xref: /freebsd/sys/dev/msk/if_msk.c (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * SPDX-License-Identifier: BSD-4-Clause AND BSD-3-Clause
50  *
51  * Copyright (c) 1997, 1998, 1999, 2000
52  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
53  *
54  * Redistribution and use in source and binary forms, with or without
55  * modification, are permitted provided that the following conditions
56  * are met:
57  * 1. Redistributions of source code must retain the above copyright
58  *    notice, this list of conditions and the following disclaimer.
59  * 2. Redistributions in binary form must reproduce the above copyright
60  *    notice, this list of conditions and the following disclaimer in the
61  *    documentation and/or other materials provided with the distribution.
62  * 3. All advertising materials mentioning features or use of this software
63  *    must display the following acknowledgement:
64  *	This product includes software developed by Bill Paul.
65  * 4. Neither the name of the author nor the names of any co-contributors
66  *    may be used to endorse or promote products derived from this software
67  *    without specific prior written permission.
68  *
69  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
70  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
71  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
72  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
79  * THE POSSIBILITY OF SUCH DAMAGE.
80  */
81 /*-
82  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
83  *
84  * Permission to use, copy, modify, and distribute this software for any
85  * purpose with or without fee is hereby granted, provided that the above
86  * copyright notice and this permission notice appear in all copies.
87  *
88  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
89  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
90  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
91  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
92  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
93  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
94  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
95  */
96 
97 /*
98  * Device driver for the Marvell Yukon II Ethernet controller.
99  * Due to lack of documentation, this driver is based on the code from
100  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
101  */
102 
103 #include <sys/cdefs.h>
104 __FBSDID("$FreeBSD$");
105 
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/bus.h>
109 #include <sys/endian.h>
110 #include <sys/mbuf.h>
111 #include <sys/malloc.h>
112 #include <sys/kernel.h>
113 #include <sys/module.h>
114 #include <sys/socket.h>
115 #include <sys/sockio.h>
116 #include <sys/queue.h>
117 #include <sys/sysctl.h>
118 
119 #include <net/bpf.h>
120 #include <net/ethernet.h>
121 #include <net/if.h>
122 #include <net/if_var.h>
123 #include <net/if_arp.h>
124 #include <net/if_dl.h>
125 #include <net/if_media.h>
126 #include <net/if_types.h>
127 #include <net/if_vlan_var.h>
128 
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/tcp.h>
133 #include <netinet/udp.h>
134 
135 #include <machine/bus.h>
136 #include <machine/in_cksum.h>
137 #include <machine/resource.h>
138 #include <sys/rman.h>
139 
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142 
143 #include <dev/pci/pcireg.h>
144 #include <dev/pci/pcivar.h>
145 
146 #include <dev/msk/if_mskreg.h>
147 
148 MODULE_DEPEND(msk, pci, 1, 1, 1);
149 MODULE_DEPEND(msk, ether, 1, 1, 1);
150 MODULE_DEPEND(msk, miibus, 1, 1, 1);
151 
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 /* Tunables. */
156 static int msi_disable = 0;
157 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
158 static int legacy_intr = 0;
159 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
160 static int jumbo_disable = 0;
161 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
162 
163 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
164 
165 /*
166  * Devices supported by this driver.
167  */
168 static const struct msk_product {
169 	uint16_t	msk_vendorid;
170 	uint16_t	msk_deviceid;
171 	const char	*msk_name;
172 } msk_products[] = {
173 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
174 	    "SK-9Sxx Gigabit Ethernet" },
175 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
176 	    "SK-9Exx Gigabit Ethernet"},
177 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
178 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
179 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
180 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
181 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
182 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
183 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
184 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
185 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
186 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
187 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
188 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
189 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
190 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
191 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
192 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
193 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
194 	    "Marvell Yukon 88E8035 Fast Ethernet" },
195 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
196 	    "Marvell Yukon 88E8036 Fast Ethernet" },
197 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
198 	    "Marvell Yukon 88E8038 Fast Ethernet" },
199 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
200 	    "Marvell Yukon 88E8039 Fast Ethernet" },
201 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
202 	    "Marvell Yukon 88E8040 Fast Ethernet" },
203 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
204 	    "Marvell Yukon 88E8040T Fast Ethernet" },
205 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
206 	    "Marvell Yukon 88E8042 Fast Ethernet" },
207 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
208 	    "Marvell Yukon 88E8048 Fast Ethernet" },
209 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
210 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
211 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
212 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
213 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
214 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
215 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
216 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
217 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
218 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
219 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
220 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
221 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
222 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
223 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
224 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
225 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
226 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
227 	{ VENDORID_MARVELL, DEVICEID_MRVL_436D,
228 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
229 	{ VENDORID_MARVELL, DEVICEID_MRVL_4370,
230 	    "Marvell Yukon 88E8075 Gigabit Ethernet" },
231 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
232 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
233 	{ VENDORID_MARVELL, DEVICEID_MRVL_4381,
234 	    "Marvell Yukon 88E8059 Gigabit Ethernet" },
235 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
236 	    "D-Link 550SX Gigabit Ethernet" },
237 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560SX,
238 	    "D-Link 560SX Gigabit Ethernet" },
239 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
240 	    "D-Link 560T Gigabit Ethernet" }
241 };
242 
243 static const char *model_name[] = {
244 	"Yukon XL",
245         "Yukon EC Ultra",
246         "Yukon EX",
247         "Yukon EC",
248         "Yukon FE",
249         "Yukon FE+",
250         "Yukon Supreme",
251         "Yukon Ultra 2",
252         "Yukon Unknown",
253         "Yukon Optima",
254 };
255 
256 static int mskc_probe(device_t);
257 static int mskc_attach(device_t);
258 static int mskc_detach(device_t);
259 static int mskc_shutdown(device_t);
260 static int mskc_setup_rambuffer(struct msk_softc *);
261 static int mskc_suspend(device_t);
262 static int mskc_resume(device_t);
263 static bus_dma_tag_t mskc_get_dma_tag(device_t, device_t);
264 static void mskc_reset(struct msk_softc *);
265 
266 static int msk_probe(device_t);
267 static int msk_attach(device_t);
268 static int msk_detach(device_t);
269 
270 static void msk_tick(void *);
271 static void msk_intr(void *);
272 static void msk_intr_phy(struct msk_if_softc *);
273 static void msk_intr_gmac(struct msk_if_softc *);
274 static __inline void msk_rxput(struct msk_if_softc *);
275 static int msk_handle_events(struct msk_softc *);
276 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
277 static void msk_intr_hwerr(struct msk_softc *);
278 #ifndef __NO_STRICT_ALIGNMENT
279 static __inline void msk_fixup_rx(struct mbuf *);
280 #endif
281 static __inline void msk_rxcsum(struct msk_if_softc *, uint32_t, struct mbuf *);
282 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
283 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
284 static void msk_txeof(struct msk_if_softc *, int);
285 static int msk_encap(struct msk_if_softc *, struct mbuf **);
286 static void msk_start(struct ifnet *);
287 static void msk_start_locked(struct ifnet *);
288 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
289 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
290 static void msk_set_rambuffer(struct msk_if_softc *);
291 static void msk_set_tx_stfwd(struct msk_if_softc *);
292 static void msk_init(void *);
293 static void msk_init_locked(struct msk_if_softc *);
294 static void msk_stop(struct msk_if_softc *);
295 static void msk_watchdog(struct msk_if_softc *);
296 static int msk_mediachange(struct ifnet *);
297 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
298 static void msk_phy_power(struct msk_softc *, int);
299 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
300 static int msk_status_dma_alloc(struct msk_softc *);
301 static void msk_status_dma_free(struct msk_softc *);
302 static int msk_txrx_dma_alloc(struct msk_if_softc *);
303 static int msk_rx_dma_jalloc(struct msk_if_softc *);
304 static void msk_txrx_dma_free(struct msk_if_softc *);
305 static void msk_rx_dma_jfree(struct msk_if_softc *);
306 static int msk_rx_fill(struct msk_if_softc *, int);
307 static int msk_init_rx_ring(struct msk_if_softc *);
308 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
309 static void msk_init_tx_ring(struct msk_if_softc *);
310 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
311 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
312 static int msk_newbuf(struct msk_if_softc *, int);
313 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
314 
315 static int msk_phy_readreg(struct msk_if_softc *, int, int);
316 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
317 static int msk_miibus_readreg(device_t, int, int);
318 static int msk_miibus_writereg(device_t, int, int, int);
319 static void msk_miibus_statchg(device_t);
320 
321 static void msk_rxfilter(struct msk_if_softc *);
322 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
323 
324 static void msk_stats_clear(struct msk_if_softc *);
325 static void msk_stats_update(struct msk_if_softc *);
326 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
327 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
328 static void msk_sysctl_node(struct msk_if_softc *);
329 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
330 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
331 
332 static device_method_t mskc_methods[] = {
333 	/* Device interface */
334 	DEVMETHOD(device_probe,		mskc_probe),
335 	DEVMETHOD(device_attach,	mskc_attach),
336 	DEVMETHOD(device_detach,	mskc_detach),
337 	DEVMETHOD(device_suspend,	mskc_suspend),
338 	DEVMETHOD(device_resume,	mskc_resume),
339 	DEVMETHOD(device_shutdown,	mskc_shutdown),
340 
341 	DEVMETHOD(bus_get_dma_tag,	mskc_get_dma_tag),
342 
343 	DEVMETHOD_END
344 };
345 
346 static driver_t mskc_driver = {
347 	"mskc",
348 	mskc_methods,
349 	sizeof(struct msk_softc)
350 };
351 
352 static device_method_t msk_methods[] = {
353 	/* Device interface */
354 	DEVMETHOD(device_probe,		msk_probe),
355 	DEVMETHOD(device_attach,	msk_attach),
356 	DEVMETHOD(device_detach,	msk_detach),
357 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
358 
359 	/* MII interface */
360 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
361 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
362 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
363 
364 	DEVMETHOD_END
365 };
366 
367 static driver_t msk_driver = {
368 	"msk",
369 	msk_methods,
370 	sizeof(struct msk_if_softc)
371 };
372 
373 DRIVER_MODULE(mskc, pci, mskc_driver, NULL, NULL);
374 DRIVER_MODULE(msk, mskc, msk_driver, NULL, NULL);
375 DRIVER_MODULE(miibus, msk, miibus_driver, NULL, NULL);
376 
377 static struct resource_spec msk_res_spec_io[] = {
378 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
379 	{ -1,			0,		0 }
380 };
381 
382 static struct resource_spec msk_res_spec_mem[] = {
383 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
384 	{ -1,			0,		0 }
385 };
386 
387 static struct resource_spec msk_irq_spec_legacy[] = {
388 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
389 	{ -1,			0,		0 }
390 };
391 
392 static struct resource_spec msk_irq_spec_msi[] = {
393 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
394 	{ -1,			0,		0 }
395 };
396 
397 static int
398 msk_miibus_readreg(device_t dev, int phy, int reg)
399 {
400 	struct msk_if_softc *sc_if;
401 
402 	sc_if = device_get_softc(dev);
403 
404 	return (msk_phy_readreg(sc_if, phy, reg));
405 }
406 
407 static int
408 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
409 {
410 	struct msk_softc *sc;
411 	int i, val;
412 
413 	sc = sc_if->msk_softc;
414 
415         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
416 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
417 
418 	for (i = 0; i < MSK_TIMEOUT; i++) {
419 		DELAY(1);
420 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
421 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
422 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
423 			break;
424 		}
425 	}
426 
427 	if (i == MSK_TIMEOUT) {
428 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
429 		val = 0;
430 	}
431 
432 	return (val);
433 }
434 
435 static int
436 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
437 {
438 	struct msk_if_softc *sc_if;
439 
440 	sc_if = device_get_softc(dev);
441 
442 	return (msk_phy_writereg(sc_if, phy, reg, val));
443 }
444 
445 static int
446 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
447 {
448 	struct msk_softc *sc;
449 	int i;
450 
451 	sc = sc_if->msk_softc;
452 
453 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
454         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
455 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
456 	for (i = 0; i < MSK_TIMEOUT; i++) {
457 		DELAY(1);
458 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
459 		    GM_SMI_CT_BUSY) == 0)
460 			break;
461 	}
462 	if (i == MSK_TIMEOUT)
463 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
464 
465 	return (0);
466 }
467 
468 static void
469 msk_miibus_statchg(device_t dev)
470 {
471 	struct msk_softc *sc;
472 	struct msk_if_softc *sc_if;
473 	struct mii_data *mii;
474 	struct ifnet *ifp;
475 	uint32_t gmac;
476 
477 	sc_if = device_get_softc(dev);
478 	sc = sc_if->msk_softc;
479 
480 	MSK_IF_LOCK_ASSERT(sc_if);
481 
482 	mii = device_get_softc(sc_if->msk_miibus);
483 	ifp = sc_if->msk_ifp;
484 	if (mii == NULL || ifp == NULL ||
485 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
486 		return;
487 
488 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
489 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
490 	    (IFM_AVALID | IFM_ACTIVE)) {
491 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
492 		case IFM_10_T:
493 		case IFM_100_TX:
494 			sc_if->msk_flags |= MSK_FLAG_LINK;
495 			break;
496 		case IFM_1000_T:
497 		case IFM_1000_SX:
498 		case IFM_1000_LX:
499 		case IFM_1000_CX:
500 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
501 				sc_if->msk_flags |= MSK_FLAG_LINK;
502 			break;
503 		default:
504 			break;
505 		}
506 	}
507 
508 	if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) {
509 		/* Enable Tx FIFO Underrun. */
510 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
511 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
512 		/*
513 		 * Because mii(4) notify msk(4) that it detected link status
514 		 * change, there is no need to enable automatic
515 		 * speed/flow-control/duplex updates.
516 		 */
517 		gmac = GM_GPCR_AU_ALL_DIS;
518 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
519 		case IFM_1000_SX:
520 		case IFM_1000_T:
521 			gmac |= GM_GPCR_SPEED_1000;
522 			break;
523 		case IFM_100_TX:
524 			gmac |= GM_GPCR_SPEED_100;
525 			break;
526 		case IFM_10_T:
527 			break;
528 		}
529 
530 		if ((IFM_OPTIONS(mii->mii_media_active) &
531 		    IFM_ETH_RXPAUSE) == 0)
532 			gmac |= GM_GPCR_FC_RX_DIS;
533 		if ((IFM_OPTIONS(mii->mii_media_active) &
534 		     IFM_ETH_TXPAUSE) == 0)
535 			gmac |= GM_GPCR_FC_TX_DIS;
536 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
537 			gmac |= GM_GPCR_DUP_FULL;
538 		else
539 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
540 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
541 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
542 		/* Read again to ensure writing. */
543 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
544 		gmac = GMC_PAUSE_OFF;
545 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
546 			if ((IFM_OPTIONS(mii->mii_media_active) &
547 			    IFM_ETH_RXPAUSE) != 0)
548 				gmac = GMC_PAUSE_ON;
549 		}
550 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
551 
552 		/* Enable PHY interrupt for FIFO underrun/overflow. */
553 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
554 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
555 	} else {
556 		/*
557 		 * Link state changed to down.
558 		 * Disable PHY interrupts.
559 		 */
560 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
561 		/* Disable Rx/Tx MAC. */
562 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
563 		if ((gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) != 0) {
564 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
565 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
566 			/* Read again to ensure writing. */
567 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
568 		}
569 	}
570 }
571 
572 static u_int
573 msk_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
574 {
575 	uint32_t *mchash = arg;
576 	uint32_t crc;
577 
578 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
579 	/* Just want the 6 least significant bits. */
580 	crc &= 0x3f;
581 	/* Set the corresponding bit in the hash table. */
582 	mchash[crc >> 5] |= 1 << (crc & 0x1f);
583 
584 	return (1);
585 }
586 
587 static void
588 msk_rxfilter(struct msk_if_softc *sc_if)
589 {
590 	struct msk_softc *sc;
591 	struct ifnet *ifp;
592 	uint32_t mchash[2];
593 	uint16_t mode;
594 
595 	sc = sc_if->msk_softc;
596 
597 	MSK_IF_LOCK_ASSERT(sc_if);
598 
599 	ifp = sc_if->msk_ifp;
600 
601 	bzero(mchash, sizeof(mchash));
602 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
603 	if ((ifp->if_flags & IFF_PROMISC) != 0)
604 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
605 	else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
606 		mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
607 		mchash[0] = 0xffff;
608 		mchash[1] = 0xffff;
609 	} else {
610 		mode |= GM_RXCR_UCF_ENA;
611 		if_foreach_llmaddr(ifp, msk_hash_maddr, mchash);
612 		if (mchash[0] != 0 || mchash[1] != 0)
613 			mode |= GM_RXCR_MCF_ENA;
614 	}
615 
616 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
617 	    mchash[0] & 0xffff);
618 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
619 	    (mchash[0] >> 16) & 0xffff);
620 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
621 	    mchash[1] & 0xffff);
622 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
623 	    (mchash[1] >> 16) & 0xffff);
624 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
625 }
626 
627 static void
628 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
629 {
630 	struct msk_softc *sc;
631 
632 	sc = sc_if->msk_softc;
633 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
634 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
635 		    RX_VLAN_STRIP_ON);
636 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
637 		    TX_VLAN_TAG_ON);
638 	} else {
639 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
640 		    RX_VLAN_STRIP_OFF);
641 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
642 		    TX_VLAN_TAG_OFF);
643 	}
644 }
645 
646 static int
647 msk_rx_fill(struct msk_if_softc *sc_if, int jumbo)
648 {
649 	uint16_t idx;
650 	int i;
651 
652 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
653 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
654 		/* Wait until controller executes OP_TCPSTART command. */
655 		for (i = 100; i > 0; i--) {
656 			DELAY(100);
657 			idx = CSR_READ_2(sc_if->msk_softc,
658 			    Y2_PREF_Q_ADDR(sc_if->msk_rxq,
659 			    PREF_UNIT_GET_IDX_REG));
660 			if (idx != 0)
661 				break;
662 		}
663 		if (i == 0) {
664 			device_printf(sc_if->msk_if_dev,
665 			    "prefetch unit stuck?\n");
666 			return (ETIMEDOUT);
667 		}
668 		/*
669 		 * Fill consumed LE with free buffer. This can be done
670 		 * in Rx handler but we don't want to add special code
671 		 * in fast handler.
