1 /****************************************************************************** 2 * 3 * Name : sky2.c 4 * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x 5 * Version: $Revision: 1.23 $ 6 * Date : $Date: 2005/12/22 09:04:11 $ 7 * Purpose: Main driver source file 8 * 9 *****************************************************************************/ 10 11 /****************************************************************************** 12 * 13 * LICENSE: 14 * Copyright (C) Marvell International Ltd. and/or its affiliates 15 * 16 * The computer program files contained in this folder ("Files") 17 * are provided to you under the BSD-type license terms provided 18 * below, and any use of such Files and any derivative works 19 * thereof created by you shall be governed by the following terms 20 * and conditions: 21 * 22 * - Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials provided 27 * with the distribution. 28 * - Neither the name of Marvell nor the names of its contributors 29 * may be used to endorse or promote products derived from this 30 * software without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 35 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 36 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 37 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 38 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 39 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 41 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 42 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 43 * OF THE POSSIBILITY OF SUCH DAMAGE. 44 * /LICENSE 45 * 46 *****************************************************************************/ 47 48 /*- 49 * Copyright (c) 1997, 1998, 1999, 2000 50 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 51 * 52 * Redistribution and use in source and binary forms, with or without 53 * modification, are permitted provided that the following conditions 54 * are met: 55 * 1. Redistributions of source code must retain the above copyright 56 * notice, this list of conditions and the following disclaimer. 57 * 2. Redistributions in binary form must reproduce the above copyright 58 * notice, this list of conditions and the following disclaimer in the 59 * documentation and/or other materials provided with the distribution. 60 * 3. All advertising materials mentioning features or use of this software 61 * must display the following acknowledgement: 62 * This product includes software developed by Bill Paul. 63 * 4. Neither the name of the author nor the names of any co-contributors 64 * may be used to endorse or promote products derived from this software 65 * without specific prior written permission. 66 * 67 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 70 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 71 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 72 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 73 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 74 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 75 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 76 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 77 * THE POSSIBILITY OF SUCH DAMAGE. 78 */ 79 /*- 80 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu> 81 * 82 * Permission to use, copy, modify, and distribute this software for any 83 * purpose with or without fee is hereby granted, provided that the above 84 * copyright notice and this permission notice appear in all copies. 85 * 86 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 87 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 88 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 89 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 90 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 91 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 92 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 93 */ 94 95 /* 96 * Device driver for the Marvell Yukon II Ethernet controller. 97 * Due to lack of documentation, this driver is based on the code from 98 * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x. 99 */ 100 101 #include <sys/cdefs.h> 102 __FBSDID("$FreeBSD$"); 103 104 #include <sys/param.h> 105 #include <sys/systm.h> 106 #include <sys/bus.h> 107 #include <sys/endian.h> 108 #include <sys/mbuf.h> 109 #include <sys/malloc.h> 110 #include <sys/kernel.h> 111 #include <sys/module.h> 112 #include <sys/socket.h> 113 #include <sys/sockio.h> 114 #include <sys/queue.h> 115 #include <sys/sysctl.h> 116 #include <sys/taskqueue.h> 117 118 #include <net/bpf.h> 119 #include <net/ethernet.h> 120 #include <net/if.h> 121 #include <net/if_arp.h> 122 #include <net/if_dl.h> 123 #include <net/if_media.h> 124 #include <net/if_types.h> 125 #include <net/if_vlan_var.h> 126 127 #include <netinet/in.h> 128 #include <netinet/in_systm.h> 129 #include <netinet/ip.h> 130 #include <netinet/tcp.h> 131 #include <netinet/udp.h> 132 133 #include <machine/bus.h> 134 #include <machine/resource.h> 135 #include <sys/rman.h> 136 137 #include <dev/mii/mii.h> 138 #include <dev/mii/miivar.h> 139 #include <dev/mii/brgphyreg.h> 140 141 #include <dev/pci/pcireg.h> 142 #include <dev/pci/pcivar.h> 143 144 #include <dev/msk/if_mskreg.h> 145 146 MODULE_DEPEND(msk, pci, 1, 1, 1); 147 MODULE_DEPEND(msk, ether, 1, 1, 1); 148 MODULE_DEPEND(msk, miibus, 1, 1, 1); 149 150 /* "device miibus" required. See GENERIC if you get errors here. */ 151 #include "miibus_if.h" 152 153 /* Tunables. */ 154 static int msi_disable = 0; 155 TUNABLE_INT("hw.msk.msi_disable", &msi_disable); 156 157 #define MSK_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 158 159 /* 160 * Devices supported by this driver. 161 */ 162 static struct msk_product { 163 uint16_t msk_vendorid; 164 uint16_t msk_deviceid; 165 const char *msk_name; 166 } msk_products[] = { 167 { VENDORID_SK, DEVICEID_SK_YUKON2, 168 "SK-9Sxx Gigabit Ethernet" }, 169 { VENDORID_SK, DEVICEID_SK_YUKON2_EXPR, 170 "SK-9Exx Gigabit Ethernet"}, 171 { VENDORID_MARVELL, DEVICEID_MRVL_8021CU, 172 "Marvell Yukon 88E8021CU Gigabit Ethernet" }, 173 { VENDORID_MARVELL, DEVICEID_MRVL_8021X, 174 "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" }, 175 { VENDORID_MARVELL, DEVICEID_MRVL_8022CU, 176 "Marvell Yukon 88E8022CU Gigabit Ethernet" }, 177 { VENDORID_MARVELL, DEVICEID_MRVL_8022X, 178 "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" }, 179 { VENDORID_MARVELL, DEVICEID_MRVL_8061CU, 180 "Marvell Yukon 88E8061CU Gigabit Ethernet" }, 181 { VENDORID_MARVELL, DEVICEID_MRVL_8061X, 182 "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" }, 183 { VENDORID_MARVELL, DEVICEID_MRVL_8062CU, 184 "Marvell Yukon 88E8062CU Gigabit Ethernet" }, 185 { VENDORID_MARVELL, DEVICEID_MRVL_8062X, 186 "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" }, 187 { VENDORID_MARVELL, DEVICEID_MRVL_8035, 188 "Marvell Yukon 88E8035 Gigabit Ethernet" }, 189 { VENDORID_MARVELL, DEVICEID_MRVL_8036, 190 "Marvell Yukon 88E8036 Gigabit Ethernet" }, 191 { VENDORID_MARVELL, DEVICEID_MRVL_8038, 192 "Marvell Yukon 88E8038 Gigabit Ethernet" }, 193 { VENDORID_MARVELL, DEVICEID_MRVL_4361, 194 "Marvell Yukon 88E8050 Gigabit Ethernet" }, 195 { VENDORID_MARVELL, DEVICEID_MRVL_4360, 196 "Marvell Yukon 88E8052 Gigabit Ethernet" }, 197 { VENDORID_MARVELL, DEVICEID_MRVL_4362, 198 "Marvell Yukon 88E8053 Gigabit Ethernet" }, 199 { VENDORID_MARVELL, DEVICEID_MRVL_4363, 200 "Marvell Yukon 88E8055 Gigabit Ethernet" }, 201 { VENDORID_MARVELL, DEVICEID_MRVL_4364, 202 "Marvell Yukon 88E8056 Gigabit Ethernet" }, 203 { VENDORID_DLINK, DEVICEID_DLINK_DGE550SX, 204 "D-Link 550SX Gigabit Ethernet" }, 205 { VENDORID_DLINK, DEVICEID_DLINK_DGE560T, 206 "D-Link 560T Gigabit Ethernet" } 207 }; 208 209 static const char *model_name[] = { 210 "Yukon XL", 211 "Yukon EC Ultra", 212 "Yukon Unknown", 213 "Yukon EC", 214 "Yukon FE" 215 }; 216 217 static int mskc_probe(device_t); 218 static int mskc_attach(device_t); 219 static int mskc_detach(device_t); 220 static void mskc_shutdown(device_t); 221 static int mskc_setup_rambuffer(struct msk_softc *); 222 static int mskc_suspend(device_t); 223 static int mskc_resume(device_t); 224 static void mskc_reset(struct msk_softc *); 225 226 static int msk_probe(device_t); 227 static int msk_attach(device_t); 228 static int msk_detach(device_t); 229 230 static void msk_tick(void *); 231 static void msk_intr(void *); 232 static void msk_int_task(void *, int); 233 static void msk_intr_phy(struct msk_if_softc *); 234 static void msk_intr_gmac(struct msk_if_softc *); 235 static __inline void msk_rxput(struct msk_if_softc *); 236 static int msk_handle_events(struct msk_softc *); 237 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t); 238 static void msk_intr_hwerr(struct msk_softc *); 239 static void msk_rxeof(struct msk_if_softc *, uint32_t, int); 240 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int); 241 static void msk_txeof(struct msk_if_softc *, int); 242 static struct mbuf *msk_defrag(struct mbuf *, int, int); 243 static int msk_encap(struct msk_if_softc *, struct mbuf **); 244 static void msk_tx_task(void *, int); 245 static void msk_start(struct ifnet *); 246 static int msk_ioctl(struct ifnet *, u_long, caddr_t); 247 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t); 248 static void msk_set_rambuffer(struct msk_if_softc *); 249 static void msk_init(void *); 250 static void msk_init_locked(struct msk_if_softc *); 251 static void msk_stop(struct msk_if_softc *); 252 static void msk_watchdog(void *); 253 static int msk_mediachange(struct ifnet *); 254 static void msk_mediastatus(struct ifnet *, struct ifmediareq *); 255 static void msk_phy_power(struct msk_softc *, int); 256 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int); 257 static int msk_status_dma_alloc(struct msk_softc *); 258 static void msk_status_dma_free(struct msk_softc *); 259 static int msk_txrx_dma_alloc(struct msk_if_softc *); 260 static void msk_txrx_dma_free(struct msk_if_softc *); 261 static void *msk_jalloc(struct msk_if_softc *); 262 static void msk_jfree(void *, void *); 263 static int msk_init_rx_ring(struct msk_if_softc *); 264 static int msk_init_jumbo_rx_ring(struct msk_if_softc *); 265 static void msk_init_tx_ring(struct msk_if_softc *); 266 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int); 267 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int); 268 static int msk_newbuf(struct msk_if_softc *, int); 269 static int msk_jumbo_newbuf(struct msk_if_softc *, int); 270 271 static int msk_phy_readreg(struct msk_if_softc *, int, int); 272 static int msk_phy_writereg(struct msk_if_softc *, int, int, int); 273 static int msk_miibus_readreg(device_t, int, int); 274 static int msk_miibus_writereg(device_t, int, int, int); 275 static void msk_miibus_statchg(device_t); 276 static void msk_link_task(void *, int); 277 278 static void msk_setmulti(struct msk_if_softc *); 279 static void msk_setvlan(struct msk_if_softc *, struct ifnet *); 280 static void msk_setpromisc(struct msk_if_softc *); 281 282 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 283 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS); 284 285 static device_method_t mskc_methods[] = { 286 /* Device interface */ 287 DEVMETHOD(device_probe, mskc_probe), 288 DEVMETHOD(device_attach, mskc_attach), 289 DEVMETHOD(device_detach, mskc_detach), 290 DEVMETHOD(device_suspend, mskc_suspend), 291 DEVMETHOD(device_resume, mskc_resume), 292 DEVMETHOD(device_shutdown, mskc_shutdown), 293 294 /* bus interface */ 295 DEVMETHOD(bus_print_child, bus_generic_print_child), 296 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 297 298 { NULL, NULL } 299 }; 300 301 static driver_t mskc_driver = { 302 "mskc", 303 mskc_methods, 304 sizeof(struct msk_softc) 305 }; 306 307 static devclass_t mskc_devclass; 308 309 static device_method_t msk_methods[] = { 310 /* Device interface */ 311 DEVMETHOD(device_probe, msk_probe), 312 DEVMETHOD(device_attach, msk_attach), 313 DEVMETHOD(device_detach, msk_detach), 314 DEVMETHOD(device_shutdown, bus_generic_shutdown), 315 316 /* bus interface */ 317 DEVMETHOD(bus_print_child, bus_generic_print_child), 318 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 319 320 /* MII interface */ 321 DEVMETHOD(miibus_readreg, msk_miibus_readreg), 322 DEVMETHOD(miibus_writereg, msk_miibus_writereg), 323 DEVMETHOD(miibus_statchg, msk_miibus_statchg), 324 325 { NULL, NULL } 326 }; 327 328 static driver_t msk_driver = { 329 "msk", 330 msk_methods, 331 sizeof(struct msk_if_softc) 332 }; 333 334 static devclass_t msk_devclass; 335 336 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0); 337 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0); 338 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0); 339 340 static struct resource_spec msk_res_spec_io[] = { 341 { SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE }, 342 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 343 { -1, 0, 0 } 344 }; 345 346 static struct resource_spec msk_res_spec_mem[] = { 347 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 348 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 349 { -1, 0, 0 } 350 }; 351 352 static int 353 msk_miibus_readreg(device_t dev, int phy, int reg) 354 { 355 struct msk_if_softc *sc_if; 356 357 sc_if = device_get_softc(dev); 358 359 return (msk_phy_readreg(sc_if, phy, reg)); 360 } 361 362 static int 363 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg) 364 { 365 struct msk_softc *sc; 366 int i, val; 367 368 sc = sc_if->msk_softc; 369 370 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL, 371 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); 372 373 for (i = 0; i < MSK_TIMEOUT; i++) { 374 DELAY(1); 375 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL); 376 if ((val & GM_SMI_CT_RD_VAL) != 0) { 377 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA); 378 break; 379 } 380 } 381 382 if (i == MSK_TIMEOUT) { 383 if_printf(sc_if->msk_ifp, "phy failed to come ready\n"); 384 val = 0; 385 } 386 387 return (val); 388 } 389 390 static int 391 msk_miibus_writereg(device_t dev, int phy, int reg, int val) 392 { 393 struct msk_if_softc *sc_if; 394 395 sc_if = device_get_softc(dev); 396 397 return (msk_phy_writereg(sc_if, phy, reg, val)); 398 } 399 400 static int 401 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val) 402 { 403 struct msk_softc *sc; 404 int i; 405 406 sc = sc_if->msk_softc; 407 408 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val); 409 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL, 410 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg)); 411 for (i = 0; i < MSK_TIMEOUT; i++) { 412 DELAY(1); 413 if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) & 414 GM_SMI_CT_BUSY) == 0) 415 break; 416 } 417 if (i == MSK_TIMEOUT) 418 if_printf(sc_if->msk_ifp, "phy write timeout\n"); 419 420 return (0); 421 } 422 423 static void 424 msk_miibus_statchg(device_t dev) 425 { 426 struct msk_if_softc *sc_if; 427 428 sc_if = device_get_softc(dev); 429 taskqueue_enqueue(taskqueue_swi, &sc_if->msk_link_task); 430 } 431 432 static void 433 msk_link_task(void *arg, int pending) 434 { 435 struct msk_softc *sc; 436 struct msk_if_softc *sc_if; 437 struct mii_data *mii; 438 struct ifnet *ifp; 439 uint32_t gmac, ane; 440 441 sc_if = (struct msk_if_softc *)arg; 442 sc = sc_if->msk_softc; 443 444 MSK_IF_LOCK(sc_if); 445 446 mii = device_get_softc(sc_if->msk_miibus); 447 ifp = sc_if->msk_ifp; 448 if (mii == NULL || ifp == NULL) { 449 MSK_IF_UNLOCK(sc_if); 450 return; 451 } 452 453 if (mii->mii_media_status & IFM_ACTIVE) { 454 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) 455 sc_if->msk_link = 1; 456 } else 457 sc_if->msk_link = 0; 458 459 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 460 ane = 0; 461 if (sc_if->msk_link != 0) { 462 /* Enable Tx FIFO Underrun. */ 463 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 464 GM_IS_TX_FF_UR | GM_IS_RX_FF_OR); 465 switch (IFM_SUBTYPE(mii->mii_media_active)) { 466 case IFM_AUTO: 467 ane = 1; 468 break; 469 case IFM_1000_SX: 470 case IFM_1000_T: 471 gmac &= ~GM_GPCR_SPEED_100; 472 gmac |= GM_GPCR_SPEED_1000; 473 break; 474 case IFM_100_TX: 475 gmac |= GM_GPCR_SPEED_100; 476 gmac &= ~GM_GPCR_SPEED_1000; 477 break; 478 case IFM_10_T: 479 gmac &= ~(GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000); 480 break; 481 } 482 483 if (ane == 0) 484 gmac |= GM_GPCR_AU_ALL_DIS; 485 else 486 gmac &= ~GM_GPCR_AU_ALL_DIS; 487 if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0) 488 gmac |= GM_GPCR_DUP_FULL; 489 /* Enable Rx flow control. */ 490 if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) != 0) 491 gmac &= ~GM_GPCR_FC_RX_DIS; 492 /* Enable Tx flow control. */ 493 if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) != 0) 494 gmac &= ~GM_GPCR_FC_TX_DIS; 495 gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; 496 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac); 497 /* Read again to ensure writing. */ 498 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 499 500 gmac = GMC_PAUSE_ON; 501 if (((mii->mii_media_active & IFM_GMASK) & 502 (IFM_FLAG0 | IFM_FLAG1)) == 0) 503 gmac = GMC_PAUSE_OFF; 504 /* Diable pause for 10/100 Mbps in half-duplex mode. */ 505 if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) && 506 (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX || 507 IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T)) 508 gmac = GMC_PAUSE_OFF; 509 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac); 510 511 /* Enable PHY interrupt for FIFO underrun/overflow. */ 512 if (sc->msk_marvell_phy) 513 msk_phy_writereg(sc_if, PHY_ADDR_MARV, 514 PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR); 515 } else { 516 /* 517 * Link state changed to down. 518 * Disable PHY interrupts. 