xref: /freebsd/sys/dev/mrsas/mrsas_fp.c (revision 7f9dff23d3092aa33ad45b2b63e52469b3c13a6e)
1 /*
2  * Copyright (c) 2015, AVAGO Tech. All rights reserved. Author: Marian Choy
3  * Copyright (c) 2014, LSI Corp. All rights reserved. Author: Marian Choy
4  * Support: freebsdraid@avagotech.com
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are
8  * met:
9  *
10  * 1. Redistributions of source code must retain the above copyright notice,
11  * this list of conditions and the following disclaimer. 2. Redistributions
12  * in binary form must reproduce the above copyright notice, this list of
13  * conditions and the following disclaimer in the documentation and/or other
14  * materials provided with the distribution. 3. Neither the name of the
15  * <ORGANIZATION> nor the names of its contributors may be used to endorse or
16  * promote products derived from this software without specific prior written
17  * permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * The views and conclusions contained in the software and documentation are
32  * those of the authors and should not be interpreted as representing
33  * official policies,either expressed or implied, of the FreeBSD Project.
34  *
35  * Send feedback to: <megaraidfbsd@avagotech.com> Mail to: AVAGO TECHNOLOGIES, 1621
36  * Barber Lane, Milpitas, CA 95035 ATTN: MegaRaid FreeBSD
37  *
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include <dev/mrsas/mrsas.h>
44 
45 #include <cam/cam.h>
46 #include <cam/cam_ccb.h>
47 #include <cam/cam_sim.h>
48 #include <cam/cam_xpt_sim.h>
49 #include <cam/cam_debug.h>
50 #include <cam/cam_periph.h>
51 #include <cam/cam_xpt_periph.h>
52 
53 
54 /*
55  * Function prototypes
56  */
57 u_int8_t MR_ValidateMapInfo(struct mrsas_softc *sc);
58 u_int8_t
59 mrsas_get_best_arm_pd(struct mrsas_softc *sc,
60     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
61 u_int8_t
62 MR_BuildRaidContext(struct mrsas_softc *sc,
63     struct IO_REQUEST_INFO *io_info,
64     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
65 u_int8_t
66 MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
67     u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
68     RAID_CONTEXT * pRAID_Context,
69     MR_DRV_RAID_MAP_ALL * map);
70 u_int16_t MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
71 u_int32_t MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
72 u_int16_t MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
73 u_int16_t
74 mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
75     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
76 u_int32_t mega_mod64(u_int64_t dividend, u_int32_t divisor);
77 u_int32_t
78 MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
79     MR_DRV_RAID_MAP_ALL * map, int *div_error);
80 u_int64_t mega_div64_32(u_int64_t dividend, u_int32_t divisor);
81 void
82 mrsas_update_load_balance_params(struct mrsas_softc *sc,
83     MR_DRV_RAID_MAP_ALL * map, PLD_LOAD_BALANCE_INFO lbInfo);
84 void
85 mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request,
86     u_int8_t cdb_len, struct IO_REQUEST_INFO *io_info, union ccb *ccb,
87     MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
88     u_int32_t ld_block_size);
89 static u_int16_t
90 MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span,
91     MR_DRV_RAID_MAP_ALL * map);
92 static u_int16_t MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map);
93 static u_int16_t
94 MR_ArPdGet(u_int32_t ar, u_int32_t arm,
95     MR_DRV_RAID_MAP_ALL * map);
96 static MR_LD_SPAN *
97 MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span,
98     MR_DRV_RAID_MAP_ALL * map);
99 static u_int8_t
100 MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx,
101     MR_DRV_RAID_MAP_ALL * map);
102 static MR_SPAN_BLOCK_INFO *
103 MR_LdSpanInfoGet(u_int32_t ld,
104     MR_DRV_RAID_MAP_ALL * map);
105 MR_LD_RAID *MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
106 void	MR_PopulateDrvRaidMap(struct mrsas_softc *sc);
107 
108 
109 /*
110  * Spanset related function prototypes Added for PRL11 configuration (Uneven
111  * span support)
112  */
113 void	mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo);
114 static u_int8_t
115 mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld,
116     u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
117     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
118 static u_int64_t
119 get_row_from_strip(struct mrsas_softc *sc, u_int32_t ld,
120     u_int64_t strip, MR_DRV_RAID_MAP_ALL * map);
121 static u_int32_t
122 mr_spanset_get_span_block(struct mrsas_softc *sc,
123     u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
124     MR_DRV_RAID_MAP_ALL * map, int *div_error);
125 static u_int8_t
126 get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span,
127     u_int64_t stripe, MR_DRV_RAID_MAP_ALL * map);
128 
129 
130 /*
131  * Spanset related defines Added for PRL11 configuration(Uneven span support)
132  */
133 #define	SPAN_ROW_SIZE(map, ld, index_) MR_LdSpanPtrGet(ld, index_, map)->spanRowSize
134 #define	SPAN_ROW_DATA_SIZE(map_, ld, index_)	\
135 	MR_LdSpanPtrGet(ld, index_, map)->spanRowDataSize
136 #define	SPAN_INVALID	0xff
137 #define	SPAN_DEBUG		0
138 
139 /*
140  * Related Defines
141  */
142 
143 typedef u_int64_t REGION_KEY;
144 typedef u_int32_t REGION_LEN;
145 
146 #define	MR_LD_STATE_OPTIMAL		3
147 #define	FALSE					0
148 #define	TRUE					1
149 
150 #define	LB_PENDING_CMDS_DEFAULT 4
151 
152 
153 /*
154  * Related Macros
155  */
156 
157 #define	ABS_DIFF(a,b)   ( ((a) > (b)) ? ((a) - (b)) : ((b) - (a)) )
158 
159 #define	swap32(x) \
160   ((unsigned int)( \
161     (((unsigned int)(x) & (unsigned int)0x000000ffUL) << 24) | \
162     (((unsigned int)(x) & (unsigned int)0x0000ff00UL) <<  8) | \
163     (((unsigned int)(x) & (unsigned int)0x00ff0000UL) >>  8) | \
164     (((unsigned int)(x) & (unsigned int)0xff000000UL) >> 24) ))
165 
166 
167 /*
168  * In-line functions for mod and divide of 64-bit dividend and 32-bit
169  * divisor. Assumes a check for a divisor of zero is not possible.
170  *
171  * @param dividend:	Dividend
172  * @param divisor:	Divisor
173  * @return			remainder
174  */
175 
176 #define	mega_mod64(dividend, divisor) ({ \
177 int remainder; \
178 remainder = ((u_int64_t) (dividend)) % (u_int32_t) (divisor); \
179 remainder;})
180 
181 #define	mega_div64_32(dividend, divisor) ({ \
182 int quotient; \
183 quotient = ((u_int64_t) (dividend)) / (u_int32_t) (divisor); \
184 quotient;})
185 
186 
187 /*
188  * Various RAID map access functions.  These functions access the various
189  * parts of the RAID map and returns the appropriate parameters.
190  */
191 
192 MR_LD_RAID *
193 MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
194 {
195 	return (&map->raidMap.ldSpanMap[ld].ldRaid);
196 }
197 
198 u_int16_t
199 MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
200 {
201 	return (map->raidMap.ldSpanMap[ld].ldRaid.targetId);
202 }
203 
204 static u_int16_t
205 MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
206 {
207 	return map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef;
208 }
209 
210 static u_int8_t
211 MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx, MR_DRV_RAID_MAP_ALL * map)
212 {
213 	return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx];
214 }
215 
216 static u_int16_t
217 MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map)
218 {
219 	return map->raidMap.devHndlInfo[pd].curDevHdl;
220 }
221 
222 static u_int16_t
223 MR_ArPdGet(u_int32_t ar, u_int32_t arm, MR_DRV_RAID_MAP_ALL * map)
224 {
225 	return map->raidMap.arMapInfo[ar].pd[arm];
226 }
227 
228 static MR_LD_SPAN *
229 MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
230 {
231 	return &map->raidMap.ldSpanMap[ld].spanBlock[span].span;
232 }
233 
234 static MR_SPAN_BLOCK_INFO *
235 MR_LdSpanInfoGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
236 {
237 	return &map->raidMap.ldSpanMap[ld].spanBlock[0];
238 }
239 
240 u_int16_t
241 MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
242 {
243 	return map->raidMap.ldTgtIdToLd[ldTgtId];
244 }
245 
246 u_int32_t
247 MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
248 {
249 	MR_LD_RAID *raid;
250 	u_int32_t ld, ldBlockSize = MRSAS_SCSIBLOCKSIZE;
251 
252 	ld = MR_TargetIdToLdGet(ldTgtId, map);
253 
254 	/*
255 	 * Check if logical drive was removed.
