xref: /freebsd/sys/dev/mrsas/mrsas_fp.c (revision e9d419a05357036ea2fd37218d853d2c713d55cc)
1 /*
2  * Copyright (c) 2015, AVAGO Tech. All rights reserved. Author: Marian Choy
3  * Copyright (c) 2014, LSI Corp. All rights reserved. Author: Marian Choy
4  * Support: freebsdraid@avagotech.com
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are
8  * met:
9  *
10  * 1. Redistributions of source code must retain the above copyright notice,
11  * this list of conditions and the following disclaimer. 2. Redistributions
12  * in binary form must reproduce the above copyright notice, this list of
13  * conditions and the following disclaimer in the documentation and/or other
14  * materials provided with the distribution. 3. Neither the name of the
15  * <ORGANIZATION> nor the names of its contributors may be used to endorse or
16  * promote products derived from this software without specific prior written
17  * permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * The views and conclusions contained in the software and documentation are
32  * those of the authors and should not be interpreted as representing
33  * official policies,either expressed or implied, of the FreeBSD Project.
34  *
35  * Send feedback to: <megaraidfbsd@avagotech.com> Mail to: AVAGO TECHNOLOGIES, 1621
36  * Barber Lane, Milpitas, CA 95035 ATTN: MegaRaid FreeBSD
37  *
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include <dev/mrsas/mrsas.h>
44 
45 #include <cam/cam.h>
46 #include <cam/cam_ccb.h>
47 #include <cam/cam_sim.h>
48 #include <cam/cam_xpt_sim.h>
49 #include <cam/cam_debug.h>
50 #include <cam/cam_periph.h>
51 #include <cam/cam_xpt_periph.h>
52 
53 /*
54  * Function prototypes
55  */
56 u_int8_t MR_ValidateMapInfo(struct mrsas_softc *sc);
57 u_int8_t
58 mrsas_get_best_arm_pd(struct mrsas_softc *sc,
59     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
60 u_int8_t
61 MR_BuildRaidContext(struct mrsas_softc *sc,
62     struct IO_REQUEST_INFO *io_info,
63     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
64 u_int8_t
65 MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
66     u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
67     RAID_CONTEXT * pRAID_Context,
68     MR_DRV_RAID_MAP_ALL * map);
69 u_int8_t MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL *map);
70 u_int32_t MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
71 u_int16_t MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
72 u_int16_t
73 mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
74     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
75 u_int32_t mega_mod64(u_int64_t dividend, u_int32_t divisor);
76 u_int32_t
77 MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
78     MR_DRV_RAID_MAP_ALL * map, int *div_error);
79 u_int64_t mega_div64_32(u_int64_t dividend, u_int32_t divisor);
80 void
81 mrsas_update_load_balance_params(struct mrsas_softc *sc,
82     MR_DRV_RAID_MAP_ALL * map, PLD_LOAD_BALANCE_INFO lbInfo);
83 void
84 mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request,
85     u_int8_t cdb_len, struct IO_REQUEST_INFO *io_info, union ccb *ccb,
86     MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
87     u_int32_t ld_block_size);
88 static u_int16_t
89 MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span,
90     MR_DRV_RAID_MAP_ALL * map);
91 static u_int16_t MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map);
92 static u_int16_t
93 MR_ArPdGet(u_int32_t ar, u_int32_t arm,
94     MR_DRV_RAID_MAP_ALL * map);
95 static MR_LD_SPAN *
96 MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span,
97     MR_DRV_RAID_MAP_ALL * map);
98 static u_int8_t
99 MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx,
100     MR_DRV_RAID_MAP_ALL * map);
101 static MR_SPAN_BLOCK_INFO *
102 MR_LdSpanInfoGet(u_int32_t ld,
103     MR_DRV_RAID_MAP_ALL * map);
104 MR_LD_RAID *MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
105 static int MR_PopulateDrvRaidMap(struct mrsas_softc *sc);
106 
107 /*
108  * Spanset related function prototypes Added for PRL11 configuration (Uneven
109  * span support)
110  */
111 void	mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo);
112 static u_int8_t
113 mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld,
114     u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
115     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
116 static u_int64_t
117 get_row_from_strip(struct mrsas_softc *sc, u_int32_t ld,
118     u_int64_t strip, MR_DRV_RAID_MAP_ALL * map);
119 static u_int32_t
120 mr_spanset_get_span_block(struct mrsas_softc *sc,
121     u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
122     MR_DRV_RAID_MAP_ALL * map, int *div_error);
123 static u_int8_t
124 get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span,
125     u_int64_t stripe, MR_DRV_RAID_MAP_ALL * map);
126 
127 /*
128  * Spanset related defines Added for PRL11 configuration(Uneven span support)
129  */
130 #define	SPAN_ROW_SIZE(map, ld, index_) MR_LdSpanPtrGet(ld, index_, map)->spanRowSize
131 #define	SPAN_ROW_DATA_SIZE(map_, ld, index_)	\
132 	MR_LdSpanPtrGet(ld, index_, map)->spanRowDataSize
133 #define	SPAN_INVALID	0xff
134 #define	SPAN_DEBUG		0
135 
136 /*
137  * Related Defines
138  */
139 
140 typedef u_int64_t REGION_KEY;
141 typedef u_int32_t REGION_LEN;
142 
143 #define	MR_LD_STATE_OPTIMAL		3
144 #define	FALSE					0
145 #define	TRUE					1
146 
147 #define	LB_PENDING_CMDS_DEFAULT 4
148 
149 /*
150  * Related Macros
151  */
152 
153 #define	ABS_DIFF(a,b)   ( ((a) > (b)) ? ((a) - (b)) : ((b) - (a)) )
154 
155 #define	swap32(x) \
156   ((unsigned int)( \
157     (((unsigned int)(x) & (unsigned int)0x000000ffUL) << 24) | \
158     (((unsigned int)(x) & (unsigned int)0x0000ff00UL) <<  8) | \
159     (((unsigned int)(x) & (unsigned int)0x00ff0000UL) >>  8) | \
160     (((unsigned int)(x) & (unsigned int)0xff000000UL) >> 24) ))
161 
162 /*
163  * In-line functions for mod and divide of 64-bit dividend and 32-bit
164  * divisor. Assumes a check for a divisor of zero is not possible.
165  *
166  * @param dividend:	Dividend
167  * @param divisor:	Divisor
168  * @return			remainder
169  */
170 
171 #define	mega_mod64(dividend, divisor) ({ \
172 int remainder; \
173 remainder = ((u_int64_t) (dividend)) % (u_int32_t) (divisor); \
174 remainder;})
175 
176 #define	mega_div64_32(dividend, divisor) ({ \
177 int quotient; \
178 quotient = ((u_int64_t) (dividend)) / (u_int32_t) (divisor); \
179 quotient;})
180 
181 /*
182  * Various RAID map access functions.  These functions access the various
183  * parts of the RAID map and returns the appropriate parameters.
184  */
185 
186 MR_LD_RAID *
187 MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
188 {
189 	return (&map->raidMap.ldSpanMap[ld].ldRaid);
190 }
191 
192 u_int16_t
193 MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
194 {
195 	return le16toh(map->raidMap.ldSpanMap[ld].ldRaid.targetId);
196 }
197 
198 static u_int16_t
199 MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
200 {
201 	return le16toh(map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef);
202 }
203 
204 static u_int8_t
205 MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx, MR_DRV_RAID_MAP_ALL * map)
206 {
207 	return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx];
208 }
209 
210 static u_int16_t
211 MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map)
212 {
213 	return map->raidMap.devHndlInfo[pd].curDevHdl;
214 }
215 
216 static u_int8_t MR_PdInterfaceTypeGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL *map)
217 {
218     return map->raidMap.devHndlInfo[pd].interfaceType;
219 }
220 
221 static u_int16_t
222 MR_ArPdGet(u_int32_t ar, u_int32_t arm, MR_DRV_RAID_MAP_ALL * map)
223 {
224 	return le16toh(map->raidMap.arMapInfo[ar].pd[arm]);
225 }
226 
227 static MR_LD_SPAN *
228 MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
229 {
230 	return &map->raidMap.ldSpanMap[ld].spanBlock[span].span;
231 }
232 
233 static MR_SPAN_BLOCK_INFO *
234 MR_LdSpanInfoGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
235 {
236 	return &map->raidMap.ldSpanMap[ld].spanBlock[0];
237 }
238 
239 u_int8_t
240 MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
241 {
242 	return map->raidMap.ldTgtIdToLd[ldTgtId];
243 }
244 
245 u_int32_t
246 MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
247 {
248 	MR_LD_RAID *raid;
249 	u_int32_t ld, ldBlockSize = MRSAS_SCSIBLOCKSIZE;
250 
251 	ld = MR_TargetIdToLdGet(ldTgtId, map);
252 
253 	/*
254 	 * Check if logical drive was removed.
