xref: /freebsd/sys/dev/mrsas/mrsas_fp.c (revision 9e4c35f867aca020df8d01fb7371bf5ae1cc8a2d)
1 /*
2  * Copyright (c) 2015, AVAGO Tech. All rights reserved. Author: Marian Choy
3  * Copyright (c) 2014, LSI Corp. All rights reserved. Author: Marian Choy
4  * Support: freebsdraid@avagotech.com
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are
8  * met:
9  *
10  * 1. Redistributions of source code must retain the above copyright notice,
11  * this list of conditions and the following disclaimer. 2. Redistributions
12  * in binary form must reproduce the above copyright notice, this list of
13  * conditions and the following disclaimer in the documentation and/or other
14  * materials provided with the distribution. 3. Neither the name of the
15  * <ORGANIZATION> nor the names of its contributors may be used to endorse or
16  * promote products derived from this software without specific prior written
17  * permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * The views and conclusions contained in the software and documentation are
32  * those of the authors and should not be interpreted as representing
33  * official policies,either expressed or implied, of the FreeBSD Project.
34  *
35  * Send feedback to: <megaraidfbsd@avagotech.com> Mail to: AVAGO TECHNOLOGIES, 1621
36  * Barber Lane, Milpitas, CA 95035 ATTN: MegaRaid FreeBSD
37  *
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include <dev/mrsas/mrsas.h>
44 
45 #include <cam/cam.h>
46 #include <cam/cam_ccb.h>
47 #include <cam/cam_sim.h>
48 #include <cam/cam_xpt_sim.h>
49 #include <cam/cam_debug.h>
50 #include <cam/cam_periph.h>
51 #include <cam/cam_xpt_periph.h>
52 
53 /*
54  * Function prototypes
55  */
56 u_int8_t MR_ValidateMapInfo(struct mrsas_softc *sc);
57 u_int8_t
58 mrsas_get_best_arm_pd(struct mrsas_softc *sc,
59     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
60 u_int8_t
61 MR_BuildRaidContext(struct mrsas_softc *sc,
62     struct IO_REQUEST_INFO *io_info,
63     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
64 u_int8_t
65 MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
66     u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
67     RAID_CONTEXT * pRAID_Context,
68     MR_DRV_RAID_MAP_ALL * map);
69 u_int8_t MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL *map);
70 u_int32_t MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
71 u_int16_t MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
72 u_int16_t
73 mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
74     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
75 u_int32_t mega_mod64(u_int64_t dividend, u_int32_t divisor);
76 u_int32_t
77 MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
78     MR_DRV_RAID_MAP_ALL * map, int *div_error);
79 u_int64_t mega_div64_32(u_int64_t dividend, u_int32_t divisor);
80 void
81 mrsas_update_load_balance_params(struct mrsas_softc *sc,
82     MR_DRV_RAID_MAP_ALL * map, PLD_LOAD_BALANCE_INFO lbInfo);
83 void
84 mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request,
85     u_int8_t cdb_len, struct IO_REQUEST_INFO *io_info, union ccb *ccb,
86     MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
87     u_int32_t ld_block_size);
88 static u_int16_t
89 MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span,
90     MR_DRV_RAID_MAP_ALL * map);
91 static u_int16_t MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map);
92 static u_int16_t
93 MR_ArPdGet(u_int32_t ar, u_int32_t arm,
94     MR_DRV_RAID_MAP_ALL * map);
95 static MR_LD_SPAN *
96 MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span,
97     MR_DRV_RAID_MAP_ALL * map);
98 static u_int8_t
99 MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx,
100     MR_DRV_RAID_MAP_ALL * map);
101 static MR_SPAN_BLOCK_INFO *
102 MR_LdSpanInfoGet(u_int32_t ld,
103     MR_DRV_RAID_MAP_ALL * map);
104 MR_LD_RAID *MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
105 static int MR_PopulateDrvRaidMap(struct mrsas_softc *sc);
106 
107 /*
108  * Spanset related function prototypes Added for PRL11 configuration (Uneven
109  * span support)
110  */
111 void	mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo);
112 static u_int8_t
113 mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld,
114     u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
115     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
116 static u_int64_t
117 get_row_from_strip(struct mrsas_softc *sc, u_int32_t ld,
118     u_int64_t strip, MR_DRV_RAID_MAP_ALL * map);
119 static u_int32_t
120 mr_spanset_get_span_block(struct mrsas_softc *sc,
121     u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
122     MR_DRV_RAID_MAP_ALL * map, int *div_error);
123 static u_int8_t
124 get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span,
125     u_int64_t stripe, MR_DRV_RAID_MAP_ALL * map);
126 
127 /*
128  * Spanset related defines Added for PRL11 configuration(Uneven span support)
129  */
130 #define	SPAN_ROW_SIZE(map, ld, index_) MR_LdSpanPtrGet(ld, index_, map)->spanRowSize
131 #define	SPAN_ROW_DATA_SIZE(map_, ld, index_)	\
132 	MR_LdSpanPtrGet(ld, index_, map)->spanRowDataSize
133 #define	SPAN_INVALID	0xff
134 #define	SPAN_DEBUG		0
135 
136 /*
137  * Related Defines
138  */
139 
140 typedef u_int64_t REGION_KEY;
141 typedef u_int32_t REGION_LEN;
142 
143 #define	MR_LD_STATE_OPTIMAL		3
144 #define	FALSE					0
145 #define	TRUE					1
146 
147 #define	LB_PENDING_CMDS_DEFAULT 4
148 
149 /*
150  * Related Macros
151  */
152 
153 #define	ABS_DIFF(a,b)   ( ((a) > (b)) ? ((a) - (b)) : ((b) - (a)) )
154 
155 #define	swap32(x) \
156   ((unsigned int)( \
157     (((unsigned int)(x) & (unsigned int)0x000000ffUL) << 24) | \
158     (((unsigned int)(x) & (unsigned int)0x0000ff00UL) <<  8) | \
159     (((unsigned int)(x) & (unsigned int)0x00ff0000UL) >>  8) | \
160     (((unsigned int)(x) & (unsigned int)0xff000000UL) >> 24) ))
161 
162 /*
163  * In-line functions for mod and divide of 64-bit dividend and 32-bit
164  * divisor. Assumes a check for a divisor of zero is not possible.
165  *
166  * @param dividend:	Dividend
167  * @param divisor:	Divisor
168  * @return			remainder
169  */
170 
171 #define	mega_mod64(dividend, divisor) ({ \
172 int remainder; \
173 remainder = ((u_int64_t) (dividend)) % (u_int32_t) (divisor); \
174 remainder;})
175 
176 #define	mega_div64_32(dividend, divisor) ({ \
177 int quotient; \
178 quotient = ((u_int64_t) (dividend)) / (u_int32_t) (divisor); \
179 quotient;})
180 
181 /*
182  * Various RAID map access functions.  These functions access the various
183  * parts of the RAID map and returns the appropriate parameters.
184  */
185 
186 MR_LD_RAID *
187 MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
188 {
189 	return (&map->raidMap.ldSpanMap[ld].ldRaid);
190 }
191 
192 u_int16_t
193 MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
194 {
195 	return (map->raidMap.ldSpanMap[ld].ldRaid.targetId);
196 }
197 
198 static u_int16_t
199 MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
200 {
201 	return map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef;
202 }
203 
204 static u_int8_t
205 MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx, MR_DRV_RAID_MAP_ALL * map)
206 {
207 	return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx];
208 }
209 
210 static u_int16_t
211 MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map)
212 {
213 	return map->raidMap.devHndlInfo[pd].curDevHdl;
214 }
215 
216 static u_int8_t MR_PdInterfaceTypeGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL *map)
217 {
218     return map->raidMap.devHndlInfo[pd].interfaceType;
219 }
220 
221 static u_int16_t
222 MR_ArPdGet(u_int32_t ar, u_int32_t arm, MR_DRV_RAID_MAP_ALL * map)
223 {
224 	return map->raidMap.arMapInfo[ar].pd[arm];
225 }
226 
227 static MR_LD_SPAN *
228 MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
229 {
230 	return &map->raidMap.ldSpanMap[ld].spanBlock[span].span;
231 }
232 
233 static MR_SPAN_BLOCK_INFO *
234 MR_LdSpanInfoGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
235 {
236 	return &map->raidMap.ldSpanMap[ld].spanBlock[0];
237 }
238 
239 u_int8_t
240 MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
241 {
242 	return map->raidMap.ldTgtIdToLd[ldTgtId];
243 }
244 
245 u_int32_t
246 MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
247 {
248 	MR_LD_RAID *raid;
249 	u_int32_t ld, ldBlockSize = MRSAS_SCSIBLOCKSIZE;
250 
251 	ld = MR_TargetIdToLdGet(ldTgtId, map);
252 
253 	/*
254 	 * Check if logical drive was removed.
