xref: /freebsd/sys/dev/mrsas/mrsas_fp.c (revision 18849b5da0c5eaa88500b457be05b038813b51b1)
1 /*
2  * Copyright (c) 2015, AVAGO Tech. All rights reserved. Author: Marian Choy
3  * Copyright (c) 2014, LSI Corp. All rights reserved. Author: Marian Choy
4  * Support: freebsdraid@avagotech.com
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are
8  * met:
9  *
10  * 1. Redistributions of source code must retain the above copyright notice,
11  * this list of conditions and the following disclaimer. 2. Redistributions
12  * in binary form must reproduce the above copyright notice, this list of
13  * conditions and the following disclaimer in the documentation and/or other
14  * materials provided with the distribution. 3. Neither the name of the
15  * <ORGANIZATION> nor the names of its contributors may be used to endorse or
16  * promote products derived from this software without specific prior written
17  * permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * The views and conclusions contained in the software and documentation are
32  * those of the authors and should not be interpreted as representing
33  * official policies,either expressed or implied, of the FreeBSD Project.
34  *
35  * Send feedback to: <megaraidfbsd@avagotech.com> Mail to: AVAGO TECHNOLOGIES, 1621
36  * Barber Lane, Milpitas, CA 95035 ATTN: MegaRaid FreeBSD
37  *
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include <dev/mrsas/mrsas.h>
44 
45 #include <cam/cam.h>
46 #include <cam/cam_ccb.h>
47 #include <cam/cam_sim.h>
48 #include <cam/cam_xpt_sim.h>
49 #include <cam/cam_debug.h>
50 #include <cam/cam_periph.h>
51 #include <cam/cam_xpt_periph.h>
52 
53 
54 /*
55  * Function prototypes
56  */
57 u_int8_t MR_ValidateMapInfo(struct mrsas_softc *sc);
58 u_int8_t
59 mrsas_get_best_arm_pd(struct mrsas_softc *sc,
60     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
61 u_int8_t
62 MR_BuildRaidContext(struct mrsas_softc *sc,
63     struct IO_REQUEST_INFO *io_info,
64     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
65 u_int8_t
66 MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
67     u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
68     RAID_CONTEXT * pRAID_Context,
69     MR_DRV_RAID_MAP_ALL * map);
70 u_int16_t MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
71 u_int32_t MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
72 u_int16_t MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
73 u_int16_t
74 mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
75     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
76 u_int32_t mega_mod64(u_int64_t dividend, u_int32_t divisor);
77 u_int32_t
78 MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
79     MR_DRV_RAID_MAP_ALL * map, int *div_error);
80 u_int64_t mega_div64_32(u_int64_t dividend, u_int32_t divisor);
81 void
82 mrsas_update_load_balance_params(struct mrsas_softc *sc,
83     MR_DRV_RAID_MAP_ALL * map, PLD_LOAD_BALANCE_INFO lbInfo);
84 void
85 mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request,
86     u_int8_t cdb_len, struct IO_REQUEST_INFO *io_info, union ccb *ccb,
87     MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
88     u_int32_t ld_block_size);
89 static u_int16_t
90 MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span,
91     MR_DRV_RAID_MAP_ALL * map);
92 static u_int16_t MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map);
93 static u_int16_t
94 MR_ArPdGet(u_int32_t ar, u_int32_t arm,
95     MR_DRV_RAID_MAP_ALL * map);
96 static MR_LD_SPAN *
97 MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span,
98     MR_DRV_RAID_MAP_ALL * map);
99 static u_int8_t
100 MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx,
101     MR_DRV_RAID_MAP_ALL * map);
102 static MR_SPAN_BLOCK_INFO *
103 MR_LdSpanInfoGet(u_int32_t ld,
104     MR_DRV_RAID_MAP_ALL * map);
105 MR_LD_RAID *MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
106 void	MR_PopulateDrvRaidMap(struct mrsas_softc *sc);
107 
108 
109 /*
110  * Spanset related function prototypes Added for PRL11 configuration (Uneven
111  * span support)
112  */
113 void	mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo);
114 static u_int8_t
115 mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld,
116     u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
117     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
118 static u_int64_t
119 get_row_from_strip(struct mrsas_softc *sc, u_int32_t ld,
120     u_int64_t strip, MR_DRV_RAID_MAP_ALL * map);
121 static u_int32_t
122 mr_spanset_get_span_block(struct mrsas_softc *sc,
123     u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
124     MR_DRV_RAID_MAP_ALL * map, int *div_error);
125 static u_int8_t
126 get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span,
127     u_int64_t stripe, MR_DRV_RAID_MAP_ALL * map);
128 
129 
130 /*
131  * Spanset related defines Added for PRL11 configuration(Uneven span support)
132  */
133 #define	SPAN_ROW_SIZE(map, ld, index_) MR_LdSpanPtrGet(ld, index_, map)->spanRowSize
134 #define	SPAN_ROW_DATA_SIZE(map_, ld, index_)	\
135 	MR_LdSpanPtrGet(ld, index_, map)->spanRowDataSize
136 #define	SPAN_INVALID	0xff
137 #define	SPAN_DEBUG		0
138 
139 /*
140  * Related Defines
141  */
142 
143 typedef u_int64_t REGION_KEY;
144 typedef u_int32_t REGION_LEN;
145 
146 #define	MR_LD_STATE_OPTIMAL		3
147 #define	FALSE					0
148 #define	TRUE					1
149 
150 #define	LB_PENDING_CMDS_DEFAULT 4
151 
152 
153 /*
154  * Related Macros
155  */
156 
157 #define	ABS_DIFF(a,b)   ( ((a) > (b)) ? ((a) - (b)) : ((b) - (a)) )
158 
159 #define	swap32(x) \
160   ((unsigned int)( \
161     (((unsigned int)(x) & (unsigned int)0x000000ffUL) << 24) | \
162     (((unsigned int)(x) & (unsigned int)0x0000ff00UL) <<  8) | \
163     (((unsigned int)(x) & (unsigned int)0x00ff0000UL) >>  8) | \
164     (((unsigned int)(x) & (unsigned int)0xff000000UL) >> 24) ))
165 
166 
167 /*
168  * In-line functions for mod and divide of 64-bit dividend and 32-bit
169  * divisor. Assumes a check for a divisor of zero is not possible.
170  *
171  * @param dividend:	Dividend
172  * @param divisor:	Divisor
173  * @return			remainder
174  */
175 
176 #define	mega_mod64(dividend, divisor) ({ \
177 int remainder; \
178 remainder = ((u_int64_t) (dividend)) % (u_int32_t) (divisor); \
179 remainder;})
180 
181 #define	mega_div64_32(dividend, divisor) ({ \
182 int quotient; \
183 quotient = ((u_int64_t) (dividend)) / (u_int32_t) (divisor); \
184 quotient;})
185 
186 
187 /*
188  * Various RAID map access functions.  These functions access the various
189  * parts of the RAID map and returns the appropriate parameters.
190  */
191 
192 MR_LD_RAID *
193 MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
194 {
195 	return (&map->raidMap.ldSpanMap[ld].ldRaid);
196 }
197 
198 u_int16_t
199 MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
200 {
201 	return (map->raidMap.ldSpanMap[ld].ldRaid.targetId);
202 }
203 
204 static u_int16_t
205 MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
206 {
207 	return map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef;
208 }
209 
210 static u_int8_t
211 MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx, MR_DRV_RAID_MAP_ALL * map)
212 {
213 	return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx];
214 }
215 
216 static u_int16_t
217 MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map)
218 {
219 	return map->raidMap.devHndlInfo[pd].curDevHdl;
220 }
221 
222 static u_int16_t
223 MR_ArPdGet(u_int32_t ar, u_int32_t arm, MR_DRV_RAID_MAP_ALL * map)
224 {
225 	return map->raidMap.arMapInfo[ar].pd[arm];
226 }
227 
228 static MR_LD_SPAN *
229 MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
230 {
231 	return &map->raidMap.ldSpanMap[ld].spanBlock[span].span;
232 }
233 
234 static MR_SPAN_BLOCK_INFO *
235 MR_LdSpanInfoGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
236 {
237 	return &map->raidMap.ldSpanMap[ld].spanBlock[0];
238 }
239 
240 u_int16_t
241 MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
242 {
243 	return map->raidMap.ldTgtIdToLd[ldTgtId];
244 }
245 
246 u_int32_t
247 MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
248 {
249 	MR_LD_RAID *raid;
250 	u_int32_t ld, ldBlockSize = MRSAS_SCSIBLOCKSIZE;
251 
252 	ld = MR_TargetIdToLdGet(ldTgtId, map);
253 
254 	/*
255 	 * Check if logical drive was removed.