255 	 */
256 	if (ld >= MAX_LOGICAL_DRIVES)
257 		return ldBlockSize;
258 
259 	raid = MR_LdRaidGet(ld, map);
260 	ldBlockSize = raid->logicalBlockLength;
261 	if (!ldBlockSize)
262 		ldBlockSize = MRSAS_SCSIBLOCKSIZE;
263 
264 	return ldBlockSize;
265 }
266 
267 /*
268  * This function will Populate Driver Map using Dynamic firmware raid map
269  */
270 static int
271 MR_PopulateDrvRaidMapVentura(struct mrsas_softc *sc)
272 {
273 	unsigned int i, j;
274 	u_int16_t ld_count;
275 
276 	MR_FW_RAID_MAP_DYNAMIC *fw_map_dyn;
277 	MR_RAID_MAP_DESC_TABLE *desc_table;
278 	MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
279 	MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
280 	void *raid_map_data = NULL;
281 
282 	fw_map_dyn = (MR_FW_RAID_MAP_DYNAMIC *) sc->raidmap_mem[(sc->map_id & 1)];
283 
284 	if (fw_map_dyn == NULL) {
285 		device_printf(sc->mrsas_dev,
286 		    "from %s %d map0  %p map1 %p map size %d \n", __func__, __LINE__,
287 		    sc->raidmap_mem[0], sc->raidmap_mem[1], sc->maxRaidMapSize);
288 		return 1;
289 	}
290 #if VD_EXT_DEBUG
291 	device_printf(sc->mrsas_dev,
292 	    " raidMapSize 0x%x, descTableOffset 0x%x, "
293 	    " descTableSize 0x%x, descTableNumElements 0x%x \n",
294 	    fw_map_dyn->raidMapSize, le32toh(fw_map_dyn->descTableOffset),
295 	    fw_map_dyn->descTableSize, fw_map_dyn->descTableNumElements);
296 #endif
297 	desc_table = (MR_RAID_MAP_DESC_TABLE *) ((char *)fw_map_dyn +
298 	    le32toh(fw_map_dyn->descTableOffset));
299 	if (desc_table != fw_map_dyn->raidMapDescTable) {
300 		device_printf(sc->mrsas_dev,
301 		    "offsets of desc table are not matching returning "
302 		    " FW raid map has been changed: desc %p original %p\n",
303 		    desc_table, fw_map_dyn->raidMapDescTable);
304 	}
305 	memset(drv_map, 0, sc->drv_map_sz);
306 	ld_count = le16toh(fw_map_dyn->ldCount);
307 	pDrvRaidMap->ldCount = htole16(ld_count);
308 	pDrvRaidMap->fpPdIoTimeoutSec = fw_map_dyn->fpPdIoTimeoutSec;
309 	pDrvRaidMap->totalSize = htole32(sizeof(MR_DRV_RAID_MAP_ALL));
310 	/* point to actual data starting point */
311 	raid_map_data = (char *)fw_map_dyn +
312 	    le32toh(fw_map_dyn->descTableOffset) +
313 	    le32toh(fw_map_dyn->descTableSize);
314 
315 	for (i = 0; i < le32toh(fw_map_dyn->descTableNumElements); ++i) {
316 		if (!desc_table) {
317 			device_printf(sc->mrsas_dev,
318 			    "desc table is null, coming out %p \n", desc_table);
319 			return 1;
320 		}
321 #if VD_EXT_DEBUG
322 		device_printf(sc->mrsas_dev, "raid_map_data %p \n", raid_map_data);
323 		device_printf(sc->mrsas_dev,
324 		    "desc table %p \n", desc_table);
325 		device_printf(sc->mrsas_dev,
326 		    "raidmap type %d, raidmapOffset 0x%x, "
327 		    " raid map number of elements 0%x, raidmapsize 0x%x\n",
328 		    le32toh(desc_table->raidMapDescType), desc_table->raidMapDescOffset,
329 		    le32toh(desc_table->raidMapDescElements), desc_table->raidMapDescBufferSize);
330 #endif
331 		switch (le32toh(desc_table->raidMapDescType)) {
332 		case RAID_MAP_DESC_TYPE_DEVHDL_INFO:
333 			fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo = (MR_DEV_HANDLE_INFO *)
334 			    ((char *)raid_map_data + le32toh(desc_table->raidMapDescOffset));
335 #if VD_EXT_DEBUG
336 			device_printf(sc->mrsas_dev,
337 			    "devHndlInfo address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo);
338 #endif
339 			memcpy(pDrvRaidMap->devHndlInfo, fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo,
340 			    sizeof(MR_DEV_HANDLE_INFO) * le32toh(desc_table->raidMapDescElements));
341 			break;
342 		case RAID_MAP_DESC_TYPE_TGTID_INFO:
343 			fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd = (u_int16_t *)
344 			    ((char *)raid_map_data +
345 			     le32toh(desc_table->raidMapDescOffset));
346 #if VD_EXT_DEBUG
347 			device_printf(sc->mrsas_dev,
348 			    "ldTgtIdToLd  address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd);
349 #endif
350 			for (j = 0; j < le32toh(desc_table->raidMapDescElements); j++) {
351 				pDrvRaidMap->ldTgtIdToLd[j] = fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd[j];
352 #if VD_EXT_DEBUG
353 				device_printf(sc->mrsas_dev,
354 				    " %d drv ldTgtIdToLd %d\n",	j, pDrvRaidMap->ldTgtIdToLd[j]);
355 #endif
356 			}
357 			break;
358 		case RAID_MAP_DESC_TYPE_ARRAY_INFO:
359 			fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo = (MR_ARRAY_INFO *) ((char *)raid_map_data +
360 			    le32toh(desc_table->raidMapDescOffset));
361 #if VD_EXT_DEBUG
362 			device_printf(sc->mrsas_dev,
363 			    "arMapInfo  address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo);
364 #endif
365 			memcpy(pDrvRaidMap->arMapInfo, fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo,
366 			    sizeof(MR_ARRAY_INFO) * le32toh(desc_table->raidMapDescElements));
367 			break;
368 		case RAID_MAP_DESC_TYPE_SPAN_INFO:
369 			fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap = (MR_LD_SPAN_MAP *) ((char *)raid_map_data +
370 			    le32toh(desc_table->raidMapDescOffset));
371 			memcpy(pDrvRaidMap->ldSpanMap, fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap,
372 			    sizeof(MR_LD_SPAN_MAP) *
373 			    le32toh(desc_table->raidMapDescElements));
374 #if VD_EXT_DEBUG
375 			device_printf(sc->mrsas_dev,
376 			    "ldSpanMap  address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap);
377 			device_printf(sc->mrsas_dev,
378 			    "MR_LD_SPAN_MAP size 0x%lx\n", sizeof(MR_LD_SPAN_MAP));
379 			for (j = 0; j < ld_count; j++) {
380 				printf("mrsas(%d) : fw_map_dyn->ldSpanMap[%d].ldRaid.targetId 0x%x "
381 				    "fw_map_dyn->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
382 				    j, j, fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.targetId, j,
383 				    fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.seqNum,
384 				    (u_int32_t)fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.rowSize);
385 				printf("mrsas(%d) : pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x "
386 				    "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
387 				    j, j, pDrvRaidMap->ldSpanMap[j].ldRaid.targetId, j,
388 				    pDrvRaidMap->ldSpanMap[j].ldRaid.seqNum,
389 				    (u_int32_t)pDrvRaidMap->ldSpanMap[j].ldRaid.rowSize);
390 				printf("mrsas : drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
391 				    drv_map, pDrvRaidMap, &fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid,
392 				    &pDrvRaidMap->ldSpanMap[j].ldRaid);
393 			}
394 #endif
395 			break;
396 		default:
397 			device_printf(sc->mrsas_dev,
398 			    "wrong number of desctableElements %d\n",
399 			    fw_map_dyn->descTableNumElements);
400 		}
401 		++desc_table;
402 	}
403 	return 0;
404 }
405 
406 /*
407  * This function will Populate Driver Map using firmware raid map
408  */
409 static int
410 MR_PopulateDrvRaidMap(struct mrsas_softc *sc)
411 {
412 	MR_FW_RAID_MAP_ALL *fw_map_old = NULL;
413 	MR_FW_RAID_MAP_EXT *fw_map_ext;
414 	MR_FW_RAID_MAP *pFwRaidMap = NULL;
415 	unsigned int i;
416 	u_int16_t ld_count;
417 
418 	MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
419 	MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
420 
421 	if (sc->maxRaidMapSize) {
422 		return MR_PopulateDrvRaidMapVentura(sc);
423 	} else if (sc->max256vdSupport) {
424 		fw_map_ext = (MR_FW_RAID_MAP_EXT *) sc->raidmap_mem[(sc->map_id & 1)];
425 		ld_count = (u_int16_t)le16toh(fw_map_ext->ldCount);
426 		if (ld_count > MAX_LOGICAL_DRIVES_EXT) {
427 			device_printf(sc->mrsas_dev,
428 			    "mrsas: LD count exposed in RAID map in not valid\n");
429 			return 1;
430 		}
431 #if VD_EXT_DEBUG
432 		for (i = 0; i < ld_count; i++) {
433 			printf("mrsas : Index 0x%x Target Id 0x%x Seq Num 0x%x Size 0/%lx\n",
434 			    i, fw_map_ext->ldSpanMap[i].ldRaid.targetId,
435 			    fw_map_ext->ldSpanMap[i].ldRaid.seqNum,
