xref: /freebsd/sys/dev/msk/if_msk.c (revision 21fdc27a054f668c8b6c2be503fa68622e5226da)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /*
96  * Device driver for the Marvell Yukon II Ethernet controller.
97  * Due to lack of documentation, this driver is based on the code from
98  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
99  */
100 
101 #include <sys/cdefs.h>
102 __FBSDID("$FreeBSD$");
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/module.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/queue.h>
115 #include <sys/sysctl.h>
116 #include <sys/taskqueue.h>
117 
118 #include <net/bpf.h>
119 #include <net/ethernet.h>
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_types.h>
125 #include <net/if_vlan_var.h>
126 
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/tcp.h>
131 #include <netinet/udp.h>
132 
133 #include <machine/bus.h>
134 #include <machine/in_cksum.h>
135 #include <machine/resource.h>
136 #include <sys/rman.h>
137 
138 #include <dev/mii/mii.h>
139 #include <dev/mii/miivar.h>
140 
141 #include <dev/pci/pcireg.h>
142 #include <dev/pci/pcivar.h>
143 
144 #include <dev/msk/if_mskreg.h>
145 
146 MODULE_DEPEND(msk, pci, 1, 1, 1);
147 MODULE_DEPEND(msk, ether, 1, 1, 1);
148 MODULE_DEPEND(msk, miibus, 1, 1, 1);
149 
150 /* "device miibus" required.  See GENERIC if you get errors here. */
151 #include "miibus_if.h"
152 
153 /* Tunables. */
154 static int msi_disable = 0;
155 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
156 static int legacy_intr = 0;
157 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
158 static int jumbo_disable = 0;
159 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
160 
161 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
162 
163 /*
164  * Devices supported by this driver.
165  */
166 static struct msk_product {
167 	uint16_t	msk_vendorid;
168 	uint16_t	msk_deviceid;
169 	const char	*msk_name;
170 } msk_products[] = {
171 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
172 	    "SK-9Sxx Gigabit Ethernet" },
173 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
174 	    "SK-9Exx Gigabit Ethernet"},
175 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
176 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
177 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
178 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
179 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
180 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
181 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
182 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
183 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
184 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
185 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
186 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
187 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
188 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
189 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
190 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
191 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
192 	    "Marvell Yukon 88E8035 Fast Ethernet" },
193 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
194 	    "Marvell Yukon 88E8036 Fast Ethernet" },
195 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
196 	    "Marvell Yukon 88E8038 Fast Ethernet" },
197 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
198 	    "Marvell Yukon 88E8039 Fast Ethernet" },
199 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
200 	    "Marvell Yukon 88E8040 Fast Ethernet" },
201 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
202 	    "Marvell Yukon 88E8040T Fast Ethernet" },
203 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
204 	    "Marvell Yukon 88E8042 Fast Ethernet" },
205 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
206 	    "Marvell Yukon 88E8048 Fast Ethernet" },
207 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
208 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
209 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
210 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
211 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
212 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
213 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
214 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
215 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
216 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
217 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
218 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
219 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
220 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
221 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
222 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
223 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
224 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
225 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
226 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
227 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
228 	    "D-Link 550SX Gigabit Ethernet" },
229 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560SX,
230 	    "D-Link 560SX Gigabit Ethernet" },
231 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
232 	    "D-Link 560T Gigabit Ethernet" }
233 };
234 
235 static const char *model_name[] = {
236 	"Yukon XL",
237         "Yukon EC Ultra",
238         "Yukon EX",
239         "Yukon EC",
240         "Yukon FE",
241         "Yukon FE+",
242         "Yukon Supreme",
243         "Yukon Ultra 2"
244 };
245 
246 static int mskc_probe(device_t);
247 static int mskc_attach(device_t);
248 static int mskc_detach(device_t);
249 static int mskc_shutdown(device_t);
250 static int mskc_setup_rambuffer(struct msk_softc *);
251 static int mskc_suspend(device_t);
252 static int mskc_resume(device_t);
253 static void mskc_reset(struct msk_softc *);
254 
255 static int msk_probe(device_t);
256 static int msk_attach(device_t);
257 static int msk_detach(device_t);
258 
259 static void msk_tick(void *);
260 static void msk_legacy_intr(void *);
261 static int msk_intr(void *);
262 static void msk_int_task(void *, int);
263 static void msk_intr_phy(struct msk_if_softc *);
264 static void msk_intr_gmac(struct msk_if_softc *);
265 static __inline void msk_rxput(struct msk_if_softc *);
266 static int msk_handle_events(struct msk_softc *);
267 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
268 static void msk_intr_hwerr(struct msk_softc *);
269 #ifndef __NO_STRICT_ALIGNMENT
270 static __inline void msk_fixup_rx(struct mbuf *);
271 #endif
272 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
273 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
274 static void msk_txeof(struct msk_if_softc *, int);
275 static int msk_encap(struct msk_if_softc *, struct mbuf **);
276 static void msk_tx_task(void *, int);
277 static void msk_start(struct ifnet *);
278 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
279 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
280 static void msk_set_rambuffer(struct msk_if_softc *);
281 static void msk_set_tx_stfwd(struct msk_if_softc *);
282 static void msk_init(void *);
283 static void msk_init_locked(struct msk_if_softc *);
284 static void msk_stop(struct msk_if_softc *);
285 static void msk_watchdog(struct msk_if_softc *);
286 static int msk_mediachange(struct ifnet *);
287 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
288 static void msk_phy_power(struct msk_softc *, int);
289 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
290 static int msk_status_dma_alloc(struct msk_softc *);
291 static void msk_status_dma_free(struct msk_softc *);
292 static int msk_txrx_dma_alloc(struct msk_if_softc *);
293 static int msk_rx_dma_jalloc(struct msk_if_softc *);
294 static void msk_txrx_dma_free(struct msk_if_softc *);
295 static void msk_rx_dma_jfree(struct msk_if_softc *);
296 static int msk_init_rx_ring(struct msk_if_softc *);
297 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
298 static void msk_init_tx_ring(struct msk_if_softc *);
299 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
300 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
301 static int msk_newbuf(struct msk_if_softc *, int);
302 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
303 
304 static int msk_phy_readreg(struct msk_if_softc *, int, int);
305 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
306 static int msk_miibus_readreg(device_t, int, int);
307 static int msk_miibus_writereg(device_t, int, int, int);
308 static void msk_miibus_statchg(device_t);
309 
310 static void msk_rxfilter(struct msk_if_softc *);
311 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
312 
313 static void msk_stats_clear(struct msk_if_softc *);
314 static void msk_stats_update(struct msk_if_softc *);
315 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
316 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
317 static void msk_sysctl_node(struct msk_if_softc *);
318 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
319 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
320 
321 static device_method_t mskc_methods[] = {
322 	/* Device interface */
323 	DEVMETHOD(device_probe,		mskc_probe),
324 	DEVMETHOD(device_attach,	mskc_attach),
325 	DEVMETHOD(device_detach,	mskc_detach),
326 	DEVMETHOD(device_suspend,	mskc_suspend),
327 	DEVMETHOD(device_resume,	mskc_resume),
328 	DEVMETHOD(device_shutdown,	mskc_shutdown),
329 
330 	/* bus interface */
331 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
332 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
333 
334 	{ NULL, NULL }
335 };
336 
337 static driver_t mskc_driver = {
338 	"mskc",
339 	mskc_methods,
340 	sizeof(struct msk_softc)
341 };
342 
343 static devclass_t mskc_devclass;
344 
345 static device_method_t msk_methods[] = {
346 	/* Device interface */
347 	DEVMETHOD(device_probe,		msk_probe),
348 	DEVMETHOD(device_attach,	msk_attach),
349 	DEVMETHOD(device_detach,	msk_detach),
350 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
351 
352 	/* bus interface */
353 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
354 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
355 
356 	/* MII interface */
357 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
358 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
359 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
360 
361 	{ NULL, NULL }
362 };
363 
364 static driver_t msk_driver = {
365 	"msk",
366 	msk_methods,
367 	sizeof(struct msk_if_softc)
368 };
369 
370 static devclass_t msk_devclass;
371 
372 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
373 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
374 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
375 
376 static struct resource_spec msk_res_spec_io[] = {
377 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
378 	{ -1,			0,		0 }
379 };
380 
381 static struct resource_spec msk_res_spec_mem[] = {
382 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
383 	{ -1,			0,		0 }
384 };
385 
386 static struct resource_spec msk_irq_spec_legacy[] = {
387 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
388 	{ -1,			0,		0 }
389 };
390 
391 static struct resource_spec msk_irq_spec_msi[] = {
392 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
393 	{ -1,			0,		0 }
394 };
395 
396 static int
397 msk_miibus_readreg(device_t dev, int phy, int reg)
398 {
399 	struct msk_if_softc *sc_if;
400 
401 	if (phy != PHY_ADDR_MARV)
402 		return (0);
403 
404 	sc_if = device_get_softc(dev);
405 
406 	return (msk_phy_readreg(sc_if, phy, reg));
407 }
408 
409 static int
410 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
411 {
412 	struct msk_softc *sc;
413 	int i, val;
414 
415 	sc = sc_if->msk_softc;
416 
417         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
418 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
419 
420 	for (i = 0; i < MSK_TIMEOUT; i++) {
421 		DELAY(1);
422 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
423 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
424 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
425 			break;
426 		}
427 	}
428 
429 	if (i == MSK_TIMEOUT) {
430 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
431 		val = 0;
432 	}
433 
434 	return (val);
435 }
436 
437 static int
438 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
439 {
440 	struct msk_if_softc *sc_if;
441 
442 	if (phy != PHY_ADDR_MARV)
443 		return (0);
444 
445 	sc_if = device_get_softc(dev);
446 
447 	return (msk_phy_writereg(sc_if, phy, reg, val));
448 }
449 
450 static int
451 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
452 {
453 	struct msk_softc *sc;
454 	int i;
455 
456 	sc = sc_if->msk_softc;
457 
458 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
459         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
460 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
461 	for (i = 0; i < MSK_TIMEOUT; i++) {
462 		DELAY(1);
463 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
464 		    GM_SMI_CT_BUSY) == 0)
465 			break;
466 	}
467 	if (i == MSK_TIMEOUT)
468 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
469 
470 	return (0);
471 }
472 
473 static void
474 msk_miibus_statchg(device_t dev)
475 {
476 	struct msk_softc *sc;
477 	struct msk_if_softc *sc_if;
478 	struct mii_data *mii;
479 	struct ifnet *ifp;
480 	uint32_t gmac;
481 
482 	sc_if = device_get_softc(dev);
483 	sc = sc_if->msk_softc;
484 
485 	MSK_IF_LOCK_ASSERT(sc_if);
486 
487 	mii = device_get_softc(sc_if->msk_miibus);
488 	ifp = sc_if->msk_ifp;
489 	if (mii == NULL || ifp == NULL ||
490 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
491 		return;
492 
493 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
494 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
495 	    (IFM_AVALID | IFM_ACTIVE)) {
496 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
497 		case IFM_10_T:
498 		case IFM_100_TX:
499 			sc_if->msk_flags |= MSK_FLAG_LINK;
500 			break;
501 		case IFM_1000_T:
502 		case IFM_1000_SX:
503 		case IFM_1000_LX:
504 		case IFM_1000_CX:
505 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
506 				sc_if->msk_flags |= MSK_FLAG_LINK;
507 			break;
508 		default:
509 			break;
510 		}
511 	}
512 
513 	if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) {
514 		/* Enable Tx FIFO Underrun. */
515 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
516 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
517 		/*
518 		 * Because mii(4) notify msk(4) that it detected link status
519 		 * change, there is no need to enable automatic
520 		 * speed/flow-control/duplex updates.
521 		 */
522 		gmac = GM_GPCR_AU_ALL_DIS;
523 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
524 		case IFM_1000_SX:
525 		case IFM_1000_T:
526 			gmac |= GM_GPCR_SPEED_1000;
527 			break;
528 		case IFM_100_TX:
529 			gmac |= GM_GPCR_SPEED_100;
530 			break;
531 		case IFM_10_T:
532 			break;
533 		}
534 
535 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
536 			gmac |= GM_GPCR_DUP_FULL;
537 		/* Disable Rx flow control. */
538 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
539 			gmac |= GM_GPCR_FC_RX_DIS;
540 		/* Disable Tx flow control. */
541 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
542 			gmac |= GM_GPCR_FC_TX_DIS;
543 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
544 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
545 		/* Read again to ensure writing. */
546 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
547 
548 		gmac = GMC_PAUSE_ON;
549 		if (((mii->mii_media_active & IFM_GMASK) &
550 		    (IFM_FLAG0 | IFM_FLAG1)) == 0)
551 			gmac = GMC_PAUSE_OFF;
552 		/* Diable pause for 10/100 Mbps in half-duplex mode. */
553 		if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
554 		    (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
555 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
556 			gmac = GMC_PAUSE_OFF;
557 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
558 
559 		/* Enable PHY interrupt for FIFO underrun/overflow. */
560 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
561 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
562 	} else {
563 		/*
564 		 * Link state changed to down.
565 		 * Disable PHY interrupts.
