xref: /freebsd/sys/dev/msk/if_msk.c (revision 10b59a9b4add0320d52c15ce057dd697261e7dfc)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /*
96  * Device driver for the Marvell Yukon II Ethernet controller.
97  * Due to lack of documentation, this driver is based on the code from
98  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
99  */
100 
101 #include <sys/cdefs.h>
102 __FBSDID("$FreeBSD$");
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/module.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/queue.h>
115 #include <sys/sysctl.h>
116 
117 #include <net/bpf.h>
118 #include <net/ethernet.h>
119 #include <net/if.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/if_types.h>
124 #include <net/if_vlan_var.h>
125 
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/tcp.h>
130 #include <netinet/udp.h>
131 
132 #include <machine/bus.h>
133 #include <machine/in_cksum.h>
134 #include <machine/resource.h>
135 #include <sys/rman.h>
136 
137 #include <dev/mii/mii.h>
138 #include <dev/mii/miivar.h>
139 
140 #include <dev/pci/pcireg.h>
141 #include <dev/pci/pcivar.h>
142 
143 #include <dev/msk/if_mskreg.h>
144 
145 MODULE_DEPEND(msk, pci, 1, 1, 1);
146 MODULE_DEPEND(msk, ether, 1, 1, 1);
147 MODULE_DEPEND(msk, miibus, 1, 1, 1);
148 
149 /* "device miibus" required.  See GENERIC if you get errors here. */
150 #include "miibus_if.h"
151 
152 /* Tunables. */
153 static int msi_disable = 0;
154 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
155 static int legacy_intr = 0;
156 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
157 static int jumbo_disable = 0;
158 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
159 
160 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
161 
162 /*
163  * Devices supported by this driver.
164  */
165 static struct msk_product {
166 	uint16_t	msk_vendorid;
167 	uint16_t	msk_deviceid;
168 	const char	*msk_name;
169 } msk_products[] = {
170 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
171 	    "SK-9Sxx Gigabit Ethernet" },
172 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
173 	    "SK-9Exx Gigabit Ethernet"},
174 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
175 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
176 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
177 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
178 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
179 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
180 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
181 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
182 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
183 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
184 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
185 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
186 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
187 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
188 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
189 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
190 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
191 	    "Marvell Yukon 88E8035 Fast Ethernet" },
192 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
193 	    "Marvell Yukon 88E8036 Fast Ethernet" },
194 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
195 	    "Marvell Yukon 88E8038 Fast Ethernet" },
196 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
197 	    "Marvell Yukon 88E8039 Fast Ethernet" },
198 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
199 	    "Marvell Yukon 88E8040 Fast Ethernet" },
200 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
201 	    "Marvell Yukon 88E8040T Fast Ethernet" },
202 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
203 	    "Marvell Yukon 88E8042 Fast Ethernet" },
204 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
205 	    "Marvell Yukon 88E8048 Fast Ethernet" },
206 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
207 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
208 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
209 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
210 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
211 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
212 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
213 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
214 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
215 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
216 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
217 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
218 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
219 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
220 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
221 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
222 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
223 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
224 	{ VENDORID_MARVELL, DEVICEID_MRVL_436D,
225 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
226 	{ VENDORID_MARVELL, DEVICEID_MRVL_4370,
227 	    "Marvell Yukon 88E8075 Gigabit Ethernet" },
228 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
229 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
230 	{ VENDORID_MARVELL, DEVICEID_MRVL_4381,
231 	    "Marvell Yukon 88E8059 Gigabit Ethernet" },
232 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
233 	    "D-Link 550SX Gigabit Ethernet" },
234 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560SX,
235 	    "D-Link 560SX Gigabit Ethernet" },
236 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
237 	    "D-Link 560T Gigabit Ethernet" }
238 };
239 
240 static const char *model_name[] = {
241 	"Yukon XL",
242         "Yukon EC Ultra",
243         "Yukon EX",
244         "Yukon EC",
245         "Yukon FE",
246         "Yukon FE+",
247         "Yukon Supreme",
248         "Yukon Ultra 2",
249         "Yukon Unknown",
250         "Yukon Optima",
251 };
252 
253 static int mskc_probe(device_t);
254 static int mskc_attach(device_t);
255 static int mskc_detach(device_t);
256 static int mskc_shutdown(device_t);
257 static int mskc_setup_rambuffer(struct msk_softc *);
258 static int mskc_suspend(device_t);
259 static int mskc_resume(device_t);
260 static void mskc_reset(struct msk_softc *);
261 
262 static int msk_probe(device_t);
263 static int msk_attach(device_t);
264 static int msk_detach(device_t);
265 
266 static void msk_tick(void *);
267 static void msk_intr(void *);
268 static void msk_intr_phy(struct msk_if_softc *);
269 static void msk_intr_gmac(struct msk_if_softc *);
270 static __inline void msk_rxput(struct msk_if_softc *);
271 static int msk_handle_events(struct msk_softc *);
272 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
273 static void msk_intr_hwerr(struct msk_softc *);
274 #ifndef __NO_STRICT_ALIGNMENT
275 static __inline void msk_fixup_rx(struct mbuf *);
276 #endif
277 static __inline void msk_rxcsum(struct msk_if_softc *, uint32_t, struct mbuf *);
278 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
279 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
280 static void msk_txeof(struct msk_if_softc *, int);
281 static int msk_encap(struct msk_if_softc *, struct mbuf **);
282 static void msk_start(struct ifnet *);
283 static void msk_start_locked(struct ifnet *);
284 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
285 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
286 static void msk_set_rambuffer(struct msk_if_softc *);
287 static void msk_set_tx_stfwd(struct msk_if_softc *);
288 static void msk_init(void *);
289 static void msk_init_locked(struct msk_if_softc *);
290 static void msk_stop(struct msk_if_softc *);
291 static void msk_watchdog(struct msk_if_softc *);
292 static int msk_mediachange(struct ifnet *);
293 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
294 static void msk_phy_power(struct msk_softc *, int);
295 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
296 static int msk_status_dma_alloc(struct msk_softc *);
297 static void msk_status_dma_free(struct msk_softc *);
298 static int msk_txrx_dma_alloc(struct msk_if_softc *);
299 static int msk_rx_dma_jalloc(struct msk_if_softc *);
300 static void msk_txrx_dma_free(struct msk_if_softc *);
301 static void msk_rx_dma_jfree(struct msk_if_softc *);
302 static int msk_rx_fill(struct msk_if_softc *, int);
303 static int msk_init_rx_ring(struct msk_if_softc *);
304 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
305 static void msk_init_tx_ring(struct msk_if_softc *);
306 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
307 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
308 static int msk_newbuf(struct msk_if_softc *, int);
309 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
310 
311 static int msk_phy_readreg(struct msk_if_softc *, int, int);
312 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
313 static int msk_miibus_readreg(device_t, int, int);
314 static int msk_miibus_writereg(device_t, int, int, int);
315 static void msk_miibus_statchg(device_t);
316 
317 static void msk_rxfilter(struct msk_if_softc *);
318 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
319 
320 static void msk_stats_clear(struct msk_if_softc *);
321 static void msk_stats_update(struct msk_if_softc *);
322 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
323 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
324 static void msk_sysctl_node(struct msk_if_softc *);
325 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
326 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
327 
328 static device_method_t mskc_methods[] = {
329 	/* Device interface */
330 	DEVMETHOD(device_probe,		mskc_probe),
331 	DEVMETHOD(device_attach,	mskc_attach),
332 	DEVMETHOD(device_detach,	mskc_detach),
333 	DEVMETHOD(device_suspend,	mskc_suspend),
334 	DEVMETHOD(device_resume,	mskc_resume),
335 	DEVMETHOD(device_shutdown,	mskc_shutdown),
336 
337 	/* bus interface */
338 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
339 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
340 
341 	{ NULL, NULL }
342 };
343 
344 static driver_t mskc_driver = {
345 	"mskc",
346 	mskc_methods,
347 	sizeof(struct msk_softc)
348 };
349 
350 static devclass_t mskc_devclass;
351 
352 static device_method_t msk_methods[] = {
353 	/* Device interface */
354 	DEVMETHOD(device_probe,		msk_probe),
355 	DEVMETHOD(device_attach,	msk_attach),
356 	DEVMETHOD(device_detach,	msk_detach),
357 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
358 
359 	/* bus interface */
360 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
361 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
362 
363 	/* MII interface */
364 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
365 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
366 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
367 
368 	{ NULL, NULL }
369 };
370 
371 static driver_t msk_driver = {
372 	"msk",
373 	msk_methods,
374 	sizeof(struct msk_if_softc)
375 };
376 
377 static devclass_t msk_devclass;
378 
379 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
380 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
381 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
382 
383 static struct resource_spec msk_res_spec_io[] = {
384 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
385 	{ -1,			0,		0 }
386 };
387 
388 static struct resource_spec msk_res_spec_mem[] = {
389 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
390 	{ -1,			0,		0 }
391 };
392 
393 static struct resource_spec msk_irq_spec_legacy[] = {
394 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
395 	{ -1,			0,		0 }
396 };
397 
398 static struct resource_spec msk_irq_spec_msi[] = {
399 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
400 	{ -1,			0,		0 }
401 };
402 
403 static int
404 msk_miibus_readreg(device_t dev, int phy, int reg)
405 {
406 	struct msk_if_softc *sc_if;
407 
408 	sc_if = device_get_softc(dev);
409 
410 	return (msk_phy_readreg(sc_if, phy, reg));
411 }
412 
413 static int
414 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
415 {
416 	struct msk_softc *sc;
417 	int i, val;
418 
419 	sc = sc_if->msk_softc;
420 
421         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
422 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
423 
424 	for (i = 0; i < MSK_TIMEOUT; i++) {
425 		DELAY(1);
426 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
427 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
428 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
429 			break;
430 		}
431 	}
432 
433 	if (i == MSK_TIMEOUT) {
434 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
435 		val = 0;
436 	}
437 
438 	return (val);
439 }
440 
441 static int
442 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
443 {
444 	struct msk_if_softc *sc_if;
445 
446 	sc_if = device_get_softc(dev);
447 
448 	return (msk_phy_writereg(sc_if, phy, reg, val));
449 }
450 
451 static int
452 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
453 {
454 	struct msk_softc *sc;
455 	int i;
456 
457 	sc = sc_if->msk_softc;
458 
459 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
460         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
461 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
462 	for (i = 0; i < MSK_TIMEOUT; i++) {
463 		DELAY(1);
464 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
465 		    GM_SMI_CT_BUSY) == 0)
466 			break;
467 	}
468 	if (i == MSK_TIMEOUT)
469 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
470 
471 	return (0);
472 }
473 
474 static void
475 msk_miibus_statchg(device_t dev)
476 {
477 	struct msk_softc *sc;
478 	struct msk_if_softc *sc_if;
479 	struct mii_data *mii;
480 	struct ifnet *ifp;
481 	uint32_t gmac;
482 
483 	sc_if = device_get_softc(dev);
484 	sc = sc_if->msk_softc;
485 
486 	MSK_IF_LOCK_ASSERT(sc_if);
487 
488 	mii = device_get_softc(sc_if->msk_miibus);
489 	ifp = sc_if->msk_ifp;
490 	if (mii == NULL || ifp == NULL ||
491 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
492 		return;
493 
494 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
495 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
496 	    (IFM_AVALID | IFM_ACTIVE)) {
497 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
498 		case IFM_10_T:
499 		case IFM_100_TX:
500 			sc_if->msk_flags |= MSK_FLAG_LINK;
501 			break;
502 		case IFM_1000_T:
503 		case IFM_1000_SX:
504 		case IFM_1000_LX:
505 		case IFM_1000_CX:
506 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
507 				sc_if->msk_flags |= MSK_FLAG_LINK;
508 			break;
509 		default:
510 			break;
511 		}
512 	}
513 
514 	if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) {
515 		/* Enable Tx FIFO Underrun. */
516 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
517 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
518 		/*
519 		 * Because mii(4) notify msk(4) that it detected link status
520 		 * change, there is no need to enable automatic
521 		 * speed/flow-control/duplex updates.
522 		 */
523 		gmac = GM_GPCR_AU_ALL_DIS;
524 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
525 		case IFM_1000_SX:
526 		case IFM_1000_T:
527 			gmac |= GM_GPCR_SPEED_1000;
528 			break;
529 		case IFM_100_TX:
530 			gmac |= GM_GPCR_SPEED_100;
531 			break;
532 		case IFM_10_T:
533 			break;
534 		}
535 
536 		if ((IFM_OPTIONS(mii->mii_media_active) &
537 		    IFM_ETH_RXPAUSE) == 0)
538 			gmac |= GM_GPCR_FC_RX_DIS;
539 		if ((IFM_OPTIONS(mii->mii_media_active) &
540 		     IFM_ETH_TXPAUSE) == 0)
541 			gmac |= GM_GPCR_FC_TX_DIS;
542 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
543 			gmac |= GM_GPCR_DUP_FULL;
544 		else
545 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
546 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
547 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
548 		/* Read again to ensure writing. */
549 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
550 		gmac = GMC_PAUSE_OFF;
551 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
552 			if ((IFM_OPTIONS(mii->mii_media_active) &
553 			    IFM_ETH_RXPAUSE) != 0)
554 				gmac = GMC_PAUSE_ON;
555 		}
556 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
557 
558 		/* Enable PHY interrupt for FIFO underrun/overflow. */
559 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
560 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
561 	} else {
562 		/*
563 		 * Link state changed to down.
564 		 * Disable PHY interrupts.
565 		 */
566 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
567 		/* Disable Rx/Tx MAC. */
568 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
569 		if ((gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) != 0) {
570 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
571 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
572 			/* Read again to ensure writing. */
573 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
574 		}
575 	}
576 }
577 
578 static void
579 msk_rxfilter(struct msk_if_softc *sc_if)
580 {
581 	struct msk_softc *sc;
582 	struct ifnet *ifp;
583 	struct ifmultiaddr *ifma;
584 	uint32_t mchash[2];
585 	uint32_t crc;
586 	uint16_t mode;
587 
588 	sc = sc_if->msk_softc;
589 
590 	MSK_IF_LOCK_ASSERT(sc_if);
591 
592 	ifp = sc_if->msk_ifp;
593 
594 	bzero(mchash, sizeof(mchash));
595 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
596 	if ((ifp->if_flags & IFF_PROMISC) != 0)
597 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
598 	else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
599 		mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
600 		mchash[0] = 0xffff;
601 		mchash[1] = 0xffff;
602 	} else {
603 		mode |= GM_RXCR_UCF_ENA;
604 		if_maddr_rlock(ifp);
605 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
606 			if (ifma->ifma_addr->sa_family != AF_LINK)
607 				continue;
608 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
609 			    ifma->ifma_addr), ETHER_ADDR_LEN);
610 			/* Just want the 6 least significant bits. */
611 			crc &= 0x3f;
612 			/* Set the corresponding bit in the hash table. */
613 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
614 		}
615 		if_maddr_runlock(ifp);
616 		if (mchash[0] != 0 || mchash[1] != 0)
617 			mode |= GM_RXCR_MCF_ENA;
618 	}
619 
620 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
621 	    mchash[0] & 0xffff);
622 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
623 	    (mchash[0] >> 16) & 0xffff);
624 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
625 	    mchash[1] & 0xffff);
626 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
627 	    (mchash[1] >> 16) & 0xffff);
628 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
629 }
630 
631 static void
632 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
633 {
634 	struct msk_softc *sc;
635 
636 	sc = sc_if->msk_softc;
637 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
638 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
639 		    RX_VLAN_STRIP_ON);
640 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
641 		    TX_VLAN_TAG_ON);
642 	} else {
643 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
644 		    RX_VLAN_STRIP_OFF);
645 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
646 		    TX_VLAN_TAG_OFF);
647 	}
648 }
649 
650 static int
651 msk_rx_fill(struct msk_if_softc *sc_if, int jumbo)
652 {
653 	uint16_t idx;
654 	int i;
655 
656 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
657 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
658 		/* Wait until controller executes OP_TCPSTART command. */
659 		for (i = 10; i > 0; i--) {
660 			DELAY(10);
661 			idx = CSR_READ_2(sc_if->msk_softc,
662 			    Y2_PREF_Q_ADDR(sc_if->msk_rxq,
663 			    PREF_UNIT_GET_IDX_REG));
664 			if (idx != 0)
665 				break;
666 		}
667 		if (i == 0) {
668 			device_printf(sc_if->msk_if_dev,
669 			    "prefetch unit stuck?\n");
670 			return (ETIMEDOUT);
671 		}
672 		/*
673 		 * Fill consumed LE with free buffer. This can be done
674 		 * in Rx handler but we don't want to add special code
675 		 * in fast handler.
