_MASK);
3560 			break;
3561 		}
3562 		MSK_INC(cons, MSK_STAT_RING_CNT);
3563 		if (rxprog > sc->msk_process_limit)
3564 			break;
3565 	}
3566 
3567 	sc->msk_stat_cons = cons;
3568 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3569 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3570 
3571 	if (rxput[MSK_PORT_A] > 0)
3572 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3573 	if (rxput[MSK_PORT_B] > 0)
3574 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3575 
3576 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3577 }
3578 
3579 static void
3580 msk_intr(void *xsc)
3581 {
3582 	struct msk_softc *sc;
3583 	struct msk_if_softc *sc_if0, *sc_if1;
3584 	struct ifnet *ifp0, *ifp1;
3585 	uint32_t status;
3586 	int domore;
3587 
3588 	sc = xsc;
3589 	MSK_LOCK(sc);
3590 
3591 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3592 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3593 	if (status == 0 || status == 0xffffffff ||
3594 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3595 	    (status & sc->msk_intrmask) == 0) {
3596 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3597 		MSK_UNLOCK(sc);
3598 		return;
3599 	}
3600 
3601 	sc_if0 = sc->msk_if[MSK_PORT_A];
3602 	sc_if1 = sc->msk_if[MSK_PORT_B];
3603 	ifp0 = ifp1 = NULL;
3604 	if (sc_if0 != NULL)
3605 		ifp0 = sc_if0->msk_ifp;
3606 	if (sc_if1 != NULL)
3607 		ifp1 = sc_if1->msk_ifp;
3608 
3609 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3610 		msk_intr_phy(sc_if0);
3611 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3612 		msk_intr_phy(sc_if1);
3613 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3614 		msk_intr_gmac(sc_if0);
3615 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3616 		msk_intr_gmac(sc_if1);
3617 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3618 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3619 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3620 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3621 		CSR_READ_4(sc, B0_IMSK);
3622 	}
3623         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3624 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3625 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3626 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3627 		CSR_READ_4(sc, B0_IMSK);
3628 	}
3629 	if ((status & Y2_IS_HW_ERR) != 0)
3630 		msk_intr_hwerr(sc);
3631 
3632 	domore = msk_handle_events(sc);
3633 	if ((status & Y2_IS_STAT_BMU) != 0 && domore == 0)
3634 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3635 
3636 	/* Reenable interrupts. */
3637 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3638 
3639 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3640 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3641 		msk_start_locked(ifp0);
3642 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3643 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3644 		msk_start_locked(ifp1);
3645 
3646 	MSK_UNLOCK(sc);
3647 }
3648 
3649 static void
3650 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3651 {
3652 	struct msk_softc *sc;
3653 	struct ifnet *ifp;
3654 
3655 	ifp = sc_if->msk_ifp;
3656 	sc = sc_if->msk_softc;
3657 	switch (sc->msk_hw_id) {
3658 	case CHIP_ID_YUKON_EX:
3659 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
3660 			goto yukon_ex_workaround;
3661 		if (ifp->if_mtu > ETHERMTU)
3662 			CSR_WRITE_4(sc,
3663 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3664 			    TX_JUMBO_ENA | TX_STFW_ENA);
3665 		else
3666 			CSR_WRITE_4(sc,
3667 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3668 			    TX_JUMBO_DIS | TX_STFW_ENA);
3669 		break;
3670 	default:
3671 yukon_ex_workaround:
3672 		if (ifp->if_mtu > ETHERMTU) {
3673 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3674 			CSR_WRITE_4(sc,
3675 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3676 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3677 			/* Disable Store & Forward mode for Tx. */
3678 			CSR_WRITE_4(sc,
3679 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3680 			    TX_JUMBO_ENA | TX_STFW_DIS);
3681 		} else {
3682 			/* Enable Store & Forward mode for Tx. */
3683 			CSR_WRITE_4(sc,
3684 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3685 			    TX_JUMBO_DIS | TX_STFW_ENA);
3686 		}
3687 		break;
3688 	}
3689 }
3690 
3691 static void
3692 msk_init(void *xsc)
3693 {
3694 	struct msk_if_softc *sc_if = xsc;
3695 
3696 	MSK_IF_LOCK(sc_if);
3697 	msk_init_locked(sc_if);
3698 	MSK_IF_UNLOCK(sc_if);