256 	 */
257 	if (ld >= MAX_LOGICAL_DRIVES)
258 		return ldBlockSize;
259 
260 	raid = MR_LdRaidGet(ld, map);
261 	ldBlockSize = raid->logicalBlockLength;
262 	if (!ldBlockSize)
263 		ldBlockSize = MRSAS_SCSIBLOCKSIZE;
264 
265 	return ldBlockSize;
266 }
267 
268 /*
269  * This function will Populate Driver Map using firmware raid map
270  */
271 void
272 MR_PopulateDrvRaidMap(struct mrsas_softc *sc)
273 {
274 	MR_FW_RAID_MAP_ALL *fw_map_old = NULL;
275 	MR_FW_RAID_MAP *pFwRaidMap = NULL;
276 	unsigned int i;
277 
278 	MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
279 	MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
280 
281 	if (sc->max256vdSupport) {
282 		memcpy(sc->ld_drv_map[sc->map_id & 1],
283 		    sc->raidmap_mem[sc->map_id & 1],
284 		    sc->current_map_sz);
285 		/*
286 		 * New Raid map will not set totalSize, so keep expected
287 		 * value for legacy code in ValidateMapInfo
288 		 */
289 		pDrvRaidMap->totalSize = sizeof(MR_FW_RAID_MAP_EXT);
290 	} else {
291 		fw_map_old = (MR_FW_RAID_MAP_ALL *) sc->raidmap_mem[(sc->map_id & 1)];
292 		pFwRaidMap = &fw_map_old->raidMap;
293 
294 #if VD_EXT_DEBUG
295 		for (i = 0; i < pFwRaidMap->ldCount; i++) {
296 			device_printf(sc->mrsas_dev,
297 			    "Index 0x%x Target Id 0x%x Seq Num 0x%x Size 0/%lx\n", i,
298 			    fw_map_old->raidMap.ldSpanMap[i].ldRaid.targetId,
299 			    fw_map_old->raidMap.ldSpanMap[i].ldRaid.seqNum,
300 			    fw_map_old->raidMap.ldSpanMap[i].ldRaid.size);
301 		}
302 #endif
303 
304 		memset(drv_map, 0, sc->drv_map_sz);
305 		pDrvRaidMap->totalSize = pFwRaidMap->totalSize;
306 		pDrvRaidMap->ldCount = pFwRaidMap->ldCount;
307 		pDrvRaidMap->fpPdIoTimeoutSec =
308 		    pFwRaidMap->fpPdIoTimeoutSec;
309 
310 		for (i = 0; i < MAX_RAIDMAP_LOGICAL_DRIVES + MAX_RAIDMAP_VIEWS; i++) {
311 			pDrvRaidMap->ldTgtIdToLd[i] =
312 			    (u_int8_t)pFwRaidMap->ldTgtIdToLd[i];
313 		}
314 
315 		for (i = 0; i < pDrvRaidMap->ldCount; i++) {
316 			pDrvRaidMap->ldSpanMap[i] =
317 			    pFwRaidMap->ldSpanMap[i];
318 
319 #if VD_EXT_DEBUG
320 			device_printf(sc->mrsas_dev, "pFwRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x "
321 			    "pFwRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
322 			    i, i, pFwRaidMap->ldSpanMap[i].ldRaid.targetId,
323 			    pFwRaidMap->ldSpanMap[i].ldRaid.seqNum,
324 			    (u_int32_t)pFwRaidMap->ldSpanMap[i].ldRaid.rowSize);
325 			device_printf(sc->mrsas_dev, "pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x"
326 			    "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i,
327 			    pDrvRaidMap->ldSpanMap[i].ldRaid.targetId,
328 			    pDrvRaidMap->ldSpanMap[i].ldRaid.seqNum,
329 			    (u_int32_t)pDrvRaidMap->ldSpanMap[i].ldRaid.rowSize);
330 			device_printf(sc->mrsas_dev, "drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
331 			    drv_map, pDrvRaidMap,
332 			    &pFwRaidMap->ldSpanMap[i].ldRaid, &pDrvRaidMap->ldSpanMap[i].ldRaid);
333 #endif
334 		}
335 
336 		memcpy(pDrvRaidMap->arMapInfo, pFwRaidMap->arMapInfo,
337 		    sizeof(MR_ARRAY_INFO) * MAX_RAIDMAP_ARRAYS);
338 		memcpy(pDrvRaidMap->devHndlInfo, pFwRaidMap->devHndlInfo,
339 		    sizeof(MR_DEV_HANDLE_INFO) *
340 		    MAX_RAIDMAP_PHYSICAL_DEVICES);
341 	}
342 }
343 
344 /*
345  * MR_ValidateMapInfo:	Validate RAID map
346  * input:				Adapter instance soft state
347  *
348  * This function checks and validates the loaded RAID map. It returns 0 if
349  * successful, and 1 otherwise.
350  */
351 u_int8_t
352 MR_ValidateMapInfo(struct mrsas_softc *sc)
353 {
354 	if (!sc) {
355 		return 1;
356 	}
357 	MR_PopulateDrvRaidMap(sc);
358 
359 	MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
360 	MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
361 
362 	u_int32_t expected_map_size;
363 
364 	drv_map = sc->ld_drv_map[(sc->map_id & 1)];
365 	pDrvRaidMap = &drv_map->raidMap;
366 	PLD_SPAN_INFO ldSpanInfo = (PLD_SPAN_INFO) & sc->log_to_span;
367 
368 	if (sc->max256vdSupport)
369 		expected_map_size = sizeof(MR_FW_RAID_MAP_EXT);
370 	else
371 		expected_map_size =
372 		    (sizeof(MR_FW_RAID_MAP) - sizeof(MR_LD_SPAN_MAP)) +
373 		    (sizeof(MR_LD_SPAN_MAP) * pDrvRaidMap->ldCount);
374 
375 	if (pDrvRaidMap->totalSize != expected_map_size) {
376 		device_printf(sc->mrsas_dev, "map size %x not matching ld count\n", expected_map_size);
377 		device_printf(sc->mrsas_dev, "span map= %x\n", (unsigned int)sizeof(MR_LD_SPAN_MAP));
378 		device_printf(sc->mrsas_dev, "pDrvRaidMap->totalSize=%x\n", pDrvRaidMap->totalSize);
379 		return 1;
380 	}
381 	if (sc->UnevenSpanSupport) {
382 		mr_update_span_set(drv_map, ldSpanInfo);
383 	}
384 	mrsas_update_load_balance_params(sc, drv_map, sc->load_balance_info);
385 
386 	return 0;
387 }
388 
389 /*
390  *
391  * Function to print info about span set created in driver from FW raid map
392  *
393  * Inputs:		map
394  * ldSpanInfo:	ld map span info per HBA instance
395  *
396  *
397  */
398 #if SPAN_DEBUG
399 static int
400 getSpanInfo(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
401 {
402 
403 	u_int8_t span;
404 	u_int32_t element;
405 	MR_LD_RAID *raid;
406 	LD_SPAN_SET *span_set;
407 	MR_QUAD_ELEMENT *quad;
408 	int ldCount;
409 	u_int16_t ld;
410 
411 	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
412 		ld = MR_TargetIdToLdGet(ldCount, map);
413 		if (ld >= MAX_LOGICAL_DRIVES) {
414 			continue;
415 		}
416 		raid = MR_LdRaidGet(ld, map);
417 		printf("LD %x: span_depth=%x\n", ld, raid->spanDepth);
418 		for (span = 0; span < raid->spanDepth; span++)
419 			printf("Span=%x, number of quads=%x\n", span,
420 			    map->raidMap.ldSpanMap[ld].spanBlock[span].