676 		 */
677 		if (jumbo > 0) {
678 			if (msk_jumbo_newbuf(sc_if, 0) != 0)
679 				return (ENOBUFS);
680 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
681 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
682 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
683 		} else {
684 			if (msk_newbuf(sc_if, 0) != 0)
685 				return (ENOBUFS);
686 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
687 			    sc_if->msk_cdata.msk_rx_ring_map,
688 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
689 		}
690 		sc_if->msk_cdata.msk_rx_prod = 0;
691 		CSR_WRITE_2(sc_if->msk_softc,
692 		    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
693 		    sc_if->msk_cdata.msk_rx_prod);
694 	}
695 	return (0);
696 }
697 
698 static int
699 msk_init_rx_ring(struct msk_if_softc *sc_if)
700 {
701 	struct msk_ring_data *rd;
702 	struct msk_rxdesc *rxd;
703 	int i, nbuf, prod;
704 
705 	MSK_IF_LOCK_ASSERT(sc_if);
706 
707 	sc_if->msk_cdata.msk_rx_cons = 0;
708 	sc_if->msk_cdata.msk_rx_prod = 0;
709 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
710 
711 	rd = &sc_if->msk_rdata;
712 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
713 	for (i = prod = 0; i < MSK_RX_RING_CNT; i++) {
714 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
715 		rxd->rx_m = NULL;
716 		rxd->rx_le = &rd->msk_rx_ring[prod];
717 		MSK_INC(prod, MSK_RX_RING_CNT);
718 	}
719 	nbuf = MSK_RX_BUF_CNT;
720 	prod = 0;
721 	/* Have controller know how to compute Rx checksum. */
722 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
723 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
724 #ifdef MSK_64BIT_DMA
725 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
726 		rxd->rx_m = NULL;
727 		rxd->rx_le = &rd->msk_rx_ring[prod];
728 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
729 		    ETHER_HDR_LEN);
730 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
731 		MSK_INC(prod, MSK_RX_RING_CNT);
732 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
733 #endif
734 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
735 		rxd->rx_m = NULL;
736 		rxd->rx_le = &rd->msk_rx_ring[prod];
737 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
738 		    ETHER_HDR_LEN);
739 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
740 		MSK_INC(prod, MSK_RX_RING_CNT);
741 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
742 		nbuf--;
743 	}
744 	for (i = 0; i < nbuf; i++) {
745 		if (msk_newbuf(sc_if, prod) != 0)
746 			return (ENOBUFS);
747 		MSK_RX_INC(prod, MSK_RX_RING_CNT);
748 	}
749 
750 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
751 	    sc_if->msk_cdata.msk_rx_ring_map,
752 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
753 
754 	/* Update prefetch unit. */
755 	sc_if->msk_cdata.msk_rx_prod = prod;
756 	CSR_WRITE_2(sc_if->msk_softc,
757 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
758 	    (sc_if->msk_cdata.msk_rx_prod + MSK_RX_RING_CNT - 1) %
759 	    MSK_RX_RING_CNT);
760 	if (msk_rx_fill(sc_if, 0) != 0)
761 		return (ENOBUFS);
762 	return (0);
763 }
764 
765 static int
766 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
767 {
768 	struct msk_ring_data *rd;
769 	struct msk_rxdesc *rxd;
770 	int i, nbuf, prod;
771 
772 	MSK_IF_LOCK_ASSERT(sc_if);
773 
774 	sc_if->msk_cdata.msk_rx_cons = 0;
775 	sc_if->msk_cdata.msk_rx_prod = 0;
776 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
777 
778 	rd = &sc_if->msk_rdata;
779 	bzero(rd->msk_jumbo_rx_ring,
780 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
781 	for (i = prod = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
782 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
783 		rxd->rx_m = NULL;
784 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
785 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
786 	}
787 	nbuf = MSK_RX_BUF_CNT;
788 	prod = 0;
789 	/* Have controller know how to compute Rx checksum. */
790 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
791 	    (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
792 #ifdef MSK_64BIT_DMA
793 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
794 		rxd->rx_m = NULL;
795 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
796 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
797 		    ETHER_HDR_LEN);
798 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
799 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
800 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
801 #endif
802 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
803 		rxd->rx_m = NULL;
804 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
805 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
806 		    ETHER_HDR_LEN);
807 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
808 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
809 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
810 		nbuf--;
811 	}
812 	for (i = 0; i < nbuf; i++) {
813 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
814 			return (ENOBUFS);
815 		MSK_RX_INC(prod, MSK_JUMBO_RX_RING_CNT);
816 	}
817 
818 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
819 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
820 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
821 
822 	/* Update prefetch unit. */
823 	sc_if->msk_cdata.msk_rx_prod = prod;
824 	CSR_WRITE_2(sc_if->msk_softc,
825 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
826 	    (sc_if->msk_cdata.msk_rx_prod + MSK_JUMBO_RX_RING_CNT - 1) %
827 	    MSK_JUMBO_RX_RING_CNT);
828 	if (msk_rx_fill(sc_if, 1) != 0)
829 		return (ENOBUFS);
830 	return (0);
831 }
832 
833 static void
834 msk_init_tx_ring(struct msk_if_softc *sc_if)
835 {
836 	struct msk_ring_data *rd;
837 	struct msk_txdesc *txd;
838 	int i;
839 
840 	sc_if->msk_cdata.msk_tso_mtu = 0;
841 	sc_if->msk_cdata.msk_last_csum = 0;
842 	sc_if->msk_cdata.msk_tx_prod = 0;
843 	sc_if->msk_cdata.msk_tx_cons = 0;
844 	sc_if->msk_cdata.msk_tx_cnt = 0;
845 	sc_if->msk_cdata.msk_tx_high_addr = 0;
846 
847 	rd = &sc_if->msk_rdata;
848 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
849 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
850 		txd = &sc_if->msk_cdata.msk_txdesc[i];
851 		txd->tx_m = NULL;
852 		txd->tx_le = &rd->msk_tx_ring[i];
853 	}
854 
855 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
856 	    sc_if->msk_cdata.msk_tx_ring_map,
857 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
858 }
859 
860 static __inline void
861 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
862 {
863 	struct msk_rx_desc *rx_le;
864 	struct msk_rxdesc *rxd;
865 	struct mbuf *m;
866 
867 #ifdef MSK_64BIT_DMA
868 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
869 	rx_le = rxd->rx_le;
870 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
871 	MSK_INC(idx, MSK_RX_RING_CNT);
872 #endif
873 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
874 	m = rxd->rx_m;
875 	rx_le = rxd->rx_le;
876 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
877 }
878 
879 static __inline void
880 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
881 {
882 	struct msk_rx_desc *rx_le;
883 	struct msk_rxdesc *rxd;
884 	struct mbuf *m;
885 
886 #ifdef MSK_64BIT_DMA
887 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
888 	rx_le = rxd->rx_le;
889 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
890 	MSK_INC(idx, MSK_JUMBO_RX_RING_CNT);
891 #endif
892 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
893 	m = rxd->rx_m;
894 	rx_le = rxd->rx_le;
895 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
896 }
897 
898 static int
899 msk_newbuf(struct msk_if_softc *sc_if, int idx)
900 {
901 	struct msk_rx_desc *rx_le;
902 	struct msk_rxdesc *rxd;
903 	struct mbuf *m;
904 	bus_dma_segment_t segs[1];
905 	bus_dmamap_t map;
906 	int nsegs;
907 
908 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
909 	if (m == NULL)
910 		return (ENOBUFS);
911 
912 	m->m_len = m->m_pkthdr.len = MCLBYTES;
913 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
914 		m_adj(m, ETHER_ALIGN);
915 #ifndef __NO_STRICT_ALIGNMENT
916 	else
917 		m_adj(m, MSK_RX_BUF_ALIGN);
918 #endif
919 
920 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
921 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
922 	    BUS_DMA_NOWAIT) != 0) {
923 		m_freem(m);
924 		return (ENOBUFS);
925 	}
926 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
927 
928 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
929 #ifdef MSK_64BIT_DMA
930 	rx_le = rxd->rx_le;
931 	rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr));
932 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
933 	MSK_INC(idx, MSK_RX_RING_CNT);
934 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
935 #endif
936 	if (rxd->rx_m != NULL) {
937 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
938 		    BUS_DMASYNC_POSTREAD);
939 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
940 		rxd->rx_m = NULL;
941 	}
942 	map = rxd->rx_dmamap;
943 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
944 	sc_if->msk_cdata.msk_rx_sparemap = map;
945 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
946 	    BUS_DMASYNC_PREREAD);
947 	rxd->rx_m = m;
948 	rx_le = rxd->rx_le;
949 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
950 	rx_le->msk_control =
951 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
952 
953 	return (0);
954 }
955 
956 static int
957 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
958 {
959 	struct msk_rx_desc *rx_le;
960 	struct msk_rxdesc *rxd;
961 	struct mbuf *m;
962 	bus_dma_segment_t segs[1];
963 	bus_dmamap_t map;
964 	int nsegs;
965 
966 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
967 	if (m == NULL)
968 		return (ENOBUFS);
969 	if ((m->m_flags & M_EXT) == 0) {
970 		m_freem(m);
971 		return (ENOBUFS);
972 	}
973 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
974 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
975 		m_adj(m, ETHER_ALIGN);
976 #ifndef __NO_STRICT_ALIGNMENT
977 	else
978 		m_adj(m, MSK_RX_BUF_ALIGN);
979 #endif
980 
981 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
982 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
983 	    BUS_DMA_NOWAIT) != 0) {
984 		m_freem(m);
985 		return (ENOBUFS);
986 	}
987 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
988 
989 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
990 #ifdef MSK_64BIT_DMA
991 	rx_le = rxd->rx_le;
992 	rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr));
993 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
994 	MSK_INC(idx, MSK_JUMBO_RX_RING_CNT);
995 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
996 #endif
997 	if (rxd->rx_m != NULL) {
998 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
999 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1000 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
1001 		    rxd->rx_dmamap);
1002 		rxd->rx_m = NULL;
1003 	}
1004 	map = rxd->rx_dmamap;
1005 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
1006 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
1007 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
1008 	    BUS_DMASYNC_PREREAD);
1009 	rxd->rx_m = m;
1010 	rx_le = rxd->rx_le;
1011 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
1012 	rx_le->msk_control =
1013 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
1014 
1015 	return (0);
1016 }
1017 
1018 /*
1019  * Set media options.
1020  */
1021 static int
1022 msk_mediachange(struct ifnet *ifp)
1023 {
1024 	struct msk_if_softc *sc_if;
1025 	struct mii_data	*mii;
1026 	int error;
1027 
1028 	sc_if = ifp->if_softc;
1029 
1030 	MSK_IF_LOCK(sc_if);
1031 	mii = device_get_softc(sc_if->msk_miibus);
1032 	error = mii_mediachg(mii);
1033 	MSK_IF_UNLOCK(sc_if);
1034 
1035 	return (error);
1036 }
1037 
1038 /*
1039  * Report current media status.
1040  */
1041 static void
1042 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1043 {
1044 	struct msk_if_softc *sc_if;
1045 	struct mii_data	*mii;
1046 
1047 	sc_if = ifp->if_softc;
1048 	MSK_IF_LOCK(sc_if);
1049 	if ((ifp->if_flags & IFF_UP) == 0) {
1050 		MSK_IF_UNLOCK(sc_if);
1051 		return;
1052 	}
1053 	mii = device_get_softc(sc_if->msk_miibus);
1054 
1055 	mii_pollstat(mii);
1056 	ifmr->ifm_active = mii->mii_media_active;
1057 	ifmr->ifm_status = mii->mii_media_status;
1058 	MSK_IF_UNLOCK(sc_if);
1059 }
1060 
1061 static int
1062 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1063 {
1064 	struct msk_if_softc *sc_if;
1065 	struct ifreq *ifr;
1066 	struct mii_data	*mii;
1067 	int error, mask, reinit;
1068 
1069 	sc_if = ifp->if_softc;
1070 	ifr = (struct ifreq *)data;
1071 	error = 0;
1072 
1073 	switch(command) {
1074 	case SIOCSIFMTU:
1075 		MSK_IF_LOCK(sc_if);
1076 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
1077 			error = EINVAL;
1078 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1079 			if (ifr->ifr_mtu > ETHERMTU) {
1080 				if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
1081 					error = EINVAL;
1082 					MSK_IF_UNLOCK(sc_if);
1083 					break;
1084 				}
1085 				if ((sc_if->msk_flags &
1086 				    MSK_FLAG_JUMBO_NOCSUM) != 0) {
1087 					ifp->if_hwassist &=
1088 					    ~(MSK_CSUM_FEATURES | CSUM_TSO);
1089 					ifp->if_capenable &=
1090 					    ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1091 					VLAN_CAPABILITIES(ifp);
1092 				}
1093 			}
1094 			ifp->if_mtu = ifr->ifr_mtu;
1095 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1096 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1097 				msk_init_locked(sc_if);
1098 			}
1099 		}
1100 		MSK_IF_UNLOCK(sc_if);
1101 		break;
1102 	case SIOCSIFFLAGS:
1103 		MSK_IF_LOCK(sc_if);
1104 		if ((ifp->if_flags & IFF_UP) != 0) {
1105 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1106 			    ((ifp->if_flags ^ sc_if->msk_if_flags) &
1107 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1108 				msk_rxfilter(sc_if);
1109 			else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0)
1110 				msk_init_locked(sc_if);
1111 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1112 			msk_stop(sc_if);
1113 		sc_if->msk_if_flags = ifp->if_flags;
1114 		MSK_IF_UNLOCK(sc_if);
1115 		break;
1116 	case SIOCADDMULTI:
1117 	case SIOCDELMULTI:
1118 		MSK_IF_LOCK(sc_if);
1119 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1120 			msk_rxfilter(sc_if);
1121 		MSK_IF_UNLOCK(sc_if);
1122 		break;
1123 	case SIOCGIFMEDIA:
1124 	case SIOCSIFMEDIA:
1125 		mii = device_get_softc(sc_if->msk_miibus);
1126 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1127 		break;
1128 	case SIOCSIFCAP:
1129 		reinit = 0;
1130 		MSK_IF_LOCK(sc_if);
1131 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1132 		if ((mask & IFCAP_TXCSUM) != 0 &&
1133 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1134 			ifp->if_capenable ^= IFCAP_TXCSUM;
1135 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
1136 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
1137 			else
1138 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
1139 		}
1140 		if ((mask & IFCAP_RXCSUM) != 0 &&
1141 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
1142 			ifp->if_capenable ^= IFCAP_RXCSUM;
1143 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1144 				reinit = 1;
1145 		}
1146 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1147 		    (IFCAP_VLAN_HWCSUM & ifp->if_capabilities) != 0)
1148 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1149 		if ((mask & IFCAP_TSO4) != 0 &&
1150 		    (IFCAP_TSO4 & ifp->if_capabilities) != 0) {
1151 			ifp->if_capenable ^= IFCAP_TSO4;
1152 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1153 				ifp->if_hwassist |= CSUM_TSO;
1154 			else
1155 				ifp->if_hwassist &= ~CSUM_TSO;
1156 		}
1157 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1158 		    (IFCAP_VLAN_HWTSO & ifp->if_capabilities) != 0)
1159 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1160 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1161 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
1162 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1163 			if ((IFCAP_VLAN_HWTAGGING & ifp->if_capenable) == 0)
1164 				ifp->if_capenable &=
1165 				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1166 			msk_setvlan(sc_if, ifp);
1167 		}
1168 		if (ifp->if_mtu > ETHERMTU &&
1169 		    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
1170 			ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
1171 			ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1172 		}
1173 		VLAN_CAPABILITIES(ifp);
1174 		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1175 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1176 			msk_init_locked(sc_if);
1177 		}
1178 		MSK_IF_UNLOCK(sc_if);
1179 		break;
1180 	default:
1181 		error = ether_ioctl(ifp, command, data);
1182 		break;
1183 	}
1184 
1185 	return (error);
1186 }
1187 
1188 static int
1189 mskc_probe(device_t dev)
1190 {
1191 	struct msk_product *mp;
1192 	uint16_t vendor, devid;
1193 	int i;
1194 
1195 	vendor = pci_get_vendor(dev);
1196 	devid = pci_get_device(dev);
1197 	mp = msk_products;
1198 	for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
1199 	    i++, mp++) {
1200 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1201 			device_set_desc(dev, mp->msk_name);
1202 			return (BUS_PROBE_DEFAULT);
1203 		}
1204 	}
1205 
1206 	return (ENXIO);
1207 }
1208 
1209 static int
1210 mskc_setup_rambuffer(struct msk_softc *sc)
1211 {
1212 	int next;
1213 	int i;
1214 
1215 	/* Get adapter SRAM size. */
1216 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1217 	if (bootverbose)
1218 		device_printf(sc->msk_dev,
1219 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1220 	if (sc->msk_ramsize == 0)
1221 		return (0);
1222 
1223 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1224 	/*
1225 	 * Give receiver 2/3 of memory and round down to the multiple
1226 	 * of 1024. Tx/Rx RAM buffer size of Yukon II should be multiple
1227 	 * of 1024.
1228 	 */
1229 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1230 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1231 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1232 		sc->msk_rxqstart[i] = next;
1233 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1234 		next = sc->msk_rxqend[i] + 1;
1235 		sc->msk_txqstart[i] = next;
1236 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1237 		next = sc->msk_txqend[i] + 1;
1238 		if (bootverbose) {
1239 			device_printf(sc->msk_dev,
1240 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1241 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1242 			    sc->msk_rxqend[i]);
1243 			device_printf(sc->msk_dev,
1244 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1245 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1246 			    sc->msk_txqend[i]);
1247 		}
1248 	}
1249 
1250 	return (0);
1251 }
1252 
1253 static void
1254 msk_phy_power(struct msk_softc *sc, int mode)
1255 {
1256 	uint32_t our, val;
1257 	int i;
1258 
1259 	switch (mode) {
1260 	case MSK_PHY_POWERUP:
1261 		/* Switch power to VCC (WA for VAUX problem). */
1262 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1263 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1264 		/* Disable Core Clock Division, set Clock Select to 0. */
1265 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1266 
1267 		val = 0;
1268 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1269 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1270 			/* Enable bits are inverted. */
1271 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1272 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1273 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1274 		}
1275 		/*
1276 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1277 		 */
1278 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1279 
1280 		our = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1281 		our &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1282 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1283 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1284 				/* Deassert Low Power for 1st PHY. */
1285 				our |= PCI_Y2_PHY1_COMA;
1286 				if (sc->msk_num_port > 1)
1287 					our |= PCI_Y2_PHY2_COMA;
1288 			}
1289 		}
1290 		if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U ||
1291 		    sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1292 		    sc->msk_hw_id >= CHIP_ID_YUKON_FE_P) {
1293 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1294 			val &= (PCI_FORCE_ASPM_REQUEST |
1295 			    PCI_ASPM_GPHY_LINK_DOWN | PCI_ASPM_INT_FIFO_EMPTY |
1296 			    PCI_ASPM_CLKRUN_REQUEST);
1297 			/* Set all bits to 0 except bits 15..12. */
1298 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, val);
1299 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1300 			val &= PCI_CTL_TIM_VMAIN_AV_MSK;
1301 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, val);
1302 			CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1303 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1304 			/*
1305 			 * Disable status race, workaround for
1306 			 * Yukon EC Ultra & Yukon EX.