3699 }
3700 
3701 static void
3702 msk_init_locked(struct msk_if_softc *sc_if)
3703 {
3704 	struct msk_softc *sc;
3705 	struct ifnet *ifp;
3706 	struct mii_data	 *mii;
3707 	uint8_t *eaddr;
3708 	uint16_t gmac;
3709 	uint32_t reg;
3710 	int error;
3711 
3712 	MSK_IF_LOCK_ASSERT(sc_if);
3713 
3714 	ifp = sc_if->msk_ifp;
3715 	sc = sc_if->msk_softc;
3716 	mii = device_get_softc(sc_if->msk_miibus);
3717 
3718 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3719 		return;
3720 
3721 	error = 0;
3722 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3723 	msk_stop(sc_if);
3724 
3725 	if (ifp->if_mtu < ETHERMTU)
3726 		sc_if->msk_framesize = ETHERMTU;
3727 	else
3728 		sc_if->msk_framesize = ifp->if_mtu;
3729 	sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3730 	if (ifp->if_mtu > ETHERMTU &&
3731 	    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
3732 		ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3733 		ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3734 	}
3735 
3736  	/* GMAC Control reset. */
3737  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3738  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3739  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3740 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX)
3741 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3742 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3743 		    GMC_BYP_RETR_ON);
3744 
3745 	/*
3746 	 * Initialize GMAC first such that speed/duplex/flow-control
3747 	 * parameters are renegotiated when interface is brought up.
3748 	 */
3749 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3750 
3751 	/* Dummy read the Interrupt Source Register. */
3752 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3753 
3754 	/* Clear MIB stats. */
3755 	msk_stats_clear(sc_if);
3756 
3757 	/* Disable FCS. */
3758 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3759 
3760 	/* Setup Transmit Control Register. */
3761 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3762 
3763 	/* Setup Transmit Flow Control Register. */
3764 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3765 
3766 	/* Setup Transmit Parameter Register. */
3767 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3768 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3769 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3770 
3771 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3772 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3773 
3774 	if (ifp->if_mtu > ETHERMTU)
3775 		gmac |= GM_SMOD_JUMBO_ENA;
3776 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3777 
3778 	/* Set station address. */
3779 	eaddr = IF_LLADDR(ifp);
3780 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L,
3781 	    eaddr[0] | (eaddr[1] << 8));
3782 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M,
3783 	    eaddr[2] | (eaddr[3] << 8));
3784 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H,
3785 	    eaddr[4] | (eaddr[5] << 8));
3786 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L,
3787 	    eaddr[0] | (eaddr[1] << 8));
3788 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M,
3789 	    eaddr[2] | (eaddr[3] << 8));
3790 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H,
3791 	    eaddr[4] | (eaddr[5] << 8));
3792 
3793 	/* Disable interrupts for counter overflows. */
3794 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3795 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3796 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3797 
3798 	/* Configure Rx MAC FIFO. */
3799 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3800 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3801 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3802 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3803 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3804 		reg |= GMF_RX_OVER_ON;
3805 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3806 
3807 	/* Set receive filter. */
3808 	msk_rxfilter(sc_if);
3809 
3810 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3811 		/* Clear flush mask - HW bug. */
3812 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3813 	} else {
3814 		/* Flush Rx MAC FIFO on any flow control or error. */
3815 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3816 		    GMR_FS_ANY_ERR);
3817 	}
3818 
3819 	/*
3820 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3821 	 * due to hardware hang on receipt of pause frames.