256 	 */
257 	if (ld >= MAX_LOGICAL_DRIVES)
258 		return ldBlockSize;
259 
260 	raid = MR_LdRaidGet(ld, map);
261 	ldBlockSize = raid->logicalBlockLength;
262 	if (!ldBlockSize)
263 		ldBlockSize = MRSAS_SCSIBLOCKSIZE;
264 
265 	return ldBlockSize;
266 }
267 
268 /*
269  * This function will Populate Driver Map using firmware raid map
270  */
271 void
272 MR_PopulateDrvRaidMap(struct mrsas_softc *sc)
273 {
274 	MR_FW_RAID_MAP_ALL *fw_map_old = NULL;
275 	MR_FW_RAID_MAP *pFwRaidMap = NULL;
276 	unsigned int i;
277 
278 	MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
279 	MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
280 
281 	if (sc->max256vdSupport) {
282 		memcpy(sc->ld_drv_map[sc->map_id & 1],
283 		    sc->raidmap_mem[sc->map_id & 1],
284 		    sc->current_map_sz);
285 		/*
286 		 * New Raid map will not set totalSize, so keep expected
287 		 * value for legacy code in ValidateMapInfo
288 		 */
289 		pDrvRaidMap->totalSize = sizeof(MR_FW_RAID_MAP_EXT);
290 	} else {
291 		fw_map_old = (MR_FW_RAID_MAP_ALL *) sc->raidmap_mem[(sc->map_id & 1)];
292 		pFwRaidMap = &fw_map_old->raidMap;
293 
294 #if VD_EXT_DEBUG
295 		for (i = 0; i < pFwRaidMap->ldCount; i++) {
296 			device_printf(sc->mrsas_dev,
297 			    "Index 0x%x Target Id 0x%x Seq Num 0x%x Size 0/%lx\n", i,
298 			    fw_map_old->raidMap.ldSpanMap[i].ldRaid.targetId,
299 			    fw_map_old->raidMap.ldSpanMap[i].ldRaid.seqNum,
300 			    fw_map_old->raidMap.ldSpanMap[i].ldRaid.size);
301 		}
302 #endif
303 
304 		memset(drv_map, 0, sc->drv_map_sz);
305 		pDrvRaidMap->totalSize = pFwRaidMap->totalSize;
306 		pDrvRaidMap->ldCount = pFwRaidMap->ldCount;
307 		pDrvRaidMap->fpPdIoTimeoutSec =
308 		    pFwRaidMap->fpPdIoTimeoutSec;
309 
310 		for (i = 0; i < MAX_RAIDMAP_LOGICAL_DRIVES + MAX_RAIDMAP_VIEWS; i++) {
311 			pDrvRaidMap->ldTgtIdToLd[i] =
312 			    (u_int8_t)pFwRaidMap->ldTgtIdToLd[i];
313 		}
314 
315 		for (i = 0; i < pDrvRaidMap->ldCount; i++) {
316 			pDrvRaidMap->ldSpanMap[i] =
317 			    pFwRaidMap->ldSpanMap[i];
318 
319 #if VD_EXT_DEBUG
320 			device_printf(sc->mrsas_dev, "pFwRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x "
321 			    "pFwRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
322 			    i, i, pFwRaidMap->ldSpanMap[i].ldRaid.targetId,
323 			    pFwRaidMap->ldSpanMap[i].ldRaid.seqNum,
324 			    (u_int32_t)pFwRaidMap->ldSpanMap[i].ldRaid.rowSize);
325 			device_printf(sc->mrsas_dev, "pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x"
326 			    "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i,
327 			    pDrvRaidMap->ldSpanMap[i].ldRaid.targetId,
328 			    pDrvRaidMap->ldSpanMap[i].ldRaid.seqNum,
329 			    (u_int32_t)pDrvRaidMap->ldSpanMap[i].ldRaid.rowSize);
330 			device_printf(sc->mrsas_dev, "drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
331 			    drv_map, pDrvRaidMap,
332 			    &pFwRaidMap->ldSpanMap[i].ldRaid, &pDrvRaidMap->ldSpanMap[i].ldRaid);
333 #endif
334 		}
335 
336 		memcpy(pDrvRaidMap->arMapInfo, pFwRaidMap->arMapInfo,
337 		    sizeof(MR_ARRAY_INFO) * MAX_RAIDMAP_ARRAYS);
338 		memcpy(pDrvRaidMap->devHndlInfo, pFwRaidMap->devHndlInfo,
339 		    sizeof(MR_DEV_HANDLE_INFO) *
340 		    MAX_RAIDMAP_PHYSICAL_DEVICES);
341 	}
342 }
343 
344 /*
345  * MR_ValidateMapInfo:	Validate RAID map
346  * input:				Adapter instance soft state
347  *
348  * This function checks and validates the loaded RAID map. It returns 0 if
349  * successful, and 1 otherwise.
350  */
351 u_int8_t
352 MR_ValidateMapInfo(struct mrsas_softc *sc)
353 {
354 	if (!sc) {
355 		return 1;
356 	}
357 	MR_PopulateDrvRaidMap(sc);
358 
359 	MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
360 	MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
361 
362 	u_int32_t expected_map_size;
363 
364 	drv_map = sc->ld_drv_map[(sc->map_id & 1)];
365 	pDrvRaidMap = &drv_map->raidMap;
366 	PLD_SPAN_INFO ldSpanInfo = (PLD_SPAN_INFO) & sc->log_to_span;
367 
368 	if (sc->max256vdSupport)
369 		expected_map_size = sizeof(MR_FW_RAID_MAP_EXT);
370 	else
371 		expected_map_size =
372 		    (sizeof(MR_FW_RAID_MAP) - sizeof(MR_LD_SPAN_MAP)) +
373 		    (sizeof(MR_LD_SPAN_MAP) * pDrvRaidMap->ldCount);
374 
375 	if (pDrvRaidMap->totalSize != expected_map_size) {
376 		device_printf(sc->mrsas_dev, "map size %x not matching ld count\n", expected_map_size);
377 		device_printf(sc->mrsas_dev, "span map= %x\n", (unsigned int)sizeof(MR_LD_SPAN_MAP));
378 		device_printf(sc->mrsas_dev, "pDrvRaidMap->totalSize=%x\n", pDrvRaidMap->totalSize);
379 		return 1;
380 	}
381 	if (sc->UnevenSpanSupport) {
382 		mr_update_span_set(drv_map, ldSpanInfo);
383 	}
384 	mrsas_update_load_balance_params(sc, drv_map, sc->load_balance_info);
385 
386 	return 0;
387 }
388 
389 /*
390  *
391  * Function to print info about span set created in driver from FW raid map
392  *
393  * Inputs:		map
394  * ldSpanInfo:	ld map span info per HBA instance
395  *
396  *
397  */
398 #if SPAN_DEBUG
399 static int
400 getSpanInfo(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
401 {
402 
403 	u_int8_t span;
404 	u_int32_t element;
405 	MR_LD_RAID *raid;
406 	LD_SPAN_SET *span_set;
407 	MR_QUAD_ELEMENT *quad;
408 	int ldCount;
409 	u_int16_t ld;
410 
411 	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
412 		ld = MR_TargetIdToLdGet(ldCount, map);
413 		if (ld >= MAX_LOGICAL_DRIVES) {
414 			continue;
415 		}
416 		raid = MR_LdRaidGet(ld, map);
417 		printf("LD %x: span_depth=%x\n", ld, raid->spanDepth);
418 		for (span = 0; span < raid->spanDepth; span++)
419 			printf("Span=%x, number of quads=%x\n", span,
420 			    map->raidMap.ldSpanMap[ld].spanBlock[span].