566 		 */
567 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
568 		/* Disable Rx/Tx MAC. */
569 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
570 		if ((GM_GPCR_RX_ENA | GM_GPCR_TX_ENA) != 0) {
571 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
572 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
573 			/* Read again to ensure writing. */
574 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
575 		}
576 	}
577 }
578 
579 static void
580 msk_rxfilter(struct msk_if_softc *sc_if)
581 {
582 	struct msk_softc *sc;
583 	struct ifnet *ifp;
584 	struct ifmultiaddr *ifma;
585 	uint32_t mchash[2];
586 	uint32_t crc;
587 	uint16_t mode;
588 
589 	sc = sc_if->msk_softc;
590 
591 	MSK_IF_LOCK_ASSERT(sc_if);
592 
593 	ifp = sc_if->msk_ifp;
594 
595 	bzero(mchash, sizeof(mchash));
596 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
597 	if ((ifp->if_flags & IFF_PROMISC) != 0)
598 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
599 	else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
600 		mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
601 		mchash[0] = 0xffff;
602 		mchash[1] = 0xffff;
603 	} else {
604 		mode |= GM_RXCR_UCF_ENA;
605 		if_maddr_rlock(ifp);
606 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
607 			if (ifma->ifma_addr->sa_family != AF_LINK)
608 				continue;
609 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
610 			    ifma->ifma_addr), ETHER_ADDR_LEN);
611 			/* Just want the 6 least significant bits. */
612 			crc &= 0x3f;
613 			/* Set the corresponding bit in the hash table. */
614 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
615 		}
616 		if_maddr_runlock(ifp);
617 		if (mchash[0] != 0 || mchash[1] != 0)
618 			mode |= GM_RXCR_MCF_ENA;
619 	}
620 
621 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
622 	    mchash[0] & 0xffff);
623 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
624 	    (mchash[0] >> 16) & 0xffff);
625 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
626 	    mchash[1] & 0xffff);
627 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
628 	    (mchash[1] >> 16) & 0xffff);
629 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
630 }
631 
632 static void
633 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
634 {
635 	struct msk_softc *sc;
636 
637 	sc = sc_if->msk_softc;
638 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
639 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
640 		    RX_VLAN_STRIP_ON);
641 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
642 		    TX_VLAN_TAG_ON);
643 	} else {
644 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
645 		    RX_VLAN_STRIP_OFF);
646 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
647 		    TX_VLAN_TAG_OFF);
648 	}
649 }
650 
651 static int
652 msk_init_rx_ring(struct msk_if_softc *sc_if)
653 {
654 	struct msk_ring_data *rd;
655 	struct msk_rxdesc *rxd;
656 	int i, prod;
657 
658 	MSK_IF_LOCK_ASSERT(sc_if);
659 
660 	sc_if->msk_cdata.msk_rx_cons = 0;
661 	sc_if->msk_cdata.msk_rx_prod = 0;
662 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
663 
664 	rd = &sc_if->msk_rdata;
665 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
666 	prod = sc_if->msk_cdata.msk_rx_prod;
667 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
668 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
669 		rxd->rx_m = NULL;
670 		rxd->rx_le = &rd->msk_rx_ring[prod];
671 		if (msk_newbuf(sc_if, prod) != 0)
672 			return (ENOBUFS);
673 		MSK_INC(prod, MSK_RX_RING_CNT);
674 	}
675 
676 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
677 	    sc_if->msk_cdata.msk_rx_ring_map,
678 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
679 
680 	/* Update prefetch unit. */
681 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
682 	CSR_WRITE_2(sc_if->msk_softc,
683 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
684 	    sc_if->msk_cdata.msk_rx_prod);
685 
686 	return (0);
687 }
688 
689 static int
690 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
691 {
692 	struct msk_ring_data *rd;
693 	struct msk_rxdesc *rxd;
694 	int i, prod;
695 
696 	MSK_IF_LOCK_ASSERT(sc_if);
697 
698 	sc_if->msk_cdata.msk_rx_cons = 0;
699 	sc_if->msk_cdata.msk_rx_prod = 0;
700 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
701 
702 	rd = &sc_if->msk_rdata;
703 	bzero(rd->msk_jumbo_rx_ring,
704 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
705 	prod = sc_if->msk_cdata.msk_rx_prod;
706 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
707 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
708 		rxd->rx_m = NULL;
709 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
710 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
711 			return (ENOBUFS);
712 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
713 	}
714 
715 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
716 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
717 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
718 
719 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
720 	CSR_WRITE_2(sc_if->msk_softc,
721 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
722 	    sc_if->msk_cdata.msk_rx_prod);
723 
724 	return (0);
725 }
726 
727 static void
728 msk_init_tx_ring(struct msk_if_softc *sc_if)
729 {
730 	struct msk_ring_data *rd;
731 	struct msk_txdesc *txd;
732 	int i;
733 
734 	sc_if->msk_cdata.msk_tso_mtu = 0;
735 	sc_if->msk_cdata.msk_last_csum = 0;
736 	sc_if->msk_cdata.msk_tx_prod = 0;
737 	sc_if->msk_cdata.msk_tx_cons = 0;
738 	sc_if->msk_cdata.msk_tx_cnt = 0;
739 
740 	rd = &sc_if->msk_rdata;
741 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
742 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
743 		txd = &sc_if->msk_cdata.msk_txdesc[i];
744 		txd->tx_m = NULL;
745 		txd->tx_le = &rd->msk_tx_ring[i];
746 	}
747 
748 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
749 	    sc_if->msk_cdata.msk_tx_ring_map,
750 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
751 }
752 
753 static __inline void
754 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
755 {
756 	struct msk_rx_desc *rx_le;
757 	struct msk_rxdesc *rxd;
758 	struct mbuf *m;
759 
760 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
761 	m = rxd->rx_m;
762 	rx_le = rxd->rx_le;
763 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
764 }
765 
766 static __inline void
767 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
768 {
769 	struct msk_rx_desc *rx_le;
770 	struct msk_rxdesc *rxd;
771 	struct mbuf *m;
772 
773 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
774 	m = rxd->rx_m;
775 	rx_le = rxd->rx_le;
776 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
777 }
778 
779 static int
780 msk_newbuf(struct msk_if_softc *sc_if, int idx)
781 {
782 	struct msk_rx_desc *rx_le;
783 	struct msk_rxdesc *rxd;
784 	struct mbuf *m;
785 	bus_dma_segment_t segs[1];
786 	bus_dmamap_t map;
787 	int nsegs;
788 
789 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
790 	if (m == NULL)
791 		return (ENOBUFS);
792 
793 	m->m_len = m->m_pkthdr.len = MCLBYTES;
794 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
795 		m_adj(m, ETHER_ALIGN);
796 #ifndef __NO_STRICT_ALIGNMENT
797 	else
798 		m_adj(m, MSK_RX_BUF_ALIGN);
799 #endif
800 
801 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
802 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
803 	    BUS_DMA_NOWAIT) != 0) {
804 		m_freem(m);
805 		return (ENOBUFS);
806 	}
807 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
808 
809 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
810 	if (rxd->rx_m != NULL) {
811 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
812 		    BUS_DMASYNC_POSTREAD);
813 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
814 	}
815 	map = rxd->rx_dmamap;
816 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
817 	sc_if->msk_cdata.msk_rx_sparemap = map;
818 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
819 	    BUS_DMASYNC_PREREAD);
820 	rxd->rx_m = m;
821 	rx_le = rxd->rx_le;
822 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
823 	rx_le->msk_control =
824 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
825 
826 	return (0);
827 }
828 
829 static int
830 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
831 {
832 	struct msk_rx_desc *rx_le;
833 	struct msk_rxdesc *rxd;
834 	struct mbuf *m;
835 	bus_dma_segment_t segs[1];
836 	bus_dmamap_t map;
837 	int nsegs;
838 
839 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
840 	if (m == NULL)
841 		return (ENOBUFS);
842 	if ((m->m_flags & M_EXT) == 0) {
843 		m_freem(m);
844 		return (ENOBUFS);
845 	}
846 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
847 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
848 		m_adj(m, ETHER_ALIGN);
849 #ifndef __NO_STRICT_ALIGNMENT
850 	else
851 		m_adj(m, MSK_RX_BUF_ALIGN);
852 #endif
853 
854 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
855 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
856 	    BUS_DMA_NOWAIT) != 0) {
857 		m_freem(m);
858 		return (ENOBUFS);
859 	}
860 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
861 
862 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
863 	if (rxd->rx_m != NULL) {
864 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
865 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
866 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
867 		    rxd->rx_dmamap);
868 	}
869 	map = rxd->rx_dmamap;
870 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
871 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
872 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
873 	    BUS_DMASYNC_PREREAD);
874 	rxd->rx_m = m;
875 	rx_le = rxd->rx_le;
876 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
877 	rx_le->msk_control =
878 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
879 
880 	return (0);
881 }
882 
883 /*
884  * Set media options.
885  */
886 static int
887 msk_mediachange(struct ifnet *ifp)
888 {
889 	struct msk_if_softc *sc_if;
890 	struct mii_data	*mii;
891 	int error;
892 
893 	sc_if = ifp->if_softc;
894 
895 	MSK_IF_LOCK(sc_if);
896 	mii = device_get_softc(sc_if->msk_miibus);
897 	error = mii_mediachg(mii);
898 	MSK_IF_UNLOCK(sc_if);
899 
900 	return (error);
901 }
902 
903 /*
904  * Report current media status.
905  */
906 static void
907 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
908 {
909 	struct msk_if_softc *sc_if;
910 	struct mii_data	*mii;
911 
912 	sc_if = ifp->if_softc;
913 	MSK_IF_LOCK(sc_if);
914 	if ((ifp->if_flags & IFF_UP) == 0) {
915 		MSK_IF_UNLOCK(sc_if);
916 		return;
917 	}
918 	mii = device_get_softc(sc_if->msk_miibus);
919 
920 	mii_pollstat(mii);
921 	MSK_IF_UNLOCK(sc_if);
922 	ifmr->ifm_active = mii->mii_media_active;
923 	ifmr->ifm_status = mii->mii_media_status;
924 }
925 
926 static int
927 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
928 {
929 	struct msk_if_softc *sc_if;
930 	struct ifreq *ifr;
931 	struct mii_data	*mii;
932 	int error, mask;
933 
934 	sc_if = ifp->if_softc;
935 	ifr = (struct ifreq *)data;
936 	error = 0;
937 
938 	switch(command) {
939 	case SIOCSIFMTU:
940 		MSK_IF_LOCK(sc_if);
941 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
942 			error = EINVAL;
943 		else if (ifp->if_mtu != ifr->ifr_mtu) {
944  			if (ifr->ifr_mtu > ETHERMTU) {
945 				if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
946 					error = EINVAL;
947 					MSK_IF_UNLOCK(sc_if);
948 					break;
949 				}
950 				if ((sc_if->msk_flags &
951 				    MSK_FLAG_JUMBO_NOCSUM) != 0) {
952 					ifp->if_hwassist &=
953 					    ~(MSK_CSUM_FEATURES | CSUM_TSO);
954 					ifp->if_capenable &=
955 					    ~(IFCAP_TSO4 | IFCAP_TXCSUM);
956 					VLAN_CAPABILITIES(ifp);
957 				}
958 			}
959 			ifp->if_mtu = ifr->ifr_mtu;
960 			msk_init_locked(sc_if);
961 		}
962 		MSK_IF_UNLOCK(sc_if);
963 		break;
964 	case SIOCSIFFLAGS:
965 		MSK_IF_LOCK(sc_if);
966 		if ((ifp->if_flags & IFF_UP) != 0) {
967 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
968 			    ((ifp->if_flags ^ sc_if->msk_if_flags) &
969 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
970 				msk_rxfilter(sc_if);
971 			else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0)
972 				msk_init_locked(sc_if);
973 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
974 			msk_stop(sc_if);
975 		sc_if->msk_if_flags = ifp->if_flags;
976 		MSK_IF_UNLOCK(sc_if);
977 		break;
978 	case SIOCADDMULTI:
979 	case SIOCDELMULTI:
980 		MSK_IF_LOCK(sc_if);
981 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
982 			msk_rxfilter(sc_if);
983 		MSK_IF_UNLOCK(sc_if);
984 		break;
985 	case SIOCGIFMEDIA:
986 	case SIOCSIFMEDIA:
987 		mii = device_get_softc(sc_if->msk_miibus);
988 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
989 		break;
990 	case SIOCSIFCAP:
991 		MSK_IF_LOCK(sc_if);
992 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
993 		if ((mask & IFCAP_TXCSUM) != 0 &&
994 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
995 			ifp->if_capenable ^= IFCAP_TXCSUM;
996 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
997 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
998 			else
999 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
1000 		}
1001 		if ((mask & IFCAP_RXCSUM) != 0 &&
1002 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
1003 			ifp->if_capenable ^= IFCAP_RXCSUM;
1004 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1005 		    (IFCAP_VLAN_HWCSUM & ifp->if_capabilities) != 0)
1006 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1007 		if ((mask & IFCAP_TSO4) != 0 &&
1008 		    (IFCAP_TSO4 & ifp->if_capabilities) != 0) {
1009 			ifp->if_capenable ^= IFCAP_TSO4;
1010 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1011 				ifp->if_hwassist |= CSUM_TSO;
1012 			else
1013 				ifp->if_hwassist &= ~CSUM_TSO;
1014 		}
1015 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1016 		    (IFCAP_VLAN_HWTSO & ifp->if_capabilities) != 0)
1017 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1018 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1019 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
1020 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1021 			if ((IFCAP_VLAN_HWTAGGING & ifp->if_capenable) == 0)
1022 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1023 			msk_setvlan(sc_if, ifp);
1024 		}
1025 		if (ifp->if_mtu > ETHERMTU &&
1026 		    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
1027 			ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
1028 			ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1029 		}
1030 
1031 		VLAN_CAPABILITIES(ifp);
1032 		MSK_IF_UNLOCK(sc_if);
1033 		break;
1034 	default:
1035 		error = ether_ioctl(ifp, command, data);
1036 		break;
1037 	}
1038 
1039 	return (error);
1040 }
1041 
1042 static int
1043 mskc_probe(device_t dev)
1044 {
1045 	struct msk_product *mp;
1046 	uint16_t vendor, devid;
1047 	int i;
1048 
1049 	vendor = pci_get_vendor(dev);
1050 	devid = pci_get_device(dev);
1051 	mp = msk_products;
1052 	for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
1053 	    i++, mp++) {
1054 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1055 			device_set_desc(dev, mp->msk_name);
1056 			return (BUS_PROBE_DEFAULT);
1057 		}
1058 	}
1059 
1060 	return (ENXIO);
1061 }
1062 
1063 static int
1064 mskc_setup_rambuffer(struct msk_softc *sc)
1065 {
1066 	int next;
1067 	int i;
1068 
1069 	/* Get adapter SRAM size. */
1070 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1071 	if (bootverbose)
1072 		device_printf(sc->msk_dev,
1073 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1074 	if (sc->msk_ramsize == 0)
1075 		return (0);
1076 
1077 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1078 	/*
1079 	 * Give receiver 2/3 of memory and round down to the multiple
1080 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
1081 	 * of 1024.
1082 	 */
1083 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1084 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1085 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1086 		sc->msk_rxqstart[i] = next;
1087 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1088 		next = sc->msk_rxqend[i] + 1;
1089 		sc->msk_txqstart[i] = next;
1090 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1091 		next = sc->msk_txqend[i] + 1;
1092 		if (bootverbose) {
1093 			device_printf(sc->msk_dev,
1094 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1095 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1096 			    sc->msk_rxqend[i]);
1097 			device_printf(sc->msk_dev,
1098 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1099 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1100 			    sc->msk_txqend[i]);
1101 		}
1102 	}
1103 
1104 	return (0);
1105 }
1106 
1107 static void
1108 msk_phy_power(struct msk_softc *sc, int mode)
1109 {
1110 	uint32_t our, val;
1111 	int i;
1112 
1113 	switch (mode) {
1114 	case MSK_PHY_POWERUP:
1115 		/* Switch power to VCC (WA for VAUX problem). */
1116 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1117 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1118 		/* Disable Core Clock Division, set Clock Select to 0. */
1119 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1120 
1121 		val = 0;
1122 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1123 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1124 			/* Enable bits are inverted. */
1125 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1126 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1127 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1128 		}
1129 		/*
1130 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1131 		 */
1132 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1133 
1134 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1135 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1136 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1137 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1138 				/* Deassert Low Power for 1st PHY. */
1139 				val |= PCI_Y2_PHY1_COMA;
1140 				if (sc->msk_num_port > 1)
1141 					val |= PCI_Y2_PHY2_COMA;
1142 			}
1143 		}
1144 		/* Release PHY from PowerDown/COMA mode. */
1145 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1146 		switch (sc->msk_hw_id) {
1147 		case CHIP_ID_YUKON_EC_U:
1148 		case CHIP_ID_YUKON_EX:
1149 		case CHIP_ID_YUKON_FE_P:
1150 		case CHIP_ID_YUKON_UL_2:
1151 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_OFF);
1152 
1153 			/* Enable all clocks. */
1154 			pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1155 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1156 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1157 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1158 			/* Set all bits to 0 except bits 15..12. */
1159 			pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1160 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_5, 4);
1161 			our &= PCI_CTL_TIM_VMAIN_AV_MSK;
1162 			pci_write_config(sc->msk_dev, PCI_OUR_REG_5, our, 4);
1163 			pci_write_config(sc->msk_dev, PCI_CFG_REG_1, 0, 4);
1164 			/*
1165 			 * Disable status race, workaround for
1166 			 * Yukon EC Ultra & Yukon EX.
1167 			 */
1168 			val = CSR_READ_4(sc, B2_GP_IO);
1169 			val |= GLB_GPIO_STAT_RACE_DIS;
1170 			CSR_WRITE_4(sc, B2_GP_IO, val);
1171 			CSR_READ_4(sc, B2_GP_IO);
1172 			break;
1173 		default:
1174 			break;
1175 		}
1176 		for (i = 0; i < sc->msk_num_port; i++) {
1177 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1178 			    GMLC_RST_SET);
1179 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1180 			    GMLC_RST_CLR);
1181 		}
1182 		break;
1183 	case MSK_PHY_POWERDOWN:
1184 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1185 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1186 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1187 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1188 			val &= ~PCI_Y2_PHY1_COMA;
1189 			if (sc->msk_num_port > 1)
1190 				val &= ~PCI_Y2_PHY2_COMA;
1191 		}
1192 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1193 
1194 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1195 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1196 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1197 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1198 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1199 			/* Enable bits are inverted. */
1200 			val = 0;
1201 		}
1202 		/*
1203 		 * Disable PCI & Core Clock, disable clock gating for
1204 		 * both Links.
1205 		 */
1206 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1207 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1208 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1209 		break;
1210 	default:
1211 		break;
1212 	}
1213 }
1214 
1215 static void
1216 mskc_reset(struct msk_softc *sc)
1217 {
1218 	bus_addr_t addr;
1219 	uint16_t status;
1220 	uint32_t val;
1221 	int i;
1222 
1223 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1224 
1225 	/* Disable ASF. */
1226 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX) {
1227 		status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1228 		/* Clear AHB bridge & microcontroller reset. */
1229 		status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1230 		    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1231 		/* Clear ASF microcontroller state. */
1232 		status &= ~ Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1233 		CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1234 	} else
1235 		CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1236 	CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1237 
1238 	/*
1239 	 * Since we disabled ASF, S/W reset is required for Power Management.