3822 	 */
3823 	reg = RX_GMF_FL_THR_DEF + 1;
3824 	/* Another magic for Yukon FE+ - From Linux. */
3825 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3826 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3827 		reg = 0x178;
3828 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3829 
3830 	/* Configure Tx MAC FIFO. */
3831 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3832 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3833 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3834 
3835 	/* Configure hardware VLAN tag insertion/stripping. */
3836 	msk_setvlan(sc_if, ifp);
3837 
3838 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3839 		/* Set Rx Pause threshold. */
3840 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3841 		    MSK_ECU_LLPP);
3842 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3843 		    MSK_ECU_ULPP);
3844 		/* Configure store-and-forward for Tx. */
3845 		msk_set_tx_stfwd(sc_if);
3846 	}
3847 
3848  	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3849  	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3850  		/* Disable dynamic watermark - from Linux. */
3851  		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3852  		reg &= ~0x03;
3853  		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3854  	}
3855 
3856 	/*
3857 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3858 	 * arbiter as we don't use Sync Tx queue.
3859 	 */
3860 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3861 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3862 	/* Enable the RAM Interface Arbiter. */
3863 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3864 
3865 	/* Setup RAM buffer. */
3866 	msk_set_rambuffer(sc_if);
3867 
3868 	/* Disable Tx sync Queue. */
3869 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3870 
3871 	/* Setup Tx Queue Bus Memory Interface. */
3872 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3873 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3874 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3875 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3876 	switch (sc->msk_hw_id) {
3877 	case CHIP_ID_YUKON_EC_U:
3878 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3879 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3880 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3881 			    MSK_ECU_TXFF_LEV);
3882 		}
3883 		break;
3884 	case CHIP_ID_YUKON_EX:
3885 		/*
3886 		 * Yukon Extreme seems to have silicon bug for
3887 		 * automatic Tx checksum calculation capability.
3888 		 */
3889 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
3890 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3891 			    F_TX_CHK_AUTO_OFF);
3892 		break;
3893 	}
3894 
3895 	/* Setup Rx Queue Bus Memory Interface. */
3896 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3897 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3898 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3899 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3900         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3901 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3902 		/* MAC Rx RAM Read is controlled by hardware. */
3903                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3904 	}
3905 
3906 	msk_set_prefetch(sc, sc_if->msk_txq,
3907 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3908 	msk_init_tx_ring(sc_if);
3909 
3910 	/* Disable Rx checksum offload and RSS hash. */
3911 	reg = BMU_DIS_RX_RSS_HASH;
3912 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
3913 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0)
3914 		reg |= BMU_ENA_RX_CHKSUM;
3915 	else
3916 		reg |= BMU_DIS_RX_CHKSUM;
3917 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), reg);
3918 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
3919 		msk_set_prefetch(sc, sc_if->msk_rxq,
3920 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3921 		    MSK_JUMBO_RX_RING_CNT - 1);
3922 		error = msk_init_jumbo_rx_ring(sc_if);
3923 	 } else {
3924 		msk_set_prefetch(sc, sc_if->msk_rxq,
3925 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3926 		    MSK_RX_RING_CNT - 1);
3927 		error = msk_init_rx_ring(sc_if);
3928 	}
3929 	if (error != 0) {
3930 		device_printf(sc_if->msk_if_dev,
3931 		    "initialization failed: no memory for Rx buffers\n");
3932 		msk_stop(sc_if);
3933 		return;
3934 	}
3935 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX) {
3936 		/* Disable flushing of non-ASF packets. */
3937 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3938 		    GMF_RX_MACSEC_FLUSH_OFF);
3939 	}
3940 
3941 	/* Configure interrupt handling. */
3942 	if (sc_if->msk_port == MSK_PORT_A) {
3943 		sc->msk_intrmask |= Y2_IS_PORT_A;
3944 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3945 	} else {
3946 		sc->msk_intrmask |= Y2_IS_PORT_B;
3947 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3948 	}
3949 	/* Configure IRQ moderation mask. */
3950 	CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
3951 	if (sc->msk_int_holdoff > 0) {
3952 		/* Configure initial IRQ moderation timer value. */
3953 		CSR_WRITE_4(sc, B2_IRQM_INI,
3954 		    MSK_USECS(sc, sc->msk_int_holdoff));
3955 		CSR_WRITE_4(sc, B2_IRQM_VAL,
3956 		    MSK_USECS(sc, sc->msk_int_holdoff));
3957 		/* Start IRQ moderation. */
3958 		CSR_WRITE_1(sc, B2_IRQM_CTRL, TIM_START);
3959 	}
3960 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3961 	CSR_READ_4(sc, B0_HWE_IMSK);
3962 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3963 	CSR_READ_4(sc, B0_IMSK);
3964 
3965 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
3966 	mii_mediachg(mii);
3967 
3968 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3969 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3970 
3971 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3972 }
3973 
3974 static void
3975 msk_set_rambuffer(struct msk_if_softc *sc_if)
3976 {
3977 	struct msk_softc *sc;
3978 	int ltpp, utpp;
3979 
3980 	sc = sc_if->msk_softc;
3981 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3982 		return;
3983 
3984 	/* Setup Rx Queue. */