421 			    block_span_info.noElements);
422 		for (element = 0; element < MAX_QUAD_DEPTH; element++) {
423 			span_set = &(ldSpanInfo[ld].span_set[element]);
424 			if (span_set->span_row_data_width == 0)
425 				break;
426 
427 			printf("Span Set %x: width=%x, diff=%x\n", element,
428 			    (unsigned int)span_set->span_row_data_width,
429 			    (unsigned int)span_set->diff);
430 			printf("logical LBA start=0x%08lx, end=0x%08lx\n",
431 			    (long unsigned int)span_set->log_start_lba,
432 			    (long unsigned int)span_set->log_end_lba);
433 			printf("span row start=0x%08lx, end=0x%08lx\n",
434 			    (long unsigned int)span_set->span_row_start,
435 			    (long unsigned int)span_set->span_row_end);
436 			printf("data row start=0x%08lx, end=0x%08lx\n",
437 			    (long unsigned int)span_set->data_row_start,
438 			    (long unsigned int)span_set->data_row_end);
439 			printf("data strip start=0x%08lx, end=0x%08lx\n",
440 			    (long unsigned int)span_set->data_strip_start,
441 			    (long unsigned int)span_set->data_strip_end);
442 
443 			for (span = 0; span < raid->spanDepth; span++) {
444 				if (map->raidMap.ldSpanMap[ld].spanBlock[span].
445 				    block_span_info.noElements >= element + 1) {
446 					quad = &map->raidMap.ldSpanMap[ld].
447 					    spanBlock[span].block_span_info.
448 					    quad[element];
449 					printf("Span=%x, Quad=%x, diff=%x\n", span,
450 					    element, quad->diff);
451 					printf("offset_in_span=0x%08lx\n",
452 					    (long unsigned int)quad->offsetInSpan);
453 					printf("logical start=0x%08lx, end=0x%08lx\n",
454 					    (long unsigned int)quad->logStart,
455 					    (long unsigned int)quad->logEnd);
456 				}
457 			}
458 		}
459 	}
460 	return 0;
461 }
462 
463 #endif
464 /*
465  *
466  * This routine calculates the Span block for given row using spanset.
467  *
468  * Inputs :	HBA instance
469  * ld:		Logical drive number
470  * row:		Row number
471  * map:		LD map
472  *
473  * Outputs :	span	- Span number block
474  * 						- Absolute Block number in the physical disk
475  * 				div_error    - Devide error code.
476  */
477 
478 u_int32_t
479 mr_spanset_get_span_block(struct mrsas_softc *sc, u_int32_t ld, u_int64_t row,
480     u_int64_t *span_blk, MR_DRV_RAID_MAP_ALL * map, int *div_error)
481 {
482 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
483 	LD_SPAN_SET *span_set;
484 	MR_QUAD_ELEMENT *quad;
485 	u_int32_t span, info;
486 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
487 
488 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
489 		span_set = &(ldSpanInfo[ld].span_set[info]);
490 
491 		if (span_set->span_row_data_width == 0)
492 			break;
493 		if (row > span_set->data_row_end)
494 			continue;
495 
496 		for (span = 0; span < raid->spanDepth; span++)
497 			if (map->raidMap.ldSpanMap[ld].spanBlock[span].
498 			    block_span_info.noElements >= info + 1) {
499 				quad = &map->raidMap.ldSpanMap[ld].
500 				    spanBlock[span].
501 				    block_span_info.quad[info];
502 				if (quad->diff == 0) {
503 					*div_error = 1;
504 					return span;
505 				}
506 				if (quad->logStart <= row &&
507 				    row <= quad->logEnd &&
508 				    (mega_mod64(row - quad->logStart,
509 				    quad->diff)) == 0) {
510 					if (span_blk != NULL) {
511 						u_int64_t blk;
512 
513 						blk = mega_div64_32
514 						    ((row - quad->logStart),
515 						    quad->diff);
516 						blk = (blk + quad->offsetInSpan)
517 						    << raid->stripeShift;
518 						*span_blk = blk;
519 					}
520 					return span;
521 				}
522 			}
523 	}
524 	return SPAN_INVALID;
525 }
526 
527 /*
528  *
529  * This routine calculates the row for given strip using spanset.
530  *
531  * Inputs :	HBA instance
532  * ld:		Logical drive number
533  * Strip:	Strip
534  * map:		LD map
535  *
536  * Outputs :	row - row associated with strip
537  */
538 
539 static u_int64_t
540 get_row_from_strip(struct mrsas_softc *sc,
541     u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
542 {
543 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
544 	LD_SPAN_SET *span_set;
545 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
546 	u_int32_t info, strip_offset, span, span_offset;
547 	u_int64_t span_set_Strip, span_set_Row;
548 
549 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
550 		span_set = &(ldSpanInfo[ld].span_set[info]);
551 
552 		if (span_set->span_row_data_width == 0)
553 			break;
554 		if (strip > span_set->data_strip_end)
555 			continue;
556 
557 		span_set_Strip = strip - span_set->data_strip_start;
558 		strip_offset = mega_mod64(span_set_Strip,
559 		    span_set->span_row_data_width);
560 		span_set_Row = mega_div64_32(span_set_Strip,
561 		    span_set->span_row_data_width) * span_set->diff;
562 		for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
563 			if (map->raidMap.ldSpanMap[ld].spanBlock[span].
564 			    block_span_info.noElements >= info + 1) {
565 				if (strip_offset >=
566 				    span_set->strip_offset[span])
567 					span_offset++;
568 				else
569 					break;
570 			}
571 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : Strip 0x%llx, span_set_Strip 0x%llx, span_set_Row 0x%llx "
572 		    "data width 0x%llx span offset 0x%llx\n", (unsigned long long)strip,
573 		    (unsigned long long)span_set_Strip,
574 		    (unsigned long long)span_set_Row,
575 		    (unsigned long long)span_set->span_row_data_width, (unsigned long long)span_offset);
576 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : For strip 0x%llx row is 0x%llx\n", (unsigned long long)strip,
577 		    (unsigned long long)span_set->data_row_start +
578 		    (unsigned long long)span_set_Row + (span_offset - 1));
579 		return (span_set->data_row_start + span_set_Row + (span_offset - 1));
580 	}
581 	return -1LLU;
582 }
583 
584 
585 /*
586  *
587  * This routine calculates the Start Strip for given row using spanset.
588  *
589  * Inputs:	HBA instance
590  * ld:		Logical drive number
591  * row:		Row number
592  * map:		LD map
593  *
594  * Outputs :	Strip - Start strip associated with row
595  */
596 
597 static u_int64_t
598 get_strip_from_row(struct mrsas_softc *sc,
599     u_int32_t ld, u_int64_t row, MR_DRV_RAID_MAP_ALL * map)
600 {
601 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
602 	LD_SPAN_SET *span_set;
603 	MR_QUAD_ELEMENT *quad;
604 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
605 	u_int32_t span, info;
606 	u_int64_t strip;
607 
608 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
609 		span_set = &(ldSpanInfo[ld].span_set[info]);
610 
611 		if (span_set->span_row_data_width == 0)
612 			break;
613 		if (row > span_set->data_row_end)
614 			continue;
615 
616 		for (span = 0; span < raid->spanDepth; span++)
617 			if (map->raidMap.ldSpanMap[ld].spanBlock[span].
618 			    block_span_info.noElements >= info + 1) {
619 				quad = &map->raidMap.ldSpanMap[ld].