672 		 */
673 		if (jumbo > 0) {
674 			if (msk_jumbo_newbuf(sc_if, 0) != 0)
675 				return (ENOBUFS);
676 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
677 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
678 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
679 		} else {
680 			if (msk_newbuf(sc_if, 0) != 0)
681 				return (ENOBUFS);
682 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
683 			    sc_if->msk_cdata.msk_rx_ring_map,
684 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
685 		}
686 		sc_if->msk_cdata.msk_rx_prod = 0;
687 		CSR_WRITE_2(sc_if->msk_softc,
688 		    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
689 		    sc_if->msk_cdata.msk_rx_prod);
690 	}
691 	return (0);
692 }
693 
694 static int
695 msk_init_rx_ring(struct msk_if_softc *sc_if)
696 {
697 	struct msk_ring_data *rd;
698 	struct msk_rxdesc *rxd;
699 	int i, nbuf, prod;
700 
701 	MSK_IF_LOCK_ASSERT(sc_if);
702 
703 	sc_if->msk_cdata.msk_rx_cons = 0;
704 	sc_if->msk_cdata.msk_rx_prod = 0;
705 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
706 
707 	rd = &sc_if->msk_rdata;
708 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
709 	for (i = prod = 0; i < MSK_RX_RING_CNT; i++) {
710 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
711 		rxd->rx_m = NULL;
712 		rxd->rx_le = &rd->msk_rx_ring[prod];
713 		MSK_INC(prod, MSK_RX_RING_CNT);
714 	}
715 	nbuf = MSK_RX_BUF_CNT;
716 	prod = 0;
717 	/* Have controller know how to compute Rx checksum. */
718 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
719 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
720 #ifdef MSK_64BIT_DMA
721 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
722 		rxd->rx_m = NULL;
723 		rxd->rx_le = &rd->msk_rx_ring[prod];
724 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
725 		    ETHER_HDR_LEN);
726 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
727 		MSK_INC(prod, MSK_RX_RING_CNT);
728 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
729 #endif
730 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
731 		rxd->rx_m = NULL;
732 		rxd->rx_le = &rd->msk_rx_ring[prod];
733 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
734 		    ETHER_HDR_LEN);
735 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
736 		MSK_INC(prod, MSK_RX_RING_CNT);
737 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
738 		nbuf--;
739 	}
740 	for (i = 0; i < nbuf; i++) {
741 		if (msk_newbuf(sc_if, prod) != 0)
742 			return (ENOBUFS);
743 		MSK_RX_INC(prod, MSK_RX_RING_CNT);
744 	}
745 
746 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
747 	    sc_if->msk_cdata.msk_rx_ring_map,
748 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
749 
750 	/* Update prefetch unit. */
751 	sc_if->msk_cdata.msk_rx_prod = prod;
752 	CSR_WRITE_2(sc_if->msk_softc,
753 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
754 	    (sc_if->msk_cdata.msk_rx_prod + MSK_RX_RING_CNT - 1) %
755 	    MSK_RX_RING_CNT);
756 	if (msk_rx_fill(sc_if, 0) != 0)
757 		return (ENOBUFS);
758 	return (0);
759 }
760 
761 static int
762 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
763 {
764 	struct msk_ring_data *rd;
765 	struct msk_rxdesc *rxd;
766 	int i, nbuf, prod;
767 
768 	MSK_IF_LOCK_ASSERT(sc_if);
769 
770 	sc_if->msk_cdata.msk_rx_cons = 0;
771 	sc_if->msk_cdata.msk_rx_prod = 0;
772 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
773 
774 	rd = &sc_if->msk_rdata;
775 	bzero(rd->msk_jumbo_rx_ring,
776 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
777 	for (i = prod = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
778 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
779 		rxd->rx_m = NULL;
780 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
781 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
782 	}
783 	nbuf = MSK_RX_BUF_CNT;
784 	prod = 0;
785 	/* Have controller know how to compute Rx checksum. */
786 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
787 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
788 #ifdef MSK_64BIT_DMA
789 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
790 		rxd->rx_m = NULL;
791 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
792 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
793 		    ETHER_HDR_LEN);
794 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
795 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
796 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
797 #endif
798 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
799 		rxd->rx_m = NULL;
800 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
801 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
802 		    ETHER_HDR_LEN);
803 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
804 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
805 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
806 		nbuf--;
807 	}
808 	for (i = 0; i < nbuf; i++) {
809 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
810 			return (ENOBUFS);
811 		MSK_RX_INC(prod, MSK_JUMBO_RX_RING_CNT);
812 	}
813 
814 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
815 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
816 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
817 
818 	/* Update prefetch unit. */
819 	sc_if->msk_cdata.msk_rx_prod = prod;
820 	CSR_WRITE_2(sc_if->msk_softc,
821 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
822 	    (sc_if->msk_cdata.msk_rx_prod + MSK_JUMBO_RX_RING_CNT - 1) %
823 	    MSK_JUMBO_RX_RING_CNT);
824 	if (msk_rx_fill(sc_if, 1) != 0)
825 		return (ENOBUFS);
826 	return (0);
827 }
828 
829 static void
830 msk_init_tx_ring(struct msk_if_softc *sc_if)
831 {
832 	struct msk_ring_data *rd;
833 	struct msk_txdesc *txd;
834 	int i;
835 
836 	sc_if->msk_cdata.msk_tso_mtu = 0;
837 	sc_if->msk_cdata.msk_last_csum = 0;
838 	sc_if->msk_cdata.msk_tx_prod = 0;
839 	sc_if->msk_cdata.msk_tx_cons = 0;
840 	sc_if->msk_cdata.msk_tx_cnt = 0;
841 	sc_if->msk_cdata.msk_tx_high_addr = 0;
842 
843 	rd = &sc_if->msk_rdata;
844 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
845 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
846 		txd = &sc_if->msk_cdata.msk_txdesc[i];
847 		txd->tx_m = NULL;
848 		txd->tx_le = &rd->msk_tx_ring[i];
849 	}
850 
851 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
852 	    sc_if->msk_cdata.msk_tx_ring_map,
853 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
854 }
855 
856 static __inline void
857 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
858 {
859 	struct msk_rx_desc *rx_le;
860 	struct msk_rxdesc *rxd;
861 	struct mbuf *m;
862 
863 #ifdef MSK_64BIT_DMA
864 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
865 	rx_le = rxd->rx_le;
866 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
867 	MSK_INC(idx, MSK_RX_RING_CNT);
868 #endif
869 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
870 	m = rxd->rx_m;
871 	rx_le = rxd->rx_le;
872 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
873 }
874 
875 static __inline void
876 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
877 {
878 	struct msk_rx_desc *rx_le;
879 	struct msk_rxdesc *rxd;
880 	struct mbuf *m;
881 
882 #ifdef MSK_64BIT_DMA
883 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
884 	rx_le = rxd->rx_le;
885 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
886 	MSK_INC(idx, MSK_JUMBO_RX_RING_CNT);
887 #endif
888 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
889 	m = rxd->rx_m;
890 	rx_le = rxd->rx_le;
891 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
892 }
893 
894 static int
895 msk_newbuf(struct msk_if_softc *sc_if, int idx)
896 {
897 	struct msk_rx_desc *rx_le;
898 	struct msk_rxdesc *rxd;
899 	struct mbuf *m;
900 	bus_dma_segment_t segs[1];
901 	bus_dmamap_t map;
902 	int nsegs;
903 
904 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
905 	if (m == NULL)
906 		return (ENOBUFS);
907 
908 	m->m_len = m->m_pkthdr.len = MCLBYTES;
909 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
910 		m_adj(m, ETHER_ALIGN);
911 #ifndef __NO_STRICT_ALIGNMENT
912 	else
913 		m_adj(m, MSK_RX_BUF_ALIGN);
914 #endif
915 
916 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
917 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
918 	    BUS_DMA_NOWAIT) != 0) {
919 		m_freem(m);
920 		return (ENOBUFS);
921 	}
922 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
923 
924 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
925 #ifdef MSK_64BIT_DMA
926 	rx_le = rxd->rx_le;
927 	rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr));
928 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
929 	MSK_INC(idx, MSK_RX_RING_CNT);
930 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
931 #endif
932 	if (rxd->rx_m != NULL) {
933 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
934 		    BUS_DMASYNC_POSTREAD);
935 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
936 		rxd->rx_m = NULL;
937 	}
938 	map = rxd->rx_dmamap;
939 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
940 	sc_if->msk_cdata.msk_rx_sparemap = map;
941 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
942 	    BUS_DMASYNC_PREREAD);
943 	rxd->rx_m = m;
944 	rx_le = rxd->rx_le;
945 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
946 	rx_le->msk_control =
947 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
948 
949 	return (0);
950 }
951 
952 static int
953 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
954 {
955 	struct msk_rx_desc *rx_le;
956 	struct msk_rxdesc *rxd;
957 	struct mbuf *m;
958 	bus_dma_segment_t segs[1];
959 	bus_dmamap_t map;
960 	int nsegs;
961 
962 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
963 	if (m == NULL)
964 		return (ENOBUFS);
965 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
966 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
967 		m_adj(m, ETHER_ALIGN);
968 #ifndef __NO_STRICT_ALIGNMENT
969 	else
970 		m_adj(m, MSK_RX_BUF_ALIGN);
971 #endif
972 
973 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
974 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
975 	    BUS_DMA_NOWAIT) != 0) {
976 		m_freem(m);
977 		return (ENOBUFS);
978 	}
979 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
980 
981 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
982 #ifdef MSK_64BIT_DMA
983 	rx_le = rxd->rx_le;
984 	rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr));
985 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
986 	MSK_INC(idx, MSK_JUMBO_RX_RING_CNT);
987 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
988 #endif
989 	if (rxd->rx_m != NULL) {
990 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
991 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
992 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
993 		    rxd->rx_dmamap);
994 		rxd->rx_m = NULL;
995 	}
996 	map = rxd->rx_dmamap;
997 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
998 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
999 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
1000 	    BUS_DMASYNC_PREREAD);
1001 	rxd->rx_m = m;
1002 	rx_le = rxd->rx_le;
1003 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
1004 	rx_le->msk_control =
1005 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
1006 
1007 	return (0);
1008 }
1009 
1010 /*
1011  * Set media options.
1012  */
1013 static int
1014 msk_mediachange(struct ifnet *ifp)
1015 {
1016 	struct msk_if_softc *sc_if;
1017 	struct mii_data	*mii;
1018 	int error;
1019 
1020 	sc_if = ifp->if_softc;
1021 
1022 	MSK_IF_LOCK(sc_if);
1023 	mii = device_get_softc(sc_if->msk_miibus);
1024 	error = mii_mediachg(mii);
1025 	MSK_IF_UNLOCK(sc_if);
1026 
1027 	return (error);
1028 }
1029 
1030 /*
1031  * Report current media status.
1032  */
1033 static void
1034 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1035 {
1036 	struct msk_if_softc *sc_if;
1037 	struct mii_data	*mii;
1038 
1039 	sc_if = ifp->if_softc;
1040 	MSK_IF_LOCK(sc_if);
1041 	if ((ifp->if_flags & IFF_UP) == 0) {
1042 		MSK_IF_UNLOCK(sc_if);
1043 		return;
1044 	}
1045 	mii = device_get_softc(sc_if->msk_miibus);
1046 
1047 	mii_pollstat(mii);
1048 	ifmr->ifm_active = mii->mii_media_active;
1049 	ifmr->ifm_status = mii->mii_media_status;
1050 	MSK_IF_UNLOCK(sc_if);
1051 }
1052 
1053 static int
1054 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1055 {
1056 	struct msk_if_softc *sc_if;
1057 	struct ifreq *ifr;
1058 	struct mii_data	*mii;
1059 	int error, mask, reinit;
1060 
1061 	sc_if = ifp->if_softc;
1062 	ifr = (struct ifreq *)data;
1063 	error = 0;
1064 
1065 	switch(command) {
1066 	case SIOCSIFMTU:
1067 		MSK_IF_LOCK(sc_if);
1068 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
1069 			error = EINVAL;
1070 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1071 			if (ifr->ifr_mtu > ETHERMTU) {
1072 				if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
1073 					error = EINVAL;
1074 					MSK_IF_UNLOCK(sc_if);
1075 					break;
1076 				}
1077 				if ((sc_if->msk_flags &
1078 				    MSK_FLAG_JUMBO_NOCSUM) != 0) {
1079 					ifp->if_hwassist &=
1080 					    ~(MSK_CSUM_FEATURES | CSUM_TSO);
1081 					ifp->if_capenable &=
1082 					    ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1083 					VLAN_CAPABILITIES(ifp);
1084 				}
1085 			}
1086 			ifp->if_mtu = ifr->ifr_mtu;
1087 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1088 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1089 				msk_init_locked(sc_if);
1090 			}
1091 		}
1092 		MSK_IF_UNLOCK(sc_if);
1093 		break;
1094 	case SIOCSIFFLAGS:
1095 		MSK_IF_LOCK(sc_if);
1096 		if ((ifp->if_flags & IFF_UP) != 0) {
1097 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1098 			    ((ifp->if_flags ^ sc_if->msk_if_flags) &
1099 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1100 				msk_rxfilter(sc_if);
1101 			else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0)
1102 				msk_init_locked(sc_if);
1103 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1104 			msk_stop(sc_if);
1105 		sc_if->msk_if_flags = ifp->if_flags;
1106 		MSK_IF_UNLOCK(sc_if);
1107 		break;
1108 	case SIOCADDMULTI:
1109 	case SIOCDELMULTI:
1110 		MSK_IF_LOCK(sc_if);
1111 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1112 			msk_rxfilter(sc_if);
1113 		MSK_IF_UNLOCK(sc_if);
1114 		break;
1115 	case SIOCGIFMEDIA:
1116 	case SIOCSIFMEDIA:
1117 		mii = device_get_softc(sc_if->msk_miibus);
1118 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1119 		break;
1120 	case SIOCSIFCAP:
1121 		reinit = 0;
1122 		MSK_IF_LOCK(sc_if);
1123 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1124 		if ((mask & IFCAP_TXCSUM) != 0 &&
1125 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1126 			ifp->if_capenable ^= IFCAP_TXCSUM;
1127 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
1128 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
1129 			else
1130 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
1131 		}
1132 		if ((mask & IFCAP_RXCSUM) != 0 &&
1133 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
1134 			ifp->if_capenable ^= IFCAP_RXCSUM;
1135 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1136 				reinit = 1;
1137 		}
1138 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1139 		    (IFCAP_VLAN_HWCSUM & ifp->if_capabilities) != 0)
1140 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1141 		if ((mask & IFCAP_TSO4) != 0 &&
1142 		    (IFCAP_TSO4 & ifp->if_capabilities) != 0) {
1143 			ifp->if_capenable ^= IFCAP_TSO4;
1144 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1145 				ifp->if_hwassist |= CSUM_TSO;
1146 			else
1147 				ifp->if_hwassist &= ~CSUM_TSO;
1148 		}
1149 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1150 		    (IFCAP_VLAN_HWTSO & ifp->if_capabilities) != 0)
1151 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1152 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1153 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
1154 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1155 			if ((IFCAP_VLAN_HWTAGGING & ifp->if_capenable) == 0)
1156 				ifp->if_capenable &=
1157 				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1158 			msk_setvlan(sc_if, ifp);
1159 		}
1160 		if (ifp->if_mtu > ETHERMTU &&
1161 		    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
1162 			ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
1163 			ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1164 		}
1165 		VLAN_CAPABILITIES(ifp);
1166 		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1167 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1168 			msk_init_locked(sc_if);
1169 		}
1170 		MSK_IF_UNLOCK(sc_if);
1171 		break;
1172 	default:
1173 		error = ether_ioctl(ifp, command, data);
1174 		break;
1175 	}
1176 
1177 	return (error);
1178 }
1179 
1180 static int
1181 mskc_probe(device_t dev)
1182 {
1183 	const struct msk_product *mp;
1184 	uint16_t vendor, devid;
1185 	int i;
1186 
1187 	vendor = pci_get_vendor(dev);
1188 	devid = pci_get_device(dev);
1189 	mp = msk_products;
1190 	for (i = 0; i < nitems(msk_products); i++, mp++) {
1191 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1192 			device_set_desc(dev, mp->msk_name);
1193 			return (BUS_PROBE_DEFAULT);
1194 		}
1195 	}
1196 
1197 	return (ENXIO);
1198 }
1199 
1200 static int
1201 mskc_setup_rambuffer(struct msk_softc *sc)
1202 {
1203 	int next;
1204 	int i;
1205 
1206 	/* Get adapter SRAM size. */
1207 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1208 	if (bootverbose)
1209 		device_printf(sc->msk_dev,
1210 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1211 	if (sc->msk_ramsize == 0)
1212 		return (0);
1213 
1214 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1215 	/*
1216 	 * Give receiver 2/3 of memory and round down to the multiple
1217 	 * of 1024. Tx/Rx RAM buffer size of Yukon II should be multiple
1218 	 * of 1024.