255 	 */
256 	if (ld >= MAX_LOGICAL_DRIVES)
257 		return ldBlockSize;
258 
259 	raid = MR_LdRaidGet(ld, map);
260 	ldBlockSize = raid->logicalBlockLength;
261 	if (!ldBlockSize)
262 		ldBlockSize = MRSAS_SCSIBLOCKSIZE;
263 
264 	return ldBlockSize;
265 }
266 
267 /*
268  * This function will Populate Driver Map using Dynamic firmware raid map
269  */
270 static int
271 MR_PopulateDrvRaidMapVentura(struct mrsas_softc *sc)
272 {
273 	unsigned int i, j;
274 	u_int16_t ld_count;
275 
276 	MR_FW_RAID_MAP_DYNAMIC *fw_map_dyn;
277 	MR_RAID_MAP_DESC_TABLE *desc_table;
278 	MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
279 	MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
280 	void *raid_map_data = NULL;
281 
282 	fw_map_dyn = (MR_FW_RAID_MAP_DYNAMIC *) sc->raidmap_mem[(sc->map_id & 1)];
283 
284 	if (fw_map_dyn == NULL) {
285 		device_printf(sc->mrsas_dev,
286 		    "from %s %d map0  %p map1 %p map size %d \n", __func__, __LINE__,
287 		    sc->raidmap_mem[0], sc->raidmap_mem[1], sc->maxRaidMapSize);
288 		return 1;
289 	}
290 #if VD_EXT_DEBUG
291 	device_printf(sc->mrsas_dev,
292 	    " raidMapSize 0x%x, descTableOffset 0x%x, "
293 	    " descTableSize 0x%x, descTableNumElements 0x%x \n",
294 	    fw_map_dyn->raidMapSize, fw_map_dyn->descTableOffset,
295 	    fw_map_dyn->descTableSize, fw_map_dyn->descTableNumElements);
296 #endif
297 	desc_table = (MR_RAID_MAP_DESC_TABLE *) ((char *)fw_map_dyn +
298 	    fw_map_dyn->descTableOffset);
299 	if (desc_table != fw_map_dyn->raidMapDescTable) {
300 		device_printf(sc->mrsas_dev,
301 		    "offsets of desc table are not matching returning "
302 		    " FW raid map has been changed: desc %p original %p\n",
303 		    desc_table, fw_map_dyn->raidMapDescTable);
304 	}
305 	memset(drv_map, 0, sc->drv_map_sz);
306 	ld_count = fw_map_dyn->ldCount;
307 	pDrvRaidMap->ldCount = ld_count;
308 	pDrvRaidMap->fpPdIoTimeoutSec = fw_map_dyn->fpPdIoTimeoutSec;
309 	pDrvRaidMap->totalSize = sizeof(MR_DRV_RAID_MAP_ALL);
310 	/* point to actual data starting point */
311 	raid_map_data = (char *)fw_map_dyn +
312 	    fw_map_dyn->descTableOffset + fw_map_dyn->descTableSize;
313 
314 	for (i = 0; i < fw_map_dyn->descTableNumElements; ++i) {
315 		if (!desc_table) {
316 			device_printf(sc->mrsas_dev,
317 			    "desc table is null, coming out %p \n", desc_table);
318 			return 1;
319 		}
320 #if VD_EXT_DEBUG
321 		device_printf(sc->mrsas_dev, "raid_map_data %p \n", raid_map_data);
322 		device_printf(sc->mrsas_dev,
323 		    "desc table %p \n", desc_table);
324 		device_printf(sc->mrsas_dev,
325 		    "raidmap type %d, raidmapOffset 0x%x, "
326 		    " raid map number of elements 0%x, raidmapsize 0x%x\n",
327 		    desc_table->raidMapDescType, desc_table->raidMapDescOffset,
328 		    desc_table->raidMapDescElements, desc_table->raidMapDescBufferSize);
329 #endif
330 		switch (desc_table->raidMapDescType) {
331 		case RAID_MAP_DESC_TYPE_DEVHDL_INFO:
332 			fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo = (MR_DEV_HANDLE_INFO *)
333 			    ((char *)raid_map_data + desc_table->raidMapDescOffset);
334 #if VD_EXT_DEBUG
335 			device_printf(sc->mrsas_dev,
336 			    "devHndlInfo address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo);
337 #endif
338 			memcpy(pDrvRaidMap->devHndlInfo, fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo,
339 			    sizeof(MR_DEV_HANDLE_INFO) * desc_table->raidMapDescElements);
340 			break;
341 		case RAID_MAP_DESC_TYPE_TGTID_INFO:
342 			fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd = (u_int16_t *)
343 			    ((char *)raid_map_data + desc_table->raidMapDescOffset);
344 #if VD_EXT_DEBUG
345 			device_printf(sc->mrsas_dev,
346 			    "ldTgtIdToLd  address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd);
347 #endif
348 			for (j = 0; j < desc_table->raidMapDescElements; j++) {
349 				pDrvRaidMap->ldTgtIdToLd[j] = fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd[j];
350 #if VD_EXT_DEBUG
351 				device_printf(sc->mrsas_dev,
352 				    " %d drv ldTgtIdToLd %d\n",	j, pDrvRaidMap->ldTgtIdToLd[j]);
353 #endif
354 			}
355 			break;
356 		case RAID_MAP_DESC_TYPE_ARRAY_INFO:
357 			fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo = (MR_ARRAY_INFO *) ((char *)raid_map_data +
358 			    desc_table->raidMapDescOffset);
359 #if VD_EXT_DEBUG
360 			device_printf(sc->mrsas_dev,
361 			    "arMapInfo  address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo);
362 #endif
363 			memcpy(pDrvRaidMap->arMapInfo, fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo,
364 			    sizeof(MR_ARRAY_INFO) * desc_table->raidMapDescElements);
365 			break;
366 		case RAID_MAP_DESC_TYPE_SPAN_INFO:
367 			fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap = (MR_LD_SPAN_MAP *) ((char *)raid_map_data +
368 			    desc_table->raidMapDescOffset);
369 			memcpy(pDrvRaidMap->ldSpanMap, fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap,
370 			    sizeof(MR_LD_SPAN_MAP) * desc_table->raidMapDescElements);
371 #if VD_EXT_DEBUG
372 			device_printf(sc->mrsas_dev,
373 			    "ldSpanMap  address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap);
374 			device_printf(sc->mrsas_dev,
375 			    "MR_LD_SPAN_MAP size 0x%lx\n", sizeof(MR_LD_SPAN_MAP));
376 			for (j = 0; j < ld_count; j++) {
377 				printf("mrsas(%d) : fw_map_dyn->ldSpanMap[%d].ldRaid.targetId 0x%x "
378 				    "fw_map_dyn->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
379 				    j, j, fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.targetId, j,
380 				    fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.seqNum,
381 				    (u_int32_t)fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.rowSize);
382 				printf("mrsas(%d) : pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x "
383 				    "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
384 				    j, j, pDrvRaidMap->ldSpanMap[j].ldRaid.targetId, j,
385 				    pDrvRaidMap->ldSpanMap[j].ldRaid.seqNum,
386 				    (u_int32_t)pDrvRaidMap->ldSpanMap[j].ldRaid.rowSize);
387 				printf("mrsas : drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
388 				    drv_map, pDrvRaidMap, &fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid,
389 				    &pDrvRaidMap->ldSpanMap[j].ldRaid);
390 			}
391 #endif
392 			break;
393 		default:
394 			device_printf(sc->mrsas_dev,
395 			    "wrong number of desctableElements %d\n",
396 			    fw_map_dyn->descTableNumElements);
397 		}
398 		++desc_table;
399 	}
400 	return 0;
401 }
402 
403 /*
404  * This function will Populate Driver Map using firmware raid map
405  */
406 static int
407 MR_PopulateDrvRaidMap(struct mrsas_softc *sc)
408 {
409 	MR_FW_RAID_MAP_ALL *fw_map_old = NULL;
410 	MR_FW_RAID_MAP_EXT *fw_map_ext;
411 	MR_FW_RAID_MAP *pFwRaidMap = NULL;
412 	unsigned int i;
413 	u_int16_t ld_count;
414 
415 	MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
416 	MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
417 
418 	if (sc->maxRaidMapSize) {
419 		return MR_PopulateDrvRaidMapVentura(sc);
420 	} else if (sc->max256vdSupport) {
421 		fw_map_ext = (MR_FW_RAID_MAP_EXT *) sc->raidmap_mem[(sc->map_id & 1)];
422 		ld_count = (u_int16_t)(fw_map_ext->ldCount);
423 		if (ld_count > MAX_LOGICAL_DRIVES_EXT) {
424 			device_printf(sc->mrsas_dev,
425 			    "mrsas: LD count exposed in RAID map in not valid\n");
426 			return 1;
427 		}
428 #if VD_EXT_DEBUG
429 		for (i = 0; i < ld_count; i++) {
430 			printf("mrsas : Index 0x%x Target Id 0x%x Seq Num 0x%x Size 0/%lx\n",
431 			    i, fw_map_ext->ldSpanMap[i].ldRaid.targetId,
432 			    fw_map_ext->ldSpanMap[i].ldRaid.seqNum,
433 			    fw_map_ext->ldSpanMap[i].ldRaid.size);
434 		}
435 #endif
436 		memset(drv_map, 0, sc->drv_map_sz);
437 		pDrvRaidMap->ldCount = ld_count;
438 		pDrvRaidMap->fpPdIoTimeoutSec = fw_map_ext->fpPdIoTimeoutSec;
439 		for (i = 0; i < (MAX_LOGICAL_DRIVES_EXT); i++) {
440 			pDrvRaidMap->ldTgtIdToLd[i] = (u_int16_t)fw_map_ext->ldTgtIdToLd[i];