620 				    spanBlock[span].block_span_info.quad[info];
621 				if (quad->logStart <= row &&
622 				    row <= quad->logEnd &&
623 				    mega_mod64((row - quad->logStart),
624 				    quad->diff) == 0) {
625 					strip = mega_div64_32
626 					    (((row - span_set->data_row_start)
627 					    - quad->logStart),
628 					    quad->diff);
629 					strip *= span_set->span_row_data_width;
630 					strip += span_set->data_strip_start;
631 					strip += span_set->strip_offset[span];
632 					return strip;
633 				}
634 			}
635 	}
636 	mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug - get_strip_from_row: returns invalid "
637 	    "strip for ld=%x, row=%lx\n", ld, (long unsigned int)row);
638 	return -1;
639 }
640 
641 /*
642  * *****************************************************************************
643  *
644  *
645  * This routine calculates the Physical Arm for given strip using spanset.
646  *
647  * Inputs :	HBA instance
648  * 			Logical drive number
649  * 			Strip
650  * 			LD map
651  *
652  * Outputs :	Phys Arm - Phys Arm associated with strip
653  */
654 
655 static u_int32_t
656 get_arm_from_strip(struct mrsas_softc *sc,
657     u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
658 {
659 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
660 	LD_SPAN_SET *span_set;
661 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
662 	u_int32_t info, strip_offset, span, span_offset;
663 
664 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
665 		span_set = &(ldSpanInfo[ld].span_set[info]);
666 
667 		if (span_set->span_row_data_width == 0)
668 			break;
669 		if (strip > span_set->data_strip_end)
670 			continue;
671 
672 		strip_offset = (u_int32_t)mega_mod64
673 		    ((strip - span_set->data_strip_start),
674 		    span_set->span_row_data_width);
675 
676 		for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
677 			if (map->raidMap.ldSpanMap[ld].spanBlock[span].
678 			    block_span_info.noElements >= info + 1) {
679 				if (strip_offset >= span_set->strip_offset[span])
680 					span_offset = span_set->strip_offset[span];
681 				else
682 					break;
683 			}
684 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO PRL11: get_arm_from_strip: "
685 		    "for ld=0x%x strip=0x%lx arm is  0x%x\n", ld,
686 		    (long unsigned int)strip, (strip_offset - span_offset));
687 		return (strip_offset - span_offset);
688 	}
689 
690 	mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: - get_arm_from_strip: returns invalid arm"
691 	    " for ld=%x strip=%lx\n", ld, (long unsigned int)strip);
692 
693 	return -1;
694 }
695 
696 
697 /* This Function will return Phys arm */
698 u_int8_t
699 get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span, u_int64_t stripe,
700     MR_DRV_RAID_MAP_ALL * map)
701 {
702 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
703 
704 	/* Need to check correct default value */
705 	u_int32_t arm = 0;
706 
707 	switch (raid->level) {
708 	case 0:
709 	case 5:
710 	case 6:
711 		arm = mega_mod64(stripe, SPAN_ROW_SIZE(map, ld, span));
712 		break;
713 	case 1:
714 		/* start with logical arm */
715 		arm = get_arm_from_strip(sc, ld, stripe, map);
716 		arm *= 2;
717 		break;
718 	}
719 
720 	return arm;
721 }
722 
723 /*
724  *
725  * This routine calculates the arm, span and block for the specified stripe and
726  * reference in stripe using spanset
727  *
728  * Inputs :
729  * sc - HBA instance
730  * ld - Logical drive number
731  * stripRow: Stripe number
732  * stripRef: Reference in stripe
733  *
734  * Outputs :	span - Span number block - Absolute Block
735  * number in the physical disk
736  */
737 static u_int8_t
738 mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld, u_int64_t stripRow,
739     u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
740     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
741 {
742 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
743 	u_int32_t pd, arRef;
744 	u_int8_t physArm, span;
745 	u_int64_t row;
746 	u_int8_t retval = TRUE;
747 	u_int64_t *pdBlock = &io_info->pdBlock;
748 	u_int16_t *pDevHandle = &io_info->devHandle;
749 	u_int32_t logArm, rowMod, armQ, arm;
750 
751 	/* Get row and span from io_info for Uneven Span IO. */
752 	row = io_info->start_row;
753 	span = io_info->start_span;
754 
755 
756 	if (raid->level == 6) {
757 		logArm = get_arm_from_strip(sc, ld, stripRow, map);
758 		rowMod = mega_mod64(row, SPAN_ROW_SIZE(map, ld, span));
759 		armQ = SPAN_ROW_SIZE(map, ld, span) - 1 - rowMod;
760 		arm = armQ + 1 + logArm;
761 		if (arm >= SPAN_ROW_SIZE(map, ld, span))
762 			arm -= SPAN_ROW_SIZE(map, ld, span);
763 		physArm = (u_int8_t)arm;
764 	} else
765 		/* Calculate the arm */
766 		physArm = get_arm(sc, ld, span, stripRow, map);
767 
768 
769 	arRef = MR_LdSpanArrayGet(ld, span, map);
770 	pd = MR_ArPdGet(arRef, physArm, map);
771 
772 	if (pd != MR_PD_INVALID)
773 		*pDevHandle = MR_PdDevHandleGet(pd, map);
774 	else {
775 		*pDevHandle = MR_PD_INVALID;
776 		if ((raid->level >= 5) && ((!sc->mrsas_gen3_ctrl) || (sc->mrsas_gen3_ctrl &&
777 		    raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
778 			pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
779 		else if (raid->level == 1) {
780 			pd = MR_ArPdGet(arRef, physArm + 1, map);
781 			if (pd != MR_PD_INVALID)
782 				*pDevHandle = MR_PdDevHandleGet(pd, map);
783 		}
784 	}
785 
786 	*pdBlock += stripRef + MR_LdSpanPtrGet(ld, span, map)->startBlk;
787 	pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
788 	io_info->span_arm = pRAID_Context->spanArm;
789 	return retval;
790 }
791 
792 /*
793  * MR_BuildRaidContext:	Set up Fast path RAID context
794  *
795  * This function will initiate command processing.  The start/end row and strip
796  * information is calculated then the lock is acquired. This function will
797  * return 0 if region lock was acquired OR return num strips.