519 */ 520 if (sc->msk_marvell_phy) 521 msk_phy_writereg(sc_if, PHY_ADDR_MARV, 522 PHY_MARV_INT_MASK, 0); 523 /* Disable Rx/Tx MAC. */ 524 gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 525 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac); 526 /* Read again to ensure writing. */ 527 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 528 } 529 530 MSK_IF_UNLOCK(sc_if); 531 } 532 533 static void 534 msk_setmulti(struct msk_if_softc *sc_if) 535 { 536 struct msk_softc *sc; 537 struct ifnet *ifp; 538 struct ifmultiaddr *ifma; 539 uint32_t mchash[2]; 540 uint32_t crc; 541 uint16_t mode; 542 543 sc = sc_if->msk_softc; 544 545 MSK_IF_LOCK_ASSERT(sc_if); 546 547 ifp = sc_if->msk_ifp; 548 549 bzero(mchash, sizeof(mchash)); 550 mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL); 551 mode |= GM_RXCR_UCF_ENA; 552 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 553 if ((ifp->if_flags & IFF_PROMISC) != 0) 554 mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 555 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) { 556 mchash[0] = 0xffff; 557 mchash[1] = 0xffff; 558 } 559 } else { 560 IF_ADDR_LOCK(ifp); 561 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 562 if (ifma->ifma_addr->sa_family != AF_LINK) 563 continue; 564 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 565 ifma->ifma_addr), ETHER_ADDR_LEN); 566 /* Just want the 6 least significant bits. */ 567 crc &= 0x3f; 568 /* Set the corresponding bit in the hash table. */ 569 mchash[crc >> 5] |= 1 << (crc & 0x1f); 570 } 571 IF_ADDR_UNLOCK(ifp); 572 mode |= GM_RXCR_MCF_ENA; 573 } 574 575 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1, 576 mchash[0] & 0xffff); 577 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2, 578 (mchash[0] >> 16) & 0xffff); 579 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3, 580 mchash[1] & 0xffff); 581 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4, 582 (mchash[1] >> 16) & 0xffff); 583 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode); 584 } 585 586 static void 587 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp) 588 { 589 struct msk_softc *sc; 590 591 sc = sc_if->msk_softc; 592 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 593 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 594 RX_VLAN_STRIP_ON); 595 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 596 TX_VLAN_TAG_ON); 597 } else { 598 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 599 RX_VLAN_STRIP_OFF); 600 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 601 TX_VLAN_TAG_OFF); 602 } 603 } 604 605 static void 606 msk_setpromisc(struct msk_if_softc *sc_if) 607 { 608 struct msk_softc *sc; 609 struct ifnet *ifp; 610 uint16_t mode; 611 612 MSK_IF_LOCK_ASSERT(sc_if); 613 614 sc = sc_if->msk_softc; 615 ifp = sc_if->msk_ifp; 616 617 mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL); 618 if (ifp->if_flags & IFF_PROMISC) 619 mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 620 else 621 mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 622 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode); 623 } 624 625 static int 626 msk_init_rx_ring(struct msk_if_softc *sc_if) 627 { 628 struct msk_ring_data *rd; 629 struct msk_rxdesc *rxd; 630 int i, prod; 631 632 MSK_IF_LOCK_ASSERT(sc_if); 633 634 sc_if->msk_cdata.msk_rx_cons = 0; 635 sc_if->msk_cdata.msk_rx_prod = 0; 636 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM; 637 638 rd = &sc_if->msk_rdata; 639 bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT); 640 prod = sc_if->msk_cdata.msk_rx_prod; 641 for (i = 0; i < MSK_RX_RING_CNT; i++) { 642 rxd = &sc_if->msk_cdata.msk_rxdesc[prod]; 643 rxd->rx_m = NULL; 644 rxd->rx_le = &rd->msk_rx_ring[prod]; 645 if (msk_newbuf(sc_if, prod) != 0) 646 return (ENOBUFS); 647 MSK_INC(prod, MSK_RX_RING_CNT); 648 } 649 650 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag, 651 sc_if->msk_cdata.msk_rx_ring_map, 652 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 653 654 /* Update prefetch unit. */ 655 sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1; 656 CSR_WRITE_2(sc_if->msk_softc, 657 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG), 658 sc_if->msk_cdata.msk_rx_prod); 659 660 return (0); 661 } 662 663 static int 664 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if) 665 { 666 struct msk_ring_data *rd; 667 struct msk_rxdesc *rxd; 668 int i, prod; 669 670 MSK_IF_LOCK_ASSERT(sc_if); 671 672 sc_if->msk_cdata.msk_rx_cons = 0; 673 sc_if->msk_cdata.msk_rx_prod = 0; 674 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM; 675 676 rd = &sc_if->msk_rdata; 677 bzero(rd->msk_jumbo_rx_ring, 678 sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT); 679 prod = sc_if->msk_cdata.msk_rx_prod; 680 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 681 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod]; 682 rxd->rx_m = NULL; 683 rxd->rx_le = &rd->msk_jumbo_rx_ring[prod]; 684 if (msk_jumbo_newbuf(sc_if, prod) != 0) 685 return (ENOBUFS); 686 MSK_INC(prod, MSK_JUMBO_RX_RING_CNT); 687 } 688 689 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 690 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 691 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 692 693 sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1; 694 CSR_WRITE_2(sc_if->msk_softc, 695 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG), 696 sc_if->msk_cdata.msk_rx_prod); 697 698 return (0); 699 } 700 701 static void 702 msk_init_tx_ring(struct msk_if_softc *sc_if) 703 { 704 struct msk_ring_data *rd; 705 struct msk_txdesc *txd; 706 int i; 707 708 sc_if->msk_cdata.msk_tso_mtu = 0; 709 sc_if->msk_cdata.msk_tx_prod = 0; 710 sc_if->msk_cdata.msk_tx_cons = 0; 711 sc_if->msk_cdata.msk_tx_cnt = 0; 712 713 rd = &sc_if->msk_rdata; 714 bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT); 715 for (i = 0; i < MSK_TX_RING_CNT; i++) { 716 txd = &sc_if->msk_cdata.msk_txdesc[i]; 717 txd->tx_m = NULL; 718 txd->tx_le = &rd->msk_tx_ring[i]; 719 } 720 721 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, 722 sc_if->msk_cdata.msk_tx_ring_map, 723 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 724 } 725 726 static __inline void 727 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx) 728 { 729 struct msk_rx_desc *rx_le; 730 struct msk_rxdesc *rxd; 731 struct mbuf *m; 732 733 rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; 734 m = rxd->rx_m; 735 rx_le = rxd->rx_le; 736 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER); 737 } 738 739 static __inline void 740 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int idx) 741 { 742 struct msk_rx_desc *rx_le; 743 struct msk_rxdesc *rxd; 744 struct mbuf *m; 745 746 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; 747 m = rxd->rx_m; 748 rx_le = rxd->rx_le; 749 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER); 750 } 751 752 static int 753 msk_newbuf(struct msk_if_softc *sc_if, int idx) 754 { 755 struct msk_rx_desc *rx_le; 756 struct msk_rxdesc *rxd; 757 struct mbuf *m; 758 bus_dma_segment_t segs[1]; 759 bus_dmamap_t map; 760 int nsegs; 761 762 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 763 if (m == NULL) 764 return (ENOBUFS); 765 766 m->m_len = m->m_pkthdr.len = MCLBYTES; 767 m_adj(m, ETHER_ALIGN); 768 769 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag, 770 sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs, 771 BUS_DMA_NOWAIT) != 0) { 772 m_freem(m); 773 return (ENOBUFS); 774 } 775 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 776 777 rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; 778 if (rxd->rx_m != NULL) { 779 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap, 780 BUS_DMASYNC_POSTREAD); 781 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap); 782 } 783 map = rxd->rx_dmamap; 784 rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap; 785 sc_if->msk_cdata.msk_rx_sparemap = map; 786 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap, 787 BUS_DMASYNC_PREREAD); 788 rxd->rx_m = m; 789 rx_le = rxd->rx_le; 790 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr)); 791 rx_le->msk_control = 792 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER); 793 794 return (0); 795 } 796 797 static int 798 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx) 799 { 800 struct msk_rx_desc *rx_le; 801 struct msk_rxdesc *rxd; 802 struct mbuf *m; 803 bus_dma_segment_t segs[1]; 804 bus_dmamap_t map; 805 int nsegs; 806 void *buf; 807 808 MGETHDR(m, M_DONTWAIT, MT_DATA); 809 if (m == NULL) 810 return (ENOBUFS); 811 buf = msk_jalloc(sc_if); 812 if (buf == NULL) { 813 m_freem(m); 814 return (ENOBUFS); 815 } 816 /* Attach the buffer to the mbuf. */ 817 MEXTADD(m, buf, MSK_JLEN, msk_jfree, (struct msk_if_softc *)sc_if, 0, 818 EXT_NET_DRV); 819 if ((m->m_flags & M_EXT) == 0) { 820 m_freem(m); 821 return (ENOBUFS); 822 } 823 m->m_pkthdr.len = m->m_len = MSK_JLEN; 824 m_adj(m, ETHER_ALIGN); 825 826 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag, 827 sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs, 828 BUS_DMA_NOWAIT) != 0) { 829 m_freem(m); 830 return (ENOBUFS); 831 } 832 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 833 834 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; 835 if (rxd->rx_m != NULL) { 836 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, 837 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 838 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag, 839 rxd->rx_dmamap); 840 } 841 map = rxd->rx_dmamap; 842 rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap; 843 sc_if->msk_cdata.msk_jumbo_rx_sparemap = map; 844 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap, 845 BUS_DMASYNC_PREREAD); 846 rxd->rx_m = m; 847 rx_le = rxd->rx_le; 848 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr)); 849 rx_le->msk_control = 850 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER); 851 852 return (0); 853 } 854 855 /* 856 * Set media options. 857 */ 858 static int 859 msk_mediachange(struct ifnet *ifp) 860 { 861 struct msk_if_softc *sc_if; 862 struct mii_data *mii; 863 864 sc_if = ifp->if_softc; 865 866 MSK_IF_LOCK(sc_if); 867 mii = device_get_softc(sc_if->msk_miibus); 868 mii_mediachg(mii); 869 MSK_IF_UNLOCK(sc_if); 870 871 return (0); 872 } 873 874 /* 875 * Report current media status. 876 */ 877 static void 878 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 879 { 880 struct msk_if_softc *sc_if; 881 struct mii_data *mii; 882 883 sc_if = ifp->if_softc; 884 MSK_IF_LOCK(sc_if); 885 mii = device_get_softc(sc_if->msk_miibus); 886 887 mii_pollstat(mii); 888 MSK_IF_UNLOCK(sc_if); 889 ifmr->ifm_active = mii->mii_media_active; 890 ifmr->ifm_status = mii->mii_media_status; 891 } 892 893 static int 894 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 895 { 896 struct msk_if_softc *sc_if; 897 struct ifreq *ifr; 898 struct mii_data *mii; 899 int error, mask; 900 901 sc_if = ifp->if_softc; 902 ifr = (struct ifreq *)data; 903 error = 0; 904 905 switch(command) { 906 case SIOCSIFMTU: 907 if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) { 908 error = EINVAL; 909 break; 910 } 911 if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U && 912 ifr->ifr_mtu > MSK_MAX_FRAMELEN) { 913 error = EINVAL; 914 break; 915 } 916 MSK_IF_LOCK(sc_if); 917 ifp->if_mtu = ifr->ifr_mtu; 918 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 919 msk_init_locked(sc_if); 920 MSK_IF_UNLOCK(sc_if); 921 break; 922 case SIOCSIFFLAGS: 923 MSK_IF_LOCK(sc_if); 924 if ((ifp->if_flags & IFF_UP) != 0) { 925 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 926 if (((ifp->if_flags ^ sc_if->msk_if_flags) 927 & IFF_PROMISC) != 0) { 928 msk_setpromisc(sc_if); 929 msk_setmulti(sc_if); 930 } 931 } else { 932 if (sc_if->msk_detach == 0) 933 msk_init_locked(sc_if); 934 } 935 } else { 936 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 937 msk_stop(sc_if); 938 } 939 sc_if->msk_if_flags = ifp->if_flags; 940 MSK_IF_UNLOCK(sc_if); 941 break; 942 case SIOCADDMULTI: 943 case SIOCDELMULTI: 944 MSK_IF_LOCK(sc_if); 945 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 946 msk_setmulti(sc_if); 947 MSK_IF_UNLOCK(sc_if); 948 break; 949 case SIOCGIFMEDIA: 950 case SIOCSIFMEDIA: 951 mii = device_get_softc(sc_if->msk_miibus); 952 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 953 break; 954 case SIOCSIFCAP: 955 MSK_IF_LOCK(sc_if); 956 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 957 if ((mask & IFCAP_TXCSUM) != 0) { 958 ifp->if_capenable ^= IFCAP_TXCSUM; 959 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 && 960 (IFCAP_TXCSUM & ifp->if_capabilities) != 0) 961 ifp->if_hwassist |= MSK_CSUM_FEATURES; 962 else 963 ifp->if_hwassist &= ~MSK_CSUM_FEATURES; 964 } 965 if ((mask & IFCAP_VLAN_HWTAGGING) != 0) { 966 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 967 msk_setvlan(sc_if, ifp); 968 } 969 970 if ((mask & IFCAP_TSO4) != 0) { 971 ifp->if_capenable ^= IFCAP_TSO4; 972 if ((IFCAP_TSO4 & ifp->if_capenable) != 0 && 973 (IFCAP_TSO4 & ifp->if_capabilities) != 0) 974 ifp->if_hwassist |= CSUM_TSO; 975 else 976 ifp->if_hwassist &= ~CSUM_TSO; 977 } 978 VLAN_CAPABILITIES(ifp); 979 MSK_IF_UNLOCK(sc_if); 980 break; 981 default: 982 error = ether_ioctl(ifp, command, data); 983 break; 984 } 985 986 return (error); 987 } 988 989 static int 990 mskc_probe(device_t dev) 991 { 992 struct msk_product *mp; 993 uint16_t vendor, devid; 994 int i; 995 996 vendor = pci_get_vendor(dev); 997 devid = pci_get_device(dev); 998 mp = msk_products; 999 for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]); 1000 i++, mp++) { 1001 if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) { 1002 device_set_desc(dev, mp->msk_name); 1003 return (BUS_PROBE_DEFAULT); 1004 } 1005 } 1006 1007 return (ENXIO); 1008 } 1009 1010 static int 1011 mskc_setup_rambuffer(struct msk_softc *sc) 1012 { 1013 int totqsize, minqsize; 1014 int avail, next; 1015 int i; 1016 uint8_t val; 1017 1018 /* Get adapter SRAM size. */ 1019 val = CSR_READ_1(sc, B2_E_0); 1020 sc->msk_ramsize = (val == 0) ? 128 : val * 4; 1021 if (sc->msk_hw_id == CHIP_ID_YUKON_FE) 1022 sc->msk_ramsize = 4 * 4; 1023 if (bootverbose) 1024 device_printf(sc->msk_dev, 1025 "RAM buffer size : %dKB\n", sc->msk_ramsize); 1026 1027 totqsize = sc->msk_ramsize * sc->msk_num_port; 1028 minqsize = MSK_MIN_RXQ_SIZE + MSK_MIN_TXQ_SIZE; 1029 if (minqsize > sc->msk_ramsize) 1030 minqsize = sc->msk_ramsize; 1031 1032 if (minqsize * sc->msk_num_port > totqsize) { 1033 device_printf(sc->msk_dev, 1034 "not enough RAM buffer memory : %d/%dKB\n", 1035 minqsize * sc->msk_num_port, totqsize); 1036 return (ENOSPC); 1037 } 1038 1039 avail = totqsize; 1040 if (sc->msk_num_port > 1) { 1041 /* 1042 * Divide up the memory evenly so that everyone gets a 1043 * fair share for dual port adapters. 