441 		}
442 		memcpy(pDrvRaidMap->ldSpanMap, fw_map_ext->ldSpanMap, sizeof(MR_LD_SPAN_MAP) * ld_count);
443 #if VD_EXT_DEBUG
444 		for (i = 0; i < ld_count; i++) {
445 			printf("mrsas(%d) : fw_map_ext->ldSpanMap[%d].ldRaid.targetId 0x%x "
446 			    "fw_map_ext->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
447 			    i, i, fw_map_ext->ldSpanMap[i].ldRaid.targetId, i,
448 			    fw_map_ext->ldSpanMap[i].ldRaid.seqNum,
449 			    (u_int32_t)fw_map_ext->ldSpanMap[i].ldRaid.rowSize);
450 			printf("mrsas(%d) : pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x"
451 			    "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i,
452 			    pDrvRaidMap->ldSpanMap[i].ldRaid.targetId, i,
453 			    pDrvRaidMap->ldSpanMap[i].ldRaid.seqNum,
454 			    (u_int32_t)pDrvRaidMap->ldSpanMap[i].ldRaid.rowSize);
455 			printf("mrsas : drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
456 			    drv_map, pDrvRaidMap, &fw_map_ext->ldSpanMap[i].ldRaid,
457 			    &pDrvRaidMap->ldSpanMap[i].ldRaid);
458 		}
459 #endif
460 		memcpy(pDrvRaidMap->arMapInfo, fw_map_ext->arMapInfo,
461 		    sizeof(MR_ARRAY_INFO) * MAX_API_ARRAYS_EXT);
462 		memcpy(pDrvRaidMap->devHndlInfo, fw_map_ext->devHndlInfo,
463 		    sizeof(MR_DEV_HANDLE_INFO) * MAX_RAIDMAP_PHYSICAL_DEVICES);
464 
465 		pDrvRaidMap->totalSize = sizeof(MR_FW_RAID_MAP_EXT);
466 	} else {
467 		fw_map_old = (MR_FW_RAID_MAP_ALL *) sc->raidmap_mem[(sc->map_id & 1)];
468 		pFwRaidMap = &fw_map_old->raidMap;
469 
470 #if VD_EXT_DEBUG
471 		for (i = 0; i < pFwRaidMap->ldCount; i++) {
472 			device_printf(sc->mrsas_dev,
473 			    "Index 0x%x Target Id 0x%x Seq Num 0x%x Size 0/%lx\n", i,
474 			    fw_map_old->raidMap.ldSpanMap[i].ldRaid.targetId,
475 			    fw_map_old->raidMap.ldSpanMap[i].ldRaid.seqNum,
476 			    fw_map_old->raidMap.ldSpanMap[i].ldRaid.size);
477 		}
478 #endif
479 
480 		memset(drv_map, 0, sc->drv_map_sz);
481 		pDrvRaidMap->totalSize = pFwRaidMap->totalSize;
482 		pDrvRaidMap->ldCount = pFwRaidMap->ldCount;
483 		pDrvRaidMap->fpPdIoTimeoutSec =
484 		    pFwRaidMap->fpPdIoTimeoutSec;
485 
486 		for (i = 0; i < MAX_RAIDMAP_LOGICAL_DRIVES + MAX_RAIDMAP_VIEWS; i++) {
487 			pDrvRaidMap->ldTgtIdToLd[i] =
488 			    (u_int8_t)pFwRaidMap->ldTgtIdToLd[i];
489 		}
490 
491 		for (i = 0; i < pDrvRaidMap->ldCount; i++) {
492 			pDrvRaidMap->ldSpanMap[i] =
493 			    pFwRaidMap->ldSpanMap[i];
494 
495 #if VD_EXT_DEBUG
496 			device_printf(sc->mrsas_dev, "pFwRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x "
497 			    "pFwRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
498 			    i, i, pFwRaidMap->ldSpanMap[i].ldRaid.targetId,
499 			    pFwRaidMap->ldSpanMap[i].ldRaid.seqNum,
500 			    (u_int32_t)pFwRaidMap->ldSpanMap[i].ldRaid.rowSize);
501 			device_printf(sc->mrsas_dev, "pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x"
502 			    "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i,
503 			    pDrvRaidMap->ldSpanMap[i].ldRaid.targetId,
504 			    pDrvRaidMap->ldSpanMap[i].ldRaid.seqNum,
505 			    (u_int32_t)pDrvRaidMap->ldSpanMap[i].ldRaid.rowSize);
506 			device_printf(sc->mrsas_dev, "drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
507 			    drv_map, pDrvRaidMap,
508 			    &pFwRaidMap->ldSpanMap[i].ldRaid, &pDrvRaidMap->ldSpanMap[i].ldRaid);
509 #endif
510 		}
511 
512 		memcpy(pDrvRaidMap->arMapInfo, pFwRaidMap->arMapInfo,
513 		    sizeof(MR_ARRAY_INFO) * MAX_RAIDMAP_ARRAYS);
514 		memcpy(pDrvRaidMap->devHndlInfo, pFwRaidMap->devHndlInfo,
515 		    sizeof(MR_DEV_HANDLE_INFO) *
516 		    MAX_RAIDMAP_PHYSICAL_DEVICES);
517 	}
518 	return 0;
519 }
520 
521 /*
522  * MR_ValidateMapInfo:	Validate RAID map
523  * input:				Adapter instance soft state
524  *
525  * This function checks and validates the loaded RAID map. It returns 0 if
526  * successful, and 1 otherwise.
527  */
528 u_int8_t
529 MR_ValidateMapInfo(struct mrsas_softc *sc)
530 {
531 	if (!sc) {
532 		return 1;
533 	}
534 	if (MR_PopulateDrvRaidMap(sc))
535 		return 0;
536 
537 	MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
538 	MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
539 
540 	u_int32_t expected_map_size;
541 
542 	drv_map = sc->ld_drv_map[(sc->map_id & 1)];
543 	pDrvRaidMap = &drv_map->raidMap;
544 	PLD_SPAN_INFO ldSpanInfo = (PLD_SPAN_INFO) & sc->log_to_span;
545 
546 	if (sc->maxRaidMapSize)
547 		expected_map_size = sizeof(MR_DRV_RAID_MAP_ALL);
548 	else if (sc->max256vdSupport)
549 		expected_map_size = sizeof(MR_FW_RAID_MAP_EXT);
550 	else
551 		expected_map_size =
552 		    (sizeof(MR_FW_RAID_MAP) - sizeof(MR_LD_SPAN_MAP)) +
553 		    (sizeof(MR_LD_SPAN_MAP) * pDrvRaidMap->ldCount);
554 
555 	if (pDrvRaidMap->totalSize != expected_map_size) {
556 		device_printf(sc->mrsas_dev, "map size %x not matching ld count\n", expected_map_size);
557 		device_printf(sc->mrsas_dev, "span map= %x\n", (unsigned int)sizeof(MR_LD_SPAN_MAP));
558 		device_printf(sc->mrsas_dev, "pDrvRaidMap->totalSize=%x\n", pDrvRaidMap->totalSize);
559 		return 1;
560 	}
561 	if (sc->UnevenSpanSupport) {
562 		mr_update_span_set(drv_map, ldSpanInfo);
563 	}
564 	mrsas_update_load_balance_params(sc, drv_map, sc->load_balance_info);
565 
566 	return 0;
567 }
568 
569 /*
570  *
571  * Function to print info about span set created in driver from FW raid map
572  *
573  * Inputs:		map
574  * ldSpanInfo:	ld map span info per HBA instance
575  *
576  *
577  */
578 #if SPAN_DEBUG
579 static int
580 getSpanInfo(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
581 {
582 
583 	u_int8_t span;
584 	u_int32_t element;
585 	MR_LD_RAID *raid;
586 	LD_SPAN_SET *span_set;
587 	MR_QUAD_ELEMENT *quad;
588 	int ldCount;
589 	u_int16_t ld;
590 
591 	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
592 		ld = MR_TargetIdToLdGet(ldCount, map);
593 		if (ld >= MAX_LOGICAL_DRIVES) {
594 			continue;
595 		}
596 		raid = MR_LdRaidGet(ld, map);
597 		printf("LD %x: span_depth=%x\n", ld, raid->spanDepth);
598 		for (span = 0; span < raid->spanDepth; span++)
599 			printf("Span=%x, number of quads=%x\n", span,
600 			    map->raidMap.ldSpanMap[ld].spanBlock[span].
601 			    block_span_info.noElements);
602 		for (element = 0; element < MAX_QUAD_DEPTH; element++) {
603 			span_set = &(ldSpanInfo[ld].span_set[element]);
604 			if (span_set->span_row_data_width == 0)
605 				break;
606 
607 			printf("Span Set %x: width=%x, diff=%x\n", element,
608 			    (unsigned int)span_set->span_row_data_width,
609 			    (unsigned int)span_set->diff);
610 			printf("logical LBA start=0x%08lx, end=0x%08lx\n",
611 			    (long unsigned int)span_set->log_start_lba,
612 			    (long unsigned int)span_set->log_end_lba);
613 			printf("span row start=0x%08lx, end=0x%08lx\n",
614 			    (long unsigned int)span_set->span_row_start,
615 			    (long unsigned int)span_set->span_row_end);
616 			printf("data row start=0x%08lx, end=0x%08lx\n",
617 			    (long unsigned int)span_set->data_row_start,
618 			    (long unsigned int)span_set->data_row_end);
619 			printf("data strip start=0x%08lx, end=0x%08lx\n",
620 			    (long unsigned int)span_set->data_strip_start,
621 			    (long unsigned int)span_set->data_strip_end);
622 
623 			for (span = 0; span < raid->spanDepth; span++) {
624 				if (map->raidMap.ldSpanMap[ld].spanBlock[span].
625 				    block_span_info.noElements >= element + 1) {
626 					quad = &map->raidMap.ldSpanMap[ld].
627 					    spanBlock[span].block_span_info.
628 					    quad[element];
629 					printf("Span=%x, Quad=%x, diff=%x\n", span,
630 					    element, quad->diff);
631 					printf("offset_in_span=0x%08lx\n",
632 					    (long unsigned int)quad->offsetInSpan);
633 					printf("logical start=0x%08lx, end=0x%08lx\n",
634 					    (long unsigned int)quad->logStart,
635 					    (long unsigned int)quad->logEnd);
636 				}
637 			}
638 		}
639 	}
640 	return 0;
641 }
642 
643 #endif
644 /*
645  *
646  * This routine calculates the Span block for given row using spanset.