798  */
799 u_int8_t
800 MR_BuildRaidContext(struct mrsas_softc *sc, struct IO_REQUEST_INFO *io_info,
801     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
802 {
803 	MR_LD_RAID *raid;
804 	u_int32_t ld, stripSize, stripe_mask;
805 	u_int64_t endLba, endStrip, endRow, start_row, start_strip;
806 	REGION_KEY regStart;
807 	REGION_LEN regSize;
808 	u_int8_t num_strips, numRows;
809 	u_int16_t ref_in_start_stripe, ref_in_end_stripe;
810 	u_int64_t ldStartBlock;
811 	u_int32_t numBlocks, ldTgtId;
812 	u_int8_t isRead, stripIdx;
813 	u_int8_t retval = 0;
814 	u_int8_t startlba_span = SPAN_INVALID;
815 	u_int64_t *pdBlock = &io_info->pdBlock;
816 	int error_code = 0;
817 
818 	ldStartBlock = io_info->ldStartBlock;
819 	numBlocks = io_info->numBlocks;
820 	ldTgtId = io_info->ldTgtId;
821 	isRead = io_info->isRead;
822 
823 	io_info->IoforUnevenSpan = 0;
824 	io_info->start_span = SPAN_INVALID;
825 
826 	ld = MR_TargetIdToLdGet(ldTgtId, map);
827 	raid = MR_LdRaidGet(ld, map);
828 
829 	if (raid->rowDataSize == 0) {
830 		if (MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize == 0)
831 			return FALSE;
832 		else if (sc->UnevenSpanSupport) {
833 			io_info->IoforUnevenSpan = 1;
834 		} else {
835 			mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: raid->rowDataSize is 0, but has SPAN[0] rowDataSize = 0x%0x,"
836 			    " but there is _NO_ UnevenSpanSupport\n",
837 			    MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize);
838 			return FALSE;
839 		}
840 	}
841 	stripSize = 1 << raid->stripeShift;
842 	stripe_mask = stripSize - 1;
843 	/*
844 	 * calculate starting row and stripe, and number of strips and rows
845 	 */
846 	start_strip = ldStartBlock >> raid->stripeShift;
847 	ref_in_start_stripe = (u_int16_t)(ldStartBlock & stripe_mask);
848 	endLba = ldStartBlock + numBlocks - 1;
849 	ref_in_end_stripe = (u_int16_t)(endLba & stripe_mask);
850 	endStrip = endLba >> raid->stripeShift;
851 	num_strips = (u_int8_t)(endStrip - start_strip + 1);	/* End strip */
852 	if (io_info->IoforUnevenSpan) {
853 		start_row = get_row_from_strip(sc, ld, start_strip, map);
854 		endRow = get_row_from_strip(sc, ld, endStrip, map);
855 		if (raid->spanDepth == 1) {
856 			startlba_span = 0;
857 			*pdBlock = start_row << raid->stripeShift;
858 		} else {
859 			startlba_span = (u_int8_t)mr_spanset_get_span_block(sc, ld, start_row,
860 			    pdBlock, map, &error_code);
861 			if (error_code == 1) {
862 				mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d. Send IO w/o region lock.\n",
863 				    __func__, __LINE__);
864 				return FALSE;
865 			}
866 		}
867 		if (startlba_span == SPAN_INVALID) {
868 			mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d for row 0x%llx,"
869 			    "start strip %llx endSrip %llx\n", __func__,
870 			    __LINE__, (unsigned long long)start_row,
871 			    (unsigned long long)start_strip,
872 			    (unsigned long long)endStrip);
873 			return FALSE;
874 		}
875 		io_info->start_span = startlba_span;
876 		io_info->start_row = start_row;
877 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: Check Span number from %s %d for row 0x%llx, "
878 		    " start strip 0x%llx endSrip 0x%llx span 0x%x\n",
879 		    __func__, __LINE__, (unsigned long long)start_row,
880 		    (unsigned long long)start_strip,
881 		    (unsigned long long)endStrip, startlba_span);
882 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : 1. start_row 0x%llx endRow 0x%llx Start span 0x%x\n",
883 		    (unsigned long long)start_row, (unsigned long long)endRow, startlba_span);
884 	} else {
885 		start_row = mega_div64_32(start_strip, raid->rowDataSize);
886 		endRow = mega_div64_32(endStrip, raid->rowDataSize);
887 	}
888 
889 	numRows = (u_int8_t)(endRow - start_row + 1);	/* get the row count */
890 
891 	/*
892 	 * Calculate region info.  (Assume region at start of first row, and
893 	 * assume this IO needs the full row - will adjust if not true.)
894 	 */
895 	regStart = start_row << raid->stripeShift;
896 	regSize = stripSize;
897 
898 	/* Check if we can send this I/O via FastPath */
899 	if (raid->capability.fpCapable) {
900 		if (isRead)
901 			io_info->fpOkForIo = (raid->capability.fpReadCapable &&
902 			    ((num_strips == 1) ||
903 			    raid->capability.fpReadAcrossStripe));
904 		else
905 			io_info->fpOkForIo = (raid->capability.fpWriteCapable &&
906 			    ((num_strips == 1) ||
907 			    raid->capability.fpWriteAcrossStripe));
908 	} else
909 		io_info->fpOkForIo = FALSE;
910 
911 	if (numRows == 1) {
912 		if (num_strips == 1) {
913 			regStart += ref_in_start_stripe;
914 			regSize = numBlocks;
915 		}
916 	} else if (io_info->IoforUnevenSpan == 0) {
917 		/*
918 		 * For Even span region lock optimization. If the start strip
919 		 * is the last in the start row
920 		 */
921 		if (start_strip == (start_row + 1) * raid->rowDataSize - 1) {
922 			regStart += ref_in_start_stripe;
923 			/*
924 			 * initialize count to sectors from startRef to end
925 			 * of strip
926 			 */
927 			regSize = stripSize - ref_in_start_stripe;
928 		}
929 		/* add complete rows in the middle of the transfer */
930 		if (numRows > 2)
931 			regSize += (numRows - 2) << raid->stripeShift;
932 
933 		/* if IO ends within first strip of last row */
934 		if (endStrip == endRow * raid->rowDataSize)
935 			regSize += ref_in_end_stripe + 1;
936 		else
937 			regSize += stripSize;
938 	} else {
939 		if (start_strip == (get_strip_from_row(sc, ld, start_row, map) +
940 		    SPAN_ROW_DATA_SIZE(map, ld, startlba_span) - 1)) {
941 			regStart += ref_in_start_stripe;
942 			/*
943 			 * initialize count to sectors from startRef to end
944 			 * of strip
945 			 */
946 			regSize = stripSize - ref_in_start_stripe;
947 		}
948 		/* add complete rows in the middle of the transfer */
949 		if (numRows > 2)
950 			regSize += (numRows - 2) << raid->stripeShift;
951 
952 		/* if IO ends within first strip of last row */
953 		if (endStrip == get_strip_from_row(sc, ld, endRow, map))
954 			regSize += ref_in_end_stripe + 1;
955 		else
956 			regSize += stripSize;
957 	}
958 	pRAID_Context->timeoutValue = map->raidMap.fpPdIoTimeoutSec;
959 	if (sc->mrsas_gen3_ctrl)
960 		pRAID_Context->regLockFlags = (isRead) ? raid->regTypeReqOnRead : raid->regTypeReqOnWrite;
961 	else
962 		pRAID_Context->regLockFlags = (isRead) ? REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite;
963 	pRAID_Context->VirtualDiskTgtId = raid->targetId;
964 	pRAID_Context->regLockRowLBA = regStart;
965 	pRAID_Context->regLockLength = regSize;
966 	pRAID_Context->configSeqNum = raid->seqNum;
967 
968 	/*
969 	 * Get Phy Params only if FP capable, or else leave it to MR firmware
970 	 * to do the calculation.
971 	 */
972 	if (io_info->fpOkForIo) {
973 		retval = io_info->IoforUnevenSpan ?
974 		    mr_spanset_get_phy_params(sc, ld, start_strip,
975 		    ref_in_start_stripe, io_info, pRAID_Context, map) :
976 		    MR_GetPhyParams(sc, ld, start_strip,
977 		    ref_in_start_stripe, io_info, pRAID_Context, map);
978 		/* If IO on an invalid Pd, then FP is not possible */
979 		if (io_info->devHandle == MR_PD_INVALID)
980 			io_info->fpOkForIo = FALSE;
981 		return retval;
982 	} else if (isRead) {
983 		for (stripIdx = 0; stripIdx < num_strips; stripIdx++) {
984 			retval = io_info->IoforUnevenSpan ?
985 			    mr_spanset_get_phy_params(sc, ld, start_strip + stripIdx,
986 			    ref_in_start_stripe, io_info, pRAID_Context, map) :
987 			    MR_GetPhyParams(sc, ld, start_strip + stripIdx,
988 			    ref_in_start_stripe, io_info, pRAID_Context, map);
989 			if (!retval)
990 				return TRUE;
991 		}
992 	}
993 #if SPAN_DEBUG
994 	/* Just for testing what arm we get for strip. */
995 	get_arm_from_strip(sc, ld, start_strip, map);
996 #endif
997 	return TRUE;
998 }
999 
1000 /*
1001  *
1002  * This routine pepare spanset info from Valid Raid map and store it into local
1003  * copy of ldSpanInfo per instance data structure.