436 			    fw_map_ext->ldSpanMap[i].ldRaid.size);
437 		}
438 #endif
439 		memset(drv_map, 0, sc->drv_map_sz);
440 		pDrvRaidMap->ldCount = htole16(ld_count);
441 		pDrvRaidMap->fpPdIoTimeoutSec = fw_map_ext->fpPdIoTimeoutSec;
442 		for (i = 0; i < (MAX_LOGICAL_DRIVES_EXT); i++) {
443 			pDrvRaidMap->ldTgtIdToLd[i] = (u_int16_t)fw_map_ext->ldTgtIdToLd[i];
444 		}
445 		memcpy(pDrvRaidMap->ldSpanMap, fw_map_ext->ldSpanMap, sizeof(MR_LD_SPAN_MAP) * ld_count);
446 #if VD_EXT_DEBUG
447 		for (i = 0; i < ld_count; i++) {
448 			printf("mrsas(%d) : fw_map_ext->ldSpanMap[%d].ldRaid.targetId 0x%x "
449 			    "fw_map_ext->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
450 			    i, i, fw_map_ext->ldSpanMap[i].ldRaid.targetId, i,
451 			    fw_map_ext->ldSpanMap[i].ldRaid.seqNum,
452 			    (u_int32_t)fw_map_ext->ldSpanMap[i].ldRaid.rowSize);
453 			printf("mrsas(%d) : pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x"
454 			    "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i,
455 			    pDrvRaidMap->ldSpanMap[i].ldRaid.targetId, i,
456 			    pDrvRaidMap->ldSpanMap[i].ldRaid.seqNum,
457 			    (u_int32_t)pDrvRaidMap->ldSpanMap[i].ldRaid.rowSize);
458 			printf("mrsas : drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
459 			    drv_map, pDrvRaidMap, &fw_map_ext->ldSpanMap[i].ldRaid,
460 			    &pDrvRaidMap->ldSpanMap[i].ldRaid);
461 		}
462 #endif
463 		memcpy(pDrvRaidMap->arMapInfo, fw_map_ext->arMapInfo,
464 		    sizeof(MR_ARRAY_INFO) * MAX_API_ARRAYS_EXT);
465 		memcpy(pDrvRaidMap->devHndlInfo, fw_map_ext->devHndlInfo,
466 		    sizeof(MR_DEV_HANDLE_INFO) * MAX_RAIDMAP_PHYSICAL_DEVICES);
467 
468 		pDrvRaidMap->totalSize = htole32(sizeof(MR_FW_RAID_MAP_EXT));
469 	} else {
470 		fw_map_old = (MR_FW_RAID_MAP_ALL *) sc->raidmap_mem[(sc->map_id & 1)];
471 		pFwRaidMap = &fw_map_old->raidMap;
472 
473 #if VD_EXT_DEBUG
474 		for (i = 0; i < le32toh(pFwRaidMap->ldCount); i++) {
475 			device_printf(sc->mrsas_dev,
476 			    "Index 0x%x Target Id 0x%x Seq Num 0x%x Size 0/%lx\n", i,
477 			    fw_map_old->raidMap.ldSpanMap[i].ldRaid.targetId,
478 			    fw_map_old->raidMap.ldSpanMap[i].ldRaid.seqNum,
479 			    fw_map_old->raidMap.ldSpanMap[i].ldRaid.size);
480 		}
481 #endif
482 
483 		memset(drv_map, 0, sc->drv_map_sz);
484 		pDrvRaidMap->totalSize = pFwRaidMap->totalSize;
485 		pDrvRaidMap->ldCount = pFwRaidMap->ldCount;
486 		pDrvRaidMap->fpPdIoTimeoutSec =
487 		    pFwRaidMap->fpPdIoTimeoutSec;
488 
489 		for (i = 0; i < MAX_RAIDMAP_LOGICAL_DRIVES + MAX_RAIDMAP_VIEWS; i++) {
490 			pDrvRaidMap->ldTgtIdToLd[i] =
491 			    (u_int8_t)pFwRaidMap->ldTgtIdToLd[i];
492 		}
493 
494 		for (i = 0; i < pDrvRaidMap->ldCount; i++) {
495 			pDrvRaidMap->ldSpanMap[i] =
496 			    pFwRaidMap->ldSpanMap[i];
497 
498 #if VD_EXT_DEBUG
499 			device_printf(sc->mrsas_dev, "pFwRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x "
500 			    "pFwRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
501 			    i, i, pFwRaidMap->ldSpanMap[i].ldRaid.targetId,
502 			    pFwRaidMap->ldSpanMap[i].ldRaid.seqNum,
503 			    (u_int32_t)pFwRaidMap->ldSpanMap[i].ldRaid.rowSize);
504 			device_printf(sc->mrsas_dev, "pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x"
505 			    "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i,
506 			    pDrvRaidMap->ldSpanMap[i].ldRaid.targetId,
507 			    pDrvRaidMap->ldSpanMap[i].ldRaid.seqNum,
508 			    (u_int32_t)pDrvRaidMap->ldSpanMap[i].ldRaid.rowSize);
509 			device_printf(sc->mrsas_dev, "drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
510 			    drv_map, pDrvRaidMap,
511 			    &pFwRaidMap->ldSpanMap[i].ldRaid, &pDrvRaidMap->ldSpanMap[i].ldRaid);
512 #endif
513 		}
514 
515 		memcpy(pDrvRaidMap->arMapInfo, pFwRaidMap->arMapInfo,
516 		    sizeof(MR_ARRAY_INFO) * MAX_RAIDMAP_ARRAYS);
517 		memcpy(pDrvRaidMap->devHndlInfo, pFwRaidMap->devHndlInfo,
518 		    sizeof(MR_DEV_HANDLE_INFO) *
519 		    MAX_RAIDMAP_PHYSICAL_DEVICES);
520 	}
521 	return 0;
522 }
523 
524 /*
525  * MR_ValidateMapInfo:	Validate RAID map
526  * input:				Adapter instance soft state
527  *
528  * This function checks and validates the loaded RAID map. It returns 0 if
529  * successful, and 1 otherwise.
530  */
531 u_int8_t
532 MR_ValidateMapInfo(struct mrsas_softc *sc)
533 {
534 	if (!sc) {
535 		return 1;
536 	}
537 	if (MR_PopulateDrvRaidMap(sc))
538 		return 0;
539 
540 	MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
541 	MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
542 
543 	u_int32_t expected_map_size;
544 
545 	drv_map = sc->ld_drv_map[(sc->map_id & 1)];
546 	pDrvRaidMap = &drv_map->raidMap;
547 	PLD_SPAN_INFO ldSpanInfo = (PLD_SPAN_INFO) & sc->log_to_span;
548 
549 	if (sc->maxRaidMapSize)
550 		expected_map_size = sizeof(MR_DRV_RAID_MAP_ALL);
551 	else if (sc->max256vdSupport)
552 		expected_map_size = sizeof(MR_FW_RAID_MAP_EXT);
553 	else
554 		expected_map_size =
555 		    (sizeof(MR_FW_RAID_MAP) - sizeof(MR_LD_SPAN_MAP)) +
556 		    (sizeof(MR_LD_SPAN_MAP) * le16toh(pDrvRaidMap->ldCount));
557 
558 	if (le32toh(pDrvRaidMap->totalSize) != expected_map_size) {
559 		device_printf(sc->mrsas_dev, "map size %x not matching ld count\n", expected_map_size);
560 		device_printf(sc->mrsas_dev, "span map= %x\n", (unsigned int)sizeof(MR_LD_SPAN_MAP));
561 		device_printf(sc->mrsas_dev, "pDrvRaidMap->totalSize=%x\n", le32toh(pDrvRaidMap->totalSize));
562 		return 1;
563 	}
564 	if (sc->UnevenSpanSupport) {
565 		mr_update_span_set(drv_map, ldSpanInfo);
566 	}
567 	mrsas_update_load_balance_params(sc, drv_map, sc->load_balance_info);
568 
569 	return 0;
570 }
571 
572 /*
573  *
574  * Function to print info about span set created in driver from FW raid map
575  *
576  * Inputs:		map
577  * ldSpanInfo:	ld map span info per HBA instance
578  *
579  *
580  */
581 #if SPAN_DEBUG
582 static int
583 getSpanInfo(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
584 {
585 
586 	u_int8_t span;
587 	u_int32_t element;
588 	MR_LD_RAID *raid;
589 	LD_SPAN_SET *span_set;
590 	MR_QUAD_ELEMENT *quad;
591 	int ldCount;
592 	u_int16_t ld;
593 
594 	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
595 		ld = MR_TargetIdToLdGet(ldCount, map);
596 		if (ld >= MAX_LOGICAL_DRIVES) {
597 			continue;
598 		}
599 		raid = MR_LdRaidGet(ld, map);
600 		printf("LD %x: span_depth=%x\n", ld, raid->spanDepth);
601 		for (span = 0; span < raid->spanDepth; span++)
602 			printf("Span=%x, number of quads=%x\n", span,
603 			    le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
604 			    block_span_info.noElements));
605 		for (element = 0; element < MAX_QUAD_DEPTH; element++) {
606 			span_set = &(ldSpanInfo[ld].span_set[element]);
607 			if (span_set->span_row_data_width == 0)
608 				break;
609 
610 			printf("Span Set %x: width=%x, diff=%x\n", element,
611 			    (unsigned int)span_set->span_row_data_width,
612 			    (unsigned int)span_set->diff);
613 			printf("logical LBA start=0x%08lx, end=0x%08lx\n",
614 			    (long unsigned int)span_set->log_start_lba,
615 			    (long unsigned int)span_set->log_end_lba);
616 			printf("span row start=0x%08lx, end=0x%08lx\n",
617 			    (long unsigned int)span_set->span_row_start,
618 			    (long unsigned int)span_set->span_row_end);
619 			printf("data row start=0x%08lx, end=0x%08lx\n",
620 			    (long unsigned int)span_set->data_row_start,
621 			    (long unsigned int)span_set->data_row_end);
622 			printf("data strip start=0x%08lx, end=0x%08lx\n",
623 			    (long unsigned int)span_set->data_strip_start,
624 			    (long unsigned int)span_set->data_strip_end);
625 
626 			for (span = 0; span < raid->spanDepth; span++) {
627 				if (map->raidMap.ldSpanMap[ld].spanBlock[span].
628 				    block_span_info.noElements >= element + 1) {
629 					quad = &map->raidMap.ldSpanMap[ld].
630 					    spanBlock[span].block_span_info.