1240 	 */
1241 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1242 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1243 
1244 	/* Clear all error bits in the PCI status register. */
1245 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1246 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1247 
1248 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1249 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1250 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1251 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1252 
1253 	switch (sc->msk_bustype) {
1254 	case MSK_PEX_BUS:
1255 		/* Clear all PEX errors. */
1256 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1257 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1258 		if ((val & PEX_RX_OV) != 0) {
1259 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1260 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1261 		}
1262 		break;
1263 	case MSK_PCI_BUS:
1264 	case MSK_PCIX_BUS:
1265 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1266 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1267 		if (val == 0)
1268 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1269 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1270 			/* Set Cache Line Size opt. */
1271 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1272 			val |= PCI_CLS_OPT;
1273 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1274 		}
1275 		break;
1276 	}
1277 	/* Set PHY power state. */
1278 	msk_phy_power(sc, MSK_PHY_POWERUP);
1279 
1280 	/* Reset GPHY/GMAC Control */
1281 	for (i = 0; i < sc->msk_num_port; i++) {
1282 		/* GPHY Control reset. */
1283 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1284 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1285 		/* GMAC Control reset. */
1286 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1287 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1288 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1289 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX)
1290 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1291 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1292 			    GMC_BYP_RETR_ON);
1293 	}
1294 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1295 
1296 	/* LED On. */
1297 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1298 
1299 	/* Clear TWSI IRQ. */
1300 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1301 
1302 	/* Turn off hardware timer. */
1303 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1304 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1305 
1306 	/* Turn off descriptor polling. */
1307 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1308 
1309 	/* Turn off time stamps. */
1310 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1311 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1312 
1313 	/* Configure timeout values. */
1314 	for (i = 0; i < sc->msk_num_port; i++) {
1315 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1316 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1317 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1318 		    MSK_RI_TO_53);
1319 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1320 		    MSK_RI_TO_53);
1321 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1322 		    MSK_RI_TO_53);
1323 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1324 		    MSK_RI_TO_53);
1325 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1326 		    MSK_RI_TO_53);
1327 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1328 		    MSK_RI_TO_53);
1329 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1330 		    MSK_RI_TO_53);
1331 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1332 		    MSK_RI_TO_53);
1333 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1334 		    MSK_RI_TO_53);
1335 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1336 		    MSK_RI_TO_53);
1337 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1338 		    MSK_RI_TO_53);
1339 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1340 		    MSK_RI_TO_53);
1341 	}
1342 
1343 	/* Disable all interrupts. */
1344 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1345 	CSR_READ_4(sc, B0_HWE_IMSK);
1346 	CSR_WRITE_4(sc, B0_IMSK, 0);
1347 	CSR_READ_4(sc, B0_IMSK);
1348 
1349         /*
1350          * On dual port PCI-X card, there is an problem where status
1351          * can be received out of order due to split transactions.
1352          */
1353 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1354 		uint16_t pcix_cmd;
1355 
1356 		pcix_cmd = pci_read_config(sc->msk_dev,
1357 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1358 		/* Clear Max Outstanding Split Transactions. */
1359 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1360 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1361 		pci_write_config(sc->msk_dev,
1362 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1363 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1364         }
1365 	if (sc->msk_expcap != 0) {
1366 		/* Change Max. Read Request Size to 2048 bytes. */
1367 		if (pci_get_max_read_req(sc->msk_dev) == 512)
1368 			pci_set_max_read_req(sc->msk_dev, 2048);
1369 	}
1370 
1371 	/* Clear status list. */
1372 	bzero(sc->msk_stat_ring,
1373 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1374 	sc->msk_stat_cons = 0;
1375 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1376 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1377 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1378 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1379 	/* Set the status list base address. */
1380 	addr = sc->msk_stat_ring_paddr;
1381 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1382 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1383 	/* Set the status list last index. */
1384 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1385 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1386 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1387 		/* WA for dev. #4.3 */
1388 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1389 		/* WA for dev. #4.18 */
1390 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1391 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1392 	} else {
1393 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1394 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1395 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1396 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1397 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1398 		else
1399 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1400 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1401 	}
1402 	/*
1403 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1404 	 */
1405 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1406 
1407 	/* Enable status unit. */
1408 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1409 
1410 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1411 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1412 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1413 }
1414 
1415 static int
1416 msk_probe(device_t dev)
1417 {
1418 	struct msk_softc *sc;
1419 	char desc[100];
1420 
1421 	sc = device_get_softc(device_get_parent(dev));
1422 	/*
1423 	 * Not much to do here. We always know there will be
1424 	 * at least one GMAC present, and if there are two,
1425 	 * mskc_attach() will create a second device instance
1426 	 * for us.
1427 	 */
1428 	snprintf(desc, sizeof(desc),
1429 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1430 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1431 	    sc->msk_hw_rev);
1432 	device_set_desc_copy(dev, desc);
1433 
1434 	return (BUS_PROBE_DEFAULT);
1435 }
1436 
1437 static int
1438 msk_attach(device_t dev)
1439 {
1440 	struct msk_softc *sc;
1441 	struct msk_if_softc *sc_if;
1442 	struct ifnet *ifp;
1443 	struct msk_mii_data *mmd;
1444 	int i, port, error;
1445 	uint8_t eaddr[6];
1446 
1447 	if (dev == NULL)
1448 		return (EINVAL);
1449 
1450 	error = 0;
1451 	sc_if = device_get_softc(dev);
1452 	sc = device_get_softc(device_get_parent(dev));
1453 	mmd = device_get_ivars(dev);
1454 	port = mmd->port;
1455 
1456 	sc_if->msk_if_dev = dev;
1457 	sc_if->msk_port = port;
1458 	sc_if->msk_softc = sc;
1459 	sc_if->msk_flags = sc->msk_pflags;
1460 	sc->msk_if[port] = sc_if;
1461 	/* Setup Tx/Rx queue register offsets. */
1462 	if (port == MSK_PORT_A) {
1463 		sc_if->msk_txq = Q_XA1;
1464 		sc_if->msk_txsq = Q_XS1;
1465 		sc_if->msk_rxq = Q_R1;
1466 	} else {
1467 		sc_if->msk_txq = Q_XA2;
1468 		sc_if->msk_txsq = Q_XS2;
1469 		sc_if->msk_rxq = Q_R2;
1470 	}
1471 
1472 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1473 	msk_sysctl_node(sc_if);
1474 
1475 	if ((error = msk_txrx_dma_alloc(sc_if) != 0))
1476 		goto fail;
1477 	msk_rx_dma_jalloc(sc_if);
1478 
1479 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1480 	if (ifp == NULL) {
1481 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1482 		error = ENOSPC;
1483 		goto fail;
1484 	}
1485 	ifp->if_softc = sc_if;
1486 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1487 	ifp->if_mtu = ETHERMTU;
1488 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1489 	/*
1490 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1491 	 * has serious bug in Rx checksum offload for all Yukon II family
1492 	 * hardware. It seems there is a workaround to make it work somtimes.
1493 	 * However, the workaround also have to check OP code sequences to
1494 	 * verify whether the OP code is correct. Sometimes it should compute
1495 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1496 	 * checksum computed by hardware. If you have to compute checksum
1497 	 * with software to verify the hardware's checksum why have hardware
1498 	 * compute the checksum? I think there is no reason to spend time to
1499 	 * make Rx checksum offload work on Yukon II hardware.
1500 	 */
1501 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1502 	/*
1503 	 * Enable Rx checksum offloading if controller support new
1504 	 * descriptor format.
1505 	 */
1506 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1507 	    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1508 		ifp->if_capabilities |= IFCAP_RXCSUM;
1509 	ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1510 	ifp->if_capenable = ifp->if_capabilities;
1511 	ifp->if_ioctl = msk_ioctl;
1512 	ifp->if_start = msk_start;
1513 	ifp->if_init = msk_init;
1514 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1515 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1516 	IFQ_SET_READY(&ifp->if_snd);
1517 
1518 	TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp);
1519 
1520 	/*
1521 	 * Get station address for this interface. Note that
1522 	 * dual port cards actually come with three station
1523 	 * addresses: one for each port, plus an extra. The
1524 	 * extra one is used by the SysKonnect driver software
1525 	 * as a 'virtual' station address for when both ports
1526 	 * are operating in failover mode. Currently we don't
1527 	 * use this extra address.
1528 	 */
1529 	MSK_IF_LOCK(sc_if);
1530 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1531 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1532 
1533 	/*
1534 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1535 	 */
1536 	MSK_IF_UNLOCK(sc_if);
1537 	ether_ifattach(ifp, eaddr);
1538 	MSK_IF_LOCK(sc_if);
1539 
1540 	/* VLAN capability setup */
1541 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1542 	if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) {
1543 		/*
1544 		 * Due to Tx checksum offload hardware bugs, msk(4) manually
1545 		 * computes checksum for short frames. For VLAN tagged frames
1546 		 * this workaround does not work so disable checksum offload
1547 		 * for VLAN interface.
1548 		 */
1549         	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO;
1550 		/*
1551 		 * Enable Rx checksum offloading for VLAN taggedd frames
1552 		 * if controller support new descriptor format.
1553 		 */
1554 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1555 		    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1556 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1557 	}
1558 	ifp->if_capenable = ifp->if_capabilities;
1559 
1560 	/*
1561 	 * Tell the upper layer(s) we support long frames.
1562 	 * Must appear after the call to ether_ifattach() because
1563 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1564 	 */
1565         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1566 
1567 	/*
1568 	 * Do miibus setup.
1569 	 */
1570 	MSK_IF_UNLOCK(sc_if);
1571 	error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
1572 	    msk_mediastatus);
1573 	if (error != 0) {
1574 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1575 		ether_ifdetach(ifp);
1576 		error = ENXIO;
1577 		goto fail;
1578 	}
1579 
1580 fail:
1581 	if (error != 0) {
1582 		/* Access should be ok even though lock has been dropped */
1583 		sc->msk_if[port] = NULL;
1584 		msk_detach(dev);
1585 	}
1586 
1587 	return (error);
1588 }
1589 
1590 /*
1591  * Attach the interface. Allocate softc structures, do ifmedia
1592  * setup and ethernet/BPF attach.
1593  */
1594 static int
1595 mskc_attach(device_t dev)
1596 {
1597 	struct msk_softc *sc;
1598 	struct msk_mii_data *mmd;
1599 	int error, msic, msir, reg;
1600 
1601 	sc = device_get_softc(dev);
1602 	sc->msk_dev = dev;
1603 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1604 	    MTX_DEF);
1605 
1606 	/*
1607 	 * Map control/status registers.
1608 	 */
1609 	pci_enable_busmaster(dev);
1610 
1611 	/* Allocate I/O resource */
1612 #ifdef MSK_USEIOSPACE
1613 	sc->msk_res_spec = msk_res_spec_io;
1614 #else
1615 	sc->msk_res_spec = msk_res_spec_mem;
1616 #endif
1617 	sc->msk_irq_spec = msk_irq_spec_legacy;
1618 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1619 	if (error) {
1620 		if (sc->msk_res_spec == msk_res_spec_mem)
1621 			sc->msk_res_spec = msk_res_spec_io;
1622 		else
1623 			sc->msk_res_spec = msk_res_spec_mem;
1624 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1625 		if (error) {
1626 			device_printf(dev, "couldn't allocate %s resources\n",
1627 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1628 			    "I/O");
1629 			mtx_destroy(&sc->msk_mtx);
1630 			return (ENXIO);
1631 		}
1632 	}
1633 
1634 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1635 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1636 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1637 	/* Bail out if chip is not recognized. */
1638 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1639 	    sc->msk_hw_id > CHIP_ID_YUKON_UL_2 ||
1640 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1641 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1642 		    sc->msk_hw_id, sc->msk_hw_rev);
1643 		mtx_destroy(&sc->msk_mtx);
1644 		return (ENXIO);
1645 	}
1646 
1647 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1648 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1649 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1650 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1651 	    "max number of Rx events to process");
1652 
1653 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1654 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1655 	    "process_limit", &sc->msk_process_limit);
1656 	if (error == 0) {
1657 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1658 		    sc->msk_process_limit > MSK_PROC_MAX) {
1659 			device_printf(dev, "process_limit value out of range; "
1660 			    "using default: %d\n", MSK_PROC_DEFAULT);
1661 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1662 		}
1663 	}
1664 
1665 	/* Soft reset. */
1666 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1667 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1668 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1669 	/* Check number of MACs. */
1670 	sc->msk_num_port = 1;
1671 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1672 	    CFG_DUAL_MAC_MSK) {
1673 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1674 			sc->msk_num_port++;
1675 	}
1676 
1677 	/* Check bus type. */
1678 	if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0) {
1679 		sc->msk_bustype = MSK_PEX_BUS;
1680 		sc->msk_expcap = reg;
1681 	} else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0) {
1682 		sc->msk_bustype = MSK_PCIX_BUS;
1683 		sc->msk_pcixcap = reg;
1684 	} else
1685 		sc->msk_bustype = MSK_PCI_BUS;
1686 
1687 	switch (sc->msk_hw_id) {
1688 	case CHIP_ID_YUKON_EC:
1689 		sc->msk_clock = 125;	/* 125 MHz */
1690 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1691 		break;
1692 	case CHIP_ID_YUKON_EC_U:
1693 		sc->msk_clock = 125;	/* 125 MHz */
1694 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM;
1695 		break;
1696 	case CHIP_ID_YUKON_EX:
1697 		sc->msk_clock = 125;	/* 125 MHz */
1698 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1699 		    MSK_FLAG_AUTOTX_CSUM;
1700 		/*
1701 		 * Yukon Extreme seems to have silicon bug for
1702 		 * automatic Tx checksum calculation capability.
1703 		 */
1704 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
1705 			sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM;
1706 		/*
1707 		 * Yukon Extreme A0 could not use store-and-forward
1708 		 * for jumbo frames, so disable Tx checksum
1709 		 * offloading for jumbo frames.
1710 		 */
1711 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
1712 			sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM;
1713 		break;
1714 	case CHIP_ID_YUKON_FE:
1715 		sc->msk_clock = 100;	/* 100 MHz */
1716 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1717 		break;
1718 	case CHIP_ID_YUKON_FE_P:
1719 		sc->msk_clock = 50;	/* 50 MHz */
1720 		sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 |
1721 		    MSK_FLAG_AUTOTX_CSUM;
1722 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1723 			/*
1724 			 * XXX
1725 			 * FE+ A0 has status LE writeback bug so msk(4)
1726 			 * does not rely on status word of received frame
1727 			 * in msk_rxeof() which in turn disables all
1728 			 * hardware assistance bits reported by the status
1729 			 * word as well as validity of the recevied frame.
1730 			 * Just pass received frames to upper stack with
1731 			 * minimal test and let upper stack handle them.
1732 			 */
1733 			sc->msk_pflags |= MSK_FLAG_NOHWVLAN |
1734 			    MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM;
1735 		}
1736 		break;
1737 	case CHIP_ID_YUKON_XL:
1738 		sc->msk_clock = 156;	/* 156 MHz */
1739 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1740 		break;
1741 	case CHIP_ID_YUKON_UL_2:
1742 		sc->msk_clock = 125;	/* 125 MHz */
1743 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1744 		break;
1745 	default:
1746 		sc->msk_clock = 156;	/* 156 MHz */
1747 		break;
1748 	}
1749 
1750 	/* Allocate IRQ resources. */
1751 	msic = pci_msi_count(dev);
1752 	if (bootverbose)
1753 		device_printf(dev, "MSI count : %d\n", msic);
1754 	if (legacy_intr != 0)
1755 		msi_disable = 1;
1756 	if (msi_disable == 0 && msic > 0) {
1757 		msir = 1;
1758 		if (pci_alloc_msi(dev, &msir) == 0) {
1759 			if (msir == 1) {
1760 				sc->msk_pflags |= MSK_FLAG_MSI;
1761 				sc->msk_irq_spec = msk_irq_spec_msi;
1762 			} else
1763 				pci_release_msi(dev);
1764 		}
1765 	}
1766 
1767 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1768 	if (error) {
1769 		device_printf(dev, "couldn't allocate IRQ resources\n");
1770 		goto fail;
1771 	}
1772 
1773 	if ((error = msk_status_dma_alloc(sc)) != 0)
1774 		goto fail;
1775 
1776 	/* Set base interrupt mask. */
1777 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1778 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1779 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1780 
1781 	/* Reset the adapter. */
1782 	mskc_reset(sc);
1783 
1784 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1785 		goto fail;
1786 
1787 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1788 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1789 		device_printf(dev, "failed to add child for PORT_A\n");
1790 		error = ENXIO;
1791 		goto fail;
1792 	}
1793 	mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1794 	if (mmd == NULL) {
1795 		device_printf(dev, "failed to allocate memory for "
1796 		    "ivars of PORT_A\n");
1797 		error = ENXIO;
1798 		goto fail;
1799 	}
1800 	mmd->port = MSK_PORT_A;
1801 	mmd->pmd = sc->msk_pmd;
1802 	 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S' || sc->msk_pmd == 'P')
1803 		mmd->mii_flags |= MIIF_HAVEFIBER;
1804 	device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd);
1805 
1806 	if (sc->msk_num_port > 1) {
1807 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1808 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1809 			device_printf(dev, "failed to add child for PORT_B\n");
1810 			error = ENXIO;
1811 			goto fail;
1812 		}
1813 		mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1814 		if (mmd == NULL) {
1815 			device_printf(dev, "failed to allocate memory for "
1816 			    "ivars of PORT_B\n");
1817 			error = ENXIO;
1818 			goto fail;
1819 		}
1820 		mmd->port = MSK_PORT_B;
1821 		mmd->pmd = sc->msk_pmd;
1822 	 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S' || sc->msk_pmd == 'P')
1823 			mmd->mii_flags |= MIIF_HAVEFIBER;
1824 		device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd);
1825 	}
1826 
1827 	error = bus_generic_attach(dev);
1828 	if (error) {
1829 		device_printf(dev, "failed to attach port(s)\n");
1830 		goto fail;
1831 	}
1832 
1833 	/* Hook interrupt last to avoid having to lock softc. */
1834 	if (legacy_intr)
1835 		error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1836 		    INTR_MPSAFE, NULL, msk_legacy_intr, sc,
1837 		    &sc->msk_intrhand);
1838 	else {
1839 		TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc);
1840 		sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK,
1841 		    taskqueue_thread_enqueue, &sc->msk_tq);
1842 		taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq",
1843 		    device_get_nameunit(sc->msk_dev));
1844 		error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1845 		    INTR_MPSAFE, msk_intr, NULL, sc, &sc->msk_intrhand);
1846 	}
1847 
1848 	if (error != 0) {
1849 		device_printf(dev, "couldn't set up interrupt handler\n");
1850 		if (legacy_intr == 0)
1851 			taskqueue_free(sc->msk_tq);
1852 		sc->msk_tq = NULL;
1853 		goto fail;
1854 	}
1855 fail:
1856 	if (error != 0)
1857 		mskc_detach(dev);
1858 
1859 	return (error);
1860 }
1861 
1862 /*
1863  * Shutdown hardware and free up resources. This can be called any
1864  * time after the mutex has been initialized. It is called in both
1865  * the error case in attach and the normal detach case so it needs
1866  * to be careful about only freeing resources that have actually been
1867  * allocated.