647  *
648  * Inputs :	HBA instance
649  * ld:		Logical drive number
650  * row:		Row number
651  * map:		LD map
652  *
653  * Outputs :	span	- Span number block
654  * 						- Absolute Block number in the physical disk
655  * 				div_error    - Devide error code.
656  */
657 
658 u_int32_t
659 mr_spanset_get_span_block(struct mrsas_softc *sc, u_int32_t ld, u_int64_t row,
660     u_int64_t *span_blk, MR_DRV_RAID_MAP_ALL * map, int *div_error)
661 {
662 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
663 	LD_SPAN_SET *span_set;
664 	MR_QUAD_ELEMENT *quad;
665 	u_int32_t span, info;
666 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
667 
668 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
669 		span_set = &(ldSpanInfo[ld].span_set[info]);
670 
671 		if (span_set->span_row_data_width == 0)
672 			break;
673 		if (row > span_set->data_row_end)
674 			continue;
675 
676 		for (span = 0; span < raid->spanDepth; span++)
677 			if (map->raidMap.ldSpanMap[ld].spanBlock[span].
678 			    block_span_info.noElements >= info + 1) {
679 				quad = &map->raidMap.ldSpanMap[ld].
680 				    spanBlock[span].
681 				    block_span_info.quad[info];
682 				if (quad->diff == 0) {
683 					*div_error = 1;
684 					return span;
685 				}
686 				if (quad->logStart <= row &&
687 				    row <= quad->logEnd &&
688 				    (mega_mod64(row - quad->logStart,
689 				    quad->diff)) == 0) {
690 					if (span_blk != NULL) {
691 						u_int64_t blk;
692 
693 						blk = mega_div64_32
694 						    ((row - quad->logStart),
695 						    quad->diff);
696 						blk = (blk + quad->offsetInSpan)
697 						    << raid->stripeShift;
698 						*span_blk = blk;
699 					}
700 					return span;
701 				}
702 			}
703 	}
704 	return SPAN_INVALID;
705 }
706 
707 /*
708  *
709  * This routine calculates the row for given strip using spanset.
710  *
711  * Inputs :	HBA instance
712  * ld:		Logical drive number
713  * Strip:	Strip
714  * map:		LD map
715  *
716  * Outputs :	row - row associated with strip
717  */
718 
719 static u_int64_t
720 get_row_from_strip(struct mrsas_softc *sc,
721     u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
722 {
723 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
724 	LD_SPAN_SET *span_set;
725 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
726 	u_int32_t info, strip_offset, span, span_offset;
727 	u_int64_t span_set_Strip, span_set_Row;
728 
729 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
730 		span_set = &(ldSpanInfo[ld].span_set[info]);
731 
732 		if (span_set->span_row_data_width == 0)
733 			break;
734 		if (strip > span_set->data_strip_end)
735 			continue;
736 
737 		span_set_Strip = strip - span_set->data_strip_start;
738 		strip_offset = mega_mod64(span_set_Strip,
739 		    span_set->span_row_data_width);
740 		span_set_Row = mega_div64_32(span_set_Strip,
741 		    span_set->span_row_data_width) * span_set->diff;
742 		for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
743 			if (map->raidMap.ldSpanMap[ld].spanBlock[span].
744 			    block_span_info.noElements >= info + 1) {
745 				if (strip_offset >=
746 				    span_set->strip_offset[span])
747 					span_offset++;
748 				else
749 					break;
750 			}
751 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : Strip 0x%llx, span_set_Strip 0x%llx, span_set_Row 0x%llx "
752 		    "data width 0x%llx span offset 0x%llx\n", (unsigned long long)strip,
753 		    (unsigned long long)span_set_Strip,
754 		    (unsigned long long)span_set_Row,
755 		    (unsigned long long)span_set->span_row_data_width, (unsigned long long)span_offset);
756 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : For strip 0x%llx row is 0x%llx\n", (unsigned long long)strip,
757 		    (unsigned long long)span_set->data_row_start +
758 		    (unsigned long long)span_set_Row + (span_offset - 1));
759 		return (span_set->data_row_start + span_set_Row + (span_offset - 1));
760 	}
761 	return -1LLU;
762 }
763 
764 /*
765  *
766  * This routine calculates the Start Strip for given row using spanset.
767  *
768  * Inputs:	HBA instance
769  * ld:		Logical drive number
770  * row:		Row number
771  * map:		LD map
772  *
773  * Outputs :	Strip - Start strip associated with row
774  */
775 
776 static u_int64_t
777 get_strip_from_row(struct mrsas_softc *sc,
778     u_int32_t ld, u_int64_t row, MR_DRV_RAID_MAP_ALL * map)
779 {
780 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
781 	LD_SPAN_SET *span_set;
782 	MR_QUAD_ELEMENT *quad;
783 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
784 	u_int32_t span, info;
785 	u_int64_t strip;
786 
787 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
788 		span_set = &(ldSpanInfo[ld].span_set[info]);
789 
790 		if (span_set->span_row_data_width == 0)
791 			break;
792 		if (row > span_set->data_row_end)
793 			continue;
794 
795 		for (span = 0; span < raid->spanDepth; span++)
796 			if (map->raidMap.ldSpanMap[ld].spanBlock[span].
797 			    block_span_info.noElements >= info + 1) {
798 				quad = &map->raidMap.ldSpanMap[ld].
799 				    spanBlock[span].block_span_info.quad[info];
800 				if (quad->logStart <= row &&
801 				    row <= quad->logEnd &&
802 				    mega_mod64((row - quad->logStart),
803 				    quad->diff) == 0) {
804 					strip = mega_div64_32
805 					    (((row - span_set->data_row_start)
806 					    - quad->logStart),
807 					    quad->diff);
808 					strip *= span_set->span_row_data_width;
809 					strip += span_set->data_strip_start;
810 					strip += span_set->strip_offset[span];
811 					return strip;
812 				}
813 			}
814 	}
815 	mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug - get_strip_from_row: returns invalid "
816 	    "strip for ld=%x, row=%lx\n", ld, (long unsigned int)row);
817 	return -1;
818 }
819 
820 /*
821  * *****************************************************************************
822  *
823  *
824  * This routine calculates the Physical Arm for given strip using spanset.
825  *
826  * Inputs :	HBA instance
827  * 			Logical drive number
828  * 			Strip
829  * 			LD map
830  *
831  * Outputs :	Phys Arm - Phys Arm associated with strip
832  */
833 
834 static u_int32_t
835 get_arm_from_strip(struct mrsas_softc *sc,
836     u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
837 {
838 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
839 	LD_SPAN_SET *span_set;
840 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
841 	u_int32_t info, strip_offset, span, span_offset;
842 
843 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
844 		span_set = &(ldSpanInfo[ld].span_set[info]);
845 
846 		if (span_set->span_row_data_width == 0)
847 			break;
848 		if (strip > span_set->data_strip_end)
849 			continue;
850 
851 		strip_offset = (u_int32_t)mega_mod64
852 		    ((strip - span_set->data_strip_start),
853 		    span_set->span_row_data_width);
854 
855 		for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
856 			if (map->raidMap.ldSpanMap[ld].spanBlock[span].