1044 */ 1045 avail = sc->msk_ramsize; 1046 } 1047 1048 /* Take away the minimum memory for active queues. */ 1049 avail -= minqsize; 1050 /* Rx queue gets the minimum + 80% of the rest. */ 1051 sc->msk_rxqsize = 1052 (avail * MSK_RAM_QUOTA_RX) / 100 + MSK_MIN_RXQ_SIZE; 1053 avail -= (sc->msk_rxqsize - MSK_MIN_RXQ_SIZE); 1054 sc->msk_txqsize = avail + MSK_MIN_TXQ_SIZE; 1055 1056 for (i = 0, next = 0; i < sc->msk_num_port; i++) { 1057 sc->msk_rxqstart[i] = next; 1058 sc->msk_rxqend[i] = next + (sc->msk_rxqsize * 1024) - 1; 1059 next = sc->msk_rxqend[i] + 1; 1060 sc->msk_txqstart[i] = next; 1061 sc->msk_txqend[i] = next + (sc->msk_txqsize * 1024) - 1; 1062 next = sc->msk_txqend[i] + 1; 1063 if (bootverbose) { 1064 device_printf(sc->msk_dev, 1065 "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i, 1066 sc->msk_rxqsize, sc->msk_rxqstart[i], 1067 sc->msk_rxqend[i]); 1068 device_printf(sc->msk_dev, 1069 "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i, 1070 sc->msk_txqsize, sc->msk_txqstart[i], 1071 sc->msk_txqend[i]); 1072 } 1073 } 1074 1075 return (0); 1076 } 1077 1078 static void 1079 msk_phy_power(struct msk_softc *sc, int mode) 1080 { 1081 uint32_t val; 1082 int i; 1083 1084 switch (mode) { 1085 case MSK_PHY_POWERUP: 1086 /* Switch power to VCC (WA for VAUX problem). */ 1087 CSR_WRITE_1(sc, B0_POWER_CTRL, 1088 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); 1089 /* Disable Core Clock Division, set Clock Select to 0. */ 1090 CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS); 1091 1092 val = 0; 1093 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1094 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1095 /* Enable bits are inverted. */ 1096 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | 1097 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | 1098 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS; 1099 } 1100 /* 1101 * Enable PCI & Core Clock, enable clock gating for both Links. 1102 */ 1103 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val); 1104 1105 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4); 1106 val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD); 1107 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1108 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1109 /* Deassert Low Power for 1st PHY. */ 1110 val |= PCI_Y2_PHY1_COMA; 1111 if (sc->msk_num_port > 1) 1112 val |= PCI_Y2_PHY2_COMA; 1113 } else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) { 1114 uint32_t our; 1115 1116 CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON); 1117 1118 /* Enable all clocks. */ 1119 pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4); 1120 our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4); 1121 our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN| 1122 PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST); 1123 /* Set all bits to 0 except bits 15..12. */ 1124 pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4); 1125 /* Set to default value. */ 1126 pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4); 1127 } 1128 /* Release PHY from PowerDown/COMA mode. */ 1129 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4); 1130 for (i = 0; i < sc->msk_num_port; i++) { 1131 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL), 1132 GMLC_RST_SET); 1133 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL), 1134 GMLC_RST_CLR); 1135 } 1136 break; 1137 case MSK_PHY_POWERDOWN: 1138 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4); 1139 val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD; 1140 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1141 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1142 val &= ~PCI_Y2_PHY1_COMA; 1143 if (sc->msk_num_port > 1) 1144 val &= ~PCI_Y2_PHY2_COMA; 1145 } 1146 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4); 1147 1148 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | 1149 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | 1150 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS; 1151 if (sc->msk_hw_id == CHIP_ID_YUKON_XL && 1152 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { 1153 /* Enable bits are inverted. */ 1154 val = 0; 1155 } 1156 /* 1157 * Disable PCI & Core Clock, disable clock gating for 1158 * both Links. 1159 */ 1160 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val); 1161 CSR_WRITE_1(sc, B0_POWER_CTRL, 1162 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF); 1163 break; 1164 default: 1165 break; 1166 } 1167 } 1168 1169 static void 1170 mskc_reset(struct msk_softc *sc) 1171 { 1172 bus_addr_t addr; 1173 uint16_t status; 1174 uint32_t val; 1175 int i; 1176 1177 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); 1178 1179 /* Disable ASF. */ 1180 if (sc->msk_hw_id < CHIP_ID_YUKON_XL) { 1181 CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET); 1182 CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE); 1183 } 1184 /* 1185 * Since we disabled ASF, S/W reset is required for Power Management. 1186 */ 1187 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 1188 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); 1189 1190 /* Clear all error bits in the PCI status register. */ 1191 status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2); 1192 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 1193 1194 pci_write_config(sc->msk_dev, PCIR_STATUS, status | 1195 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT | 1196 PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2); 1197 CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR); 1198 1199 switch (sc->msk_bustype) { 1200 case MSK_PEX_BUS: 1201 /* Clear all PEX errors. */ 1202 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff); 1203 val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT); 1204 if ((val & PEX_RX_OV) != 0) { 1205 sc->msk_intrmask &= ~Y2_IS_HW_ERR; 1206 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP; 1207 } 1208 break; 1209 case MSK_PCI_BUS: 1210 case MSK_PCIX_BUS: 1211 /* Set Cache Line Size to 2(8bytes) if configured to 0. */ 1212 val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1); 1213 if (val == 0) 1214 pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1); 1215 if (sc->msk_bustype == MSK_PCIX_BUS) { 1216 /* Set Cache Line Size opt. */ 1217 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4); 1218 val |= PCI_CLS_OPT; 1219 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4); 1220 } 1221 break; 1222 } 1223 /* Set PHY power state. */ 1224 msk_phy_power(sc, MSK_PHY_POWERUP); 1225 1226 /* Reset GPHY/GMAC Control */ 1227 for (i = 0; i < sc->msk_num_port; i++) { 1228 /* GPHY Control reset. */ 1229 CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET); 1230 CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR); 1231 /* GMAC Control reset. */ 1232 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET); 1233 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR); 1234 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF); 1235 } 1236 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 1237 1238 /* LED On. */ 1239 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON); 1240 1241 /* Clear TWSI IRQ. */ 1242 CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ); 1243 1244 /* Turn off hardware timer. */ 1245 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP); 1246 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ); 1247 1248 /* Turn off descriptor polling. */ 1249 CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP); 1250 1251 /* Turn off time stamps. */ 1252 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP); 1253 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 1254 1255 /* Configure timeout values. */ 1256 for (i = 0; i < sc->msk_num_port; i++) { 1257 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET); 1258 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR); 1259 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1), 1260 MSK_RI_TO_53); 1261 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1), 1262 MSK_RI_TO_53); 1263 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1), 1264 MSK_RI_TO_53); 1265 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1), 1266 MSK_RI_TO_53); 1267 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1), 1268 MSK_RI_TO_53); 1269 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1), 1270 MSK_RI_TO_53); 1271 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2), 1272 MSK_RI_TO_53); 1273 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2), 1274 MSK_RI_TO_53); 1275 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2), 1276 MSK_RI_TO_53); 1277 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2), 1278 MSK_RI_TO_53); 1279 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2), 1280 MSK_RI_TO_53); 1281 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2), 1282 MSK_RI_TO_53); 1283 } 1284 1285 /* Disable all interrupts. */ 1286 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 1287 CSR_READ_4(sc, B0_HWE_IMSK); 1288 CSR_WRITE_4(sc, B0_IMSK, 0); 1289 CSR_READ_4(sc, B0_IMSK); 1290 1291 /* 1292 * On dual port PCI-X card, there is an problem where status 1293 * can be received out of order due to split transactions. 1294 */ 1295 if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) { 1296 int pcix; 1297 uint16_t pcix_cmd; 1298 1299 if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &pcix) == 0) { 1300 pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2); 1301 /* Clear Max Outstanding Split Transactions. */ 1302 pcix_cmd &= ~0x70; 1303 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 1304 pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2); 1305 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 1306 } 1307 } 1308 if (sc->msk_bustype == MSK_PEX_BUS) { 1309 uint16_t v, width; 1310 1311 v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2); 1312 /* Change Max. Read Request Size to 4096 bytes. */ 1313 v &= ~PEX_DC_MAX_RRS_MSK; 1314 v |= PEX_DC_MAX_RD_RQ_SIZE(5); 1315 pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2); 1316 width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2); 1317 width = (width & PEX_LS_LINK_WI_MSK) >> 4; 1318 v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2); 1319 v = (v & PEX_LS_LINK_WI_MSK) >> 4; 1320 if (v != width) 1321 device_printf(sc->msk_dev, 1322 "negotiated width of link(x%d) != " 1323 "max. width of link(x%d)\n", width, v); 1324 } 1325 1326 /* Clear status list. */ 1327 bzero(sc->msk_stat_ring, 1328 sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT); 1329 sc->msk_stat_cons = 0; 1330 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map, 1331 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1332 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET); 1333 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR); 1334 /* Set the status list base address. */ 1335 addr = sc->msk_stat_ring_paddr; 1336 CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr)); 1337 CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr)); 1338 /* Set the status list last index. */ 1339 CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1); 1340 if (HW_FEATURE(sc, HWF_WA_DEV_43_418)) { 1341 /* WA for dev. #4.3 */ 1342 CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK); 1343 /* WA for dev. #4.18 */ 1344 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21); 1345 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07); 1346 } else { 1347 CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a); 1348 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10); 1349 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 1350 HW_FEATURE(sc, HWF_WA_DEV_4109) ? 0x10 : 0x04); 1351 CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190); 1352 } 1353 /* 1354 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI. 1355 */ 1356 CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000)); 1357 1358 /* Enable status unit. */ 1359 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON); 1360 1361 CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START); 1362 CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START); 1363 CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START); 1364 } 1365 1366 static int 1367 msk_probe(device_t dev) 1368 { 1369 struct msk_softc *sc; 1370 char desc[100]; 1371 1372 sc = device_get_softc(device_get_parent(dev)); 1373 /* 1374 * Not much to do here. We always know there will be 1375 * at least one GMAC present, and if there are two, 1376 * mskc_attach() will create a second device instance 1377 * for us. 1378 */ 1379 snprintf(desc, sizeof(desc), 1380 "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x", 1381 model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id, 1382 sc->msk_hw_rev); 1383 device_set_desc_copy(dev, desc); 1384 1385 return (BUS_PROBE_DEFAULT); 1386 } 1387 1388 static int 1389 msk_attach(device_t dev) 1390 { 1391 struct msk_softc *sc; 1392 struct msk_if_softc *sc_if; 1393 struct ifnet *ifp; 1394 int i, port, error; 1395 uint8_t eaddr[6]; 1396 1397 if (dev == NULL) 1398 return (EINVAL); 1399 1400 error = 0; 1401 sc_if = device_get_softc(dev); 1402 sc = device_get_softc(device_get_parent(dev)); 1403 port = *(int *)device_get_ivars(dev); 1404 1405 sc_if->msk_if_dev = dev; 1406 sc_if->msk_port = port; 1407 sc_if->msk_softc = sc; 1408 sc->msk_if[port] = sc_if; 1409 /* Setup Tx/Rx queue register offsets. */ 1410 if (port == MSK_PORT_A) { 1411 sc_if->msk_txq = Q_XA1; 1412 sc_if->msk_txsq = Q_XS1; 1413 sc_if->msk_rxq = Q_R1; 1414 } else { 1415 sc_if->msk_txq = Q_XA2; 1416 sc_if->msk_txsq = Q_XS2; 1417 sc_if->msk_rxq = Q_R2; 1418 } 1419 1420 callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0); 1421 callout_init_mtx(&sc_if->msk_watchdog_ch, &sc_if->msk_softc->msk_mtx, 1422 0); 1423 TASK_INIT(&sc_if->msk_link_task, 0, msk_link_task, sc_if); 1424 1425 if ((error = msk_txrx_dma_alloc(sc_if) != 0)) 1426 goto fail; 1427 1428 ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER); 1429 if (ifp == NULL) { 1430 device_printf(sc_if->msk_if_dev, "can not if_alloc()\n"); 1431 error = ENOSPC; 1432 goto fail; 1433 } 1434 ifp->if_softc = sc_if; 1435 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1436 ifp->if_mtu = ETHERMTU; 1437 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1438 /* 1439 * IFCAP_RXCSUM capability is intentionally disabled as the hardware 1440 * has serious bug in Rx checksum offload for all Yukon II family 1441 * hardware. It seems there is a workaround to make it work somtimes. 1442 * However, the workaround also have to check OP code sequences to 1443 * verify whether the OP code is correct. Sometimes it should compute 1444 * IP/TCP/UDP checksum in driver in order to verify correctness of 1445 * checksum computed by hardware. If you have to compute checksum 1446 * with software to verify the hardware's checksum why have hardware 1447 * compute the checksum? I think there is no reason to spend time to 1448 * make Rx checksum offload work on Yukon II hardware. 1449 */ 1450 ifp->if_capabilities = IFCAP_TXCSUM; 1451 ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO; 1452 if (sc->msk_hw_id != CHIP_ID_YUKON_EC_U) { 1453 /* It seems Yukon EC Ultra doesn't support TSO. */ 1454 ifp->if_capabilities |= IFCAP_TSO4; 1455 ifp->if_hwassist |= CSUM_TSO; 1456 } 1457 ifp->if_capenable = ifp->if_capabilities; 1458 ifp->if_ioctl = msk_ioctl; 1459 ifp->if_start = msk_start; 1460 ifp->if_timer = 0; 1461 ifp->if_watchdog = NULL; 1462 ifp->if_init = msk_init; 1463 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1); 1464 ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1; 1465 IFQ_SET_READY(&ifp->if_snd); 1466 1467 TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp); 1468 1469 /* 1470 * Get station address for this interface. Note that 1471 * dual port cards actually come with three station 1472 * addresses: one for each port, plus an extra. The 1473 * extra one is used by the SysKonnect driver software 1474 * as a 'virtual' station address for when both ports 1475 * are operating in failover mode. Currently we don't 1476 * use this extra address. 1477 */ 1478 MSK_IF_LOCK(sc_if); 1479 for (i = 0; i < ETHER_ADDR_LEN; i++) 1480 eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i); 1481 1482 /* 1483 * Call MI attach routine. Can't hold locks when calling into ether_*. 1484 */ 1485 MSK_IF_UNLOCK(sc_if); 1486 ether_ifattach(ifp, eaddr); 1487 MSK_IF_LOCK(sc_if); 1488 1489 /* VLAN capability setup */ 1490 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING; 1491 if (ifp->if_capabilities & IFCAP_HWCSUM) 1492 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 1493 ifp->if_capenable = ifp->if_capabilities; 1494 1495 /* 1496 * Tell the upper layer(s) we support long frames. 1497 * Must appear after the call to ether_ifattach() because 1498 * ether_ifattach() sets ifi_hdrlen to the default value. 1499 */ 1500 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 1501 1502 /* 1503 * Do miibus setup. 1504 */ 1505 MSK_IF_UNLOCK(sc_if); 1506 error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange, 1507 msk_mediastatus); 1508 if (error != 0) { 1509 device_printf(sc_if->msk_if_dev, "no PHY found!