1868  */
1869 static int
1870 msk_detach(device_t dev)
1871 {
1872 	struct msk_softc *sc;
1873 	struct msk_if_softc *sc_if;
1874 	struct ifnet *ifp;
1875 
1876 	sc_if = device_get_softc(dev);
1877 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
1878 	    ("msk mutex not initialized in msk_detach"));
1879 	MSK_IF_LOCK(sc_if);
1880 
1881 	ifp = sc_if->msk_ifp;
1882 	if (device_is_attached(dev)) {
1883 		/* XXX */
1884 		sc_if->msk_flags |= MSK_FLAG_DETACH;
1885 		msk_stop(sc_if);
1886 		/* Can't hold locks while calling detach. */
1887 		MSK_IF_UNLOCK(sc_if);
1888 		callout_drain(&sc_if->msk_tick_ch);
1889 		taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task);
1890 		ether_ifdetach(ifp);
1891 		MSK_IF_LOCK(sc_if);
1892 	}
1893 
1894 	/*
1895 	 * We're generally called from mskc_detach() which is using
1896 	 * device_delete_child() to get to here. It's already trashed
1897 	 * miibus for us, so don't do it here or we'll panic.
1898 	 *
1899 	 * if (sc_if->msk_miibus != NULL) {
1900 	 * 	device_delete_child(dev, sc_if->msk_miibus);
1901 	 * 	sc_if->msk_miibus = NULL;
1902 	 * }
1903 	 */
1904 
1905 	msk_rx_dma_jfree(sc_if);
1906 	msk_txrx_dma_free(sc_if);
1907 	bus_generic_detach(dev);
1908 
1909 	if (ifp)
1910 		if_free(ifp);
1911 	sc = sc_if->msk_softc;
1912 	sc->msk_if[sc_if->msk_port] = NULL;
1913 	MSK_IF_UNLOCK(sc_if);
1914 
1915 	return (0);
1916 }
1917 
1918 static int
1919 mskc_detach(device_t dev)
1920 {
1921 	struct msk_softc *sc;
1922 
1923 	sc = device_get_softc(dev);
1924 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
1925 
1926 	if (device_is_alive(dev)) {
1927 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
1928 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
1929 			    M_DEVBUF);
1930 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
1931 		}
1932 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
1933 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
1934 			    M_DEVBUF);
1935 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
1936 		}
1937 		bus_generic_detach(dev);
1938 	}
1939 
1940 	/* Disable all interrupts. */
1941 	CSR_WRITE_4(sc, B0_IMSK, 0);
1942 	CSR_READ_4(sc, B0_IMSK);
1943 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1944 	CSR_READ_4(sc, B0_HWE_IMSK);
1945 
1946 	/* LED Off. */
1947 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1948 
1949 	/* Put hardware reset. */
1950 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1951 
1952 	msk_status_dma_free(sc);
1953 
1954 	if (legacy_intr == 0 && sc->msk_tq != NULL) {
1955 		taskqueue_drain(sc->msk_tq, &sc->msk_int_task);
1956 		taskqueue_free(sc->msk_tq);
1957 		sc->msk_tq = NULL;
1958 	}
1959 	if (sc->msk_intrhand) {
1960 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand);
1961 		sc->msk_intrhand = NULL;
1962 	}
1963 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1964 	if ((sc->msk_pflags & MSK_FLAG_MSI) != 0)
1965 		pci_release_msi(dev);
1966 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
1967 	mtx_destroy(&sc->msk_mtx);
1968 
1969 	return (0);
1970 }
1971 
1972 struct msk_dmamap_arg {
1973 	bus_addr_t	msk_busaddr;
1974 };
1975 
1976 static void
1977 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1978 {
1979 	struct msk_dmamap_arg *ctx;
1980 
1981 	if (error != 0)
1982 		return;
1983 	ctx = arg;
1984 	ctx->msk_busaddr = segs[0].ds_addr;
1985 }
1986 
1987 /* Create status DMA region. */
1988 static int
1989 msk_status_dma_alloc(struct msk_softc *sc)
1990 {
1991 	struct msk_dmamap_arg ctx;
1992 	int error;
1993 
1994 	error = bus_dma_tag_create(
1995 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
1996 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
1997 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1998 		    BUS_SPACE_MAXADDR,		/* highaddr */
1999 		    NULL, NULL,			/* filter, filterarg */
2000 		    MSK_STAT_RING_SZ,		/* maxsize */
2001 		    1,				/* nsegments */
2002 		    MSK_STAT_RING_SZ,		/* maxsegsize */
2003 		    0,				/* flags */
2004 		    NULL, NULL,			/* lockfunc, lockarg */
2005 		    &sc->msk_stat_tag);
2006 	if (error != 0) {
2007 		device_printf(sc->msk_dev,
2008 		    "failed to create status DMA tag\n");
2009 		return (error);
2010 	}
2011 
2012 	/* Allocate DMA'able memory and load the DMA map for status ring. */
2013 	error = bus_dmamem_alloc(sc->msk_stat_tag,
2014 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
2015 	    BUS_DMA_ZERO, &sc->msk_stat_map);
2016 	if (error != 0) {
2017 		device_printf(sc->msk_dev,
2018 		    "failed to allocate DMA'able memory for status ring\n");
2019 		return (error);
2020 	}
2021 
2022 	ctx.msk_busaddr = 0;
2023 	error = bus_dmamap_load(sc->msk_stat_tag,
2024 	    sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
2025 	    msk_dmamap_cb, &ctx, 0);
2026 	if (error != 0) {
2027 		device_printf(sc->msk_dev,
2028 		    "failed to load DMA'able memory for status ring\n");
2029 		return (error);
2030 	}
2031 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
2032 
2033 	return (0);
2034 }
2035 
2036 static void
2037 msk_status_dma_free(struct msk_softc *sc)
2038 {
2039 
2040 	/* Destroy status block. */
2041 	if (sc->msk_stat_tag) {
2042 		if (sc->msk_stat_map) {
2043 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
2044 			if (sc->msk_stat_ring) {
2045 				bus_dmamem_free(sc->msk_stat_tag,
2046 				    sc->msk_stat_ring, sc->msk_stat_map);
2047 				sc->msk_stat_ring = NULL;
2048 			}
2049 			sc->msk_stat_map = NULL;
2050 		}
2051 		bus_dma_tag_destroy(sc->msk_stat_tag);
2052 		sc->msk_stat_tag = NULL;
2053 	}
2054 }
2055 
2056 static int
2057 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2058 {
2059 	struct msk_dmamap_arg ctx;
2060 	struct msk_txdesc *txd;
2061 	struct msk_rxdesc *rxd;
2062 	bus_size_t rxalign;
2063 	int error, i;
2064 
2065 	/* Create parent DMA tag. */
2066 	/*
2067 	 * XXX
2068 	 * It seems that Yukon II supports full 64bits DMA operations. But
2069 	 * it needs two descriptors(list elements) for 64bits DMA operations.
2070 	 * Since we don't know what DMA address mappings(32bits or 64bits)
2071 	 * would be used in advance for each mbufs, we limits its DMA space
2072 	 * to be in range of 32bits address space. Otherwise, we should check
2073 	 * what DMA address is used and chain another descriptor for the
2074 	 * 64bits DMA operation. This also means descriptor ring size is
2075 	 * variable. Limiting DMA address to be in 32bit address space greatly
2076 	 * simplyfies descriptor handling and possibly would increase
2077 	 * performance a bit due to efficient handling of descriptors.
2078 	 * Apart from harassing checksum offloading mechanisms, it seems
2079 	 * it's really bad idea to use a seperate descriptor for 64bit
2080 	 * DMA operation to save small descriptor memory. Anyway, I've
2081 	 * never seen these exotic scheme on ethernet interface hardware.
2082 	 */
2083 	error = bus_dma_tag_create(
2084 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2085 		    1, 0,			/* alignment, boundary */
2086 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2087 		    BUS_SPACE_MAXADDR,		/* highaddr */
2088 		    NULL, NULL,			/* filter, filterarg */
2089 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2090 		    0,				/* nsegments */
2091 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2092 		    0,				/* flags */
2093 		    NULL, NULL,			/* lockfunc, lockarg */
2094 		    &sc_if->msk_cdata.msk_parent_tag);
2095 	if (error != 0) {
2096 		device_printf(sc_if->msk_if_dev,
2097 		    "failed to create parent DMA tag\n");
2098 		goto fail;
2099 	}
2100 	/* Create tag for Tx ring. */
2101 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2102 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2103 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2104 		    BUS_SPACE_MAXADDR,		/* highaddr */
2105 		    NULL, NULL,			/* filter, filterarg */
2106 		    MSK_TX_RING_SZ,		/* maxsize */
2107 		    1,				/* nsegments */
2108 		    MSK_TX_RING_SZ,		/* maxsegsize */
2109 		    0,				/* flags */
2110 		    NULL, NULL,			/* lockfunc, lockarg */
2111 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2112 	if (error != 0) {
2113 		device_printf(sc_if->msk_if_dev,
2114 		    "failed to create Tx ring DMA tag\n");
2115 		goto fail;
2116 	}
2117 
2118 	/* Create tag for Rx ring. */
2119 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2120 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2121 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2122 		    BUS_SPACE_MAXADDR,		/* highaddr */
2123 		    NULL, NULL,			/* filter, filterarg */
2124 		    MSK_RX_RING_SZ,		/* maxsize */
2125 		    1,				/* nsegments */
2126 		    MSK_RX_RING_SZ,		/* maxsegsize */
2127 		    0,				/* flags */
2128 		    NULL, NULL,			/* lockfunc, lockarg */
2129 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2130 	if (error != 0) {
2131 		device_printf(sc_if->msk_if_dev,
2132 		    "failed to create Rx ring DMA tag\n");
2133 		goto fail;
2134 	}
2135 
2136 	/* Create tag for Tx buffers. */
2137 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2138 		    1, 0,			/* alignment, boundary */
2139 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2140 		    BUS_SPACE_MAXADDR,		/* highaddr */
2141 		    NULL, NULL,			/* filter, filterarg */
2142 		    MSK_TSO_MAXSIZE,		/* maxsize */
2143 		    MSK_MAXTXSEGS,		/* nsegments */
2144 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2145 		    0,				/* flags */
2146 		    NULL, NULL,			/* lockfunc, lockarg */
2147 		    &sc_if->msk_cdata.msk_tx_tag);
2148 	if (error != 0) {
2149 		device_printf(sc_if->msk_if_dev,
2150 		    "failed to create Tx DMA tag\n");
2151 		goto fail;
2152 	}
2153 
2154 	rxalign = 1;
2155 	/*
2156 	 * Workaround hardware hang which seems to happen when Rx buffer
2157 	 * is not aligned on multiple of FIFO word(8 bytes).
2158 	 */
2159 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2160 		rxalign = MSK_RX_BUF_ALIGN;
2161 	/* Create tag for Rx buffers. */
2162 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2163 		    rxalign, 0,			/* alignment, boundary */
2164 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2165 		    BUS_SPACE_MAXADDR,		/* highaddr */
2166 		    NULL, NULL,			/* filter, filterarg */
2167 		    MCLBYTES,			/* maxsize */
2168 		    1,				/* nsegments */
2169 		    MCLBYTES,			/* maxsegsize */
2170 		    0,				/* flags */
2171 		    NULL, NULL,			/* lockfunc, lockarg */
2172 		    &sc_if->msk_cdata.msk_rx_tag);
2173 	if (error != 0) {
2174 		device_printf(sc_if->msk_if_dev,
2175 		    "failed to create Rx DMA tag\n");
2176 		goto fail;
2177 	}
2178 
2179 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2180 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2181 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2182 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2183 	if (error != 0) {
2184 		device_printf(sc_if->msk_if_dev,
2185 		    "failed to allocate DMA'able memory for Tx ring\n");
2186 		goto fail;
2187 	}
2188 
2189 	ctx.msk_busaddr = 0;
2190 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2191 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2192 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2193 	if (error != 0) {
2194 		device_printf(sc_if->msk_if_dev,
2195 		    "failed to load DMA'able memory for Tx ring\n");
2196 		goto fail;
2197 	}
2198 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2199 
2200 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2201 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2202 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2203 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2204 	if (error != 0) {
2205 		device_printf(sc_if->msk_if_dev,
2206 		    "failed to allocate DMA'able memory for Rx ring\n");
2207 		goto fail;
2208 	}
2209 
2210 	ctx.msk_busaddr = 0;
2211 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2212 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2213 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2214 	if (error != 0) {
2215 		device_printf(sc_if->msk_if_dev,
2216 		    "failed to load DMA'able memory for Rx ring\n");
2217 		goto fail;
2218 	}
2219 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2220 
2221 	/* Create DMA maps for Tx buffers. */
2222 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2223 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2224 		txd->tx_m = NULL;
2225 		txd->tx_dmamap = NULL;
2226 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2227 		    &txd->tx_dmamap);
2228 		if (error != 0) {
2229 			device_printf(sc_if->msk_if_dev,
2230 			    "failed to create Tx dmamap\n");
2231 			goto fail;
2232 		}
2233 	}
2234 	/* Create DMA maps for Rx buffers. */
2235 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2236 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2237 		device_printf(sc_if->msk_if_dev,
2238 		    "failed to create spare Rx dmamap\n");
2239 		goto fail;
2240 	}
2241 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2242 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2243 		rxd->rx_m = NULL;
2244 		rxd->rx_dmamap = NULL;
2245 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2246 		    &rxd->rx_dmamap);
2247 		if (error != 0) {
2248 			device_printf(sc_if->msk_if_dev,
2249 			    "failed to create Rx dmamap\n");
2250 			goto fail;
2251 		}
2252 	}
2253 
2254 fail:
2255 	return (error);
2256 }
2257 
2258 static int
2259 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2260 {
2261 	struct msk_dmamap_arg ctx;
2262 	struct msk_rxdesc *jrxd;
2263 	bus_size_t rxalign;
2264 	int error, i;
2265 
2266 	if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
2267 		sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2268 		device_printf(sc_if->msk_if_dev,
2269 		    "disabling jumbo frame support\n");
2270 		return (0);
2271 	}
2272 	/* Create tag for jumbo Rx ring. */
2273 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2274 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2275 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2276 		    BUS_SPACE_MAXADDR,		/* highaddr */
2277 		    NULL, NULL,			/* filter, filterarg */
2278 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2279 		    1,				/* nsegments */
2280 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2281 		    0,				/* flags */
2282 		    NULL, NULL,			/* lockfunc, lockarg */
2283 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2284 	if (error != 0) {
2285 		device_printf(sc_if->msk_if_dev,
2286 		    "failed to create jumbo Rx ring DMA tag\n");
2287 		goto jumbo_fail;
2288 	}
2289 
2290 	rxalign = 1;
2291 	/*
2292 	 * Workaround hardware hang which seems to happen when Rx buffer
2293 	 * is not aligned on multiple of FIFO word(8 bytes).