1307 			 */
1308 			val = CSR_READ_4(sc, B2_GP_IO);
1309 			val |= GLB_GPIO_STAT_RACE_DIS;
1310 			CSR_WRITE_4(sc, B2_GP_IO, val);
1311 			CSR_READ_4(sc, B2_GP_IO);
1312 		}
1313 		/* Release PHY from PowerDown/COMA mode. */
1314 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, our);
1315 
1316 		for (i = 0; i < sc->msk_num_port; i++) {
1317 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1318 			    GMLC_RST_SET);
1319 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1320 			    GMLC_RST_CLR);
1321 		}
1322 		break;
1323 	case MSK_PHY_POWERDOWN:
1324 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1325 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1326 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1327 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1328 			val &= ~PCI_Y2_PHY1_COMA;
1329 			if (sc->msk_num_port > 1)
1330 				val &= ~PCI_Y2_PHY2_COMA;
1331 		}
1332 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1333 
1334 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1335 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1336 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1337 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1338 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1339 			/* Enable bits are inverted. */
1340 			val = 0;
1341 		}
1342 		/*
1343 		 * Disable PCI & Core Clock, disable clock gating for
1344 		 * both Links.
1345 		 */
1346 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1347 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1348 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1349 		break;
1350 	default:
1351 		break;
1352 	}
1353 }
1354 
1355 static void
1356 mskc_reset(struct msk_softc *sc)
1357 {
1358 	bus_addr_t addr;
1359 	uint16_t status;
1360 	uint32_t val;
1361 	int i, initram;
1362 
1363 	/* Disable ASF. */
1364 	if (sc->msk_hw_id >= CHIP_ID_YUKON_XL &&
1365 	    sc->msk_hw_id <= CHIP_ID_YUKON_SUPR) {
1366 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1367 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1368 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1369 			status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1370 			/* Clear AHB bridge & microcontroller reset. */
1371 			status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1372 			    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1373 			/* Clear ASF microcontroller state. */
1374 			status &= ~Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1375 			status &= ~Y2_ASF_HCU_CCSR_CPU_CLK_DIVIDE_MSK;
1376 			CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1377 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1378 		} else
1379 			CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1380 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1381 		/*
1382 		 * Since we disabled ASF, S/W reset is required for
1383 		 * Power Management.
1384 		 */
1385 		CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1386 		CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1387 	}
1388 
1389 	/* Clear all error bits in the PCI status register. */
1390 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1391 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1392 
1393 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1394 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1395 	    PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
1396 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1397 
1398 	switch (sc->msk_bustype) {
1399 	case MSK_PEX_BUS:
1400 		/* Clear all PEX errors. */
1401 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1402 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1403 		if ((val & PEX_RX_OV) != 0) {
1404 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1405 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1406 		}
1407 		break;
1408 	case MSK_PCI_BUS:
1409 	case MSK_PCIX_BUS:
1410 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1411 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1412 		if (val == 0)
1413 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1414 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1415 			/* Set Cache Line Size opt. */
1416 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1417 			val |= PCI_CLS_OPT;
1418 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1419 		}
1420 		break;
1421 	}
1422 	/* Set PHY power state. */
1423 	msk_phy_power(sc, MSK_PHY_POWERUP);
1424 
1425 	/* Reset GPHY/GMAC Control */
1426 	for (i = 0; i < sc->msk_num_port; i++) {
1427 		/* GPHY Control reset. */
1428 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1429 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1430 		/* GMAC Control reset. */
1431 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1432 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1433 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1434 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1435 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR)
1436 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1437 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1438 			    GMC_BYP_RETR_ON);
1439 	}
1440 
1441 	if (sc->msk_hw_id == CHIP_ID_YUKON_SUPR &&
1442 	    sc->msk_hw_rev > CHIP_REV_YU_SU_B0)
1443 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, PCI_CLK_MACSEC_DIS);
1444 	if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) {
1445 		/* Disable PCIe PHY powerdown(reg 0x80, bit7). */
1446 		CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080);
1447 	}
1448 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1449 
1450 	/* LED On. */
1451 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1452 
1453 	/* Clear TWSI IRQ. */
1454 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1455 
1456 	/* Turn off hardware timer. */
1457 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1458 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1459 
1460 	/* Turn off descriptor polling. */
1461 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1462 
1463 	/* Turn off time stamps. */
1464 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1465 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1466 
1467 	initram = 0;
1468 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL ||
1469 	    sc->msk_hw_id == CHIP_ID_YUKON_EC ||
1470 	    sc->msk_hw_id == CHIP_ID_YUKON_FE)
1471 		initram++;
1472 
1473 	/* Configure timeout values. */
1474 	for (i = 0; initram > 0 && i < sc->msk_num_port; i++) {
1475 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1476 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1477 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1478 		    MSK_RI_TO_53);
1479 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1480 		    MSK_RI_TO_53);
1481 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1482 		    MSK_RI_TO_53);
1483 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1484 		    MSK_RI_TO_53);
1485 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1486 		    MSK_RI_TO_53);
1487 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1488 		    MSK_RI_TO_53);
1489 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1490 		    MSK_RI_TO_53);
1491 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1492 		    MSK_RI_TO_53);
1493 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1494 		    MSK_RI_TO_53);
1495 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1496 		    MSK_RI_TO_53);
1497 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1498 		    MSK_RI_TO_53);
1499 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1500 		    MSK_RI_TO_53);
1501 	}
1502 
1503 	/* Disable all interrupts. */
1504 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1505 	CSR_READ_4(sc, B0_HWE_IMSK);
1506 	CSR_WRITE_4(sc, B0_IMSK, 0);
1507 	CSR_READ_4(sc, B0_IMSK);
1508 
1509         /*
1510          * On dual port PCI-X card, there is an problem where status
1511          * can be received out of order due to split transactions.
1512          */
1513 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1514 		uint16_t pcix_cmd;
1515 
1516 		pcix_cmd = pci_read_config(sc->msk_dev,
1517 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1518 		/* Clear Max Outstanding Split Transactions. */
1519 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1520 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1521 		pci_write_config(sc->msk_dev,
1522 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1523 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1524         }
1525 	if (sc->msk_expcap != 0) {
1526 		/* Change Max. Read Request Size to 2048 bytes. */
1527 		if (pci_get_max_read_req(sc->msk_dev) == 512)
1528 			pci_set_max_read_req(sc->msk_dev, 2048);
1529 	}
1530 
1531 	/* Clear status list. */
1532 	bzero(sc->msk_stat_ring,
1533 	    sizeof(struct msk_stat_desc) * sc->msk_stat_count);
1534 	sc->msk_stat_cons = 0;
1535 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1536 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1537 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1538 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1539 	/* Set the status list base address. */
1540 	addr = sc->msk_stat_ring_paddr;
1541 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1542 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1543 	/* Set the status list last index. */
1544 	CSR_WRITE_2(sc, STAT_LAST_IDX, sc->msk_stat_count - 1);
1545 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1546 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1547 		/* WA for dev. #4.3 */
1548 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1549 		/* WA for dev. #4.18 */
1550 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1551 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1552 	} else {
1553 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1554 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1555 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1556 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1557 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1558 		else
1559 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1560 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1561 	}
1562 	/*
1563 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1564 	 */
1565 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1566 
1567 	/* Enable status unit. */
1568 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1569 
1570 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1571 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1572 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1573 }
1574 
1575 static int
1576 msk_probe(device_t dev)
1577 {
1578 	struct msk_softc *sc;
1579 	char desc[100];
1580 
1581 	sc = device_get_softc(device_get_parent(dev));
1582 	/*
1583 	 * Not much to do here. We always know there will be
1584 	 * at least one GMAC present, and if there are two,
1585 	 * mskc_attach() will create a second device instance
1586 	 * for us.
1587 	 */
1588 	snprintf(desc, sizeof(desc),
1589 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1590 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1591 	    sc->msk_hw_rev);
1592 	device_set_desc_copy(dev, desc);
1593 
1594 	return (BUS_PROBE_DEFAULT);
1595 }
1596 
1597 static int
1598 msk_attach(device_t dev)
1599 {
1600 	struct msk_softc *sc;
1601 	struct msk_if_softc *sc_if;
1602 	struct ifnet *ifp;
1603 	struct msk_mii_data *mmd;
1604 	int i, port, error;
1605 	uint8_t eaddr[6];
1606 
1607 	if (dev == NULL)
1608 		return (EINVAL);
1609 
1610 	error = 0;
1611 	sc_if = device_get_softc(dev);
1612 	sc = device_get_softc(device_get_parent(dev));
1613 	mmd = device_get_ivars(dev);
1614 	port = mmd->port;
1615 
1616 	sc_if->msk_if_dev = dev;
1617 	sc_if->msk_port = port;
1618 	sc_if->msk_softc = sc;
1619 	sc_if->msk_flags = sc->msk_pflags;
1620 	sc->msk_if[port] = sc_if;
1621 	/* Setup Tx/Rx queue register offsets. */
1622 	if (port == MSK_PORT_A) {
1623 		sc_if->msk_txq = Q_XA1;
1624 		sc_if->msk_txsq = Q_XS1;
1625 		sc_if->msk_rxq = Q_R1;
1626 	} else {
1627 		sc_if->msk_txq = Q_XA2;
1628 		sc_if->msk_txsq = Q_XS2;
1629 		sc_if->msk_rxq = Q_R2;
1630 	}
1631 
1632 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1633 	msk_sysctl_node(sc_if);
1634 
1635 	if ((error = msk_txrx_dma_alloc(sc_if) != 0))
1636 		goto fail;
1637 	msk_rx_dma_jalloc(sc_if);
1638 
1639 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1640 	if (ifp == NULL) {
1641 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1642 		error = ENOSPC;
1643 		goto fail;
1644 	}
1645 	ifp->if_softc = sc_if;
1646 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1647 	ifp->if_mtu = ETHERMTU;
1648 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1649 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1650 	/*
1651 	 * Enable Rx checksum offloading if controller supports
1652 	 * new descriptor formant and controller is not Yukon XL.
1653 	 */
1654 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
1655 	    sc->msk_hw_id != CHIP_ID_YUKON_XL)
1656 		ifp->if_capabilities |= IFCAP_RXCSUM;
1657 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1658 	    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1659 		ifp->if_capabilities |= IFCAP_RXCSUM;
1660 	ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1661 	ifp->if_capenable = ifp->if_capabilities;
1662 	ifp->if_ioctl = msk_ioctl;
1663 	ifp->if_start = msk_start;
1664 	ifp->if_init = msk_init;
1665 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1666 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1667 	IFQ_SET_READY(&ifp->if_snd);
1668 	/*
1669 	 * Get station address for this interface. Note that
1670 	 * dual port cards actually come with three station
1671 	 * addresses: one for each port, plus an extra. The
1672 	 * extra one is used by the SysKonnect driver software
1673 	 * as a 'virtual' station address for when both ports
1674 	 * are operating in failover mode. Currently we don't
1675 	 * use this extra address.
1676 	 */
1677 	MSK_IF_LOCK(sc_if);
1678 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1679 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1680 
1681 	/*
1682 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1683 	 */
1684 	MSK_IF_UNLOCK(sc_if);
1685 	ether_ifattach(ifp, eaddr);
1686 	MSK_IF_LOCK(sc_if);
1687 
1688 	/* VLAN capability setup */
1689 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1690 	if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) {
1691 		/*
1692 		 * Due to Tx checksum offload hardware bugs, msk(4) manually
1693 		 * computes checksum for short frames. For VLAN tagged frames
1694 		 * this workaround does not work so disable checksum offload
1695 		 * for VLAN interface.
1696 		 */
1697 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO;
1698 		/*
1699 		 * Enable Rx checksum offloading for VLAN tagged frames
1700 		 * if controller support new descriptor format.
1701 		 */
1702 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1703 		    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1704 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1705 	}
1706 	ifp->if_capenable = ifp->if_capabilities;
1707 
1708 	/*
1709 	 * Tell the upper layer(s) we support long frames.
1710 	 * Must appear after the call to ether_ifattach() because
1711 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1712 	 */
1713         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1714 
1715 	/*
1716 	 * Do miibus setup.
1717 	 */
1718 	MSK_IF_UNLOCK(sc_if);
1719 	error = mii_attach(dev, &sc_if->msk_miibus, ifp, msk_mediachange,
1720 	    msk_mediastatus, BMSR_DEFCAPMASK, PHY_ADDR_MARV, MII_OFFSET_ANY,
1721 	    mmd->mii_flags);
1722 	if (error != 0) {
1723 		device_printf(sc_if->msk_if_dev, "attaching PHYs failed\n");
1724 		ether_ifdetach(ifp);
1725 		error = ENXIO;
1726 		goto fail;
1727 	}
1728 
1729 fail:
1730 	if (error != 0) {
1731 		/* Access should be ok even though lock has been dropped */
1732 		sc->msk_if[port] = NULL;
1733 		msk_detach(dev);
1734 	}
1735 
1736 	return (error);
1737 }
1738 
1739 /*
1740  * Attach the interface. Allocate softc structures, do ifmedia
1741  * setup and ethernet/BPF attach.
1742  */
1743 static int
1744 mskc_attach(device_t dev)
1745 {
1746 	struct msk_softc *sc;
1747 	struct msk_mii_data *mmd;
1748 	int error, msic, msir, reg;
1749 
1750 	sc = device_get_softc(dev);
1751 	sc->msk_dev = dev;
1752 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1753 	    MTX_DEF);
1754 
1755 	/*
1756 	 * Map control/status registers.
1757 	 */
1758 	pci_enable_busmaster(dev);
1759 
1760 	/* Allocate I/O resource */
1761 #ifdef MSK_USEIOSPACE
1762 	sc->msk_res_spec = msk_res_spec_io;
1763 #else
1764 	sc->msk_res_spec = msk_res_spec_mem;
1765 #endif
1766 	sc->msk_irq_spec = msk_irq_spec_legacy;
1767 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1768 	if (error) {
1769 		if (sc->msk_res_spec == msk_res_spec_mem)
1770 			sc->msk_res_spec = msk_res_spec_io;
1771 		else
1772 			sc->msk_res_spec = msk_res_spec_mem;
1773 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1774 		if (error) {
1775 			device_printf(dev, "couldn't allocate %s resources\n",
1776 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1777 			    "I/O");
1778 			mtx_destroy(&sc->msk_mtx);
1779 			return (ENXIO);
1780 		}
1781 	}
1782 
1783 	/* Enable all clocks before accessing any registers. */
1784 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1785 
1786 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1787 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1788 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1789 	/* Bail out if chip is not recognized. */
1790 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1791 	    sc->msk_hw_id > CHIP_ID_YUKON_OPT ||
1792 	    sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) {
1793 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1794 		    sc->msk_hw_id, sc->msk_hw_rev);
1795 		mtx_destroy(&sc->msk_mtx);
1796 		return (ENXIO);
1797 	}
1798 
1799 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1800 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1801 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1802 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1803 	    "max number of Rx events to process");
1804 
1805 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1806 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1807 	    "process_limit", &sc->msk_process_limit);
1808 	if (error == 0) {
1809 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1810 		    sc->msk_process_limit > MSK_PROC_MAX) {
1811 			device_printf(dev, "process_limit value out of range; "
1812 			    "using default: %d\n", MSK_PROC_DEFAULT);
1813 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1814 		}
1815 	}
1816 
1817 	sc->msk_int_holdoff = MSK_INT_HOLDOFF_DEFAULT;
1818 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
1819 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
1820 	    "int_holdoff", CTLFLAG_RW, &sc->msk_int_holdoff, 0,
1821 	    "Maximum number of time to delay interrupts");
1822 	resource_int_value(device_get_name(dev), device_get_unit(dev),
1823 	    "int_holdoff", &sc->msk_int_holdoff);
1824 
1825 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1826 	/* Check number of MACs. */
1827 	sc->msk_num_port = 1;
1828 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1829 	    CFG_DUAL_MAC_MSK) {
1830 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1831 			sc->msk_num_port++;
1832 	}
1833 
1834 	/* Check bus type. */
1835 	if (pci_find_cap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0) {
1836 		sc->msk_bustype = MSK_PEX_BUS;
1837 		sc->msk_expcap = reg;
1838 	} else if (pci_find_cap(sc->msk_dev, PCIY_PCIX, &reg) == 0) {
1839 		sc->msk_bustype = MSK_PCIX_BUS;
1840 		sc->msk_pcixcap = reg;
1841 	} else
1842 		sc->msk_bustype = MSK_PCI_BUS;
1843 
1844 	switch (sc->msk_hw_id) {
1845 	case CHIP_ID_YUKON_EC:
1846 		sc->msk_clock = 125;	/* 125 MHz */
1847 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1848 		break;
1849 	case CHIP_ID_YUKON_EC_U:
1850 		sc->msk_clock = 125;	/* 125 MHz */
1851 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM;
1852 		break;
1853 	case CHIP_ID_YUKON_EX:
1854 		sc->msk_clock = 125;	/* 125 MHz */
1855 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1856 		    MSK_FLAG_AUTOTX_CSUM;
1857 		/*
1858 		 * Yukon Extreme seems to have silicon bug for
1859 		 * automatic Tx checksum calculation capability.