\n"); 1510 ether_ifdetach(ifp); 1511 error = ENXIO; 1512 goto fail; 1513 } 1514 /* Check whether PHY Id is MARVELL. */ 1515 if (msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_ID0) 1516 == PHY_MARV_ID0_VAL) 1517 sc->msk_marvell_phy = 1; 1518 1519 fail: 1520 if (error != 0) { 1521 /* Access should be ok even though lock has been dropped */ 1522 sc->msk_if[port] = NULL; 1523 msk_detach(dev); 1524 } 1525 1526 return (error); 1527 } 1528 1529 /* 1530 * Attach the interface. Allocate softc structures, do ifmedia 1531 * setup and ethernet/BPF attach. 1532 */ 1533 static int 1534 mskc_attach(device_t dev) 1535 { 1536 struct msk_softc *sc; 1537 int error, msic, *port, reg; 1538 1539 sc = device_get_softc(dev); 1540 sc->msk_dev = dev; 1541 mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1542 MTX_DEF); 1543 1544 /* 1545 * Map control/status registers. 1546 */ 1547 pci_enable_busmaster(dev); 1548 1549 /* Allocate resources */ 1550 sc->msk_msi = 0; 1551 msic = pci_msi_count(dev); 1552 if (bootverbose) 1553 device_printf(dev, "MSI count : %d\n", msic); 1554 /* 1555 * Due to a unknown reason Yukon II reports it can handle two 1556 * messages even if it can handle just one message. Forcing 1557 * to allocate 1 message seems to work but reloading kernel 1558 * module after unloading the driver fails. Only use MSI when 1559 * it reports 1 message until we have better understanding 1560 * for the hardware. 1561 */ 1562 if (msic == 1 && msi_disable == 0 && pci_alloc_msi(dev, &msic) == 0) { 1563 sc->msk_msi = 1; 1564 /* Set rid to 1 for SYS_RES_IRQ to use MSI. */ 1565 msk_res_spec_io[1].rid = 1; 1566 msk_res_spec_mem[1].rid = 1; 1567 } 1568 #ifdef MSK_USEIOSPACE 1569 sc->msk_res_spec = msk_res_spec_io; 1570 #else 1571 sc->msk_res_spec = msk_res_spec_mem; 1572 #endif 1573 error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res); 1574 if (error) { 1575 if (sc->msk_res_spec == msk_res_spec_mem) 1576 sc->msk_res_spec = msk_res_spec_io; 1577 else 1578 sc->msk_res_spec = msk_res_spec_mem; 1579 error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res); 1580 if (error) { 1581 device_printf(dev, "couldn't allocate %s resources\n", 1582 sc->msk_res_spec == msk_res_spec_mem ? "memory" : 1583 "I/O"); 1584 mtx_destroy(&sc->msk_mtx); 1585 return (ENXIO); 1586 } 1587 } 1588 1589 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); 1590 sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID); 1591 sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f; 1592 /* Bail out if chip is not recognized. */ 1593 if (sc->msk_hw_id < CHIP_ID_YUKON_XL || 1594 sc->msk_hw_id > CHIP_ID_YUKON_FE) { 1595 device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n", 1596 sc->msk_hw_id, sc->msk_hw_rev); 1597 error = ENXIO; 1598 goto fail; 1599 } 1600 1601 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 1602 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1603 OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW, 1604 &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I", 1605 "max number of Rx events to process"); 1606 1607 sc->msk_process_limit = MSK_PROC_DEFAULT; 1608 error = resource_int_value(device_get_name(dev), device_get_unit(dev), 1609 "process_limit", &sc->msk_process_limit); 1610 if (error == 0) { 1611 if (sc->msk_process_limit < MSK_PROC_MIN || 1612 sc->msk_process_limit > MSK_PROC_MAX) { 1613 device_printf(dev, "process_limit value out of range; " 1614 "using default: %d\n", MSK_PROC_DEFAULT); 1615 sc->msk_process_limit = MSK_PROC_DEFAULT; 1616 } 1617 } 1618 1619 /* Soft reset. */ 1620 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 1621 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); 1622 sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP); 1623 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S') 1624 sc->msk_coppertype = 0; 1625 else 1626 sc->msk_coppertype = 1; 1627 /* Check number of MACs. */ 1628 sc->msk_num_port = 1; 1629 if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) == 1630 CFG_DUAL_MAC_MSK) { 1631 if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC)) 1632 sc->msk_num_port++; 1633 } 1634 1635 /* Check bus type. */ 1636 if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, ®) == 0) 1637 sc->msk_bustype = MSK_PEX_BUS; 1638 else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, ®) == 0) 1639 sc->msk_bustype = MSK_PCIX_BUS; 1640 else 1641 sc->msk_bustype = MSK_PCI_BUS; 1642 1643 /* Get H/W features(bugs). */ 1644 switch (sc->msk_hw_id) { 1645 case CHIP_ID_YUKON_EC: 1646 sc->msk_clock = 125; /* 125 Mhz */ 1647 if (sc->msk_hw_rev == CHIP_REV_YU_EC_A1) { 1648 sc->msk_hw_feature = 1649 HWF_WA_DEV_42 | HWF_WA_DEV_46 | HWF_WA_DEV_43_418 | 1650 HWF_WA_DEV_420 | HWF_WA_DEV_423 | 1651 HWF_WA_DEV_424 | HWF_WA_DEV_425 | HWF_WA_DEV_427 | 1652 HWF_WA_DEV_428 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 | 1653 HWF_WA_DEV_4152 | HWF_WA_DEV_4167; 1654 } else { 1655 /* A2/A3 */ 1656 sc->msk_hw_feature = 1657 HWF_WA_DEV_424 | HWF_WA_DEV_425 | HWF_WA_DEV_427 | 1658 HWF_WA_DEV_428 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 | 1659 HWF_WA_DEV_4152 | HWF_WA_DEV_4167; 1660 } 1661 break; 1662 case CHIP_ID_YUKON_EC_U: 1663 sc->msk_clock = 125; /* 125 Mhz */ 1664 if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) { 1665 sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_483 | 1666 HWF_WA_DEV_4109; 1667 } else if (sc->msk_hw_rev == CHIP_REV_YU_EC_A1) { 1668 uint16_t v; 1669 1670 sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_4109 | 1671 HWF_WA_DEV_4185; 1672 v = CSR_READ_2(sc, Q_ADDR(Q_XA1, Q_WM)); 1673 if (v == 0) 1674 sc->msk_hw_feature |= HWF_WA_DEV_4185CS | 1675 HWF_WA_DEV_4200; 1676 } 1677 break; 1678 case CHIP_ID_YUKON_FE: 1679 sc->msk_clock = 100; /* 100 Mhz */ 1680 sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_4109 | 1681 HWF_WA_DEV_4152 | HWF_WA_DEV_4167; 1682 break; 1683 case CHIP_ID_YUKON_XL: 1684 sc->msk_clock = 156; /* 156 Mhz */ 1685 switch (sc->msk_hw_rev) { 1686 case CHIP_REV_YU_XL_A0: 1687 sc->msk_hw_feature = 1688 HWF_WA_DEV_427 | HWF_WA_DEV_463 | HWF_WA_DEV_472 | 1689 HWF_WA_DEV_479 | HWF_WA_DEV_483 | HWF_WA_DEV_4115 | 1690 HWF_WA_DEV_4152 | HWF_WA_DEV_4167; 1691 break; 1692 case CHIP_REV_YU_XL_A1: 1693 sc->msk_hw_feature = 1694 HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 | 1695 HWF_WA_DEV_4115 | HWF_WA_DEV_4152 | HWF_WA_DEV_4167; 1696 break; 1697 case CHIP_REV_YU_XL_A2: 1698 sc->msk_hw_feature = 1699 HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 | 1700 HWF_WA_DEV_4115 | HWF_WA_DEV_4167; 1701 break; 1702 case CHIP_REV_YU_XL_A3: 1703 sc->msk_hw_feature = 1704 HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 | 1705 HWF_WA_DEV_4115; 1706 } 1707 break; 1708 default: 1709 sc->msk_clock = 156; /* 156 Mhz */ 1710 sc->msk_hw_feature = 0; 1711 } 1712 1713 if ((error = msk_status_dma_alloc(sc)) != 0) 1714 goto fail; 1715 1716 /* Set base interrupt mask. */ 1717 sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU; 1718 sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR | 1719 Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP; 1720 1721 /* Reset the adapter. */ 1722 mskc_reset(sc); 1723 1724 if ((error = mskc_setup_rambuffer(sc)) != 0) 1725 goto fail; 1726 1727 sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1); 1728 if (sc->msk_devs[MSK_PORT_A] == NULL) { 1729 device_printf(dev, "failed to add child for PORT_A\n"); 1730 error = ENXIO; 1731 goto fail; 1732 } 1733 port = malloc(sizeof(int), M_DEVBUF, M_WAITOK); 1734 if (port == NULL) { 1735 device_printf(dev, "failed to allocate memory for " 1736 "ivars of PORT_A\n"); 1737 error = ENXIO; 1738 goto fail; 1739 } 1740 *port = MSK_PORT_A; 1741 device_set_ivars(sc->msk_devs[MSK_PORT_A], port); 1742 1743 if (sc->msk_num_port > 1) { 1744 sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1); 1745 if (sc->msk_devs[MSK_PORT_B] == NULL) { 1746 device_printf(dev, "failed to add child for PORT_B\n"); 1747 error = ENXIO; 1748 goto fail; 1749 } 1750 port = malloc(sizeof(int), M_DEVBUF, M_WAITOK); 1751 if (port == NULL) { 1752 device_printf(dev, "failed to allocate memory for " 1753 "ivars of PORT_B\n"); 1754 error = ENXIO; 1755 goto fail; 1756 } 1757 *port = MSK_PORT_B; 1758 device_set_ivars(sc->msk_devs[MSK_PORT_B], port); 1759 } 1760 1761 error = bus_generic_attach(dev); 1762 if (error) { 1763 device_printf(dev, "failed to attach port(s)\n"); 1764 goto fail; 1765 } 1766 1767 TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc); 1768 sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK, 1769 taskqueue_thread_enqueue, &sc->msk_tq); 1770 taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq", 1771 device_get_nameunit(sc->msk_dev)); 1772 /* Hook interrupt last to avoid having to lock softc. */ 1773 error = bus_setup_intr(dev, sc->msk_res[1], INTR_TYPE_NET | 1774 INTR_MPSAFE | INTR_FAST, msk_intr, sc, &sc->msk_intrhand); 1775 1776 if (error != 0) { 1777 device_printf(dev, "couldn't set up interrupt handler\n"); 1778 taskqueue_free(sc->msk_tq); 1779 sc->msk_tq = NULL; 1780 goto fail; 1781 } 1782 fail: 1783 if (error != 0) 1784 mskc_detach(dev); 1785 1786 return (error); 1787 } 1788 1789 /* 1790 * Shutdown hardware and free up resources. This can be called any 1791 * time after the mutex has been initialized. It is called in both 1792 * the error case in attach and the normal detach case so it needs 1793 * to be careful about only freeing resources that have actually been 1794 * allocated. 1795 */ 1796 static int 1797 msk_detach(device_t dev) 1798 { 1799 struct msk_softc *sc; 1800 struct msk_if_softc *sc_if; 1801 struct ifnet *ifp; 1802 1803 sc_if = device_get_softc(dev); 1804 KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx), 1805 ("msk mutex not initialized in msk_detach")); 1806 MSK_IF_LOCK(sc_if); 1807 1808 ifp = sc_if->msk_ifp; 1809 if (device_is_attached(dev)) { 1810 /* XXX */ 1811 sc_if->msk_detach = 1; 1812 msk_stop(sc_if); 1813 /* Can't hold locks while calling detach. */ 1814 MSK_IF_UNLOCK(sc_if); 1815 callout_drain(&sc_if->msk_tick_ch); 1816 callout_drain(&sc_if->msk_watchdog_ch); 1817 taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task); 1818 taskqueue_drain(taskqueue_swi, &sc_if->msk_link_task); 1819 ether_ifdetach(ifp); 1820 MSK_IF_LOCK(sc_if); 1821 } 1822 1823 /* 1824 * We're generally called from mskc_detach() which is using 1825 * device_delete_child() to get to here. It's already trashed 1826 * miibus for us, so don't do it here or we'll panic. 1827 * 1828 * if (sc_if->msk_miibus != NULL) { 1829 * device_delete_child(dev, sc_if->msk_miibus); 1830 * sc_if->msk_miibus = NULL; 1831 * } 1832 */ 1833 1834 msk_txrx_dma_free(sc_if); 1835 bus_generic_detach(dev); 1836 1837 if (ifp) 1838 if_free(ifp); 1839 sc = sc_if->msk_softc; 1840 sc->msk_if[sc_if->msk_port] = NULL; 1841 MSK_IF_UNLOCK(sc_if); 1842 1843 return (0); 1844 } 1845 1846 static int 1847 mskc_detach(device_t dev) 1848 { 1849 struct msk_softc *sc; 1850 1851 sc = device_get_softc(dev); 1852 KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized")); 1853 1854 if (device_is_alive(dev)) { 1855 if (sc->msk_devs[MSK_PORT_A] != NULL) { 1856 free(device_get_ivars(sc->msk_devs[MSK_PORT_A]), 1857 M_DEVBUF); 1858 device_delete_child(dev, sc->msk_devs[MSK_PORT_A]); 1859 } 1860 if (sc->msk_devs[MSK_PORT_B] != NULL) { 1861 free(device_get_ivars(sc->msk_devs[MSK_PORT_B]), 1862 M_DEVBUF); 1863 device_delete_child(dev, sc->msk_devs[MSK_PORT_B]); 1864 } 1865 bus_generic_detach(dev); 1866 } 1867 1868 /* Disable all interrupts. */ 1869 CSR_WRITE_4(sc, B0_IMSK, 0); 1870 CSR_READ_4(sc, B0_IMSK); 1871 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 1872 CSR_READ_4(sc, B0_HWE_IMSK); 1873 1874 /* LED Off. */ 1875 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF); 1876 1877 /* Put hardware reset. */ 1878 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 1879 1880 msk_status_dma_free(sc); 1881 1882 if (sc->msk_tq != NULL) { 1883 taskqueue_drain(sc->msk_tq, &sc->msk_int_task); 1884 taskqueue_free(sc->msk_tq); 1885 sc->msk_tq = NULL; 1886 } 1887 if (sc->msk_intrhand) { 1888 bus_teardown_intr(dev, sc->msk_res[1], sc->msk_intrhand); 1889 sc->msk_intrhand = NULL; 1890 } 1891 if (sc->msk_msi) 1892 pci_release_msi(dev); 1893 bus_release_resources(dev, sc->msk_res_spec, sc->msk_res); 1894 mtx_destroy(&sc->msk_mtx); 1895 1896 return (0); 1897 } 1898 1899 struct msk_dmamap_arg { 1900 bus_addr_t msk_busaddr; 1901 }; 1902 1903 static void 1904 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1905 { 1906 struct msk_dmamap_arg *ctx; 1907 1908 if (error != 0) 1909 return; 1910 ctx = arg; 1911 ctx->msk_busaddr = segs[0].ds_addr; 1912 } 1913 1914 /* Create status DMA region. */ 1915 static int 1916 msk_status_dma_alloc(struct msk_softc *sc) 1917 { 1918 struct msk_dmamap_arg ctx; 1919 int error; 1920 1921 error = bus_dma_tag_create( 1922 bus_get_dma_tag(sc->msk_dev), /* parent */ 1923 MSK_STAT_ALIGN, 0, /* alignment, boundary */ 1924 BUS_SPACE_MAXADDR, /* lowaddr */ 1925 BUS_SPACE_MAXADDR, /* highaddr */ 1926 NULL, NULL, /* filter, filterarg */ 1927 MSK_STAT_RING_SZ, /* maxsize */ 1928 1, /* nsegments */ 1929 MSK_STAT_RING_SZ, /* maxsegsize */ 1930 0, /* flags */ 1931 NULL, NULL, /* lockfunc, lockarg */ 1932 &sc->msk_stat_tag); 1933 if (error != 0) { 1934 device_printf(sc->msk_dev, 1935 "failed to create status DMA tag\n"); 1936 return (error); 1937 } 1938 1939 /* Allocate DMA'able memory and load the DMA map for status ring. */ 1940 error = bus_dmamem_alloc(sc->msk_stat_tag, 1941 (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | 1942 BUS_DMA_ZERO, &sc->msk_stat_map); 1943 if (error != 0) { 1944 device_printf(sc->msk_dev, 1945 "failed to allocate DMA'able memory for status ring\n"); 1946 return (error); 1947 } 1948 1949 ctx.msk_busaddr = 0; 1950 error = bus_dmamap_load(sc->msk_stat_tag, 1951 sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ, 1952 msk_dmamap_cb, &ctx, 0); 1953 if (error != 0) { 1954 device_printf(sc->msk_dev, 1955 "failed to load DMA'able memory for status ring\n"); 1956 return (error); 1957 } 1958 sc->msk_stat_ring_paddr = ctx.msk_busaddr; 1959 1960 return (0); 1961 } 1962 1963 static void 1964 msk_status_dma_free(struct msk_softc *sc) 1965 { 1966 1967 /* Destroy status block. */ 1968 if (sc->msk_stat_tag) { 1969 if (sc->msk_stat_map) { 1970 bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map); 1971 if (sc->msk_stat_ring) { 1972 bus_dmamem_free(sc->msk_stat_tag, 1973 sc->msk_stat_ring, sc->msk_stat_map); 1974 sc->msk_stat_ring = NULL; 1975 } 1976 sc->msk_stat_map = NULL; 1977 } 1978 bus_dma_tag_destroy(sc->msk_stat_tag); 1979 sc->msk_stat_tag = NULL; 1980 } 1981 } 1982 1983 static int 1984 msk_txrx_dma_alloc(struct msk_if_softc *sc_if) 1985 { 1986 struct msk_dmamap_arg ctx; 1987 struct msk_txdesc *txd; 1988 struct msk_rxdesc *rxd; 1989 struct msk_rxdesc *jrxd; 1990 struct msk_jpool_entry *entry; 1991 uint8_t *ptr; 1992 int error, i; 1993 1994 mtx_init(&sc_if->msk_jlist_mtx, "msk_jlist_mtx", NULL, MTX_DEF); 1995 SLIST_INIT(&sc_if->msk_jfree_listhead); 1996 SLIST_INIT(&sc_if->msk_jinuse_listhead); 1997 1998 /* Create parent DMA tag. */ 1999 /* 2000 * XXX 2001 * It seems that Yukon II supports full 64bits DMA operations. But 2002 * it needs two descriptors(list elements) for 64bits DMA operations. 2003 * Since we don't know what DMA address mappings(32bits or 64bits) 2004 * would be used in advance for each mbufs, we limits its DMA space 2005 * to be in range of 32bits address space. Otherwise, we should check 2006 * what DMA address is used and chain another descriptor for the 2007 * 64bits DMA operation. This also means descriptor ring size is 2008 * variable. Limiting DMA address to be in 32bit address space greatly 2009 * simplyfies descriptor handling and possibly would increase 2010 * performance a bit due to efficient handling of descriptors. 2011 * Apart from harassing checksum offloading mechanisms, it seems 2012 * it's really bad idea to use a seperate descriptor for 64bit 2013 * DMA operation to save small descriptor memory. Anyway, I've 2014 * never seen these exotic scheme on ethernet interface hardware. 