2294 	 */
2295 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2296 		rxalign = MSK_RX_BUF_ALIGN;
2297 	/* Create tag for jumbo Rx buffers. */
2298 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2299 		    rxalign, 0,			/* alignment, boundary */
2300 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2301 		    BUS_SPACE_MAXADDR,		/* highaddr */
2302 		    NULL, NULL,			/* filter, filterarg */
2303 		    MJUM9BYTES,			/* maxsize */
2304 		    1,				/* nsegments */
2305 		    MJUM9BYTES,			/* maxsegsize */
2306 		    0,				/* flags */
2307 		    NULL, NULL,			/* lockfunc, lockarg */
2308 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2309 	if (error != 0) {
2310 		device_printf(sc_if->msk_if_dev,
2311 		    "failed to create jumbo Rx DMA tag\n");
2312 		goto jumbo_fail;
2313 	}
2314 
2315 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2316 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2317 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2318 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2319 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2320 	if (error != 0) {
2321 		device_printf(sc_if->msk_if_dev,
2322 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2323 		goto jumbo_fail;
2324 	}
2325 
2326 	ctx.msk_busaddr = 0;
2327 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2328 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2329 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2330 	    msk_dmamap_cb, &ctx, 0);
2331 	if (error != 0) {
2332 		device_printf(sc_if->msk_if_dev,
2333 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2334 		goto jumbo_fail;
2335 	}
2336 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2337 
2338 	/* Create DMA maps for jumbo Rx buffers. */
2339 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2340 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2341 		device_printf(sc_if->msk_if_dev,
2342 		    "failed to create spare jumbo Rx dmamap\n");
2343 		goto jumbo_fail;
2344 	}
2345 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2346 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2347 		jrxd->rx_m = NULL;
2348 		jrxd->rx_dmamap = NULL;
2349 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2350 		    &jrxd->rx_dmamap);
2351 		if (error != 0) {
2352 			device_printf(sc_if->msk_if_dev,
2353 			    "failed to create jumbo Rx dmamap\n");
2354 			goto jumbo_fail;
2355 		}
2356 	}
2357 
2358 	return (0);
2359 
2360 jumbo_fail:
2361 	msk_rx_dma_jfree(sc_if);
2362 	device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2363 	    "due to resource shortage\n");
2364 	sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2365 	return (error);
2366 }
2367 
2368 static void
2369 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2370 {
2371 	struct msk_txdesc *txd;
2372 	struct msk_rxdesc *rxd;
2373 	int i;
2374 
2375 	/* Tx ring. */
2376 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2377 		if (sc_if->msk_cdata.msk_tx_ring_map)
2378 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2379 			    sc_if->msk_cdata.msk_tx_ring_map);
2380 		if (sc_if->msk_cdata.msk_tx_ring_map &&
2381 		    sc_if->msk_rdata.msk_tx_ring)
2382 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2383 			    sc_if->msk_rdata.msk_tx_ring,
2384 			    sc_if->msk_cdata.msk_tx_ring_map);
2385 		sc_if->msk_rdata.msk_tx_ring = NULL;
2386 		sc_if->msk_cdata.msk_tx_ring_map = NULL;
2387 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2388 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2389 	}
2390 	/* Rx ring. */
2391 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2392 		if (sc_if->msk_cdata.msk_rx_ring_map)
2393 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2394 			    sc_if->msk_cdata.msk_rx_ring_map);
2395 		if (sc_if->msk_cdata.msk_rx_ring_map &&
2396 		    sc_if->msk_rdata.msk_rx_ring)
2397 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2398 			    sc_if->msk_rdata.msk_rx_ring,
2399 			    sc_if->msk_cdata.msk_rx_ring_map);
2400 		sc_if->msk_rdata.msk_rx_ring = NULL;
2401 		sc_if->msk_cdata.msk_rx_ring_map = NULL;
2402 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2403 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2404 	}
2405 	/* Tx buffers. */
2406 	if (sc_if->msk_cdata.msk_tx_tag) {
2407 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2408 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2409 			if (txd->tx_dmamap) {
2410 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2411 				    txd->tx_dmamap);
2412 				txd->tx_dmamap = NULL;
2413 			}
2414 		}
2415 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2416 		sc_if->msk_cdata.msk_tx_tag = NULL;
2417 	}
2418 	/* Rx buffers. */
2419 	if (sc_if->msk_cdata.msk_rx_tag) {
2420 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2421 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2422 			if (rxd->rx_dmamap) {
2423 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2424 				    rxd->rx_dmamap);
2425 				rxd->rx_dmamap = NULL;
2426 			}
2427 		}
2428 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2429 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2430 			    sc_if->msk_cdata.msk_rx_sparemap);
2431 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2432 		}
2433 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2434 		sc_if->msk_cdata.msk_rx_tag = NULL;
2435 	}
2436 	if (sc_if->msk_cdata.msk_parent_tag) {
2437 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2438 		sc_if->msk_cdata.msk_parent_tag = NULL;
2439 	}
2440 }
2441 
2442 static void
2443 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2444 {
2445 	struct msk_rxdesc *jrxd;
2446 	int i;
2447 
2448 	/* Jumbo Rx ring. */
2449 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2450 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2451 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2452 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2453 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2454 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2455 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2456 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2457 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2458 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2459 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2460 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2461 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2462 	}
2463 	/* Jumbo Rx buffers. */
2464 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2465 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2466 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2467 			if (jrxd->rx_dmamap) {
2468 				bus_dmamap_destroy(
2469 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2470 				    jrxd->rx_dmamap);
2471 				jrxd->rx_dmamap = NULL;
2472 			}
2473 		}
2474 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2475 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2476 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2477 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2478 		}
2479 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2480 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2481 	}
2482 }
2483 
2484 static int
2485 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2486 {
2487 	struct msk_txdesc *txd, *txd_last;
2488 	struct msk_tx_desc *tx_le;
2489 	struct mbuf *m;
2490 	bus_dmamap_t map;
2491 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2492 	uint32_t control, csum, prod, si;
2493 	uint16_t offset, tcp_offset, tso_mtu;
2494 	int error, i, nseg, tso;
2495 
2496 	MSK_IF_LOCK_ASSERT(sc_if);
2497 
2498 	tcp_offset = offset = 0;
2499 	m = *m_head;
2500 	if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2501 	    (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) ||
2502 	    ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
2503 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) {
2504 		/*
2505 		 * Since mbuf has no protocol specific structure information
2506 		 * in it we have to inspect protocol information here to
2507 		 * setup TSO and checksum offload. I don't know why Marvell
2508 		 * made a such decision in chip design because other GigE
2509 		 * hardwares normally takes care of all these chores in
2510 		 * hardware. However, TSO performance of Yukon II is very
2511 		 * good such that it's worth to implement it.
2512 		 */
2513 		struct ether_header *eh;
2514 		struct ip *ip;
2515 		struct tcphdr *tcp;
2516 
2517 		if (M_WRITABLE(m) == 0) {
2518 			/* Get a writable copy. */
2519 			m = m_dup(*m_head, M_DONTWAIT);
2520 			m_freem(*m_head);
2521 			if (m == NULL) {
2522 				*m_head = NULL;
2523 				return (ENOBUFS);
2524 			}
2525 			*m_head = m;
2526 		}
2527 
2528 		offset = sizeof(struct ether_header);
2529 		m = m_pullup(m, offset);
2530 		if (m == NULL) {
2531 			*m_head = NULL;
2532 			return (ENOBUFS);
2533 		}
2534 		eh = mtod(m, struct ether_header *);
2535 		/* Check if hardware VLAN insertion is off. */
2536 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2537 			offset = sizeof(struct ether_vlan_header);
2538 			m = m_pullup(m, offset);
2539 			if (m == NULL) {
2540 				*m_head = NULL;
2541 				return (ENOBUFS);
2542 			}
2543 		}
2544 		m = m_pullup(m, offset + sizeof(struct ip));
2545 		if (m == NULL) {
2546 			*m_head = NULL;
2547 			return (ENOBUFS);
2548 		}
2549 		ip = (struct ip *)(mtod(m, char *) + offset);
2550 		offset += (ip->ip_hl << 2);
2551 		tcp_offset = offset;
2552 		/*
2553 		 * It seems that Yukon II has Tx checksum offload bug for
2554 		 * small TCP packets that's less than 60 bytes in size
2555 		 * (e.g. TCP window probe packet, pure ACK packet).
2556 		 * Common work around like padding with zeros to make the
2557 		 * frame minimum ethernet frame size didn't work at all.
2558 		 * Instead of disabling checksum offload completely we
2559 		 * resort to S/W checksum routine when we encounter short
2560 		 * TCP frames.
2561 		 * Short UDP packets appear to be handled correctly by
2562 		 * Yukon II. Also I assume this bug does not happen on
2563 		 * controllers that use newer descriptor format or
2564 		 * automatic Tx checksum calaulcation.
2565 		 */
2566 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2567 		    (m->m_pkthdr.len < MSK_MIN_FRAMELEN) &&
2568 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2569 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2570 			if (m == NULL) {
2571 				*m_head = NULL;
2572 				return (ENOBUFS);
2573 			}
2574 			*(uint16_t *)(m->m_data + offset +
2575 			    m->m_pkthdr.csum_data) = in_cksum_skip(m,
2576 			    m->m_pkthdr.len, offset);
2577 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2578 		}
2579 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2580 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2581 			if (m == NULL) {
2582 				*m_head = NULL;
2583 				return (ENOBUFS);
2584 			}
2585 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2586 			offset += (tcp->th_off << 2);
2587 		}
2588 		*m_head = m;
2589 	}
2590 
2591 	prod = sc_if->msk_cdata.msk_tx_prod;
2592 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2593 	txd_last = txd;
2594 	map = txd->tx_dmamap;
2595 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2596 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2597 	if (error == EFBIG) {
2598 		m = m_collapse(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
2599 		if (m == NULL) {
2600 			m_freem(*m_head);
2601 			*m_head = NULL;
2602 			return (ENOBUFS);
2603 		}
2604 		*m_head = m;
2605 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2606 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2607 		if (error != 0) {
2608 			m_freem(*m_head);
2609 			*m_head = NULL;
2610 			return (error);
2611 		}
2612 	} else if (error != 0)
2613 		return (error);
2614 	if (nseg == 0) {
2615 		m_freem(*m_head);
2616 		*m_head = NULL;
2617 		return (EIO);
2618 	}
2619 
2620 	/* Check number of available descriptors. */
2621 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2622 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2623 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2624 		return (ENOBUFS);
2625 	}
2626 
2627 	control = 0;
2628 	tso = 0;
2629 	tx_le = NULL;
2630 
2631 	/* Check TSO support. */
2632 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2633 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2634 			tso_mtu = m->m_pkthdr.tso_segsz;
2635 		else
2636 			tso_mtu = offset + m->m_pkthdr.tso_segsz;
2637 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2638 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2639 			tx_le->msk_addr = htole32(tso_mtu);
2640 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2641 				tx_le->msk_control = htole32(OP_MSS | HW_OWNER);
2642 			else
2643 				tx_le->msk_control =
2644 				    htole32(OP_LRGLEN | HW_OWNER);
2645 			sc_if->msk_cdata.msk_tx_cnt++;
2646 			MSK_INC(prod, MSK_TX_RING_CNT);
2647 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2648 		}
2649 		tso++;
2650 	}
2651 	/* Check if we have a VLAN tag to insert. */
2652 	if ((m->m_flags & M_VLANTAG) != 0) {
2653 		if (tx_le == NULL) {
2654 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2655 			tx_le->msk_addr = htole32(0);
2656 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2657 			    htons(m->m_pkthdr.ether_vtag));
2658 			sc_if->msk_cdata.msk_tx_cnt++;
2659 			MSK_INC(prod, MSK_TX_RING_CNT);
2660 		} else {
2661 			tx_le->msk_control |= htole32(OP_VLAN |
2662 			    htons(m->m_pkthdr.ether_vtag));
2663 		}
2664 		control |= INS_VLAN;
2665 	}
2666 	/* Check if we have to handle checksum offload. */
2667 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2668 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0)
2669 			control |= CALSUM;
2670 		else {
2671 			control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2672 			if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2673 				control |= UDPTCP;
2674 			/* Checksum write position. */
2675 			csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff;
2676 			/* Checksum start position. */
2677 			csum |= (uint32_t)tcp_offset << 16;
2678 			if (csum != sc_if->msk_cdata.msk_last_csum) {
2679 				tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2680 				tx_le->msk_addr = htole32(csum);
2681 				tx_le->msk_control = htole32(1 << 16 |
2682 				    (OP_TCPLISW | HW_OWNER));
2683 				sc_if->msk_cdata.msk_tx_cnt++;
2684 				MSK_INC(prod, MSK_TX_RING_CNT);
2685 				sc_if->msk_cdata.msk_last_csum = csum;
2686 			}
2687 		}
2688 	}
2689 
2690 	si = prod;
2691 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2692 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2693 	if (tso == 0)
2694 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2695 		    OP_PACKET);
2696 	else
2697 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2698 		    OP_LARGESEND);
2699 	sc_if->msk_cdata.msk_tx_cnt++;
2700 	MSK_INC(prod, MSK_TX_RING_CNT);
2701 
2702 	for (i = 1; i < nseg; i++) {
2703 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2704 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2705 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2706 		    OP_BUFFER | HW_OWNER);
2707 		sc_if->msk_cdata.msk_tx_cnt++;
2708 		MSK_INC(prod, MSK_TX_RING_CNT);
2709 	}
2710 	/* Update producer index. */
2711 	sc_if->msk_cdata.msk_tx_prod = prod;
2712 
2713 	/* Set EOP on the last desciptor. */
2714 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2715 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2716 	tx_le->msk_control |= htole32(EOP);
2717 
2718 	/* Turn the first descriptor ownership to hardware. */
2719 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2720 	tx_le->msk_control |= htole32(HW_OWNER);
2721 
2722 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2723 	map = txd_last->tx_dmamap;
2724 	txd_last->tx_dmamap = txd->tx_dmamap;
2725 	txd->tx_dmamap = map;
2726 	txd->tx_m = m;
2727 
2728 	/* Sync descriptors. */
2729 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2730 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2731 	    sc_if->msk_cdata.msk_tx_ring_map,
2732 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2733 
2734 	return (0);
2735 }
2736 
2737 static void
2738 msk_tx_task(void *arg, int pending)
2739 {
2740 	struct ifnet *ifp;
2741 
2742 	ifp = arg;
2743 	msk_start(ifp);
2744 }
2745 
2746 static void
2747 msk_start(struct ifnet *ifp)
2748 {
2749         struct msk_if_softc *sc_if;
2750         struct mbuf *m_head;
2751 	int enq;
2752 
2753 	sc_if = ifp->if_softc;
2754 
2755 	MSK_IF_LOCK(sc_if);
2756 
2757 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2758 	    IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2759 		MSK_IF_UNLOCK(sc_if);
2760 		return;
2761 	}
2762 
2763 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2764 	    sc_if->msk_cdata.msk_tx_cnt <
2765 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2766 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2767 		if (m_head == NULL)
2768 			break;
2769 		/*
2770 		 * Pack the data into the transmit ring. If we
2771 		 * don't have room, set the OACTIVE flag and wait
2772 		 * for the NIC to drain the ring.
2773 		 */
2774 		if (msk_encap(sc_if, &m_head) != 0) {
2775 			if (m_head == NULL)
2776 				break;
2777 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2778 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2779 			break;
2780 		}
2781 
2782 		enq++;
2783 		/*
2784 		 * If there's a BPF listener, bounce a copy of this frame
2785 		 * to him.