631 					    quad[element];
632 					printf("Span=%x, Quad=%x, diff=%x\n", span,
633 					    element, le32toh(quad->diff));
634 					printf("offset_in_span=0x%08lx\n",
635 					    (long unsigned int)le64toh(quad->offsetInSpan));
636 					printf("logical start=0x%08lx, end=0x%08lx\n",
637 					    (long unsigned int)le64toh(quad->logStart),
638 					    (long unsigned int)le64toh(quad->logEnd));
639 				}
640 			}
641 		}
642 	}
643 	return 0;
644 }
645 
646 #endif
647 /*
648  *
649  * This routine calculates the Span block for given row using spanset.
650  *
651  * Inputs :	HBA instance
652  * ld:		Logical drive number
653  * row:		Row number
654  * map:		LD map
655  *
656  * Outputs :	span	- Span number block
657  * 						- Absolute Block number in the physical disk
658  * 				div_error    - Devide error code.
659  */
660 
661 u_int32_t
662 mr_spanset_get_span_block(struct mrsas_softc *sc, u_int32_t ld, u_int64_t row,
663     u_int64_t *span_blk, MR_DRV_RAID_MAP_ALL * map, int *div_error)
664 {
665 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
666 	LD_SPAN_SET *span_set;
667 	MR_QUAD_ELEMENT *quad;
668 	u_int32_t span, info;
669 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
670 
671 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
672 		span_set = &(ldSpanInfo[ld].span_set[info]);
673 
674 		if (span_set->span_row_data_width == 0)
675 			break;
676 		if (row > span_set->data_row_end)
677 			continue;
678 
679 		for (span = 0; span < raid->spanDepth; span++)
680 			if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
681 			    block_span_info.noElements) >= info + 1) {
682 				quad = &map->raidMap.ldSpanMap[ld].
683 				    spanBlock[span].
684 				    block_span_info.quad[info];
685 				if (quad->diff == 0) {
686 					*div_error = 1;
687 					return span;
688 				}
689 				if (le64toh(quad->logStart) <= row &&
690 				    row <= le64toh(quad->logEnd) &&
691 				    (mega_mod64(row - le64toh(quad->logStart),
692 				    le32toh(quad->diff))) == 0) {
693 					if (span_blk != NULL) {
694 						u_int64_t blk;
695 
696 						blk = mega_div64_32
697 						    ((row - le64toh(quad->logStart)),
698 						    le32toh(quad->diff));
699 						blk = (blk + le64toh(quad->offsetInSpan))
700 						    << raid->stripeShift;
701 						*span_blk = blk;
702 					}
703 					return span;
704 				}
705 			}
706 	}
707 	return SPAN_INVALID;
708 }
709 
710 /*
711  *
712  * This routine calculates the row for given strip using spanset.
713  *
714  * Inputs :	HBA instance
715  * ld:		Logical drive number
716  * Strip:	Strip
717  * map:		LD map
718  *
719  * Outputs :	row - row associated with strip
720  */
721 
722 static u_int64_t
723 get_row_from_strip(struct mrsas_softc *sc,
724     u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
725 {
726 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
727 	LD_SPAN_SET *span_set;
728 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
729 	u_int32_t info, strip_offset, span, span_offset;
730 	u_int64_t span_set_Strip, span_set_Row;
731 
732 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
733 		span_set = &(ldSpanInfo[ld].span_set[info]);
734 
735 		if (span_set->span_row_data_width == 0)
736 			break;
737 		if (strip > span_set->data_strip_end)
738 			continue;
739 
740 		span_set_Strip = strip - span_set->data_strip_start;
741 		strip_offset = mega_mod64(span_set_Strip,
742 		    span_set->span_row_data_width);
743 		span_set_Row = mega_div64_32(span_set_Strip,
744 		    span_set->span_row_data_width) * span_set->diff;
745 		for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
746 			if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
747 			    block_span_info.noElements) >= info + 1) {
748 				if (strip_offset >=
749 				    span_set->strip_offset[span])
750 					span_offset++;
751 				else
752 					break;
753 			}
754 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : Strip 0x%llx, span_set_Strip 0x%llx, span_set_Row 0x%llx "
755 		    "data width 0x%llx span offset 0x%llx\n", (unsigned long long)strip,
756 		    (unsigned long long)span_set_Strip,
757 		    (unsigned long long)span_set_Row,
758 		    (unsigned long long)span_set->span_row_data_width, (unsigned long long)span_offset);
759 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : For strip 0x%llx row is 0x%llx\n", (unsigned long long)strip,
760 		    (unsigned long long)span_set->data_row_start +
761 		    (unsigned long long)span_set_Row + (span_offset - 1));
762 		return (span_set->data_row_start + span_set_Row + (span_offset - 1));
763 	}
764 	return -1LLU;
765 }
766 
767 /*
768  *
769  * This routine calculates the Start Strip for given row using spanset.
770  *
771  * Inputs:	HBA instance
772  * ld:		Logical drive number
773  * row:		Row number
774  * map:		LD map
775  *
776  * Outputs :	Strip - Start strip associated with row
777  */
778 
779 static u_int64_t
780 get_strip_from_row(struct mrsas_softc *sc,
781     u_int32_t ld, u_int64_t row, MR_DRV_RAID_MAP_ALL * map)
782 {
783 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
784 	LD_SPAN_SET *span_set;
785 	MR_QUAD_ELEMENT *quad;
786 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
787 	u_int32_t span, info;
788 	u_int64_t strip;
789 
790 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
791 		span_set = &(ldSpanInfo[ld].span_set[info]);
792 
793 		if (span_set->span_row_data_width == 0)
794 			break;
795 		if (row > span_set->data_row_end)
796 			continue;
797 
798 		for (span = 0; span < raid->spanDepth; span++)
799 			if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
800 			    block_span_info.noElements) >= info + 1) {
801 				quad = &map->raidMap.ldSpanMap[ld].
802 				    spanBlock[span].block_span_info.quad[info];
803 				if (le64toh(quad->logStart) <= row &&
804 				    row <= le64toh(quad->logEnd) &&
805 				    mega_mod64((row - le64toh(quad->logStart)),
806 				    le32toh(quad->diff)) == 0) {
807 					strip = mega_div64_32
808 					    (((row - span_set->data_row_start)
809 					    - le64toh(quad->logStart)),
810 					    le32toh(quad->diff));
811 					strip *= span_set->span_row_data_width;
812 					strip += span_set->data_strip_start;
813 					strip += span_set->strip_offset[span];
814 					return strip;
815 				}
816 			}
817 	}
818 	mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug - get_strip_from_row: returns invalid "
819 	    "strip for ld=%x, row=%lx\n", ld, (long unsigned int)row);
820 	return -1;
821 }
822 
823 /*
824  * *****************************************************************************
825  *
826  *
827  * This routine calculates the Physical Arm for given strip using spanset.
828  *
829  * Inputs :	HBA instance
830  * 			Logical drive number
831  * 			Strip
832  * 			LD map
833  *
834  * Outputs :	Phys Arm - Phys Arm associated with strip
835  */
836 
837 static u_int32_t
838 get_arm_from_strip(struct mrsas_softc *sc,
839     u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
840 {
841 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
842 	LD_SPAN_SET *span_set;
843 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
844 	u_int32_t info, strip_offset, span, span_offset;
845 
846 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
847 		span_set = &(ldSpanInfo[ld].span_set[info]);
848 
849 		if (span_set->span_row_data_width == 0)
850 			break;
851 		if (strip > span_set->data_strip_end)
852 			continue;
853 
854 		strip_offset = (u_int32_t)mega_mod64
855 		    ((strip - span_set->data_strip_start),
856 		    span_set->span_row_data_width);
857 
858 		for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
859 			if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
860 			    block_span_info.noElements) >= info + 1) {
861 				if (strip_offset >= span_set->strip_offset[span])
862 					span_offset = span_set->strip_offset[span];
863 				else
864 					break;
865 			}
866 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO PRL11: get_arm_from_strip: "
867 		    "for ld=0x%x strip=0x%lx arm is  0x%x\n", ld,
868 		    (long unsigned int)strip, (strip_offset - span_offset));
869 		return (strip_offset - span_offset);
870 	}
871 
872 	mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: - get_arm_from_strip: returns invalid arm"
873 	    " for ld=%x strip=%lx\n", ld, (long unsigned int)strip);
874 
875 	return -1;
876 }
877 
878 /* This Function will return Phys arm */
879 u_int8_t
880 get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span, u_int64_t stripe,
881     MR_DRV_RAID_MAP_ALL * map)
882 {
883 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
884 
885 	/* Need to check correct default value */
886 	u_int32_t arm = 0;
887 
888 	switch (raid->level) {
889 	case 0:
890 	case 5:
891 	case 6:
892 		arm = mega_mod64(stripe, SPAN_ROW_SIZE(map, ld, span));
893 		break;
894 	case 1:
895 		/* start with logical arm */
896 		arm = get_arm_from_strip(sc, ld, stripe, map);
897 		arm *= 2;
898 		break;
899 	}
900 
901 	return arm;
902 }
903 
904 /*
905  *
906  * This routine calculates the arm, span and block for the specified stripe and
907  * reference in stripe using spanset
908  *
909  * Inputs :
910  * sc - HBA instance
911  * ld - Logical drive number
912  * stripRow: Stripe number
913  * stripRef: Reference in stripe
914  *
915  * Outputs :	span - Span number block - Absolute Block
916  * number in the physical disk
917  */
918 static u_int8_t
919 mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld, u_int64_t stripRow,
920     u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
921     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
922 {
923 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
924 	u_int32_t pd, arRef, r1_alt_pd;
925 	u_int8_t physArm, span;
926 	u_int64_t row;
927 	u_int8_t retval = TRUE;
928 	u_int64_t *pdBlock = &io_info->pdBlock;
929 	u_int16_t *pDevHandle = &io_info->devHandle;
930 	u_int8_t  *pPdInterface = &io_info->pdInterface;
931 
932 	u_int32_t logArm, rowMod, armQ, arm;
933 
934 	/* Get row and span from io_info for Uneven Span IO. */
935 	row = io_info->start_row;
936 	span = io_info->start_span;
937 
938 	if (raid->level == 6) {
939 		logArm = get_arm_from_strip(sc, ld, stripRow, map);
940 		rowMod = mega_mod64(row, SPAN_ROW_SIZE(map, ld, span));
941 		armQ = SPAN_ROW_SIZE(map, ld, span) - 1 - rowMod;
942 		arm = armQ + 1 + logArm;
943 		if (arm >= SPAN_ROW_SIZE(map, ld, span))
944 			arm -= SPAN_ROW_SIZE(map, ld, span);
945 		physArm = (u_int8_t)arm;
946 	} else
947 		/* Calculate the arm */
948 		physArm = get_arm(sc, ld, span, stripRow, map);
949 
950 	arRef = MR_LdSpanArrayGet(ld, span, map);
951 	pd = MR_ArPdGet(arRef, physArm, map);
952 
953 	if (pd != MR_PD_INVALID) {
954 		*pDevHandle = MR_PdDevHandleGet(pd, map);
955 		*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
956 		/* get second pd also for raid 1/10 fast path writes */
957 		if ((raid->level == 1) && !io_info->isRead) {
958 			r1_alt_pd = MR_ArPdGet(arRef, physArm + 1, map);
959 			if (r1_alt_pd != MR_PD_INVALID)
960 				io_info->r1_alt_dev_handle = MR_PdDevHandleGet(r1_alt_pd, map);
961 		}
962 	} else {
963 		*pDevHandle = htole16(MR_DEVHANDLE_INVALID);
964 		if ((raid->level >= 5) && ((sc->device_id == MRSAS_TBOLT) ||
965 			(sc->mrsas_gen3_ctrl &&
966 			raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
967 			pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
968 		else if (raid->level == 1) {
969 			pd = MR_ArPdGet(arRef, physArm + 1, map);
970 			if (pd != MR_PD_INVALID) {
971 				*pDevHandle = MR_PdDevHandleGet(pd, map);
972 				*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
973 			}
974 		}
975 	}
976 
977 	*pdBlock += stripRef + le64toh(MR_LdSpanPtrGet(ld, span, map)->startBlk);
978 	if (sc->is_ventura || sc->is_aero) {
979 		((RAID_CONTEXT_G35 *) pRAID_Context)->spanArm =
980 		    (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
981 		io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
982 	} else {
983 		pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
984 		io_info->span_arm = pRAID_Context->spanArm;
985 	}
986 	return retval;
987 }
988 
989 /*
990  * MR_BuildRaidContext:	Set up Fast path RAID context
991  *
992  * This function will initiate command processing.  The start/end row and strip
993  * information is calculated then the lock is acquired. This function will
994  * return 0 if region lock was acquired OR return num strips.