2015 */ 2016 error = bus_dma_tag_create( 2017 bus_get_dma_tag(sc_if->msk_if_dev), /* parent */ 2018 1, 0, /* alignment, boundary */ 2019 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2020 BUS_SPACE_MAXADDR, /* highaddr */ 2021 NULL, NULL, /* filter, filterarg */ 2022 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 2023 0, /* nsegments */ 2024 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 2025 0, /* flags */ 2026 NULL, NULL, /* lockfunc, lockarg */ 2027 &sc_if->msk_cdata.msk_parent_tag); 2028 if (error != 0) { 2029 device_printf(sc_if->msk_if_dev, 2030 "failed to create parent DMA tag\n"); 2031 goto fail; 2032 } 2033 /* Create tag for Tx ring. */ 2034 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2035 MSK_RING_ALIGN, 0, /* alignment, boundary */ 2036 BUS_SPACE_MAXADDR, /* lowaddr */ 2037 BUS_SPACE_MAXADDR, /* highaddr */ 2038 NULL, NULL, /* filter, filterarg */ 2039 MSK_TX_RING_SZ, /* maxsize */ 2040 1, /* nsegments */ 2041 MSK_TX_RING_SZ, /* maxsegsize */ 2042 0, /* flags */ 2043 NULL, NULL, /* lockfunc, lockarg */ 2044 &sc_if->msk_cdata.msk_tx_ring_tag); 2045 if (error != 0) { 2046 device_printf(sc_if->msk_if_dev, 2047 "failed to create Tx ring DMA tag\n"); 2048 goto fail; 2049 } 2050 2051 /* Create tag for Rx ring. */ 2052 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2053 MSK_RING_ALIGN, 0, /* alignment, boundary */ 2054 BUS_SPACE_MAXADDR, /* lowaddr */ 2055 BUS_SPACE_MAXADDR, /* highaddr */ 2056 NULL, NULL, /* filter, filterarg */ 2057 MSK_RX_RING_SZ, /* maxsize */ 2058 1, /* nsegments */ 2059 MSK_RX_RING_SZ, /* maxsegsize */ 2060 0, /* flags */ 2061 NULL, NULL, /* lockfunc, lockarg */ 2062 &sc_if->msk_cdata.msk_rx_ring_tag); 2063 if (error != 0) { 2064 device_printf(sc_if->msk_if_dev, 2065 "failed to create Rx ring DMA tag\n"); 2066 goto fail; 2067 } 2068 2069 /* Create tag for jumbo Rx ring. */ 2070 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2071 MSK_RING_ALIGN, 0, /* alignment, boundary */ 2072 BUS_SPACE_MAXADDR, /* lowaddr */ 2073 BUS_SPACE_MAXADDR, /* highaddr */ 2074 NULL, NULL, /* filter, filterarg */ 2075 MSK_JUMBO_RX_RING_SZ, /* maxsize */ 2076 1, /* nsegments */ 2077 MSK_JUMBO_RX_RING_SZ, /* maxsegsize */ 2078 0, /* flags */ 2079 NULL, NULL, /* lockfunc, lockarg */ 2080 &sc_if->msk_cdata.msk_jumbo_rx_ring_tag); 2081 if (error != 0) { 2082 device_printf(sc_if->msk_if_dev, 2083 "failed to create jumbo Rx ring DMA tag\n"); 2084 goto fail; 2085 } 2086 2087 /* Create tag for jumbo buffer blocks. */ 2088 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2089 PAGE_SIZE, 0, /* alignment, boundary */ 2090 BUS_SPACE_MAXADDR, /* lowaddr */ 2091 BUS_SPACE_MAXADDR, /* highaddr */ 2092 NULL, NULL, /* filter, filterarg */ 2093 MSK_JMEM, /* maxsize */ 2094 1, /* nsegments */ 2095 MSK_JMEM, /* maxsegsize */ 2096 0, /* flags */ 2097 NULL, NULL, /* lockfunc, lockarg */ 2098 &sc_if->msk_cdata.msk_jumbo_tag); 2099 if (error != 0) { 2100 device_printf(sc_if->msk_if_dev, 2101 "failed to create jumbo Rx buffer block DMA tag\n"); 2102 goto fail; 2103 } 2104 2105 /* Create tag for Tx buffers. */ 2106 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2107 1, 0, /* alignment, boundary */ 2108 BUS_SPACE_MAXADDR, /* lowaddr */ 2109 BUS_SPACE_MAXADDR, /* highaddr */ 2110 NULL, NULL, /* filter, filterarg */ 2111 MCLBYTES * MSK_MAXTXSEGS, /* maxsize */ 2112 MSK_MAXTXSEGS, /* nsegments */ 2113 MCLBYTES, /* maxsegsize */ 2114 0, /* flags */ 2115 NULL, NULL, /* lockfunc, lockarg */ 2116 &sc_if->msk_cdata.msk_tx_tag); 2117 if (error != 0) { 2118 device_printf(sc_if->msk_if_dev, 2119 "failed to create Tx DMA tag\n"); 2120 goto fail; 2121 } 2122 2123 /* Create tag for Rx buffers. */ 2124 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2125 1, 0, /* alignment, boundary */ 2126 BUS_SPACE_MAXADDR, /* lowaddr */ 2127 BUS_SPACE_MAXADDR, /* highaddr */ 2128 NULL, NULL, /* filter, filterarg */ 2129 MCLBYTES, /* maxsize */ 2130 1, /* nsegments */ 2131 MCLBYTES, /* maxsegsize */ 2132 0, /* flags */ 2133 NULL, NULL, /* lockfunc, lockarg */ 2134 &sc_if->msk_cdata.msk_rx_tag); 2135 if (error != 0) { 2136 device_printf(sc_if->msk_if_dev, 2137 "failed to create Rx DMA tag\n"); 2138 goto fail; 2139 } 2140 2141 /* Create tag for jumbo Rx buffers. */ 2142 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 2143 PAGE_SIZE, 0, /* alignment, boundary */ 2144 BUS_SPACE_MAXADDR, /* lowaddr */ 2145 BUS_SPACE_MAXADDR, /* highaddr */ 2146 NULL, NULL, /* filter, filterarg */ 2147 MCLBYTES * MSK_MAXRXSEGS, /* maxsize */ 2148 MSK_MAXRXSEGS, /* nsegments */ 2149 MSK_JLEN, /* maxsegsize */ 2150 0, /* flags */ 2151 NULL, NULL, /* lockfunc, lockarg */ 2152 &sc_if->msk_cdata.msk_jumbo_rx_tag); 2153 if (error != 0) { 2154 device_printf(sc_if->msk_if_dev, 2155 "failed to create jumbo Rx DMA tag\n"); 2156 goto fail; 2157 } 2158 2159 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 2160 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag, 2161 (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK | 2162 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map); 2163 if (error != 0) { 2164 device_printf(sc_if->msk_if_dev, 2165 "failed to allocate DMA'able memory for Tx ring\n"); 2166 goto fail; 2167 } 2168 2169 ctx.msk_busaddr = 0; 2170 error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag, 2171 sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring, 2172 MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0); 2173 if (error != 0) { 2174 device_printf(sc_if->msk_if_dev, 2175 "failed to load DMA'able memory for Tx ring\n"); 2176 goto fail; 2177 } 2178 sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr; 2179 2180 /* Allocate DMA'able memory and load the DMA map for Rx ring. */ 2181 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag, 2182 (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK | 2183 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map); 2184 if (error != 0) { 2185 device_printf(sc_if->msk_if_dev, 2186 "failed to allocate DMA'able memory for Rx ring\n"); 2187 goto fail; 2188 } 2189 2190 ctx.msk_busaddr = 0; 2191 error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag, 2192 sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring, 2193 MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0); 2194 if (error != 0) { 2195 device_printf(sc_if->msk_if_dev, 2196 "failed to load DMA'able memory for Rx ring\n"); 2197 goto fail; 2198 } 2199 sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr; 2200 2201 /* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */ 2202 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2203 (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring, 2204 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 2205 &sc_if->msk_cdata.msk_jumbo_rx_ring_map); 2206 if (error != 0) { 2207 device_printf(sc_if->msk_if_dev, 2208 "failed to allocate DMA'able memory for jumbo Rx ring\n"); 2209 goto fail; 2210 } 2211 2212 ctx.msk_busaddr = 0; 2213 error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2214 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 2215 sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ, 2216 msk_dmamap_cb, &ctx, 0); 2217 if (error != 0) { 2218 device_printf(sc_if->msk_if_dev, 2219 "failed to load DMA'able memory for jumbo Rx ring\n"); 2220 goto fail; 2221 } 2222 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr; 2223 2224 /* Create DMA maps for Tx buffers. */ 2225 for (i = 0; i < MSK_TX_RING_CNT; i++) { 2226 txd = &sc_if->msk_cdata.msk_txdesc[i]; 2227 txd->tx_m = NULL; 2228 txd->tx_dmamap = NULL; 2229 error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0, 2230 &txd->tx_dmamap); 2231 if (error != 0) { 2232 device_printf(sc_if->msk_if_dev, 2233 "failed to create Tx dmamap\n"); 2234 goto fail; 2235 } 2236 } 2237 /* Create DMA maps for Rx buffers. */ 2238 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0, 2239 &sc_if->msk_cdata.msk_rx_sparemap)) != 0) { 2240 device_printf(sc_if->msk_if_dev, 2241 "failed to create spare Rx dmamap\n"); 2242 goto fail; 2243 } 2244 for (i = 0; i < MSK_RX_RING_CNT; i++) { 2245 rxd = &sc_if->msk_cdata.msk_rxdesc[i]; 2246 rxd->rx_m = NULL; 2247 rxd->rx_dmamap = NULL; 2248 error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0, 2249 &rxd->rx_dmamap); 2250 if (error != 0) { 2251 device_printf(sc_if->msk_if_dev, 2252 "failed to create Rx dmamap\n"); 2253 goto fail; 2254 } 2255 } 2256 /* Create DMA maps for jumbo Rx buffers. */ 2257 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0, 2258 &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) { 2259 device_printf(sc_if->msk_if_dev, 2260 "failed to create spare jumbo Rx dmamap\n"); 2261 goto fail; 2262 } 2263 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 2264 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; 2265 jrxd->rx_m = NULL; 2266 jrxd->rx_dmamap = NULL; 2267 error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0, 2268 &jrxd->rx_dmamap); 2269 if (error != 0) { 2270 device_printf(sc_if->msk_if_dev, 2271 "failed to create jumbo Rx dmamap\n"); 2272 goto fail; 2273 } 2274 } 2275 2276 /* Allocate DMA'able memory and load the DMA map for jumbo buf. */ 2277 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag, 2278 (void **)&sc_if->msk_rdata.msk_jumbo_buf, 2279 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 2280 &sc_if->msk_cdata.msk_jumbo_map); 2281 if (error != 0) { 2282 device_printf(sc_if->msk_if_dev, 2283 "failed to allocate DMA'able memory for jumbo buf\n"); 2284 goto fail; 2285 } 2286 2287 ctx.msk_busaddr = 0; 2288 error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag, 2289 sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf, 2290 MSK_JMEM, msk_dmamap_cb, &ctx, 0); 2291 if (error != 0) { 2292 device_printf(sc_if->msk_if_dev, 2293 "failed to load DMA'able memory for jumbobuf\n"); 2294 goto fail; 2295 } 2296 sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr; 2297 2298 /* 2299 * Now divide it up into 9K pieces and save the addresses 2300 * in an array. 2301 */ 2302 ptr = sc_if->msk_rdata.msk_jumbo_buf; 2303 for (i = 0; i < MSK_JSLOTS; i++) { 2304 sc_if->msk_cdata.msk_jslots[i] = ptr; 2305 ptr += MSK_JLEN; 2306 entry = malloc(sizeof(struct msk_jpool_entry), 2307 M_DEVBUF, M_WAITOK); 2308 if (entry == NULL) { 2309 device_printf(sc_if->msk_if_dev, 2310 "no memory for jumbo buffers!\n"); 2311 error = ENOMEM; 2312 goto fail; 2313 } 2314 entry->slot = i; 2315 SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, 2316 jpool_entries); 2317 } 2318 2319 fail: 2320 return (error); 2321 } 2322 2323 static void 2324 msk_txrx_dma_free(struct msk_if_softc *sc_if) 2325 { 2326 struct msk_txdesc *txd; 2327 struct msk_rxdesc *rxd; 2328 struct msk_rxdesc *jrxd; 2329 struct msk_jpool_entry *entry; 2330 int i; 2331 2332 MSK_JLIST_LOCK(sc_if); 2333 while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) { 2334 device_printf(sc_if->msk_if_dev, 2335 "asked to free buffer that is in use!\n"); 2336 SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries); 2337 SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, 2338 jpool_entries); 2339 } 2340 2341 while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) { 2342 entry = SLIST_FIRST(&sc_if->msk_jfree_listhead); 2343 SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries); 2344 free(entry, M_DEVBUF); 2345 } 2346 MSK_JLIST_UNLOCK(sc_if); 2347 2348 /* Destroy jumbo buffer block. */ 2349 if (sc_if->msk_cdata.msk_jumbo_map) 2350 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag, 2351 sc_if->msk_cdata.msk_jumbo_map); 2352 2353 if (sc_if->msk_rdata.msk_jumbo_buf) { 2354 bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag, 2355 sc_if->msk_rdata.msk_jumbo_buf, 2356 sc_if->msk_cdata.msk_jumbo_map); 2357 sc_if->msk_rdata.msk_jumbo_buf = NULL; 2358 sc_if->msk_cdata.msk_jumbo_map = NULL; 2359 } 2360 2361 /* Tx ring. */ 2362 if (sc_if->msk_cdata.msk_tx_ring_tag) { 2363 if (sc_if->msk_cdata.msk_tx_ring_map) 2364 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag, 2365 sc_if->msk_cdata.msk_tx_ring_map); 2366 if (sc_if->msk_cdata.msk_tx_ring_map && 2367 sc_if->msk_rdata.msk_tx_ring) 2368 bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag, 2369 sc_if->msk_rdata.msk_tx_ring, 2370 sc_if->msk_cdata.msk_tx_ring_map); 2371 sc_if->msk_rdata.msk_tx_ring = NULL; 2372 sc_if->msk_cdata.msk_tx_ring_map = NULL; 2373 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag); 2374 sc_if->msk_cdata.msk_tx_ring_tag = NULL; 2375 } 2376 /* Rx ring. */ 2377 if (sc_if->msk_cdata.msk_rx_ring_tag) { 2378 if (sc_if->msk_cdata.msk_rx_ring_map) 2379 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag, 2380 sc_if->msk_cdata.msk_rx_ring_map); 2381 if (sc_if->msk_cdata.msk_rx_ring_map && 2382 sc_if->msk_rdata.msk_rx_ring) 2383 bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag, 2384 sc_if->msk_rdata.msk_rx_ring, 2385 sc_if->msk_cdata.msk_rx_ring_map); 2386 sc_if->msk_rdata.msk_rx_ring = NULL; 2387 sc_if->msk_cdata.msk_rx_ring_map = NULL; 2388 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag); 2389 sc_if->msk_cdata.msk_rx_ring_tag = NULL; 2390 } 2391 /* Jumbo Rx ring. */ 2392 if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) { 2393 if (sc_if->msk_cdata.msk_jumbo_rx_ring_map) 2394 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2395 sc_if->msk_cdata.msk_jumbo_rx_ring_map); 2396 if (sc_if->msk_cdata.msk_jumbo_rx_ring_map && 2397 sc_if->msk_rdata.msk_jumbo_rx_ring) 2398 bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 2399 sc_if->msk_rdata.msk_jumbo_rx_ring, 2400 sc_if->msk_cdata.msk_jumbo_rx_ring_map); 2401 sc_if->msk_rdata.msk_jumbo_rx_ring = NULL; 2402 sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL; 2403 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag); 2404 sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL; 2405 } 2406 /* Tx buffers. */ 2407 if (sc_if->msk_cdata.msk_tx_tag) { 2408 for (i = 0; i < MSK_TX_RING_CNT; i++) { 2409 txd = &sc_if->msk_cdata.msk_txdesc[i]; 2410 if (txd->tx_dmamap) { 2411 bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag, 2412 txd->tx_dmamap); 2413 txd->tx_dmamap = NULL; 2414 } 2415 } 2416 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag); 2417 sc_if->msk_cdata.msk_tx_tag = NULL; 2418 } 2419 /* Rx buffers. */ 2420 if (sc_if->msk_cdata.msk_rx_tag) { 2421 for (i = 0; i < MSK_RX_RING_CNT; i++) { 2422 rxd = &sc_if->msk_cdata.msk_rxdesc[i]; 2423 if (rxd->rx_dmamap) { 2424 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag, 2425 rxd->rx_dmamap); 2426 rxd->rx_dmamap = NULL; 2427 } 2428 } 2429 if (sc_if->msk_cdata.msk_rx_sparemap) { 2430 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag, 2431 sc_if->msk_cdata.msk_rx_sparemap); 2432 sc_if->msk_cdata.msk_rx_sparemap = 0; 2433 } 2434 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag); 2435 sc_if->msk_cdata.msk_rx_tag = NULL; 2436 } 2437 /* Jumbo Rx buffers. */ 2438 if (sc_if->msk_cdata.msk_jumbo_rx_tag) { 2439 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 2440 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; 2441 if (jrxd->rx_dmamap) { 2442 bus_dmamap_destroy( 2443 sc_if->msk_cdata.msk_jumbo_rx_tag, 2444 jrxd->rx_dmamap); 2445 jrxd->rx_dmamap = NULL; 2446 } 2447 } 2448 if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) { 2449 bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag, 2450 sc_if->msk_cdata.msk_jumbo_rx_sparemap); 2451 sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0; 2452 } 2453 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag); 2454 sc_if->msk_cdata.msk_jumbo_rx_tag = NULL; 2455 } 2456 2457 if (sc_if->msk_cdata.msk_parent_tag) { 2458 bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag); 2459 sc_if->msk_cdata.msk_parent_tag = NULL; 2460 } 2461 mtx_destroy(&sc_if->msk_jlist_mtx); 2462 } 2463 2464 /* 2465 * Allocate a jumbo buffer. 2466 */ 2467 static void * 2468 msk_jalloc(struct msk_if_softc *sc_if) 2469 { 2470 struct msk_jpool_entry *entry; 2471 2472 MSK_JLIST_LOCK(sc_if); 2473 2474 entry = SLIST_FIRST(&sc_if->msk_jfree_listhead); 2475 2476 if (entry == NULL) { 2477 MSK_JLIST_UNLOCK(sc_if); 2478 return (NULL); 2479 } 2480 2481 SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries); 2482 SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries); 2483 2484 MSK_JLIST_UNLOCK(sc_if); 2485 2486 return (sc_if->msk_cdata.msk_jslots[entry->slot]); 2487 } 2488 2489 /* 2490 * Release a jumbo buffer. 2491 */ 2492 static void 2493 msk_jfree(void *buf, void *args) 2494 { 2495 struct msk_if_softc *sc_if; 2496 struct msk_jpool_entry *entry; 2497 int i; 2498 2499 /* Extract the softc struct pointer. */ 2500 sc_if = (struct msk_if_softc *)args; 2501 KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__)); 2502 2503 MSK_JLIST_LOCK(sc_if); 2504 /* Calculate the slot this buffer belongs to. */ 2505 i = ((vm_offset_t)buf 2506 - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN; 2507 KASSERT(i >= 0 && i < MSK_JSLOTS, 2508 ("%s: asked to free buffer that we don't manage!", __func__)); 2509 2510 entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead); 2511 KASSERT(entry != NULL, ("%s: buffer not in use!", __func__)); 2512 entry->slot = i; 2513 SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries); 2514 SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries); 2515 if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead)) 2516 wakeup(sc_if); 2517 2518 MSK_JLIST_UNLOCK(sc_if); 2519 } 2520 2521 /* 2522 * It's copy of ath_defrag(ath(4)). 