421 			    block_span_info.noElements);
422 		for (element = 0; element < MAX_QUAD_DEPTH; element++) {
423 			span_set = &(ldSpanInfo[ld].span_set[element]);
424 			if (span_set->span_row_data_width == 0)
425 				break;
426 
427 			printf("Span Set %x: width=%x, diff=%x\n", element,
428 			    (unsigned int)span_set->span_row_data_width,
429 			    (unsigned int)span_set->diff);
430 			printf("logical LBA start=0x%08lx, end=0x%08lx\n",
431 			    (long unsigned int)span_set->log_start_lba,
432 			    (long unsigned int)span_set->log_end_lba);
433 			printf("span row start=0x%08lx, end=0x%08lx\n",
434 			    (long unsigned int)span_set->span_row_start,
435 			    (long unsigned int)span_set->span_row_end);
436 			printf("data row start=0x%08lx, end=0x%08lx\n",
437 			    (long unsigned int)span_set->data_row_start,
438 			    (long unsigned int)span_set->data_row_end);
439 			printf("data strip start=0x%08lx, end=0x%08lx\n",
440 			    (long unsigned int)span_set->data_strip_start,
441 			    (long unsigned int)span_set->data_strip_end);
442 
443 			for (span = 0; span < raid->spanDepth; span++) {
444 				if (map->raidMap.ldSpanMap[ld].spanBlock[span].
445 				    block_span_info.noElements >= element + 1) {
446 					quad = &map->raidMap.ldSpanMap[ld].
447 					    spanBlock[span].block_span_info.
448 					    quad[element];
449 					printf("Span=%x, Quad=%x, diff=%x\n", span,
450 					    element, quad->diff);
451 					printf("offset_in_span=0x%08lx\n",
452 					    (long unsigned int)quad->offsetInSpan);
453 					printf("logical start=0x%08lx, end=0x%08lx\n",
454 					    (long unsigned int)quad->logStart,
455 					    (long unsigned int)quad->logEnd);
456 				}
457 			}
458 		}
459 	}
460 	return 0;
461 }
462 
463 #endif
464 /*
465  *
466  * This routine calculates the Span block for given row using spanset.
467  *
468  * Inputs :	HBA instance
469  * ld:		Logical drive number
470  * row:		Row number
471  * map:		LD map
472  *
473  * Outputs :	span	- Span number block
474  * 						- Absolute Block number in the physical disk
475  * 				div_error    - Devide error code.
476  */
477 
478 u_int32_t
479 mr_spanset_get_span_block(struct mrsas_softc *sc, u_int32_t ld, u_int64_t row,
480     u_int64_t *span_blk, MR_DRV_RAID_MAP_ALL * map, int *div_error)
481 {
482 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
483 	LD_SPAN_SET *span_set;
484 	MR_QUAD_ELEMENT *quad;
485 	u_int32_t span, info;
486 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
487 
488 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
489 		span_set = &(ldSpanInfo[ld].span_set[info]);
490 
491 		if (span_set->span_row_data_width == 0)
492 			break;
493 		if (row > span_set->data_row_end)
494 			continue;
495 
496 		for (span = 0; span < raid->spanDepth; span++)
497 			if (map->raidMap.ldSpanMap[ld].spanBlock[span].
498 			    block_span_info.noElements >= info + 1) {
499 				quad = &map->raidMap.ldSpanMap[ld].
500 				    spanBlock[span].
501 				    block_span_info.quad[info];
502 				if (quad->diff == 0) {
503 					*div_error = 1;
504 					return span;
505 				}
506 				if (quad->logStart <= row &&
507 				    row <= quad->logEnd &&
508 				    (mega_mod64(row - quad->logStart,
509 				    quad->diff)) == 0) {
510 					if (span_blk != NULL) {
511 						u_int64_t blk;
512 
513 						blk = mega_div64_32
514 						    ((row - quad->logStart),
515 						    quad->diff);
516 						blk = (blk + quad->offsetInSpan)
517 						    << raid->stripeShift;
518 						*span_blk = blk;
519 					}
520 					return span;
521 				}
522 			}
523 	}
524 	return SPAN_INVALID;
525 }
526 
527 /*
528  *
529  * This routine calculates the row for given strip using spanset.
530  *
531  * Inputs :	HBA instance
532  * ld:		Logical drive number
533  * Strip:	Strip
534  * map:		LD map
535  *
536  * Outputs :	row - row associated with strip
537  */
538 
539 static u_int64_t
540 get_row_from_strip(struct mrsas_softc *sc,
541     u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
542 {
543 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
544 	LD_SPAN_SET *span_set;
545 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
546 	u_int32_t info, strip_offset, span, span_offset;
547 	u_int64_t span_set_Strip, span_set_Row;
548 
549 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
550 		span_set = &(ldSpanInfo[ld].span_set[info]);
551 
552 		if (span_set->span_row_data_width == 0)
553 			break;
554 		if (strip > span_set->data_strip_end)
555 			continue;
556 
557 		span_set_Strip = strip - span_set->data_strip_start;
558 		strip_offset = mega_mod64(span_set_Strip,
559 		    span_set->span_row_data_width);
560 		span_set_Row = mega_div64_32(span_set_Strip,
561 		    span_set->span_row_data_width) * span_set->diff;
562 		for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
563 			if (map->raidMap.ldSpanMap[ld].spanBlock[span].
564 			    block_span_info.noElements >= info + 1) {
565 				if (strip_offset >=
566 				    span_set->strip_offset[span])
567 					span_offset++;
568 				else
569 					break;
570 			}
571 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : Strip 0x%llx, span_set_Strip 0x%llx, span_set_Row 0x%llx "
572 		    "data width 0x%llx span offset 0x%llx\n", (unsigned long long)strip,
573 		    (unsigned long long)span_set_Strip,
574 		    (unsigned long long)span_set_Row,
575 		    (unsigned long long)span_set->span_row_data_width, (unsigned long long)span_offset);
576 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : For strip 0x%llx row is 0x%llx\n", (unsigned long long)strip,
577 		    (unsigned long long)span_set->data_row_start +
578 		    (unsigned long long)span_set_Row + (span_offset - 1));
579 		return (span_set->data_row_start + span_set_Row + (span_offset - 1));
580 	}
581 	return -1LLU;
582 }
583 
584 
585 /*
586  *
587  * This routine calculates the Start Strip for given row using spanset.
588  *
589  * Inputs:	HBA instance
590  * ld:		Logical drive number
591  * row:		Row number
592  * map:		LD map
593  *
594  * Outputs :	Strip - Start strip associated with row
595  */
596 
597 static u_int64_t
598 get_strip_from_row(struct mrsas_softc *sc,
599     u_int32_t ld, u_int64_t row, MR_DRV_RAID_MAP_ALL * map)
600 {
601 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
602 	LD_SPAN_SET *span_set;
603 	MR_QUAD_ELEMENT *quad;
604 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
605 	u_int32_t span, info;
606 	u_int64_t strip;
607 
608 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
609 		span_set = &(ldSpanInfo[ld].span_set[info]);
610 
611 		if (span_set->span_row_data_width == 0)
612 			break;
613 		if (row > span_set->data_row_end)
614 			continue;
615 
616 		for (span = 0; span < raid->spanDepth; span++)
617 			if (map->raidMap.ldSpanMap[ld].spanBlock[span].
618 			    block_span_info.noElements >= info + 1) {
619 				quad = &map->raidMap.ldSpanMap[ld].