3985 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3986 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3987 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3988 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3989 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3990 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3991 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3992 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3993 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3994 
3995 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3996 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3997 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3998 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3999 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
4000 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
4001 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
4002 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
4003 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
4004 
4005 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
4006 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
4007 
4008 	/* Setup Tx Queue. */
4009 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
4010 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
4011 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4012 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
4013 	    sc->msk_txqend[sc_if->msk_port] / 8);
4014 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
4015 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4016 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
4017 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4018 	/* Enable Store & Forward for Tx side. */
4019 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
4020 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
4021 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
4022 }
4023 
4024 static void
4025 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
4026     uint32_t count)
4027 {
4028 
4029 	/* Reset the prefetch unit. */
4030 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4031 	    PREF_UNIT_RST_SET);
4032 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4033 	    PREF_UNIT_RST_CLR);
4034 	/* Set LE base address. */
4035 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
4036 	    MSK_ADDR_LO(addr));
4037 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
4038 	    MSK_ADDR_HI(addr));
4039 	/* Set the list last index. */
4040 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
4041 	    count);
4042 	/* Turn on prefetch unit. */
4043 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4044 	    PREF_UNIT_OP_ON);
4045 	/* Dummy read to ensure write. */
4046 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
4047 }
4048 
4049 static void
4050 msk_stop(struct msk_if_softc *sc_if)
4051 {
4052 	struct msk_softc *sc;
4053 	struct msk_txdesc *txd;
4054 	struct msk_rxdesc *rxd;
4055 	struct msk_rxdesc *jrxd;
4056 	struct ifnet *ifp;
4057 	uint32_t val;
4058 	int i;
4059 
4060 	MSK_IF_LOCK_ASSERT(sc_if);
4061 	sc = sc_if->msk_softc;
4062 	ifp = sc_if->msk_ifp;
4063 
4064 	callout_stop(&sc_if->msk_tick_ch);
4065 	sc_if->msk_watchdog_timer = 0;
4066 
4067 	/* Disable interrupts. */
4068 	if (sc_if->msk_port == MSK_PORT_A) {
4069 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
4070 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
4071 	} else {
4072 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
4073 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
4074 	}
4075 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4076 	CSR_READ_4(sc, B0_HWE_IMSK);
4077 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4078 	CSR_READ_4(sc, B0_IMSK);
4079 
4080 	/* Disable Tx/Rx MAC. */
4081 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4082 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
4083 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
4084 	/* Read again to ensure writing. */
4085 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4086 	/* Update stats and clear counters. */
4087 	msk_stats_update(sc_if);
4088 
4089 	/* Stop Tx BMU. */
4090 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
4091 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4092 	for (i = 0; i < MSK_TIMEOUT; i++) {
4093 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
4094 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4095 			    BMU_STOP);
4096 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4097 		} else
4098 			break;
4099 		DELAY(1);
4100 	}
4101 	if (i == MSK_TIMEOUT)
4102 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
4103 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
4104 	    RB_RST_SET | RB_DIS_OP_MD);
4105 
4106 	/* Disable all GMAC interrupt. */
4107 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
4108 	/* Disable PHY interrupt. */
4109 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
4110 
4111 	/* Disable the RAM Interface Arbiter. */
4112 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
4113 
4114 	/* Reset the PCI FIFO of the async Tx queue */
4115 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4116 	    BMU_RST_SET | BMU_FIFO_RST);
4117 
4118 	/* Reset the Tx prefetch units. */
4119 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
4120 	    PREF_UNIT_RST_SET);
4121 
4122 	/* Reset the RAM Buffer async Tx queue. */
4123 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
4124 
4125 	/* Reset Tx MAC FIFO. */
4126 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
4127 	/* Set Pause Off. */
4128 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
4129 
4130 	/*
4131 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
4132 	 * reach the end of packet and since we can't make sure that we have
4133 	 * incoming data, we must reset the BMU while it is not during a DMA
4134 	 * transfer. Since it is possible that the Rx path is still active,
4135 	 * the Rx RAM buffer will be stopped first, so any possible incoming
4136 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
4137 	 * BMU is polled until any DMA in progress is ended and only then it
4138 	 * will be reset.