2523 * 2524 * Defragment an mbuf chain, returning at most maxfrags separate 2525 * mbufs+clusters. If this is not possible NULL is returned and 2526 * the original mbuf chain is left in it's present (potentially 2527 * modified) state. We use two techniques: collapsing consecutive 2528 * mbufs and replacing consecutive mbufs by a cluster. 2529 */ 2530 static struct mbuf * 2531 msk_defrag(struct mbuf *m0, int how, int maxfrags) 2532 { 2533 struct mbuf *m, *n, *n2, **prev; 2534 u_int curfrags; 2535 2536 /* 2537 * Calculate the current number of frags. 2538 */ 2539 curfrags = 0; 2540 for (m = m0; m != NULL; m = m->m_next) 2541 curfrags++; 2542 /* 2543 * First, try to collapse mbufs. Note that we always collapse 2544 * towards the front so we don't need to deal with moving the 2545 * pkthdr. This may be suboptimal if the first mbuf has much 2546 * less data than the following. 2547 */ 2548 m = m0; 2549 again: 2550 for (;;) { 2551 n = m->m_next; 2552 if (n == NULL) 2553 break; 2554 if ((m->m_flags & M_RDONLY) == 0 && 2555 n->m_len < M_TRAILINGSPACE(m)) { 2556 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len, 2557 n->m_len); 2558 m->m_len += n->m_len; 2559 m->m_next = n->m_next; 2560 m_free(n); 2561 if (--curfrags <= maxfrags) 2562 return (m0); 2563 } else 2564 m = n; 2565 } 2566 KASSERT(maxfrags > 1, 2567 ("maxfrags %u, but normal collapse failed", maxfrags)); 2568 /* 2569 * Collapse consecutive mbufs to a cluster. 2570 */ 2571 prev = &m0->m_next; /* NB: not the first mbuf */ 2572 while ((n = *prev) != NULL) { 2573 if ((n2 = n->m_next) != NULL && 2574 n->m_len + n2->m_len < MCLBYTES) { 2575 m = m_getcl(how, MT_DATA, 0); 2576 if (m == NULL) 2577 goto bad; 2578 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 2579 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 2580 n2->m_len); 2581 m->m_len = n->m_len + n2->m_len; 2582 m->m_next = n2->m_next; 2583 *prev = m; 2584 m_free(n); 2585 m_free(n2); 2586 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 2587 return m0; 2588 /* 2589 * Still not there, try the normal collapse 2590 * again before we allocate another cluster. 2591 */ 2592 goto again; 2593 } 2594 prev = &n->m_next; 2595 } 2596 /* 2597 * No place where we can collapse to a cluster; punt. 2598 * This can occur if, for example, you request 2 frags 2599 * but the packet requires that both be clusters (we 2600 * never reallocate the first mbuf to avoid moving the 2601 * packet header). 2602 */ 2603 bad: 2604 return (NULL); 2605 } 2606 2607 static int 2608 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head) 2609 { 2610 struct msk_txdesc *txd, *txd_last; 2611 struct msk_tx_desc *tx_le; 2612 struct mbuf *m; 2613 bus_dmamap_t map; 2614 bus_dma_segment_t txsegs[MSK_MAXTXSEGS]; 2615 uint32_t control, prod, si; 2616 uint16_t offset, tcp_offset, tso_mtu; 2617 int error, i, nseg, tso; 2618 2619 MSK_IF_LOCK_ASSERT(sc_if); 2620 2621 tcp_offset = offset = 0; 2622 m = *m_head; 2623 if ((m->m_pkthdr.csum_flags & (MSK_CSUM_FEATURES | CSUM_TSO)) != 0) { 2624 /* 2625 * Since mbuf has no protocol specific structure information 2626 * in it we have to inspect protocol information here to 2627 * setup TSO and checksum offload. I don't know why Marvell 2628 * made a such decision in chip design because other GigE 2629 * hardwares normally takes care of all these chores in 2630 * hardware. However, TSO performance of Yukon II is very 2631 * good such that it's worth to implement it. 2632 */ 2633 struct ether_vlan_header *evh; 2634 struct ether_header *eh; 2635 struct ip *ip; 2636 struct tcphdr *tcp; 2637 2638 /* TODO check for M_WRITABLE(m) */ 2639 2640 offset = sizeof(struct ether_header); 2641 m = m_pullup(m, offset); 2642 if (m == NULL) { 2643 *m_head = NULL; 2644 return (ENOBUFS); 2645 } 2646 eh = mtod(m, struct ether_header *); 2647 /* Check if hardware VLAN insertion is off. */ 2648 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 2649 offset = sizeof(struct ether_vlan_header); 2650 m = m_pullup(m, offset); 2651 if (m == NULL) { 2652 *m_head = NULL; 2653 return (ENOBUFS); 2654 } 2655 evh = mtod(m, struct ether_vlan_header *); 2656 ip = (struct ip *)(evh + 1); 2657 } else 2658 ip = (struct ip *)(eh + 1); 2659 m = m_pullup(m, offset + sizeof(struct ip)); 2660 if (m == NULL) { 2661 *m_head = NULL; 2662 return (ENOBUFS); 2663 } 2664 offset += (ip->ip_hl << 2); 2665 tcp_offset = offset; 2666 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2667 m = m_pullup(m, offset + sizeof(struct tcphdr)); 2668 if (m == NULL) { 2669 *m_head = NULL; 2670 return (ENOBUFS); 2671 } 2672 tcp = mtod(m, struct tcphdr *); 2673 offset += (tcp->th_off << 2); 2674 } 2675 *m_head = m; 2676 } 2677 2678 prod = sc_if->msk_cdata.msk_tx_prod; 2679 txd = &sc_if->msk_cdata.msk_txdesc[prod]; 2680 txd_last = txd; 2681 map = txd->tx_dmamap; 2682 error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map, 2683 *m_head, txsegs, &nseg, BUS_DMA_NOWAIT); 2684 if (error == EFBIG) { 2685 m = msk_defrag(*m_head, M_DONTWAIT, MSK_MAXTXSEGS); 2686 if (m == NULL) { 2687 m_freem(*m_head); 2688 *m_head = NULL; 2689 return (ENOBUFS); 2690 } 2691 *m_head = m; 2692 error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, 2693 map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT); 2694 if (error != 0) { 2695 m_freem(*m_head); 2696 *m_head = NULL; 2697 return (error); 2698 } 2699 } else if (error != 0) 2700 return (error); 2701 if (nseg == 0) { 2702 m_freem(*m_head); 2703 *m_head = NULL; 2704 return (EIO); 2705 } 2706 2707 /* Check number of available descriptors. */ 2708 if (sc_if->msk_cdata.msk_tx_cnt + nseg >= 2709 (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) { 2710 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map); 2711 return (ENOBUFS); 2712 } 2713 2714 control = 0; 2715 tso = 0; 2716 tx_le = NULL; 2717 2718 /* Check TSO support. */ 2719 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2720 tso_mtu = offset + m->m_pkthdr.tso_segsz; 2721 if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) { 2722 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2723 tx_le->msk_addr = htole32(tso_mtu); 2724 tx_le->msk_control = htole32(OP_LRGLEN | HW_OWNER); 2725 sc_if->msk_cdata.msk_tx_cnt++; 2726 MSK_INC(prod, MSK_TX_RING_CNT); 2727 sc_if->msk_cdata.msk_tso_mtu = tso_mtu; 2728 } 2729 tso++; 2730 } 2731 /* Check if we have a VLAN tag to insert. */ 2732 if ((m->m_flags & M_VLANTAG) != 0) { 2733 if (tso == 0) { 2734 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2735 tx_le->msk_addr = htole32(0); 2736 tx_le->msk_control = htole32(OP_VLAN | HW_OWNER | 2737 htons(m->m_pkthdr.ether_vtag)); 2738 sc_if->msk_cdata.msk_tx_cnt++; 2739 MSK_INC(prod, MSK_TX_RING_CNT); 2740 } else { 2741 tx_le->msk_control |= htole32(OP_VLAN | 2742 htons(m->m_pkthdr.ether_vtag)); 2743 } 2744 control |= INS_VLAN; 2745 } 2746 /* Check if we have to handle checksum offload. */ 2747 if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) { 2748 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2749 tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data) 2750 & 0xffff) | ((uint32_t)tcp_offset << 16)); 2751 tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER)); 2752 control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM; 2753 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 2754 control |= UDPTCP; 2755 sc_if->msk_cdata.msk_tx_cnt++; 2756 MSK_INC(prod, MSK_TX_RING_CNT); 2757 } 2758 2759 si = prod; 2760 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2761 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr)); 2762 if (tso == 0) 2763 tx_le->msk_control = htole32(txsegs[0].ds_len | control | 2764 OP_PACKET); 2765 else 2766 tx_le->msk_control = htole32(txsegs[0].ds_len | control | 2767 OP_LARGESEND); 2768 sc_if->msk_cdata.msk_tx_cnt++; 2769 MSK_INC(prod, MSK_TX_RING_CNT); 2770 2771 for (i = 1; i < nseg; i++) { 2772 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2773 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr)); 2774 tx_le->msk_control = htole32(txsegs[i].ds_len | control | 2775 OP_BUFFER | HW_OWNER); 2776 sc_if->msk_cdata.msk_tx_cnt++; 2777 MSK_INC(prod, MSK_TX_RING_CNT); 2778 } 2779 /* Update producer index. */ 2780 sc_if->msk_cdata.msk_tx_prod = prod; 2781 2782 /* Set EOP on the last desciptor. */ 2783 prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT; 2784 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; 2785 tx_le->msk_control |= htole32(EOP); 2786 2787 /* Turn the first descriptor ownership to hardware. */ 2788 tx_le = &sc_if->msk_rdata.msk_tx_ring[si]; 2789 tx_le->msk_control |= htole32(HW_OWNER); 2790 2791 txd = &sc_if->msk_cdata.msk_txdesc[prod]; 2792 map = txd_last->tx_dmamap; 2793 txd_last->tx_dmamap = txd->tx_dmamap; 2794 txd->tx_dmamap = map; 2795 txd->tx_m = m; 2796 2797 /* Sync descriptors. */ 2798 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE); 2799 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, 2800 sc_if->msk_cdata.msk_tx_ring_map, 2801 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2802 2803 return (0); 2804 } 2805 2806 static void 2807 msk_tx_task(void *arg, int pending) 2808 { 2809 struct ifnet *ifp; 2810 2811 ifp = arg; 2812 msk_start(ifp); 2813 } 2814 2815 static void 2816 msk_start(struct ifnet *ifp) 2817 { 2818 struct msk_if_softc *sc_if; 2819 struct mbuf *m_head; 2820 int enq; 2821 2822 sc_if = ifp->if_softc; 2823 2824 MSK_IF_LOCK(sc_if); 2825 2826 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 2827 IFF_DRV_RUNNING || sc_if->msk_link == 0) { 2828 MSK_IF_UNLOCK(sc_if); 2829 return; 2830 } 2831 2832 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 2833 sc_if->msk_cdata.msk_tx_cnt < 2834 (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) { 2835 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2836 if (m_head == NULL) 2837 break; 2838 /* 2839 * Pack the data into the transmit ring. If we 2840 * don't have room, set the OACTIVE flag and wait 2841 * for the NIC to drain the ring. 2842 */ 2843 if (msk_encap(sc_if, &m_head) != 0) { 2844 if (m_head == NULL) 2845 break; 2846 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2847 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2848 break; 2849 } 2850 2851 enq++; 2852 /* 2853 * If there's a BPF listener, bounce a copy of this frame 2854 * to him. 2855 */ 2856 BPF_MTAP(ifp, m_head); 2857 } 2858 2859 if (enq > 0) { 2860 /* Transmit */ 2861 CSR_WRITE_2(sc_if->msk_softc, 2862 Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG), 2863 sc_if->msk_cdata.msk_tx_prod); 2864 2865 /* Set a timeout in case the chip goes out to lunch. */ 2866 callout_reset(&sc_if->msk_watchdog_ch, MSK_TX_TIMEOUT * hz, 2867 msk_watchdog, sc_if); 2868 } 2869 2870 MSK_IF_UNLOCK(sc_if); 2871 } 2872 2873 static void 2874 msk_watchdog(void *arg) 2875 { 2876 struct msk_if_softc *sc_if; 2877 struct ifnet *ifp; 2878 uint32_t ridx; 2879 int idx; 2880 2881 sc_if = arg; 2882 2883 MSK_IF_LOCK_ASSERT(sc_if); 2884 2885 ifp = sc_if->msk_ifp; 2886 if (sc_if->msk_link == 0) { 2887 if (bootverbose) 2888 if_printf(sc_if->msk_ifp, "watchdog timeout " 2889 "(missed link)\n"); 2890 ifp->if_oerrors++; 2891 msk_init_locked(sc_if); 2892 return; 2893 } 2894 2895 /* 2896 * Reclaim first as there is a possibility of losing Tx completion 2897 * interrupts. 2898 */ 2899 ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX; 2900 idx = CSR_READ_2(sc_if->msk_softc, ridx); 2901 if (sc_if->msk_cdata.msk_tx_cons != idx) { 2902 msk_txeof(sc_if, idx); 2903 if (sc_if->msk_cdata.msk_tx_cnt == 0) { 2904 if_printf(ifp, "watchdog timeout (missed Tx interrupts) " 2905 "-- recovering\n"); 2906 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2907 taskqueue_enqueue(taskqueue_fast, 2908 &sc_if->msk_tx_task); 2909 return; 2910 } 2911 } 2912 2913 if_printf(ifp, "watchdog timeout\n"); 2914 ifp->if_oerrors++; 2915 msk_init_locked(sc_if); 2916 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2917 taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task); 2918 } 2919 2920 static void 2921 mskc_shutdown(device_t dev) 2922 { 2923 struct msk_softc *sc; 2924 int i; 2925 2926 sc = device_get_softc(dev); 2927 MSK_LOCK(sc); 2928 for (i = 0; i < sc->msk_num_port; i++) { 2929 if (sc->msk_if[i] != NULL) 2930 msk_stop(sc->msk_if[i]); 2931 } 2932 2933 /* Disable all interrupts. */ 2934 CSR_WRITE_4(sc, B0_IMSK, 0); 2935 CSR_READ_4(sc, B0_IMSK); 2936 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 2937 CSR_READ_4(sc, B0_HWE_IMSK); 2938 2939 /* Put hardware reset. */ 2940 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 2941 2942 MSK_UNLOCK(sc); 2943 } 2944 2945 static int 2946 mskc_suspend(device_t dev) 2947 { 2948 struct msk_softc *sc; 2949 int i; 2950 2951 sc = device_get_softc(dev); 2952 2953 MSK_LOCK(sc); 2954 2955 for (i = 0; i < sc->msk_num_port; i++) { 2956 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL && 2957 ((sc->msk_if[i]->msk_ifp->if_drv_flags & 2958 IFF_DRV_RUNNING) != 0)) 2959 msk_stop(sc->msk_if[i]); 2960 } 2961 2962 /* Disable all interrupts. */ 2963 CSR_WRITE_4(sc, B0_IMSK, 0); 2964 CSR_READ_4(sc, B0_IMSK); 2965 CSR_WRITE_4(sc, B0_HWE_IMSK, 0); 2966 CSR_READ_4(sc, B0_HWE_IMSK); 2967 2968 msk_phy_power(sc, MSK_PHY_POWERDOWN); 2969 2970 /* Put hardware reset. */ 2971 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); 2972 sc->msk_suspended = 1; 2973 2974 MSK_UNLOCK(sc); 2975 2976 return (0); 2977 } 2978 2979 static int 2980 mskc_resume(device_t dev) 2981 { 2982 struct msk_softc *sc; 2983 int i; 2984 2985 sc = device_get_softc(dev); 2986 2987 MSK_LOCK(sc); 2988 2989 mskc_reset(sc); 2990 for (i = 0; i < sc->msk_num_port; i++) { 2991 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL && 2992 ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) 2993 msk_init_locked(sc->msk_if[i]); 2994 } 2995 sc->msk_suspended = 0; 2996 2997 MSK_UNLOCK(sc); 2998 2999 return (0); 3000 } 3001 3002 static void 3003 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len) 3004 { 3005 struct mbuf *m; 3006 struct ifnet *ifp; 3007 struct msk_rxdesc *rxd; 3008 int cons, rxlen; 3009 3010 ifp = sc_if->msk_ifp; 3011 3012 MSK_IF_LOCK_ASSERT(sc_if); 3013 3014 cons = sc_if->msk_cdata.msk_rx_cons; 3015 do { 3016 rxlen = status >> 16; 3017 if ((status & GMR_FS_VLAN) != 0) 3018 rxlen -= ETHER_VLAN_ENCAP_LEN; 3019 if (len > sc_if->msk_framesize || 3020 ((status & GMR_FS_ANY_ERR) != 0) || 3021 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) { 3022 /* Don't count flow-control packet as errors. */ 3023 if ((status & GMR_FS_GOOD_FC) == 0) 3024 ifp->if_ierrors++; 3025 msk_discard_rxbuf(sc_if, cons); 3026 break; 3027 } 3028 rxd = &sc_if->msk_cdata.msk_rxdesc[cons]; 3029 m = rxd->rx_m; 3030 if (msk_newbuf(sc_if, cons) != 0) { 3031 ifp->if_iqdrops++; 3032 /* Reuse old buffer. */ 3033 msk_discard_rxbuf(sc_if, cons); 3034 break; 3035 } 3036 m->m_pkthdr.rcvif = ifp; 3037 m->m_pkthdr.len = m->m_len = len; 3038 ifp->if_ipackets++; 3039 /* Check for VLAN tagged packets. */ 3040 if ((status & GMR_FS_VLAN) != 0 && 3041 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 3042 m->m_pkthdr.ether_vtag = sc_if->msk_vtag; 3043 m->m_flags |= M_VLANTAG; 3044 } 3045 MSK_IF_UNLOCK(sc_if); 3046 (*ifp->if_input)(ifp, m); 3047 MSK_IF_LOCK(sc_if); 3048 } while (0); 3049 3050 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT); 3051 MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT); 3052 } 3053 3054 static void 3055 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len) 3056 { 3057 struct mbuf *m; 3058 struct ifnet *ifp; 3059 struct msk_rxdesc *jrxd; 3060 int cons, rxlen; 3061 3062 ifp = sc_if->msk_ifp; 3063 3064 MSK_IF_LOCK_ASSERT(sc_if); 3065 3066 cons = sc_if->msk_cdata.msk_rx_cons; 3067 do { 3068 rxlen = status >> 16; 3069 if ((status & GMR_FS_VLAN) != 0) 3070 rxlen -= ETHER_VLAN_ENCAP_LEN; 3071 if (len > sc_if->msk_framesize || 3072 ((status & GMR_FS_ANY_ERR) != 0) || 3073 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) { 3074 /* Don't count flow-control packet as errors. */ 3075 if ((status & GMR_FS_GOOD_FC) == 0) 3076 ifp->if_ierrors++; 3077 msk_discard_jumbo_rxbuf(sc_if, cons); 3078 break; 3079 } 3080 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons]; 3081 m = jrxd->rx_m; 3082 if (msk_jumbo_newbuf(sc_if, cons) != 0) { 