620 				    spanBlock[span].block_span_info.quad[info];
621 				if (quad->logStart <= row &&
622 				    row <= quad->logEnd &&
623 				    mega_mod64((row - quad->logStart),
624 				    quad->diff) == 0) {
625 					strip = mega_div64_32
626 					    (((row - span_set->data_row_start)
627 					    - quad->logStart),
628 					    quad->diff);
629 					strip *= span_set->span_row_data_width;
630 					strip += span_set->data_strip_start;
631 					strip += span_set->strip_offset[span];
632 					return strip;
633 				}
634 			}
635 	}
636 	mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug - get_strip_from_row: returns invalid "
637 	    "strip for ld=%x, row=%lx\n", ld, (long unsigned int)row);
638 	return -1;
639 }
640 
641 /*
642  * *****************************************************************************
643  *
644  *
645  * This routine calculates the Physical Arm for given strip using spanset.
646  *
647  * Inputs :	HBA instance
648  * 			Logical drive number
649  * 			Strip
650  * 			LD map
651  *
652  * Outputs :	Phys Arm - Phys Arm associated with strip
653  */
654 
655 static u_int32_t
656 get_arm_from_strip(struct mrsas_softc *sc,
657     u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
658 {
659 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
660 	LD_SPAN_SET *span_set;
661 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
662 	u_int32_t info, strip_offset, span, span_offset;
663 
664 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
665 		span_set = &(ldSpanInfo[ld].span_set[info]);
666 
667 		if (span_set->span_row_data_width == 0)
668 			break;
669 		if (strip > span_set->data_strip_end)
670 			continue;
671 
672 		strip_offset = (u_int32_t)mega_mod64
673 		    ((strip - span_set->data_strip_start),
674 		    span_set->span_row_data_width);
675 
676 		for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
677 			if (map->raidMap.ldSpanMap[ld].spanBlock[span].
678 			    block_span_info.noElements >= info + 1) {
679 				if (strip_offset >= span_set->strip_offset[span])
680 					span_offset = span_set->strip_offset[span];
681 				else
682 					break;
683 			}
684 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO PRL11: get_arm_from_strip: "
685 		    "for ld=0x%x strip=0x%lx arm is  0x%x\n", ld,
686 		    (long unsigned int)strip, (strip_offset - span_offset));
687 		return (strip_offset - span_offset);
688 	}
689 
690 	mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: - get_arm_from_strip: returns invalid arm"
691 	    " for ld=%x strip=%lx\n", ld, (long unsigned int)strip);
692 
693 	return -1;
694 }
695 
696 
697 /* This Function will return Phys arm */
698 u_int8_t
699 get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span, u_int64_t stripe,
700     MR_DRV_RAID_MAP_ALL * map)
701 {
702 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
703 
704 	/* Need to check correct default value */
705 	u_int32_t arm = 0;
706 
707 	switch (raid->level) {
708 	case 0:
709 	case 5:
710 	case 6:
711 		arm = mega_mod64(stripe, SPAN_ROW_SIZE(map, ld, span));
712 		break;
713 	case 1:
714 		/* start with logical arm */
715 		arm = get_arm_from_strip(sc, ld, stripe, map);
716 		arm *= 2;
717 		break;
718 	}
719 
720 	return arm;
721 }
722 
723 /*
724  *
725  * This routine calculates the arm, span and block for the specified stripe and
726  * reference in stripe using spanset
727  *
728  * Inputs :
729  * sc - HBA instance
730  * ld - Logical drive number
731  * stripRow: Stripe number
732  * stripRef: Reference in stripe
733  *
734  * Outputs :	span - Span number block - Absolute Block
735  * number in the physical disk
736  */
737 static u_int8_t
738 mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld, u_int64_t stripRow,
739     u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
740     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
741 {
742 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
743 	u_int32_t pd, arRef;
744 	u_int8_t physArm, span;
745 	u_int64_t row;
746 	u_int8_t retval = TRUE;
747 	u_int64_t *pdBlock = &io_info->pdBlock;
748 	u_int16_t *pDevHandle = &io_info->devHandle;
749 	u_int32_t logArm, rowMod, armQ, arm;
750 	u_int8_t do_invader = 0;
751 
752 	if ((sc->device_id == MRSAS_INVADER) ||
753 	    (sc->device_id == MRSAS_FURY) ||
754 	    (sc->device_id == MRSAS_INTRUDER) ||
755 	    (sc->device_id == MRSAS_INTRUDER_24))
756 		do_invader = 1;
757 
758 	/* Get row and span from io_info for Uneven Span IO. */
759 	row = io_info->start_row;
760 	span = io_info->start_span;
761 
762 
763 	if (raid->level == 6) {
764 		logArm = get_arm_from_strip(sc, ld, stripRow, map);
765 		rowMod = mega_mod64(row, SPAN_ROW_SIZE(map, ld, span));
766 		armQ = SPAN_ROW_SIZE(map, ld, span) - 1 - rowMod;
767 		arm = armQ + 1 + logArm;
768 		if (arm >= SPAN_ROW_SIZE(map, ld, span))
769 			arm -= SPAN_ROW_SIZE(map, ld, span);
770 		physArm = (u_int8_t)arm;
771 	} else
772 		/* Calculate the arm */
773 		physArm = get_arm(sc, ld, span, stripRow, map);
774 
775 
776 	arRef = MR_LdSpanArrayGet(ld, span, map);
777 	pd = MR_ArPdGet(arRef, physArm, map);
778 
779 	if (pd != MR_PD_INVALID)
780 		*pDevHandle = MR_PdDevHandleGet(pd, map);
781 	else {
782 		*pDevHandle = MR_PD_INVALID;
783 		if ((raid->level >= 5) && ((!do_invader) || (do_invader &&
784 		    raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
785 			pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
786 		else if (raid->level == 1) {
787 			pd = MR_ArPdGet(arRef, physArm + 1, map);
788 			if (pd != MR_PD_INVALID)
789 				*pDevHandle = MR_PdDevHandleGet(pd, map);
790 		}
791 	}
792 
793 	*pdBlock += stripRef + MR_LdSpanPtrGet(ld, span, map)->startBlk;
794 	pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
795 	io_info->span_arm = pRAID_Context->spanArm;
796 	return retval;
797 }
798 
799 /*
800  * MR_BuildRaidContext:	Set up Fast path RAID context
801  *
802  * This function will initiate command processing.  The start/end row and strip
803  * information is calculated then the lock is acquired. This function will
804  * return 0 if region lock was acquired OR return num strips.