1219 	 */
1220 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1221 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1222 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1223 		sc->msk_rxqstart[i] = next;
1224 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1225 		next = sc->msk_rxqend[i] + 1;
1226 		sc->msk_txqstart[i] = next;
1227 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1228 		next = sc->msk_txqend[i] + 1;
1229 		if (bootverbose) {
1230 			device_printf(sc->msk_dev,
1231 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1232 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1233 			    sc->msk_rxqend[i]);
1234 			device_printf(sc->msk_dev,
1235 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1236 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1237 			    sc->msk_txqend[i]);
1238 		}
1239 	}
1240 
1241 	return (0);
1242 }
1243 
1244 static void
1245 msk_phy_power(struct msk_softc *sc, int mode)
1246 {
1247 	uint32_t our, val;
1248 	int i;
1249 
1250 	switch (mode) {
1251 	case MSK_PHY_POWERUP:
1252 		/* Switch power to VCC (WA for VAUX problem). */
1253 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1254 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1255 		/* Disable Core Clock Division, set Clock Select to 0. */
1256 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1257 
1258 		val = 0;
1259 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1260 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1261 			/* Enable bits are inverted. */
1262 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1263 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1264 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1265 		}
1266 		/*
1267 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1268 		 */
1269 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1270 
1271 		our = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1272 		our &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1273 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1274 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1275 				/* Deassert Low Power for 1st PHY. */
1276 				our |= PCI_Y2_PHY1_COMA;
1277 				if (sc->msk_num_port > 1)
1278 					our |= PCI_Y2_PHY2_COMA;
1279 			}
1280 		}
1281 		if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U ||
1282 		    sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1283 		    sc->msk_hw_id >= CHIP_ID_YUKON_FE_P) {
1284 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1285 			val &= (PCI_FORCE_ASPM_REQUEST |
1286 			    PCI_ASPM_GPHY_LINK_DOWN | PCI_ASPM_INT_FIFO_EMPTY |
1287 			    PCI_ASPM_CLKRUN_REQUEST);
1288 			/* Set all bits to 0 except bits 15..12. */
1289 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, val);
1290 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1291 			val &= PCI_CTL_TIM_VMAIN_AV_MSK;
1292 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, val);
1293 			CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1294 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1295 			/*
1296 			 * Disable status race, workaround for
1297 			 * Yukon EC Ultra & Yukon EX.
1298 			 */
1299 			val = CSR_READ_4(sc, B2_GP_IO);
1300 			val |= GLB_GPIO_STAT_RACE_DIS;
1301 			CSR_WRITE_4(sc, B2_GP_IO, val);
1302 			CSR_READ_4(sc, B2_GP_IO);
1303 		}
1304 		/* Release PHY from PowerDown/COMA mode. */
1305 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, our);
1306 
1307 		for (i = 0; i < sc->msk_num_port; i++) {
1308 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1309 			    GMLC_RST_SET);
1310 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1311 			    GMLC_RST_CLR);
1312 		}
1313 		break;
1314 	case MSK_PHY_POWERDOWN:
1315 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1316 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1317 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1318 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1319 			val &= ~PCI_Y2_PHY1_COMA;
1320 			if (sc->msk_num_port > 1)
1321 				val &= ~PCI_Y2_PHY2_COMA;
1322 		}
1323 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1324 
1325 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1326 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1327 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1328 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1329 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1330 			/* Enable bits are inverted. */
1331 			val = 0;
1332 		}
1333 		/*
1334 		 * Disable PCI & Core Clock, disable clock gating for
1335 		 * both Links.
1336 		 */
1337 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1338 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1339 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1340 		break;
1341 	default:
1342 		break;
1343 	}
1344 }
1345 
1346 static void
1347 mskc_reset(struct msk_softc *sc)
1348 {
1349 	bus_addr_t addr;
1350 	uint16_t status;
1351 	uint32_t val;
1352 	int i, initram;
1353 
1354 	/* Disable ASF. */
1355 	if (sc->msk_hw_id >= CHIP_ID_YUKON_XL &&
1356 	    sc->msk_hw_id <= CHIP_ID_YUKON_SUPR) {
1357 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1358 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1359 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1360 			status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1361 			/* Clear AHB bridge & microcontroller reset. */
1362 			status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1363 			    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1364 			/* Clear ASF microcontroller state. */
1365 			status &= ~Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1366 			status &= ~Y2_ASF_HCU_CCSR_CPU_CLK_DIVIDE_MSK;
1367 			CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1368 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1369 		} else
1370 			CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1371 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1372 		/*
1373 		 * Since we disabled ASF, S/W reset is required for
1374 		 * Power Management.
1375 		 */
1376 		CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1377 		CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1378 	}
1379 
1380 	/* Clear all error bits in the PCI status register. */
1381 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1382 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1383 
1384 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1385 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1386 	    PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
1387 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1388 
1389 	switch (sc->msk_bustype) {
1390 	case MSK_PEX_BUS:
1391 		/* Clear all PEX errors. */
1392 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1393 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1394 		if ((val & PEX_RX_OV) != 0) {
1395 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1396 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1397 		}
1398 		break;
1399 	case MSK_PCI_BUS:
1400 	case MSK_PCIX_BUS:
1401 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1402 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1403 		if (val == 0)
1404 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1405 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1406 			/* Set Cache Line Size opt. */
1407 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1408 			val |= PCI_CLS_OPT;
1409 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1410 		}
1411 		break;
1412 	}
1413 	/* Set PHY power state. */
1414 	msk_phy_power(sc, MSK_PHY_POWERUP);
1415 
1416 	/* Reset GPHY/GMAC Control */
1417 	for (i = 0; i < sc->msk_num_port; i++) {
1418 		/* GPHY Control reset. */
1419 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1420 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1421 		/* GMAC Control reset. */
1422 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1423 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1424 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1425 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1426 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR)
1427 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1428 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1429 			    GMC_BYP_RETR_ON);
1430 	}
1431 
1432 	if (sc->msk_hw_id == CHIP_ID_YUKON_SUPR &&
1433 	    sc->msk_hw_rev > CHIP_REV_YU_SU_B0)
1434 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, PCI_CLK_MACSEC_DIS);
1435 	if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) {
1436 		/* Disable PCIe PHY powerdown(reg 0x80, bit7). */
1437 		CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080);
1438 	}
1439 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1440 
1441 	/* LED On. */
1442 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1443 
1444 	/* Clear TWSI IRQ. */
1445 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1446 
1447 	/* Turn off hardware timer. */
1448 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1449 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1450 
1451 	/* Turn off descriptor polling. */
1452 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1453 
1454 	/* Turn off time stamps. */
1455 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1456 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1457 
1458 	initram = 0;
1459 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL ||
1460 	    sc->msk_hw_id == CHIP_ID_YUKON_EC ||
1461 	    sc->msk_hw_id == CHIP_ID_YUKON_FE)
1462 		initram++;
1463 
1464 	/* Configure timeout values. */
1465 	for (i = 0; initram > 0 && i < sc->msk_num_port; i++) {
1466 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1467 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1468 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1469 		    MSK_RI_TO_53);
1470 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1471 		    MSK_RI_TO_53);
1472 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1473 		    MSK_RI_TO_53);
1474 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1475 		    MSK_RI_TO_53);
1476 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1477 		    MSK_RI_TO_53);
1478 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1479 		    MSK_RI_TO_53);
1480 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1481 		    MSK_RI_TO_53);
1482 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1483 		    MSK_RI_TO_53);
1484 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1485 		    MSK_RI_TO_53);
1486 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1487 		    MSK_RI_TO_53);
1488 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1489 		    MSK_RI_TO_53);
1490 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1491 		    MSK_RI_TO_53);
1492 	}
1493 
1494 	/* Disable all interrupts. */
1495 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1496 	CSR_READ_4(sc, B0_HWE_IMSK);
1497 	CSR_WRITE_4(sc, B0_IMSK, 0);
1498 	CSR_READ_4(sc, B0_IMSK);
1499 
1500         /*
1501          * On dual port PCI-X card, there is an problem where status
1502          * can be received out of order due to split transactions.
1503          */
1504 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1505 		uint16_t pcix_cmd;
1506 
1507 		pcix_cmd = pci_read_config(sc->msk_dev,
1508 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1509 		/* Clear Max Outstanding Split Transactions. */
1510 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1511 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1512 		pci_write_config(sc->msk_dev,
1513 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1514 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1515         }
1516 	if (sc->msk_expcap != 0) {
1517 		/* Change Max. Read Request Size to 2048 bytes. */
1518 		if (pci_get_max_read_req(sc->msk_dev) == 512)
1519 			pci_set_max_read_req(sc->msk_dev, 2048);
1520 	}
1521 
1522 	/* Clear status list. */
1523 	bzero(sc->msk_stat_ring,
1524 	    sizeof(struct msk_stat_desc) * sc->msk_stat_count);
1525 	sc->msk_stat_cons = 0;
1526 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1527 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1528 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1529 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1530 	/* Set the status list base address. */
1531 	addr = sc->msk_stat_ring_paddr;
1532 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1533 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1534 	/* Set the status list last index. */
1535 	CSR_WRITE_2(sc, STAT_LAST_IDX, sc->msk_stat_count - 1);
1536 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1537 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1538 		/* WA for dev. #4.3 */
1539 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1540 		/* WA for dev. #4.18 */
1541 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1542 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1543 	} else {
1544 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1545 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1546 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1547 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1548 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1549 		else
1550 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1551 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1552 	}
1553 	/*
1554 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1555 	 */
1556 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1557 
1558 	/* Enable status unit. */
1559 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1560 
1561 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1562 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1563 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1564 }
1565 
1566 static int
1567 msk_probe(device_t dev)
1568 {
1569 	struct msk_softc *sc;
1570 	char desc[100];
1571 
1572 	sc = device_get_softc(device_get_parent(dev));
1573 	/*
1574 	 * Not much to do here. We always know there will be
1575 	 * at least one GMAC present, and if there are two,
1576 	 * mskc_attach() will create a second device instance
1577 	 * for us.
1578 	 */
1579 	snprintf(desc, sizeof(desc),
1580 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1581 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1582 	    sc->msk_hw_rev);
1583 	device_set_desc_copy(dev, desc);
1584 
1585 	return (BUS_PROBE_DEFAULT);
1586 }
1587 
1588 static int
1589 msk_attach(device_t dev)
1590 {
1591 	struct msk_softc *sc;
1592 	struct msk_if_softc *sc_if;
1593 	struct ifnet *ifp;
1594 	struct msk_mii_data *mmd;
1595 	int i, port, error;
1596 	uint8_t eaddr[6];
1597 
1598 	if (dev == NULL)
1599 		return (EINVAL);
1600 
1601 	error = 0;
1602 	sc_if = device_get_softc(dev);
1603 	sc = device_get_softc(device_get_parent(dev));
1604 	mmd = device_get_ivars(dev);
1605 	port = mmd->port;
1606 
1607 	sc_if->msk_if_dev = dev;
1608 	sc_if->msk_port = port;
1609 	sc_if->msk_softc = sc;
1610 	sc_if->msk_flags = sc->msk_pflags;
1611 	sc->msk_if[port] = sc_if;
1612 	/* Setup Tx/Rx queue register offsets. */
1613 	if (port == MSK_PORT_A) {
1614 		sc_if->msk_txq = Q_XA1;
1615 		sc_if->msk_txsq = Q_XS1;
1616 		sc_if->msk_rxq = Q_R1;
1617 	} else {
1618 		sc_if->msk_txq = Q_XA2;
1619 		sc_if->msk_txsq = Q_XS2;
1620 		sc_if->msk_rxq = Q_R2;
1621 	}
1622 
1623 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1624 	msk_sysctl_node(sc_if);
1625 
1626 	if ((error = msk_txrx_dma_alloc(sc_if)) != 0)
1627 		goto fail;
1628 	msk_rx_dma_jalloc(sc_if);
1629 
1630 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1631 	if (ifp == NULL) {
1632 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1633 		error = ENOSPC;
1634 		goto fail;
1635 	}
1636 	ifp->if_softc = sc_if;
1637 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1638 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1639 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1640 	/*
1641 	 * Enable Rx checksum offloading if controller supports
1642 	 * new descriptor formant and controller is not Yukon XL.
1643 	 */
1644 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
1645 	    sc->msk_hw_id != CHIP_ID_YUKON_XL)
1646 		ifp->if_capabilities |= IFCAP_RXCSUM;
1647 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1648 	    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1649 		ifp->if_capabilities |= IFCAP_RXCSUM;
1650 	ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1651 	ifp->if_capenable = ifp->if_capabilities;
1652 	ifp->if_ioctl = msk_ioctl;
1653 	ifp->if_start = msk_start;
1654 	ifp->if_init = msk_init;
1655 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1656 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1657 	IFQ_SET_READY(&ifp->if_snd);
1658 	/*
1659 	 * Get station address for this interface. Note that
1660 	 * dual port cards actually come with three station
1661 	 * addresses: one for each port, plus an extra. The
1662 	 * extra one is used by the SysKonnect driver software
1663 	 * as a 'virtual' station address for when both ports
1664 	 * are operating in failover mode. Currently we don't
1665 	 * use this extra address.
1666 	 */
1667 	MSK_IF_LOCK(sc_if);
1668 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1669 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1670 
1671 	/*
1672 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1673 	 */
1674 	MSK_IF_UNLOCK(sc_if);
1675 	ether_ifattach(ifp, eaddr);
1676 	MSK_IF_LOCK(sc_if);
1677 
1678 	/* VLAN capability setup */
1679 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1680 	if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) {
1681 		/*
1682 		 * Due to Tx checksum offload hardware bugs, msk(4) manually
1683 		 * computes checksum for short frames. For VLAN tagged frames
1684 		 * this workaround does not work so disable checksum offload
1685 		 * for VLAN interface.
1686 		 */
1687 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO;
1688 		/*
1689 		 * Enable Rx checksum offloading for VLAN tagged frames
1690 		 * if controller support new descriptor format.
1691 		 */
1692 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1693 		    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1694 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1695 	}
1696 	ifp->if_capenable = ifp->if_capabilities;
1697 	/*
1698 	 * Disable RX checksum offloading on controllers that don't use
1699 	 * new descriptor format but give chance to enable it.
1700 	 */
1701 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1702 		ifp->if_capenable &= ~IFCAP_RXCSUM;
1703 
1704 	/*
1705 	 * Tell the upper layer(s) we support long frames.
1706 	 * Must appear after the call to ether_ifattach() because
1707 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1708 	 */
1709         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1710 
1711 	/*
1712 	 * Do miibus setup.
1713 	 */
1714 	MSK_IF_UNLOCK(sc_if);
1715 	error = mii_attach(dev, &sc_if->msk_miibus, ifp, msk_mediachange,
1716 	    msk_mediastatus, BMSR_DEFCAPMASK, PHY_ADDR_MARV, MII_OFFSET_ANY,
1717 	    mmd->mii_flags);
1718 	if (error != 0) {
1719 		device_printf(sc_if->msk_if_dev, "attaching PHYs failed\n");
1720 		ether_ifdetach(ifp);
1721 		error = ENXIO;
1722 		goto fail;
1723 	}
1724 
1725 fail:
1726 	if (error != 0) {
1727 		/* Access should be ok even though lock has been dropped */
1728 		sc->msk_if[port] = NULL;
1729 		msk_detach(dev);
1730 	}
1731 
1732 	return (error);
1733 }
1734 
1735 /*
1736  * Attach the interface. Allocate softc structures, do ifmedia
1737  * setup and ethernet/BPF attach.
1738  */
1739 static int
1740 mskc_attach(device_t dev)
1741 {
1742 	struct msk_softc *sc;
1743 	struct msk_mii_data *mmd;
1744 	int error, msic, msir, reg;
1745 
1746 	sc = device_get_softc(dev);
1747 	sc->msk_dev = dev;
1748 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1749 	    MTX_DEF);
1750 
1751 	/*
1752 	 * Map control/status registers.
1753 	 */
1754 	pci_enable_busmaster(dev);
1755 
1756 	/* Allocate I/O resource */
1757 #ifdef MSK_USEIOSPACE
1758 	sc->msk_res_spec = msk_res_spec_io;
1759 #else
1760 	sc->msk_res_spec = msk_res_spec_mem;
1761 #endif
1762 	sc->msk_irq_spec = msk_irq_spec_legacy;
1763 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1764 	if (error) {
1765 		if (sc->msk_res_spec == msk_res_spec_mem)
1766 			sc->msk_res_spec = msk_res_spec_io;
1767 		else
1768 			sc->msk_res_spec = msk_res_spec_mem;
1769 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1770 		if (error) {
1771 			device_printf(dev, "couldn't allocate %s resources\n",
1772 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1773 			    "I/O");
1774 			mtx_destroy(&sc->msk_mtx);
1775 			return (ENXIO);
1776 		}
1777 	}
1778 
1779 	/* Enable all clocks before accessing any registers. */
1780 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1781 
1782 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1783 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1784 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1785 	/* Bail out if chip is not recognized. */
1786 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1787 	    sc->msk_hw_id > CHIP_ID_YUKON_OPT ||
1788 	    sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) {
1789 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1790 		    sc->msk_hw_id, sc->msk_hw_rev);
1791 		mtx_destroy(&sc->msk_mtx);
1792 		return (ENXIO);
1793 	}
1794 
1795 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1796 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1797 	    OID_AUTO, "process_limit",
1798 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1799 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1800 	    "max number of Rx events to process");
1801 
1802 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1803 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1804 	    "process_limit", &sc->msk_process_limit);
1805 	if (error == 0) {
1806 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1807 		    sc->msk_process_limit > MSK_PROC_MAX) {
1808 			device_printf(dev, "process_limit value out of range; "
1809 			    "using default: %d\n", MSK_PROC_DEFAULT);
1810 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1811 		}
1812 	}
1813 
1814 	sc->msk_int_holdoff = MSK_INT_HOLDOFF_DEFAULT;
1815 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
1816 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
1817 	    "int_holdoff", CTLFLAG_RW, &sc->msk_int_holdoff, 0,
1818 	    "Maximum number of time to delay interrupts");
1819 	resource_int_value(device_get_name(dev), device_get_unit(dev),
1820 	    "int_holdoff", &sc->msk_int_holdoff);
1821 
1822 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1823 	/* Check number of MACs. */
1824 	sc->msk_num_port = 1;
1825 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1826 	    CFG_DUAL_MAC_MSK) {
1827 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1828 			sc->msk_num_port++;
1829 	}
1830 
1831 	/* Check bus type. */
1832 	if (pci_find_cap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0) {
1833 		sc->msk_bustype = MSK_PEX_BUS;
1834 		sc->msk_expcap = reg;
1835 	} else if (pci_find_cap(sc->msk_dev, PCIY_PCIX, &reg) == 0) {
1836 		sc->msk_bustype = MSK_PCIX_BUS;
1837 		sc->msk_pcixcap = reg;
1838 	} else
1839 		sc->msk_bustype = MSK_PCI_BUS;
1840 
1841 	switch (sc->msk_hw_id) {
1842 	case CHIP_ID_YUKON_EC:
1843 		sc->msk_clock = 125;	/* 125 MHz */
1844 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1845 		break;
1846 	case CHIP_ID_YUKON_EC_U:
1847 		sc->msk_clock = 125;	/* 125 MHz */
1848 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM;
1849 		break;
1850 	case CHIP_ID_YUKON_EX:
1851 		sc->msk_clock = 125;	/* 125 MHz */
1852 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1853 		    MSK_FLAG_AUTOTX_CSUM;
1854 		/*
1855 		 * Yukon Extreme seems to have silicon bug for
1856 		 * automatic Tx checksum calculation capability.