1860 		 */
1861 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
1862 			sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM;
1863 		/*
1864 		 * Yukon Extreme A0 could not use store-and-forward
1865 		 * for jumbo frames, so disable Tx checksum
1866 		 * offloading for jumbo frames.
1867 		 */
1868 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
1869 			sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM;
1870 		break;
1871 	case CHIP_ID_YUKON_FE:
1872 		sc->msk_clock = 100;	/* 100 MHz */
1873 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1874 		break;
1875 	case CHIP_ID_YUKON_FE_P:
1876 		sc->msk_clock = 50;	/* 50 MHz */
1877 		sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 |
1878 		    MSK_FLAG_AUTOTX_CSUM;
1879 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1880 			/*
1881 			 * XXX
1882 			 * FE+ A0 has status LE writeback bug so msk(4)
1883 			 * does not rely on status word of received frame
1884 			 * in msk_rxeof() which in turn disables all
1885 			 * hardware assistance bits reported by the status
1886 			 * word as well as validity of the received frame.
1887 			 * Just pass received frames to upper stack with
1888 			 * minimal test and let upper stack handle them.
1889 			 */
1890 			sc->msk_pflags |= MSK_FLAG_NOHWVLAN |
1891 			    MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM;
1892 		}
1893 		break;
1894 	case CHIP_ID_YUKON_XL:
1895 		sc->msk_clock = 156;	/* 156 MHz */
1896 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1897 		break;
1898 	case CHIP_ID_YUKON_SUPR:
1899 		sc->msk_clock = 125;	/* 125 MHz */
1900 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1901 		    MSK_FLAG_AUTOTX_CSUM;
1902 		break;
1903 	case CHIP_ID_YUKON_UL_2:
1904 		sc->msk_clock = 125;	/* 125 MHz */
1905 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1906 		break;
1907 	case CHIP_ID_YUKON_OPT:
1908 		sc->msk_clock = 125;	/* 125 MHz */
1909 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2;
1910 		break;
1911 	default:
1912 		sc->msk_clock = 156;	/* 156 MHz */
1913 		break;
1914 	}
1915 
1916 	/* Allocate IRQ resources. */
1917 	msic = pci_msi_count(dev);
1918 	if (bootverbose)
1919 		device_printf(dev, "MSI count : %d\n", msic);
1920 	if (legacy_intr != 0)
1921 		msi_disable = 1;
1922 	if (msi_disable == 0 && msic > 0) {
1923 		msir = 1;
1924 		if (pci_alloc_msi(dev, &msir) == 0) {
1925 			if (msir == 1) {
1926 				sc->msk_pflags |= MSK_FLAG_MSI;
1927 				sc->msk_irq_spec = msk_irq_spec_msi;
1928 			} else
1929 				pci_release_msi(dev);
1930 		}
1931 	}
1932 
1933 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1934 	if (error) {
1935 		device_printf(dev, "couldn't allocate IRQ resources\n");
1936 		goto fail;
1937 	}
1938 
1939 	if ((error = msk_status_dma_alloc(sc)) != 0)
1940 		goto fail;
1941 
1942 	/* Set base interrupt mask. */
1943 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1944 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1945 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1946 
1947 	/* Reset the adapter. */
1948 	mskc_reset(sc);
1949 
1950 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1951 		goto fail;
1952 
1953 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1954 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1955 		device_printf(dev, "failed to add child for PORT_A\n");
1956 		error = ENXIO;
1957 		goto fail;
1958 	}
1959 	mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1960 	if (mmd == NULL) {
1961 		device_printf(dev, "failed to allocate memory for "
1962 		    "ivars of PORT_A\n");
1963 		error = ENXIO;
1964 		goto fail;
1965 	}
1966 	mmd->port = MSK_PORT_A;
1967 	mmd->pmd = sc->msk_pmd;
1968 	mmd->mii_flags |= MIIF_DOPAUSE;
1969 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1970 		mmd->mii_flags |= MIIF_HAVEFIBER;
1971 	if (sc->msk_pmd == 'P')
1972 		mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1973 	device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd);
1974 
1975 	if (sc->msk_num_port > 1) {
1976 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1977 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1978 			device_printf(dev, "failed to add child for PORT_B\n");
1979 			error = ENXIO;
1980 			goto fail;
1981 		}
1982 		mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK |
1983 		    M_ZERO);
1984 		if (mmd == NULL) {
1985 			device_printf(dev, "failed to allocate memory for "
1986 			    "ivars of PORT_B\n");
1987 			error = ENXIO;
1988 			goto fail;
1989 		}
1990 		mmd->port = MSK_PORT_B;
1991 		mmd->pmd = sc->msk_pmd;
1992 		if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1993 			mmd->mii_flags |= MIIF_HAVEFIBER;
1994 		if (sc->msk_pmd == 'P')
1995 			mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1996 		device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd);
1997 	}
1998 
1999 	error = bus_generic_attach(dev);
2000 	if (error) {
2001 		device_printf(dev, "failed to attach port(s)\n");
2002 		goto fail;
2003 	}
2004 
2005 	/* Hook interrupt last to avoid having to lock softc. */
2006 	error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
2007 	    INTR_MPSAFE, NULL, msk_intr, sc, &sc->msk_intrhand);
2008 	if (error != 0) {
2009 		device_printf(dev, "couldn't set up interrupt handler\n");
2010 		goto fail;
2011 	}
2012 fail:
2013 	if (error != 0)
2014 		mskc_detach(dev);
2015 
2016 	return (error);
2017 }
2018 
2019 /*
2020  * Shutdown hardware and free up resources. This can be called any
2021  * time after the mutex has been initialized. It is called in both
2022  * the error case in attach and the normal detach case so it needs
2023  * to be careful about only freeing resources that have actually been
2024  * allocated.
2025  */
2026 static int
2027 msk_detach(device_t dev)
2028 {
2029 	struct msk_softc *sc;
2030 	struct msk_if_softc *sc_if;
2031 	struct ifnet *ifp;
2032 
2033 	sc_if = device_get_softc(dev);
2034 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
2035 	    ("msk mutex not initialized in msk_detach"));
2036 	MSK_IF_LOCK(sc_if);
2037 
2038 	ifp = sc_if->msk_ifp;
2039 	if (device_is_attached(dev)) {
2040 		/* XXX */
2041 		sc_if->msk_flags |= MSK_FLAG_DETACH;
2042 		msk_stop(sc_if);
2043 		/* Can't hold locks while calling detach. */
2044 		MSK_IF_UNLOCK(sc_if);
2045 		callout_drain(&sc_if->msk_tick_ch);
2046 		if (ifp)
2047 			ether_ifdetach(ifp);
2048 		MSK_IF_LOCK(sc_if);
2049 	}
2050 
2051 	/*
2052 	 * We're generally called from mskc_detach() which is using
2053 	 * device_delete_child() to get to here. It's already trashed
2054 	 * miibus for us, so don't do it here or we'll panic.
2055 	 *
2056 	 * if (sc_if->msk_miibus != NULL) {
2057 	 * 	device_delete_child(dev, sc_if->msk_miibus);
2058 	 * 	sc_if->msk_miibus = NULL;
2059 	 * }
2060 	 */
2061 
2062 	msk_rx_dma_jfree(sc_if);
2063 	msk_txrx_dma_free(sc_if);
2064 	bus_generic_detach(dev);
2065 
2066 	if (ifp)
2067 		if_free(ifp);
2068 	sc = sc_if->msk_softc;
2069 	sc->msk_if[sc_if->msk_port] = NULL;
2070 	MSK_IF_UNLOCK(sc_if);
2071 
2072 	return (0);
2073 }
2074 
2075 static int
2076 mskc_detach(device_t dev)
2077 {
2078 	struct msk_softc *sc;
2079 
2080 	sc = device_get_softc(dev);
2081 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
2082 
2083 	if (device_is_alive(dev)) {
2084 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
2085 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
2086 			    M_DEVBUF);
2087 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
2088 		}
2089 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
2090 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
2091 			    M_DEVBUF);
2092 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
2093 		}
2094 		bus_generic_detach(dev);
2095 	}
2096 
2097 	/* Disable all interrupts. */
2098 	CSR_WRITE_4(sc, B0_IMSK, 0);
2099 	CSR_READ_4(sc, B0_IMSK);
2100 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2101 	CSR_READ_4(sc, B0_HWE_IMSK);
2102 
2103 	/* LED Off. */
2104 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
2105 
2106 	/* Put hardware reset. */
2107 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2108 
2109 	msk_status_dma_free(sc);
2110 
2111 	if (sc->msk_intrhand) {
2112 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand);
2113 		sc->msk_intrhand = NULL;
2114 	}
2115 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
2116 	if ((sc->msk_pflags & MSK_FLAG_MSI) != 0)
2117 		pci_release_msi(dev);
2118 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
2119 	mtx_destroy(&sc->msk_mtx);
2120 
2121 	return (0);
2122 }
2123 
2124 struct msk_dmamap_arg {
2125 	bus_addr_t	msk_busaddr;
2126 };
2127 
2128 static void
2129 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2130 {
2131 	struct msk_dmamap_arg *ctx;
2132 
2133 	if (error != 0)
2134 		return;
2135 	ctx = arg;
2136 	ctx->msk_busaddr = segs[0].ds_addr;
2137 }
2138 
2139 /* Create status DMA region. */
2140 static int
2141 msk_status_dma_alloc(struct msk_softc *sc)
2142 {
2143 	struct msk_dmamap_arg ctx;
2144 	bus_size_t stat_sz;
2145 	int count, error;
2146 
2147 	/*
2148 	 * It seems controller requires number of status LE entries
2149 	 * is power of 2 and the maximum number of status LE entries
2150 	 * is 4096.  For dual-port controllers, the number of status
2151 	 * LE entries should be large enough to hold both port's
2152 	 * status updates.
2153 	 */
2154 	count = 3 * MSK_RX_RING_CNT + MSK_TX_RING_CNT;
2155 	count = imin(4096, roundup2(count, 1024));
2156 	sc->msk_stat_count = count;
2157 	stat_sz = count * sizeof(struct msk_stat_desc);
2158 	error = bus_dma_tag_create(
2159 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
2160 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
2161 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2162 		    BUS_SPACE_MAXADDR,		/* highaddr */
2163 		    NULL, NULL,			/* filter, filterarg */
2164 		    stat_sz,			/* maxsize */
2165 		    1,				/* nsegments */
2166 		    stat_sz,			/* maxsegsize */
2167 		    0,				/* flags */
2168 		    NULL, NULL,			/* lockfunc, lockarg */
2169 		    &sc->msk_stat_tag);
2170 	if (error != 0) {
2171 		device_printf(sc->msk_dev,
2172 		    "failed to create status DMA tag\n");
2173 		return (error);
2174 	}
2175 
2176 	/* Allocate DMA'able memory and load the DMA map for status ring. */
2177 	error = bus_dmamem_alloc(sc->msk_stat_tag,
2178 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
2179 	    BUS_DMA_ZERO, &sc->msk_stat_map);
2180 	if (error != 0) {
2181 		device_printf(sc->msk_dev,
2182 		    "failed to allocate DMA'able memory for status ring\n");
2183 		return (error);
2184 	}
2185 
2186 	ctx.msk_busaddr = 0;
2187 	error = bus_dmamap_load(sc->msk_stat_tag, sc->msk_stat_map,
2188 	    sc->msk_stat_ring, stat_sz, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2189 	if (error != 0) {
2190 		device_printf(sc->msk_dev,
2191 		    "failed to load DMA'able memory for status ring\n");
2192 		return (error);
2193 	}
2194 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
2195 
2196 	return (0);
2197 }
2198 
2199 static void
2200 msk_status_dma_free(struct msk_softc *sc)
2201 {
2202 
2203 	/* Destroy status block. */
2204 	if (sc->msk_stat_tag) {
2205 		if (sc->msk_stat_map) {
2206 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
2207 			if (sc->msk_stat_ring) {
2208 				bus_dmamem_free(sc->msk_stat_tag,
2209 				    sc->msk_stat_ring, sc->msk_stat_map);
2210 				sc->msk_stat_ring = NULL;
2211 			}
2212 			sc->msk_stat_map = NULL;
2213 		}
2214 		bus_dma_tag_destroy(sc->msk_stat_tag);
2215 		sc->msk_stat_tag = NULL;
2216 	}
2217 }
2218 
2219 static int
2220 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2221 {
2222 	struct msk_dmamap_arg ctx;
2223 	struct msk_txdesc *txd;
2224 	struct msk_rxdesc *rxd;
2225 	bus_size_t rxalign;
2226 	int error, i;
2227 
2228 	/* Create parent DMA tag. */
2229 	error = bus_dma_tag_create(
2230 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2231 		    1, 0,			/* alignment, boundary */
2232 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2233 		    BUS_SPACE_MAXADDR,		/* highaddr */
2234 		    NULL, NULL,			/* filter, filterarg */
2235 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2236 		    0,				/* nsegments */
2237 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2238 		    0,				/* flags */
2239 		    NULL, NULL,			/* lockfunc, lockarg */
2240 		    &sc_if->msk_cdata.msk_parent_tag);
2241 	if (error != 0) {
2242 		device_printf(sc_if->msk_if_dev,
2243 		    "failed to create parent DMA tag\n");
2244 		goto fail;
2245 	}
2246 	/* Create tag for Tx ring. */
2247 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2248 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2249 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2250 		    BUS_SPACE_MAXADDR,		/* highaddr */
2251 		    NULL, NULL,			/* filter, filterarg */
2252 		    MSK_TX_RING_SZ,		/* maxsize */
2253 		    1,				/* nsegments */
2254 		    MSK_TX_RING_SZ,		/* maxsegsize */
2255 		    0,				/* flags */
2256 		    NULL, NULL,			/* lockfunc, lockarg */
2257 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2258 	if (error != 0) {
2259 		device_printf(sc_if->msk_if_dev,
2260 		    "failed to create Tx ring DMA tag\n");
2261 		goto fail;
2262 	}
2263 
2264 	/* Create tag for Rx ring. */
2265 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2266 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2267 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2268 		    BUS_SPACE_MAXADDR,		/* highaddr */
2269 		    NULL, NULL,			/* filter, filterarg */
2270 		    MSK_RX_RING_SZ,		/* maxsize */
2271 		    1,				/* nsegments */
2272 		    MSK_RX_RING_SZ,		/* maxsegsize */
2273 		    0,				/* flags */
2274 		    NULL, NULL,			/* lockfunc, lockarg */
2275 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2276 	if (error != 0) {
2277 		device_printf(sc_if->msk_if_dev,
2278 		    "failed to create Rx ring DMA tag\n");
2279 		goto fail;
2280 	}
2281 
2282 	/* Create tag for Tx buffers. */
2283 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2284 		    1, 0,			/* alignment, boundary */
2285 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2286 		    BUS_SPACE_MAXADDR,		/* highaddr */
2287 		    NULL, NULL,			/* filter, filterarg */
2288 		    MSK_TSO_MAXSIZE,		/* maxsize */
2289 		    MSK_MAXTXSEGS,		/* nsegments */
2290 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2291 		    0,				/* flags */
2292 		    NULL, NULL,			/* lockfunc, lockarg */
2293 		    &sc_if->msk_cdata.msk_tx_tag);
2294 	if (error != 0) {
2295 		device_printf(sc_if->msk_if_dev,
2296 		    "failed to create Tx DMA tag\n");
2297 		goto fail;
2298 	}
2299 
2300 	rxalign = 1;
2301 	/*
2302 	 * Workaround hardware hang which seems to happen when Rx buffer
2303 	 * is not aligned on multiple of FIFO word(8 bytes).