995  */
996 u_int8_t
997 MR_BuildRaidContext(struct mrsas_softc *sc, struct IO_REQUEST_INFO *io_info,
998     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
999 {
1000 	MR_LD_RAID *raid;
1001 	u_int32_t ld, stripSize, stripe_mask;
1002 	u_int64_t endLba, endStrip, endRow, start_row, start_strip;
1003 	REGION_KEY regStart;
1004 	REGION_LEN regSize;
1005 	u_int8_t num_strips, numRows;
1006 	u_int16_t ref_in_start_stripe, ref_in_end_stripe;
1007 	u_int64_t ldStartBlock;
1008 	u_int32_t numBlocks, ldTgtId;
1009 	u_int8_t isRead, stripIdx;
1010 	u_int8_t retval = 0;
1011 	u_int8_t startlba_span = SPAN_INVALID;
1012 	u_int64_t *pdBlock = &io_info->pdBlock;
1013 	int error_code = 0;
1014 
1015 	ldStartBlock = io_info->ldStartBlock;
1016 	numBlocks = io_info->numBlocks;
1017 	ldTgtId = io_info->ldTgtId;
1018 	isRead = io_info->isRead;
1019 
1020 	io_info->IoforUnevenSpan = 0;
1021 	io_info->start_span = SPAN_INVALID;
1022 
1023 	ld = MR_TargetIdToLdGet(ldTgtId, map);
1024 	raid = MR_LdRaidGet(ld, map);
1025 
1026 	/* check read ahead bit */
1027 	io_info->raCapable = raid->capability.raCapable;
1028 
1029 	if (raid->rowDataSize == 0) {
1030 		if (MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize == 0)
1031 			return FALSE;
1032 		else if (sc->UnevenSpanSupport) {
1033 			io_info->IoforUnevenSpan = 1;
1034 		} else {
1035 			mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: raid->rowDataSize is 0, but has SPAN[0] rowDataSize = 0x%0x,"
1036 			    " but there is _NO_ UnevenSpanSupport\n",
1037 			    MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize);
1038 			return FALSE;
1039 		}
1040 	}
1041 	stripSize = 1 << raid->stripeShift;
1042 	stripe_mask = stripSize - 1;
1043 	/*
1044 	 * calculate starting row and stripe, and number of strips and rows
1045 	 */
1046 	start_strip = ldStartBlock >> raid->stripeShift;
1047 	ref_in_start_stripe = (u_int16_t)(ldStartBlock & stripe_mask);
1048 	endLba = ldStartBlock + numBlocks - 1;
1049 	ref_in_end_stripe = (u_int16_t)(endLba & stripe_mask);
1050 	endStrip = endLba >> raid->stripeShift;
1051 	num_strips = (u_int8_t)(endStrip - start_strip + 1);	/* End strip */
1052 	if (io_info->IoforUnevenSpan) {
1053 		start_row = get_row_from_strip(sc, ld, start_strip, map);
1054 		endRow = get_row_from_strip(sc, ld, endStrip, map);
1055 		if (raid->spanDepth == 1) {
1056 			startlba_span = 0;
1057 			*pdBlock = start_row << raid->stripeShift;
1058 		} else {
1059 			startlba_span = (u_int8_t)mr_spanset_get_span_block(sc, ld, start_row,
1060 			    pdBlock, map, &error_code);
1061 			if (error_code == 1) {
1062 				mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d. Send IO w/o region lock.\n",
1063 				    __func__, __LINE__);
1064 				return FALSE;
1065 			}
1066 		}
1067 		if (startlba_span == SPAN_INVALID) {
1068 			mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d for row 0x%llx,"
1069 			    "start strip %llx endSrip %llx\n", __func__,
1070 			    __LINE__, (unsigned long long)start_row,
1071 			    (unsigned long long)start_strip,
1072 			    (unsigned long long)endStrip);
1073 			return FALSE;
1074 		}
1075 		io_info->start_span = startlba_span;
1076 		io_info->start_row = start_row;
1077 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: Check Span number from %s %d for row 0x%llx, "
1078 		    " start strip 0x%llx endSrip 0x%llx span 0x%x\n",
1079 		    __func__, __LINE__, (unsigned long long)start_row,
1080 		    (unsigned long long)start_strip,
1081 		    (unsigned long long)endStrip, startlba_span);
1082 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : 1. start_row 0x%llx endRow 0x%llx Start span 0x%x\n",
1083 		    (unsigned long long)start_row, (unsigned long long)endRow, startlba_span);
1084 	} else {
1085 		start_row = mega_div64_32(start_strip, raid->rowDataSize);
1086 		endRow = mega_div64_32(endStrip, raid->rowDataSize);
1087 	}
1088 
1089 	numRows = (u_int8_t)(endRow - start_row + 1);	/* get the row count */
1090 
1091 	/*
1092 	 * Calculate region info.  (Assume region at start of first row, and
1093 	 * assume this IO needs the full row - will adjust if not true.)
1094 	 */
1095 	regStart = start_row << raid->stripeShift;
1096 	regSize = stripSize;
1097 
1098 	/* Check if we can send this I/O via FastPath */
1099 	if (raid->capability.fpCapable) {
1100 		if (isRead)
1101 			io_info->fpOkForIo = (raid->capability.fpReadCapable &&
1102 			    ((num_strips == 1) ||
1103 			    raid->capability.fpReadAcrossStripe));
1104 		else
1105 			io_info->fpOkForIo = (raid->capability.fpWriteCapable &&
1106 			    ((num_strips == 1) ||
1107 			    raid->capability.fpWriteAcrossStripe));
1108 	} else
1109 		io_info->fpOkForIo = FALSE;
1110 
1111 	if (numRows == 1) {
1112 		if (num_strips == 1) {
1113 			regStart += ref_in_start_stripe;
1114 			regSize = numBlocks;
1115 		}
1116 	} else if (io_info->IoforUnevenSpan == 0) {
1117 		/*
1118 		 * For Even span region lock optimization. If the start strip
1119 		 * is the last in the start row
1120 		 */
1121 		if (start_strip == (start_row + 1) * raid->rowDataSize - 1) {
1122 			regStart += ref_in_start_stripe;
1123 			/*
1124 			 * initialize count to sectors from startRef to end
1125 			 * of strip
1126 			 */
1127 			regSize = stripSize - ref_in_start_stripe;
1128 		}
1129 		/* add complete rows in the middle of the transfer */
1130 		if (numRows > 2)
1131 			regSize += (numRows - 2) << raid->stripeShift;
1132 
1133 		/* if IO ends within first strip of last row */
1134 		if (endStrip == endRow * raid->rowDataSize)
1135 			regSize += ref_in_end_stripe + 1;
1136 		else
1137 			regSize += stripSize;
1138 	} else {
1139 		if (start_strip == (get_strip_from_row(sc, ld, start_row, map) +
1140 		    SPAN_ROW_DATA_SIZE(map, ld, startlba_span) - 1)) {
1141 			regStart += ref_in_start_stripe;
1142 			/*
1143 			 * initialize count to sectors from startRef to end
1144 			 * of strip
1145 			 */
1146 			regSize = stripSize - ref_in_start_stripe;
1147 		}
1148 		/* add complete rows in the middle of the transfer */
1149 		if (numRows > 2)
1150 			regSize += (numRows - 2) << raid->stripeShift;
1151 
1152 		/* if IO ends within first strip of last row */
1153 		if (endStrip == get_strip_from_row(sc, ld, endRow, map))
1154 			regSize += ref_in_end_stripe + 1;
1155 		else
1156 			regSize += stripSize;
1157 	}
1158 	pRAID_Context->timeoutValue = htole16(map->raidMap.fpPdIoTimeoutSec);
1159 	if (sc->mrsas_gen3_ctrl)
1160 		pRAID_Context->regLockFlags = (isRead) ? raid->regTypeReqOnRead : raid->regTypeReqOnWrite;
1161 	else if (sc->device_id == MRSAS_TBOLT)
1162 		pRAID_Context->regLockFlags = (isRead) ? REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite;
1163 	pRAID_Context->VirtualDiskTgtId = raid->targetId;
1164 	pRAID_Context->regLockRowLBA = htole64(regStart);
1165 	pRAID_Context->regLockLength = htole32(regSize);
1166 	pRAID_Context->configSeqNum = raid->seqNum;
1167 
1168 	/*
1169 	 * Get Phy Params only if FP capable, or else leave it to MR firmware
1170 	 * to do the calculation.