1857 		 */
1858 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
1859 			sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM;
1860 		/*
1861 		 * Yukon Extreme A0 could not use store-and-forward
1862 		 * for jumbo frames, so disable Tx checksum
1863 		 * offloading for jumbo frames.
1864 		 */
1865 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
1866 			sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM;
1867 		break;
1868 	case CHIP_ID_YUKON_FE:
1869 		sc->msk_clock = 100;	/* 100 MHz */
1870 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1871 		break;
1872 	case CHIP_ID_YUKON_FE_P:
1873 		sc->msk_clock = 50;	/* 50 MHz */
1874 		sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 |
1875 		    MSK_FLAG_AUTOTX_CSUM;
1876 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1877 			/*
1878 			 * XXX
1879 			 * FE+ A0 has status LE writeback bug so msk(4)
1880 			 * does not rely on status word of received frame
1881 			 * in msk_rxeof() which in turn disables all
1882 			 * hardware assistance bits reported by the status
1883 			 * word as well as validity of the received frame.
1884 			 * Just pass received frames to upper stack with
1885 			 * minimal test and let upper stack handle them.
1886 			 */
1887 			sc->msk_pflags |= MSK_FLAG_NOHWVLAN |
1888 			    MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM;
1889 		}
1890 		break;
1891 	case CHIP_ID_YUKON_XL:
1892 		sc->msk_clock = 156;	/* 156 MHz */
1893 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1894 		break;
1895 	case CHIP_ID_YUKON_SUPR:
1896 		sc->msk_clock = 125;	/* 125 MHz */
1897 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1898 		    MSK_FLAG_AUTOTX_CSUM;
1899 		break;
1900 	case CHIP_ID_YUKON_UL_2:
1901 		sc->msk_clock = 125;	/* 125 MHz */
1902 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1903 		break;
1904 	case CHIP_ID_YUKON_OPT:
1905 		sc->msk_clock = 125;	/* 125 MHz */
1906 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2;
1907 		break;
1908 	default:
1909 		sc->msk_clock = 156;	/* 156 MHz */
1910 		break;
1911 	}
1912 
1913 	/* Allocate IRQ resources. */
1914 	msic = pci_msi_count(dev);
1915 	if (bootverbose)
1916 		device_printf(dev, "MSI count : %d\n", msic);
1917 	if (legacy_intr != 0)
1918 		msi_disable = 1;
1919 	if (msi_disable == 0 && msic > 0) {
1920 		msir = 1;
1921 		if (pci_alloc_msi(dev, &msir) == 0) {
1922 			if (msir == 1) {
1923 				sc->msk_pflags |= MSK_FLAG_MSI;
1924 				sc->msk_irq_spec = msk_irq_spec_msi;
1925 			} else
1926 				pci_release_msi(dev);
1927 		}
1928 	}
1929 
1930 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1931 	if (error) {
1932 		device_printf(dev, "couldn't allocate IRQ resources\n");
1933 		goto fail;
1934 	}
1935 
1936 	if ((error = msk_status_dma_alloc(sc)) != 0)
1937 		goto fail;
1938 
1939 	/* Set base interrupt mask. */
1940 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1941 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1942 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1943 
1944 	/* Reset the adapter. */
1945 	mskc_reset(sc);
1946 
1947 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1948 		goto fail;
1949 
1950 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1951 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1952 		device_printf(dev, "failed to add child for PORT_A\n");
1953 		error = ENXIO;
1954 		goto fail;
1955 	}
1956 	mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1957 	mmd->port = MSK_PORT_A;
1958 	mmd->pmd = sc->msk_pmd;
1959 	mmd->mii_flags |= MIIF_DOPAUSE;
1960 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1961 		mmd->mii_flags |= MIIF_HAVEFIBER;
1962 	if (sc->msk_pmd == 'P')
1963 		mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1964 	device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd);
1965 
1966 	if (sc->msk_num_port > 1) {
1967 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1968 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1969 			device_printf(dev, "failed to add child for PORT_B\n");
1970 			error = ENXIO;
1971 			goto fail;
1972 		}
1973 		mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK |
1974 		    M_ZERO);
1975 		mmd->port = MSK_PORT_B;
1976 		mmd->pmd = sc->msk_pmd;
1977 		if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1978 			mmd->mii_flags |= MIIF_HAVEFIBER;
1979 		if (sc->msk_pmd == 'P')
1980 			mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1981 		device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd);
1982 	}
1983 
1984 	error = bus_generic_attach(dev);
1985 	if (error) {
1986 		device_printf(dev, "failed to attach port(s)\n");
1987 		goto fail;
1988 	}
1989 
1990 	/* Hook interrupt last to avoid having to lock softc. */
1991 	error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1992 	    INTR_MPSAFE, NULL, msk_intr, sc, &sc->msk_intrhand);
1993 	if (error != 0) {
1994 		device_printf(dev, "couldn't set up interrupt handler\n");
1995 		goto fail;
1996 	}
1997 fail:
1998 	if (error != 0)
1999 		mskc_detach(dev);
2000 
2001 	return (error);
2002 }
2003 
2004 /*
2005  * Shutdown hardware and free up resources. This can be called any
2006  * time after the mutex has been initialized. It is called in both
2007  * the error case in attach and the normal detach case so it needs
2008  * to be careful about only freeing resources that have actually been
2009  * allocated.
2010  */
2011 static int
2012 msk_detach(device_t dev)
2013 {
2014 	struct msk_softc *sc;
2015 	struct msk_if_softc *sc_if;
2016 	struct ifnet *ifp;
2017 
2018 	sc_if = device_get_softc(dev);
2019 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
2020 	    ("msk mutex not initialized in msk_detach"));
2021 	MSK_IF_LOCK(sc_if);
2022 
2023 	ifp = sc_if->msk_ifp;
2024 	if (device_is_attached(dev)) {
2025 		/* XXX */
2026 		sc_if->msk_flags |= MSK_FLAG_DETACH;
2027 		msk_stop(sc_if);
2028 		/* Can't hold locks while calling detach. */
2029 		MSK_IF_UNLOCK(sc_if);
2030 		callout_drain(&sc_if->msk_tick_ch);
2031 		if (ifp)
2032 			ether_ifdetach(ifp);
2033 		MSK_IF_LOCK(sc_if);
2034 	}
2035 
2036 	/*
2037 	 * We're generally called from mskc_detach() which is using
2038 	 * device_delete_child() to get to here. It's already trashed
2039 	 * miibus for us, so don't do it here or we'll panic.
2040 	 *
2041 	 * if (sc_if->msk_miibus != NULL) {
2042 	 * 	device_delete_child(dev, sc_if->msk_miibus);
2043 	 * 	sc_if->msk_miibus = NULL;
2044 	 * }
2045 	 */
2046 
2047 	msk_rx_dma_jfree(sc_if);
2048 	msk_txrx_dma_free(sc_if);
2049 	bus_generic_detach(dev);
2050 
2051 	sc = sc_if->msk_softc;
2052 	sc->msk_if[sc_if->msk_port] = NULL;
2053 	MSK_IF_UNLOCK(sc_if);
2054 	if (ifp)
2055 		if_free(ifp);
2056 
2057 	return (0);
2058 }
2059 
2060 static int
2061 mskc_detach(device_t dev)
2062 {
2063 	struct msk_softc *sc;
2064 
2065 	sc = device_get_softc(dev);
2066 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
2067 
2068 	if (device_is_alive(dev)) {
2069 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
2070 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
2071 			    M_DEVBUF);
2072 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
2073 		}
2074 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
2075 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
2076 			    M_DEVBUF);
2077 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
2078 		}
2079 		bus_generic_detach(dev);
2080 	}
2081 
2082 	/* Disable all interrupts. */
2083 	CSR_WRITE_4(sc, B0_IMSK, 0);
2084 	CSR_READ_4(sc, B0_IMSK);
2085 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2086 	CSR_READ_4(sc, B0_HWE_IMSK);
2087 
2088 	/* LED Off. */
2089 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
2090 
2091 	/* Put hardware reset. */
2092 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2093 
2094 	msk_status_dma_free(sc);
2095 
2096 	if (sc->msk_intrhand) {
2097 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand);
2098 		sc->msk_intrhand = NULL;
2099 	}
2100 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
2101 	if ((sc->msk_pflags & MSK_FLAG_MSI) != 0)
2102 		pci_release_msi(dev);
2103 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
2104 	mtx_destroy(&sc->msk_mtx);
2105 
2106 	return (0);
2107 }
2108 
2109 static bus_dma_tag_t
2110 mskc_get_dma_tag(device_t bus, device_t child __unused)
2111 {
2112 
2113 	return (bus_get_dma_tag(bus));
2114 }
2115 
2116 struct msk_dmamap_arg {
2117 	bus_addr_t	msk_busaddr;
2118 };
2119 
2120 static void
2121 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2122 {
2123 	struct msk_dmamap_arg *ctx;
2124 
2125 	if (error != 0)
2126 		return;
2127 	ctx = arg;
2128 	ctx->msk_busaddr = segs[0].ds_addr;
2129 }
2130 
2131 /* Create status DMA region. */
2132 static int
2133 msk_status_dma_alloc(struct msk_softc *sc)
2134 {
2135 	struct msk_dmamap_arg ctx;
2136 	bus_size_t stat_sz;
2137 	int count, error;
2138 
2139 	/*
2140 	 * It seems controller requires number of status LE entries
2141 	 * is power of 2 and the maximum number of status LE entries
2142 	 * is 4096.  For dual-port controllers, the number of status
2143 	 * LE entries should be large enough to hold both port's
2144 	 * status updates.
2145 	 */
2146 	count = 3 * MSK_RX_RING_CNT + MSK_TX_RING_CNT;
2147 	count = imin(4096, roundup2(count, 1024));
2148 	sc->msk_stat_count = count;
2149 	stat_sz = count * sizeof(struct msk_stat_desc);
2150 	error = bus_dma_tag_create(
2151 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
2152 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
2153 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2154 		    BUS_SPACE_MAXADDR,		/* highaddr */
2155 		    NULL, NULL,			/* filter, filterarg */
2156 		    stat_sz,			/* maxsize */
2157 		    1,				/* nsegments */
2158 		    stat_sz,			/* maxsegsize */
2159 		    0,				/* flags */
2160 		    NULL, NULL,			/* lockfunc, lockarg */
2161 		    &sc->msk_stat_tag);
2162 	if (error != 0) {
2163 		device_printf(sc->msk_dev,
2164 		    "failed to create status DMA tag\n");
2165 		return (error);
2166 	}
2167 
2168 	/* Allocate DMA'able memory and load the DMA map for status ring. */
2169 	error = bus_dmamem_alloc(sc->msk_stat_tag,
2170 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
2171 	    BUS_DMA_ZERO, &sc->msk_stat_map);
2172 	if (error != 0) {
2173 		device_printf(sc->msk_dev,
2174 		    "failed to allocate DMA'able memory for status ring\n");
2175 		return (error);
2176 	}
2177 
2178 	ctx.msk_busaddr = 0;
2179 	error = bus_dmamap_load(sc->msk_stat_tag, sc->msk_stat_map,
2180 	    sc->msk_stat_ring, stat_sz, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2181 	if (error != 0) {
2182 		device_printf(sc->msk_dev,
2183 		    "failed to load DMA'able memory for status ring\n");
2184 		return (error);
2185 	}
2186 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
2187 
2188 	return (0);
2189 }
2190 
2191 static void
2192 msk_status_dma_free(struct msk_softc *sc)
2193 {
2194 
2195 	/* Destroy status block. */
2196 	if (sc->msk_stat_tag) {
2197 		if (sc->msk_stat_ring_paddr) {
2198 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
2199 			sc->msk_stat_ring_paddr = 0;
2200 		}
2201 		if (sc->msk_stat_ring) {
2202 			bus_dmamem_free(sc->msk_stat_tag,
2203 			    sc->msk_stat_ring, sc->msk_stat_map);
2204 			sc->msk_stat_ring = NULL;
2205 		}
2206 		bus_dma_tag_destroy(sc->msk_stat_tag);
2207 		sc->msk_stat_tag = NULL;
2208 	}
2209 }
2210 
2211 static int
2212 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2213 {
2214 	struct msk_dmamap_arg ctx;
2215 	struct msk_txdesc *txd;
2216 	struct msk_rxdesc *rxd;
2217 	bus_size_t rxalign;
2218 	int error, i;
2219 
2220 	/* Create parent DMA tag. */
2221 	error = bus_dma_tag_create(
2222 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2223 		    1, 0,			/* alignment, boundary */
2224 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2225 		    BUS_SPACE_MAXADDR,		/* highaddr */
2226 		    NULL, NULL,			/* filter, filterarg */
2227 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2228 		    0,				/* nsegments */
2229 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2230 		    0,				/* flags */
2231 		    NULL, NULL,			/* lockfunc, lockarg */
2232 		    &sc_if->msk_cdata.msk_parent_tag);
2233 	if (error != 0) {
2234 		device_printf(sc_if->msk_if_dev,
2235 		    "failed to create parent DMA tag\n");
2236 		goto fail;
2237 	}
2238 	/* Create tag for Tx ring. */
2239 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2240 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2241 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2242 		    BUS_SPACE_MAXADDR,		/* highaddr */
2243 		    NULL, NULL,			/* filter, filterarg */
2244 		    MSK_TX_RING_SZ,		/* maxsize */
2245 		    1,				/* nsegments */
2246 		    MSK_TX_RING_SZ,		/* maxsegsize */
2247 		    0,				/* flags */
2248 		    NULL, NULL,			/* lockfunc, lockarg */
2249 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2250 	if (error != 0) {
2251 		device_printf(sc_if->msk_if_dev,
2252 		    "failed to create Tx ring DMA tag\n");
2253 		goto fail;
2254 	}
2255 
2256 	/* Create tag for Rx ring. */
2257 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2258 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2259 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2260 		    BUS_SPACE_MAXADDR,		/* highaddr */
2261 		    NULL, NULL,			/* filter, filterarg */
2262 		    MSK_RX_RING_SZ,		/* maxsize */
2263 		    1,				/* nsegments */
2264 		    MSK_RX_RING_SZ,		/* maxsegsize */
2265 		    0,				/* flags */
2266 		    NULL, NULL,			/* lockfunc, lockarg */
2267 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2268 	if (error != 0) {
2269 		device_printf(sc_if->msk_if_dev,
2270 		    "failed to create Rx ring DMA tag\n");
2271 		goto fail;
2272 	}
2273 
2274 	/* Create tag for Tx buffers. */
2275 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2276 		    1, 0,			/* alignment, boundary */
2277 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2278 		    BUS_SPACE_MAXADDR,		/* highaddr */
2279 		    NULL, NULL,			/* filter, filterarg */
2280 		    MSK_TSO_MAXSIZE,		/* maxsize */
2281 		    MSK_MAXTXSEGS,		/* nsegments */
2282 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2283 		    0,				/* flags */
2284 		    NULL, NULL,			/* lockfunc, lockarg */
2285 		    &sc_if->msk_cdata.msk_tx_tag);
2286 	if (error != 0) {
2287 		device_printf(sc_if->msk_if_dev,
2288 		    "failed to create Tx DMA tag\n");
2289 		goto fail;
2290 	}
2291 
2292 	rxalign = 1;
2293 	/*
2294 	 * Workaround hardware hang which seems to happen when Rx buffer
2295 	 * is not aligned on multiple of FIFO word(8 bytes).