2304 	 */
2305 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2306 		rxalign = MSK_RX_BUF_ALIGN;
2307 	/* Create tag for Rx buffers. */
2308 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2309 		    rxalign, 0,			/* alignment, boundary */
2310 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2311 		    BUS_SPACE_MAXADDR,		/* highaddr */
2312 		    NULL, NULL,			/* filter, filterarg */
2313 		    MCLBYTES,			/* maxsize */
2314 		    1,				/* nsegments */
2315 		    MCLBYTES,			/* maxsegsize */
2316 		    0,				/* flags */
2317 		    NULL, NULL,			/* lockfunc, lockarg */
2318 		    &sc_if->msk_cdata.msk_rx_tag);
2319 	if (error != 0) {
2320 		device_printf(sc_if->msk_if_dev,
2321 		    "failed to create Rx DMA tag\n");
2322 		goto fail;
2323 	}
2324 
2325 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2326 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2327 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2328 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2329 	if (error != 0) {
2330 		device_printf(sc_if->msk_if_dev,
2331 		    "failed to allocate DMA'able memory for Tx ring\n");
2332 		goto fail;
2333 	}
2334 
2335 	ctx.msk_busaddr = 0;
2336 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2337 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2338 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2339 	if (error != 0) {
2340 		device_printf(sc_if->msk_if_dev,
2341 		    "failed to load DMA'able memory for Tx ring\n");
2342 		goto fail;
2343 	}
2344 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2345 
2346 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2347 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2348 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2349 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2350 	if (error != 0) {
2351 		device_printf(sc_if->msk_if_dev,
2352 		    "failed to allocate DMA'able memory for Rx ring\n");
2353 		goto fail;
2354 	}
2355 
2356 	ctx.msk_busaddr = 0;
2357 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2358 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2359 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2360 	if (error != 0) {
2361 		device_printf(sc_if->msk_if_dev,
2362 		    "failed to load DMA'able memory for Rx ring\n");
2363 		goto fail;
2364 	}
2365 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2366 
2367 	/* Create DMA maps for Tx buffers. */
2368 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2369 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2370 		txd->tx_m = NULL;
2371 		txd->tx_dmamap = NULL;
2372 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2373 		    &txd->tx_dmamap);
2374 		if (error != 0) {
2375 			device_printf(sc_if->msk_if_dev,
2376 			    "failed to create Tx dmamap\n");
2377 			goto fail;
2378 		}
2379 	}
2380 	/* Create DMA maps for Rx buffers. */
2381 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2382 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2383 		device_printf(sc_if->msk_if_dev,
2384 		    "failed to create spare Rx dmamap\n");
2385 		goto fail;
2386 	}
2387 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2388 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2389 		rxd->rx_m = NULL;
2390 		rxd->rx_dmamap = NULL;
2391 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2392 		    &rxd->rx_dmamap);
2393 		if (error != 0) {
2394 			device_printf(sc_if->msk_if_dev,
2395 			    "failed to create Rx dmamap\n");
2396 			goto fail;
2397 		}
2398 	}
2399 
2400 fail:
2401 	return (error);
2402 }
2403 
2404 static int
2405 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2406 {
2407 	struct msk_dmamap_arg ctx;
2408 	struct msk_rxdesc *jrxd;
2409 	bus_size_t rxalign;
2410 	int error, i;
2411 
2412 	if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
2413 		sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2414 		device_printf(sc_if->msk_if_dev,
2415 		    "disabling jumbo frame support\n");
2416 		return (0);
2417 	}
2418 	/* Create tag for jumbo Rx ring. */
2419 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2420 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2421 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2422 		    BUS_SPACE_MAXADDR,		/* highaddr */
2423 		    NULL, NULL,			/* filter, filterarg */
2424 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2425 		    1,				/* nsegments */
2426 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2427 		    0,				/* flags */
2428 		    NULL, NULL,			/* lockfunc, lockarg */
2429 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2430 	if (error != 0) {
2431 		device_printf(sc_if->msk_if_dev,
2432 		    "failed to create jumbo Rx ring DMA tag\n");
2433 		goto jumbo_fail;
2434 	}
2435 
2436 	rxalign = 1;
2437 	/*
2438 	 * Workaround hardware hang which seems to happen when Rx buffer
2439 	 * is not aligned on multiple of FIFO word(8 bytes).
2440 	 */
2441 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2442 		rxalign = MSK_RX_BUF_ALIGN;
2443 	/* Create tag for jumbo Rx buffers. */
2444 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2445 		    rxalign, 0,			/* alignment, boundary */
2446 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2447 		    BUS_SPACE_MAXADDR,		/* highaddr */
2448 		    NULL, NULL,			/* filter, filterarg */
2449 		    MJUM9BYTES,			/* maxsize */
2450 		    1,				/* nsegments */
2451 		    MJUM9BYTES,			/* maxsegsize */
2452 		    0,				/* flags */
2453 		    NULL, NULL,			/* lockfunc, lockarg */
2454 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2455 	if (error != 0) {
2456 		device_printf(sc_if->msk_if_dev,
2457 		    "failed to create jumbo Rx DMA tag\n");
2458 		goto jumbo_fail;
2459 	}
2460 
2461 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2462 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2463 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2464 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2465 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2466 	if (error != 0) {
2467 		device_printf(sc_if->msk_if_dev,
2468 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2469 		goto jumbo_fail;
2470 	}
2471 
2472 	ctx.msk_busaddr = 0;
2473 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2474 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2475 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2476 	    msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2477 	if (error != 0) {
2478 		device_printf(sc_if->msk_if_dev,
2479 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2480 		goto jumbo_fail;
2481 	}
2482 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2483 
2484 	/* Create DMA maps for jumbo Rx buffers. */
2485 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2486 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2487 		device_printf(sc_if->msk_if_dev,
2488 		    "failed to create spare jumbo Rx dmamap\n");
2489 		goto jumbo_fail;
2490 	}
2491 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2492 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2493 		jrxd->rx_m = NULL;
2494 		jrxd->rx_dmamap = NULL;
2495 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2496 		    &jrxd->rx_dmamap);
2497 		if (error != 0) {
2498 			device_printf(sc_if->msk_if_dev,
2499 			    "failed to create jumbo Rx dmamap\n");
2500 			goto jumbo_fail;
2501 		}
2502 	}
2503 
2504 	return (0);
2505 
2506 jumbo_fail:
2507 	msk_rx_dma_jfree(sc_if);
2508 	device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2509 	    "due to resource shortage\n");
2510 	sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2511 	return (error);
2512 }
2513 
2514 static void
2515 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2516 {
2517 	struct msk_txdesc *txd;
2518 	struct msk_rxdesc *rxd;
2519 	int i;
2520 
2521 	/* Tx ring. */
2522 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2523 		if (sc_if->msk_cdata.msk_tx_ring_map)
2524 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2525 			    sc_if->msk_cdata.msk_tx_ring_map);
2526 		if (sc_if->msk_cdata.msk_tx_ring_map &&
2527 		    sc_if->msk_rdata.msk_tx_ring)
2528 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2529 			    sc_if->msk_rdata.msk_tx_ring,
2530 			    sc_if->msk_cdata.msk_tx_ring_map);
2531 		sc_if->msk_rdata.msk_tx_ring = NULL;
2532 		sc_if->msk_cdata.msk_tx_ring_map = NULL;
2533 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2534 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2535 	}
2536 	/* Rx ring. */
2537 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2538 		if (sc_if->msk_cdata.msk_rx_ring_map)
2539 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2540 			    sc_if->msk_cdata.msk_rx_ring_map);
2541 		if (sc_if->msk_cdata.msk_rx_ring_map &&
2542 		    sc_if->msk_rdata.msk_rx_ring)
2543 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2544 			    sc_if->msk_rdata.msk_rx_ring,
2545 			    sc_if->msk_cdata.msk_rx_ring_map);
2546 		sc_if->msk_rdata.msk_rx_ring = NULL;
2547 		sc_if->msk_cdata.msk_rx_ring_map = NULL;
2548 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2549 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2550 	}
2551 	/* Tx buffers. */
2552 	if (sc_if->msk_cdata.msk_tx_tag) {
2553 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2554 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2555 			if (txd->tx_dmamap) {
2556 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2557 				    txd->tx_dmamap);
2558 				txd->tx_dmamap = NULL;
2559 			}
2560 		}
2561 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2562 		sc_if->msk_cdata.msk_tx_tag = NULL;
2563 	}
2564 	/* Rx buffers. */
2565 	if (sc_if->msk_cdata.msk_rx_tag) {
2566 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2567 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2568 			if (rxd->rx_dmamap) {
2569 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2570 				    rxd->rx_dmamap);
2571 				rxd->rx_dmamap = NULL;
2572 			}
2573 		}
2574 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2575 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2576 			    sc_if->msk_cdata.msk_rx_sparemap);
2577 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2578 		}
2579 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2580 		sc_if->msk_cdata.msk_rx_tag = NULL;
2581 	}
2582 	if (sc_if->msk_cdata.msk_parent_tag) {
2583 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2584 		sc_if->msk_cdata.msk_parent_tag = NULL;
2585 	}
2586 }
2587 
2588 static void
2589 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2590 {
2591 	struct msk_rxdesc *jrxd;
2592 	int i;
2593 
2594 	/* Jumbo Rx ring. */
2595 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2596 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2597 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2598 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2599 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2600 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2601 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2602 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2603 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2604 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2605 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2606 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2607 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2608 	}
2609 	/* Jumbo Rx buffers. */
2610 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2611 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2612 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2613 			if (jrxd->rx_dmamap) {
2614 				bus_dmamap_destroy(
2615 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2616 				    jrxd->rx_dmamap);
2617 				jrxd->rx_dmamap = NULL;
2618 			}
2619 		}
2620 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2621 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2622 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2623 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2624 		}
2625 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2626 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2627 	}
2628 }
2629 
2630 static int
2631 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2632 {
2633 	struct msk_txdesc *txd, *txd_last;
2634 	struct msk_tx_desc *tx_le;
2635 	struct mbuf *m;
2636 	bus_dmamap_t map;
2637 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2638 	uint32_t control, csum, prod, si;
2639 	uint16_t offset, tcp_offset, tso_mtu;
2640 	int error, i, nseg, tso;
2641 
2642 	MSK_IF_LOCK_ASSERT(sc_if);
2643 
2644 	tcp_offset = offset = 0;
2645 	m = *m_head;
2646 	if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2647 	    (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) ||
2648 	    ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
2649 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) {
2650 		/*
2651 		 * Since mbuf has no protocol specific structure information
2652 		 * in it we have to inspect protocol information here to
2653 		 * setup TSO and checksum offload. I don't know why Marvell
2654 		 * made a such decision in chip design because other GigE
2655 		 * hardwares normally takes care of all these chores in
2656 		 * hardware. However, TSO performance of Yukon II is very
2657 		 * good such that it's worth to implement it.
2658 		 */
2659 		struct ether_header *eh;
2660 		struct ip *ip;
2661 		struct tcphdr *tcp;
2662 
2663 		if (M_WRITABLE(m) == 0) {
2664 			/* Get a writable copy. */
2665 			m = m_dup(*m_head, M_DONTWAIT);
2666 			m_freem(*m_head);
2667 			if (m == NULL) {
2668 				*m_head = NULL;
2669 				return (ENOBUFS);
2670 			}
2671 			*m_head = m;
2672 		}
2673 
2674 		offset = sizeof(struct ether_header);
2675 		m = m_pullup(m, offset);
2676 		if (m == NULL) {
2677 			*m_head = NULL;
2678 			return (ENOBUFS);
2679 		}
2680 		eh = mtod(m, struct ether_header *);
2681 		/* Check if hardware VLAN insertion is off. */
2682 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2683 			offset = sizeof(struct ether_vlan_header);
2684 			m = m_pullup(m, offset);
2685 			if (m == NULL) {
2686 				*m_head = NULL;
2687 				return (ENOBUFS);
2688 			}
2689 		}
2690 		m = m_pullup(m, offset + sizeof(struct ip));
2691 		if (m == NULL) {
2692 			*m_head = NULL;
2693 			return (ENOBUFS);
2694 		}
2695 		ip = (struct ip *)(mtod(m, char *) + offset);
2696 		offset += (ip->ip_hl << 2);
2697 		tcp_offset = offset;
2698 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2699 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2700 			if (m == NULL) {
2701 				*m_head = NULL;
2702 				return (ENOBUFS);
2703 			}
2704 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2705 			offset += (tcp->th_off << 2);
2706 		} else if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2707 		    (m->m_pkthdr.len < MSK_MIN_FRAMELEN) &&
2708 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2709 			/*
2710 			 * It seems that Yukon II has Tx checksum offload bug
2711 			 * for small TCP packets that's less than 60 bytes in
2712 			 * size (e.g. TCP window probe packet, pure ACK packet).
2713 			 * Common work around like padding with zeros to make
2714 			 * the frame minimum ethernet frame size didn't work at
2715 			 * all.
2716 			 * Instead of disabling checksum offload completely we
2717 			 * resort to S/W checksum routine when we encounter
2718 			 * short TCP frames.
2719 			 * Short UDP packets appear to be handled correctly by
2720 			 * Yukon II. Also I assume this bug does not happen on
2721 			 * controllers that use newer descriptor format or
2722 			 * automatic Tx checksum calculation.
2723 			 */
2724 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2725 			if (m == NULL) {
2726 				*m_head = NULL;
2727 				return (ENOBUFS);
2728 			}
2729 			*(uint16_t *)(m->m_data + offset +
2730 			    m->m_pkthdr.csum_data) = in_cksum_skip(m,
2731 			    m->m_pkthdr.len, offset);
2732 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2733 		}
2734 		*m_head = m;
2735 	}
2736 
2737 	prod = sc_if->msk_cdata.msk_tx_prod;
2738 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2739 	txd_last = txd;
2740 	map = txd->tx_dmamap;
2741 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2742 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2743 	if (error == EFBIG) {
2744 		m = m_collapse(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
2745 		if (m == NULL) {
2746 			m_freem(*m_head);
2747 			*m_head = NULL;
2748 			return (ENOBUFS);
2749 		}
2750 		*m_head = m;
2751 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2752 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2753 		if (error != 0) {
2754 			m_freem(*m_head);
2755 			*m_head = NULL;
2756 			return (error);
2757 		}
2758 	} else if (error != 0)
2759 		return (error);
2760 	if (nseg == 0) {
2761 		m_freem(*m_head);
2762 		*m_head = NULL;
2763 		return (EIO);
2764 	}
2765 
2766 	/* Check number of available descriptors. */
2767 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2768 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2769 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2770 		return (ENOBUFS);
2771 	}
2772 
2773 	control = 0;
2774 	tso = 0;
2775 	tx_le = NULL;
2776 
2777 	/* Check TSO support. */
2778 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2779 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2780 			tso_mtu = m->m_pkthdr.tso_segsz;
2781 		else
2782 			tso_mtu = offset + m->m_pkthdr.tso_segsz;
2783 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2784 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2785 			tx_le->msk_addr = htole32(tso_mtu);
2786 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2787 				tx_le->msk_control = htole32(OP_MSS | HW_OWNER);
2788 			else
2789 				tx_le->msk_control =
2790 				    htole32(OP_LRGLEN | HW_OWNER);
2791 			sc_if->msk_cdata.msk_tx_cnt++;
2792 			MSK_INC(prod, MSK_TX_RING_CNT);
2793 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2794 		}
2795 		tso++;
2796 	}
2797 	/* Check if we have a VLAN tag to insert. */
2798 	if ((m->m_flags & M_VLANTAG) != 0) {
2799 		if (tx_le == NULL) {
2800 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2801 			tx_le->msk_addr = htole32(0);
2802 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2803 			    htons(m->m_pkthdr.ether_vtag));
2804 			sc_if->msk_cdata.msk_tx_cnt++;
2805 			MSK_INC(prod, MSK_TX_RING_CNT);
2806 		} else {
2807 			tx_le->msk_control |= htole32(OP_VLAN |
2808 			    htons(m->m_pkthdr.ether_vtag));
2809 		}
2810 		control |= INS_VLAN;
2811 	}
2812 	/* Check if we have to handle checksum offload. */
2813 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2814 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0)
2815 			control |= CALSUM;
2816 		else {
2817 			control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2818 			if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2819 				control |= UDPTCP;
2820 			/* Checksum write position. */
2821 			csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff;
2822 			/* Checksum start position. */
2823 			csum |= (uint32_t)tcp_offset << 16;
2824 			if (csum != sc_if->msk_cdata.msk_last_csum) {
2825 				tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2826 				tx_le->msk_addr = htole32(csum);
2827 				tx_le->msk_control = htole32(1 << 16 |
2828 				    (OP_TCPLISW | HW_OWNER));
2829 				sc_if->msk_cdata.msk_tx_cnt++;
2830 				MSK_INC(prod, MSK_TX_RING_CNT);
2831 				sc_if->msk_cdata.msk_last_csum = csum;
2832 			}
2833 		}
2834 	}
2835 
2836 #ifdef MSK_64BIT_DMA
2837 	if (MSK_ADDR_HI(txsegs[0].ds_addr) !=
2838 	    sc_if->msk_cdata.msk_tx_high_addr) {
2839 		sc_if->msk_cdata.msk_tx_high_addr =
2840 		    MSK_ADDR_HI(txsegs[0].ds_addr);
2841 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2842 		tx_le->msk_addr = htole32(MSK_ADDR_HI(txsegs[0].ds_addr));
2843 		tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
2844 		sc_if->msk_cdata.msk_tx_cnt++;
2845 		MSK_INC(prod, MSK_TX_RING_CNT);
2846 	}
2847 #endif
2848 	si = prod;
2849 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2850 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2851 	if (tso == 0)
2852 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2853 		    OP_PACKET);
2854 	else
2855 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2856 		    OP_LARGESEND);
2857 	sc_if->msk_cdata.msk_tx_cnt++;
2858 	MSK_INC(prod, MSK_TX_RING_CNT);
2859 
2860 	for (i = 1; i < nseg; i++) {
2861 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2862 #ifdef MSK_64BIT_DMA
2863 		if (MSK_ADDR_HI(txsegs[i].ds_addr) !=
2864 		    sc_if->msk_cdata.msk_tx_high_addr) {
2865 			sc_if->msk_cdata.msk_tx_high_addr =
2866 			    MSK_ADDR_HI(txsegs[i].ds_addr);
2867 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2868 			tx_le->msk_addr =
2869 			    htole32(MSK_ADDR_HI(txsegs[i].ds_addr));
2870 			tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
2871 			sc_if->msk_cdata.msk_tx_cnt++;
2872 			MSK_INC(prod, MSK_TX_RING_CNT);
2873 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2874 		}
2875 #endif
2876 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2877 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2878 		    OP_BUFFER | HW_OWNER);
2879 		sc_if->msk_cdata.msk_tx_cnt++;
2880 		MSK_INC(prod, MSK_TX_RING_CNT);
2881 	}
2882 	/* Update producer index. */
2883 	sc_if->msk_cdata.msk_tx_prod = prod;
2884 
2885 	/* Set EOP on the last descriptor. */
2886 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2887 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2888 	tx_le->msk_control |= htole32(EOP);
2889 
2890 	/* Turn the first descriptor ownership to hardware. */
2891 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2892 	tx_le->msk_control |= htole32(HW_OWNER);
2893 
2894 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2895 	map = txd_last->tx_dmamap;
2896 	txd_last->tx_dmamap = txd->tx_dmamap;
2897 	txd->tx_dmamap = map;
2898 	txd->tx_m = m;
2899 
2900 	/* Sync descriptors. */
2901 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2902 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2903 	    sc_if->msk_cdata.msk_tx_ring_map,
2904 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2905 
2906 	return (0);
2907 }
2908 
2909 static void
2910 msk_start(struct ifnet *ifp)
2911 {
2912 	struct msk_if_softc *sc_if;
2913 
2914 	sc_if = ifp->if_softc;
2915 	MSK_IF_LOCK(sc_if);
2916 	msk_start_locked(ifp);
2917 	MSK_IF_UNLOCK(sc_if);
2918 }
2919 
2920 static void
2921 msk_start_locked(struct ifnet *ifp)
2922 {
2923 	struct msk_if_softc *sc_if;
2924 	struct mbuf *m_head;
2925 	int enq;
2926 
2927 	sc_if = ifp->if_softc;
2928 	MSK_IF_LOCK_ASSERT(sc_if);
2929 
2930 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2931 	    IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0)
2932 		return;
2933 
2934 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2935 	    sc_if->msk_cdata.msk_tx_cnt <
2936 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2937 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2938 		if (m_head == NULL)
2939 			break;
2940 		/*
2941 		 * Pack the data into the transmit ring. If we
2942 		 * don't have room, set the OACTIVE flag and wait
2943 		 * for the NIC to drain the ring.