857 			    block_span_info.noElements >= info + 1) {
858 				if (strip_offset >= span_set->strip_offset[span])
859 					span_offset = span_set->strip_offset[span];
860 				else
861 					break;
862 			}
863 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO PRL11: get_arm_from_strip: "
864 		    "for ld=0x%x strip=0x%lx arm is  0x%x\n", ld,
865 		    (long unsigned int)strip, (strip_offset - span_offset));
866 		return (strip_offset - span_offset);
867 	}
868 
869 	mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: - get_arm_from_strip: returns invalid arm"
870 	    " for ld=%x strip=%lx\n", ld, (long unsigned int)strip);
871 
872 	return -1;
873 }
874 
875 /* This Function will return Phys arm */
876 u_int8_t
877 get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span, u_int64_t stripe,
878     MR_DRV_RAID_MAP_ALL * map)
879 {
880 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
881 
882 	/* Need to check correct default value */
883 	u_int32_t arm = 0;
884 
885 	switch (raid->level) {
886 	case 0:
887 	case 5:
888 	case 6:
889 		arm = mega_mod64(stripe, SPAN_ROW_SIZE(map, ld, span));
890 		break;
891 	case 1:
892 		/* start with logical arm */
893 		arm = get_arm_from_strip(sc, ld, stripe, map);
894 		arm *= 2;
895 		break;
896 	}
897 
898 	return arm;
899 }
900 
901 /*
902  *
903  * This routine calculates the arm, span and block for the specified stripe and
904  * reference in stripe using spanset
905  *
906  * Inputs :
907  * sc - HBA instance
908  * ld - Logical drive number
909  * stripRow: Stripe number
910  * stripRef: Reference in stripe
911  *
912  * Outputs :	span - Span number block - Absolute Block
913  * number in the physical disk
914  */
915 static u_int8_t
916 mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld, u_int64_t stripRow,
917     u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
918     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
919 {
920 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
921 	u_int32_t pd, arRef, r1_alt_pd;
922 	u_int8_t physArm, span;
923 	u_int64_t row;
924 	u_int8_t retval = TRUE;
925 	u_int64_t *pdBlock = &io_info->pdBlock;
926 	u_int16_t *pDevHandle = &io_info->devHandle;
927 	u_int8_t  *pPdInterface = &io_info->pdInterface;
928 
929 	u_int32_t logArm, rowMod, armQ, arm;
930 
931 	/* Get row and span from io_info for Uneven Span IO. */
932 	row = io_info->start_row;
933 	span = io_info->start_span;
934 
935 	if (raid->level == 6) {
936 		logArm = get_arm_from_strip(sc, ld, stripRow, map);
937 		rowMod = mega_mod64(row, SPAN_ROW_SIZE(map, ld, span));
938 		armQ = SPAN_ROW_SIZE(map, ld, span) - 1 - rowMod;
939 		arm = armQ + 1 + logArm;
940 		if (arm >= SPAN_ROW_SIZE(map, ld, span))
941 			arm -= SPAN_ROW_SIZE(map, ld, span);
942 		physArm = (u_int8_t)arm;
943 	} else
944 		/* Calculate the arm */
945 		physArm = get_arm(sc, ld, span, stripRow, map);
946 
947 	arRef = MR_LdSpanArrayGet(ld, span, map);
948 	pd = MR_ArPdGet(arRef, physArm, map);
949 
950 	if (pd != MR_PD_INVALID) {
951 		*pDevHandle = MR_PdDevHandleGet(pd, map);
952 		*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
953 		/* get second pd also for raid 1/10 fast path writes */
954 		if ((raid->level == 1) && !io_info->isRead) {
955 			r1_alt_pd = MR_ArPdGet(arRef, physArm + 1, map);
956 			if (r1_alt_pd != MR_PD_INVALID)
957 				io_info->r1_alt_dev_handle = MR_PdDevHandleGet(r1_alt_pd, map);
958 		}
959 	} else {
960 		*pDevHandle = MR_DEVHANDLE_INVALID;
961 		if ((raid->level >= 5) && ((sc->device_id == MRSAS_TBOLT) ||
962 			(sc->mrsas_gen3_ctrl &&
963 			raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
964 			pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
965 		else if (raid->level == 1) {
966 			pd = MR_ArPdGet(arRef, physArm + 1, map);
967 			if (pd != MR_PD_INVALID) {
968 				*pDevHandle = MR_PdDevHandleGet(pd, map);
969 				*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
970 			}
971 		}
972 	}
973 
974 	*pdBlock += stripRef + MR_LdSpanPtrGet(ld, span, map)->startBlk;
975 	if (sc->is_ventura || sc->is_aero) {
976 		((RAID_CONTEXT_G35 *) pRAID_Context)->spanArm =
977 		    (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
978 		io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
979 	} else {
980 		pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
981 		io_info->span_arm = pRAID_Context->spanArm;
982 	}
983 	return retval;
984 }
985 
986 /*
987  * MR_BuildRaidContext:	Set up Fast path RAID context
988  *
989  * This function will initiate command processing.  The start/end row and strip
990  * information is calculated then the lock is acquired. This function will
991  * return 0 if region lock was acquired OR return num strips.
992  */
993 u_int8_t
994 MR_BuildRaidContext(struct mrsas_softc *sc, struct IO_REQUEST_INFO *io_info,
995     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
996 {
997 	MR_LD_RAID *raid;
998 	u_int32_t ld, stripSize, stripe_mask;
999 	u_int64_t endLba, endStrip, endRow, start_row, start_strip;
1000 	REGION_KEY regStart;
1001 	REGION_LEN regSize;
1002 	u_int8_t num_strips, numRows;
1003 	u_int16_t ref_in_start_stripe, ref_in_end_stripe;
1004 	u_int64_t ldStartBlock;
1005 	u_int32_t numBlocks, ldTgtId;
1006 	u_int8_t isRead, stripIdx;
1007 	u_int8_t retval = 0;
1008 	u_int8_t startlba_span = SPAN_INVALID;
1009 	u_int64_t *pdBlock = &io_info->pdBlock;
1010 	int error_code = 0;
1011 
1012 	ldStartBlock = io_info->ldStartBlock;
1013 	numBlocks = io_info->numBlocks;
1014 	ldTgtId = io_info->ldTgtId;
1015 	isRead = io_info->isRead;
1016 
1017 	io_info->IoforUnevenSpan = 0;
1018 	io_info->start_span = SPAN_INVALID;
1019 
1020 	ld = MR_TargetIdToLdGet(ldTgtId, map);
1021 	raid = MR_LdRaidGet(ld, map);
1022 
1023 	/* check read ahead bit */
1024 	io_info->raCapable = raid->capability.raCapable;
1025 
1026 	if (raid->rowDataSize == 0) {
1027 		if (MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize == 0)
1028 			return FALSE;
1029 		else if (sc->UnevenSpanSupport) {
1030 			io_info->IoforUnevenSpan = 1;
1031 		} else {
1032 			mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: raid->rowDataSize is 0, but has SPAN[0] rowDataSize = 0x%0x,"
1033 			    " but there is _NO_ UnevenSpanSupport\n",
1034 			    MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize);
1035 			return FALSE;
1036 		}
1037 	}
1038 	stripSize = 1 << raid->stripeShift;
1039 	stripe_mask = stripSize - 1;
1040 	/*
1041 	 * calculate starting row and stripe, and number of strips and rows
1042 	 */
1043 	start_strip = ldStartBlock >> raid->stripeShift;
1044 	ref_in_start_stripe = (u_int16_t)(ldStartBlock & stripe_mask);
1045 	endLba = ldStartBlock + numBlocks - 1;
1046 	ref_in_end_stripe = (u_int16_t)(endLba & stripe_mask);
1047 	endStrip = endLba >> raid->stripeShift;
1048 	num_strips = (u_int8_t)(endStrip - start_strip + 1);	/* End strip */
1049 	if (io_info->IoforUnevenSpan) {
1050 		start_row = get_row_from_strip(sc, ld, start_strip, map);
1051 		endRow = get_row_from_strip(sc, ld, endStrip, map);
1052 		if (raid->spanDepth == 1) {
1053 			startlba_span = 0;
1054 			*pdBlock = start_row << raid->stripeShift;
1055 		} else {
1056 			startlba_span = (u_int8_t)mr_spanset_get_span_block(sc, ld, start_row,
1057 			    pdBlock, map, &error_code);
1058 			if (error_code == 1) {
1059 				mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d. Send IO w/o region lock.\n",
1060 				    __func__, __LINE__);
1061 				return FALSE;
1062 			}
1063 		}
1064 		if (startlba_span == SPAN_INVALID) {
1065 			mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d for row 0x%llx,"
1066 			    "start strip %llx endSrip %llx\n", __func__,
1067 			    __LINE__, (unsigned long long)start_row,
1068 			    (unsigned long long)start_strip,
1069 			    (unsigned long long)endStrip);
1070 			return FALSE;
1071 		}
1072 		io_info->start_span = startlba_span;
1073 		io_info->start_row = start_row;
1074 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: Check Span number from %s %d for row 0x%llx, "
1075 		    " start strip 0x%llx endSrip 0x%llx span 0x%x\n",
1076 		    __func__, __LINE__, (unsigned long long)start_row,
1077 		    (unsigned long long)start_strip,
1078 		    (unsigned long long)endStrip, startlba_span);
1079 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : 1. start_row 0x%llx endRow 0x%llx Start span 0x%x\n",
1080 		    (unsigned long long)start_row, (unsigned long long)endRow, startlba_span);
1081 	} else {
1082 		start_row = mega_div64_32(start_strip, raid->rowDataSize);
1083 		endRow = mega_div64_32(endStrip, raid->rowDataSize);
1084 	}
1085 
1086 	numRows = (u_int8_t)(endRow - start_row + 1);	/* get the row count */
1087 
1088 	/*
1089 	 * Calculate region info.  (Assume region at start of first row, and
1090 	 * assume this IO needs the full row - will adjust if not true.)
1091 	 */
1092 	regStart = start_row << raid->stripeShift;
1093 	regSize = stripSize;
1094 
1095 	/* Check if we can send this I/O via FastPath */
1096 	if (raid->capability.fpCapable) {
1097 		if (isRead)
1098 			io_info->fpOkForIo = (raid->capability.fpReadCapable &&
1099 			    ((num_strips == 1) ||
1100 			    raid->capability.fpReadAcrossStripe));
1101 		else
1102 			io_info->fpOkForIo = (raid->capability.fpWriteCapable &&
1103 			    ((num_strips == 1) ||
1104 			    raid->capability.fpWriteAcrossStripe));
1105 	} else
1106 		io_info->fpOkForIo = FALSE;
1107 
1108 	if (numRows == 1) {
1109 		if (num_strips == 1) {
1110 			regStart += ref_in_start_stripe;
1111 			regSize = numBlocks;
1112 		}
1113 	} else if (io_info->IoforUnevenSpan == 0) {
1114 		/*
1115 		 * For Even span region lock optimization. If the start strip
1116 		 * is the last in the start row
1117 		 */
1118 		if (start_strip == (start_row + 1) * raid->rowDataSize - 1) {
1119 			regStart += ref_in_start_stripe;
1120 			/*
1121 			 * initialize count to sectors from startRef to end
1122 			 * of strip
1123 			 */
1124 			regSize = stripSize - ref_in_start_stripe;
1125 		}
1126 		/* add complete rows in the middle of the transfer */
1127 		if (numRows > 2)
1128 			regSize += (numRows - 2) << raid->stripeShift;
1129 
1130 		/* if IO ends within first strip of last row */
1131 		if (endStrip == endRow * raid->rowDataSize)
1132 			regSize += ref_in_end_stripe + 1;
1133 		else
1134 			regSize += stripSize;
1135 	} else {
1136 		if (start_strip == (get_strip_from_row(sc, ld, start_row, map) +
1137 		    SPAN_ROW_DATA_SIZE(map, ld, startlba_span) - 1)) {
1138 			regStart += ref_in_start_stripe;
1139 			/*
1140 			 * initialize count to sectors from startRef to end
1141 			 * of strip
1142 			 */
1143 			regSize = stripSize - ref_in_start_stripe;
1144 		}
1145 		/* add complete rows in the middle of the transfer */
1146 		if (numRows > 2)
1147 			regSize += (numRows - 2) << raid->stripeShift;
1148 
1149 		/* if IO ends within first strip of last row */
1150 		if (endStrip == get_strip_from_row(sc, ld, endRow, map))
1151 			regSize += ref_in_end_stripe + 1;
1152 		else
1153 			regSize += stripSize;
1154 	}
1155 	pRAID_Context->timeoutValue = map->raidMap.fpPdIoTimeoutSec;
1156 	if (sc->mrsas_gen3_ctrl)
1157 		pRAID_Context->regLockFlags = (isRead) ? raid->regTypeReqOnRead : raid->regTypeReqOnWrite;
1158 	else if (sc->device_id == MRSAS_TBOLT)
1159 		pRAID_Context->regLockFlags = (isRead) ? REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite;
1160 	pRAID_Context->VirtualDiskTgtId = raid->targetId;
1161 	pRAID_Context->regLockRowLBA = regStart;
1162 	pRAID_Context->regLockLength = regSize;
1163 	pRAID_Context->configSeqNum = raid->seqNum;
1164 
1165 	/*
1166 	 * Get Phy Params only if FP capable, or else leave it to MR firmware
1167 	 * to do the calculation.