805  */
806 u_int8_t
807 MR_BuildRaidContext(struct mrsas_softc *sc, struct IO_REQUEST_INFO *io_info,
808     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
809 {
810 	MR_LD_RAID *raid;
811 	u_int32_t ld, stripSize, stripe_mask;
812 	u_int64_t endLba, endStrip, endRow, start_row, start_strip;
813 	REGION_KEY regStart;
814 	REGION_LEN regSize;
815 	u_int8_t num_strips, numRows;
816 	u_int16_t ref_in_start_stripe, ref_in_end_stripe;
817 	u_int64_t ldStartBlock;
818 	u_int32_t numBlocks, ldTgtId;
819 	u_int8_t isRead, stripIdx;
820 	u_int8_t retval = 0;
821 	u_int8_t startlba_span = SPAN_INVALID;
822 	u_int64_t *pdBlock = &io_info->pdBlock;
823 	int error_code = 0;
824 
825 	ldStartBlock = io_info->ldStartBlock;
826 	numBlocks = io_info->numBlocks;
827 	ldTgtId = io_info->ldTgtId;
828 	isRead = io_info->isRead;
829 
830 	io_info->IoforUnevenSpan = 0;
831 	io_info->start_span = SPAN_INVALID;
832 
833 	ld = MR_TargetIdToLdGet(ldTgtId, map);
834 	raid = MR_LdRaidGet(ld, map);
835 
836 	if (raid->rowDataSize == 0) {
837 		if (MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize == 0)
838 			return FALSE;
839 		else if (sc->UnevenSpanSupport) {
840 			io_info->IoforUnevenSpan = 1;
841 		} else {
842 			mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: raid->rowDataSize is 0, but has SPAN[0] rowDataSize = 0x%0x,"
843 			    " but there is _NO_ UnevenSpanSupport\n",
844 			    MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize);
845 			return FALSE;
846 		}
847 	}
848 	stripSize = 1 << raid->stripeShift;
849 	stripe_mask = stripSize - 1;
850 	/*
851 	 * calculate starting row and stripe, and number of strips and rows
852 	 */
853 	start_strip = ldStartBlock >> raid->stripeShift;
854 	ref_in_start_stripe = (u_int16_t)(ldStartBlock & stripe_mask);
855 	endLba = ldStartBlock + numBlocks - 1;
856 	ref_in_end_stripe = (u_int16_t)(endLba & stripe_mask);
857 	endStrip = endLba >> raid->stripeShift;
858 	num_strips = (u_int8_t)(endStrip - start_strip + 1);	/* End strip */
859 	if (io_info->IoforUnevenSpan) {
860 		start_row = get_row_from_strip(sc, ld, start_strip, map);
861 		endRow = get_row_from_strip(sc, ld, endStrip, map);
862 		if (raid->spanDepth == 1) {
863 			startlba_span = 0;
864 			*pdBlock = start_row << raid->stripeShift;
865 		} else {
866 			startlba_span = (u_int8_t)mr_spanset_get_span_block(sc, ld, start_row,
867 			    pdBlock, map, &error_code);
868 			if (error_code == 1) {
869 				mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d. Send IO w/o region lock.\n",
870 				    __func__, __LINE__);
871 				return FALSE;
872 			}
873 		}
874 		if (startlba_span == SPAN_INVALID) {
875 			mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d for row 0x%llx,"
876 			    "start strip %llx endSrip %llx\n", __func__,
877 			    __LINE__, (unsigned long long)start_row,
878 			    (unsigned long long)start_strip,
879 			    (unsigned long long)endStrip);
880 			return FALSE;
881 		}
882 		io_info->start_span = startlba_span;
883 		io_info->start_row = start_row;
884 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: Check Span number from %s %d for row 0x%llx, "
885 		    " start strip 0x%llx endSrip 0x%llx span 0x%x\n",
886 		    __func__, __LINE__, (unsigned long long)start_row,
887 		    (unsigned long long)start_strip,
888 		    (unsigned long long)endStrip, startlba_span);
889 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : 1. start_row 0x%llx endRow 0x%llx Start span 0x%x\n",
890 		    (unsigned long long)start_row, (unsigned long long)endRow, startlba_span);
891 	} else {
892 		start_row = mega_div64_32(start_strip, raid->rowDataSize);
893 		endRow = mega_div64_32(endStrip, raid->rowDataSize);
894 	}
895 
896 	numRows = (u_int8_t)(endRow - start_row + 1);	/* get the row count */
897 
898 	/*
899 	 * Calculate region info.  (Assume region at start of first row, and
900 	 * assume this IO needs the full row - will adjust if not true.)
901 	 */
902 	regStart = start_row << raid->stripeShift;
903 	regSize = stripSize;
904 
905 	/* Check if we can send this I/O via FastPath */
906 	if (raid->capability.fpCapable) {
907 		if (isRead)
908 			io_info->fpOkForIo = (raid->capability.fpReadCapable &&
909 			    ((num_strips == 1) ||
910 			    raid->capability.fpReadAcrossStripe));
911 		else
912 			io_info->fpOkForIo = (raid->capability.fpWriteCapable &&
913 			    ((num_strips == 1) ||
914 			    raid->capability.fpWriteAcrossStripe));
915 	} else
916 		io_info->fpOkForIo = FALSE;
917 
918 	if (numRows == 1) {
919 		if (num_strips == 1) {
920 			regStart += ref_in_start_stripe;
921 			regSize = numBlocks;
922 		}
923 	} else if (io_info->IoforUnevenSpan == 0) {
924 		/*
925 		 * For Even span region lock optimization. If the start strip
926 		 * is the last in the start row
927 		 */
928 		if (start_strip == (start_row + 1) * raid->rowDataSize - 1) {
929 			regStart += ref_in_start_stripe;
930 			/*
931 			 * initialize count to sectors from startRef to end
932 			 * of strip
933 			 */
934 			regSize = stripSize - ref_in_start_stripe;
935 		}
936 		/* add complete rows in the middle of the transfer */
937 		if (numRows > 2)
938 			regSize += (numRows - 2) << raid->stripeShift;
939 
940 		/* if IO ends within first strip of last row */
941 		if (endStrip == endRow * raid->rowDataSize)
942 			regSize += ref_in_end_stripe + 1;
943 		else
944 			regSize += stripSize;
945 	} else {
946 		if (start_strip == (get_strip_from_row(sc, ld, start_row, map) +
947 		    SPAN_ROW_DATA_SIZE(map, ld, startlba_span) - 1)) {
948 			regStart += ref_in_start_stripe;
949 			/*
950 			 * initialize count to sectors from startRef to end
951 			 * of strip
952 			 */
953 			regSize = stripSize - ref_in_start_stripe;
954 		}
955 		/* add complete rows in the middle of the transfer */
956 		if (numRows > 2)
957 			regSize += (numRows - 2) << raid->stripeShift;
958 
959 		/* if IO ends within first strip of last row */
960 		if (endStrip == get_strip_from_row(sc, ld, endRow, map))
961 			regSize += ref_in_end_stripe + 1;
962 		else
963 			regSize += stripSize;
964 	}
965 	pRAID_Context->timeoutValue = map->raidMap.fpPdIoTimeoutSec;
966 	if ((sc->device_id == MRSAS_INVADER) ||
967 	    (sc->device_id == MRSAS_FURY) ||
968 	    (sc->device_id == MRSAS_INTRUDER) ||
969 	    (sc->device_id == MRSAS_INTRUDER_24))
970 		pRAID_Context->regLockFlags = (isRead) ? raid->regTypeReqOnRead : raid->regTypeReqOnWrite;
971 	else
972 		pRAID_Context->regLockFlags = (isRead) ? REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite;
973 	pRAID_Context->VirtualDiskTgtId = raid->targetId;
974 	pRAID_Context->regLockRowLBA = regStart;
975 	pRAID_Context->regLockLength = regSize;
976 	pRAID_Context->configSeqNum = raid->seqNum;
977 
978 	/*
979 	 * Get Phy Params only if FP capable, or else leave it to MR firmware
980 	 * to do the calculation.
981 	 */
982 	if (io_info->fpOkForIo) {
983 		retval = io_info->IoforUnevenSpan ?
984 		    mr_spanset_get_phy_params(sc, ld, start_strip,
985 		    ref_in_start_stripe, io_info, pRAID_Context, map) :
986 		    MR_GetPhyParams(sc, ld, start_strip,
987 		    ref_in_start_stripe, io_info, pRAID_Context, map);
988 		/* If IO on an invalid Pd, then FP is not possible */
989 		if (io_info->devHandle == MR_PD_INVALID)
990 			io_info->fpOkForIo = FALSE;
991 		return retval;
992 	} else if (isRead) {
993 		for (stripIdx = 0; stripIdx < num_strips; stripIdx++) {
994 			retval = io_info->IoforUnevenSpan ?
995 			    mr_spanset_get_phy_params(sc, ld, start_strip + stripIdx,
996 			    ref_in_start_stripe, io_info, pRAID_Context, map) :
997 			    MR_GetPhyParams(sc, ld, start_strip + stripIdx,
998 			    ref_in_start_stripe, io_info, pRAID_Context, map);
999 			if (!retval)
1000 				return TRUE;
1001 		}
1002 	}
1003 #if SPAN_DEBUG
1004 	/* Just for testing what arm we get for strip. */
1005 	get_arm_from_strip(sc, ld, start_strip, map);
1006 #endif
1007 	return TRUE;
1008 }
1009 
1010 /*
1011  *
1012  * This routine pepare spanset info from Valid Raid map and store it into local
1013  * copy of ldSpanInfo per instance data structure.