2944 		 */
2945 		if (msk_encap(sc_if, &m_head) != 0) {
2946 			if (m_head == NULL)
2947 				break;
2948 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2949 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2950 			break;
2951 		}
2952 
2953 		enq++;
2954 		/*
2955 		 * If there's a BPF listener, bounce a copy of this frame
2956 		 * to him.
2957 		 */
2958 		ETHER_BPF_MTAP(ifp, m_head);
2959 	}
2960 
2961 	if (enq > 0) {
2962 		/* Transmit */
2963 		CSR_WRITE_2(sc_if->msk_softc,
2964 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2965 		    sc_if->msk_cdata.msk_tx_prod);
2966 
2967 		/* Set a timeout in case the chip goes out to lunch. */
2968 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2969 	}
2970 }
2971 
2972 static void
2973 msk_watchdog(struct msk_if_softc *sc_if)
2974 {
2975 	struct ifnet *ifp;
2976 
2977 	MSK_IF_LOCK_ASSERT(sc_if);
2978 
2979 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2980 		return;
2981 	ifp = sc_if->msk_ifp;
2982 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2983 		if (bootverbose)
2984 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2985 			   "(missed link)\n");
2986 		ifp->if_oerrors++;
2987 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2988 		msk_init_locked(sc_if);
2989 		return;
2990 	}
2991 
2992 	if_printf(ifp, "watchdog timeout\n");
2993 	ifp->if_oerrors++;
2994 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2995 	msk_init_locked(sc_if);
2996 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2997 		msk_start_locked(ifp);
2998 }
2999 
3000 static int
3001 mskc_shutdown(device_t dev)
3002 {
3003 	struct msk_softc *sc;
3004 	int i;
3005 
3006 	sc = device_get_softc(dev);
3007 	MSK_LOCK(sc);
3008 	for (i = 0; i < sc->msk_num_port; i++) {
3009 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3010 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
3011 		    IFF_DRV_RUNNING) != 0))
3012 			msk_stop(sc->msk_if[i]);
3013 	}
3014 	MSK_UNLOCK(sc);
3015 
3016 	/* Put hardware reset. */
3017 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3018 	return (0);
3019 }
3020 
3021 static int
3022 mskc_suspend(device_t dev)
3023 {
3024 	struct msk_softc *sc;
3025 	int i;
3026 
3027 	sc = device_get_softc(dev);
3028 
3029 	MSK_LOCK(sc);
3030 
3031 	for (i = 0; i < sc->msk_num_port; i++) {
3032 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3033 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
3034 		    IFF_DRV_RUNNING) != 0))
3035 			msk_stop(sc->msk_if[i]);
3036 	}
3037 
3038 	/* Disable all interrupts. */
3039 	CSR_WRITE_4(sc, B0_IMSK, 0);
3040 	CSR_READ_4(sc, B0_IMSK);
3041 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
3042 	CSR_READ_4(sc, B0_HWE_IMSK);
3043 
3044 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
3045 
3046 	/* Put hardware reset. */
3047 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3048 	sc->msk_pflags |= MSK_FLAG_SUSPEND;
3049 
3050 	MSK_UNLOCK(sc);
3051 
3052 	return (0);
3053 }
3054 
3055 static int
3056 mskc_resume(device_t dev)
3057 {
3058 	struct msk_softc *sc;
3059 	int i;
3060 
3061 	sc = device_get_softc(dev);
3062 
3063 	MSK_LOCK(sc);
3064 
3065 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
3066 	mskc_reset(sc);
3067 	for (i = 0; i < sc->msk_num_port; i++) {
3068 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3069 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) {
3070 			sc->msk_if[i]->msk_ifp->if_drv_flags &=
3071 			    ~IFF_DRV_RUNNING;
3072 			msk_init_locked(sc->msk_if[i]);
3073 		}
3074 	}
3075 	sc->msk_pflags &= ~MSK_FLAG_SUSPEND;
3076 
3077 	MSK_UNLOCK(sc);
3078 
3079 	return (0);
3080 }
3081 
3082 #ifndef __NO_STRICT_ALIGNMENT
3083 static __inline void
3084 msk_fixup_rx(struct mbuf *m)
3085 {
3086         int i;
3087         uint16_t *src, *dst;
3088 
3089 	src = mtod(m, uint16_t *);
3090 	dst = src - 3;
3091 
3092 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
3093 		*dst++ = *src++;
3094 
3095 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
3096 }
3097 #endif
3098 
3099 static __inline void
3100 msk_rxcsum(struct msk_if_softc *sc_if, uint32_t control, struct mbuf *m)
3101 {
3102 	struct ether_header *eh;
3103 	struct ip *ip;
3104 	struct udphdr *uh;
3105 	int32_t hlen, len, pktlen, temp32;
3106 	uint16_t csum, *opts;
3107 
3108 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) {
3109 		if ((control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
3110 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3111 			if ((control & CSS_IPV4_CSUM_OK) != 0)
3112 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3113 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3114 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3115 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3116 				    CSUM_PSEUDO_HDR;
3117 				m->m_pkthdr.csum_data = 0xffff;
3118 			}
3119 		}
3120 		return;
3121 	}
3122 	/*
3123 	 * Marvell Yukon controllers that support OP_RXCHKS has known
3124 	 * to have various Rx checksum offloading bugs. These
3125 	 * controllers can be configured to compute simple checksum
3126 	 * at two different positions. So we can compute IP and TCP/UDP
3127 	 * checksum at the same time. We intentionally have controller
3128 	 * compute TCP/UDP checksum twice by specifying the same
3129 	 * checksum start position and compare the result. If the value
3130 	 * is different it would indicate the hardware logic was wrong.
3131 	 */
3132 	if ((sc_if->msk_csum & 0xFFFF) != (sc_if->msk_csum >> 16)) {
3133 		if (bootverbose)
3134 			device_printf(sc_if->msk_if_dev,
3135 			    "Rx checksum value mismatch!\n");
3136 		return;
3137 	}
3138 	pktlen = m->m_pkthdr.len;
3139 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
3140 		return;
3141 	eh = mtod(m, struct ether_header *);
3142 	if (eh->ether_type != htons(ETHERTYPE_IP))
3143 		return;
3144 	ip = (struct ip *)(eh + 1);
3145 	if (ip->ip_v != IPVERSION)
3146 		return;
3147 
3148 	hlen = ip->ip_hl << 2;
3149 	pktlen -= sizeof(struct ether_header);
3150 	if (hlen < sizeof(struct ip))
3151 		return;
3152 	if (ntohs(ip->ip_len) < hlen)
3153 		return;
3154 	if (ntohs(ip->ip_len) != pktlen)
3155 		return;
3156 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
3157 		return;	/* can't handle fragmented packet. */
3158 
3159 	switch (ip->ip_p) {
3160 	case IPPROTO_TCP:
3161 		if (pktlen < (hlen + sizeof(struct tcphdr)))
3162 			return;
3163 		break;
3164 	case IPPROTO_UDP:
3165 		if (pktlen < (hlen + sizeof(struct udphdr)))
3166 			return;
3167 		uh = (struct udphdr *)((caddr_t)ip + hlen);
3168 		if (uh->uh_sum == 0)
3169 			return; /* no checksum */
3170 		break;
3171 	default:
3172 		return;
3173 	}
3174 	csum = bswap16(sc_if->msk_csum & 0xFFFF);
3175 	/* Checksum fixup for IP options. */
3176 	len = hlen - sizeof(struct ip);
3177 	if (len > 0) {
3178 		opts = (uint16_t *)(ip + 1);
3179 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
3180 			temp32 = csum - *opts;
3181 			temp32 = (temp32 >> 16) + (temp32 & 65535);
3182 			csum = temp32 & 65535;
3183 		}
3184 	}
3185 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
3186 	m->m_pkthdr.csum_data = csum;
3187 }
3188 
3189 static void
3190 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3191     int len)
3192 {
3193 	struct mbuf *m;
3194 	struct ifnet *ifp;
3195 	struct msk_rxdesc *rxd;
3196 	int cons, rxlen;
3197 
3198 	ifp = sc_if->msk_ifp;
3199 
3200 	MSK_IF_LOCK_ASSERT(sc_if);
3201 
3202 	cons = sc_if->msk_cdata.msk_rx_cons;
3203 	do {
3204 		rxlen = status >> 16;
3205 		if ((status & GMR_FS_VLAN) != 0 &&
3206 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3207 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3208 		if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) {
3209 			/*
3210 			 * For controllers that returns bogus status code
3211 			 * just do minimal check and let upper stack
3212 			 * handle this frame.
3213 			 */
3214 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
3215 				ifp->if_ierrors++;
3216 				msk_discard_rxbuf(sc_if, cons);
3217 				break;
3218 			}
3219 		} else if (len > sc_if->msk_framesize ||
3220 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3221 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3222 			/* Don't count flow-control packet as errors. */
3223 			if ((status & GMR_FS_GOOD_FC) == 0)
3224 				ifp->if_ierrors++;
3225 			msk_discard_rxbuf(sc_if, cons);
3226 			break;
3227 		}
3228 #ifdef MSK_64BIT_DMA
3229 		rxd = &sc_if->msk_cdata.msk_rxdesc[(cons + 1) %
3230 		    MSK_RX_RING_CNT];
3231 #else
3232 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3233 #endif
3234 		m = rxd->rx_m;
3235 		if (msk_newbuf(sc_if, cons) != 0) {
3236 			ifp->if_iqdrops++;
3237 			/* Reuse old buffer. */
3238 			msk_discard_rxbuf(sc_if, cons);
3239 			break;
3240 		}
3241 		m->m_pkthdr.rcvif = ifp;
3242 		m->m_pkthdr.len = m->m_len = len;
3243 #ifndef __NO_STRICT_ALIGNMENT
3244 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3245 			msk_fixup_rx(m);
3246 #endif
3247 		ifp->if_ipackets++;
3248 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3249 			msk_rxcsum(sc_if, control, m);
3250 		/* Check for VLAN tagged packets. */
3251 		if ((status & GMR_FS_VLAN) != 0 &&
3252 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3253 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3254 			m->m_flags |= M_VLANTAG;
3255 		}
3256 		MSK_IF_UNLOCK(sc_if);
3257 		(*ifp->if_input)(ifp, m);
3258 		MSK_IF_LOCK(sc_if);
3259 	} while (0);
3260 
3261 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3262 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3263 }
3264 
3265 static void
3266 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3267     int len)
3268 {
3269 	struct mbuf *m;
3270 	struct ifnet *ifp;
3271 	struct msk_rxdesc *jrxd;
3272 	int cons, rxlen;
3273 
3274 	ifp = sc_if->msk_ifp;
3275 
3276 	MSK_IF_LOCK_ASSERT(sc_if);
3277 
3278 	cons = sc_if->msk_cdata.msk_rx_cons;
3279 	do {
3280 		rxlen = status >> 16;
3281 		if ((status & GMR_FS_VLAN) != 0 &&
3282 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3283 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3284 		if (len > sc_if->msk_framesize ||
3285 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3286 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3287 			/* Don't count flow-control packet as errors. */
3288 			if ((status & GMR_FS_GOOD_FC) == 0)
3289 				ifp->if_ierrors++;
3290 			msk_discard_jumbo_rxbuf(sc_if, cons);
3291 			break;
3292 		}
3293 #ifdef MSK_64BIT_DMA
3294 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[(cons + 1) %
3295 		    MSK_JUMBO_RX_RING_CNT];
3296 #else
3297 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3298 #endif
3299 		m = jrxd->rx_m;
3300 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3301 			ifp->if_iqdrops++;
3302 			/* Reuse old buffer. */
3303 			msk_discard_jumbo_rxbuf(sc_if, cons);
3304 			break;
3305 		}
3306 		m->m_pkthdr.rcvif = ifp;
3307 		m->m_pkthdr.len = m->m_len = len;
3308 #ifndef __NO_STRICT_ALIGNMENT
3309 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3310 			msk_fixup_rx(m);
3311 #endif
3312 		ifp->if_ipackets++;
3313 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3314 			msk_rxcsum(sc_if, control, m);
3315 		/* Check for VLAN tagged packets. */
3316 		if ((status & GMR_FS_VLAN) != 0 &&
3317 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3318 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3319 			m->m_flags |= M_VLANTAG;
3320 		}
3321 		MSK_IF_UNLOCK(sc_if);
3322 		(*ifp->if_input)(ifp, m);
3323 		MSK_IF_LOCK(sc_if);
3324 	} while (0);
3325 
3326 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3327 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3328 }
3329 
3330 static void
3331 msk_txeof(struct msk_if_softc *sc_if, int idx)
3332 {
3333 	struct msk_txdesc *txd;
3334 	struct msk_tx_desc *cur_tx;
3335 	struct ifnet *ifp;
3336 	uint32_t control;
3337 	int cons, prog;
3338 
3339 	MSK_IF_LOCK_ASSERT(sc_if);
3340 
3341 	ifp = sc_if->msk_ifp;
3342 
3343 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3344 	    sc_if->msk_cdata.msk_tx_ring_map,
3345 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3346 	/*
3347 	 * Go through our tx ring and free mbufs for those
3348 	 * frames that have been sent.
3349 	 */
3350 	cons = sc_if->msk_cdata.msk_tx_cons;
3351 	prog = 0;
3352 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3353 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3354 			break;
3355 		prog++;
3356 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3357 		control = le32toh(cur_tx->msk_control);
3358 		sc_if->msk_cdata.msk_tx_cnt--;
3359 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3360 		if ((control & EOP) == 0)
3361 			continue;
3362 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3363 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3364 		    BUS_DMASYNC_POSTWRITE);
3365 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3366 
3367 		ifp->if_opackets++;
3368 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3369 		    __func__));
3370 		m_freem(txd->tx_m);
3371 		txd->tx_m = NULL;
3372 	}
3373 
3374 	if (prog > 0) {
3375 		sc_if->msk_cdata.msk_tx_cons = cons;
3376 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3377 			sc_if->msk_watchdog_timer = 0;
3378 		/* No need to sync LEs as we didn't update LEs. */
3379 	}
3380 }
3381 
3382 static void
3383 msk_tick(void *xsc_if)
3384 {
3385 	struct msk_if_softc *sc_if;
3386 	struct mii_data *mii;
3387 
3388 	sc_if = xsc_if;
3389 
3390 	MSK_IF_LOCK_ASSERT(sc_if);
3391 
3392 	mii = device_get_softc(sc_if->msk_miibus);
3393 
3394 	mii_tick(mii);
3395 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0)
3396 		msk_miibus_statchg(sc_if->msk_if_dev);
3397 	msk_handle_events(sc_if->msk_softc);
3398 	msk_watchdog(sc_if);
3399 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3400 }
3401 
3402 static void
3403 msk_intr_phy(struct msk_if_softc *sc_if)
3404 {
3405 	uint16_t status;
3406 
3407 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3408 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3409 	/* Handle FIFO Underrun/Overflow? */
3410 	if ((status & PHY_M_IS_FIFO_ERROR))
3411 		device_printf(sc_if->msk_if_dev,
3412 		    "PHY FIFO underrun/overflow.\n");
3413 }
3414 
3415 static void
3416 msk_intr_gmac(struct msk_if_softc *sc_if)
3417 {
3418 	struct msk_softc *sc;
3419 	uint8_t status;
3420 
3421 	sc = sc_if->msk_softc;
3422 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3423 
3424 	/* GMAC Rx FIFO overrun. */
3425 	if ((status & GM_IS_RX_FF_OR) != 0)
3426 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3427 		    GMF_CLI_RX_FO);
3428 	/* GMAC Tx FIFO underrun. */
3429 	if ((status & GM_IS_TX_FF_UR) != 0) {
3430 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3431 		    GMF_CLI_TX_FU);
3432 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3433 		/*
3434 		 * XXX
3435 		 * In case of Tx underrun, we may need to flush/reset
3436 		 * Tx MAC but that would also require resynchronization
3437 		 * with status LEs. Reinitializing status LEs would
3438 		 * affect other port in dual MAC configuration so it
3439 		 * should be avoided as possible as we can.