1168 	 */
1169 	if (io_info->fpOkForIo) {
1170 		retval = io_info->IoforUnevenSpan ?
1171 		    mr_spanset_get_phy_params(sc, ld, start_strip,
1172 		    ref_in_start_stripe, io_info, pRAID_Context, map) :
1173 		    MR_GetPhyParams(sc, ld, start_strip,
1174 		    ref_in_start_stripe, io_info, pRAID_Context, map);
1175 		/* If IO on an invalid Pd, then FP is not possible */
1176 		if (io_info->devHandle == MR_DEVHANDLE_INVALID)
1177 			io_info->fpOkForIo = FALSE;
1178 		/*
1179 		 * if FP possible, set the SLUD bit in regLockFlags for
1180 		 * ventura
1181 		 */
1182 		else if ((sc->is_ventura || sc->is_aero) && !isRead &&
1183 			    (raid->writeMode == MR_RL_WRITE_BACK_MODE) && (raid->level <= 1) &&
1184 		    raid->capability.fpCacheBypassCapable) {
1185 			((RAID_CONTEXT_G35 *) pRAID_Context)->routingFlags.bits.sld = 1;
1186 		}
1187 
1188 		return retval;
1189 	} else if (isRead) {
1190 		for (stripIdx = 0; stripIdx < num_strips; stripIdx++) {
1191 			retval = io_info->IoforUnevenSpan ?
1192 			    mr_spanset_get_phy_params(sc, ld, start_strip + stripIdx,
1193 			    ref_in_start_stripe, io_info, pRAID_Context, map) :
1194 			    MR_GetPhyParams(sc, ld, start_strip + stripIdx,
1195 			    ref_in_start_stripe, io_info, pRAID_Context, map);
1196 			if (!retval)
1197 				return TRUE;
1198 		}
1199 	}
1200 #if SPAN_DEBUG
1201 	/* Just for testing what arm we get for strip. */
1202 	get_arm_from_strip(sc, ld, start_strip, map);
1203 #endif
1204 	return TRUE;
1205 }
1206 
1207 /*
1208  *
1209  * This routine pepare spanset info from Valid Raid map and store it into local
1210  * copy of ldSpanInfo per instance data structure.
1211  *
1212  * Inputs :	LD map
1213  * 			ldSpanInfo per HBA instance
1214  *
1215  */
1216 void
1217 mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
1218 {
1219 	u_int8_t span, count;
1220 	u_int32_t element, span_row_width;
1221 	u_int64_t span_row;
1222 	MR_LD_RAID *raid;
1223 	LD_SPAN_SET *span_set, *span_set_prev;
1224 	MR_QUAD_ELEMENT *quad;
1225 	int ldCount;
1226 	u_int16_t ld;
1227 
1228 	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
1229 		ld = MR_TargetIdToLdGet(ldCount, map);
1230 		if (ld >= MAX_LOGICAL_DRIVES)
1231 			continue;
1232 		raid = MR_LdRaidGet(ld, map);
1233 		for (element = 0; element < MAX_QUAD_DEPTH; element++) {
1234 			for (span = 0; span < raid->spanDepth; span++) {
1235 				if (map->raidMap.ldSpanMap[ld].spanBlock[span].
1236 				    block_span_info.noElements < element + 1)
1237 					continue;
1238 				/* TO-DO */
1239 				span_set = &(ldSpanInfo[ld].span_set[element]);
1240 				quad = &map->raidMap.ldSpanMap[ld].
1241 				    spanBlock[span].block_span_info.quad[element];
1242 
1243 				span_set->diff = quad->diff;
1244 
1245 				for (count = 0, span_row_width = 0;
1246 				    count < raid->spanDepth; count++) {
1247 					if (map->raidMap.ldSpanMap[ld].spanBlock[count].
1248 					    block_span_info.noElements >= element + 1) {
1249 						span_set->strip_offset[count] = span_row_width;
1250 						span_row_width +=
1251 						    MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize;
1252 #if SPAN_DEBUG
1253 						printf("AVAGO Debug span %x rowDataSize %x\n", count,
1254 						    MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize);
1255 #endif
1256 					}
1257 				}
1258 
1259 				span_set->span_row_data_width = span_row_width;
1260 				span_row = mega_div64_32(((quad->logEnd -
1261 				    quad->logStart) + quad->diff), quad->diff);
1262 
1263 				if (element == 0) {
1264 					span_set->log_start_lba = 0;
1265 					span_set->log_end_lba =
1266 					    ((span_row << raid->stripeShift) * span_row_width) - 1;
1267 
1268 					span_set->span_row_start = 0;
1269 					span_set->span_row_end = span_row - 1;
1270 
1271 					span_set->data_strip_start = 0;
1272 					span_set->data_strip_end = (span_row * span_row_width) - 1;
1273 
1274 					span_set->data_row_start = 0;
1275 					span_set->data_row_end = (span_row * quad->diff) - 1;
1276 				} else {
1277 					span_set_prev = &(ldSpanInfo[ld].span_set[element - 1]);
1278 					span_set->log_start_lba = span_set_prev->log_end_lba + 1;
1279 					span_set->log_end_lba = span_set->log_start_lba +
1280 					    ((span_row << raid->stripeShift) * span_row_width) - 1;
1281 
1282 					span_set->span_row_start = span_set_prev->span_row_end + 1;
1283 					span_set->span_row_end =
1284 					    span_set->span_row_start + span_row - 1;
1285 
1286 					span_set->data_strip_start =
1287 					    span_set_prev->data_strip_end + 1;
1288 					span_set->data_strip_end = span_set->data_strip_start +
1289 					    (span_row * span_row_width) - 1;
1290 
1291 					span_set->data_row_start = span_set_prev->data_row_end + 1;
1292 					span_set->data_row_end = span_set->data_row_start +
1293 					    (span_row * quad->diff) - 1;
1294 				}
1295 				break;
1296 			}
1297 			if (span == raid->spanDepth)
1298 				break;	/* no quads remain */
1299 		}
1300 	}
1301 #if SPAN_DEBUG
1302 	getSpanInfo(map, ldSpanInfo);	/* to get span set info */
1303 #endif
1304 }
1305 
1306 /*
1307  * mrsas_update_load_balance_params:	Update load balance parmas
1308  * Inputs:
1309  * sc - driver softc instance
1310  * drv_map - driver RAID map
1311  * lbInfo - Load balance info
1312  *
1313  * This function updates the load balance parameters for the LD config of a two
1314  * drive optimal RAID-1.
1315  */
1316 void
1317 mrsas_update_load_balance_params(struct mrsas_softc *sc,
1318     MR_DRV_RAID_MAP_ALL * drv_map, PLD_LOAD_BALANCE_INFO lbInfo)
1319 {
1320 	int ldCount;
1321 	u_int16_t ld;
1322 	MR_LD_RAID *raid;
1323 
1324 	if (sc->lb_pending_cmds > 128 || sc->lb_pending_cmds < 1)
1325 		sc->lb_pending_cmds = LB_PENDING_CMDS_DEFAULT;
1326 
1327 	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) {
1328 		ld = MR_TargetIdToLdGet(ldCount, drv_map);
1329 		if (ld >= MAX_LOGICAL_DRIVES_EXT) {
1330 			lbInfo[ldCount].loadBalanceFlag = 0;
1331 			continue;
1332 		}
1333 		raid = MR_LdRaidGet(ld, drv_map);
1334 		if ((raid->level != 1) ||
1335 		    (raid->ldState != MR_LD_STATE_OPTIMAL)) {
1336 			lbInfo[ldCount].loadBalanceFlag = 0;
1337 			continue;
1338 		}
1339 		lbInfo[ldCount].loadBalanceFlag = 1;
1340 	}
1341 }
1342 
1343 /*
1344  * mrsas_set_pd_lba:	Sets PD LBA
1345  * input:				io_request pointer
1346  * 						CDB length
1347  * 						io_info pointer
1348  * 						Pointer to CCB
1349  * 						Local RAID map pointer
1350  * 						Start block of IO Block Size
1351  *
1352  * Used to set the PD logical block address in CDB for FP IOs.