1171 	 */
1172 	if (io_info->fpOkForIo) {
1173 		retval = io_info->IoforUnevenSpan ?
1174 		    mr_spanset_get_phy_params(sc, ld, start_strip,
1175 		    ref_in_start_stripe, io_info, pRAID_Context, map) :
1176 		    MR_GetPhyParams(sc, ld, start_strip,
1177 		    ref_in_start_stripe, io_info, pRAID_Context, map);
1178 		/* If IO on an invalid Pd, then FP is not possible */
1179 		if (io_info->devHandle == MR_DEVHANDLE_INVALID)
1180 			io_info->fpOkForIo = FALSE;
1181 		/*
1182 		 * if FP possible, set the SLUD bit in regLockFlags for
1183 		 * ventura
1184 		 */
1185 		else if ((sc->is_ventura || sc->is_aero) && !isRead &&
1186 			    (raid->writeMode == MR_RL_WRITE_BACK_MODE) && (raid->level <= 1) &&
1187 		    raid->capability.fpCacheBypassCapable) {
1188 			((RAID_CONTEXT_G35 *) pRAID_Context)->routingFlags.bits.sld = 1;
1189 		}
1190 
1191 		return retval;
1192 	} else if (isRead) {
1193 		for (stripIdx = 0; stripIdx < num_strips; stripIdx++) {
1194 			retval = io_info->IoforUnevenSpan ?
1195 			    mr_spanset_get_phy_params(sc, ld, start_strip + stripIdx,
1196 			    ref_in_start_stripe, io_info, pRAID_Context, map) :
1197 			    MR_GetPhyParams(sc, ld, start_strip + stripIdx,
1198 			    ref_in_start_stripe, io_info, pRAID_Context, map);
1199 			if (!retval)
1200 				return TRUE;
1201 		}
1202 	}
1203 #if SPAN_DEBUG
1204 	/* Just for testing what arm we get for strip. */
1205 	get_arm_from_strip(sc, ld, start_strip, map);
1206 #endif
1207 	return TRUE;
1208 }
1209 
1210 /*
1211  *
1212  * This routine pepare spanset info from Valid Raid map and store it into local
1213  * copy of ldSpanInfo per instance data structure.
1214  *
1215  * Inputs :	LD map
1216  * 			ldSpanInfo per HBA instance
1217  *
1218  */
1219 void
1220 mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
1221 {
1222 	u_int8_t span, count;
1223 	u_int32_t element, span_row_width;
1224 	u_int64_t span_row;
1225 	MR_LD_RAID *raid;
1226 	LD_SPAN_SET *span_set, *span_set_prev;
1227 	MR_QUAD_ELEMENT *quad;
1228 	int ldCount;
1229 	u_int16_t ld;
1230 
1231 	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
1232 		ld = MR_TargetIdToLdGet(ldCount, map);
1233 		if (ld >= MAX_LOGICAL_DRIVES)
1234 			continue;
1235 		raid = MR_LdRaidGet(ld, map);
1236 		for (element = 0; element < MAX_QUAD_DEPTH; element++) {
1237 			for (span = 0; span < raid->spanDepth; span++) {
1238 				if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
1239 				    block_span_info.noElements) < element + 1)
1240 					continue;
1241 				/* TO-DO */
1242 				span_set = &(ldSpanInfo[ld].span_set[element]);
1243 				quad = &map->raidMap.ldSpanMap[ld].
1244 				    spanBlock[span].block_span_info.quad[element];
1245 
1246 				span_set->diff = le32toh(quad->diff);
1247 
1248 				for (count = 0, span_row_width = 0;
1249 				    count < raid->spanDepth; count++) {
1250 					if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[count].
1251 					    block_span_info.noElements) >= element + 1) {
1252 						span_set->strip_offset[count] = span_row_width;
1253 						span_row_width +=
1254 						    MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize;
1255 #if SPAN_DEBUG
1256 						printf("AVAGO Debug span %x rowDataSize %x\n", count,
1257 						    MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize);
1258 #endif
1259 					}
1260 				}
1261 
1262 				span_set->span_row_data_width = span_row_width;
1263 				span_row = mega_div64_32(((le64toh(quad->logEnd) -
1264 				    le64toh(quad->logStart)) + le32toh(quad->diff)),
1265 				    le32toh(quad->diff));
1266 
1267 				if (element == 0) {
1268 					span_set->log_start_lba = 0;
1269 					span_set->log_end_lba =
1270 					    ((span_row << raid->stripeShift) * span_row_width) - 1;
1271 
1272 					span_set->span_row_start = 0;
1273 					span_set->span_row_end = span_row - 1;
1274 
1275 					span_set->data_strip_start = 0;
1276 					span_set->data_strip_end = (span_row * span_row_width) - 1;
1277 
1278 					span_set->data_row_start = 0;
1279 					span_set->data_row_end =
1280 					  (span_row * le32toh(quad->diff)) - 1;
1281 				} else {
1282 					span_set_prev = &(ldSpanInfo[ld].span_set[element - 1]);
1283 					span_set->log_start_lba = span_set_prev->log_end_lba + 1;
1284 					span_set->log_end_lba = span_set->log_start_lba +
1285 					    ((span_row << raid->stripeShift) * span_row_width) - 1;
1286 
1287 					span_set->span_row_start = span_set_prev->span_row_end + 1;
1288 					span_set->span_row_end =
1289 					    span_set->span_row_start + span_row - 1;
1290 
1291 					span_set->data_strip_start =
1292 					    span_set_prev->data_strip_end + 1;
1293 					span_set->data_strip_end = span_set->data_strip_start +
1294 					    (span_row * span_row_width) - 1;
1295 
1296 					span_set->data_row_start = span_set_prev->data_row_end + 1;
1297 					span_set->data_row_end = span_set->data_row_start +
1298 					    (span_row * le32toh(quad->diff)) - 1;
1299 				}
1300 				break;
1301 			}
1302 			if (span == raid->spanDepth)
1303 				break;	/* no quads remain */
1304 		}
1305 	}
1306 #if SPAN_DEBUG
1307 	getSpanInfo(map, ldSpanInfo);	/* to get span set info */
1308 #endif
1309 }
1310 
1311 /*
1312  * mrsas_update_load_balance_params:	Update load balance parmas
1313  * Inputs:
1314  * sc - driver softc instance
1315  * drv_map - driver RAID map
1316  * lbInfo - Load balance info
1317  *
1318  * This function updates the load balance parameters for the LD config of a two
1319  * drive optimal RAID-1.
1320  */
1321 void
1322 mrsas_update_load_balance_params(struct mrsas_softc *sc,
1323     MR_DRV_RAID_MAP_ALL * drv_map, PLD_LOAD_BALANCE_INFO lbInfo)
1324 {
1325 	int ldCount;
1326 	u_int16_t ld;
1327 	MR_LD_RAID *raid;
1328 
1329 	if (sc->lb_pending_cmds > 128 || sc->lb_pending_cmds < 1)
1330 		sc->lb_pending_cmds = LB_PENDING_CMDS_DEFAULT;
1331 
1332 	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) {
1333 		ld = MR_TargetIdToLdGet(ldCount, drv_map);
1334 		if (ld >= MAX_LOGICAL_DRIVES_EXT) {
1335 			lbInfo[ldCount].loadBalanceFlag = 0;
1336 			continue;
1337 		}
1338 		raid = MR_LdRaidGet(ld, drv_map);
1339 		le32_to_cpus(&raid->capability);
1340 		if ((raid->level != 1) ||
1341 		    (raid->ldState != MR_LD_STATE_OPTIMAL)) {
1342 			lbInfo[ldCount].loadBalanceFlag = 0;
1343 			continue;
1344 		}
1345 		lbInfo[ldCount].loadBalanceFlag = 1;
1346 	}
1347 }
1348 
1349 /*
1350  * mrsas_set_pd_lba:	Sets PD LBA
1351  * input:				io_request pointer
1352  * 						CDB length
1353  * 						io_info pointer
1354  * 						Pointer to CCB
1355  * 						Local RAID map pointer
1356  * 						Start block of IO Block Size
1357  *
1358  * Used to set the PD logical block address in CDB for FP IOs.