1014  *
1015  * Inputs :	LD map
1016  * 			ldSpanInfo per HBA instance
1017  *
1018  */
1019 void
1020 mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
1021 {
1022 	u_int8_t span, count;
1023 	u_int32_t element, span_row_width;
1024 	u_int64_t span_row;
1025 	MR_LD_RAID *raid;
1026 	LD_SPAN_SET *span_set, *span_set_prev;
1027 	MR_QUAD_ELEMENT *quad;
1028 	int ldCount;
1029 	u_int16_t ld;
1030 
1031 	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
1032 		ld = MR_TargetIdToLdGet(ldCount, map);
1033 		if (ld >= MAX_LOGICAL_DRIVES)
1034 			continue;
1035 		raid = MR_LdRaidGet(ld, map);
1036 		for (element = 0; element < MAX_QUAD_DEPTH; element++) {
1037 			for (span = 0; span < raid->spanDepth; span++) {
1038 				if (map->raidMap.ldSpanMap[ld].spanBlock[span].
1039 				    block_span_info.noElements < element + 1)
1040 					continue;
1041 				/* TO-DO */
1042 				span_set = &(ldSpanInfo[ld].span_set[element]);
1043 				quad = &map->raidMap.ldSpanMap[ld].
1044 				    spanBlock[span].block_span_info.quad[element];
1045 
1046 				span_set->diff = quad->diff;
1047 
1048 				for (count = 0, span_row_width = 0;
1049 				    count < raid->spanDepth; count++) {
1050 					if (map->raidMap.ldSpanMap[ld].spanBlock[count].
1051 					    block_span_info.noElements >= element + 1) {
1052 						span_set->strip_offset[count] = span_row_width;
1053 						span_row_width +=
1054 						    MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize;
1055 #if SPAN_DEBUG
1056 						printf("AVAGO Debug span %x rowDataSize %x\n", count,
1057 						    MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize);
1058 #endif
1059 					}
1060 				}
1061 
1062 				span_set->span_row_data_width = span_row_width;
1063 				span_row = mega_div64_32(((quad->logEnd -
1064 				    quad->logStart) + quad->diff), quad->diff);
1065 
1066 				if (element == 0) {
1067 					span_set->log_start_lba = 0;
1068 					span_set->log_end_lba =
1069 					    ((span_row << raid->stripeShift) * span_row_width) - 1;
1070 
1071 					span_set->span_row_start = 0;
1072 					span_set->span_row_end = span_row - 1;
1073 
1074 					span_set->data_strip_start = 0;
1075 					span_set->data_strip_end = (span_row * span_row_width) - 1;
1076 
1077 					span_set->data_row_start = 0;
1078 					span_set->data_row_end = (span_row * quad->diff) - 1;
1079 				} else {
1080 					span_set_prev = &(ldSpanInfo[ld].span_set[element - 1]);
1081 					span_set->log_start_lba = span_set_prev->log_end_lba + 1;
1082 					span_set->log_end_lba = span_set->log_start_lba +
1083 					    ((span_row << raid->stripeShift) * span_row_width) - 1;
1084 
1085 					span_set->span_row_start = span_set_prev->span_row_end + 1;
1086 					span_set->span_row_end =
1087 					    span_set->span_row_start + span_row - 1;
1088 
1089 					span_set->data_strip_start =
1090 					    span_set_prev->data_strip_end + 1;
1091 					span_set->data_strip_end = span_set->data_strip_start +
1092 					    (span_row * span_row_width) - 1;
1093 
1094 					span_set->data_row_start = span_set_prev->data_row_end + 1;
1095 					span_set->data_row_end = span_set->data_row_start +
1096 					    (span_row * quad->diff) - 1;
1097 				}
1098 				break;
1099 			}
1100 			if (span == raid->spanDepth)
1101 				break;	/* no quads remain */
1102 		}
1103 	}
1104 #if SPAN_DEBUG
1105 	getSpanInfo(map, ldSpanInfo);	/* to get span set info */
1106 #endif
1107 }
1108 
1109 /*
1110  * mrsas_update_load_balance_params:	Update load balance parmas
1111  * Inputs:
1112  * sc - driver softc instance
1113  * drv_map - driver RAID map
1114  * lbInfo - Load balance info
1115  *
1116  * This function updates the load balance parameters for the LD config of a two
1117  * drive optimal RAID-1.
1118  */
1119 void
1120 mrsas_update_load_balance_params(struct mrsas_softc *sc,
1121     MR_DRV_RAID_MAP_ALL * drv_map, PLD_LOAD_BALANCE_INFO lbInfo)
1122 {
1123 	int ldCount;
1124 	u_int16_t ld;
1125 	MR_LD_RAID *raid;
1126 
1127 	if (sc->lb_pending_cmds > 128 || sc->lb_pending_cmds < 1)
1128 		sc->lb_pending_cmds = LB_PENDING_CMDS_DEFAULT;
1129 
1130 	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) {
1131 		ld = MR_TargetIdToLdGet(ldCount, drv_map);
1132 		if (ld >= MAX_LOGICAL_DRIVES_EXT) {
1133 			lbInfo[ldCount].loadBalanceFlag = 0;
1134 			continue;
1135 		}
1136 		raid = MR_LdRaidGet(ld, drv_map);
1137 		if ((raid->level != 1) ||
1138 		    (raid->ldState != MR_LD_STATE_OPTIMAL)) {
1139 			lbInfo[ldCount].loadBalanceFlag = 0;
1140 			continue;
1141 		}
1142 		lbInfo[ldCount].loadBalanceFlag = 1;
1143 	}
1144 }
1145 
1146 
1147 /*
1148  * mrsas_set_pd_lba:	Sets PD LBA
1149  * input:				io_request pointer
1150  * 						CDB length
1151  * 						io_info pointer
1152  * 						Pointer to CCB
1153  * 						Local RAID map pointer
1154  * 						Start block of IO Block Size
1155  *
1156  * Used to set the PD logical block address in CDB for FP IOs.