1353  */
1354 void
1355 mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request, u_int8_t cdb_len,
1356     struct IO_REQUEST_INFO *io_info, union ccb *ccb,
1357     MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
1358     u_int32_t ld_block_size)
1359 {
1360 	MR_LD_RAID *raid;
1361 	u_int32_t ld;
1362 	u_int64_t start_blk = io_info->pdBlock;
1363 	u_int8_t *cdb = io_request->CDB.CDB32;
1364 	u_int32_t num_blocks = io_info->numBlocks;
1365 	u_int8_t opcode = 0, flagvals = 0, groupnum = 0, control = 0;
1366 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
1367 
1368 	/* Check if T10 PI (DIF) is enabled for this LD */
1369 	ld = MR_TargetIdToLdGet(io_info->ldTgtId, local_map_ptr);
1370 	raid = MR_LdRaidGet(ld, local_map_ptr);
1371 	if (raid->capability.ldPiMode == MR_PROT_INFO_TYPE_CONTROLLER) {
1372 		memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1373 		cdb[0] = MRSAS_SCSI_VARIABLE_LENGTH_CMD;
1374 		cdb[7] = MRSAS_SCSI_ADDL_CDB_LEN;
1375 
1376 		if (ccb_h->flags == CAM_DIR_OUT)
1377 			cdb[9] = MRSAS_SCSI_SERVICE_ACTION_READ32;
1378 		else
1379 			cdb[9] = MRSAS_SCSI_SERVICE_ACTION_WRITE32;
1380 		cdb[10] = MRSAS_RD_WR_PROTECT_CHECK_ALL;
1381 
1382 		/* LBA */
1383 		cdb[12] = (u_int8_t)((start_blk >> 56) & 0xff);
1384 		cdb[13] = (u_int8_t)((start_blk >> 48) & 0xff);
1385 		cdb[14] = (u_int8_t)((start_blk >> 40) & 0xff);
1386 		cdb[15] = (u_int8_t)((start_blk >> 32) & 0xff);
1387 		cdb[16] = (u_int8_t)((start_blk >> 24) & 0xff);
1388 		cdb[17] = (u_int8_t)((start_blk >> 16) & 0xff);
1389 		cdb[18] = (u_int8_t)((start_blk >> 8) & 0xff);
1390 		cdb[19] = (u_int8_t)(start_blk & 0xff);
1391 
1392 		/* Logical block reference tag */
1393 		io_request->CDB.EEDP32.PrimaryReferenceTag = swap32(ref_tag);
1394 		io_request->CDB.EEDP32.PrimaryApplicationTagMask = 0xffff;
1395 		io_request->IoFlags = 32;	/* Specify 32-byte cdb */
1396 
1397 		/* Transfer length */
1398 		cdb[28] = (u_int8_t)((num_blocks >> 24) & 0xff);
1399 		cdb[29] = (u_int8_t)((num_blocks >> 16) & 0xff);
1400 		cdb[30] = (u_int8_t)((num_blocks >> 8) & 0xff);
1401 		cdb[31] = (u_int8_t)(num_blocks & 0xff);
1402 
1403 		/* set SCSI IO EEDP Flags */
1404 		if (ccb_h->flags == CAM_DIR_OUT) {
1405 			io_request->EEDPFlags =
1406 			    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1407 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
1408 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP |
1409 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG |
1410 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD;
1411 		} else {
1412 			io_request->EEDPFlags =
1413 			    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1414 			    MPI2_SCSIIO_EEDPFLAGS_INSERT_OP;
1415 		}
1416 		io_request->Control |= (0x4 << 26);
1417 		io_request->EEDPBlockSize = ld_block_size;
1418 	} else {
1419 		/* Some drives don't support 16/12 byte CDB's, convert to 10 */
1420 		if (((cdb_len == 12) || (cdb_len == 16)) &&
1421 		    (start_blk <= 0xffffffff)) {
1422 			if (cdb_len == 16) {
1423 				opcode = cdb[0] == READ_16 ? READ_10 : WRITE_10;
1424 				flagvals = cdb[1];
1425 				groupnum = cdb[14];
1426 				control = cdb[15];
1427 			} else {
1428 				opcode = cdb[0] == READ_12 ? READ_10 : WRITE_10;
1429 				flagvals = cdb[1];
1430 				groupnum = cdb[10];
1431 				control = cdb[11];
1432 			}
1433 
1434 			memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1435 
1436 			cdb[0] = opcode;
1437 			cdb[1] = flagvals;
1438 			cdb[6] = groupnum;
1439 			cdb[9] = control;
1440 
1441 			/* Transfer length */
1442 			cdb[8] = (u_int8_t)(num_blocks & 0xff);
1443 			cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
1444 
1445 			io_request->IoFlags = 10;	/* Specify 10-byte cdb */
1446 			cdb_len = 10;
1447 		} else if ((cdb_len < 16) && (start_blk > 0xffffffff)) {
1448 			/* Convert to 16 byte CDB for large LBA's */
1449 			switch (cdb_len) {
1450 			case 6:
1451 				opcode = cdb[0] == READ_6 ? READ_16 : WRITE_16;
1452 				control = cdb[5];
1453 				break;
1454 			case 10:
1455 				opcode = cdb[0] == READ_10 ? READ_16 : WRITE_16;
1456 				flagvals = cdb[1];
1457 				groupnum = cdb[6];
1458 				control = cdb[9];
1459 				break;
1460 			case 12:
1461 				opcode = cdb[0] == READ_12 ? READ_16 : WRITE_16;
1462 				flagvals = cdb[1];
1463 				groupnum = cdb[10];
1464 				control = cdb[11];
1465 				break;
1466 			}
1467 
1468 			memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1469 
1470 			cdb[0] = opcode;
1471 			cdb[1] = flagvals;
1472 			cdb[14] = groupnum;
1473 			cdb[15] = control;
1474 
1475 			/* Transfer length */
1476 			cdb[13] = (u_int8_t)(num_blocks & 0xff);
1477 			cdb[12] = (u_int8_t)((num_blocks >> 8) & 0xff);
1478 			cdb[11] = (u_int8_t)((num_blocks >> 16) & 0xff);
1479 			cdb[10] = (u_int8_t)((num_blocks >> 24) & 0xff);
1480 
1481 			io_request->IoFlags = 16;	/* Specify 16-byte cdb */
1482 			cdb_len = 16;
1483 		} else if ((cdb_len == 6) && (start_blk > 0x1fffff)) {
1484 			/* convert to 10 byte CDB */
1485 			opcode = cdb[0] == READ_6 ? READ_10 : WRITE_10;
1486 			control = cdb[5];
1487 
1488 			memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1489 			cdb[0] = opcode;
1490 			cdb[9] = control;
1491 
1492 			/* Set transfer length */
1493 			cdb[8] = (u_int8_t)(num_blocks & 0xff);
1494 			cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
1495 
1496 			/* Specify 10-byte cdb */
1497 			cdb_len = 10;
1498 		}
1499 		/* Fall through normal case, just load LBA here */
1500 		u_int8_t val = cdb[1] & 0xE0;
1501 
1502 		switch (cdb_len) {
1503 		case 6:
1504 			cdb[3] = (u_int8_t)(start_blk & 0xff);
1505 			cdb[2] = (u_int8_t)((start_blk >> 8) & 0xff);
1506 			cdb[1] = val | ((u_int8_t)(start_blk >> 16) & 0x1f);
1507 			break;
1508 		case 10:
1509 			cdb[5] = (u_int8_t)(start_blk & 0xff);
1510 			cdb[4] = (u_int8_t)((start_blk >> 8) & 0xff);
1511 			cdb[3] = (u_int8_t)((start_blk >> 16) & 0xff);
1512 			cdb[2] = (u_int8_t)((start_blk >> 24) & 0xff);
1513 			break;
1514 		case 16:
1515 			cdb[9] = (u_int8_t)(start_blk & 0xff);
1516 			cdb[8] = (u_int8_t)((start_blk >> 8) & 0xff);
1517 			cdb[7] = (u_int8_t)((start_blk >> 16) & 0xff);
1518 			cdb[6] = (u_int8_t)((start_blk >> 24) & 0xff);
1519 			cdb[5] = (u_int8_t)((start_blk >> 32) & 0xff);
1520 			cdb[4] = (u_int8_t)((start_blk >> 40) & 0xff);
1521 			cdb[3] = (u_int8_t)((start_blk >> 48) & 0xff);
1522 			cdb[2] = (u_int8_t)((start_blk >> 56) & 0xff);
1523 			break;
1524 		}
1525 	}
1526 }
1527 
1528 /*
1529  * mrsas_get_best_arm_pd:	Determine the best spindle arm
1530  * Inputs:
1531  *    sc - HBA instance
1532  *    lbInfo - Load balance info
1533  *    io_info - IO request info
1534  *
1535  * This function determines and returns the best arm by looking at the
1536  * parameters of the last PD access.
1537  */
1538 u_int8_t
1539 mrsas_get_best_arm_pd(struct mrsas_softc *sc,
1540     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
1541 {
1542 	MR_LD_RAID *raid;
1543 	MR_DRV_RAID_MAP_ALL *drv_map;
1544 	u_int16_t pd1_devHandle;
1545 	u_int16_t pend0, pend1, ld;
1546 	u_int64_t diff0, diff1;
1547 	u_int8_t bestArm, pd0, pd1, span, arm;
1548 	u_int32_t arRef, span_row_size;
1549 
1550 	u_int64_t block = io_info->ldStartBlock;
1551 	u_int32_t count = io_info->numBlocks;
1552 
1553 	span = ((io_info->span_arm & RAID_CTX_SPANARM_SPAN_MASK)
1554 	    >> RAID_CTX_SPANARM_SPAN_SHIFT);
1555 	arm = (io_info->span_arm & RAID_CTX_SPANARM_ARM_MASK);
1556 
1557 	drv_map = sc->ld_drv_map[(sc->map_id & 1)];
1558 	ld = MR_TargetIdToLdGet(io_info->ldTgtId, drv_map);
1559 	raid = MR_LdRaidGet(ld, drv_map);
1560 	span_row_size = sc->UnevenSpanSupport ?