4139 	 */
4140 
4141 	/* Disable the RAM Buffer receive queue. */
4142 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4143 	for (i = 0; i < MSK_TIMEOUT; i++) {
4144 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4145 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4146 			break;
4147 		DELAY(1);
4148 	}
4149 	if (i == MSK_TIMEOUT)
4150 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4151 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4152 	    BMU_RST_SET | BMU_FIFO_RST);
4153 	/* Reset the Rx prefetch unit. */
4154 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4155 	    PREF_UNIT_RST_SET);
4156 	/* Reset the RAM Buffer receive queue. */
4157 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4158 	/* Reset Rx MAC FIFO. */
4159 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4160 
4161 	/* Free Rx and Tx mbufs still in the queues. */
4162 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4163 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4164 		if (rxd->rx_m != NULL) {
4165 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4166 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4167 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4168 			    rxd->rx_dmamap);
4169 			m_freem(rxd->rx_m);
4170 			rxd->rx_m = NULL;
4171 		}
4172 	}
4173 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4174 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4175 		if (jrxd->rx_m != NULL) {
4176 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4177 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4178 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4179 			    jrxd->rx_dmamap);
4180 			m_freem(jrxd->rx_m);
4181 			jrxd->rx_m = NULL;
4182 		}
4183 	}
4184 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4185 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4186 		if (txd->tx_m != NULL) {
4187 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4188 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4189 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4190 			    txd->tx_dmamap);
4191 			m_freem(txd->tx_m);
4192 			txd->tx_m = NULL;
4193 		}
4194 	}
4195 
4196 	/*
4197 	 * Mark the interface down.
4198 	 */
4199 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4200 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4201 }
4202 
4203 /*
4204  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
4205  * counter clears high 16 bits of the counter such that accessing
4206  * lower 16 bits should be the last operation.
4207  */
4208 #define	MSK_READ_MIB32(x, y)					\
4209 	(((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) +	\
4210 	(uint32_t)GMAC_READ_2(sc, x, y)
4211 #define	MSK_READ_MIB64(x, y)					\
4212 	(((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) +	\
4213 	(uint64_t)MSK_READ_MIB32(x, y)
4214 
4215 static void
4216 msk_stats_clear(struct msk_if_softc *sc_if)
4217 {
4218 	struct msk_softc *sc;
4219 	uint32_t reg;
4220 	uint16_t gmac;
4221 	int i;
4222 
4223 	MSK_IF_LOCK_ASSERT(sc_if);
4224 
4225 	sc = sc_if->msk_softc;
4226 	/* Set MIB Clear Counter Mode. */
4227 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4228 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4229 	/* Read all MIB Counters with Clear Mode set. */
4230 	for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t))
4231 		reg = MSK_READ_MIB32(sc_if->msk_port, i);
4232 	/* Clear MIB Clear Counter Mode. */
4233 	gmac &= ~GM_PAR_MIB_CLR;
4234 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4235 }
4236 
4237 static void
4238 msk_stats_update(struct msk_if_softc *sc_if)
4239 {
4240 	struct msk_softc *sc;
4241 	struct ifnet *ifp;
4242 	struct msk_hw_stats *stats;
4243 	uint16_t gmac;
4244 	uint32_t reg;
4245 
4246 	MSK_IF_LOCK_ASSERT(sc_if);
4247 
4248 	ifp = sc_if->msk_ifp;
4249 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4250 		return;
4251 	sc = sc_if->msk_softc;
4252 	stats = &sc_if->msk_stats;
4253 	/* Set MIB Clear Counter Mode. */
4254 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4255 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4256 
4257 	/* Rx stats. */
4258 	stats->rx_ucast_frames +=
4259 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4260 	stats->rx_bcast_frames +=
4261 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4262 	stats->rx_pause_frames +=
4263 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4264 	stats->rx_mcast_frames +=
4265 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4266 	stats->rx_crc_errs +=
4267 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4268 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1);
4269 	stats->rx_good_octets +=
4270 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4271 	stats->rx_bad_octets +=
4272 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4273 	stats->rx_runts +=
4274 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4275 	stats->rx_runt_errs +=