1359  */
1360 void
1361 mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request, u_int8_t cdb_len,
1362     struct IO_REQUEST_INFO *io_info, union ccb *ccb,
1363     MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
1364     u_int32_t ld_block_size)
1365 {
1366 	MR_LD_RAID *raid;
1367 	u_int32_t ld;
1368 	u_int64_t start_blk = io_info->pdBlock;
1369 	u_int8_t *cdb = io_request->CDB.CDB32;
1370 	u_int32_t num_blocks = io_info->numBlocks;
1371 	u_int8_t opcode = 0, flagvals = 0, groupnum = 0, control = 0;
1372 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
1373 
1374 	/* Check if T10 PI (DIF) is enabled for this LD */
1375 	ld = MR_TargetIdToLdGet(io_info->ldTgtId, local_map_ptr);
1376 	raid = MR_LdRaidGet(ld, local_map_ptr);
1377 	if (raid->capability.ldPiMode == MR_PROT_INFO_TYPE_CONTROLLER) {
1378 		memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1379 		cdb[0] = MRSAS_SCSI_VARIABLE_LENGTH_CMD;
1380 		cdb[7] = MRSAS_SCSI_ADDL_CDB_LEN;
1381 
1382 		if (ccb_h->flags == CAM_DIR_OUT)
1383 			cdb[9] = MRSAS_SCSI_SERVICE_ACTION_READ32;
1384 		else
1385 			cdb[9] = MRSAS_SCSI_SERVICE_ACTION_WRITE32;
1386 		cdb[10] = MRSAS_RD_WR_PROTECT_CHECK_ALL;
1387 
1388 		/* LBA */
1389 		cdb[12] = (u_int8_t)((start_blk >> 56) & 0xff);
1390 		cdb[13] = (u_int8_t)((start_blk >> 48) & 0xff);
1391 		cdb[14] = (u_int8_t)((start_blk >> 40) & 0xff);
1392 		cdb[15] = (u_int8_t)((start_blk >> 32) & 0xff);
1393 		cdb[16] = (u_int8_t)((start_blk >> 24) & 0xff);
1394 		cdb[17] = (u_int8_t)((start_blk >> 16) & 0xff);
1395 		cdb[18] = (u_int8_t)((start_blk >> 8) & 0xff);
1396 		cdb[19] = (u_int8_t)(start_blk & 0xff);
1397 
1398 		/* Logical block reference tag */
1399 		io_request->CDB.EEDP32.PrimaryReferenceTag = htobe32(ref_tag);
1400 		io_request->CDB.EEDP32.PrimaryApplicationTagMask = htobe16(0xffff);
1401 		io_request->IoFlags = htole16(32);	/* Specify 32-byte cdb */
1402 
1403 		/* Transfer length */
1404 		cdb[28] = (u_int8_t)((num_blocks >> 24) & 0xff);
1405 		cdb[29] = (u_int8_t)((num_blocks >> 16) & 0xff);
1406 		cdb[30] = (u_int8_t)((num_blocks >> 8) & 0xff);
1407 		cdb[31] = (u_int8_t)(num_blocks & 0xff);
1408 
1409 		/* set SCSI IO EEDP Flags */
1410 		if (ccb_h->flags == CAM_DIR_OUT) {
1411 			io_request->EEDPFlags = htole16(
1412 			    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1413 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
1414 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP |
1415 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG |
1416 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD);
1417 		} else {
1418 			io_request->EEDPFlags = htole16(
1419 			    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1420 			    MPI2_SCSIIO_EEDPFLAGS_INSERT_OP);
1421 		}
1422 		io_request->Control |= htole32(0x4 << 26);
1423 		io_request->EEDPBlockSize = htole32(ld_block_size);
1424 	} else {
1425 		/* Some drives don't support 16/12 byte CDB's, convert to 10 */
1426 		if (((cdb_len == 12) || (cdb_len == 16)) &&
1427 		    (start_blk <= 0xffffffff)) {
1428 			if (cdb_len == 16) {
1429 				opcode = cdb[0] == READ_16 ? READ_10 : WRITE_10;
1430 				flagvals = cdb[1];
1431 				groupnum = cdb[14];
1432 				control = cdb[15];
1433 			} else {
1434 				opcode = cdb[0] == READ_12 ? READ_10 : WRITE_10;
1435 				flagvals = cdb[1];
1436 				groupnum = cdb[10];
1437 				control = cdb[11];
1438 			}
1439 
1440 			memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1441 
1442 			cdb[0] = opcode;
1443 			cdb[1] = flagvals;
1444 			cdb[6] = groupnum;
1445 			cdb[9] = control;
1446 
1447 			/* Transfer length */
1448 			cdb[8] = (u_int8_t)(num_blocks & 0xff);
1449 			cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
1450 
1451 			io_request->IoFlags = htole16(10);	/* Specify 10-byte cdb */
1452 			cdb_len = 10;
1453 		} else if ((cdb_len < 16) && (start_blk > 0xffffffff)) {
1454 			/* Convert to 16 byte CDB for large LBA's */
1455 			switch (cdb_len) {
1456 			case 6:
1457 				opcode = cdb[0] == READ_6 ? READ_16 : WRITE_16;
1458 				control = cdb[5];
1459 				break;
1460 			case 10:
1461 				opcode = cdb[0] == READ_10 ? READ_16 : WRITE_16;
1462 				flagvals = cdb[1];
1463 				groupnum = cdb[6];
1464 				control = cdb[9];
1465 				break;
1466 			case 12:
1467 				opcode = cdb[0] == READ_12 ? READ_16 : WRITE_16;
1468 				flagvals = cdb[1];
1469 				groupnum = cdb[10];
1470 				control = cdb[11];
1471 				break;
1472 			}
1473 
1474 			memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1475 
1476 			cdb[0] = opcode;
1477 			cdb[1] = flagvals;
1478 			cdb[14] = groupnum;
1479 			cdb[15] = control;
1480 
1481 			/* Transfer length */
1482 			cdb[13] = (u_int8_t)(num_blocks & 0xff);
1483 			cdb[12] = (u_int8_t)((num_blocks >> 8) & 0xff);
1484 			cdb[11] = (u_int8_t)((num_blocks >> 16) & 0xff);
1485 			cdb[10] = (u_int8_t)((num_blocks >> 24) & 0xff);
1486 
1487 			io_request->IoFlags = htole16(16);	/* Specify 16-byte cdb */
1488 			cdb_len = 16;
1489 		} else if ((cdb_len == 6) && (start_blk > 0x1fffff)) {
1490 			/* convert to 10 byte CDB */
1491 			opcode = cdb[0] == READ_6 ? READ_10 : WRITE_10;
1492 			control = cdb[5];
1493 
1494 			memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1495 			cdb[0] = opcode;
1496 			cdb[9] = control;
1497 
1498 			/* Set transfer length */
1499 			cdb[8] = (u_int8_t)(num_blocks & 0xff);
1500 			cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
1501 
1502 			/* Specify 10-byte cdb */
1503 			cdb_len = 10;
1504 		}
1505 		/* Fall through normal case, just load LBA here */
1506 		u_int8_t val = cdb[1] & 0xE0;
1507 
1508 		switch (cdb_len) {
1509 		case 6:
1510 			cdb[3] = (u_int8_t)(start_blk & 0xff);
1511 			cdb[2] = (u_int8_t)((start_blk >> 8) & 0xff);
1512 			cdb[1] = val | ((u_int8_t)(start_blk >> 16) & 0x1f);
1513 			break;
1514 		case 10:
1515 			cdb[5] = (u_int8_t)(start_blk & 0xff);
1516 			cdb[4] = (u_int8_t)((start_blk >> 8) & 0xff);
1517 			cdb[3] = (u_int8_t)((start_blk >> 16) & 0xff);
1518 			cdb[2] = (u_int8_t)((start_blk >> 24) & 0xff);
1519 			break;
1520 		case 16:
1521 			cdb[9] = (u_int8_t)(start_blk & 0xff);
1522 			cdb[8] = (u_int8_t)((start_blk >> 8) & 0xff);
1523 			cdb[7] = (u_int8_t)((start_blk >> 16) & 0xff);
1524 			cdb[6] = (u_int8_t)((start_blk >> 24) & 0xff);
1525 			cdb[5] = (u_int8_t)((start_blk >> 32) & 0xff);
1526 			cdb[4] = (u_int8_t)((start_blk >> 40) & 0xff);
1527 			cdb[3] = (u_int8_t)((start_blk >> 48) & 0xff);
1528 			cdb[2] = (u_int8_t)((start_blk >> 56) & 0xff);
1529 			break;
1530 		}
1531 	}
1532 }
1533 
1534 /*
1535  * mrsas_get_best_arm_pd:	Determine the best spindle arm
1536  * Inputs:
1537  *    sc - HBA instance
1538  *    lbInfo - Load balance info
1539  *    io_info - IO request info
1540  *
1541  * This function determines and returns the best arm by looking at the
1542  * parameters of the last PD access.
1543  */
1544 u_int8_t
1545 mrsas_get_best_arm_pd(struct mrsas_softc *sc,
1546     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
1547 {
1548 	MR_LD_RAID *raid;
1549 	MR_DRV_RAID_MAP_ALL *drv_map;
1550 	u_int16_t pd1_devHandle;
1551 	u_int16_t pend0, pend1, ld;
1552 	u_int64_t diff0, diff1;
1553 	u_int8_t bestArm, pd0, pd1, span, arm;
1554 	u_int32_t arRef, span_row_size;
1555 
1556 	u_int64_t block = io_info->ldStartBlock;
1557 	u_int32_t count = io_info->numBlocks;
1558 
1559 	span = ((io_info->span_arm & RAID_CTX_SPANARM_SPAN_MASK)
1560 	    >> RAID_CTX_SPANARM_SPAN_SHIFT);
1561 	arm = (io_info->span_arm & RAID_CTX_SPANARM_ARM_MASK);
1562 
1563 	drv_map = sc->ld_drv_map[(sc->map_id & 1)];
1564 	ld = MR_TargetIdToLdGet(io_info->ldTgtId, drv_map);
1565 	raid = MR_LdRaidGet(ld, drv_map);
1566 	span_row_size = sc->UnevenSpanSupport ?