3083 ifp->if_iqdrops++; 3084 /* Reuse old buffer. */ 3085 msk_discard_jumbo_rxbuf(sc_if, cons); 3086 break; 3087 } 3088 m->m_pkthdr.rcvif = ifp; 3089 m->m_pkthdr.len = m->m_len = len; 3090 ifp->if_ipackets++; 3091 /* Check for VLAN tagged packets. */ 3092 if ((status & GMR_FS_VLAN) != 0 && 3093 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 3094 m->m_pkthdr.ether_vtag = sc_if->msk_vtag; 3095 m->m_flags |= M_VLANTAG; 3096 } 3097 MSK_IF_UNLOCK(sc_if); 3098 (*ifp->if_input)(ifp, m); 3099 MSK_IF_LOCK(sc_if); 3100 } while (0); 3101 3102 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT); 3103 MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT); 3104 } 3105 3106 static void 3107 msk_txeof(struct msk_if_softc *sc_if, int idx) 3108 { 3109 struct msk_txdesc *txd; 3110 struct msk_tx_desc *cur_tx; 3111 struct ifnet *ifp; 3112 uint32_t control; 3113 int cons, prog; 3114 3115 MSK_IF_LOCK_ASSERT(sc_if); 3116 3117 ifp = sc_if->msk_ifp; 3118 3119 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, 3120 sc_if->msk_cdata.msk_tx_ring_map, 3121 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3122 /* 3123 * Go through our tx ring and free mbufs for those 3124 * frames that have been sent. 3125 */ 3126 cons = sc_if->msk_cdata.msk_tx_cons; 3127 prog = 0; 3128 for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) { 3129 if (sc_if->msk_cdata.msk_tx_cnt <= 0) 3130 break; 3131 prog++; 3132 cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons]; 3133 control = le32toh(cur_tx->msk_control); 3134 sc_if->msk_cdata.msk_tx_cnt--; 3135 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3136 if ((control & EOP) == 0) 3137 continue; 3138 txd = &sc_if->msk_cdata.msk_txdesc[cons]; 3139 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap, 3140 BUS_DMASYNC_POSTWRITE); 3141 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap); 3142 3143 ifp->if_opackets++; 3144 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!", 3145 __func__)); 3146 m_freem(txd->tx_m); 3147 txd->tx_m = NULL; 3148 } 3149 3150 if (prog > 0) { 3151 sc_if->msk_cdata.msk_tx_cons = cons; 3152 if (sc_if->msk_cdata.msk_tx_cnt == 0) 3153 callout_stop(&sc_if->msk_watchdog_ch); 3154 /* No need to sync LEs as we didn't update LEs. */ 3155 } 3156 } 3157 3158 static void 3159 msk_tick(void *xsc_if) 3160 { 3161 struct msk_if_softc *sc_if; 3162 struct mii_data *mii; 3163 3164 sc_if = xsc_if; 3165 3166 MSK_IF_LOCK_ASSERT(sc_if); 3167 3168 mii = device_get_softc(sc_if->msk_miibus); 3169 3170 mii_tick(mii); 3171 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if); 3172 } 3173 3174 static void 3175 msk_intr_phy(struct msk_if_softc *sc_if) 3176 { 3177 uint16_t status; 3178 3179 if (sc_if->msk_softc->msk_marvell_phy) { 3180 msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT); 3181 status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, 3182 PHY_MARV_INT_STAT); 3183 /* Handle FIFO Underrun/Overflow? */ 3184 if ((status & PHY_M_IS_FIFO_ERROR)) 3185 device_printf(sc_if->msk_if_dev, 3186 "PHY FIFO underrun/overflow.\n"); 3187 } 3188 } 3189 3190 static void 3191 msk_intr_gmac(struct msk_if_softc *sc_if) 3192 { 3193 struct msk_softc *sc; 3194 uint8_t status; 3195 3196 sc = sc_if->msk_softc; 3197 status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC)); 3198 3199 /* GMAC Rx FIFO overrun. */ 3200 if ((status & GM_IS_RX_FF_OR) != 0) { 3201 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 3202 GMF_CLI_RX_FO); 3203 device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n"); 3204 } 3205 /* GMAC Tx FIFO underrun. */ 3206 if ((status & GM_IS_TX_FF_UR) != 0) { 3207 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3208 GMF_CLI_TX_FU); 3209 device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n"); 3210 /* 3211 * XXX 3212 * In case of Tx underrun, we may need to flush/reset 3213 * Tx MAC but that would also require resynchronization 3214 * with status LEs. Reintializing status LEs would 3215 * affect other port in dual MAC configuration so it 3216 * should be avoided as possible as we can. 3217 * Due to lack of documentation it's all vague guess but 3218 * it needs more investigation. 3219 */ 3220 } 3221 } 3222 3223 static void 3224 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status) 3225 { 3226 struct msk_softc *sc; 3227 3228 sc = sc_if->msk_softc; 3229 if ((status & Y2_IS_PAR_RD1) != 0) { 3230 device_printf(sc_if->msk_if_dev, 3231 "RAM buffer read parity error\n"); 3232 /* Clear IRQ. */ 3233 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL), 3234 RI_CLR_RD_PERR); 3235 } 3236 if ((status & Y2_IS_PAR_WR1) != 0) { 3237 device_printf(sc_if->msk_if_dev, 3238 "RAM buffer write parity error\n"); 3239 /* Clear IRQ. */ 3240 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL), 3241 RI_CLR_WR_PERR); 3242 } 3243 if ((status & Y2_IS_PAR_MAC1) != 0) { 3244 device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n"); 3245 /* Clear IRQ. */ 3246 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3247 GMF_CLI_TX_PE); 3248 } 3249 if ((status & Y2_IS_PAR_RX1) != 0) { 3250 device_printf(sc_if->msk_if_dev, "Rx parity error\n"); 3251 /* Clear IRQ. */ 3252 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR); 3253 } 3254 if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) { 3255 device_printf(sc_if->msk_if_dev, "TCP segmentation error\n"); 3256 /* Clear IRQ. */ 3257 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP); 3258 } 3259 } 3260 3261 static void 3262 msk_intr_hwerr(struct msk_softc *sc) 3263 { 3264 uint32_t status; 3265 uint32_t tlphead[4]; 3266 3267 status = CSR_READ_4(sc, B0_HWE_ISRC); 3268 /* Time Stamp timer overflow. */ 3269 if ((status & Y2_IS_TIST_OV) != 0) 3270 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 3271 if ((status & Y2_IS_PCI_NEXP) != 0) { 3272 /* 3273 * PCI Express Error occured which is not described in PEX 3274 * spec. 3275 * This error is also mapped either to Master Abort( 3276 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and 3277 * can only be cleared there. 3278 */ 3279 device_printf(sc->msk_dev, 3280 "PCI Express protocol violation error\n"); 3281 } 3282 3283 if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) { 3284 uint16_t v16; 3285 3286 if ((status & Y2_IS_MST_ERR) != 0) 3287 device_printf(sc->msk_dev, 3288 "unexpected IRQ Status error\n"); 3289 else 3290 device_printf(sc->msk_dev, 3291 "unexpected IRQ Master error\n"); 3292 /* Reset all bits in the PCI status register. */ 3293 v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2); 3294 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3295 pci_write_config(sc->msk_dev, PCIR_STATUS, v16 | 3296 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT | 3297 PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2); 3298 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3299 } 3300 3301 /* Check for PCI Express Uncorrectable Error. */ 3302 if ((status & Y2_IS_PCI_EXP) != 0) { 3303 uint32_t v32; 3304 3305 /* 3306 * On PCI Express bus bridges are called root complexes (RC). 3307 * PCI Express errors are recognized by the root complex too, 3308 * which requests the system to handle the problem. After 3309 * error occurence it may be that no access to the adapter 3310 * may be performed any longer. 3311 */ 3312 3313 v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT); 3314 if ((v32 & PEX_UNSUP_REQ) != 0) { 3315 /* Ignore unsupported request error. */ 3316 device_printf(sc->msk_dev, 3317 "Uncorrectable PCI Express error\n"); 3318 } 3319 if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) { 3320 int i; 3321 3322 /* Get TLP header form Log Registers. */ 3323 for (i = 0; i < 4; i++) 3324 tlphead[i] = CSR_PCI_READ_4(sc, 3325 PEX_HEADER_LOG + i * 4); 3326 /* Check for vendor defined broadcast message. */ 3327 if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) { 3328 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP; 3329 CSR_WRITE_4(sc, B0_HWE_IMSK, 3330 sc->msk_intrhwemask); 3331 CSR_READ_4(sc, B0_HWE_IMSK); 3332 } 3333 } 3334 /* Clear the interrupt. */ 3335 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3336 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff); 3337 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3338 } 3339 3340 if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL) 3341 msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status); 3342 if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL) 3343 msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8); 3344 } 3345 3346 static __inline void 3347 msk_rxput(struct msk_if_softc *sc_if) 3348 { 3349 struct msk_softc *sc; 3350 3351 sc = sc_if->msk_softc; 3352 if (sc_if->msk_framesize >(MCLBYTES - ETHER_HDR_LEN)) 3353 bus_dmamap_sync( 3354 sc_if->msk_cdata.msk_jumbo_rx_ring_tag, 3355 sc_if->msk_cdata.msk_jumbo_rx_ring_map, 3356 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3357 else 3358 bus_dmamap_sync( 3359 sc_if->msk_cdata.msk_rx_ring_tag, 3360 sc_if->msk_cdata.msk_rx_ring_map, 3361 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3362 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, 3363 PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod); 3364 } 3365 3366 static int 3367 msk_handle_events(struct msk_softc *sc) 3368 { 3369 struct msk_if_softc *sc_if; 3370 int rxput[2]; 3371 struct msk_stat_desc *sd; 3372 uint32_t control, status; 3373 int cons, idx, len, port, rxprog; 3374 3375 idx = CSR_READ_2(sc, STAT_PUT_IDX); 3376 if (idx == sc->msk_stat_cons) 3377 return (0); 3378 3379 /* Sync status LEs. */ 3380 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map, 3381 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3382 /* XXX Sync Rx LEs here. */ 3383 3384 rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0; 3385 3386 rxprog = 0; 3387 for (cons = sc->msk_stat_cons; cons != idx;) { 3388 sd = &sc->msk_stat_ring[cons]; 3389 control = le32toh(sd->msk_control); 3390 if ((control & HW_OWNER) == 0) 3391 break; 3392 /* 3393 * Marvell's FreeBSD driver updates status LE after clearing 3394 * HW_OWNER. However we don't have a way to sync single LE 3395 * with bus_dma(9) API. bus_dma(9) provides a way to sync 3396 * an entire DMA map. So don't sync LE until we have a better 3397 * way to sync LEs. 3398 */ 3399 control &= ~HW_OWNER; 3400 sd->msk_control = htole32(control); 3401 status = le32toh(sd->msk_status); 3402 len = control & STLE_LEN_MASK; 3403 port = (control >> 16) & 0x01; 3404 sc_if = sc->msk_if[port]; 3405 if (sc_if == NULL) { 3406 device_printf(sc->msk_dev, "invalid port opcode " 3407 "0x%08x\n", control & STLE_OP_MASK); 3408 continue; 3409 } 3410 3411 switch (control & STLE_OP_MASK) { 3412 case OP_RXVLAN: 3413 sc_if->msk_vtag = ntohs(len); 3414 break; 3415 case OP_RXCHKSVLAN: 3416 sc_if->msk_vtag = ntohs(len); 3417 break; 3418 case OP_RXSTAT: 3419 if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) 3420 msk_jumbo_rxeof(sc_if, status, len); 3421 else 3422 msk_rxeof(sc_if, status, len); 3423 rxprog++; 3424 /* 3425 * Because there is no way to sync single Rx LE 3426 * put the DMA sync operation off until the end of 3427 * event processing. 3428 */ 3429 rxput[port]++; 3430 /* Update prefetch unit if we've passed water mark. */ 3431 if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) { 3432 msk_rxput(sc_if); 3433 rxput[port] = 0; 3434 } 3435 break; 3436 case OP_TXINDEXLE: 3437 if (sc->msk_if[MSK_PORT_A] != NULL) 3438 msk_txeof(sc->msk_if[MSK_PORT_A], 3439 status & STLE_TXA1_MSKL); 3440 if (sc->msk_if[MSK_PORT_B] != NULL) 3441 msk_txeof(sc->msk_if[MSK_PORT_B], 3442 ((status & STLE_TXA2_MSKL) >> 3443 STLE_TXA2_SHIFTL) | 3444 ((len & STLE_TXA2_MSKH) << 3445 STLE_TXA2_SHIFTH)); 3446 break; 3447 default: 3448 device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n", 3449 control & STLE_OP_MASK); 3450 break; 3451 } 3452 MSK_INC(cons, MSK_STAT_RING_CNT); 3453 if (rxprog > sc->msk_process_limit) 3454 break; 3455 } 3456 3457 sc->msk_stat_cons = cons; 3458 /* XXX We should sync status LEs here. See above notes. */ 3459 3460 if (rxput[MSK_PORT_A] > 0) 3461 msk_rxput(sc->msk_if[MSK_PORT_A]); 3462 if (rxput[MSK_PORT_B] > 0) 3463 msk_rxput(sc->msk_if[MSK_PORT_B]); 3464 3465 return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX)); 3466 } 3467 3468 static void 3469 msk_intr(void *xsc) 3470 { 3471 struct msk_softc *sc; 3472 uint32_t status; 3473 3474 sc = xsc; 3475 status = CSR_READ_4(sc, B0_Y2_SP_ISRC2); 3476 /* Reading B0_Y2_SP_ISRC2 masks further interrupts. */ 3477 if (status == 0 || status == 0xffffffff) { 3478 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2); 3479 return; 3480 } 3481 3482 taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task); 3483 } 3484 3485 static void 3486 msk_int_task(void *arg, int pending) 3487 { 3488 struct msk_softc *sc; 3489 struct msk_if_softc *sc_if0, *sc_if1; 3490 struct ifnet *ifp0, *ifp1; 3491 uint32_t status; 3492 int domore; 3493 3494 sc = arg; 3495 MSK_LOCK(sc); 3496 3497 /* Get interrupt source. */ 3498 status = CSR_READ_4(sc, B0_ISRC); 3499 if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 || 3500 (status & sc->msk_intrmask) == 0) 3501 goto done; 3502 3503 sc_if0 = sc->msk_if[MSK_PORT_A]; 3504 sc_if1 = sc->msk_if[MSK_PORT_B]; 3505 ifp0 = ifp1 = NULL; 3506 if (sc_if0 != NULL) { 3507 ifp0 = sc_if0->msk_ifp; 3508 if ((ifp0->if_drv_flags & IFF_DRV_RUNNING) == 0) 3509 goto done; 3510 } 3511 if (sc_if1 != NULL) { 3512 ifp1 = sc_if1->msk_ifp; 3513 if ((ifp1->if_drv_flags & IFF_DRV_RUNNING) == 0) 3514 goto done; 3515 } 3516 3517 if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL) 3518 msk_intr_phy(sc_if0); 3519 if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL) 3520 msk_intr_phy(sc_if1); 3521 if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL) 3522 msk_intr_gmac(sc_if0); 3523 if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL) 3524 msk_intr_gmac(sc_if1); 3525 if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) { 3526 device_printf(sc->msk_dev, "Rx descriptor error\n"); 3527 sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2); 3528 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3529 CSR_READ_4(sc, B0_IMSK); 3530 } 3531 if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) { 3532 device_printf(sc->msk_dev, "Tx descriptor error\n"); 3533 sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2); 3534 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3535 CSR_READ_4(sc, B0_IMSK); 3536 } 3537 if ((status & Y2_IS_HW_ERR) != 0) 3538 msk_intr_hwerr(sc); 3539 3540 domore = msk_handle_events(sc); 3541 if ((status & Y2_IS_STAT_BMU) != 0) 3542 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ); 3543 3544 if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd)) 3545 taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task); 3546 if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd)) 3547 taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task); 3548 3549 if (domore > 0) { 3550 taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task); 3551 MSK_UNLOCK(sc); 3552 return; 3553 } 3554 done: 3555 MSK_UNLOCK(sc); 3556 3557 /* Reenable interrupts. */ 3558 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2); 3559 } 3560 3561 static void 3562 msk_init(void *xsc) 3563 { 3564 struct msk_if_softc *sc_if = xsc; 3565 3566 MSK_IF_LOCK(sc_if); 3567 msk_init_locked(sc_if); 3568 MSK_IF_UNLOCK(sc_if); 3569 } 3570 3571 static void 3572 msk_init_locked(struct msk_if_softc *sc_if) 3573 { 3574 struct msk_softc *sc; 3575 struct ifnet *ifp; 3576 struct mii_data *mii; 3577 uint16_t eaddr[ETHER_ADDR_LEN / 2]; 3578 uint16_t gmac; 3579 int error, i; 3580 3581 MSK_IF_LOCK_ASSERT(sc_if); 3582 3583 ifp = sc_if->msk_ifp; 3584 sc = sc_if->msk_softc; 3585 mii = device_get_softc(sc_if->msk_miibus); 3586 3587 error = 0; 3588 /* Cancel pending I/O and free all Rx/Tx buffers. */ 3589 msk_stop(sc_if); 3590 3591 sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + 3592 ETHER_VLAN_ENCAP_LEN; 3593 3594 /* 3595 * Initialize GMAC first. 3596 * Without this initialization, Rx MAC did not work as expected 3597 * and Rx MAC garbled status LEs and it resulted in out-of-order 3598 * or duplicated frame delivery which in turn showed very poor 3599 * Rx performance.(I had to write a packet analysis code that 3600 * could be embeded in driver to diagnose this issue.) 