2296 	 */
2297 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2298 		rxalign = MSK_RX_BUF_ALIGN;
2299 	/* Create tag for Rx buffers. */
2300 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2301 		    rxalign, 0,			/* alignment, boundary */
2302 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2303 		    BUS_SPACE_MAXADDR,		/* highaddr */
2304 		    NULL, NULL,			/* filter, filterarg */
2305 		    MCLBYTES,			/* maxsize */
2306 		    1,				/* nsegments */
2307 		    MCLBYTES,			/* maxsegsize */
2308 		    0,				/* flags */
2309 		    NULL, NULL,			/* lockfunc, lockarg */
2310 		    &sc_if->msk_cdata.msk_rx_tag);
2311 	if (error != 0) {
2312 		device_printf(sc_if->msk_if_dev,
2313 		    "failed to create Rx DMA tag\n");
2314 		goto fail;
2315 	}
2316 
2317 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2318 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2319 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2320 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2321 	if (error != 0) {
2322 		device_printf(sc_if->msk_if_dev,
2323 		    "failed to allocate DMA'able memory for Tx ring\n");
2324 		goto fail;
2325 	}
2326 
2327 	ctx.msk_busaddr = 0;
2328 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2329 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2330 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2331 	if (error != 0) {
2332 		device_printf(sc_if->msk_if_dev,
2333 		    "failed to load DMA'able memory for Tx ring\n");
2334 		goto fail;
2335 	}
2336 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2337 
2338 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2339 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2340 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2341 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2342 	if (error != 0) {
2343 		device_printf(sc_if->msk_if_dev,
2344 		    "failed to allocate DMA'able memory for Rx ring\n");
2345 		goto fail;
2346 	}
2347 
2348 	ctx.msk_busaddr = 0;
2349 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2350 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2351 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2352 	if (error != 0) {
2353 		device_printf(sc_if->msk_if_dev,
2354 		    "failed to load DMA'able memory for Rx ring\n");
2355 		goto fail;
2356 	}
2357 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2358 
2359 	/* Create DMA maps for Tx buffers. */
2360 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2361 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2362 		txd->tx_m = NULL;
2363 		txd->tx_dmamap = NULL;
2364 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2365 		    &txd->tx_dmamap);
2366 		if (error != 0) {
2367 			device_printf(sc_if->msk_if_dev,
2368 			    "failed to create Tx dmamap\n");
2369 			goto fail;
2370 		}
2371 	}
2372 	/* Create DMA maps for Rx buffers. */
2373 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2374 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2375 		device_printf(sc_if->msk_if_dev,
2376 		    "failed to create spare Rx dmamap\n");
2377 		goto fail;
2378 	}
2379 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2380 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2381 		rxd->rx_m = NULL;
2382 		rxd->rx_dmamap = NULL;
2383 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2384 		    &rxd->rx_dmamap);
2385 		if (error != 0) {
2386 			device_printf(sc_if->msk_if_dev,
2387 			    "failed to create Rx dmamap\n");
2388 			goto fail;
2389 		}
2390 	}
2391 
2392 fail:
2393 	return (error);
2394 }
2395 
2396 static int
2397 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2398 {
2399 	struct msk_dmamap_arg ctx;
2400 	struct msk_rxdesc *jrxd;
2401 	bus_size_t rxalign;
2402 	int error, i;
2403 
2404 	if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
2405 		sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2406 		device_printf(sc_if->msk_if_dev,
2407 		    "disabling jumbo frame support\n");
2408 		return (0);
2409 	}
2410 	/* Create tag for jumbo Rx ring. */
2411 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2412 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2413 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2414 		    BUS_SPACE_MAXADDR,		/* highaddr */
2415 		    NULL, NULL,			/* filter, filterarg */
2416 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2417 		    1,				/* nsegments */
2418 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2419 		    0,				/* flags */
2420 		    NULL, NULL,			/* lockfunc, lockarg */
2421 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2422 	if (error != 0) {
2423 		device_printf(sc_if->msk_if_dev,
2424 		    "failed to create jumbo Rx ring DMA tag\n");
2425 		goto jumbo_fail;
2426 	}
2427 
2428 	rxalign = 1;
2429 	/*
2430 	 * Workaround hardware hang which seems to happen when Rx buffer
2431 	 * is not aligned on multiple of FIFO word(8 bytes).
2432 	 */
2433 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2434 		rxalign = MSK_RX_BUF_ALIGN;
2435 	/* Create tag for jumbo Rx buffers. */
2436 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2437 		    rxalign, 0,			/* alignment, boundary */
2438 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2439 		    BUS_SPACE_MAXADDR,		/* highaddr */
2440 		    NULL, NULL,			/* filter, filterarg */
2441 		    MJUM9BYTES,			/* maxsize */
2442 		    1,				/* nsegments */
2443 		    MJUM9BYTES,			/* maxsegsize */
2444 		    0,				/* flags */
2445 		    NULL, NULL,			/* lockfunc, lockarg */
2446 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2447 	if (error != 0) {
2448 		device_printf(sc_if->msk_if_dev,
2449 		    "failed to create jumbo Rx DMA tag\n");
2450 		goto jumbo_fail;
2451 	}
2452 
2453 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2454 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2455 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2456 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2457 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2458 	if (error != 0) {
2459 		device_printf(sc_if->msk_if_dev,
2460 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2461 		goto jumbo_fail;
2462 	}
2463 
2464 	ctx.msk_busaddr = 0;
2465 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2466 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2467 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2468 	    msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2469 	if (error != 0) {
2470 		device_printf(sc_if->msk_if_dev,
2471 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2472 		goto jumbo_fail;
2473 	}
2474 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2475 
2476 	/* Create DMA maps for jumbo Rx buffers. */
2477 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2478 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2479 		device_printf(sc_if->msk_if_dev,
2480 		    "failed to create spare jumbo Rx dmamap\n");
2481 		goto jumbo_fail;
2482 	}
2483 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2484 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2485 		jrxd->rx_m = NULL;
2486 		jrxd->rx_dmamap = NULL;
2487 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2488 		    &jrxd->rx_dmamap);
2489 		if (error != 0) {
2490 			device_printf(sc_if->msk_if_dev,
2491 			    "failed to create jumbo Rx dmamap\n");
2492 			goto jumbo_fail;
2493 		}
2494 	}
2495 
2496 	return (0);
2497 
2498 jumbo_fail:
2499 	msk_rx_dma_jfree(sc_if);
2500 	device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2501 	    "due to resource shortage\n");
2502 	sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2503 	return (error);
2504 }
2505 
2506 static void
2507 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2508 {
2509 	struct msk_txdesc *txd;
2510 	struct msk_rxdesc *rxd;
2511 	int i;
2512 
2513 	/* Tx ring. */
2514 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2515 		if (sc_if->msk_rdata.msk_tx_ring_paddr)
2516 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2517 			    sc_if->msk_cdata.msk_tx_ring_map);
2518 		if (sc_if->msk_rdata.msk_tx_ring)
2519 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2520 			    sc_if->msk_rdata.msk_tx_ring,
2521 			    sc_if->msk_cdata.msk_tx_ring_map);
2522 		sc_if->msk_rdata.msk_tx_ring = NULL;
2523 		sc_if->msk_rdata.msk_tx_ring_paddr = 0;
2524 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2525 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2526 	}
2527 	/* Rx ring. */
2528 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2529 		if (sc_if->msk_rdata.msk_rx_ring_paddr)
2530 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2531 			    sc_if->msk_cdata.msk_rx_ring_map);
2532 		if (sc_if->msk_rdata.msk_rx_ring)
2533 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2534 			    sc_if->msk_rdata.msk_rx_ring,
2535 			    sc_if->msk_cdata.msk_rx_ring_map);
2536 		sc_if->msk_rdata.msk_rx_ring = NULL;
2537 		sc_if->msk_rdata.msk_rx_ring_paddr = 0;
2538 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2539 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2540 	}
2541 	/* Tx buffers. */
2542 	if (sc_if->msk_cdata.msk_tx_tag) {
2543 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2544 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2545 			if (txd->tx_dmamap) {
2546 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2547 				    txd->tx_dmamap);
2548 				txd->tx_dmamap = NULL;
2549 			}
2550 		}
2551 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2552 		sc_if->msk_cdata.msk_tx_tag = NULL;
2553 	}
2554 	/* Rx buffers. */
2555 	if (sc_if->msk_cdata.msk_rx_tag) {
2556 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2557 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2558 			if (rxd->rx_dmamap) {
2559 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2560 				    rxd->rx_dmamap);
2561 				rxd->rx_dmamap = NULL;
2562 			}
2563 		}
2564 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2565 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2566 			    sc_if->msk_cdata.msk_rx_sparemap);
2567 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2568 		}
2569 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2570 		sc_if->msk_cdata.msk_rx_tag = NULL;
2571 	}
2572 	if (sc_if->msk_cdata.msk_parent_tag) {
2573 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2574 		sc_if->msk_cdata.msk_parent_tag = NULL;
2575 	}
2576 }
2577 
2578 static void
2579 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2580 {
2581 	struct msk_rxdesc *jrxd;
2582 	int i;
2583 
2584 	/* Jumbo Rx ring. */
2585 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2586 		if (sc_if->msk_rdata.msk_jumbo_rx_ring_paddr)
2587 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2588 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2589 		if (sc_if->msk_rdata.msk_jumbo_rx_ring)
2590 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2591 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2592 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2593 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2594 		sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = 0;
2595 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2596 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2597 	}
2598 	/* Jumbo Rx buffers. */
2599 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2600 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2601 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2602 			if (jrxd->rx_dmamap) {
2603 				bus_dmamap_destroy(
2604 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2605 				    jrxd->rx_dmamap);
2606 				jrxd->rx_dmamap = NULL;
2607 			}
2608 		}
2609 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2610 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2611 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2612 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2613 		}
2614 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2615 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2616 	}
2617 }
2618 
2619 static int
2620 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2621 {
2622 	struct msk_txdesc *txd, *txd_last;
2623 	struct msk_tx_desc *tx_le;
2624 	struct mbuf *m;
2625 	bus_dmamap_t map;
2626 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2627 	uint32_t control, csum, prod, si;
2628 	uint16_t offset, tcp_offset, tso_mtu;
2629 	int error, i, nseg, tso;
2630 
2631 	MSK_IF_LOCK_ASSERT(sc_if);
2632 
2633 	tcp_offset = offset = 0;
2634 	m = *m_head;
2635 	if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2636 	    (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) ||
2637 	    ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
2638 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) {
2639 		/*
2640 		 * Since mbuf has no protocol specific structure information
2641 		 * in it we have to inspect protocol information here to
2642 		 * setup TSO and checksum offload. I don't know why Marvell
2643 		 * made a such decision in chip design because other GigE
2644 		 * hardwares normally takes care of all these chores in
2645 		 * hardware. However, TSO performance of Yukon II is very
2646 		 * good such that it's worth to implement it.
2647 		 */
2648 		struct ether_header *eh;
2649 		struct ip *ip;
2650 		struct tcphdr *tcp;
2651 
2652 		if (M_WRITABLE(m) == 0) {
2653 			/* Get a writable copy. */
2654 			m = m_dup(*m_head, M_NOWAIT);
2655 			m_freem(*m_head);
2656 			if (m == NULL) {
2657 				*m_head = NULL;
2658 				return (ENOBUFS);
2659 			}
2660 			*m_head = m;
2661 		}
2662 
2663 		offset = sizeof(struct ether_header);
2664 		m = m_pullup(m, offset);
2665 		if (m == NULL) {
2666 			*m_head = NULL;
2667 			return (ENOBUFS);
2668 		}
2669 		eh = mtod(m, struct ether_header *);
2670 		/* Check if hardware VLAN insertion is off. */
2671 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2672 			offset = sizeof(struct ether_vlan_header);
2673 			m = m_pullup(m, offset);
2674 			if (m == NULL) {
2675 				*m_head = NULL;
2676 				return (ENOBUFS);
2677 			}
2678 		}
2679 		m = m_pullup(m, offset + sizeof(struct ip));
2680 		if (m == NULL) {
2681 			*m_head = NULL;
2682 			return (ENOBUFS);
2683 		}
2684 		ip = (struct ip *)(mtod(m, char *) + offset);
2685 		offset += (ip->ip_hl << 2);
2686 		tcp_offset = offset;
2687 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2688 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2689 			if (m == NULL) {
2690 				*m_head = NULL;
2691 				return (ENOBUFS);
2692 			}
2693 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2694 			offset += (tcp->th_off << 2);
2695 		} else if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2696 		    (m->m_pkthdr.len < MSK_MIN_FRAMELEN) &&
2697 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2698 			/*
2699 			 * It seems that Yukon II has Tx checksum offload bug
2700 			 * for small TCP packets that's less than 60 bytes in
2701 			 * size (e.g. TCP window probe packet, pure ACK packet).
2702 			 * Common work around like padding with zeros to make
2703 			 * the frame minimum ethernet frame size didn't work at
2704 			 * all.
2705 			 * Instead of disabling checksum offload completely we
2706 			 * resort to S/W checksum routine when we encounter
2707 			 * short TCP frames.
2708 			 * Short UDP packets appear to be handled correctly by
2709 			 * Yukon II. Also I assume this bug does not happen on
2710 			 * controllers that use newer descriptor format or
2711 			 * automatic Tx checksum calculation.
2712 			 */
2713 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2714 			if (m == NULL) {
2715 				*m_head = NULL;
2716 				return (ENOBUFS);
2717 			}
2718 			*(uint16_t *)(m->m_data + offset +
2719 			    m->m_pkthdr.csum_data) = in_cksum_skip(m,
2720 			    m->m_pkthdr.len, offset);
2721 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2722 		}
2723 		*m_head = m;
2724 	}
2725 
2726 	prod = sc_if->msk_cdata.msk_tx_prod;
2727 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2728 	txd_last = txd;
2729 	map = txd->tx_dmamap;
2730 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2731 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2732 	if (error == EFBIG) {
2733 		m = m_collapse(*m_head, M_NOWAIT, MSK_MAXTXSEGS);
2734 		if (m == NULL) {
2735 			m_freem(*m_head);
2736 			*m_head = NULL;
2737 			return (ENOBUFS);
2738 		}
2739 		*m_head = m;
2740 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2741 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2742 		if (error != 0) {
2743 			m_freem(*m_head);
2744 			*m_head = NULL;
2745 			return (error);
2746 		}
2747 	} else if (error != 0)
2748 		return (error);
2749 	if (nseg == 0) {
2750 		m_freem(*m_head);
2751 		*m_head = NULL;
2752 		return (EIO);
2753 	}
2754 
2755 	/* Check number of available descriptors. */
2756 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2757 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2758 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2759 		return (ENOBUFS);
2760 	}
2761 
2762 	control = 0;
2763 	tso = 0;
2764 	tx_le = NULL;
2765 
2766 	/* Check TSO support. */
2767 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2768 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2769 			tso_mtu = m->m_pkthdr.tso_segsz;
2770 		else
2771 			tso_mtu = offset + m->m_pkthdr.tso_segsz;
2772 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2773 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2774 			tx_le->msk_addr = htole32(tso_mtu);
2775 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2776 				tx_le->msk_control = htole32(OP_MSS | HW_OWNER);
2777 			else
2778 				tx_le->msk_control =
2779 				    htole32(OP_LRGLEN | HW_OWNER);
2780 			sc_if->msk_cdata.msk_tx_cnt++;
2781 			MSK_INC(prod, MSK_TX_RING_CNT);
2782 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2783 		}
2784 		tso++;
2785 	}
2786 	/* Check if we have a VLAN tag to insert. */
2787 	if ((m->m_flags & M_VLANTAG) != 0) {
2788 		if (tx_le == NULL) {
2789 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2790 			tx_le->msk_addr = htole32(0);
2791 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2792 			    htons(m->m_pkthdr.ether_vtag));
2793 			sc_if->msk_cdata.msk_tx_cnt++;
2794 			MSK_INC(prod, MSK_TX_RING_CNT);
2795 		} else {
2796 			tx_le->msk_control |= htole32(OP_VLAN |
2797 			    htons(m->m_pkthdr.ether_vtag));
2798 		}
2799 		control |= INS_VLAN;
2800 	}
2801 	/* Check if we have to handle checksum offload. */
2802 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2803 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0)
2804 			control |= CALSUM;
2805 		else {
2806 			control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2807 			if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2808 				control |= UDPTCP;
2809 			/* Checksum write position. */
2810 			csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff;
2811 			/* Checksum start position. */
2812 			csum |= (uint32_t)tcp_offset << 16;
2813 			if (csum != sc_if->msk_cdata.msk_last_csum) {
2814 				tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2815 				tx_le->msk_addr = htole32(csum);
2816 				tx_le->msk_control = htole32(1 << 16 |
2817 				    (OP_TCPLISW | HW_OWNER));
2818 				sc_if->msk_cdata.msk_tx_cnt++;
2819 				MSK_INC(prod, MSK_TX_RING_CNT);
2820 				sc_if->msk_cdata.msk_last_csum = csum;
2821 			}
2822 		}
2823 	}
2824 
2825 #ifdef MSK_64BIT_DMA
2826 	if (MSK_ADDR_HI(txsegs[0].ds_addr) !=
2827 	    sc_if->msk_cdata.msk_tx_high_addr) {
2828 		sc_if->msk_cdata.msk_tx_high_addr =
2829 		    MSK_ADDR_HI(txsegs[0].ds_addr);
2830 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2831 		tx_le->msk_addr = htole32(MSK_ADDR_HI(txsegs[0].ds_addr));
2832 		tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
2833 		sc_if->msk_cdata.msk_tx_cnt++;
2834 		MSK_INC(prod, MSK_TX_RING_CNT);
2835 	}
2836 #endif
2837 	si = prod;
2838 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2839 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2840 	if (tso == 0)
2841 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2842 		    OP_PACKET);
2843 	else
2844 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2845 		    OP_LARGESEND);
2846 	sc_if->msk_cdata.msk_tx_cnt++;
2847 	MSK_INC(prod, MSK_TX_RING_CNT);
2848 
2849 	for (i = 1; i < nseg; i++) {
2850 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2851 #ifdef MSK_64BIT_DMA
2852 		if (MSK_ADDR_HI(txsegs[i].ds_addr) !=
2853 		    sc_if->msk_cdata.msk_tx_high_addr) {
2854 			sc_if->msk_cdata.msk_tx_high_addr =
2855 			    MSK_ADDR_HI(txsegs[i].ds_addr);
2856 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2857 			tx_le->msk_addr =
2858 			    htole32(MSK_ADDR_HI(txsegs[i].ds_addr));
2859 			tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
2860 			sc_if->msk_cdata.msk_tx_cnt++;
2861 			MSK_INC(prod, MSK_TX_RING_CNT);
2862 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2863 		}
2864 #endif
2865 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2866 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2867 		    OP_BUFFER | HW_OWNER);
2868 		sc_if->msk_cdata.msk_tx_cnt++;
2869 		MSK_INC(prod, MSK_TX_RING_CNT);
2870 	}
2871 	/* Update producer index. */
2872 	sc_if->msk_cdata.msk_tx_prod = prod;
2873 
2874 	/* Set EOP on the last descriptor. */
2875 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2876 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2877 	tx_le->msk_control |= htole32(EOP);
2878 
2879 	/* Turn the first descriptor ownership to hardware. */
2880 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2881 	tx_le->msk_control |= htole32(HW_OWNER);
2882 
2883 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2884 	map = txd_last->tx_dmamap;
2885 	txd_last->tx_dmamap = txd->tx_dmamap;
2886 	txd->tx_dmamap = map;
2887 	txd->tx_m = m;
2888 
2889 	/* Sync descriptors. */
2890 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2891 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2892 	    sc_if->msk_cdata.msk_tx_ring_map,
2893 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2894 
2895 	return (0);
2896 }
2897 
2898 static void
2899 msk_start(struct ifnet *ifp)
2900 {
2901 	struct msk_if_softc *sc_if;
2902 
2903 	sc_if = ifp->if_softc;
2904 	MSK_IF_LOCK(sc_if);
2905 	msk_start_locked(ifp);
2906 	MSK_IF_UNLOCK(sc_if);
2907 }
2908 
2909 static void
2910 msk_start_locked(struct ifnet *ifp)
2911 {
2912 	struct msk_if_softc *sc_if;
2913 	struct mbuf *m_head;
2914 	int enq;
2915 
2916 	sc_if = ifp->if_softc;
2917 	MSK_IF_LOCK_ASSERT(sc_if);
2918 
2919 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2920 	    IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0)
2921 		return;
2922 
2923 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2924 	    sc_if->msk_cdata.msk_tx_cnt <
2925 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2926 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2927 		if (m_head == NULL)
2928 			break;
2929 		/*
2930 		 * Pack the data into the transmit ring. If we
2931 		 * don't have room, set the OACTIVE flag and wait
2932 		 * for the NIC to drain the ring.