1567 	    SPAN_ROW_SIZE(drv_map, ld, span) : raid->rowSize;
1568 
1569 	arRef = MR_LdSpanArrayGet(ld, span, drv_map);
1570 	pd0 = MR_ArPdGet(arRef, arm, drv_map);
1571 	pd1 = MR_ArPdGet(arRef, (arm + 1) >= span_row_size ?
1572 	    (arm + 1 - span_row_size) : arm + 1, drv_map);
1573 
1574 	/* Get PD1 Dev Handle */
1575 	pd1_devHandle = MR_PdDevHandleGet(pd1, drv_map);
1576 	if (pd1_devHandle == MR_DEVHANDLE_INVALID) {
1577 		bestArm = arm;
1578 	} else {
1579 		/* get the pending cmds for the data and mirror arms */
1580 		pend0 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd0]);
1581 		pend1 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd1]);
1582 
1583 		/* Determine the disk whose head is nearer to the req. block */
1584 		diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[pd0]);
1585 		diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[pd1]);
1586 		bestArm = (diff0 <= diff1 ? arm : arm ^ 1);
1587 
1588 		if ((bestArm == arm && pend0 > pend1 + sc->lb_pending_cmds) ||
1589 		    (bestArm != arm && pend1 > pend0 + sc->lb_pending_cmds))
1590 			bestArm ^= 1;
1591 
1592 		/* Update the last accessed block on the correct pd */
1593 		io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | bestArm;
1594 		io_info->pd_after_lb = (bestArm == arm) ? pd0 : pd1;
1595 	}
1596 
1597 	lbInfo->last_accessed_block[bestArm == arm ? pd0 : pd1] = block + count - 1;
1598 #if SPAN_DEBUG
1599 	if (arm != bestArm)
1600 		printf("AVAGO Debug R1 Load balance occur - span 0x%x arm 0x%x bestArm 0x%x "
1601 		    "io_info->span_arm 0x%x\n",
1602 		    span, arm, bestArm, io_info->span_arm);
1603 #endif
1604 
1605 	return io_info->pd_after_lb;
1606 }
1607 
1608 /*
1609  * mrsas_get_updated_dev_handle:	Get the update dev handle
1610  * Inputs:
1611  *	sc - Adapter instance soft state
1612  *	lbInfo - Load balance info
1613  *	io_info - io_info pointer
1614  *
1615  * This function determines and returns the updated dev handle.
1616  */
1617 u_int16_t
1618 mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
1619     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
1620 {
1621 	u_int8_t arm_pd;
1622 	u_int16_t devHandle;
1623 	MR_DRV_RAID_MAP_ALL *drv_map;
1624 
1625 	drv_map = sc->ld_drv_map[(sc->map_id & 1)];
1626 
1627 	/* get best new arm */
1628 	arm_pd = mrsas_get_best_arm_pd(sc, lbInfo, io_info);
1629 	devHandle = MR_PdDevHandleGet(arm_pd, drv_map);
1630 	io_info->pdInterface = MR_PdInterfaceTypeGet(arm_pd, drv_map);
1631 	mrsas_atomic_inc(&lbInfo->scsi_pending_cmds[arm_pd]);
1632 
1633 	return devHandle;
1634 }
1635 
1636 /*
1637  * MR_GetPhyParams:	Calculates arm, span, and block
1638  * Inputs:			Adapter soft state
1639  * 					Logical drive number (LD)
1640  * 					Stripe number(stripRow)
1641  * 					Reference in stripe (stripRef)
1642  *
1643  * Outputs:			Absolute Block number in the physical disk
1644  *
1645  * This routine calculates the arm, span and block for the specified stripe and
1646  * reference in stripe.
1647  */
1648 u_int8_t
1649 MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
1650     u_int64_t stripRow,
1651     u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
1652     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
1653 {
1654 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
1655 	u_int32_t pd, arRef, r1_alt_pd;
1656 	u_int8_t physArm, span;
1657 	u_int64_t row;
1658 	u_int8_t retval = TRUE;
1659 	int error_code = 0;
1660 	u_int64_t *pdBlock = &io_info->pdBlock;
1661 	u_int16_t *pDevHandle = &io_info->devHandle;
1662 	u_int8_t  *pPdInterface = &io_info->pdInterface;
1663 	u_int32_t rowMod, armQ, arm, logArm;
1664 
1665 	row = mega_div64_32(stripRow, raid->rowDataSize);
1666 
1667 	if (raid->level == 6) {
1668 		/* logical arm within row */
1669 		logArm = mega_mod64(stripRow, raid->rowDataSize);
1670 		if (raid->rowSize == 0)
1671 			return FALSE;
1672 		rowMod = mega_mod64(row, raid->rowSize);	/* get logical row mod */
1673 		armQ = raid->rowSize - 1 - rowMod;	/* index of Q drive */
1674 		arm = armQ + 1 + logArm;/* data always logically follows Q */
1675 		if (arm >= raid->rowSize)	/* handle wrap condition */
1676 			arm -= raid->rowSize;
1677 		physArm = (u_int8_t)arm;
1678 	} else {
1679 		if (raid->modFactor == 0)
1680 			return FALSE;
1681 		physArm = MR_LdDataArmGet(ld, mega_mod64(stripRow, raid->modFactor), map);
1682 	}
1683 
1684 	if (raid->spanDepth == 1) {
1685 		span = 0;
1686 		*pdBlock = row << raid->stripeShift;
1687 	} else {
1688 		span = (u_int8_t)MR_GetSpanBlock(ld, row, pdBlock, map, &error_code);
1689 		if (error_code == 1)
1690 			return FALSE;
1691 	}
1692 
1693 	/* Get the array on which this span is present */
1694 	arRef = MR_LdSpanArrayGet(ld, span, map);
1695 
1696 	pd = MR_ArPdGet(arRef, physArm, map);	/* Get the Pd. */
1697 
1698 	if (pd != MR_PD_INVALID) {
1699 		/* Get dev handle from Pd */
1700 		*pDevHandle = MR_PdDevHandleGet(pd, map);
1701 		*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
1702 		/* get second pd also for raid 1/10 fast path writes */
1703 		if ((raid->level == 1) && !io_info->isRead) {
1704 			r1_alt_pd = MR_ArPdGet(arRef, physArm + 1, map);
1705 			if (r1_alt_pd != MR_PD_INVALID)
1706 				io_info->r1_alt_dev_handle = MR_PdDevHandleGet(r1_alt_pd, map);
1707 		}
1708 	} else {
1709 		*pDevHandle = htole16(MR_DEVHANDLE_INVALID);	/* set dev handle as invalid. */
1710 		if ((raid->level >= 5) && ((sc->device_id == MRSAS_TBOLT) ||
1711 			(sc->mrsas_gen3_ctrl &&
1712 			raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
1713 			pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
1714 		else if (raid->level == 1) {
1715 			/* Get Alternate Pd. */
1716 			pd = MR_ArPdGet(arRef, physArm + 1, map);
1717 			if (pd != MR_PD_INVALID) {
1718 				/* Get dev handle from Pd. */
1719 				*pDevHandle = MR_PdDevHandleGet(pd, map);
1720 				*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
1721 			}
1722 		}
1723 	}
1724 
1725 	*pdBlock += stripRef + le64toh(MR_LdSpanPtrGet(ld, span, map)->startBlk);
1726 	if (sc->is_ventura || sc->is_aero) {
1727 		((RAID_CONTEXT_G35 *) pRAID_Context)->spanArm =
1728 		    (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
1729 		io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
1730 	} else {
1731 		pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
1732 		io_info->span_arm = pRAID_Context->spanArm;
1733 	}
1734 	return retval;
1735 }
1736 
1737 /*
1738  * MR_GetSpanBlock:	Calculates span block
1739  * Inputs:			LD
1740  * 					row PD
1741  * 					span block
1742  * 					RAID map pointer
1743  *
1744  * Outputs:			Span number Error code
1745  *
1746  * This routine calculates the span from the span block info.
1747  */
1748 u_int32_t
1749 MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
1750     MR_DRV_RAID_MAP_ALL * map, int *div_error)
1751 {
1752 	MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map);
1753 	MR_QUAD_ELEMENT *quad;
1754 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
1755 	u_int32_t span, j;
1756 	u_int64_t blk, debugBlk;
1757 
1758 	for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) {
1759 		for (j = 0; j < pSpanBlock->block_span_info.noElements; j++) {
1760 			quad = &pSpanBlock->block_span_info.quad[j];
1761 			if (quad->diff == 0) {
1762 				*div_error = 1;
1763 				return span;
1764 			}
1765 			if (quad->logStart <= row && row <= quad->logEnd &&
1766 			    (mega_mod64(row - quad->logStart, quad->diff)) == 0) {
1767 				if (span_blk != NULL) {
1768 					blk = mega_div64_32((row - quad->logStart), quad->diff);
1769 					debugBlk = blk;
1770 					blk = (blk + quad->offsetInSpan) << raid->stripeShift;
1771 					*span_blk = blk;
1772 				}
1773 				return span;
1774 			}
1775 		}
1776 	}
1777 	return span;
1778 }
1779