4276 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4277 	stats->rx_pkts_64 +=
4278 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4279 	stats->rx_pkts_65_127 +=
4280 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4281 	stats->rx_pkts_128_255 +=
4282 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4283 	stats->rx_pkts_256_511 +=
4284 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4285 	stats->rx_pkts_512_1023 +=
4286 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4287 	stats->rx_pkts_1024_1518 +=
4288 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4289 	stats->rx_pkts_1519_max +=
4290 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4291 	stats->rx_pkts_too_long +=
4292 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4293 	stats->rx_pkts_jabbers +=
4294 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4295 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2);
4296 	stats->rx_fifo_oflows +=
4297 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4298 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3);
4299 
4300 	/* Tx stats. */
4301 	stats->tx_ucast_frames +=
4302 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4303 	stats->tx_bcast_frames +=
4304 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4305 	stats->tx_pause_frames +=
4306 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4307 	stats->tx_mcast_frames +=
4308 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4309 	stats->tx_octets +=
4310 	    MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4311 	stats->tx_pkts_64 +=
4312 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4313 	stats->tx_pkts_65_127 +=
4314 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4315 	stats->tx_pkts_128_255 +=
4316 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4317 	stats->tx_pkts_256_511 +=
4318 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4319 	stats->tx_pkts_512_1023 +=
4320 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4321 	stats->tx_pkts_1024_1518 +=
4322 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4323 	stats->tx_pkts_1519_max +=
4324 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4325 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1);
4326 	stats->tx_colls +=
4327 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4328 	stats->tx_late_colls +=
4329 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4330 	stats->tx_excess_colls +=
4331 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4332 	stats->tx_multi_colls +=
4333 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4334 	stats->tx_single_colls +=
4335 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4336 	stats->tx_underflows +=
4337 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4338 	/* Clear MIB Clear Counter Mode. */
4339 	gmac &= ~GM_PAR_MIB_CLR;
4340 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4341 }
4342 
4343 static int
4344 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4345 {
4346 	struct msk_softc *sc;
4347 	struct msk_if_softc *sc_if;
4348 	uint32_t result, *stat;
4349 	int off;
4350 
4351 	sc_if = (struct msk_if_softc *)arg1;
4352 	sc = sc_if->msk_softc;
4353 	off = arg2;
4354 	stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4355 
4356 	MSK_IF_LOCK(sc_if);
4357 	result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4358 	result += *stat;
4359 	MSK_IF_UNLOCK(sc_if);
4360 
4361 	return (sysctl_handle_int(oidp, &result, 0, req));
4362 }
4363 
4364 static int
4365 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4366 {
4367 	struct msk_softc *sc;
4368 	struct msk_if_softc *sc_if;
4369 	uint64_t result, *stat;
4370 	int off;
4371 
4372 	sc_if = (struct msk_if_softc *)arg1;
4373 	sc = sc_if->msk_softc;
4374 	off = arg2;
4375 	stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4376 
4377 	MSK_IF_LOCK(sc_if);
4378 	result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4379 	result += *stat;
4380 	MSK_IF_UNLOCK(sc_if);
4381 
4382 	return (sysctl_handle_64(oidp, &result, 0, req));
4383 }
4384 
4385 #undef MSK_READ_MIB32
4386 #undef MSK_READ_MIB64
4387 
4388 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) 				\
4389 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4390 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32,	\
4391 	    "IU", d)
4392 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) 				\
4393 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_U64 | CTLFLAG_RD, 	\
4394 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64,	\
4395 	    "QU", d)
4396 
4397 static void
4398 msk_sysctl_node(struct msk_if_softc *sc_if)
4399 {
4400 	struct sysctl_ctx_list *ctx;
4401 	struct sysctl_oid_list *child, *schild;
4402 	struct sysctl_oid *tree;
4403 
4404 	ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4405 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4406 
4407 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
4408 	    NULL, "MSK Statistics");
4409 	schild = child = SYSCTL_CHILDREN(tree);