2786 		 */
2787 		ETHER_BPF_MTAP(ifp, m_head);
2788 	}
2789 
2790 	if (enq > 0) {
2791 		/* Transmit */
2792 		CSR_WRITE_2(sc_if->msk_softc,
2793 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2794 		    sc_if->msk_cdata.msk_tx_prod);
2795 
2796 		/* Set a timeout in case the chip goes out to lunch. */
2797 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2798 	}
2799 
2800 	MSK_IF_UNLOCK(sc_if);
2801 }
2802 
2803 static void
2804 msk_watchdog(struct msk_if_softc *sc_if)
2805 {
2806 	struct ifnet *ifp;
2807 	uint32_t ridx;
2808 	int idx;
2809 
2810 	MSK_IF_LOCK_ASSERT(sc_if);
2811 
2812 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2813 		return;
2814 	ifp = sc_if->msk_ifp;
2815 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2816 		if (bootverbose)
2817 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2818 			   "(missed link)\n");
2819 		ifp->if_oerrors++;
2820 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2821 		msk_init_locked(sc_if);
2822 		return;
2823 	}
2824 
2825 	/*
2826 	 * Reclaim first as there is a possibility of losing Tx completion
2827 	 * interrupts.
2828 	 */
2829 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2830 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2831 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2832 		msk_txeof(sc_if, idx);
2833 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2834 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2835 			    "-- recovering\n");
2836 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2837 				taskqueue_enqueue(taskqueue_fast,
2838 				    &sc_if->msk_tx_task);
2839 			return;
2840 		}
2841 	}
2842 
2843 	if_printf(ifp, "watchdog timeout\n");
2844 	ifp->if_oerrors++;
2845 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2846 	msk_init_locked(sc_if);
2847 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2848 		taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task);
2849 }
2850 
2851 static int
2852 mskc_shutdown(device_t dev)
2853 {
2854 	struct msk_softc *sc;
2855 	int i;
2856 
2857 	sc = device_get_softc(dev);
2858 	MSK_LOCK(sc);
2859 	for (i = 0; i < sc->msk_num_port; i++) {
2860 		if (sc->msk_if[i] != NULL)
2861 			msk_stop(sc->msk_if[i]);
2862 	}
2863 
2864 	/* Disable all interrupts. */
2865 	CSR_WRITE_4(sc, B0_IMSK, 0);
2866 	CSR_READ_4(sc, B0_IMSK);
2867 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2868 	CSR_READ_4(sc, B0_HWE_IMSK);
2869 
2870 	/* Put hardware reset. */
2871 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2872 
2873 	MSK_UNLOCK(sc);
2874 	return (0);
2875 }
2876 
2877 static int
2878 mskc_suspend(device_t dev)
2879 {
2880 	struct msk_softc *sc;
2881 	int i;
2882 
2883 	sc = device_get_softc(dev);
2884 
2885 	MSK_LOCK(sc);
2886 
2887 	for (i = 0; i < sc->msk_num_port; i++) {
2888 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2889 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
2890 		    IFF_DRV_RUNNING) != 0))
2891 			msk_stop(sc->msk_if[i]);
2892 	}
2893 
2894 	/* Disable all interrupts. */
2895 	CSR_WRITE_4(sc, B0_IMSK, 0);
2896 	CSR_READ_4(sc, B0_IMSK);
2897 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2898 	CSR_READ_4(sc, B0_HWE_IMSK);
2899 
2900 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
2901 
2902 	/* Put hardware reset. */
2903 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2904 	sc->msk_pflags |= MSK_FLAG_SUSPEND;
2905 
2906 	MSK_UNLOCK(sc);
2907 
2908 	return (0);
2909 }
2910 
2911 static int
2912 mskc_resume(device_t dev)
2913 {
2914 	struct msk_softc *sc;
2915 	int i;
2916 
2917 	sc = device_get_softc(dev);
2918 
2919 	MSK_LOCK(sc);
2920 
2921 	mskc_reset(sc);
2922 	for (i = 0; i < sc->msk_num_port; i++) {
2923 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2924 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) {
2925 			sc->msk_if[i]->msk_ifp->if_drv_flags &=
2926 			    ~IFF_DRV_RUNNING;
2927 			msk_init_locked(sc->msk_if[i]);
2928 		}
2929 	}
2930 	sc->msk_pflags &= ~MSK_FLAG_SUSPEND;
2931 
2932 	MSK_UNLOCK(sc);
2933 
2934 	return (0);
2935 }
2936 
2937 #ifndef __NO_STRICT_ALIGNMENT
2938 static __inline void
2939 msk_fixup_rx(struct mbuf *m)
2940 {
2941         int i;
2942         uint16_t *src, *dst;
2943 
2944 	src = mtod(m, uint16_t *);
2945 	dst = src - 3;
2946 
2947 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2948 		*dst++ = *src++;
2949 
2950 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
2951 }
2952 #endif
2953 
2954 static void
2955 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
2956     int len)
2957 {
2958 	struct mbuf *m;
2959 	struct ifnet *ifp;
2960 	struct msk_rxdesc *rxd;
2961 	int cons, rxlen;
2962 
2963 	ifp = sc_if->msk_ifp;
2964 
2965 	MSK_IF_LOCK_ASSERT(sc_if);
2966 
2967 	cons = sc_if->msk_cdata.msk_rx_cons;
2968 	do {
2969 		rxlen = status >> 16;
2970 		if ((status & GMR_FS_VLAN) != 0 &&
2971 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2972 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2973 		if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) {
2974 			/*
2975 			 * For controllers that returns bogus status code
2976 			 * just do minimal check and let upper stack
2977 			 * handle this frame.
2978 			 */
2979 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
2980 				ifp->if_ierrors++;
2981 				msk_discard_rxbuf(sc_if, cons);
2982 				break;
2983 			}
2984 		} else if (len > sc_if->msk_framesize ||
2985 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2986 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2987 			/* Don't count flow-control packet as errors. */
2988 			if ((status & GMR_FS_GOOD_FC) == 0)
2989 				ifp->if_ierrors++;
2990 			msk_discard_rxbuf(sc_if, cons);
2991 			break;
2992 		}
2993 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2994 		m = rxd->rx_m;
2995 		if (msk_newbuf(sc_if, cons) != 0) {
2996 			ifp->if_iqdrops++;
2997 			/* Reuse old buffer. */
2998 			msk_discard_rxbuf(sc_if, cons);
2999 			break;
3000 		}
3001 		m->m_pkthdr.rcvif = ifp;
3002 		m->m_pkthdr.len = m->m_len = len;
3003 #ifndef __NO_STRICT_ALIGNMENT
3004 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3005 			msk_fixup_rx(m);
3006 #endif
3007 		ifp->if_ipackets++;
3008 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
3009 		    (control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
3010 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3011 			if ((control & CSS_IPV4_CSUM_OK) != 0)
3012 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3013 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3014 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3015 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3016 				    CSUM_PSEUDO_HDR;
3017 				m->m_pkthdr.csum_data = 0xffff;
3018 			}
3019 		}
3020 		/* Check for VLAN tagged packets. */
3021 		if ((status & GMR_FS_VLAN) != 0 &&
3022 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3023 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3024 			m->m_flags |= M_VLANTAG;
3025 		}
3026 		MSK_IF_UNLOCK(sc_if);
3027 		(*ifp->if_input)(ifp, m);
3028 		MSK_IF_LOCK(sc_if);
3029 	} while (0);
3030 
3031 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3032 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3033 }
3034 
3035 static void
3036 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3037     int len)
3038 {
3039 	struct mbuf *m;
3040 	struct ifnet *ifp;
3041 	struct msk_rxdesc *jrxd;
3042 	int cons, rxlen;
3043 
3044 	ifp = sc_if->msk_ifp;
3045 
3046 	MSK_IF_LOCK_ASSERT(sc_if);
3047 
3048 	cons = sc_if->msk_cdata.msk_rx_cons;
3049 	do {
3050 		rxlen = status >> 16;
3051 		if ((status & GMR_FS_VLAN) != 0 &&
3052 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3053 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3054 		if (len > sc_if->msk_framesize ||
3055 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3056 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3057 			/* Don't count flow-control packet as errors. */
3058 			if ((status & GMR_FS_GOOD_FC) == 0)
3059 				ifp->if_ierrors++;
3060 			msk_discard_jumbo_rxbuf(sc_if, cons);
3061 			break;
3062 		}
3063 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3064 		m = jrxd->rx_m;
3065 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3066 			ifp->if_iqdrops++;
3067 			/* Reuse old buffer. */
3068 			msk_discard_jumbo_rxbuf(sc_if, cons);
3069 			break;
3070 		}
3071 		m->m_pkthdr.rcvif = ifp;
3072 		m->m_pkthdr.len = m->m_len = len;
3073 #ifndef __NO_STRICT_ALIGNMENT
3074 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3075 			msk_fixup_rx(m);
3076 #endif
3077 		ifp->if_ipackets++;
3078 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
3079 		    (control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
3080 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3081 			if ((control & CSS_IPV4_CSUM_OK) != 0)
3082 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3083 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3084 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3085 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3086 				    CSUM_PSEUDO_HDR;
3087 				m->m_pkthdr.csum_data = 0xffff;
3088 			}
3089 		}
3090 		/* Check for VLAN tagged packets. */
3091 		if ((status & GMR_FS_VLAN) != 0 &&
3092 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3093 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3094 			m->m_flags |= M_VLANTAG;
3095 		}
3096 		MSK_IF_UNLOCK(sc_if);
3097 		(*ifp->if_input)(ifp, m);
3098 		MSK_IF_LOCK(sc_if);
3099 	} while (0);
3100 
3101 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3102 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3103 }
3104 
3105 static void
3106 msk_txeof(struct msk_if_softc *sc_if, int idx)
3107 {
3108 	struct msk_txdesc *txd;
3109 	struct msk_tx_desc *cur_tx;
3110 	struct ifnet *ifp;
3111 	uint32_t control;
3112 	int cons, prog;
3113 
3114 	MSK_IF_LOCK_ASSERT(sc_if);
3115 
3116 	ifp = sc_if->msk_ifp;
3117 
3118 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3119 	    sc_if->msk_cdata.msk_tx_ring_map,
3120 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3121 	/*
3122 	 * Go through our tx ring and free mbufs for those
3123 	 * frames that have been sent.
3124 	 */
3125 	cons = sc_if->msk_cdata.msk_tx_cons;
3126 	prog = 0;
3127 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3128 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3129 			break;
3130 		prog++;
3131 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3132 		control = le32toh(cur_tx->msk_control);
3133 		sc_if->msk_cdata.msk_tx_cnt--;
3134 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3135 		if ((control & EOP) == 0)
3136 			continue;
3137 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3138 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3139 		    BUS_DMASYNC_POSTWRITE);
3140 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3141 
3142 		ifp->if_opackets++;
3143 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3144 		    __func__));
3145 		m_freem(txd->tx_m);
3146 		txd->tx_m = NULL;
3147 	}
3148 
3149 	if (prog > 0) {
3150 		sc_if->msk_cdata.msk_tx_cons = cons;
3151 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3152 			sc_if->msk_watchdog_timer = 0;
3153 		/* No need to sync LEs as we didn't update LEs. */
3154 	}
3155 }
3156 
3157 static void
3158 msk_tick(void *xsc_if)
3159 {
3160 	struct msk_if_softc *sc_if;
3161 	struct mii_data *mii;
3162 
3163 	sc_if = xsc_if;
3164 
3165 	MSK_IF_LOCK_ASSERT(sc_if);
3166 
3167 	mii = device_get_softc(sc_if->msk_miibus);
3168 
3169 	mii_tick(mii);
3170 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0)
3171 		msk_miibus_statchg(sc_if->msk_if_dev);
3172 	msk_watchdog(sc_if);
3173 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3174 }
3175 
3176 static void
3177 msk_intr_phy(struct msk_if_softc *sc_if)
3178 {
3179 	uint16_t status;
3180 
3181 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3182 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3183 	/* Handle FIFO Underrun/Overflow? */
3184 	if ((status & PHY_M_IS_FIFO_ERROR))
3185 		device_printf(sc_if->msk_if_dev,
3186 		    "PHY FIFO underrun/overflow.\n");
3187 }
3188 
3189 static void
3190 msk_intr_gmac(struct msk_if_softc *sc_if)
3191 {
3192 	struct msk_softc *sc;
3193 	uint8_t status;
3194 
3195 	sc = sc_if->msk_softc;
3196 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3197 
3198 	/* GMAC Rx FIFO overrun. */
3199 	if ((status & GM_IS_RX_FF_OR) != 0)
3200 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3201 		    GMF_CLI_RX_FO);
3202 	/* GMAC Tx FIFO underrun. */
3203 	if ((status & GM_IS_TX_FF_UR) != 0) {
3204 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3205 		    GMF_CLI_TX_FU);
3206 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3207 		/*
3208 		 * XXX
3209 		 * In case of Tx underrun, we may need to flush/reset
3210 		 * Tx MAC but that would also require resynchronization
3211 		 * with status LEs. Reintializing status LEs would
3212 		 * affect other port in dual MAC configuration so it
3213 		 * should be avoided as possible as we can.
3214 		 * Due to lack of documentation it's all vague guess but
3215 		 * it needs more investigation.
3216 		 */
3217 	}
3218 }
3219 
3220 static void
3221 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3222 {
3223 	struct msk_softc *sc;
3224 
3225 	sc = sc_if->msk_softc;
3226 	if ((status & Y2_IS_PAR_RD1) != 0) {
3227 		device_printf(sc_if->msk_if_dev,
3228 		    "RAM buffer read parity error\n");
3229 		/* Clear IRQ. */
3230 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3231 		    RI_CLR_RD_PERR);
3232 	}
3233 	if ((status & Y2_IS_PAR_WR1) != 0) {
3234 		device_printf(sc_if->msk_if_dev,
3235 		    "RAM buffer write parity error\n");
3236 		/* Clear IRQ. */
3237 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3238 		    RI_CLR_WR_PERR);
3239 	}
3240 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3241 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3242 		/* Clear IRQ. */
3243 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3244 		    GMF_CLI_TX_PE);
3245 	}
3246 	if ((status & Y2_IS_PAR_RX1) != 0) {
3247 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3248 		/* Clear IRQ. */
3249 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3250 	}
3251 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3252 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3253 		/* Clear IRQ. */
3254 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3255 	}
3256 }
3257 
3258 static void
3259 msk_intr_hwerr(struct msk_softc *sc)
3260 {
3261 	uint32_t status;
3262 	uint32_t tlphead[4];
3263 
3264 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3265 	/* Time Stamp timer overflow. */
3266 	if ((status & Y2_IS_TIST_OV) != 0)
3267 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3268 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3269 		/*
3270 		 * PCI Express Error occured which is not described in PEX
3271 		 * spec.
3272 		 * This error is also mapped either to Master Abort(
3273 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3274 		 * can only be cleared there.
3275                  */
3276 		device_printf(sc->msk_dev,
3277 		    "PCI Express protocol violation error\n");
3278 	}
3279 
3280 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3281 		uint16_t v16;
3282 
3283 		if ((status & Y2_IS_MST_ERR) != 0)
3284 			device_printf(sc->msk_dev,
3285 			    "unexpected IRQ Status error\n");
3286 		else
3287 			device_printf(sc->msk_dev,
3288 			    "unexpected IRQ Master error\n");
3289 		/* Reset all bits in the PCI status register. */
3290 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3291 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3292 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3293 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3294 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3295 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3296 	}
3297 
3298 	/* Check for PCI Express Uncorrectable Error. */
3299 	if ((status & Y2_IS_PCI_EXP) != 0) {
3300 		uint32_t v32;
3301 
3302 		/*
3303 		 * On PCI Express bus bridges are called root complexes (RC).
3304 		 * PCI Express errors are recognized by the root complex too,
3305 		 * which requests the system to handle the problem. After
3306 		 * error occurence it may be that no access to the adapter
3307 		 * may be performed any longer.