1157  */
1158 void
1159 mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request, u_int8_t cdb_len,
1160     struct IO_REQUEST_INFO *io_info, union ccb *ccb,
1161     MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
1162     u_int32_t ld_block_size)
1163 {
1164 	MR_LD_RAID *raid;
1165 	u_int32_t ld;
1166 	u_int64_t start_blk = io_info->pdBlock;
1167 	u_int8_t *cdb = io_request->CDB.CDB32;
1168 	u_int32_t num_blocks = io_info->numBlocks;
1169 	u_int8_t opcode = 0, flagvals = 0, groupnum = 0, control = 0;
1170 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
1171 
1172 	/* Check if T10 PI (DIF) is enabled for this LD */
1173 	ld = MR_TargetIdToLdGet(io_info->ldTgtId, local_map_ptr);
1174 	raid = MR_LdRaidGet(ld, local_map_ptr);
1175 	if (raid->capability.ldPiMode == MR_PROT_INFO_TYPE_CONTROLLER) {
1176 		memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1177 		cdb[0] = MRSAS_SCSI_VARIABLE_LENGTH_CMD;
1178 		cdb[7] = MRSAS_SCSI_ADDL_CDB_LEN;
1179 
1180 		if (ccb_h->flags == CAM_DIR_OUT)
1181 			cdb[9] = MRSAS_SCSI_SERVICE_ACTION_READ32;
1182 		else
1183 			cdb[9] = MRSAS_SCSI_SERVICE_ACTION_WRITE32;
1184 		cdb[10] = MRSAS_RD_WR_PROTECT_CHECK_ALL;
1185 
1186 		/* LBA */
1187 		cdb[12] = (u_int8_t)((start_blk >> 56) & 0xff);
1188 		cdb[13] = (u_int8_t)((start_blk >> 48) & 0xff);
1189 		cdb[14] = (u_int8_t)((start_blk >> 40) & 0xff);
1190 		cdb[15] = (u_int8_t)((start_blk >> 32) & 0xff);
1191 		cdb[16] = (u_int8_t)((start_blk >> 24) & 0xff);
1192 		cdb[17] = (u_int8_t)((start_blk >> 16) & 0xff);
1193 		cdb[18] = (u_int8_t)((start_blk >> 8) & 0xff);
1194 		cdb[19] = (u_int8_t)(start_blk & 0xff);
1195 
1196 		/* Logical block reference tag */
1197 		io_request->CDB.EEDP32.PrimaryReferenceTag = swap32(ref_tag);
1198 		io_request->CDB.EEDP32.PrimaryApplicationTagMask = 0xffff;
1199 		io_request->IoFlags = 32;	/* Specify 32-byte cdb */
1200 
1201 		/* Transfer length */
1202 		cdb[28] = (u_int8_t)((num_blocks >> 24) & 0xff);
1203 		cdb[29] = (u_int8_t)((num_blocks >> 16) & 0xff);
1204 		cdb[30] = (u_int8_t)((num_blocks >> 8) & 0xff);
1205 		cdb[31] = (u_int8_t)(num_blocks & 0xff);
1206 
1207 		/* set SCSI IO EEDP Flags */
1208 		if (ccb_h->flags == CAM_DIR_OUT) {
1209 			io_request->EEDPFlags =
1210 			    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1211 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
1212 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP |
1213 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG |
1214 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD;
1215 		} else {
1216 			io_request->EEDPFlags =
1217 			    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1218 			    MPI2_SCSIIO_EEDPFLAGS_INSERT_OP;
1219 		}
1220 		io_request->Control |= (0x4 << 26);
1221 		io_request->EEDPBlockSize = ld_block_size;
1222 	} else {
1223 		/* Some drives don't support 16/12 byte CDB's, convert to 10 */
1224 		if (((cdb_len == 12) || (cdb_len == 16)) &&
1225 		    (start_blk <= 0xffffffff)) {
1226 			if (cdb_len == 16) {
1227 				opcode = cdb[0] == READ_16 ? READ_10 : WRITE_10;
1228 				flagvals = cdb[1];
1229 				groupnum = cdb[14];
1230 				control = cdb[15];
1231 			} else {
1232 				opcode = cdb[0] == READ_12 ? READ_10 : WRITE_10;
1233 				flagvals = cdb[1];
1234 				groupnum = cdb[10];
1235 				control = cdb[11];
1236 			}
1237 
1238 			memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1239 
1240 			cdb[0] = opcode;
1241 			cdb[1] = flagvals;
1242 			cdb[6] = groupnum;
1243 			cdb[9] = control;
1244 
1245 			/* Transfer length */
1246 			cdb[8] = (u_int8_t)(num_blocks & 0xff);
1247 			cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
1248 
1249 			io_request->IoFlags = 10;	/* Specify 10-byte cdb */
1250 			cdb_len = 10;
1251 		} else if ((cdb_len < 16) && (start_blk > 0xffffffff)) {
1252 			/* Convert to 16 byte CDB for large LBA's */
1253 			switch (cdb_len) {
1254 			case 6:
1255 				opcode = cdb[0] == READ_6 ? READ_16 : WRITE_16;
1256 				control = cdb[5];
1257 				break;
1258 			case 10:
1259 				opcode = cdb[0] == READ_10 ? READ_16 : WRITE_16;
1260 				flagvals = cdb[1];
1261 				groupnum = cdb[6];
1262 				control = cdb[9];
1263 				break;
1264 			case 12:
1265 				opcode = cdb[0] == READ_12 ? READ_16 : WRITE_16;
1266 				flagvals = cdb[1];
1267 				groupnum = cdb[10];
1268 				control = cdb[11];
1269 				break;
1270 			}
1271 
1272 			memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1273 
1274 			cdb[0] = opcode;
1275 			cdb[1] = flagvals;
1276 			cdb[14] = groupnum;
1277 			cdb[15] = control;
1278 
1279 			/* Transfer length */
1280 			cdb[13] = (u_int8_t)(num_blocks & 0xff);
1281 			cdb[12] = (u_int8_t)((num_blocks >> 8) & 0xff);
1282 			cdb[11] = (u_int8_t)((num_blocks >> 16) & 0xff);
1283 			cdb[10] = (u_int8_t)((num_blocks >> 24) & 0xff);
1284 
1285 			io_request->IoFlags = 16;	/* Specify 16-byte cdb */
1286 			cdb_len = 16;
1287 		} else if ((cdb_len == 6) && (start_blk > 0x1fffff)) {
1288 			/* convert to 10 byte CDB */
1289 			opcode = cdb[0] == READ_6 ? READ_10 : WRITE_10;
1290 			control = cdb[5];
1291 
1292 			memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1293 			cdb[0] = opcode;
1294 			cdb[9] = control;
1295 
1296 			/* Set transfer length */
1297 			cdb[8] = (u_int8_t)(num_blocks & 0xff);
1298 			cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
1299 
1300 			/* Specify 10-byte cdb */
1301 			cdb_len = 10;
1302 		}
1303 		/* Fall through normal case, just load LBA here */
1304 		u_int8_t val = cdb[1] & 0xE0;
1305 
1306 		switch (cdb_len) {
1307 		case 6:
1308 			cdb[3] = (u_int8_t)(start_blk & 0xff);
1309 			cdb[2] = (u_int8_t)((start_blk >> 8) & 0xff);
1310 			cdb[1] = val | ((u_int8_t)(start_blk >> 16) & 0x1f);
1311 			break;
1312 		case 10:
1313 			cdb[5] = (u_int8_t)(start_blk & 0xff);
1314 			cdb[4] = (u_int8_t)((start_blk >> 8) & 0xff);
1315 			cdb[3] = (u_int8_t)((start_blk >> 16) & 0xff);
1316 			cdb[2] = (u_int8_t)((start_blk >> 24) & 0xff);
1317 			break;
1318 		case 16:
1319 			cdb[9] = (u_int8_t)(start_blk & 0xff);
1320 			cdb[8] = (u_int8_t)((start_blk >> 8) & 0xff);
1321 			cdb[7] = (u_int8_t)((start_blk >> 16) & 0xff);
1322 			cdb[6] = (u_int8_t)((start_blk >> 24) & 0xff);
1323 			cdb[5] = (u_int8_t)((start_blk >> 32) & 0xff);
1324 			cdb[4] = (u_int8_t)((start_blk >> 40) & 0xff);
1325 			cdb[3] = (u_int8_t)((start_blk >> 48) & 0xff);
1326 			cdb[2] = (u_int8_t)((start_blk >> 56) & 0xff);
1327 			break;
1328 		}
1329 	}
1330 }
1331 
1332 /*
1333  * mrsas_get_best_arm_pd:	Determine the best spindle arm
1334  * Inputs:
1335  *    sc - HBA instance
1336  *    lbInfo - Load balance info
1337  *    io_info - IO request info
1338  *
1339  * This function determines and returns the best arm by looking at the
1340  * parameters of the last PD access.
1341  */
1342 u_int8_t
1343 mrsas_get_best_arm_pd(struct mrsas_softc *sc,
1344     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
1345 {
1346 	MR_LD_RAID *raid;
1347 	MR_DRV_RAID_MAP_ALL *drv_map;
1348 	u_int16_t pend0, pend1, ld;
1349 	u_int64_t diff0, diff1;
1350 	u_int8_t bestArm, pd0, pd1, span, arm;
1351 	u_int32_t arRef, span_row_size;
1352 
1353 	u_int64_t block = io_info->ldStartBlock;
1354 	u_int32_t count = io_info->numBlocks;
1355 
1356 	span = ((io_info->span_arm & RAID_CTX_SPANARM_SPAN_MASK)
1357 	    >> RAID_CTX_SPANARM_SPAN_SHIFT);
1358 	arm = (io_info->span_arm & RAID_CTX_SPANARM_ARM_MASK);
1359 
1360 	drv_map = sc->ld_drv_map[(sc->map_id & 1)];
1361 	ld = MR_TargetIdToLdGet(io_info->ldTgtId, drv_map);
1362 	raid = MR_LdRaidGet(ld, drv_map);
1363 	span_row_size = sc->UnevenSpanSupport ?