3601 * I've spent almost 2 months to fix this issue. If I have had 3602 * datasheet for Yukon II I wouldn't have encountered this. :-( 3603 */ 3604 gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL; 3605 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac); 3606 3607 /* Dummy read the Interrupt Source Register. */ 3608 CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC)); 3609 3610 /* Set MIB Clear Counter Mode. */ 3611 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR); 3612 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR); 3613 /* Read all MIB Counters with Clear Mode set. */ 3614 for (i = 0; i < GM_MIB_CNT_SIZE; i++) 3615 GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i); 3616 /* Clear MIB Clear Counter Mode. */ 3617 gmac &= ~GM_PAR_MIB_CLR; 3618 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac); 3619 3620 /* Disable FCS. */ 3621 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS); 3622 3623 /* Setup Transmit Control Register. */ 3624 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); 3625 3626 /* Setup Transmit Flow Control Register. */ 3627 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff); 3628 3629 /* Setup Transmit Parameter Register. */ 3630 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM, 3631 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | 3632 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF)); 3633 3634 gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) | 3635 GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); 3636 3637 if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) 3638 gmac |= GM_SMOD_JUMBO_ENA; 3639 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac); 3640 3641 /* Set station address. */ 3642 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 3643 for (i = 0; i < ETHER_ADDR_LEN /2; i++) 3644 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4, 3645 eaddr[i]); 3646 for (i = 0; i < ETHER_ADDR_LEN /2; i++) 3647 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4, 3648 eaddr[i]); 3649 3650 /* Disable interrupts for counter overflows. */ 3651 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0); 3652 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0); 3653 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0); 3654 3655 /* Configure Rx MAC FIFO. */ 3656 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET); 3657 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR); 3658 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), 3659 GMF_OPER_ON | GMF_RX_F_FL_ON); 3660 3661 /* Set promiscuous mode. */ 3662 msk_setpromisc(sc_if); 3663 3664 /* Set multicast filter. */ 3665 msk_setmulti(sc_if); 3666 3667 /* Flush Rx MAC FIFO on any flow control or error. */ 3668 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 3669 GMR_FS_ANY_ERR); 3670 3671 /* Set Rx FIFO flush threshold to 64 bytes. */ 3672 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), 3673 RX_GMF_FL_THR_DEF); 3674 3675 /* Configure Tx MAC FIFO. */ 3676 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET); 3677 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR); 3678 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON); 3679 3680 /* Configure hardware VLAN tag insertion/stripping. */ 3681 msk_setvlan(sc_if, ifp); 3682 3683 /* XXX It seems STFW is requried for all cases. */ 3684 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), TX_STFW_ENA); 3685 3686 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) { 3687 /* Set Rx Pause threshould. */ 3688 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR), 3689 MSK_ECU_LLPP); 3690 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR), 3691 MSK_ECU_ULPP); 3692 if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) { 3693 /* 3694 * Can't sure the following code is needed as Yukon 3695 * Yukon EC Ultra may not support jumbo frames. 3696 * 3697 * Set Tx GMAC FIFO Almost Empty Threshold. 3698 */ 3699 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR), 3700 MSK_ECU_AE_THR); 3701 /* Disable Store & Forward mode for Tx. */ 3702 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), 3703 TX_STFW_DIS); 3704 } 3705 } 3706 3707 /* 3708 * Disable Force Sync bit and Alloc bit in Tx RAM interface 3709 * arbiter as we don't use Sync Tx queue. 3710 */ 3711 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), 3712 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); 3713 /* Enable the RAM Interface Arbiter. */ 3714 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB); 3715 3716 /* Setup RAM buffer. */ 3717 msk_set_rambuffer(sc_if); 3718 3719 /* Disable Tx sync Queue. */ 3720 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET); 3721 3722 /* Setup Tx Queue Bus Memory Interface. */ 3723 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET); 3724 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT); 3725 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON); 3726 /* Increase IPID when hardware generates IP packets in TSO. */ 3727 if ((ifp->if_hwassist & CSUM_TSO) != 0) 3728 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), 3729 BMU_TX_IPIDINCR_ON); 3730 else 3731 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), 3732 BMU_TX_IPIDINCR_OFF); 3733 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM); 3734 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U && 3735 sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) { 3736 /* Fix for Yukon-EC Ultra: set BMU FIFO level */ 3737 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV); 3738 } 3739 3740 /* Setup Rx Queue Bus Memory Interface. */ 3741 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET); 3742 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT); 3743 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON); 3744 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM); 3745 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U && 3746 sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) { 3747 /* MAC Rx RAM Read is controlled by hardware. */ 3748 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS); 3749 } 3750 3751 msk_set_prefetch(sc, sc_if->msk_txq, 3752 sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1); 3753 msk_init_tx_ring(sc_if); 3754 3755 /* Disable Rx checksum offload and RSS hash. */ 3756 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), 3757 BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH); 3758 if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) { 3759 msk_set_prefetch(sc, sc_if->msk_rxq, 3760 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr, 3761 MSK_JUMBO_RX_RING_CNT - 1); 3762 error = msk_init_jumbo_rx_ring(sc_if); 3763 } else { 3764 msk_set_prefetch(sc, sc_if->msk_rxq, 3765 sc_if->msk_rdata.msk_rx_ring_paddr, 3766 MSK_RX_RING_CNT - 1); 3767 error = msk_init_rx_ring(sc_if); 3768 } 3769 if (error != 0) { 3770 device_printf(sc_if->msk_if_dev, 3771 "initialization failed: no memory for Rx buffers\n"); 3772 msk_stop(sc_if); 3773 return; 3774 } 3775 3776 /* Configure interrupt handling. */ 3777 if (sc_if->msk_port == MSK_PORT_A) { 3778 sc->msk_intrmask |= Y2_IS_PORT_A; 3779 sc->msk_intrhwemask |= Y2_HWE_L1_MASK; 3780 } else { 3781 sc->msk_intrmask |= Y2_IS_PORT_B; 3782 sc->msk_intrhwemask |= Y2_HWE_L2_MASK; 3783 } 3784 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask); 3785 CSR_READ_4(sc, B0_HWE_IMSK); 3786 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3787 CSR_READ_4(sc, B0_IMSK); 3788 3789 sc_if->msk_link = 0; 3790 mii_mediachg(mii); 3791 3792 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3793 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3794 3795 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if); 3796 } 3797 3798 static void 3799 msk_set_rambuffer(struct msk_if_softc *sc_if) 3800 { 3801 struct msk_softc *sc; 3802 int ltpp, utpp; 3803 3804 sc = sc_if->msk_softc; 3805 3806 /* Setup Rx Queue. */ 3807 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR); 3808 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START), 3809 sc->msk_rxqstart[sc_if->msk_port] / 8); 3810 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END), 3811 sc->msk_rxqend[sc_if->msk_port] / 8); 3812 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP), 3813 sc->msk_rxqstart[sc_if->msk_port] / 8); 3814 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP), 3815 sc->msk_rxqstart[sc_if->msk_port] / 8); 3816 3817 utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 - 3818 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8; 3819 ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 - 3820 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8; 3821 if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE) 3822 ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8; 3823 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp); 3824 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp); 3825 /* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */ 3826 3827 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD); 3828 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL)); 3829 3830 /* Setup Tx Queue. */ 3831 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR); 3832 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START), 3833 sc->msk_txqstart[sc_if->msk_port] / 8); 3834 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END), 3835 sc->msk_txqend[sc_if->msk_port] / 8); 3836 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP), 3837 sc->msk_txqstart[sc_if->msk_port] / 8); 3838 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP), 3839 sc->msk_txqstart[sc_if->msk_port] / 8); 3840 /* Enable Store & Forward for Tx side. */ 3841 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD); 3842 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD); 3843 CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL)); 3844 } 3845 3846 static void 3847 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr, 3848 uint32_t count) 3849 { 3850 3851 /* Reset the prefetch unit. */ 3852 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), 3853 PREF_UNIT_RST_SET); 3854 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), 3855 PREF_UNIT_RST_CLR); 3856 /* Set LE base address. */ 3857 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG), 3858 MSK_ADDR_LO(addr)); 3859 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG), 3860 MSK_ADDR_HI(addr)); 3861 /* Set the list last index. */ 3862 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG), 3863 count); 3864 /* Turn on prefetch unit. */ 3865 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), 3866 PREF_UNIT_OP_ON); 3867 /* Dummy read to ensure write. */ 3868 CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG)); 3869 } 3870 3871 static void 3872 msk_stop(struct msk_if_softc *sc_if) 3873 { 3874 struct msk_softc *sc; 3875 struct msk_txdesc *txd; 3876 struct msk_rxdesc *rxd; 3877 struct msk_rxdesc *jrxd; 3878 struct ifnet *ifp; 3879 uint32_t val; 3880 int i; 3881 3882 MSK_IF_LOCK_ASSERT(sc_if); 3883 sc = sc_if->msk_softc; 3884 ifp = sc_if->msk_ifp; 3885 3886 callout_stop(&sc_if->msk_tick_ch); 3887 callout_stop(&sc_if->msk_watchdog_ch); 3888 3889 /* Disable interrupts. */ 3890 if (sc_if->msk_port == MSK_PORT_A) { 3891 sc->msk_intrmask &= ~Y2_IS_PORT_A; 3892 sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK; 3893 } else { 3894 sc->msk_intrmask &= ~Y2_IS_PORT_B; 3895 sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK; 3896 } 3897 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask); 3898 CSR_READ_4(sc, B0_HWE_IMSK); 3899 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); 3900 CSR_READ_4(sc, B0_IMSK); 3901 3902 /* Disable Tx/Rx MAC. */ 3903 val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 3904 val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 3905 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val); 3906 /* Read again to ensure writing. */ 3907 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); 3908 3909 /* Stop Tx BMU. */ 3910 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP); 3911 val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR)); 3912 for (i = 0; i < MSK_TIMEOUT; i++) { 3913 if ((val & (BMU_STOP | BMU_IDLE)) == 0) { 3914 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), 3915 BMU_STOP); 3916 CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR)); 3917 } else 3918 break; 3919 DELAY(1); 3920 } 3921 if (i == MSK_TIMEOUT) 3922 device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n"); 3923 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), 3924 RB_RST_SET | RB_DIS_OP_MD); 3925 3926 /* Disable all GMAC interrupt. */ 3927 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0); 3928 /* Disable PHY interrupt. */ 3929 if (sc->msk_marvell_phy) 3930 msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0); 3931 3932 /* Disable the RAM Interface Arbiter. */ 3933 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB); 3934 3935 /* Reset the PCI FIFO of the async Tx queue */ 3936 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), 3937 BMU_RST_SET | BMU_FIFO_RST); 3938 3939 /* Reset the Tx prefetch units. */ 3940 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG), 3941 PREF_UNIT_RST_SET); 3942 3943 /* Reset the RAM Buffer async Tx queue. */ 3944 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET); 3945 3946 /* Reset Tx MAC FIFO. */ 3947 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET); 3948 /* Set Pause Off. */ 3949 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF); 3950 3951 /* 3952 * The Rx Stop command will not work for Yukon-2 if the BMU does not 3953 * reach the end of packet and since we can't make sure that we have 3954 * incoming data, we must reset the BMU while it is not during a DMA 3955 * transfer. Since it is possible that the Rx path is still active, 3956 * the Rx RAM buffer will be stopped first, so any possible incoming 3957 * data will not trigger a DMA. After the RAM buffer is stopped, the 3958 * BMU is polled until any DMA in progress is ended and only then it 3959 * will be reset. 3960 */ 3961 3962 /* Disable the RAM Buffer receive queue. */ 3963 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD); 3964 for (i = 0; i < MSK_TIMEOUT; i++) { 3965 if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) == 3966 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL))) 3967 break; 3968 DELAY(1); 3969 } 3970 if (i == MSK_TIMEOUT) 3971 device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n"); 3972 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), 3973 BMU_RST_SET | BMU_FIFO_RST); 3974 /* Reset the Rx prefetch unit. */ 3975 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG), 3976 PREF_UNIT_RST_SET); 3977 /* Reset the RAM Buffer receive queue. */ 3978 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET); 3979 /* Reset Rx MAC FIFO. */ 3980 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET); 3981 3982 /* Free Rx and Tx mbufs still in the queues. */ 3983 for (i = 0; i < MSK_RX_RING_CNT; i++) { 3984 rxd = &sc_if->msk_cdata.msk_rxdesc[i]; 3985 if (rxd->rx_m != NULL) { 3986 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, 3987 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3988 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, 3989 rxd->rx_dmamap); 3990 m_freem(rxd->rx_m); 3991 rxd->rx_m = NULL; 3992 } 3993 } 3994 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { 3995 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; 3996 if (jrxd->rx_m != NULL) { 3997 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, 3998 jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3999 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag, 4000 jrxd->rx_dmamap); 4001 m_freem(jrxd->rx_m); 4002 jrxd->rx_m = NULL; 4003 } 4004 } 4005 for (i = 0; i < MSK_TX_RING_CNT; i++) { 4006 txd = &sc_if->msk_cdata.msk_txdesc[i]; 4007 if (txd->tx_m != NULL) { 4008 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, 4009 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 4010 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, 4011 txd->tx_dmamap); 4012 m_freem(txd->tx_m); 4013 txd->tx_m = NULL; 4014 } 4015 } 4016 4017 /* 4018 * Mark the interface down. 4019 */ 4020 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 4021 sc_if->msk_link = 0; 4022 } 4023 4024 static int 4025 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 4026 { 4027 int error, value; 4028 4029 if (!arg1) 4030 return (EINVAL); 4031 value = *(int *)arg1; 4032 error = sysctl_handle_int(oidp, &value, 0, req); 4033 if (error || !req->newptr) 4034 return (error); 4035 if (value < low || value > high) 4036 return (EINVAL); 4037 *(int *)arg1 = value; 4038 4039 return (0); 4040 } 4041 4042 static int 4043 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS) 4044 { 4045 4046 return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN, 4047 MSK_PROC_MAX)); 4048 } 4049