3308 		 */
3309 
3310 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3311 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3312 			/* Ignore unsupported request error. */
3313 			device_printf(sc->msk_dev,
3314 			    "Uncorrectable PCI Express error\n");
3315 		}
3316 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3317 			int i;
3318 
3319 			/* Get TLP header form Log Registers. */
3320 			for (i = 0; i < 4; i++)
3321 				tlphead[i] = CSR_PCI_READ_4(sc,
3322 				    PEX_HEADER_LOG + i * 4);
3323 			/* Check for vendor defined broadcast message. */
3324 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3325 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3326 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3327 				    sc->msk_intrhwemask);
3328 				CSR_READ_4(sc, B0_HWE_IMSK);
3329 			}
3330 		}
3331 		/* Clear the interrupt. */
3332 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3333 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3334 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3335 	}
3336 
3337 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3338 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3339 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3340 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3341 }
3342 
3343 static __inline void
3344 msk_rxput(struct msk_if_softc *sc_if)
3345 {
3346 	struct msk_softc *sc;
3347 
3348 	sc = sc_if->msk_softc;
3349 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3350 		bus_dmamap_sync(
3351 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3352 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3353 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3354 	else
3355 		bus_dmamap_sync(
3356 		    sc_if->msk_cdata.msk_rx_ring_tag,
3357 		    sc_if->msk_cdata.msk_rx_ring_map,
3358 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3359 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3360 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3361 }
3362 
3363 static int
3364 msk_handle_events(struct msk_softc *sc)
3365 {
3366 	struct msk_if_softc *sc_if;
3367 	int rxput[2];
3368 	struct msk_stat_desc *sd;
3369 	uint32_t control, status;
3370 	int cons, idx, len, port, rxprog;
3371 
3372 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3373 	if (idx == sc->msk_stat_cons)
3374 		return (0);
3375 
3376 	/* Sync status LEs. */
3377 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3378 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3379 	/* XXX Sync Rx LEs here. */
3380 
3381 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3382 
3383 	rxprog = 0;
3384 	for (cons = sc->msk_stat_cons; cons != idx;) {
3385 		sd = &sc->msk_stat_ring[cons];
3386 		control = le32toh(sd->msk_control);
3387 		if ((control & HW_OWNER) == 0)
3388 			break;
3389 		/*
3390 		 * Marvell's FreeBSD driver updates status LE after clearing
3391 		 * HW_OWNER. However we don't have a way to sync single LE
3392 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3393 		 * an entire DMA map. So don't sync LE until we have a better
3394 		 * way to sync LEs.
3395 		 */
3396 		control &= ~HW_OWNER;
3397 		sd->msk_control = htole32(control);
3398 		status = le32toh(sd->msk_status);
3399 		len = control & STLE_LEN_MASK;
3400 		port = (control >> 16) & 0x01;
3401 		sc_if = sc->msk_if[port];
3402 		if (sc_if == NULL) {
3403 			device_printf(sc->msk_dev, "invalid port opcode "
3404 			    "0x%08x\n", control & STLE_OP_MASK);
3405 			continue;
3406 		}
3407 
3408 		switch (control & STLE_OP_MASK) {
3409 		case OP_RXVLAN:
3410 			sc_if->msk_vtag = ntohs(len);
3411 			break;
3412 		case OP_RXCHKSVLAN:
3413 			sc_if->msk_vtag = ntohs(len);
3414 			break;
3415 		case OP_RXSTAT:
3416 			if (sc_if->msk_framesize >
3417 			    (MCLBYTES - MSK_RX_BUF_ALIGN))
3418 				msk_jumbo_rxeof(sc_if, status, control, len);
3419 			else
3420 				msk_rxeof(sc_if, status, control, len);
3421 			rxprog++;
3422 			/*
3423 			 * Because there is no way to sync single Rx LE
3424 			 * put the DMA sync operation off until the end of
3425 			 * event processing.
3426 			 */
3427 			rxput[port]++;
3428 			/* Update prefetch unit if we've passed water mark. */
3429 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3430 				msk_rxput(sc_if);
3431 				rxput[port] = 0;
3432 			}
3433 			break;
3434 		case OP_TXINDEXLE:
3435 			if (sc->msk_if[MSK_PORT_A] != NULL)
3436 				msk_txeof(sc->msk_if[MSK_PORT_A],
3437 				    status & STLE_TXA1_MSKL);
3438 			if (sc->msk_if[MSK_PORT_B] != NULL)
3439 				msk_txeof(sc->msk_if[MSK_PORT_B],
3440 				    ((status & STLE_TXA2_MSKL) >>
3441 				    STLE_TXA2_SHIFTL) |
3442 				    ((len & STLE_TXA2_MSKH) <<
3443 				    STLE_TXA2_SHIFTH));
3444 			break;
3445 		default:
3446 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3447 			    control & STLE_OP_MASK);
3448 			break;
3449 		}
3450 		MSK_INC(cons, MSK_STAT_RING_CNT);
3451 		if (rxprog > sc->msk_process_limit)
3452 			break;
3453 	}
3454 
3455 	sc->msk_stat_cons = cons;
3456 	/* XXX We should sync status LEs here. See above notes. */
3457 
3458 	if (rxput[MSK_PORT_A] > 0)
3459 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3460 	if (rxput[MSK_PORT_B] > 0)
3461 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3462 
3463 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3464 }
3465 
3466 /* Legacy interrupt handler for shared interrupt. */
3467 static void
3468 msk_legacy_intr(void *xsc)
3469 {
3470 	struct msk_softc *sc;
3471 	struct msk_if_softc *sc_if0, *sc_if1;
3472 	struct ifnet *ifp0, *ifp1;
3473 	uint32_t status;
3474 
3475 	sc = xsc;
3476 	MSK_LOCK(sc);
3477 
3478 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3479 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3480 	if (status == 0 || status == 0xffffffff ||
3481 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3482 	    (status & sc->msk_intrmask) == 0) {
3483 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3484 		return;
3485 	}
3486 
3487 	sc_if0 = sc->msk_if[MSK_PORT_A];
3488 	sc_if1 = sc->msk_if[MSK_PORT_B];
3489 	ifp0 = ifp1 = NULL;
3490 	if (sc_if0 != NULL)
3491 		ifp0 = sc_if0->msk_ifp;
3492 	if (sc_if1 != NULL)
3493 		ifp1 = sc_if1->msk_ifp;
3494 
3495 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3496 		msk_intr_phy(sc_if0);
3497 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3498 		msk_intr_phy(sc_if1);
3499 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3500 		msk_intr_gmac(sc_if0);
3501 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3502 		msk_intr_gmac(sc_if1);
3503 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3504 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3505 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3506 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3507 		CSR_READ_4(sc, B0_IMSK);
3508 	}
3509         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3510 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3511 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3512 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3513 		CSR_READ_4(sc, B0_IMSK);
3514 	}
3515 	if ((status & Y2_IS_HW_ERR) != 0)
3516 		msk_intr_hwerr(sc);
3517 
3518 	while (msk_handle_events(sc) != 0)
3519 		;
3520 	if ((status & Y2_IS_STAT_BMU) != 0)
3521 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3522 
3523 	/* Reenable interrupts. */
3524 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3525 
3526 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3527 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3528 		taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3529 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3530 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3531 		taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3532 
3533 	MSK_UNLOCK(sc);
3534 }
3535 
3536 static int
3537 msk_intr(void *xsc)
3538 {
3539 	struct msk_softc *sc;
3540 	uint32_t status;
3541 
3542 	sc = xsc;
3543 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3544 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3545 	if (status == 0 || status == 0xffffffff) {
3546 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3547 		return (FILTER_STRAY);
3548 	}
3549 
3550 	taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3551 	return (FILTER_HANDLED);
3552 }
3553 
3554 static void
3555 msk_int_task(void *arg, int pending)
3556 {
3557 	struct msk_softc *sc;
3558 	struct msk_if_softc *sc_if0, *sc_if1;
3559 	struct ifnet *ifp0, *ifp1;
3560 	uint32_t status;
3561 	int domore;
3562 
3563 	sc = arg;
3564 	MSK_LOCK(sc);
3565 
3566 	/* Get interrupt source. */
3567 	status = CSR_READ_4(sc, B0_ISRC);
3568 	if (status == 0 || status == 0xffffffff ||
3569 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3570 	    (status & sc->msk_intrmask) == 0)
3571 		goto done;
3572 
3573 	sc_if0 = sc->msk_if[MSK_PORT_A];
3574 	sc_if1 = sc->msk_if[MSK_PORT_B];
3575 	ifp0 = ifp1 = NULL;
3576 	if (sc_if0 != NULL)
3577 		ifp0 = sc_if0->msk_ifp;
3578 	if (sc_if1 != NULL)
3579 		ifp1 = sc_if1->msk_ifp;
3580 
3581 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3582 		msk_intr_phy(sc_if0);
3583 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3584 		msk_intr_phy(sc_if1);
3585 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3586 		msk_intr_gmac(sc_if0);
3587 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3588 		msk_intr_gmac(sc_if1);
3589 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3590 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3591 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3592 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3593 		CSR_READ_4(sc, B0_IMSK);
3594 	}
3595         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3596 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3597 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3598 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3599 		CSR_READ_4(sc, B0_IMSK);
3600 	}
3601 	if ((status & Y2_IS_HW_ERR) != 0)
3602 		msk_intr_hwerr(sc);
3603 
3604 	domore = msk_handle_events(sc);
3605 	if ((status & Y2_IS_STAT_BMU) != 0)
3606 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3607 
3608 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3609 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3610 		taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3611 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3612 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3613 		taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3614 
3615 	if (domore > 0) {
3616 		taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3617 		MSK_UNLOCK(sc);
3618 		return;
3619 	}
3620 done:
3621 	MSK_UNLOCK(sc);
3622 
3623 	/* Reenable interrupts. */
3624 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3625 }
3626 
3627 static void
3628 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3629 {
3630 	struct msk_softc *sc;
3631 	struct ifnet *ifp;
3632 
3633 	ifp = sc_if->msk_ifp;
3634 	sc = sc_if->msk_softc;
3635 	switch (sc->msk_hw_id) {
3636 	case CHIP_ID_YUKON_EX:
3637 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
3638 			goto yukon_ex_workaround;
3639 		if (ifp->if_mtu > ETHERMTU)
3640 			CSR_WRITE_4(sc,
3641 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3642 			    TX_JUMBO_ENA | TX_STFW_ENA);
3643 		else
3644 			CSR_WRITE_4(sc,
3645 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3646 			    TX_JUMBO_DIS | TX_STFW_ENA);
3647 		break;
3648 	default:
3649 yukon_ex_workaround:
3650 		if (ifp->if_mtu > ETHERMTU) {
3651 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3652 			CSR_WRITE_4(sc,
3653 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3654 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3655 			/* Disable Store & Forward mode for Tx. */
3656 			CSR_WRITE_4(sc,
3657 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3658 			    TX_JUMBO_ENA | TX_STFW_DIS);
3659 		} else {
3660 			/* Enable Store & Forward mode for Tx. */
3661 			CSR_WRITE_4(sc,
3662 			    MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3663 			    TX_JUMBO_DIS | TX_STFW_ENA);
3664 		}
3665 		break;
3666 	}
3667 }
3668 
3669 static void
3670 msk_init(void *xsc)
3671 {
3672 	struct msk_if_softc *sc_if = xsc;
3673 
3674 	MSK_IF_LOCK(sc_if);
3675 	msk_init_locked(sc_if);
3676 	MSK_IF_UNLOCK(sc_if);
3677 }
3678 
3679 static void
3680 msk_init_locked(struct msk_if_softc *sc_if)
3681 {
3682 	struct msk_softc *sc;
3683 	struct ifnet *ifp;
3684 	struct mii_data	 *mii;
3685 	uint8_t *eaddr;
3686 	uint16_t gmac;
3687 	uint32_t reg;
3688 	int error;
3689 
3690 	MSK_IF_LOCK_ASSERT(sc_if);
3691 
3692 	ifp = sc_if->msk_ifp;
3693 	sc = sc_if->msk_softc;
3694 	mii = device_get_softc(sc_if->msk_miibus);
3695 
3696 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3697 		return;
3698 
3699 	error = 0;
3700 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3701 	msk_stop(sc_if);
3702 
3703 	if (ifp->if_mtu < ETHERMTU)
3704 		sc_if->msk_framesize = ETHERMTU;
3705 	else
3706 		sc_if->msk_framesize = ifp->if_mtu;
3707 	sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3708 	if (ifp->if_mtu > ETHERMTU &&
3709 	    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
3710 		ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3711 		ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3712 	}
3713 
3714  	/* GMAC Control reset. */
3715  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3716  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3717  	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3718 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX)
3719 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3720 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3721 		    GMC_BYP_RETR_ON);
3722 
3723 	/*
3724 	 * Initialize GMAC first such that speed/duplex/flow-control
3725 	 * parameters are renegotiated when interface is brought up.
3726 	 */
3727 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3728 
3729 	/* Dummy read the Interrupt Source Register. */
3730 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3731 
3732 	/* Clear MIB stats. */
3733 	msk_stats_clear(sc_if);
3734 
3735 	/* Disable FCS. */
3736 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3737 
3738 	/* Setup Transmit Control Register. */
3739 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3740 
3741 	/* Setup Transmit Flow Control Register. */
3742 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3743 
3744 	/* Setup Transmit Parameter Register. */
3745 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3746 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3747 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3748 
3749 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3750 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3751 
3752 	if (ifp->if_mtu > ETHERMTU)
3753 		gmac |= GM_SMOD_JUMBO_ENA;
3754 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3755 
3756 	/* Set station address. */
3757 	eaddr = IF_LLADDR(ifp);
3758 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L,
3759 	    eaddr[0] | (eaddr[1] << 8));
3760 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M,
3761 	    eaddr[2] | (eaddr[3] << 8));
3762 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H,
3763 	    eaddr[4] | (eaddr[5] << 8));
3764 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L,
3765 	    eaddr[0] | (eaddr[1] << 8));
3766 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M,
3767 	    eaddr[2] | (eaddr[3] << 8));
3768 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H,
3769 	    eaddr[4] | (eaddr[5] << 8));
3770 
3771 	/* Disable interrupts for counter overflows. */
3772 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3773 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3774 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3775 
3776 	/* Configure Rx MAC FIFO. */
3777 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3778 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3779 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3780 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3781 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3782 		reg |= GMF_RX_OVER_ON;
3783 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3784 
3785 	/* Set receive filter. */
3786 	msk_rxfilter(sc_if);
3787 
3788 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3789 		/* Clear flush mask - HW bug. */
3790 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3791 	} else {
3792 		/* Flush Rx MAC FIFO on any flow control or error. */
3793 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3794 		    GMR_FS_ANY_ERR);
3795 	}
3796 
3797 	/*
3798 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3799 	 * due to hardware hang on receipt of pause frames.
3800 	 */
3801 	reg = RX_GMF_FL_THR_DEF + 1;
3802 	/* Another magic for Yukon FE+ - From Linux. */
3803 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3804 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3805 		reg = 0x178;
3806 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3807 
3808 	/* Configure Tx MAC FIFO. */
3809 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3810 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3811 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3812 
3813 	/* Configure hardware VLAN tag insertion/stripping. */
3814 	msk_setvlan(sc_if, ifp);
3815 
3816 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3817 		/* Set Rx Pause threshould. */
3818 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3819 		    MSK_ECU_LLPP);
3820 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3821 		    MSK_ECU_ULPP);
3822 		/* Configure store-and-forward for Tx. */
3823 		msk_set_tx_stfwd(sc_if);
3824 	}
3825 
3826  	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3827  	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3828  		/* Disable dynamic watermark - from Linux. */
3829  		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3830  		reg &= ~0x03;
3831  		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3832  	}
3833 
3834 	/*
3835 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3836 	 * arbiter as we don't use Sync Tx queue.
3837 	 */
3838 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3839 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3840 	/* Enable the RAM Interface Arbiter. */
3841 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3842 
3843 	/* Setup RAM buffer. */
3844 	msk_set_rambuffer(sc_if);
3845 
3846 	/* Disable Tx sync Queue. */
3847 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3848 
3849 	/* Setup Tx Queue Bus Memory Interface. */
3850 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3851 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3852 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3853 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3854 	switch (sc->msk_hw_id) {
3855 	case CHIP_ID_YUKON_EC_U:
3856 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3857 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3858 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3859 			    MSK_ECU_TXFF_LEV);
3860 		}
3861 		break;
3862 	case CHIP_ID_YUKON_EX:
3863 		/*
3864 		 * Yukon Extreme seems to have silicon bug for
3865 		 * automatic Tx checksum calculation capability.