1004  *
1005  * Inputs :	LD map
1006  * 			ldSpanInfo per HBA instance
1007  *
1008  */
1009 void
1010 mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
1011 {
1012 	u_int8_t span, count;
1013 	u_int32_t element, span_row_width;
1014 	u_int64_t span_row;
1015 	MR_LD_RAID *raid;
1016 	LD_SPAN_SET *span_set, *span_set_prev;
1017 	MR_QUAD_ELEMENT *quad;
1018 	int ldCount;
1019 	u_int16_t ld;
1020 
1021 	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
1022 		ld = MR_TargetIdToLdGet(ldCount, map);
1023 		if (ld >= MAX_LOGICAL_DRIVES)
1024 			continue;
1025 		raid = MR_LdRaidGet(ld, map);
1026 		for (element = 0; element < MAX_QUAD_DEPTH; element++) {
1027 			for (span = 0; span < raid->spanDepth; span++) {
1028 				if (map->raidMap.ldSpanMap[ld].spanBlock[span].
1029 				    block_span_info.noElements < element + 1)
1030 					continue;
1031 				/* TO-DO */
1032 				span_set = &(ldSpanInfo[ld].span_set[element]);
1033 				quad = &map->raidMap.ldSpanMap[ld].
1034 				    spanBlock[span].block_span_info.quad[element];
1035 
1036 				span_set->diff = quad->diff;
1037 
1038 				for (count = 0, span_row_width = 0;
1039 				    count < raid->spanDepth; count++) {
1040 					if (map->raidMap.ldSpanMap[ld].spanBlock[count].
1041 					    block_span_info.noElements >= element + 1) {
1042 						span_set->strip_offset[count] = span_row_width;
1043 						span_row_width +=
1044 						    MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize;
1045 #if SPAN_DEBUG
1046 						printf("AVAGO Debug span %x rowDataSize %x\n", count,
1047 						    MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize);
1048 #endif
1049 					}
1050 				}
1051 
1052 				span_set->span_row_data_width = span_row_width;
1053 				span_row = mega_div64_32(((quad->logEnd -
1054 				    quad->logStart) + quad->diff), quad->diff);
1055 
1056 				if (element == 0) {
1057 					span_set->log_start_lba = 0;
1058 					span_set->log_end_lba =
1059 					    ((span_row << raid->stripeShift) * span_row_width) - 1;
1060 
1061 					span_set->span_row_start = 0;
1062 					span_set->span_row_end = span_row - 1;
1063 
1064 					span_set->data_strip_start = 0;
1065 					span_set->data_strip_end = (span_row * span_row_width) - 1;
1066 
1067 					span_set->data_row_start = 0;
1068 					span_set->data_row_end = (span_row * quad->diff) - 1;
1069 				} else {
1070 					span_set_prev = &(ldSpanInfo[ld].span_set[element - 1]);
1071 					span_set->log_start_lba = span_set_prev->log_end_lba + 1;
1072 					span_set->log_end_lba = span_set->log_start_lba +
1073 					    ((span_row << raid->stripeShift) * span_row_width) - 1;
1074 
1075 					span_set->span_row_start = span_set_prev->span_row_end + 1;
1076 					span_set->span_row_end =
1077 					    span_set->span_row_start + span_row - 1;
1078 
1079 					span_set->data_strip_start =
1080 					    span_set_prev->data_strip_end + 1;
1081 					span_set->data_strip_end = span_set->data_strip_start +
1082 					    (span_row * span_row_width) - 1;
1083 
1084 					span_set->data_row_start = span_set_prev->data_row_end + 1;
1085 					span_set->data_row_end = span_set->data_row_start +
1086 					    (span_row * quad->diff) - 1;
1087 				}
1088 				break;
1089 			}
1090 			if (span == raid->spanDepth)
1091 				break;	/* no quads remain */
1092 		}
1093 	}
1094 #if SPAN_DEBUG
1095 	getSpanInfo(map, ldSpanInfo);	/* to get span set info */
1096 #endif
1097 }
1098 
1099 /*
1100  * mrsas_update_load_balance_params:	Update load balance parmas
1101  * Inputs:
1102  * sc - driver softc instance
1103  * drv_map - driver RAID map
1104  * lbInfo - Load balance info
1105  *
1106  * This function updates the load balance parameters for the LD config of a two
1107  * drive optimal RAID-1.
1108  */
1109 void
1110 mrsas_update_load_balance_params(struct mrsas_softc *sc,
1111     MR_DRV_RAID_MAP_ALL * drv_map, PLD_LOAD_BALANCE_INFO lbInfo)
1112 {
1113 	int ldCount;
1114 	u_int16_t ld;
1115 	MR_LD_RAID *raid;
1116 
1117 	if (sc->lb_pending_cmds > 128 || sc->lb_pending_cmds < 1)
1118 		sc->lb_pending_cmds = LB_PENDING_CMDS_DEFAULT;
1119 
1120 	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) {
1121 		ld = MR_TargetIdToLdGet(ldCount, drv_map);
1122 		if (ld >= MAX_LOGICAL_DRIVES_EXT) {
1123 			lbInfo[ldCount].loadBalanceFlag = 0;
1124 			continue;
1125 		}
1126 		raid = MR_LdRaidGet(ld, drv_map);
1127 		if ((raid->level != 1) ||
1128 		    (raid->ldState != MR_LD_STATE_OPTIMAL)) {
1129 			lbInfo[ldCount].loadBalanceFlag = 0;
1130 			continue;
1131 		}
1132 		lbInfo[ldCount].loadBalanceFlag = 1;
1133 	}
1134 }
1135 
1136 
1137 /*
1138  * mrsas_set_pd_lba:	Sets PD LBA
1139  * input:				io_request pointer
1140  * 						CDB length
1141  * 						io_info pointer
1142  * 						Pointer to CCB
1143  * 						Local RAID map pointer
1144  * 						Start block of IO Block Size
1145  *
1146  * Used to set the PD logical block address in CDB for FP IOs.