1561 	    SPAN_ROW_SIZE(drv_map, ld, span) : raid->rowSize;
1562 
1563 	arRef = MR_LdSpanArrayGet(ld, span, drv_map);
1564 	pd0 = MR_ArPdGet(arRef, arm, drv_map);
1565 	pd1 = MR_ArPdGet(arRef, (arm + 1) >= span_row_size ?
1566 	    (arm + 1 - span_row_size) : arm + 1, drv_map);
1567 
1568 	/* Get PD1 Dev Handle */
1569 	pd1_devHandle = MR_PdDevHandleGet(pd1, drv_map);
1570 	if (pd1_devHandle == MR_DEVHANDLE_INVALID) {
1571 		bestArm = arm;
1572 	} else {
1573 		/* get the pending cmds for the data and mirror arms */
1574 		pend0 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd0]);
1575 		pend1 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd1]);
1576 
1577 		/* Determine the disk whose head is nearer to the req. block */
1578 		diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[pd0]);
1579 		diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[pd1]);
1580 		bestArm = (diff0 <= diff1 ? arm : arm ^ 1);
1581 
1582 		if ((bestArm == arm && pend0 > pend1 + sc->lb_pending_cmds) ||
1583 		    (bestArm != arm && pend1 > pend0 + sc->lb_pending_cmds))
1584 			bestArm ^= 1;
1585 
1586 		/* Update the last accessed block on the correct pd */
1587 		io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | bestArm;
1588 		io_info->pd_after_lb = (bestArm == arm) ? pd0 : pd1;
1589 	}
1590 
1591 	lbInfo->last_accessed_block[bestArm == arm ? pd0 : pd1] = block + count - 1;
1592 #if SPAN_DEBUG
1593 	if (arm != bestArm)
1594 		printf("AVAGO Debug R1 Load balance occur - span 0x%x arm 0x%x bestArm 0x%x "
1595 		    "io_info->span_arm 0x%x\n",
1596 		    span, arm, bestArm, io_info->span_arm);
1597 #endif
1598 
1599 	return io_info->pd_after_lb;
1600 }
1601 
1602 /*
1603  * mrsas_get_updated_dev_handle:	Get the update dev handle
1604  * Inputs:
1605  *	sc - Adapter instance soft state
1606  *	lbInfo - Load balance info
1607  *	io_info - io_info pointer
1608  *
1609  * This function determines and returns the updated dev handle.
1610  */
1611 u_int16_t
1612 mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
1613     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
1614 {
1615 	u_int8_t arm_pd;
1616 	u_int16_t devHandle;
1617 	MR_DRV_RAID_MAP_ALL *drv_map;
1618 
1619 	drv_map = sc->ld_drv_map[(sc->map_id & 1)];
1620 
1621 	/* get best new arm */
1622 	arm_pd = mrsas_get_best_arm_pd(sc, lbInfo, io_info);
1623 	devHandle = MR_PdDevHandleGet(arm_pd, drv_map);
1624 	io_info->pdInterface = MR_PdInterfaceTypeGet(arm_pd, drv_map);
1625 	mrsas_atomic_inc(&lbInfo->scsi_pending_cmds[arm_pd]);
1626 
1627 	return devHandle;
1628 }
1629 
1630 /*
1631  * MR_GetPhyParams:	Calculates arm, span, and block
1632  * Inputs:			Adapter soft state
1633  * 					Logical drive number (LD)
1634  * 					Stripe number(stripRow)
1635  * 					Reference in stripe (stripRef)
1636  *
1637  * Outputs:			Absolute Block number in the physical disk
1638  *
1639  * This routine calculates the arm, span and block for the specified stripe and
1640  * reference in stripe.
1641  */
1642 u_int8_t
1643 MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
1644     u_int64_t stripRow,
1645     u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
1646     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
1647 {
1648 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
1649 	u_int32_t pd, arRef, r1_alt_pd;
1650 	u_int8_t physArm, span;
1651 	u_int64_t row;
1652 	u_int8_t retval = TRUE;
1653 	int error_code = 0;
1654 	u_int64_t *pdBlock = &io_info->pdBlock;
1655 	u_int16_t *pDevHandle = &io_info->devHandle;
1656 	u_int8_t  *pPdInterface = &io_info->pdInterface;
1657 	u_int32_t rowMod, armQ, arm, logArm;
1658 
1659 	row = mega_div64_32(stripRow, raid->rowDataSize);
1660 
1661 	if (raid->level == 6) {
1662 		/* logical arm within row */
1663 		logArm = mega_mod64(stripRow, raid->rowDataSize);
1664 		if (raid->rowSize == 0)
1665 			return FALSE;
1666 		rowMod = mega_mod64(row, raid->rowSize);	/* get logical row mod */
1667 		armQ = raid->rowSize - 1 - rowMod;	/* index of Q drive */
1668 		arm = armQ + 1 + logArm;/* data always logically follows Q */
1669 		if (arm >= raid->rowSize)	/* handle wrap condition */
1670 			arm -= raid->rowSize;
1671 		physArm = (u_int8_t)arm;
1672 	} else {
1673 		if (raid->modFactor == 0)
1674 			return FALSE;
1675 		physArm = MR_LdDataArmGet(ld, mega_mod64(stripRow, raid->modFactor), map);
1676 	}
1677 
1678 	if (raid->spanDepth == 1) {
1679 		span = 0;
1680 		*pdBlock = row << raid->stripeShift;
1681 	} else {
1682 		span = (u_int8_t)MR_GetSpanBlock(ld, row, pdBlock, map, &error_code);
1683 		if (error_code == 1)
1684 			return FALSE;
1685 	}
1686 
1687 	/* Get the array on which this span is present */
1688 	arRef = MR_LdSpanArrayGet(ld, span, map);
1689 
1690 	pd = MR_ArPdGet(arRef, physArm, map);	/* Get the Pd. */
1691 
1692 	if (pd != MR_PD_INVALID) {
1693 		/* Get dev handle from Pd */
1694 		*pDevHandle = MR_PdDevHandleGet(pd, map);
1695 		*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
1696 		/* get second pd also for raid 1/10 fast path writes */
1697 		if ((raid->level == 1) && !io_info->isRead) {
1698 			r1_alt_pd = MR_ArPdGet(arRef, physArm + 1, map);
1699 			if (r1_alt_pd != MR_PD_INVALID)
1700 				io_info->r1_alt_dev_handle = MR_PdDevHandleGet(r1_alt_pd, map);
1701 		}
1702 	} else {
1703 		*pDevHandle = MR_DEVHANDLE_INVALID;	/* set dev handle as invalid. */
1704 		if ((raid->level >= 5) && ((sc->device_id == MRSAS_TBOLT) ||
1705 			(sc->mrsas_gen3_ctrl &&
1706 			raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
1707 			pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
1708 		else if (raid->level == 1) {
1709 			/* Get Alternate Pd. */
1710 			pd = MR_ArPdGet(arRef, physArm + 1, map);
1711 			if (pd != MR_PD_INVALID) {
1712 				/* Get dev handle from Pd. */
1713 				*pDevHandle = MR_PdDevHandleGet(pd, map);
1714 				*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
1715 			}
1716 		}
1717 	}
1718 
1719 	*pdBlock += stripRef + MR_LdSpanPtrGet(ld, span, map)->startBlk;
1720 	if (sc->is_ventura || sc->is_aero) {
1721 		((RAID_CONTEXT_G35 *) pRAID_Context)->spanArm =
1722 		    (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
1723 		io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
1724 	} else {
1725 		pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
1726 		io_info->span_arm = pRAID_Context->spanArm;
1727 	}
1728 	return retval;
1729 }
1730 
1731 /*
1732  * MR_GetSpanBlock:	Calculates span block
1733  * Inputs:			LD
1734  * 					row PD
1735  * 					span block
1736  * 					RAID map pointer
1737  *
1738  * Outputs:			Span number Error code
1739  *
1740  * This routine calculates the span from the span block info.
1741  */
1742 u_int32_t
1743 MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
1744     MR_DRV_RAID_MAP_ALL * map, int *div_error)
1745 {
1746 	MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map);
1747 	MR_QUAD_ELEMENT *quad;
1748 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
1749 	u_int32_t span, j;
1750 	u_int64_t blk, debugBlk;
1751 
1752 	for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) {
1753 		for (j = 0; j < pSpanBlock->block_span_info.noElements; j++) {
1754 			quad = &pSpanBlock->block_span_info.quad[j];
1755 			if (quad->diff == 0) {
1756 				*div_error = 1;
1757 				return span;
1758 			}
1759 			if (quad->logStart <= row && row <= quad->logEnd &&
1760 			    (mega_mod64(row - quad->logStart, quad->diff)) == 0) {
1761 				if (span_blk != NULL) {
1762 					blk = mega_div64_32((row - quad->logStart), quad->diff);
1763 					debugBlk = blk;
1764 					blk = (blk + quad->offsetInSpan) << raid->stripeShift;
1765 					*span_blk = blk;
1766 				}
1767 				return span;
1768 			}
1769 		}
1770 	}
1771 	return span;
1772 }
1773