4410 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
4411 	    NULL, "MSK RX Statistics");
4412 	child = SYSCTL_CHILDREN(tree);
4413 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4414 	    child, rx_ucast_frames, "Good unicast frames");
4415 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4416 	    child, rx_bcast_frames, "Good broadcast frames");
4417 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4418 	    child, rx_pause_frames, "Pause frames");
4419 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4420 	    child, rx_mcast_frames, "Multicast frames");
4421 	MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4422 	    child, rx_crc_errs, "CRC errors");
4423 	MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4424 	    child, rx_good_octets, "Good octets");
4425 	MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4426 	    child, rx_bad_octets, "Bad octets");
4427 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4428 	    child, rx_pkts_64, "64 bytes frames");
4429 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4430 	    child, rx_pkts_65_127, "65 to 127 bytes frames");
4431 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4432 	    child, rx_pkts_128_255, "128 to 255 bytes frames");
4433 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4434 	    child, rx_pkts_256_511, "256 to 511 bytes frames");
4435 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4436 	    child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4437 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4438 	    child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4439 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4440 	    child, rx_pkts_1519_max, "1519 to max frames");
4441 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4442 	    child, rx_pkts_too_long, "frames too long");
4443 	MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4444 	    child, rx_pkts_jabbers, "Jabber errors");
4445 	MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4446 	    child, rx_fifo_oflows, "FIFO overflows");
4447 
4448 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
4449 	    NULL, "MSK TX Statistics");
4450 	child = SYSCTL_CHILDREN(tree);
4451 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4452 	    child, tx_ucast_frames, "Unicast frames");
4453 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4454 	    child, tx_bcast_frames, "Broadcast frames");
4455 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4456 	    child, tx_pause_frames, "Pause frames");
4457 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4458 	    child, tx_mcast_frames, "Multicast frames");
4459 	MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4460 	    child, tx_octets, "Octets");
4461 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4462 	    child, tx_pkts_64, "64 bytes frames");
4463 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4464 	    child, tx_pkts_65_127, "65 to 127 bytes frames");
4465 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4466 	    child, tx_pkts_128_255, "128 to 255 bytes frames");
4467 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4468 	    child, tx_pkts_256_511, "256 to 511 bytes frames");
4469 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4470 	    child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4471 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4472 	    child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4473 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4474 	    child, tx_pkts_1519_max, "1519 to max frames");
4475 	MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4476 	    child, tx_colls, "Collisions");
4477 	MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4478 	    child, tx_late_colls, "Late collisions");
4479 	MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4480 	    child, tx_excess_colls, "Excessive collisions");
4481 	MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4482 	    child, tx_multi_colls, "Multiple collisions");
4483 	MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4484 	    child, tx_single_colls, "Single collisions");
4485 	MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4486 	    child, tx_underflows, "FIFO underflows");
4487 }
4488 
4489 #undef MSK_SYSCTL_STAT32
4490 #undef MSK_SYSCTL_STAT64
4491 
4492 static int
4493 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4494 {
4495 	int error, value;
4496 
4497 	if (!arg1)
4498 		return (EINVAL);
4499 	value = *(int *)arg1;
4500 	error = sysctl_handle_int(oidp, &value, 0, req);
4501 	if (error || !req->newptr)
4502 		return (error);
4503 	if (value < low || value > high)
4504 		return (EINVAL);
4505 	*(int *)arg1 = value;
4506 
4507 	return (0);
4508 }
4509 
4510 static int
4511 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4512 {
4513 
4514 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4515 	    MSK_PROC_MAX));
4516 }
4517