3440 		 * Due to lack of documentation it's all vague guess but
3441 		 * it needs more investigation.
3442 		 */
3443 	}
3444 }
3445 
3446 static void
3447 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3448 {
3449 	struct msk_softc *sc;
3450 
3451 	sc = sc_if->msk_softc;
3452 	if ((status & Y2_IS_PAR_RD1) != 0) {
3453 		device_printf(sc_if->msk_if_dev,
3454 		    "RAM buffer read parity error\n");
3455 		/* Clear IRQ. */
3456 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3457 		    RI_CLR_RD_PERR);
3458 	}
3459 	if ((status & Y2_IS_PAR_WR1) != 0) {
3460 		device_printf(sc_if->msk_if_dev,
3461 		    "RAM buffer write parity error\n");
3462 		/* Clear IRQ. */
3463 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3464 		    RI_CLR_WR_PERR);
3465 	}
3466 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3467 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3468 		/* Clear IRQ. */
3469 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3470 		    GMF_CLI_TX_PE);
3471 	}
3472 	if ((status & Y2_IS_PAR_RX1) != 0) {
3473 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3474 		/* Clear IRQ. */
3475 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3476 	}
3477 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3478 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3479 		/* Clear IRQ. */
3480 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3481 	}
3482 }
3483 
3484 static void
3485 msk_intr_hwerr(struct msk_softc *sc)
3486 {
3487 	uint32_t status;
3488 	uint32_t tlphead[4];
3489 
3490 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3491 	/* Time Stamp timer overflow. */
3492 	if ((status & Y2_IS_TIST_OV) != 0)
3493 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3494 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3495 		/*
3496 		 * PCI Express Error occured which is not described in PEX
3497 		 * spec.
3498 		 * This error is also mapped either to Master Abort(
3499 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3500 		 * can only be cleared there.
3501                  */
3502 		device_printf(sc->msk_dev,
3503 		    "PCI Express protocol violation error\n");
3504 	}
3505 
3506 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3507 		uint16_t v16;
3508 
3509 		if ((status & Y2_IS_MST_ERR) != 0)
3510 			device_printf(sc->msk_dev,
3511 			    "unexpected IRQ Status error\n");
3512 		else
3513 			device_printf(sc->msk_dev,
3514 			    "unexpected IRQ Master error\n");
3515 		/* Reset all bits in the PCI status register. */
3516 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3517 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3518 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3519 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3520 		    PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
3521 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3522 	}
3523 
3524 	/* Check for PCI Express Uncorrectable Error. */
3525 	if ((status & Y2_IS_PCI_EXP) != 0) {
3526 		uint32_t v32;
3527 
3528 		/*
3529 		 * On PCI Express bus bridges are called root complexes (RC).
3530 		 * PCI Express errors are recognized by the root complex too,
3531 		 * which requests the system to handle the problem. After
3532 		 * error occurence it may be that no access to the adapter
3533 		 * may be performed any longer.
3534 		 */
3535 
3536 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3537 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3538 			/* Ignore unsupported request error. */
3539 			device_printf(sc->msk_dev,
3540 			    "Uncorrectable PCI Express error\n");
3541 		}
3542 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3543 			int i;
3544 
3545 			/* Get TLP header form Log Registers. */
3546 			for (i = 0; i < 4; i++)
3547 				tlphead[i] = CSR_PCI_READ_4(sc,
3548 				    PEX_HEADER_LOG + i * 4);
3549 			/* Check for vendor defined broadcast message. */
3550 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3551 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3552 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3553 				    sc->msk_intrhwemask);
3554 				CSR_READ_4(sc, B0_HWE_IMSK);
3555 			}
3556 		}
3557 		/* Clear the interrupt. */
3558 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3559 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3560 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3561 	}
3562 
3563 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3564 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3565 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3566 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3567 }
3568 
3569 static __inline void
3570 msk_rxput(struct msk_if_softc *sc_if)
3571 {
3572 	struct msk_softc *sc;
3573 
3574 	sc = sc_if->msk_softc;
3575 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3576 		bus_dmamap_sync(
3577 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3578 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3579 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3580 	else
3581 		bus_dmamap_sync(
3582 		    sc_if->msk_cdata.msk_rx_ring_tag,
3583 		    sc_if->msk_cdata.msk_rx_ring_map,
3584 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3585 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3586 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3587 }
3588 
3589 static int
3590 msk_handle_events(struct msk_softc *sc)
3591 {
3592 	struct msk_if_softc *sc_if;
3593 	int rxput[2];
3594 	struct msk_stat_desc *sd;
3595 	uint32_t control, status;
3596 	int cons, len, port, rxprog;
3597 
3598 	if (sc->msk_stat_cons == CSR_READ_2(sc, STAT_PUT_IDX))
3599 		return (0);
3600 
3601 	/* Sync status LEs. */
3602 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3603 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3604 
3605 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3606 	rxprog = 0;
3607 	cons = sc->msk_stat_cons;
3608 	for (;;) {
3609 		sd = &sc->msk_stat_ring[cons];
3610 		control = le32toh(sd->msk_control);
3611 		if ((control & HW_OWNER) == 0)
3612 			break;
3613 		control &= ~HW_OWNER;
3614 		sd->msk_control = htole32(control);
3615 		status = le32toh(sd->msk_status);
3616 		len = control & STLE_LEN_MASK;
3617 		port = (control >> 16) & 0x01;
3618 		sc_if = sc->msk_if[port];
3619 		if (sc_if == NULL) {
3620 			device_printf(sc->msk_dev, "invalid port opcode "
3621 			    "0x%08x\n", control & STLE_OP_MASK);
3622 			continue;
3623 		}
3624 
3625 		switch (control & STLE_OP_MASK) {
3626 		case OP_RXVLAN:
3627 			sc_if->msk_vtag = ntohs(len);
3628 			break;
3629 		case OP_RXCHKSVLAN:
3630 			sc_if->msk_vtag = ntohs(len);
3631 			/* FALLTHROUGH */
3632 		case OP_RXCHKS:
3633 			sc_if->msk_csum = status;
3634 			break;
3635 		case OP_RXSTAT:
3636 			if (!(sc_if->msk_ifp->if_drv_flags & IFF_DRV_RUNNING))
3637 				break;
3638 			if (sc_if->msk_framesize >
3639 			    (MCLBYTES - MSK_RX_BUF_ALIGN))
3640 				msk_jumbo_rxeof(sc_if, status, control, len);
3641 			else
3642 				msk_rxeof(sc_if, status, control, len);
3643 			rxprog++;
3644 			/*
3645 			 * Because there is no way to sync single Rx LE
3646 			 * put the DMA sync operation off until the end of
3647 			 * event processing.
3648 			 */
3649 			rxput[port]++;
3650 			/* Update prefetch unit if we've passed water mark. */
3651 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3652 				msk_rxput(sc_if);
3653 				rxput[port] = 0;
3654 			}
3655 			break;
3656 		case OP_TXINDEXLE:
3657 			if (sc->msk_if[MSK_PORT_A] != NULL)
3658 				msk_txeof(sc->msk_if[MSK_PORT_A],
3659 				    status & STLE_TXA1_MSKL);
3660 			if (sc->msk_if[MSK_PORT_B] != NULL)
3661 				msk_txeof(sc->msk_if[MSK_PORT_B],
3662 				    ((status & STLE_TXA2_MSKL) >>
3663 				    STLE_TXA2_SHIFTL) |
3664 				    ((len & STLE_TXA2_MSKH) <<
3665 				    STLE_TXA2_SHIFTH));
3666 			break;
3667 		default:
3668 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3669 			    control & STLE_OP_MASK);
3670 			break;
3671 		}
3672 		MSK_INC(cons, sc->msk_stat_count);
3673 		if (rxprog > sc->msk_process_limit)
3674 			break;
3675 	}
3676 
3677 	sc->msk_stat_cons = cons;
3678 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3679 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3680 
3681 	if (rxput[MSK_PORT_A] > 0)
3682 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3683 	if (rxput[MSK_PORT_B] > 0)
3684 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3685 
3686 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3687 }
3688 
3689 static void
3690 msk_intr(void *xsc)
3691 {
3692 	struct msk_softc *sc;
3693 	struct msk_if_softc *sc_if0, *sc_if1;
3694 	struct ifnet *ifp0, *ifp1;
3695 	uint32_t status;
3696 	int domore;
3697 
3698 	sc = xsc;
3699 	MSK_LOCK(sc);
3700 
3701 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3702 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3703 	if (status == 0 || status == 0xffffffff ||
3704 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3705 	    (status & sc->msk_intrmask) == 0) {
3706 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3707 		MSK_UNLOCK(sc);
3708 		return;
3709 	}
3710 
3711 	sc_if0 = sc->msk_if[MSK_PORT_A];
3712 	sc_if1 = sc->msk_if[MSK_PORT_B];
3713 	ifp0 = ifp1 = NULL;
3714 	if (sc_if0 != NULL)
3715 		ifp0 = sc_if0->msk_ifp;
3716 	if (sc_if1 != NULL)
3717 		ifp1 = sc_if1->msk_ifp;
3718 
3719 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3720 		msk_intr_phy(sc_if0);
3721 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3722 		msk_intr_phy(sc_if1);
3723 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3724 		msk_intr_gmac(sc_if0);
3725 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3726 		msk_intr_gmac(sc_if1);
3727 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3728 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3729 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3730 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3731 		CSR_READ_4(sc, B0_IMSK);
3732 	}
3733         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3734 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3735 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3736 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3737 		CSR_READ_4(sc, B0_IMSK);
3738 	}
3739 	if ((status & Y2_IS_HW_ERR) != 0)
3740 		msk_intr_hwerr(sc);
3741 
3742 	domore = msk_handle_events(sc);
3743 	if ((status & Y2_IS_STAT_BMU) != 0 && domore == 0)
3744 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3745 
3746 	/* Reenable interrupts. */
3747 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3748 
3749 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3750 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3751 		msk_start_locked(ifp0);
3752 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3753 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3754 		msk_start_locked(ifp1);
3755 
3756 	MSK_UNLOCK(sc);
3757 }
3758 
3759 static void
3760 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3761 {
3762 	struct msk_softc *sc;
3763 	struct ifnet *ifp;
3764 
3765 	ifp = sc_if->msk_ifp;
3766 	sc = sc_if->msk_softc;
3767 	if ((sc->msk_hw_id == CHIP_ID_YUKON_EX &&
3768 	    sc->msk_hw_rev != CHIP_REV_YU_EX_A0) ||
3769 	    sc->msk_hw_id >= CHIP_ID_YUKON_SUPR) {
3770 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3771 		    TX_STFW_ENA);
3772 	} else {
3773 		if (ifp->if_mtu > ETHERMTU) {
3774 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3775 			CSR_WRITE_4(sc,
3776 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3777 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3778 			/* Disable Store & Forward mode for Tx. */
3779 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3780 			    TX_STFW_DIS);
3781 		} else {
3782 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3783 			    TX_STFW_ENA);
3784 		}
3785 	}
3786 }
3787 
3788 static void
3789 msk_init(void *xsc)
3790 {
3791 	struct msk_if_softc *sc_if = xsc;
3792 
3793 	MSK_IF_LOCK(sc_if);
3794 	msk_init_locked(sc_if);
3795 	MSK_IF_UNLOCK(sc_if);
3796 }
3797 
3798 static void
3799 msk_init_locked(struct msk_if_softc *sc_if)
3800 {
3801 	struct msk_softc *sc;
3802 	struct ifnet *ifp;
3803 	struct mii_data	 *mii;
3804 	uint8_t *eaddr;
3805 	uint16_t gmac;
3806 	uint32_t reg;
3807 	int error;
3808 
3809 	MSK_IF_LOCK_ASSERT(sc_if);
3810 
3811 	ifp = sc_if->msk_ifp;
3812 	sc = sc_if->msk_softc;
3813 	mii = device_get_softc(sc_if->msk_miibus);
3814 
3815 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3816 		return;
3817 
3818 	error = 0;
3819 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3820 	msk_stop(sc_if);
3821 
3822 	if (ifp->if_mtu < ETHERMTU)
3823 		sc_if->msk_framesize = ETHERMTU;
3824 	else
3825 		sc_if->msk_framesize = ifp->if_mtu;
3826 	sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3827 	if (ifp->if_mtu > ETHERMTU &&
3828 	    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
3829 		ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3830 		ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3831 	}
3832 
3833 	/* GMAC Control reset. */
3834 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3835 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3836 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3837 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3838 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR)
3839 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3840 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3841 		    GMC_BYP_RETR_ON);
3842 
3843 	/*
3844 	 * Initialize GMAC first such that speed/duplex/flow-control
3845 	 * parameters are renegotiated when interface is brought up.
3846 	 */
3847 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3848 
3849 	/* Dummy read the Interrupt Source Register. */
3850 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3851 
3852 	/* Clear MIB stats. */
3853 	msk_stats_clear(sc_if);
3854 
3855 	/* Disable FCS. */
3856 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3857 
3858 	/* Setup Transmit Control Register. */
3859 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3860 
3861 	/* Setup Transmit Flow Control Register. */
3862 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3863 
3864 	/* Setup Transmit Parameter Register. */
3865 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3866 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3867 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3868 
3869 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3870 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3871 
3872 	if (ifp->if_mtu > ETHERMTU)
3873 		gmac |= GM_SMOD_JUMBO_ENA;
3874 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3875 
3876 	/* Set station address. */
3877 	eaddr = IF_LLADDR(ifp);
3878 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L,
3879 	    eaddr[0] | (eaddr[1] << 8));
3880 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M,
3881 	    eaddr[2] | (eaddr[3] << 8));
3882 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H,
3883 	    eaddr[4] | (eaddr[5] << 8));
3884 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L,
3885 	    eaddr[0] | (eaddr[1] << 8));
3886 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M,
3887 	    eaddr[2] | (eaddr[3] << 8));
3888 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H,
3889 	    eaddr[4] | (eaddr[5] << 8));
3890 
3891 	/* Disable interrupts for counter overflows. */
3892 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3893 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3894 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3895 
3896 	/* Configure Rx MAC FIFO. */
3897 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3898 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3899 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3900 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3901 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3902 		reg |= GMF_RX_OVER_ON;
3903 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3904 
3905 	/* Set receive filter. */
3906 	msk_rxfilter(sc_if);
3907 
3908 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3909 		/* Clear flush mask - HW bug. */
3910 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3911 	} else {
3912 		/* Flush Rx MAC FIFO on any flow control or error. */
3913 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3914 		    GMR_FS_ANY_ERR);
3915 	}
3916 
3917 	/*
3918 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3919 	 * due to hardware hang on receipt of pause frames.
3920 	 */
3921 	reg = RX_GMF_FL_THR_DEF + 1;
3922 	/* Another magic for Yukon FE+ - From Linux. */
3923 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3924 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3925 		reg = 0x178;
3926 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3927 
3928 	/* Configure Tx MAC FIFO. */
3929 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3930 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3931 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3932 
3933 	/* Configure hardware VLAN tag insertion/stripping. */
3934 	msk_setvlan(sc_if, ifp);
3935 
3936 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3937 		/* Set Rx Pause threshold. */
3938 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3939 		    MSK_ECU_LLPP);
3940 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3941 		    MSK_ECU_ULPP);
3942 		/* Configure store-and-forward for Tx. */
3943 		msk_set_tx_stfwd(sc_if);
3944 	}
3945 
3946 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3947 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3948 		/* Disable dynamic watermark - from Linux. */
3949 		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3950 		reg &= ~0x03;
3951 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3952 	}
3953 
3954 	/*
3955 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3956 	 * arbiter as we don't use Sync Tx queue.
3957 	 */
3958 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3959 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3960 	/* Enable the RAM Interface Arbiter. */
3961 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3962 
3963 	/* Setup RAM buffer. */
3964 	msk_set_rambuffer(sc_if);
3965 
3966 	/* Disable Tx sync Queue. */
3967 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3968 
3969 	/* Setup Tx Queue Bus Memory Interface. */
3970 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3971 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3972 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3973 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3974 	switch (sc->msk_hw_id) {
3975 	case CHIP_ID_YUKON_EC_U:
3976 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3977 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3978 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3979 			    MSK_ECU_TXFF_LEV);
3980 		}
3981 		break;
3982 	case CHIP_ID_YUKON_EX:
3983 		/*
3984 		 * Yukon Extreme seems to have silicon bug for
3985 		 * automatic Tx checksum calculation capability.