2933 		 */
2934 		if (msk_encap(sc_if, &m_head) != 0) {
2935 			if (m_head == NULL)
2936 				break;
2937 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2938 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2939 			break;
2940 		}
2941 
2942 		enq++;
2943 		/*
2944 		 * If there's a BPF listener, bounce a copy of this frame
2945 		 * to him.
2946 		 */
2947 		ETHER_BPF_MTAP(ifp, m_head);
2948 	}
2949 
2950 	if (enq > 0) {
2951 		/* Transmit */
2952 		CSR_WRITE_2(sc_if->msk_softc,
2953 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2954 		    sc_if->msk_cdata.msk_tx_prod);
2955 
2956 		/* Set a timeout in case the chip goes out to lunch. */
2957 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2958 	}
2959 }
2960 
2961 static void
2962 msk_watchdog(struct msk_if_softc *sc_if)
2963 {
2964 	struct ifnet *ifp;
2965 
2966 	MSK_IF_LOCK_ASSERT(sc_if);
2967 
2968 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2969 		return;
2970 	ifp = sc_if->msk_ifp;
2971 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2972 		if (bootverbose)
2973 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2974 			   "(missed link)\n");
2975 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2976 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2977 		msk_init_locked(sc_if);
2978 		return;
2979 	}
2980 
2981 	if_printf(ifp, "watchdog timeout\n");
2982 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2983 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2984 	msk_init_locked(sc_if);
2985 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2986 		msk_start_locked(ifp);
2987 }
2988 
2989 static int
2990 mskc_shutdown(device_t dev)
2991 {
2992 	struct msk_softc *sc;
2993 	int i;
2994 
2995 	sc = device_get_softc(dev);
2996 	MSK_LOCK(sc);
2997 	for (i = 0; i < sc->msk_num_port; i++) {
2998 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2999 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
3000 		    IFF_DRV_RUNNING) != 0))
3001 			msk_stop(sc->msk_if[i]);
3002 	}
3003 	MSK_UNLOCK(sc);
3004 
3005 	/* Put hardware reset. */
3006 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3007 	return (0);
3008 }
3009 
3010 static int
3011 mskc_suspend(device_t dev)
3012 {
3013 	struct msk_softc *sc;
3014 	int i;
3015 
3016 	sc = device_get_softc(dev);
3017 
3018 	MSK_LOCK(sc);
3019 
3020 	for (i = 0; i < sc->msk_num_port; i++) {
3021 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3022 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
3023 		    IFF_DRV_RUNNING) != 0))
3024 			msk_stop(sc->msk_if[i]);
3025 	}
3026 
3027 	/* Disable all interrupts. */
3028 	CSR_WRITE_4(sc, B0_IMSK, 0);
3029 	CSR_READ_4(sc, B0_IMSK);
3030 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
3031 	CSR_READ_4(sc, B0_HWE_IMSK);
3032 
3033 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
3034 
3035 	/* Put hardware reset. */
3036 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3037 	sc->msk_pflags |= MSK_FLAG_SUSPEND;
3038 
3039 	MSK_UNLOCK(sc);
3040 
3041 	return (0);
3042 }
3043 
3044 static int
3045 mskc_resume(device_t dev)
3046 {
3047 	struct msk_softc *sc;
3048 	int i;
3049 
3050 	sc = device_get_softc(dev);
3051 
3052 	MSK_LOCK(sc);
3053 
3054 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
3055 	mskc_reset(sc);
3056 	for (i = 0; i < sc->msk_num_port; i++) {
3057 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3058 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) {
3059 			sc->msk_if[i]->msk_ifp->if_drv_flags &=
3060 			    ~IFF_DRV_RUNNING;
3061 			msk_init_locked(sc->msk_if[i]);
3062 		}
3063 	}
3064 	sc->msk_pflags &= ~MSK_FLAG_SUSPEND;
3065 
3066 	MSK_UNLOCK(sc);
3067 
3068 	return (0);
3069 }
3070 
3071 #ifndef __NO_STRICT_ALIGNMENT
3072 static __inline void
3073 msk_fixup_rx(struct mbuf *m)
3074 {
3075         int i;
3076         uint16_t *src, *dst;
3077 
3078 	src = mtod(m, uint16_t *);
3079 	dst = src - 3;
3080 
3081 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
3082 		*dst++ = *src++;
3083 
3084 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
3085 }
3086 #endif
3087 
3088 static __inline void
3089 msk_rxcsum(struct msk_if_softc *sc_if, uint32_t control, struct mbuf *m)
3090 {
3091 	struct ether_header *eh;
3092 	struct ip *ip;
3093 	struct udphdr *uh;
3094 	int32_t hlen, len, pktlen, temp32;
3095 	uint16_t csum, *opts;
3096 
3097 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) {
3098 		if ((control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
3099 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3100 			if ((control & CSS_IPV4_CSUM_OK) != 0)
3101 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3102 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3103 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3104 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3105 				    CSUM_PSEUDO_HDR;
3106 				m->m_pkthdr.csum_data = 0xffff;
3107 			}
3108 		}
3109 		return;
3110 	}
3111 	/*
3112 	 * Marvell Yukon controllers that support OP_RXCHKS has known
3113 	 * to have various Rx checksum offloading bugs. These
3114 	 * controllers can be configured to compute simple checksum
3115 	 * at two different positions. So we can compute IP and TCP/UDP
3116 	 * checksum at the same time. We intentionally have controller
3117 	 * compute TCP/UDP checksum twice by specifying the same
3118 	 * checksum start position and compare the result. If the value
3119 	 * is different it would indicate the hardware logic was wrong.
3120 	 */
3121 	if ((sc_if->msk_csum & 0xFFFF) != (sc_if->msk_csum >> 16)) {
3122 		if (bootverbose)
3123 			device_printf(sc_if->msk_if_dev,
3124 			    "Rx checksum value mismatch!\n");
3125 		return;
3126 	}
3127 	pktlen = m->m_pkthdr.len;
3128 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
3129 		return;
3130 	eh = mtod(m, struct ether_header *);
3131 	if (eh->ether_type != htons(ETHERTYPE_IP))
3132 		return;
3133 	ip = (struct ip *)(eh + 1);
3134 	if (ip->ip_v != IPVERSION)
3135 		return;
3136 
3137 	hlen = ip->ip_hl << 2;
3138 	pktlen -= sizeof(struct ether_header);
3139 	if (hlen < sizeof(struct ip))
3140 		return;
3141 	if (ntohs(ip->ip_len) < hlen)
3142 		return;
3143 	if (ntohs(ip->ip_len) != pktlen)
3144 		return;
3145 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
3146 		return;	/* can't handle fragmented packet. */
3147 
3148 	switch (ip->ip_p) {
3149 	case IPPROTO_TCP:
3150 		if (pktlen < (hlen + sizeof(struct tcphdr)))
3151 			return;
3152 		break;
3153 	case IPPROTO_UDP:
3154 		if (pktlen < (hlen + sizeof(struct udphdr)))
3155 			return;
3156 		uh = (struct udphdr *)((caddr_t)ip + hlen);
3157 		if (uh->uh_sum == 0)
3158 			return; /* no checksum */
3159 		break;
3160 	default:
3161 		return;
3162 	}
3163 	csum = bswap16(sc_if->msk_csum & 0xFFFF);
3164 	/* Checksum fixup for IP options. */
3165 	len = hlen - sizeof(struct ip);
3166 	if (len > 0) {
3167 		opts = (uint16_t *)(ip + 1);
3168 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
3169 			temp32 = csum - *opts;
3170 			temp32 = (temp32 >> 16) + (temp32 & 65535);
3171 			csum = temp32 & 65535;
3172 		}
3173 	}
3174 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
3175 	m->m_pkthdr.csum_data = csum;
3176 }
3177 
3178 static void
3179 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3180     int len)
3181 {
3182 	struct mbuf *m;
3183 	struct ifnet *ifp;
3184 	struct msk_rxdesc *rxd;
3185 	int cons, rxlen;
3186 
3187 	ifp = sc_if->msk_ifp;
3188 
3189 	MSK_IF_LOCK_ASSERT(sc_if);
3190 
3191 	cons = sc_if->msk_cdata.msk_rx_cons;
3192 	do {
3193 		rxlen = status >> 16;
3194 		if ((status & GMR_FS_VLAN) != 0 &&
3195 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3196 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3197 		if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) {
3198 			/*
3199 			 * For controllers that returns bogus status code
3200 			 * just do minimal check and let upper stack
3201 			 * handle this frame.
3202 			 */
3203 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
3204 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3205 				msk_discard_rxbuf(sc_if, cons);
3206 				break;
3207 			}
3208 		} else if (len > sc_if->msk_framesize ||
3209 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3210 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3211 			/* Don't count flow-control packet as errors. */
3212 			if ((status & GMR_FS_GOOD_FC) == 0)
3213 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3214 			msk_discard_rxbuf(sc_if, cons);
3215 			break;
3216 		}
3217 #ifdef MSK_64BIT_DMA
3218 		rxd = &sc_if->msk_cdata.msk_rxdesc[(cons + 1) %
3219 		    MSK_RX_RING_CNT];
3220 #else
3221 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3222 #endif
3223 		m = rxd->rx_m;
3224 		if (msk_newbuf(sc_if, cons) != 0) {
3225 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
3226 			/* Reuse old buffer. */
3227 			msk_discard_rxbuf(sc_if, cons);
3228 			break;
3229 		}
3230 		m->m_pkthdr.rcvif = ifp;
3231 		m->m_pkthdr.len = m->m_len = len;
3232 #ifndef __NO_STRICT_ALIGNMENT
3233 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3234 			msk_fixup_rx(m);
3235 #endif
3236 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3237 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3238 			msk_rxcsum(sc_if, control, m);
3239 		/* Check for VLAN tagged packets. */
3240 		if ((status & GMR_FS_VLAN) != 0 &&
3241 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3242 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3243 			m->m_flags |= M_VLANTAG;
3244 		}
3245 		MSK_IF_UNLOCK(sc_if);
3246 		(*ifp->if_input)(ifp, m);
3247 		MSK_IF_LOCK(sc_if);
3248 	} while (0);
3249 
3250 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3251 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3252 }
3253 
3254 static void
3255 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3256     int len)
3257 {
3258 	struct mbuf *m;
3259 	struct ifnet *ifp;
3260 	struct msk_rxdesc *jrxd;
3261 	int cons, rxlen;
3262 
3263 	ifp = sc_if->msk_ifp;
3264 
3265 	MSK_IF_LOCK_ASSERT(sc_if);
3266 
3267 	cons = sc_if->msk_cdata.msk_rx_cons;
3268 	do {
3269 		rxlen = status >> 16;
3270 		if ((status & GMR_FS_VLAN) != 0 &&
3271 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3272 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3273 		if (len > sc_if->msk_framesize ||
3274 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3275 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3276 			/* Don't count flow-control packet as errors. */
3277 			if ((status & GMR_FS_GOOD_FC) == 0)
3278 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3279 			msk_discard_jumbo_rxbuf(sc_if, cons);
3280 			break;
3281 		}
3282 #ifdef MSK_64BIT_DMA
3283 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[(cons + 1) %
3284 		    MSK_JUMBO_RX_RING_CNT];
3285 #else
3286 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3287 #endif
3288 		m = jrxd->rx_m;
3289 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3290 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
3291 			/* Reuse old buffer. */
3292 			msk_discard_jumbo_rxbuf(sc_if, cons);
3293 			break;
3294 		}
3295 		m->m_pkthdr.rcvif = ifp;
3296 		m->m_pkthdr.len = m->m_len = len;
3297 #ifndef __NO_STRICT_ALIGNMENT
3298 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3299 			msk_fixup_rx(m);
3300 #endif
3301 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3302 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3303 			msk_rxcsum(sc_if, control, m);
3304 		/* Check for VLAN tagged packets. */
3305 		if ((status & GMR_FS_VLAN) != 0 &&
3306 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3307 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3308 			m->m_flags |= M_VLANTAG;
3309 		}
3310 		MSK_IF_UNLOCK(sc_if);
3311 		(*ifp->if_input)(ifp, m);
3312 		MSK_IF_LOCK(sc_if);
3313 	} while (0);
3314 
3315 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3316 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3317 }
3318 
3319 static void
3320 msk_txeof(struct msk_if_softc *sc_if, int idx)
3321 {
3322 	struct msk_txdesc *txd;
3323 	struct msk_tx_desc *cur_tx;
3324 	struct ifnet *ifp;
3325 	uint32_t control;
3326 	int cons, prog;
3327 
3328 	MSK_IF_LOCK_ASSERT(sc_if);
3329 
3330 	ifp = sc_if->msk_ifp;
3331 
3332 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3333 	    sc_if->msk_cdata.msk_tx_ring_map,
3334 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3335 	/*
3336 	 * Go through our tx ring and free mbufs for those
3337 	 * frames that have been sent.
3338 	 */
3339 	cons = sc_if->msk_cdata.msk_tx_cons;
3340 	prog = 0;
3341 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3342 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3343 			break;
3344 		prog++;
3345 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3346 		control = le32toh(cur_tx->msk_control);
3347 		sc_if->msk_cdata.msk_tx_cnt--;
3348 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3349 		if ((control & EOP) == 0)
3350 			continue;
3351 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3352 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3353 		    BUS_DMASYNC_POSTWRITE);
3354 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3355 
3356 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3357 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3358 		    __func__));
3359 		m_freem(txd->tx_m);
3360 		txd->tx_m = NULL;
3361 	}
3362 
3363 	if (prog > 0) {
3364 		sc_if->msk_cdata.msk_tx_cons = cons;
3365 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3366 			sc_if->msk_watchdog_timer = 0;
3367 		/* No need to sync LEs as we didn't update LEs. */
3368 	}
3369 }
3370 
3371 static void
3372 msk_tick(void *xsc_if)
3373 {
3374 	struct epoch_tracker et;
3375 	struct msk_if_softc *sc_if;
3376 	struct mii_data *mii;
3377 
3378 	sc_if = xsc_if;
3379 
3380 	MSK_IF_LOCK_ASSERT(sc_if);
3381 
3382 	mii = device_get_softc(sc_if->msk_miibus);
3383 
3384 	mii_tick(mii);
3385 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0)
3386 		msk_miibus_statchg(sc_if->msk_if_dev);
3387 	NET_EPOCH_ENTER(et);
3388 	msk_handle_events(sc_if->msk_softc);
3389 	NET_EPOCH_EXIT(et);
3390 	msk_watchdog(sc_if);
3391 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3392 }
3393 
3394 static void
3395 msk_intr_phy(struct msk_if_softc *sc_if)
3396 {
3397 	uint16_t status;
3398 
3399 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3400 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3401 	/* Handle FIFO Underrun/Overflow? */
3402 	if ((status & PHY_M_IS_FIFO_ERROR))
3403 		device_printf(sc_if->msk_if_dev,
3404 		    "PHY FIFO underrun/overflow.\n");
3405 }
3406 
3407 static void
3408 msk_intr_gmac(struct msk_if_softc *sc_if)
3409 {
3410 	struct msk_softc *sc;
3411 	uint8_t status;
3412 
3413 	sc = sc_if->msk_softc;
3414 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3415 
3416 	/* GMAC Rx FIFO overrun. */
3417 	if ((status & GM_IS_RX_FF_OR) != 0)
3418 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3419 		    GMF_CLI_RX_FO);
3420 	/* GMAC Tx FIFO underrun. */
3421 	if ((status & GM_IS_TX_FF_UR) != 0) {
3422 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3423 		    GMF_CLI_TX_FU);
3424 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3425 		/*
3426 		 * XXX
3427 		 * In case of Tx underrun, we may need to flush/reset
3428 		 * Tx MAC but that would also require resynchronization
3429 		 * with status LEs. Reinitializing status LEs would
3430 		 * affect other port in dual MAC configuration so it
3431 		 * should be avoided as possible as we can.