3866 		 */
3867 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
3868 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3869 			    F_TX_CHK_AUTO_OFF);
3870 		break;
3871 	}
3872 
3873 	/* Setup Rx Queue Bus Memory Interface. */
3874 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3875 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3876 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3877 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3878         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3879 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3880 		/* MAC Rx RAM Read is controlled by hardware. */
3881                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3882 	}
3883 
3884 	msk_set_prefetch(sc, sc_if->msk_txq,
3885 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3886 	msk_init_tx_ring(sc_if);
3887 
3888 	/* Disable Rx checksum offload and RSS hash. */
3889 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3890 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3891 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
3892 		msk_set_prefetch(sc, sc_if->msk_rxq,
3893 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3894 		    MSK_JUMBO_RX_RING_CNT - 1);
3895 		error = msk_init_jumbo_rx_ring(sc_if);
3896 	 } else {
3897 		msk_set_prefetch(sc, sc_if->msk_rxq,
3898 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3899 		    MSK_RX_RING_CNT - 1);
3900 		error = msk_init_rx_ring(sc_if);
3901 	}
3902 	if (error != 0) {
3903 		device_printf(sc_if->msk_if_dev,
3904 		    "initialization failed: no memory for Rx buffers\n");
3905 		msk_stop(sc_if);
3906 		return;
3907 	}
3908 
3909 	/* Configure interrupt handling. */
3910 	if (sc_if->msk_port == MSK_PORT_A) {
3911 		sc->msk_intrmask |= Y2_IS_PORT_A;
3912 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3913 	} else {
3914 		sc->msk_intrmask |= Y2_IS_PORT_B;
3915 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3916 	}
3917 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3918 	CSR_READ_4(sc, B0_HWE_IMSK);
3919 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3920 	CSR_READ_4(sc, B0_IMSK);
3921 
3922 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
3923 	mii_mediachg(mii);
3924 
3925 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3926 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3927 
3928 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3929 }
3930 
3931 static void
3932 msk_set_rambuffer(struct msk_if_softc *sc_if)
3933 {
3934 	struct msk_softc *sc;
3935 	int ltpp, utpp;
3936 
3937 	sc = sc_if->msk_softc;
3938 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3939 		return;
3940 
3941 	/* Setup Rx Queue. */
3942 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3943 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3944 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3945 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3946 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3947 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3948 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3949 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3950 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3951 
3952 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3953 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3954 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3955 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3956 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3957 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3958 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3959 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3960 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3961 
3962 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3963 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3964 
3965 	/* Setup Tx Queue. */
3966 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3967 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3968 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3969 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3970 	    sc->msk_txqend[sc_if->msk_port] / 8);
3971 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3972 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3973 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3974 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3975 	/* Enable Store & Forward for Tx side. */
3976 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3977 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3978 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3979 }
3980 
3981 static void
3982 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3983     uint32_t count)
3984 {
3985 
3986 	/* Reset the prefetch unit. */
3987 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3988 	    PREF_UNIT_RST_SET);
3989 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3990 	    PREF_UNIT_RST_CLR);
3991 	/* Set LE base address. */
3992 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3993 	    MSK_ADDR_LO(addr));
3994 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3995 	    MSK_ADDR_HI(addr));
3996 	/* Set the list last index. */
3997 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3998 	    count);
3999 	/* Turn on prefetch unit. */
4000 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4001 	    PREF_UNIT_OP_ON);
4002 	/* Dummy read to ensure write. */
4003 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
4004 }
4005 
4006 static void
4007 msk_stop(struct msk_if_softc *sc_if)
4008 {
4009 	struct msk_softc *sc;
4010 	struct msk_txdesc *txd;
4011 	struct msk_rxdesc *rxd;
4012 	struct msk_rxdesc *jrxd;
4013 	struct ifnet *ifp;
4014 	uint32_t val;
4015 	int i;
4016 
4017 	MSK_IF_LOCK_ASSERT(sc_if);
4018 	sc = sc_if->msk_softc;
4019 	ifp = sc_if->msk_ifp;
4020 
4021 	callout_stop(&sc_if->msk_tick_ch);
4022 	sc_if->msk_watchdog_timer = 0;
4023 
4024 	/* Disable interrupts. */
4025 	if (sc_if->msk_port == MSK_PORT_A) {
4026 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
4027 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
4028 	} else {
4029 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
4030 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
4031 	}
4032 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4033 	CSR_READ_4(sc, B0_HWE_IMSK);
4034 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4035 	CSR_READ_4(sc, B0_IMSK);
4036 
4037 	/* Disable Tx/Rx MAC. */
4038 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4039 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
4040 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
4041 	/* Read again to ensure writing. */
4042 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4043 	/* Update stats and clear counters. */
4044 	msk_stats_update(sc_if);
4045 
4046 	/* Stop Tx BMU. */
4047 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
4048 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4049 	for (i = 0; i < MSK_TIMEOUT; i++) {
4050 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
4051 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4052 			    BMU_STOP);
4053 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4054 		} else
4055 			break;
4056 		DELAY(1);
4057 	}
4058 	if (i == MSK_TIMEOUT)
4059 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
4060 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
4061 	    RB_RST_SET | RB_DIS_OP_MD);
4062 
4063 	/* Disable all GMAC interrupt. */
4064 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
4065 	/* Disable PHY interrupt. */
4066 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
4067 
4068 	/* Disable the RAM Interface Arbiter. */
4069 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
4070 
4071 	/* Reset the PCI FIFO of the async Tx queue */
4072 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4073 	    BMU_RST_SET | BMU_FIFO_RST);
4074 
4075 	/* Reset the Tx prefetch units. */
4076 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
4077 	    PREF_UNIT_RST_SET);
4078 
4079 	/* Reset the RAM Buffer async Tx queue. */
4080 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
4081 
4082 	/* Reset Tx MAC FIFO. */
4083 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
4084 	/* Set Pause Off. */
4085 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
4086 
4087 	/*
4088 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
4089 	 * reach the end of packet and since we can't make sure that we have
4090 	 * incoming data, we must reset the BMU while it is not during a DMA
4091 	 * transfer. Since it is possible that the Rx path is still active,
4092 	 * the Rx RAM buffer will be stopped first, so any possible incoming
4093 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
4094 	 * BMU is polled until any DMA in progress is ended and only then it
4095 	 * will be reset.
4096 	 */
4097 
4098 	/* Disable the RAM Buffer receive queue. */
4099 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4100 	for (i = 0; i < MSK_TIMEOUT; i++) {
4101 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4102 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4103 			break;
4104 		DELAY(1);
4105 	}
4106 	if (i == MSK_TIMEOUT)
4107 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4108 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4109 	    BMU_RST_SET | BMU_FIFO_RST);
4110 	/* Reset the Rx prefetch unit. */
4111 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4112 	    PREF_UNIT_RST_SET);
4113 	/* Reset the RAM Buffer receive queue. */
4114 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4115 	/* Reset Rx MAC FIFO. */
4116 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4117 
4118 	/* Free Rx and Tx mbufs still in the queues. */
4119 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4120 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4121 		if (rxd->rx_m != NULL) {
4122 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4123 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4124 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4125 			    rxd->rx_dmamap);
4126 			m_freem(rxd->rx_m);
4127 			rxd->rx_m = NULL;
4128 		}
4129 	}
4130 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4131 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4132 		if (jrxd->rx_m != NULL) {
4133 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4134 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4135 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4136 			    jrxd->rx_dmamap);
4137 			m_freem(jrxd->rx_m);
4138 			jrxd->rx_m = NULL;
4139 		}
4140 	}
4141 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4142 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4143 		if (txd->tx_m != NULL) {
4144 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4145 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4146 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4147 			    txd->tx_dmamap);
4148 			m_freem(txd->tx_m);
4149 			txd->tx_m = NULL;
4150 		}
4151 	}
4152 
4153 	/*
4154 	 * Mark the interface down.
4155 	 */
4156 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4157 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4158 }
4159 
4160 /*
4161  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
4162  * counter clears high 16 bits of the counter such that accessing
4163  * lower 16 bits should be the last operation.
4164  */
4165 #define	MSK_READ_MIB32(x, y)					\
4166 	(((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) +	\
4167 	(uint32_t)GMAC_READ_2(sc, x, y)
4168 #define	MSK_READ_MIB64(x, y)					\
4169 	(((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) +	\
4170 	(uint64_t)MSK_READ_MIB32(x, y)
4171 
4172 static void
4173 msk_stats_clear(struct msk_if_softc *sc_if)
4174 {
4175 	struct msk_softc *sc;
4176 	uint32_t reg;
4177 	uint16_t gmac;
4178 	int i;
4179 
4180 	MSK_IF_LOCK_ASSERT(sc_if);
4181 
4182 	sc = sc_if->msk_softc;
4183 	/* Set MIB Clear Counter Mode. */
4184 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4185 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4186 	/* Read all MIB Counters with Clear Mode set. */
4187 	for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t))
4188 		reg = MSK_READ_MIB32(sc_if->msk_port, i);
4189 	/* Clear MIB Clear Counter Mode. */
4190 	gmac &= ~GM_PAR_MIB_CLR;
4191 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4192 }
4193 
4194 static void
4195 msk_stats_update(struct msk_if_softc *sc_if)
4196 {
4197 	struct msk_softc *sc;
4198 	struct ifnet *ifp;
4199 	struct msk_hw_stats *stats;
4200 	uint16_t gmac;
4201 	uint32_t reg;
4202 
4203 	MSK_IF_LOCK_ASSERT(sc_if);
4204 
4205 	ifp = sc_if->msk_ifp;
4206 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4207 		return;
4208 	sc = sc_if->msk_softc;
4209 	stats = &sc_if->msk_stats;
4210 	/* Set MIB Clear Counter Mode. */
4211 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4212 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4213 
4214 	/* Rx stats. */
4215 	stats->rx_ucast_frames +=
4216 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4217 	stats->rx_bcast_frames +=
4218 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4219 	stats->rx_pause_frames +=
4220 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4221 	stats->rx_mcast_frames +=
4222 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4223 	stats->rx_crc_errs +=
4224 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4225 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1);
4226 	stats->rx_good_octets +=
4227 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4228 	stats->rx_bad_octets +=
4229 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4230 	stats->rx_runts +=
4231 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4232 	stats->rx_runt_errs +=
4233 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4234 	stats->rx_pkts_64 +=
4235 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4236 	stats->rx_pkts_65_127 +=
4237 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4238 	stats->rx_pkts_128_255 +=
4239 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4240 	stats->rx_pkts_256_511 +=
4241 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4242 	stats->rx_pkts_512_1023 +=
4243 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4244 	stats->rx_pkts_1024_1518 +=
4245 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4246 	stats->rx_pkts_1519_max +=
4247 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4248 	stats->rx_pkts_too_long +=
4249 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4250 	stats->rx_pkts_jabbers +=
4251 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4252 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2);
4253 	stats->rx_fifo_oflows +=
4254 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4255 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3);
4256 
4257 	/* Tx stats. */
4258 	stats->tx_ucast_frames +=
4259 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4260 	stats->tx_bcast_frames +=
4261 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4262 	stats->tx_pause_frames +=
4263 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4264 	stats->tx_mcast_frames +=
4265 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4266 	stats->tx_octets +=
4267 	    MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4268 	stats->tx_pkts_64 +=
4269 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4270 	stats->tx_pkts_65_127 +=
4271 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4272 	stats->tx_pkts_128_255 +=
4273 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4274 	stats->tx_pkts_256_511 +=
4275 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4276 	stats->tx_pkts_512_1023 +=
4277 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4278 	stats->tx_pkts_1024_1518 +=
4279 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4280 	stats->tx_pkts_1519_max +=
4281 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4282 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1);
4283 	stats->tx_colls +=
4284 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4285 	stats->tx_late_colls +=
4286 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4287 	stats->tx_excess_colls +=
4288 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4289 	stats->tx_multi_colls +=
4290 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4291 	stats->tx_single_colls +=
4292 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4293 	stats->tx_underflows +=
4294 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4295 	/* Clear MIB Clear Counter Mode. */
4296 	gmac &= ~GM_PAR_MIB_CLR;
4297 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4298 }
4299 
4300 static int
4301 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4302 {
4303 	struct msk_softc *sc;
4304 	struct msk_if_softc *sc_if;
4305 	uint32_t result, *stat;
4306 	int off;
4307 
4308 	sc_if = (struct msk_if_softc *)arg1;
4309 	sc = sc_if->msk_softc;
4310 	off = arg2;
4311 	stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4312 
4313 	MSK_IF_LOCK(sc_if);
4314 	result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4315 	result += *stat;
4316 	MSK_IF_UNLOCK(sc_if);
4317 
4318 	return (sysctl_handle_int(oidp, &result, 0, req));
4319 }
4320 
4321 static int
4322 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4323 {
4324 	struct msk_softc *sc;
4325 	struct msk_if_softc *sc_if;
4326 	uint64_t result, *stat;
4327 	int off;
4328 
4329 	sc_if = (struct msk_if_softc *)arg1;
4330 	sc = sc_if->msk_softc;
4331 	off = arg2;
4332 	stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4333 
4334 	MSK_IF_LOCK(sc_if);
4335 	result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4336 	result += *stat;
4337 	MSK_IF_UNLOCK(sc_if);
4338 
4339 	return (sysctl_handle_quad(oidp, &result, 0, req));
4340 }
4341 
4342 #undef MSK_READ_MIB32
4343 #undef MSK_READ_MIB64
4344 
4345 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) 				\
4346 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4347 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32,	\
4348 	    "IU", d)
4349 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) 				\
4350 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4351 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64,	\
4352 	    "Q", d)
4353 
4354 static void
4355 msk_sysctl_node(struct msk_if_softc *sc_if)
4356 {
4357 	struct sysctl_ctx_list *ctx;
4358 	struct sysctl_oid_list *child, *schild;
4359 	struct sysctl_oid *tree;
4360 
4361 	ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4362 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4363 
4364 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
4365 	    NULL, "MSK Statistics");
4366 	schild = child = SYSCTL_CHILDREN(tree);
4367 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
4368 	    NULL, "MSK RX Statistics");
4369 	child = SYSCTL_CHILDREN(tree);
4370 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4371 	    child, rx_ucast_frames, "Good unicast frames");
4372 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4373 	    child, rx_bcast_frames, "Good broadcast frames");
4374 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4375 	    child, rx_pause_frames, "Pause frames");
4376 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4377 	    child, rx_mcast_frames, "Multicast frames");
4378 	MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4379 	    child, rx_crc_errs, "CRC errors");
4380 	MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4381 	    child, rx_good_octets, "Good octets");
4382 	MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4383 	    child, rx_bad_octets, "Bad octets");
4384 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4385 	    child, rx_pkts_64, "64 bytes frames");
4386 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4387 	    child, rx_pkts_65_127, "65 to 127 bytes frames");
4388 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4389 	    child, rx_pkts_128_255, "128 to 255 bytes frames");
4390 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4391 	    child, rx_pkts_256_511, "256 to 511 bytes frames");
4392 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4393 	    child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4394 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4395 	    child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4396 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4397 	    child, rx_pkts_1519_max, "1519 to max frames");
4398 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4399 	    child, rx_pkts_too_long, "frames too long");
4400 	MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4401 	    child, rx_pkts_jabbers, "Jabber errors");
4402 	MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4403 	    child, rx_fifo_oflows, "FIFO overflows");
4404 
4405 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
4406 	    NULL, "MSK TX Statistics");
4407 	child = SYSCTL_CHILDREN(tree);
4408 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4409 	    child, tx_ucast_frames, "Unicast frames");
4410 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4411 	    child, tx_bcast_frames, "Broadcast frames");
4412 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4413 	    child, tx_pause_frames, "Pause frames");
4414 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4415 	    child, tx_mcast_frames, "Multicast frames");
4416 	MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4417 	    child, tx_octets, "Octets");
4418 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4419 	    child, tx_pkts_64, "64 bytes frames");
4420 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4421 	    child, tx_pkts_65_127, "65 to 127 bytes frames");
4422 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4423 	    child, tx_pkts_128_255, "128 to 255 bytes frames");
4424 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4425 	    child, tx_pkts_256_511, "256 to 511 bytes frames");
4426 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4427 	    child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4428 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4429 	    child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4430 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4431 	    child, tx_pkts_1519_max, "1519 to max frames");
4432 	MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4433 	    child, tx_colls, "Collisions");
4434 	MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4435 	    child, tx_late_colls, "Late collisions");
4436 	MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4437 	    child, tx_excess_colls, "Excessive collisions");
4438 	MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4439 	    child, tx_multi_colls, "Multiple collisions");
4440 	MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4441 	    child, tx_single_colls, "Single collisions");
4442 	MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4443 	    child, tx_underflows, "FIFO underflows");
4444 }
4445 
4446 #undef MSK_SYSCTL_STAT32
4447 #undef MSK_SYSCTL_STAT64
4448 
4449 static int
4450 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4451 {
4452 	int error, value;
4453 
4454 	if (!arg1)
4455 		return (EINVAL);
4456 	value = *(int *)arg1;
4457 	error = sysctl_handle_int(oidp, &value, 0, req);
4458 	if (error || !req->newptr)
4459 		return (error);
4460 	if (value < low || value > high)
4461 		return (EINVAL);
4462 	*(int *)arg1 = value;
4463 
4464 	return (0);
4465 }
4466 
4467 static int
4468 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4469 {
4470 
4471 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4472 	    MSK_PROC_MAX));
4473 }
4474