3986 		 */
3987 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
3988 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3989 			    F_TX_CHK_AUTO_OFF);
3990 		break;
3991 	}
3992 
3993 	/* Setup Rx Queue Bus Memory Interface. */
3994 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3995 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3996 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3997 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3998         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3999 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
4000 		/* MAC Rx RAM Read is controlled by hardware. */
4001                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
4002 	}
4003 
4004 	msk_set_prefetch(sc, sc_if->msk_txq,
4005 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
4006 	msk_init_tx_ring(sc_if);
4007 
4008 	/* Disable Rx checksum offload and RSS hash. */
4009 	reg = BMU_DIS_RX_RSS_HASH;
4010 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
4011 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0)
4012 		reg |= BMU_ENA_RX_CHKSUM;
4013 	else
4014 		reg |= BMU_DIS_RX_CHKSUM;
4015 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), reg);
4016 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
4017 		msk_set_prefetch(sc, sc_if->msk_rxq,
4018 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
4019 		    MSK_JUMBO_RX_RING_CNT - 1);
4020 		error = msk_init_jumbo_rx_ring(sc_if);
4021 	 } else {
4022 		msk_set_prefetch(sc, sc_if->msk_rxq,
4023 		    sc_if->msk_rdata.msk_rx_ring_paddr,
4024 		    MSK_RX_RING_CNT - 1);
4025 		error = msk_init_rx_ring(sc_if);
4026 	}
4027 	if (error != 0) {
4028 		device_printf(sc_if->msk_if_dev,
4029 		    "initialization failed: no memory for Rx buffers\n");
4030 		msk_stop(sc_if);
4031 		return;
4032 	}
4033 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
4034 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
4035 		/* Disable flushing of non-ASF packets. */
4036 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
4037 		    GMF_RX_MACSEC_FLUSH_OFF);
4038 	}
4039 
4040 	/* Configure interrupt handling. */
4041 	if (sc_if->msk_port == MSK_PORT_A) {
4042 		sc->msk_intrmask |= Y2_IS_PORT_A;
4043 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
4044 	} else {
4045 		sc->msk_intrmask |= Y2_IS_PORT_B;
4046 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
4047 	}
4048 	/* Configure IRQ moderation mask. */
4049 	CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
4050 	if (sc->msk_int_holdoff > 0) {
4051 		/* Configure initial IRQ moderation timer value. */
4052 		CSR_WRITE_4(sc, B2_IRQM_INI,
4053 		    MSK_USECS(sc, sc->msk_int_holdoff));
4054 		CSR_WRITE_4(sc, B2_IRQM_VAL,
4055 		    MSK_USECS(sc, sc->msk_int_holdoff));
4056 		/* Start IRQ moderation. */
4057 		CSR_WRITE_1(sc, B2_IRQM_CTRL, TIM_START);
4058 	}
4059 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4060 	CSR_READ_4(sc, B0_HWE_IMSK);
4061 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4062 	CSR_READ_4(sc, B0_IMSK);
4063 
4064 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4065 	mii_mediachg(mii);
4066 
4067 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4068 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4069 
4070 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
4071 }
4072 
4073 static void
4074 msk_set_rambuffer(struct msk_if_softc *sc_if)
4075 {
4076 	struct msk_softc *sc;
4077 	int ltpp, utpp;
4078 
4079 	sc = sc_if->msk_softc;
4080 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
4081 		return;
4082 
4083 	/* Setup Rx Queue. */
4084 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
4085 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
4086 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4087 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
4088 	    sc->msk_rxqend[sc_if->msk_port] / 8);
4089 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
4090 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4091 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
4092 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4093 
4094 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
4095 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
4096 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
4097 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
4098 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
4099 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
4100 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
4101 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
4102 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
4103 
4104 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
4105 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
4106 
4107 	/* Setup Tx Queue. */
4108 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
4109 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
4110 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4111 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
4112 	    sc->msk_txqend[sc_if->msk_port] / 8);
4113 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
4114 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4115 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
4116 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4117 	/* Enable Store & Forward for Tx side. */
4118 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
4119 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
4120 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
4121 }
4122 
4123 static void
4124 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
4125     uint32_t count)
4126 {
4127 
4128 	/* Reset the prefetch unit. */
4129 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4130 	    PREF_UNIT_RST_SET);
4131 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4132 	    PREF_UNIT_RST_CLR);
4133 	/* Set LE base address. */
4134 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
4135 	    MSK_ADDR_LO(addr));
4136 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
4137 	    MSK_ADDR_HI(addr));
4138 	/* Set the list last index. */
4139 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
4140 	    count);
4141 	/* Turn on prefetch unit. */
4142 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4143 	    PREF_UNIT_OP_ON);
4144 	/* Dummy read to ensure write. */
4145 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
4146 }
4147 
4148 static void
4149 msk_stop(struct msk_if_softc *sc_if)
4150 {
4151 	struct msk_softc *sc;
4152 	struct msk_txdesc *txd;
4153 	struct msk_rxdesc *rxd;
4154 	struct msk_rxdesc *jrxd;
4155 	struct ifnet *ifp;
4156 	uint32_t val;
4157 	int i;
4158 
4159 	MSK_IF_LOCK_ASSERT(sc_if);
4160 	sc = sc_if->msk_softc;
4161 	ifp = sc_if->msk_ifp;
4162 
4163 	callout_stop(&sc_if->msk_tick_ch);
4164 	sc_if->msk_watchdog_timer = 0;
4165 
4166 	/* Disable interrupts. */
4167 	if (sc_if->msk_port == MSK_PORT_A) {
4168 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
4169 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
4170 	} else {
4171 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
4172 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
4173 	}
4174 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4175 	CSR_READ_4(sc, B0_HWE_IMSK);
4176 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4177 	CSR_READ_4(sc, B0_IMSK);
4178 
4179 	/* Disable Tx/Rx MAC. */
4180 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4181 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
4182 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
4183 	/* Read again to ensure writing. */
4184 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4185 	/* Update stats and clear counters. */
4186 	msk_stats_update(sc_if);
4187 
4188 	/* Stop Tx BMU. */
4189 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
4190 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4191 	for (i = 0; i < MSK_TIMEOUT; i++) {
4192 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
4193 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4194 			    BMU_STOP);
4195 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4196 		} else
4197 			break;
4198 		DELAY(1);
4199 	}
4200 	if (i == MSK_TIMEOUT)
4201 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
4202 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
4203 	    RB_RST_SET | RB_DIS_OP_MD);
4204 
4205 	/* Disable all GMAC interrupt. */
4206 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
4207 	/* Disable PHY interrupt. */
4208 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
4209 
4210 	/* Disable the RAM Interface Arbiter. */
4211 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
4212 
4213 	/* Reset the PCI FIFO of the async Tx queue */
4214 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4215 	    BMU_RST_SET | BMU_FIFO_RST);
4216 
4217 	/* Reset the Tx prefetch units. */
4218 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
4219 	    PREF_UNIT_RST_SET);
4220 
4221 	/* Reset the RAM Buffer async Tx queue. */
4222 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
4223 
4224 	/* Reset Tx MAC FIFO. */
4225 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
4226 	/* Set Pause Off. */
4227 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
4228 
4229 	/*
4230 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
4231 	 * reach the end of packet and since we can't make sure that we have
4232 	 * incoming data, we must reset the BMU while it is not during a DMA
4233 	 * transfer. Since it is possible that the Rx path is still active,
4234 	 * the Rx RAM buffer will be stopped first, so any possible incoming
4235 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
4236 	 * BMU is polled until any DMA in progress is ended and only then it
4237 	 * will be reset.
4238 	 */
4239 
4240 	/* Disable the RAM Buffer receive queue. */
4241 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4242 	for (i = 0; i < MSK_TIMEOUT; i++) {
4243 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4244 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4245 			break;
4246 		DELAY(1);
4247 	}
4248 	if (i == MSK_TIMEOUT)
4249 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4250 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4251 	    BMU_RST_SET | BMU_FIFO_RST);
4252 	/* Reset the Rx prefetch unit. */
4253 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4254 	    PREF_UNIT_RST_SET);
4255 	/* Reset the RAM Buffer receive queue. */
4256 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4257 	/* Reset Rx MAC FIFO. */
4258 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4259 
4260 	/* Free Rx and Tx mbufs still in the queues. */
4261 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4262 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4263 		if (rxd->rx_m != NULL) {
4264 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4265 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4266 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4267 			    rxd->rx_dmamap);
4268 			m_freem(rxd->rx_m);
4269 			rxd->rx_m = NULL;
4270 		}
4271 	}
4272 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4273 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4274 		if (jrxd->rx_m != NULL) {
4275 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4276 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4277 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4278 			    jrxd->rx_dmamap);
4279 			m_freem(jrxd->rx_m);
4280 			jrxd->rx_m = NULL;
4281 		}
4282 	}
4283 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4284 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4285 		if (txd->tx_m != NULL) {
4286 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4287 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4288 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4289 			    txd->tx_dmamap);
4290 			m_freem(txd->tx_m);
4291 			txd->tx_m = NULL;
4292 		}
4293 	}
4294 
4295 	/*
4296 	 * Mark the interface down.
4297 	 */
4298 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4299 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4300 }
4301 
4302 /*
4303  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
4304  * counter clears high 16 bits of the counter such that accessing
4305  * lower 16 bits should be the last operation.
4306  */
4307 #define	MSK_READ_MIB32(x, y)					\
4308 	(((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) +	\
4309 	(uint32_t)GMAC_READ_2(sc, x, y)
4310 #define	MSK_READ_MIB64(x, y)					\
4311 	(((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) +	\
4312 	(uint64_t)MSK_READ_MIB32(x, y)
4313 
4314 static void
4315 msk_stats_clear(struct msk_if_softc *sc_if)
4316 {
4317 	struct msk_softc *sc;
4318 	uint32_t reg;
4319 	uint16_t gmac;
4320 	int i;
4321 
4322 	MSK_IF_LOCK_ASSERT(sc_if);
4323 
4324 	sc = sc_if->msk_softc;
4325 	/* Set MIB Clear Counter Mode. */
4326 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4327 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4328 	/* Read all MIB Counters with Clear Mode set. */
4329 	for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t))
4330 		reg = MSK_READ_MIB32(sc_if->msk_port, i);
4331 	/* Clear MIB Clear Counter Mode. */
4332 	gmac &= ~GM_PAR_MIB_CLR;
4333 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4334 }
4335 
4336 static void
4337 msk_stats_update(struct msk_if_softc *sc_if)
4338 {
4339 	struct msk_softc *sc;
4340 	struct ifnet *ifp;
4341 	struct msk_hw_stats *stats;
4342 	uint16_t gmac;
4343 	uint32_t reg;
4344 
4345 	MSK_IF_LOCK_ASSERT(sc_if);
4346 
4347 	ifp = sc_if->msk_ifp;
4348 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4349 		return;
4350 	sc = sc_if->msk_softc;
4351 	stats = &sc_if->msk_stats;
4352 	/* Set MIB Clear Counter Mode. */
4353 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4354 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4355 
4356 	/* Rx stats. */
4357 	stats->rx_ucast_frames +=
4358 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4359 	stats->rx_bcast_frames +=
4360 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4361 	stats->rx_pause_frames +=
4362 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4363 	stats->rx_mcast_frames +=
4364 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4365 	stats->rx_crc_errs +=
4366 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4367 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1);
4368 	stats->rx_good_octets +=
4369 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4370 	stats->rx_bad_octets +=
4371 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4372 	stats->rx_runts +=
4373 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4374 	stats->rx_runt_errs +=
4375 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4376 	stats->rx_pkts_64 +=
4377 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4378 	stats->rx_pkts_65_127 +=
4379 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4380 	stats->rx_pkts_128_255 +=
4381 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4382 	stats->rx_pkts_256_511 +=
4383 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4384 	stats->rx_pkts_512_1023 +=
4385 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4386 	stats->rx_pkts_1024_1518 +=
4387 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4388 	stats->rx_pkts_1519_max +=
4389 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4390 	stats->rx_pkts_too_long +=
4391 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4392 	stats->rx_pkts_jabbers +=
4393 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4394 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2);
4395 	stats->rx_fifo_oflows +=
4396 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4397 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3);
4398 
4399 	/* Tx stats. */
4400 	stats->tx_ucast_frames +=
4401 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4402 	stats->tx_bcast_frames +=
4403 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4404 	stats->tx_pause_frames +=
4405 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4406 	stats->tx_mcast_frames +=
4407 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4408 	stats->tx_octets +=
4409 	    MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4410 	stats->tx_pkts_64 +=
4411 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4412 	stats->tx_pkts_65_127 +=
4413 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4414 	stats->tx_pkts_128_255 +=
4415 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4416 	stats->tx_pkts_256_511 +=
4417 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4418 	stats->tx_pkts_512_1023 +=
4419 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4420 	stats->tx_pkts_1024_1518 +=
4421 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4422 	stats->tx_pkts_1519_max +=
4423 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4424 	reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1);
4425 	stats->tx_colls +=
4426 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4427 	stats->tx_late_colls +=
4428 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4429 	stats->tx_excess_colls +=
4430 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4431 	stats->tx_multi_colls +=
4432 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4433 	stats->tx_single_colls +=
4434 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4435 	stats->tx_underflows +=
4436 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4437 	/* Clear MIB Clear Counter Mode. */
4438 	gmac &= ~GM_PAR_MIB_CLR;
4439 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4440 }
4441 
4442 static int
4443 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4444 {
4445 	struct msk_softc *sc;
4446 	struct msk_if_softc *sc_if;
4447 	uint32_t result, *stat;
4448 	int off;
4449 
4450 	sc_if = (struct msk_if_softc *)arg1;
4451 	sc = sc_if->msk_softc;
4452 	off = arg2;
4453 	stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4454 
4455 	MSK_IF_LOCK(sc_if);
4456 	result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4457 	result += *stat;
4458 	MSK_IF_UNLOCK(sc_if);
4459 
4460 	return (sysctl_handle_int(oidp, &result, 0, req));
4461 }
4462 
4463 static int
4464 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4465 {
4466 	struct msk_softc *sc;
4467 	struct msk_if_softc *sc_if;
4468 	uint64_t result, *stat;
4469 	int off;
4470 
4471 	sc_if = (struct msk_if_softc *)arg1;
4472 	sc = sc_if->msk_softc;
4473 	off = arg2;
4474 	stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4475 
4476 	MSK_IF_LOCK(sc_if);
4477 	result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4478 	result += *stat;
4479 	MSK_IF_UNLOCK(sc_if);
4480 
4481 	return (sysctl_handle_64(oidp, &result, 0, req));
4482 }
4483 
4484 #undef MSK_READ_MIB32
4485 #undef MSK_READ_MIB64
4486 
4487 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) 				\
4488 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, 	\
4489 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32,	\
4490 	    "IU", d)
4491 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) 				\
4492 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_U64 | CTLFLAG_RD, 	\
4493 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64,	\
4494 	    "QU", d)
4495 
4496 static void
4497 msk_sysctl_node(struct msk_if_softc *sc_if)
4498 {
4499 	struct sysctl_ctx_list *ctx;
4500 	struct sysctl_oid_list *child, *schild;
4501 	struct sysctl_oid *tree;
4502 
4503 	ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4504 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4505 
4506 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
4507 	    NULL, "MSK Statistics");
4508 	schild = child = SYSCTL_CHILDREN(tree);
4509 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
4510 	    NULL, "MSK RX Statistics");
4511 	child = SYSCTL_CHILDREN(tree);
4512 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4513 	    child, rx_ucast_frames, "Good unicast frames");
4514 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4515 	    child, rx_bcast_frames, "Good broadcast frames");
4516 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4517 	    child, rx_pause_frames, "Pause frames");
4518 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4519 	    child, rx_mcast_frames, "Multicast frames");
4520 	MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4521 	    child, rx_crc_errs, "CRC errors");
4522 	MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4523 	    child, rx_good_octets, "Good octets");
4524 	MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4525 	    child, rx_bad_octets, "Bad octets");
4526 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4527 	    child, rx_pkts_64, "64 bytes frames");
4528 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4529 	    child, rx_pkts_65_127, "65 to 127 bytes frames");
4530 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4531 	    child, rx_pkts_128_255, "128 to 255 bytes frames");
4532 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4533 	    child, rx_pkts_256_511, "256 to 511 bytes frames");
4534 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4535 	    child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4536 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4537 	    child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4538 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4539 	    child, rx_pkts_1519_max, "1519 to max frames");
4540 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4541 	    child, rx_pkts_too_long, "frames too long");
4542 	MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4543 	    child, rx_pkts_jabbers, "Jabber errors");
4544 	MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4545 	    child, rx_fifo_oflows, "FIFO overflows");
4546 
4547 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
4548 	    NULL, "MSK TX Statistics");
4549 	child = SYSCTL_CHILDREN(tree);
4550 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4551 	    child, tx_ucast_frames, "Unicast frames");
4552 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4553 	    child, tx_bcast_frames, "Broadcast frames");
4554 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4555 	    child, tx_pause_frames, "Pause frames");
4556 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4557 	    child, tx_mcast_frames, "Multicast frames");
4558 	MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4559 	    child, tx_octets, "Octets");
4560 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4561 	    child, tx_pkts_64, "64 bytes frames");
4562 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4563 	    child, tx_pkts_65_127, "65 to 127 bytes frames");
4564 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4565 	    child, tx_pkts_128_255, "128 to 255 bytes frames");
4566 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4567 	    child, tx_pkts_256_511, "256 to 511 bytes frames");
4568 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4569 	    child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4570 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4571 	    child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4572 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4573 	    child, tx_pkts_1519_max, "1519 to max frames");
4574 	MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4575 	    child, tx_colls, "Collisions");
4576 	MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4577 	    child, tx_late_colls, "Late collisions");
4578 	MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4579 	    child, tx_excess_colls, "Excessive collisions");
4580 	MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4581 	    child, tx_multi_colls, "Multiple collisions");
4582 	MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4583 	    child, tx_single_colls, "Single collisions");
4584 	MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4585 	    child, tx_underflows, "FIFO underflows");
4586 }
4587 
4588 #undef MSK_SYSCTL_STAT32
4589 #undef MSK_SYSCTL_STAT64
4590 
4591 static int
4592 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4593 {
4594 	int error, value;
4595 
4596 	if (!arg1)
4597 		return (EINVAL);
4598 	value = *(int *)arg1;
4599 	error = sysctl_handle_int(oidp, &value, 0, req);
4600 	if (error || !req->newptr)
4601 		return (error);
4602 	if (value < low || value > high)
4603 		return (EINVAL);
4604 	*(int *)arg1 = value;
4605 
4606 	return (0);
4607 }
4608 
4609 static int
4610 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4611 {
4612 
4613 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4614 	    MSK_PROC_MAX));
4615 }
4616