3432 		 * Due to lack of documentation it's all vague guess but
3433 		 * it needs more investigation.
3434 		 */
3435 	}
3436 }
3437 
3438 static void
3439 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3440 {
3441 	struct msk_softc *sc;
3442 
3443 	sc = sc_if->msk_softc;
3444 	if ((status & Y2_IS_PAR_RD1) != 0) {
3445 		device_printf(sc_if->msk_if_dev,
3446 		    "RAM buffer read parity error\n");
3447 		/* Clear IRQ. */
3448 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3449 		    RI_CLR_RD_PERR);
3450 	}
3451 	if ((status & Y2_IS_PAR_WR1) != 0) {
3452 		device_printf(sc_if->msk_if_dev,
3453 		    "RAM buffer write parity error\n");
3454 		/* Clear IRQ. */
3455 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3456 		    RI_CLR_WR_PERR);
3457 	}
3458 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3459 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3460 		/* Clear IRQ. */
3461 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3462 		    GMF_CLI_TX_PE);
3463 	}
3464 	if ((status & Y2_IS_PAR_RX1) != 0) {
3465 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3466 		/* Clear IRQ. */
3467 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3468 	}
3469 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3470 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3471 		/* Clear IRQ. */
3472 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3473 	}
3474 }
3475 
3476 static void
3477 msk_intr_hwerr(struct msk_softc *sc)
3478 {
3479 	uint32_t status;
3480 	uint32_t tlphead[4];
3481 
3482 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3483 	/* Time Stamp timer overflow. */
3484 	if ((status & Y2_IS_TIST_OV) != 0)
3485 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3486 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3487 		/*
3488 		 * PCI Express Error occurred which is not described in PEX
3489 		 * spec.
3490 		 * This error is also mapped either to Master Abort(
3491 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3492 		 * can only be cleared there.
3493                  */
3494 		device_printf(sc->msk_dev,
3495 		    "PCI Express protocol violation error\n");
3496 	}
3497 
3498 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3499 		uint16_t v16;
3500 
3501 		if ((status & Y2_IS_MST_ERR) != 0)
3502 			device_printf(sc->msk_dev,
3503 			    "unexpected IRQ Status error\n");
3504 		else
3505 			device_printf(sc->msk_dev,
3506 			    "unexpected IRQ Master error\n");
3507 		/* Reset all bits in the PCI status register. */
3508 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3509 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3510 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3511 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3512 		    PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
3513 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3514 	}
3515 
3516 	/* Check for PCI Express Uncorrectable Error. */
3517 	if ((status & Y2_IS_PCI_EXP) != 0) {
3518 		uint32_t v32;
3519 
3520 		/*
3521 		 * On PCI Express bus bridges are called root complexes (RC).
3522 		 * PCI Express errors are recognized by the root complex too,
3523 		 * which requests the system to handle the problem. After
3524 		 * error occurrence it may be that no access to the adapter
3525 		 * may be performed any longer.
3526 		 */
3527 
3528 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3529 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3530 			/* Ignore unsupported request error. */
3531 			device_printf(sc->msk_dev,
3532 			    "Uncorrectable PCI Express error\n");
3533 		}
3534 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3535 			int i;
3536 
3537 			/* Get TLP header form Log Registers. */
3538 			for (i = 0; i < 4; i++)
3539 				tlphead[i] = CSR_PCI_READ_4(sc,
3540 				    PEX_HEADER_LOG + i * 4);
3541 			/* Check for vendor defined broadcast message. */
3542 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3543 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3544 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3545 				    sc->msk_intrhwemask);
3546 				CSR_READ_4(sc, B0_HWE_IMSK);
3547 			}
3548 		}
3549 		/* Clear the interrupt. */
3550 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3551 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3552 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3553 	}
3554 
3555 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3556 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3557 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3558 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3559 }
3560 
3561 static __inline void
3562 msk_rxput(struct msk_if_softc *sc_if)
3563 {
3564 	struct msk_softc *sc;
3565 
3566 	sc = sc_if->msk_softc;
3567 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3568 		bus_dmamap_sync(
3569 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3570 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3571 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3572 	else
3573 		bus_dmamap_sync(
3574 		    sc_if->msk_cdata.msk_rx_ring_tag,
3575 		    sc_if->msk_cdata.msk_rx_ring_map,
3576 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3577 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3578 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3579 }
3580 
3581 static int
3582 msk_handle_events(struct msk_softc *sc)
3583 {
3584 	struct msk_if_softc *sc_if;
3585 	int rxput[2];
3586 	struct msk_stat_desc *sd;
3587 	uint32_t control, status;
3588 	int cons, len, port, rxprog;
3589 
3590 	if (sc->msk_stat_cons == CSR_READ_2(sc, STAT_PUT_IDX))
3591 		return (0);
3592 
3593 	/* Sync status LEs. */
3594 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3595 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3596 
3597 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3598 	rxprog = 0;
3599 	cons = sc->msk_stat_cons;
3600 	for (;;) {
3601 		sd = &sc->msk_stat_ring[cons];
3602 		control = le32toh(sd->msk_control);
3603 		if ((control & HW_OWNER) == 0)
3604 			break;
3605 		control &= ~HW_OWNER;
3606 		sd->msk_control = htole32(control);
3607 		status = le32toh(sd->msk_status);
3608 		len = control & STLE_LEN_MASK;
3609 		port = (control >> 16) & 0x01;
3610 		sc_if = sc->msk_if[port];
3611 		if (sc_if == NULL) {
3612 			device_printf(sc->msk_dev, "invalid port opcode "
3613 			    "0x%08x\n", control & STLE_OP_MASK);
3614 			continue;
3615 		}
3616 
3617 		switch (control & STLE_OP_MASK) {
3618 		case OP_RXVLAN:
3619 			sc_if->msk_vtag = ntohs(len);
3620 			break;
3621 		case OP_RXCHKSVLAN:
3622 			sc_if->msk_vtag = ntohs(len);
3623 			/* FALLTHROUGH */
3624 		case OP_RXCHKS:
3625 			sc_if->msk_csum = status;
3626 			break;
3627 		case OP_RXSTAT:
3628 			if (!(sc_if->msk_ifp->if_drv_flags & IFF_DRV_RUNNING))
3629 				break;
3630 			if (sc_if->msk_framesize >
3631 			    (MCLBYTES - MSK_RX_BUF_ALIGN))
3632 				msk_jumbo_rxeof(sc_if, status, control, len);
3633 			else
3634 				msk_rxeof(sc_if, status, control, len);
3635 			rxprog++;
3636 			/*
3637 			 * Because there is no way to sync single Rx LE
3638 			 * put the DMA sync operation off until the end of
3639 			 * event processing.
3640 			 */
3641 			rxput[port]++;
3642 			/* Update prefetch unit if we've passed water mark. */
3643 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3644 				msk_rxput(sc_if);
3645 				rxput[port] = 0;
3646 			}
3647 			break;
3648 		case OP_TXINDEXLE:
3649 			if (sc->msk_if[MSK_PORT_A] != NULL)
3650 				msk_txeof(sc->msk_if[MSK_PORT_A],
3651 				    status & STLE_TXA1_MSKL);
3652 			if (sc->msk_if[MSK_PORT_B] != NULL)
3653 				msk_txeof(sc->msk_if[MSK_PORT_B],
3654 				    ((status & STLE_TXA2_MSKL) >>
3655 				    STLE_TXA2_SHIFTL) |
3656 				    ((len & STLE_TXA2_MSKH) <<
3657 				    STLE_TXA2_SHIFTH));
3658 			break;
3659 		default:
3660 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3661 			    control & STLE_OP_MASK);
3662 			break;
3663 		}
3664 		MSK_INC(cons, sc->msk_stat_count);
3665 		if (rxprog > sc->msk_process_limit)
3666 			break;
3667 	}
3668 
3669 	sc->msk_stat_cons = cons;
3670 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3671 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3672 
3673 	if (rxput[MSK_PORT_A] > 0)
3674 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3675 	if (rxput[MSK_PORT_B] > 0)
3676 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3677 
3678 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3679 }
3680 
3681 static void
3682 msk_intr(void *xsc)
3683 {
3684 	struct msk_softc *sc;
3685 	struct msk_if_softc *sc_if0, *sc_if1;
3686 	struct ifnet *ifp0, *ifp1;
3687 	uint32_t status;
3688 	int domore;
3689 
3690 	sc = xsc;
3691 	MSK_LOCK(sc);
3692 
3693 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3694 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3695 	if (status == 0 || status == 0xffffffff ||
3696 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3697 	    (status & sc->msk_intrmask) == 0) {
3698 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3699 		MSK_UNLOCK(sc);
3700 		return;
3701 	}
3702 
3703 	sc_if0 = sc->msk_if[MSK_PORT_A];
3704 	sc_if1 = sc->msk_if[MSK_PORT_B];
3705 	ifp0 = ifp1 = NULL;
3706 	if (sc_if0 != NULL)
3707 		ifp0 = sc_if0->msk_ifp;
3708 	if (sc_if1 != NULL)
3709 		ifp1 = sc_if1->msk_ifp;
3710 
3711 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3712 		msk_intr_phy(sc_if0);
3713 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3714 		msk_intr_phy(sc_if1);
3715 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3716 		msk_intr_gmac(sc_if0);
3717 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3718 		msk_intr_gmac(sc_if1);
3719 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3720 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3721 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3722 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3723 		CSR_READ_4(sc, B0_IMSK);
3724 	}
3725         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3726 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3727 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3728 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3729 		CSR_READ_4(sc, B0_IMSK);
3730 	}
3731 	if ((status & Y2_IS_HW_ERR) != 0)
3732 		msk_intr_hwerr(sc);
3733 
3734 	domore = msk_handle_events(sc);
3735 	if ((status & Y2_IS_STAT_BMU) != 0 && domore == 0)
3736 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3737 
3738 	/* Reenable interrupts. */
3739 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3740 
3741 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3742 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3743 		msk_start_locked(ifp0);
3744 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3745 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3746 		msk_start_locked(ifp1);
3747 
3748 	MSK_UNLOCK(sc);
3749 }
3750 
3751 static void
3752 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3753 {
3754 	struct msk_softc *sc;
3755 	struct ifnet *ifp;
3756 
3757 	ifp = sc_if->msk_ifp;
3758 	sc = sc_if->msk_softc;
3759 	if ((sc->msk_hw_id == CHIP_ID_YUKON_EX &&
3760 	    sc->msk_hw_rev != CHIP_REV_YU_EX_A0) ||
3761 	    sc->msk_hw_id >= CHIP_ID_YUKON_SUPR) {
3762 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3763 		    TX_STFW_ENA);
3764 	} else {
3765 		if (ifp->if_mtu > ETHERMTU) {
3766 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3767 			CSR_WRITE_4(sc,
3768 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3769 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3770 			/* Disable Store & Forward mode for Tx. */
3771 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3772 			    TX_STFW_DIS);
3773 		} else {
3774 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3775 			    TX_STFW_ENA);
3776 		}
3777 	}
3778 }
3779 
3780 static void
3781 msk_init(void *xsc)
3782 {
3783 	struct msk_if_softc *sc_if = xsc;
3784 
3785 	MSK_IF_LOCK(sc_if);
3786 	msk_init_locked(sc_if);
3787 	MSK_IF_UNLOCK(sc_if);
3788 }
3789 
3790 static void
3791 msk_init_locked(struct msk_if_softc *sc_if)
3792 {
3793 	struct msk_softc *sc;
3794 	struct ifnet *ifp;
3795 	struct mii_data	 *mii;
3796 	uint8_t *eaddr;
3797 	uint16_t gmac;
3798 	uint32_t reg;
3799 	int error;
3800 
3801 	MSK_IF_LOCK_ASSERT(sc_if);
3802 
3803 	ifp = sc_if->msk_ifp;
3804 	sc = sc_if->msk_softc;
3805 	mii = device_get_softc(sc_if->msk_miibus);
3806 
3807 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3808 		return;
3809 
3810 	error = 0;
3811 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3812 	msk_stop(sc_if);
3813 
3814 	if (ifp->if_mtu < ETHERMTU)
3815 		sc_if->msk_framesize = ETHERMTU;
3816 	else
3817 		sc_if->msk_framesize = ifp->if_mtu;
3818 	sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3819 	if (ifp->if_mtu > ETHERMTU &&
3820 	    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
3821 		ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3822 		ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3823 	}
3824 
3825 	/* GMAC Control reset. */
3826 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3827 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3828 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3829 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3830 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR)
3831 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3832 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3833 		    GMC_BYP_RETR_ON);
3834 
3835 	/*
3836 	 * Initialize GMAC first such that speed/duplex/flow-control
3837 	 * parameters are renegotiated when interface is brought up.
3838 	 */
3839 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3840 
3841 	/* Dummy read the Interrupt Source Register. */
3842 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3843 
3844 	/* Clear MIB stats. */
3845 	msk_stats_clear(sc_if);
3846 
3847 	/* Disable FCS. */
3848 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3849 
3850 	/* Setup Transmit Control Register. */
3851 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3852 
3853 	/* Setup Transmit Flow Control Register. */
3854 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3855 
3856 	/* Setup Transmit Parameter Register. */
3857 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3858 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3859 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3860 
3861 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3862 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3863 
3864 	if (ifp->if_mtu > ETHERMTU)
3865 		gmac |= GM_SMOD_JUMBO_ENA;
3866 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3867 
3868 	/* Set station address. */
3869 	eaddr = IF_LLADDR(ifp);
3870 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L,
3871 	    eaddr[0] | (eaddr[1] << 8));
3872 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M,
3873 	    eaddr[2] | (eaddr[3] << 8));
3874 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H,
3875 	    eaddr[4] | (eaddr[5] << 8));
3876 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L,
3877 	    eaddr[0] | (eaddr[1] << 8));
3878 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M,
3879 	    eaddr[2] | (eaddr[3] << 8));
3880 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H,
3881 	    eaddr[4] | (eaddr[5] << 8));
3882 
3883 	/* Disable interrupts for counter overflows. */
3884 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3885 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3886 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3887 
3888 	/* Configure Rx MAC FIFO. */
3889 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3890 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3891 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3892 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3893 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3894 		reg |= GMF_RX_OVER_ON;
3895 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3896 
3897 	/* Set receive filter. */
3898 	msk_rxfilter(sc_if);
3899 
3900 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3901 		/* Clear flush mask - HW bug. */
3902 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3903 	} else {
3904 		/* Flush Rx MAC FIFO on any flow control or error. */
3905 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3906 		    GMR_FS_ANY_ERR);
3907 	}
3908 
3909 	/*
3910 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3911 	 * due to hardware hang on receipt of pause frames.
3912 	 */
3913 	reg = RX_GMF_FL_THR_DEF + 1;
3914 	/* Another magic for Yukon FE+ - From Linux. */
3915 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3916 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3917 		reg = 0x178;
3918 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3919 
3920 	/* Configure Tx MAC FIFO. */
3921 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3922 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3923 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3924 
3925 	/* Configure hardware VLAN tag insertion/stripping. */
3926 	msk_setvlan(sc_if, ifp);
3927 
3928 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3929 		/* Set Rx Pause threshold. */
3930 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3931 		    MSK_ECU_LLPP);
3932 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3933 		    MSK_ECU_ULPP);
3934 		/* Configure store-and-forward for Tx. */
3935 		msk_set_tx_stfwd(sc_if);
3936 	}
3937 
3938 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3939 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3940 		/* Disable dynamic watermark - from Linux. */
3941 		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3942 		reg &= ~0x03;
3943 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3944 	}
3945 
3946 	/*
3947 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3948 	 * arbiter as we don't use Sync Tx queue.
3949 	 */
3950 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3951 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3952 	/* Enable the RAM Interface Arbiter. */
3953 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3954 
3955 	/* Setup RAM buffer. */
3956 	msk_set_rambuffer(sc_if);
3957 
3958 	/* Disable Tx sync Queue. */
3959 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3960 
3961 	/* Setup Tx Queue Bus Memory Interface. */
3962 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3963 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3964 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3965 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3966 	switch (sc->msk_hw_id) {
3967 	case CHIP_ID_YUKON_EC_U:
3968 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3969 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3970 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3971 			    MSK_ECU_TXFF_LEV);
3972 		}
3973 		break;
3974 	case CHIP_ID_YUKON_EX:
3975 		/*
3976 		 * Yukon Extreme seems to have silicon bug for
3977 		 * automatic Tx checksum calculation capability.