1147  */
1148 void
1149 mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request, u_int8_t cdb_len,
1150     struct IO_REQUEST_INFO *io_info, union ccb *ccb,
1151     MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
1152     u_int32_t ld_block_size)
1153 {
1154 	MR_LD_RAID *raid;
1155 	u_int32_t ld;
1156 	u_int64_t start_blk = io_info->pdBlock;
1157 	u_int8_t *cdb = io_request->CDB.CDB32;
1158 	u_int32_t num_blocks = io_info->numBlocks;
1159 	u_int8_t opcode = 0, flagvals = 0, groupnum = 0, control = 0;
1160 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
1161 
1162 	/* Check if T10 PI (DIF) is enabled for this LD */
1163 	ld = MR_TargetIdToLdGet(io_info->ldTgtId, local_map_ptr);
1164 	raid = MR_LdRaidGet(ld, local_map_ptr);
1165 	if (raid->capability.ldPiMode == MR_PROT_INFO_TYPE_CONTROLLER) {
1166 		memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1167 		cdb[0] = MRSAS_SCSI_VARIABLE_LENGTH_CMD;
1168 		cdb[7] = MRSAS_SCSI_ADDL_CDB_LEN;
1169 
1170 		if (ccb_h->flags == CAM_DIR_OUT)
1171 			cdb[9] = MRSAS_SCSI_SERVICE_ACTION_READ32;
1172 		else
1173 			cdb[9] = MRSAS_SCSI_SERVICE_ACTION_WRITE32;
1174 		cdb[10] = MRSAS_RD_WR_PROTECT_CHECK_ALL;
1175 
1176 		/* LBA */
1177 		cdb[12] = (u_int8_t)((start_blk >> 56) & 0xff);
1178 		cdb[13] = (u_int8_t)((start_blk >> 48) & 0xff);
1179 		cdb[14] = (u_int8_t)((start_blk >> 40) & 0xff);
1180 		cdb[15] = (u_int8_t)((start_blk >> 32) & 0xff);
1181 		cdb[16] = (u_int8_t)((start_blk >> 24) & 0xff);
1182 		cdb[17] = (u_int8_t)((start_blk >> 16) & 0xff);
1183 		cdb[18] = (u_int8_t)((start_blk >> 8) & 0xff);
1184 		cdb[19] = (u_int8_t)(start_blk & 0xff);
1185 
1186 		/* Logical block reference tag */
1187 		io_request->CDB.EEDP32.PrimaryReferenceTag = swap32(ref_tag);
1188 		io_request->CDB.EEDP32.PrimaryApplicationTagMask = 0xffff;
1189 		io_request->IoFlags = 32;	/* Specify 32-byte cdb */
1190 
1191 		/* Transfer length */
1192 		cdb[28] = (u_int8_t)((num_blocks >> 24) & 0xff);
1193 		cdb[29] = (u_int8_t)((num_blocks >> 16) & 0xff);
1194 		cdb[30] = (u_int8_t)((num_blocks >> 8) & 0xff);
1195 		cdb[31] = (u_int8_t)(num_blocks & 0xff);
1196 
1197 		/* set SCSI IO EEDP Flags */
1198 		if (ccb_h->flags == CAM_DIR_OUT) {
1199 			io_request->EEDPFlags =
1200 			    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1201 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
1202 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP |
1203 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG |
1204 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD;
1205 		} else {
1206 			io_request->EEDPFlags =
1207 			    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1208 			    MPI2_SCSIIO_EEDPFLAGS_INSERT_OP;
1209 		}
1210 		io_request->Control |= (0x4 << 26);
1211 		io_request->EEDPBlockSize = ld_block_size;
1212 	} else {
1213 		/* Some drives don't support 16/12 byte CDB's, convert to 10 */
1214 		if (((cdb_len == 12) || (cdb_len == 16)) &&
1215 		    (start_blk <= 0xffffffff)) {
1216 			if (cdb_len == 16) {
1217 				opcode = cdb[0] == READ_16 ? READ_10 : WRITE_10;
1218 				flagvals = cdb[1];
1219 				groupnum = cdb[14];
1220 				control = cdb[15];
1221 			} else {
1222 				opcode = cdb[0] == READ_12 ? READ_10 : WRITE_10;
1223 				flagvals = cdb[1];
1224 				groupnum = cdb[10];
1225 				control = cdb[11];
1226 			}
1227 
1228 			memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1229 
1230 			cdb[0] = opcode;
1231 			cdb[1] = flagvals;
1232 			cdb[6] = groupnum;
1233 			cdb[9] = control;
1234 
1235 			/* Transfer length */
1236 			cdb[8] = (u_int8_t)(num_blocks & 0xff);
1237 			cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
1238 
1239 			io_request->IoFlags = 10;	/* Specify 10-byte cdb */
1240 			cdb_len = 10;
1241 		} else if ((cdb_len < 16) && (start_blk > 0xffffffff)) {
1242 			/* Convert to 16 byte CDB for large LBA's */
1243 			switch (cdb_len) {
1244 			case 6:
1245 				opcode = cdb[0] == READ_6 ? READ_16 : WRITE_16;
1246 				control = cdb[5];
1247 				break;
1248 			case 10:
1249 				opcode = cdb[0] == READ_10 ? READ_16 : WRITE_16;
1250 				flagvals = cdb[1];
1251 				groupnum = cdb[6];
1252 				control = cdb[9];
1253 				break;
1254 			case 12:
1255 				opcode = cdb[0] == READ_12 ? READ_16 : WRITE_16;
1256 				flagvals = cdb[1];
1257 				groupnum = cdb[10];
1258 				control = cdb[11];
1259 				break;
1260 			}
1261 
1262 			memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1263 
1264 			cdb[0] = opcode;
1265 			cdb[1] = flagvals;
1266 			cdb[14] = groupnum;
1267 			cdb[15] = control;
1268 
1269 			/* Transfer length */
1270 			cdb[13] = (u_int8_t)(num_blocks & 0xff);
1271 			cdb[12] = (u_int8_t)((num_blocks >> 8) & 0xff);
1272 			cdb[11] = (u_int8_t)((num_blocks >> 16) & 0xff);
1273 			cdb[10] = (u_int8_t)((num_blocks >> 24) & 0xff);
1274 
1275 			io_request->IoFlags = 16;	/* Specify 16-byte cdb */
1276 			cdb_len = 16;
1277 		} else if ((cdb_len == 6) && (start_blk > 0x1fffff)) {
1278 			/* convert to 10 byte CDB */
1279 			opcode = cdb[0] == READ_6 ? READ_10 : WRITE_10;
1280 			control = cdb[5];
1281 
1282 			memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1283 			cdb[0] = opcode;
1284 			cdb[9] = control;
1285 
1286 			/* Set transfer length */
1287 			cdb[8] = (u_int8_t)(num_blocks & 0xff);
1288 			cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
1289 
1290 			/* Specify 10-byte cdb */
1291 			cdb_len = 10;
1292 		}
1293 		/* Fall through normal case, just load LBA here */
1294 		u_int8_t val = cdb[1] & 0xE0;
1295 
1296 		switch (cdb_len) {
1297 		case 6:
1298 			cdb[3] = (u_int8_t)(start_blk & 0xff);
1299 			cdb[2] = (u_int8_t)((start_blk >> 8) & 0xff);
1300 			cdb[1] = val | ((u_int8_t)(start_blk >> 16) & 0x1f);
1301 			break;
1302 		case 10:
1303 			cdb[5] = (u_int8_t)(start_blk & 0xff);
1304 			cdb[4] = (u_int8_t)((start_blk >> 8) & 0xff);
1305 			cdb[3] = (u_int8_t)((start_blk >> 16) & 0xff);
1306 			cdb[2] = (u_int8_t)((start_blk >> 24) & 0xff);
1307 			break;
1308 		case 16:
1309 			cdb[9] = (u_int8_t)(start_blk & 0xff);
1310 			cdb[8] = (u_int8_t)((start_blk >> 8) & 0xff);
1311 			cdb[7] = (u_int8_t)((start_blk >> 16) & 0xff);
1312 			cdb[6] = (u_int8_t)((start_blk >> 24) & 0xff);
1313 			cdb[5] = (u_int8_t)((start_blk >> 32) & 0xff);
1314 			cdb[4] = (u_int8_t)((start_blk >> 40) & 0xff);
1315 			cdb[3] = (u_int8_t)((start_blk >> 48) & 0xff);
1316 			cdb[2] = (u_int8_t)((start_blk >> 56) & 0xff);
1317 			break;
1318 		}
1319 	}
1320 }
1321 
1322 /*
1323  * mrsas_get_best_arm_pd:	Determine the best spindle arm
1324  * Inputs:
1325  *    sc - HBA instance
1326  *    lbInfo - Load balance info
1327  *    io_info - IO request info
1328  *
1329  * This function determines and returns the best arm by looking at the
1330  * parameters of the last PD access.
1331  */
1332 u_int8_t
1333 mrsas_get_best_arm_pd(struct mrsas_softc *sc,
1334     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
1335 {
1336 	MR_LD_RAID *raid;
1337 	MR_DRV_RAID_MAP_ALL *drv_map;
1338 	u_int16_t pend0, pend1, ld;
1339 	u_int64_t diff0, diff1;
1340 	u_int8_t bestArm, pd0, pd1, span, arm;
1341 	u_int32_t arRef, span_row_size;
1342 
1343 	u_int64_t block = io_info->ldStartBlock;
1344 	u_int32_t count = io_info->numBlocks;
1345 
1346 	span = ((io_info->span_arm & RAID_CTX_SPANARM_SPAN_MASK)
1347 	    >> RAID_CTX_SPANARM_SPAN_SHIFT);
1348 	arm = (io_info->span_arm & RAID_CTX_SPANARM_ARM_MASK);
1349 
1350 	drv_map = sc->ld_drv_map[(sc->map_id & 1)];
1351 	ld = MR_TargetIdToLdGet(io_info->ldTgtId, drv_map);
1352 	raid = MR_LdRaidGet(ld, drv_map);
1353 	span_row_size = sc->UnevenSpanSupport ?