3978 		 */
3979 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
3980 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3981 			    F_TX_CHK_AUTO_OFF);
3982 		break;
3983 	}
3984 
3985 	/* Setup Rx Queue Bus Memory Interface. */
3986 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3987 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3988 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3989 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3990         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3991 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3992 		/* MAC Rx RAM Read is controlled by hardware. */
3993                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3994 	}
3995 
3996 	msk_set_prefetch(sc, sc_if->msk_txq,
3997 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3998 	msk_init_tx_ring(sc_if);
3999 
4000 	/* Disable Rx checksum offload and RSS hash. */
4001 	reg = BMU_DIS_RX_RSS_HASH;
4002 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
4003 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0)
4004 		reg |= BMU_ENA_RX_CHKSUM;
4005 	else
4006 		reg |= BMU_DIS_RX_CHKSUM;
4007 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), reg);
4008 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
4009 		msk_set_prefetch(sc, sc_if->msk_rxq,
4010 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
4011 		    MSK_JUMBO_RX_RING_CNT - 1);
4012 		error = msk_init_jumbo_rx_ring(sc_if);
4013 	 } else {
4014 		msk_set_prefetch(sc, sc_if->msk_rxq,
4015 		    sc_if->msk_rdata.msk_rx_ring_paddr,
4016 		    MSK_RX_RING_CNT - 1);
4017 		error = msk_init_rx_ring(sc_if);
4018 	}
4019 	if (error != 0) {
4020 		device_printf(sc_if->msk_if_dev,
4021 		    "initialization failed: no memory for Rx buffers\n");
4022 		msk_stop(sc_if);
4023 		return;
4024 	}
4025 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
4026 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
4027 		/* Disable flushing of non-ASF packets. */
4028 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
4029 		    GMF_RX_MACSEC_FLUSH_OFF);
4030 	}
4031 
4032 	/* Configure interrupt handling. */
4033 	if (sc_if->msk_port == MSK_PORT_A) {
4034 		sc->msk_intrmask |= Y2_IS_PORT_A;
4035 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
4036 	} else {
4037 		sc->msk_intrmask |= Y2_IS_PORT_B;
4038 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
4039 	}
4040 	/* Configure IRQ moderation mask. */
4041 	CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
4042 	if (sc->msk_int_holdoff > 0) {
4043 		/* Configure initial IRQ moderation timer value. */
4044 		CSR_WRITE_4(sc, B2_IRQM_INI,
4045 		    MSK_USECS(sc, sc->msk_int_holdoff));
4046 		CSR_WRITE_4(sc, B2_IRQM_VAL,
4047 		    MSK_USECS(sc, sc->msk_int_holdoff));
4048 		/* Start IRQ moderation. */
4049 		CSR_WRITE_1(sc, B2_IRQM_CTRL, TIM_START);
4050 	}
4051 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4052 	CSR_READ_4(sc, B0_HWE_IMSK);
4053 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4054 	CSR_READ_4(sc, B0_IMSK);
4055 
4056 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4057 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4058 
4059 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4060 	mii_mediachg(mii);
4061 
4062 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
4063 }
4064 
4065 static void
4066 msk_set_rambuffer(struct msk_if_softc *sc_if)
4067 {
4068 	struct msk_softc *sc;
4069 	int ltpp, utpp;
4070 
4071 	sc = sc_if->msk_softc;
4072 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
4073 		return;
4074 
4075 	/* Setup Rx Queue. */
4076 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
4077 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
4078 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4079 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
4080 	    sc->msk_rxqend[sc_if->msk_port] / 8);
4081 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
4082 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4083 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
4084 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4085 
4086 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
4087 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
4088 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
4089 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
4090 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
4091 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
4092 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
4093 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
4094 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
4095 
4096 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
4097 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
4098 
4099 	/* Setup Tx Queue. */
4100 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
4101 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
4102 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4103 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
4104 	    sc->msk_txqend[sc_if->msk_port] / 8);
4105 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
4106 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4107 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
4108 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4109 	/* Enable Store & Forward for Tx side. */
4110 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
4111 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
4112 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
4113 }
4114 
4115 static void
4116 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
4117     uint32_t count)
4118 {
4119 
4120 	/* Reset the prefetch unit. */
4121 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4122 	    PREF_UNIT_RST_SET);
4123 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4124 	    PREF_UNIT_RST_CLR);
4125 	/* Set LE base address. */
4126 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
4127 	    MSK_ADDR_LO(addr));
4128 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
4129 	    MSK_ADDR_HI(addr));
4130 	/* Set the list last index. */
4131 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
4132 	    count);
4133 	/* Turn on prefetch unit. */
4134 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4135 	    PREF_UNIT_OP_ON);
4136 	/* Dummy read to ensure write. */
4137 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
4138 }
4139 
4140 static void
4141 msk_stop(struct msk_if_softc *sc_if)
4142 {
4143 	struct msk_softc *sc;
4144 	struct msk_txdesc *txd;
4145 	struct msk_rxdesc *rxd;
4146 	struct msk_rxdesc *jrxd;
4147 	struct ifnet *ifp;
4148 	uint32_t val;
4149 	int i;
4150 
4151 	MSK_IF_LOCK_ASSERT(sc_if);
4152 	sc = sc_if->msk_softc;
4153 	ifp = sc_if->msk_ifp;
4154 
4155 	callout_stop(&sc_if->msk_tick_ch);
4156 	sc_if->msk_watchdog_timer = 0;
4157 
4158 	/* Disable interrupts. */
4159 	if (sc_if->msk_port == MSK_PORT_A) {
4160 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
4161 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
4162 	} else {
4163 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
4164 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
4165 	}
4166 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4167 	CSR_READ_4(sc, B0_HWE_IMSK);
4168 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4169 	CSR_READ_4(sc, B0_IMSK);
4170 
4171 	/* Disable Tx/Rx MAC. */
4172 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4173 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
4174 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
4175 	/* Read again to ensure writing. */
4176 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4177 	/* Update stats and clear counters. */
4178 	msk_stats_update(sc_if);
4179 
4180 	/* Stop Tx BMU. */
4181 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
4182 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4183 	for (i = 0; i < MSK_TIMEOUT; i++) {
4184 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
4185 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4186 			    BMU_STOP);
4187 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4188 		} else
4189 			break;
4190 		DELAY(1);
4191 	}
4192 	if (i == MSK_TIMEOUT)
4193 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
4194 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
4195 	    RB_RST_SET | RB_DIS_OP_MD);
4196 
4197 	/* Disable all GMAC interrupt. */
4198 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
4199 	/* Disable PHY interrupt. */
4200 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
4201 
4202 	/* Disable the RAM Interface Arbiter. */
4203 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
4204 
4205 	/* Reset the PCI FIFO of the async Tx queue */
4206 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4207 	    BMU_RST_SET | BMU_FIFO_RST);
4208 
4209 	/* Reset the Tx prefetch units. */
4210 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
4211 	    PREF_UNIT_RST_SET);
4212 
4213 	/* Reset the RAM Buffer async Tx queue. */
4214 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
4215 
4216 	/* Reset Tx MAC FIFO. */
4217 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
4218 	/* Set Pause Off. */
4219 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
4220 
4221 	/*
4222 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
4223 	 * reach the end of packet and since we can't make sure that we have
4224 	 * incoming data, we must reset the BMU while it is not during a DMA
4225 	 * transfer. Since it is possible that the Rx path is still active,
4226 	 * the Rx RAM buffer will be stopped first, so any possible incoming
4227 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
4228 	 * BMU is polled until any DMA in progress is ended and only then it
4229 	 * will be reset.
4230 	 */
4231 
4232 	/* Disable the RAM Buffer receive queue. */
4233 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4234 	for (i = 0; i < MSK_TIMEOUT; i++) {
4235 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4236 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4237 			break;
4238 		DELAY(1);
4239 	}
4240 	if (i == MSK_TIMEOUT)
4241 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4242 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4243 	    BMU_RST_SET | BMU_FIFO_RST);
4244 	/* Reset the Rx prefetch unit. */
4245 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4246 	    PREF_UNIT_RST_SET);
4247 	/* Reset the RAM Buffer receive queue. */
4248 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4249 	/* Reset Rx MAC FIFO. */
4250 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4251 
4252 	/* Free Rx and Tx mbufs still in the queues. */
4253 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4254 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4255 		if (rxd->rx_m != NULL) {
4256 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4257 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4258 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4259 			    rxd->rx_dmamap);
4260 			m_freem(rxd->rx_m);
4261 			rxd->rx_m = NULL;
4262 		}
4263 	}
4264 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4265 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4266 		if (jrxd->rx_m != NULL) {
4267 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4268 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4269 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4270 			    jrxd->rx_dmamap);
4271 			m_freem(jrxd->rx_m);
4272 			jrxd->rx_m = NULL;
4273 		}
4274 	}
4275 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4276 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4277 		if (txd->tx_m != NULL) {
4278 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4279 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4280 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4281 			    txd->tx_dmamap);
4282 			m_freem(txd->tx_m);
4283 			txd->tx_m = NULL;
4284 		}
4285 	}
4286 
4287 	/*
4288 	 * Mark the interface down.
4289 	 */
4290 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4291 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4292 }
4293 
4294 /*
4295  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
4296  * counter clears high 16 bits of the counter such that accessing
4297  * lower 16 bits should be the last operation.
4298  */
4299 #define	MSK_READ_MIB32(x, y)					\
4300 	(((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) +	\
4301 	(uint32_t)GMAC_READ_2(sc, x, y)
4302 #define	MSK_READ_MIB64(x, y)					\
4303 	(((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) +	\
4304 	(uint64_t)MSK_READ_MIB32(x, y)
4305 
4306 static void
4307 msk_stats_clear(struct msk_if_softc *sc_if)
4308 {
4309 	struct msk_softc *sc;
4310 	uint16_t gmac;
4311 	int i;
4312 
4313 	MSK_IF_LOCK_ASSERT(sc_if);
4314 
4315 	sc = sc_if->msk_softc;
4316 	/* Set MIB Clear Counter Mode. */
4317 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4318 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4319 	/* Read all MIB Counters with Clear Mode set. */
4320 	for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t))
4321 		MSK_READ_MIB32(sc_if->msk_port, i);
4322 	/* Clear MIB Clear Counter Mode. */
4323 	gmac &= ~GM_PAR_MIB_CLR;
4324 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4325 }
4326 
4327 static void
4328 msk_stats_update(struct msk_if_softc *sc_if)
4329 {
4330 	struct msk_softc *sc;
4331 	struct ifnet *ifp;
4332 	struct msk_hw_stats *stats;
4333 	uint16_t gmac;
4334 
4335 	MSK_IF_LOCK_ASSERT(sc_if);
4336 
4337 	ifp = sc_if->msk_ifp;
4338 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4339 		return;
4340 	sc = sc_if->msk_softc;
4341 	stats = &sc_if->msk_stats;
4342 	/* Set MIB Clear Counter Mode. */
4343 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4344 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4345 
4346 	/* Rx stats. */
4347 	stats->rx_ucast_frames +=
4348 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4349 	stats->rx_bcast_frames +=
4350 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4351 	stats->rx_pause_frames +=
4352 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4353 	stats->rx_mcast_frames +=
4354 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4355 	stats->rx_crc_errs +=
4356 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4357 	MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1);
4358 	stats->rx_good_octets +=
4359 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4360 	stats->rx_bad_octets +=
4361 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4362 	stats->rx_runts +=
4363 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4364 	stats->rx_runt_errs +=
4365 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4366 	stats->rx_pkts_64 +=
4367 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4368 	stats->rx_pkts_65_127 +=
4369 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4370 	stats->rx_pkts_128_255 +=
4371 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4372 	stats->rx_pkts_256_511 +=
4373 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4374 	stats->rx_pkts_512_1023 +=
4375 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4376 	stats->rx_pkts_1024_1518 +=
4377 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4378 	stats->rx_pkts_1519_max +=
4379 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4380 	stats->rx_pkts_too_long +=
4381 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4382 	stats->rx_pkts_jabbers +=
4383 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4384 	MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2);
4385 	stats->rx_fifo_oflows +=
4386 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4387 	MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3);
4388 
4389 	/* Tx stats. */
4390 	stats->tx_ucast_frames +=
4391 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4392 	stats->tx_bcast_frames +=
4393 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4394 	stats->tx_pause_frames +=
4395 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4396 	stats->tx_mcast_frames +=
4397 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4398 	stats->tx_octets +=
4399 	    MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4400 	stats->tx_pkts_64 +=
4401 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4402 	stats->tx_pkts_65_127 +=
4403 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4404 	stats->tx_pkts_128_255 +=
4405 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4406 	stats->tx_pkts_256_511 +=
4407 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4408 	stats->tx_pkts_512_1023 +=
4409 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4410 	stats->tx_pkts_1024_1518 +=
4411 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4412 	stats->tx_pkts_1519_max +=
4413 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4414 	MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1);
4415 	stats->tx_colls +=
4416 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4417 	stats->tx_late_colls +=
4418 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4419 	stats->tx_excess_colls +=
4420 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4421 	stats->tx_multi_colls +=
4422 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4423 	stats->tx_single_colls +=
4424 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4425 	stats->tx_underflows +=
4426 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4427 	/* Clear MIB Clear Counter Mode. */
4428 	gmac &= ~GM_PAR_MIB_CLR;
4429 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4430 }
4431 
4432 static int
4433 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4434 {
4435 	struct msk_softc *sc;
4436 	struct msk_if_softc *sc_if;
4437 	uint32_t result, *stat;
4438 	int off;
4439 
4440 	sc_if = (struct msk_if_softc *)arg1;
4441 	sc = sc_if->msk_softc;
4442 	off = arg2;
4443 	stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4444 
4445 	MSK_IF_LOCK(sc_if);
4446 	result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4447 	result += *stat;
4448 	MSK_IF_UNLOCK(sc_if);
4449 
4450 	return (sysctl_handle_int(oidp, &result, 0, req));
4451 }
4452 
4453 static int
4454 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4455 {
4456 	struct msk_softc *sc;
4457 	struct msk_if_softc *sc_if;
4458 	uint64_t result, *stat;
4459 	int off;
4460 
4461 	sc_if = (struct msk_if_softc *)arg1;
4462 	sc = sc_if->msk_softc;
4463 	off = arg2;
4464 	stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4465 
4466 	MSK_IF_LOCK(sc_if);
4467 	result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4468 	result += *stat;
4469 	MSK_IF_UNLOCK(sc_if);
4470 
4471 	return (sysctl_handle_64(oidp, &result, 0, req));
4472 }
4473 
4474 #undef MSK_READ_MIB32
4475 #undef MSK_READ_MIB64
4476 
4477 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) 				\
4478 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o,				\
4479 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,	 	\
4480 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32,	\
4481 	    "IU", d)
4482 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) 				\
4483 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o,				\
4484 	    CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,	 	\
4485 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64,	\
4486 	    "QU", d)
4487 
4488 static void
4489 msk_sysctl_node(struct msk_if_softc *sc_if)
4490 {
4491 	struct sysctl_ctx_list *ctx;
4492 	struct sysctl_oid_list *child, *schild;
4493 	struct sysctl_oid *tree;
4494 
4495 	ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4496 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4497 
4498 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
4499 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "MSK Statistics");
4500 	schild = SYSCTL_CHILDREN(tree);
4501 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx",
4502 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "MSK RX Statistics");
4503 	child = SYSCTL_CHILDREN(tree);
4504 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4505 	    child, rx_ucast_frames, "Good unicast frames");
4506 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4507 	    child, rx_bcast_frames, "Good broadcast frames");
4508 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4509 	    child, rx_pause_frames, "Pause frames");
4510 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4511 	    child, rx_mcast_frames, "Multicast frames");
4512 	MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4513 	    child, rx_crc_errs, "CRC errors");
4514 	MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4515 	    child, rx_good_octets, "Good octets");
4516 	MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4517 	    child, rx_bad_octets, "Bad octets");
4518 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4519 	    child, rx_pkts_64, "64 bytes frames");
4520 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4521 	    child, rx_pkts_65_127, "65 to 127 bytes frames");
4522 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4523 	    child, rx_pkts_128_255, "128 to 255 bytes frames");
4524 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4525 	    child, rx_pkts_256_511, "256 to 511 bytes frames");
4526 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4527 	    child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4528 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4529 	    child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4530 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4531 	    child, rx_pkts_1519_max, "1519 to max frames");
4532 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4533 	    child, rx_pkts_too_long, "frames too long");
4534 	MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4535 	    child, rx_pkts_jabbers, "Jabber errors");
4536 	MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4537 	    child, rx_fifo_oflows, "FIFO overflows");
4538 
4539 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx",
4540 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "MSK TX Statistics");
4541 	child = SYSCTL_CHILDREN(tree);
4542 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4543 	    child, tx_ucast_frames, "Unicast frames");
4544 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4545 	    child, tx_bcast_frames, "Broadcast frames");
4546 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4547 	    child, tx_pause_frames, "Pause frames");
4548 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4549 	    child, tx_mcast_frames, "Multicast frames");
4550 	MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4551 	    child, tx_octets, "Octets");
4552 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4553 	    child, tx_pkts_64, "64 bytes frames");
4554 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4555 	    child, tx_pkts_65_127, "65 to 127 bytes frames");
4556 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4557 	    child, tx_pkts_128_255, "128 to 255 bytes frames");
4558 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4559 	    child, tx_pkts_256_511, "256 to 511 bytes frames");
4560 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4561 	    child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4562 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4563 	    child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4564 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4565 	    child, tx_pkts_1519_max, "1519 to max frames");
4566 	MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4567 	    child, tx_colls, "Collisions");
4568 	MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4569 	    child, tx_late_colls, "Late collisions");
4570 	MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4571 	    child, tx_excess_colls, "Excessive collisions");
4572 	MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4573 	    child, tx_multi_colls, "Multiple collisions");
4574 	MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4575 	    child, tx_single_colls, "Single collisions");
4576 	MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4577 	    child, tx_underflows, "FIFO underflows");
4578 }
4579 
4580 #undef MSK_SYSCTL_STAT32
4581 #undef MSK_SYSCTL_STAT64
4582 
4583 static int
4584 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4585 {
4586 	int error, value;
4587 
4588 	if (!arg1)
4589 		return (EINVAL);
4590 	value = *(int *)arg1;
4591 	error = sysctl_handle_int(oidp, &value, 0, req);
4592 	if (error || !req->newptr)
4593 		return (error);
4594 	if (value < low || value > high)
4595 		return (EINVAL);
4596 	*(int *)arg1 = value;
4597 
4598 	return (0);
4599 }
4600 
4601 static int
4602 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4603 {
4604 
4605 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4606 	    MSK_PROC_MAX));
4607 }
4608