1354 	    SPAN_ROW_SIZE(drv_map, ld, span) : raid->rowSize;
1355 
1356 	arRef = MR_LdSpanArrayGet(ld, span, drv_map);
1357 	pd0 = MR_ArPdGet(arRef, arm, drv_map);
1358 	pd1 = MR_ArPdGet(arRef, (arm + 1) >= span_row_size ?
1359 	    (arm + 1 - span_row_size) : arm + 1, drv_map);
1360 
1361 	/* get the pending cmds for the data and mirror arms */
1362 	pend0 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd0]);
1363 	pend1 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd1]);
1364 
1365 	/* Determine the disk whose head is nearer to the req. block */
1366 	diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[pd0]);
1367 	diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[pd1]);
1368 	bestArm = (diff0 <= diff1 ? arm : arm ^ 1);
1369 
1370 	if ((bestArm == arm && pend0 > pend1 + sc->lb_pending_cmds) ||
1371 	    (bestArm != arm && pend1 > pend0 + sc->lb_pending_cmds))
1372 		bestArm ^= 1;
1373 
1374 	/* Update the last accessed block on the correct pd */
1375 	lbInfo->last_accessed_block[bestArm == arm ? pd0 : pd1] = block + count - 1;
1376 	io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | bestArm;
1377 	io_info->pd_after_lb = (bestArm == arm) ? pd0 : pd1;
1378 #if SPAN_DEBUG
1379 	if (arm != bestArm)
1380 		printf("AVAGO Debug R1 Load balance occur - span 0x%x arm 0x%x bestArm 0x%x "
1381 		    "io_info->span_arm 0x%x\n",
1382 		    span, arm, bestArm, io_info->span_arm);
1383 #endif
1384 
1385 	return io_info->pd_after_lb;
1386 }
1387 
1388 /*
1389  * mrsas_get_updated_dev_handle:	Get the update dev handle
1390  * Inputs:
1391  *	sc - Adapter instance soft state
1392  *	lbInfo - Load balance info
1393  *	io_info - io_info pointer
1394  *
1395  * This function determines and returns the updated dev handle.
1396  */
1397 u_int16_t
1398 mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
1399     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
1400 {
1401 	u_int8_t arm_pd;
1402 	u_int16_t devHandle;
1403 	MR_DRV_RAID_MAP_ALL *drv_map;
1404 
1405 	drv_map = sc->ld_drv_map[(sc->map_id & 1)];
1406 
1407 	/* get best new arm */
1408 	arm_pd = mrsas_get_best_arm_pd(sc, lbInfo, io_info);
1409 	devHandle = MR_PdDevHandleGet(arm_pd, drv_map);
1410 	mrsas_atomic_inc(&lbInfo->scsi_pending_cmds[arm_pd]);
1411 
1412 	return devHandle;
1413 }
1414 
1415 /*
1416  * MR_GetPhyParams:	Calculates arm, span, and block
1417  * Inputs:			Adapter soft state
1418  * 					Logical drive number (LD)
1419  * 					Stripe number(stripRow)
1420  * 					Reference in stripe (stripRef)
1421  *
1422  * Outputs:			Absolute Block number in the physical disk
1423  *
1424  * This routine calculates the arm, span and block for the specified stripe and
1425  * reference in stripe.
1426  */
1427 u_int8_t
1428 MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
1429     u_int64_t stripRow,
1430     u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
1431     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
1432 {
1433 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
1434 	u_int32_t pd, arRef;
1435 	u_int8_t physArm, span;
1436 	u_int64_t row;
1437 	u_int8_t retval = TRUE;
1438 	int error_code = 0;
1439 	u_int64_t *pdBlock = &io_info->pdBlock;
1440 	u_int16_t *pDevHandle = &io_info->devHandle;
1441 	u_int32_t rowMod, armQ, arm, logArm;
1442 
1443 	row = mega_div64_32(stripRow, raid->rowDataSize);
1444 
1445 	if (raid->level == 6) {
1446 		/* logical arm within row */
1447 		logArm = mega_mod64(stripRow, raid->rowDataSize);
1448 		if (raid->rowSize == 0)
1449 			return FALSE;
1450 		rowMod = mega_mod64(row, raid->rowSize);	/* get logical row mod */
1451 		armQ = raid->rowSize - 1 - rowMod;	/* index of Q drive */
1452 		arm = armQ + 1 + logArm;/* data always logically follows Q */
1453 		if (arm >= raid->rowSize)	/* handle wrap condition */
1454 			arm -= raid->rowSize;
1455 		physArm = (u_int8_t)arm;
1456 	} else {
1457 		if (raid->modFactor == 0)
1458 			return FALSE;
1459 		physArm = MR_LdDataArmGet(ld, mega_mod64(stripRow, raid->modFactor), map);
1460 	}
1461 
1462 	if (raid->spanDepth == 1) {
1463 		span = 0;
1464 		*pdBlock = row << raid->stripeShift;
1465 	} else {
1466 		span = (u_int8_t)MR_GetSpanBlock(ld, row, pdBlock, map, &error_code);
1467 		if (error_code == 1)
1468 			return FALSE;
1469 	}
1470 
1471 	/* Get the array on which this span is present */
1472 	arRef = MR_LdSpanArrayGet(ld, span, map);
1473 
1474 	pd = MR_ArPdGet(arRef, physArm, map);	/* Get the Pd. */
1475 
1476 	if (pd != MR_PD_INVALID)
1477 		/* Get dev handle from Pd */
1478 		*pDevHandle = MR_PdDevHandleGet(pd, map);
1479 	else {
1480 		*pDevHandle = MR_PD_INVALID;	/* set dev handle as invalid. */
1481 		if ((raid->level >= 5) && ((!sc->mrsas_gen3_ctrl) || (sc->mrsas_gen3_ctrl &&
1482 		    raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
1483 			pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
1484 		else if (raid->level == 1) {
1485 			/* Get Alternate Pd. */
1486 			pd = MR_ArPdGet(arRef, physArm + 1, map);
1487 			if (pd != MR_PD_INVALID)
1488 				/* Get dev handle from Pd. */
1489 				*pDevHandle = MR_PdDevHandleGet(pd, map);
1490 		}
1491 	}
1492 
1493 	*pdBlock += stripRef + MR_LdSpanPtrGet(ld, span, map)->startBlk;
1494 	pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
1495 	io_info->span_arm = pRAID_Context->spanArm;
1496 	return retval;
1497 }
1498 
1499 /*
1500  * MR_GetSpanBlock:	Calculates span block
1501  * Inputs:			LD
1502  * 					row PD
1503  * 					span block
1504  * 					RAID map pointer
1505  *
1506  * Outputs:			Span number Error code
1507  *
1508  * This routine calculates the span from the span block info.
1509  */
1510 u_int32_t
1511 MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
1512     MR_DRV_RAID_MAP_ALL * map, int *div_error)
1513 {
1514 	MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map);
1515 	MR_QUAD_ELEMENT *quad;
1516 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
1517 	u_int32_t span, j;
1518 	u_int64_t blk, debugBlk;
1519 
1520 	for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) {
1521 		for (j = 0; j < pSpanBlock->block_span_info.noElements; j++) {
1522 			quad = &pSpanBlock->block_span_info.quad[j];
1523 			if (quad->diff == 0) {
1524 				*div_error = 1;
1525 				return span;
1526 			}
1527 			if (quad->logStart <= row && row <= quad->logEnd &&
1528 			    (mega_mod64(row - quad->logStart, quad->diff)) == 0) {
1529 				if (span_blk != NULL) {
1530 					blk = mega_div64_32((row - quad->logStart), quad->diff);
1531 					debugBlk = blk;
1532 					blk = (blk + quad->offsetInSpan) << raid->stripeShift;
1533 					*span_blk = blk;
1534 				}
1535 				return span;
1536 			}
1537 		}
1538 	}
1539 	return span;
1540 }
1541