1364 	    SPAN_ROW_SIZE(drv_map, ld, span) : raid->rowSize;
1365 
1366 	arRef = MR_LdSpanArrayGet(ld, span, drv_map);
1367 	pd0 = MR_ArPdGet(arRef, arm, drv_map);
1368 	pd1 = MR_ArPdGet(arRef, (arm + 1) >= span_row_size ?
1369 	    (arm + 1 - span_row_size) : arm + 1, drv_map);
1370 
1371 	/* get the pending cmds for the data and mirror arms */
1372 	pend0 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd0]);
1373 	pend1 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd1]);
1374 
1375 	/* Determine the disk whose head is nearer to the req. block */
1376 	diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[pd0]);
1377 	diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[pd1]);
1378 	bestArm = (diff0 <= diff1 ? arm : arm ^ 1);
1379 
1380 	if ((bestArm == arm && pend0 > pend1 + sc->lb_pending_cmds) ||
1381 	    (bestArm != arm && pend1 > pend0 + sc->lb_pending_cmds))
1382 		bestArm ^= 1;
1383 
1384 	/* Update the last accessed block on the correct pd */
1385 	lbInfo->last_accessed_block[bestArm == arm ? pd0 : pd1] = block + count - 1;
1386 	io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | bestArm;
1387 	io_info->pd_after_lb = (bestArm == arm) ? pd0 : pd1;
1388 #if SPAN_DEBUG
1389 	if (arm != bestArm)
1390 		printf("AVAGO Debug R1 Load balance occur - span 0x%x arm 0x%x bestArm 0x%x "
1391 		    "io_info->span_arm 0x%x\n",
1392 		    span, arm, bestArm, io_info->span_arm);
1393 #endif
1394 
1395 	return io_info->pd_after_lb;
1396 }
1397 
1398 /*
1399  * mrsas_get_updated_dev_handle:	Get the update dev handle
1400  * Inputs:
1401  *	sc - Adapter instance soft state
1402  *	lbInfo - Load balance info
1403  *	io_info - io_info pointer
1404  *
1405  * This function determines and returns the updated dev handle.
1406  */
1407 u_int16_t
1408 mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
1409     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
1410 {
1411 	u_int8_t arm_pd;
1412 	u_int16_t devHandle;
1413 	MR_DRV_RAID_MAP_ALL *drv_map;
1414 
1415 	drv_map = sc->ld_drv_map[(sc->map_id & 1)];
1416 
1417 	/* get best new arm */
1418 	arm_pd = mrsas_get_best_arm_pd(sc, lbInfo, io_info);
1419 	devHandle = MR_PdDevHandleGet(arm_pd, drv_map);
1420 	mrsas_atomic_inc(&lbInfo->scsi_pending_cmds[arm_pd]);
1421 
1422 	return devHandle;
1423 }
1424 
1425 /*
1426  * MR_GetPhyParams:	Calculates arm, span, and block
1427  * Inputs:			Adapter soft state
1428  * 					Logical drive number (LD)
1429  * 					Stripe number(stripRow)
1430  * 					Reference in stripe (stripRef)
1431  *
1432  * Outputs:			Absolute Block number in the physical disk
1433  *
1434  * This routine calculates the arm, span and block for the specified stripe and
1435  * reference in stripe.
1436  */
1437 u_int8_t
1438 MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
1439     u_int64_t stripRow,
1440     u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
1441     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
1442 {
1443 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
1444 	u_int32_t pd, arRef;
1445 	u_int8_t physArm, span;
1446 	u_int64_t row;
1447 	u_int8_t retval = TRUE;
1448 	int error_code = 0;
1449 	u_int64_t *pdBlock = &io_info->pdBlock;
1450 	u_int16_t *pDevHandle = &io_info->devHandle;
1451 	u_int32_t rowMod, armQ, arm, logArm;
1452 	u_int8_t do_invader = 0;
1453 
1454 	if ((sc->device_id == MRSAS_INVADER) ||
1455 	    (sc->device_id == MRSAS_FURY) ||
1456 	    (sc->device_id == MRSAS_INTRUDER) ||
1457 	    (sc->device_id == MRSAS_INTRUDER_24))
1458 		do_invader = 1;
1459 
1460 	row = mega_div64_32(stripRow, raid->rowDataSize);
1461 
1462 	if (raid->level == 6) {
1463 		/* logical arm within row */
1464 		logArm = mega_mod64(stripRow, raid->rowDataSize);
1465 		if (raid->rowSize == 0)
1466 			return FALSE;
1467 		rowMod = mega_mod64(row, raid->rowSize);	/* get logical row mod */
1468 		armQ = raid->rowSize - 1 - rowMod;	/* index of Q drive */
1469 		arm = armQ + 1 + logArm;/* data always logically follows Q */
1470 		if (arm >= raid->rowSize)	/* handle wrap condition */
1471 			arm -= raid->rowSize;
1472 		physArm = (u_int8_t)arm;
1473 	} else {
1474 		if (raid->modFactor == 0)
1475 			return FALSE;
1476 		physArm = MR_LdDataArmGet(ld, mega_mod64(stripRow, raid->modFactor), map);
1477 	}
1478 
1479 	if (raid->spanDepth == 1) {
1480 		span = 0;
1481 		*pdBlock = row << raid->stripeShift;
1482 	} else {
1483 		span = (u_int8_t)MR_GetSpanBlock(ld, row, pdBlock, map, &error_code);
1484 		if (error_code == 1)
1485 			return FALSE;
1486 	}
1487 
1488 	/* Get the array on which this span is present */
1489 	arRef = MR_LdSpanArrayGet(ld, span, map);
1490 
1491 	pd = MR_ArPdGet(arRef, physArm, map);	/* Get the Pd. */
1492 
1493 	if (pd != MR_PD_INVALID)
1494 		/* Get dev handle from Pd */
1495 		*pDevHandle = MR_PdDevHandleGet(pd, map);
1496 	else {
1497 		*pDevHandle = MR_PD_INVALID;	/* set dev handle as invalid. */
1498 		if ((raid->level >= 5) && ((!do_invader) || (do_invader &&
1499 		    raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
1500 			pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
1501 		else if (raid->level == 1) {
1502 			/* Get Alternate Pd. */
1503 			pd = MR_ArPdGet(arRef, physArm + 1, map);
1504 			if (pd != MR_PD_INVALID)
1505 				/* Get dev handle from Pd. */
1506 				*pDevHandle = MR_PdDevHandleGet(pd, map);
1507 		}
1508 	}
1509 
1510 	*pdBlock += stripRef + MR_LdSpanPtrGet(ld, span, map)->startBlk;
1511 	pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
1512 	io_info->span_arm = pRAID_Context->spanArm;
1513 	return retval;
1514 }
1515 
1516 /*
1517  * MR_GetSpanBlock:	Calculates span block
1518  * Inputs:			LD
1519  * 					row PD
1520  * 					span block
1521  * 					RAID map pointer
1522  *
1523  * Outputs:			Span number Error code
1524  *
1525  * This routine calculates the span from the span block info.
1526  */
1527 u_int32_t
1528 MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
1529     MR_DRV_RAID_MAP_ALL * map, int *div_error)
1530 {
1531 	MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map);
1532 	MR_QUAD_ELEMENT *quad;
1533 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
1534 	u_int32_t span, j;
1535 	u_int64_t blk, debugBlk;
1536 
1537 	for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) {
1538 		for (j = 0; j < pSpanBlock->block_span_info.noElements; j++) {
1539 			quad = &pSpanBlock->block_span_info.quad[j];
1540 			if (quad->diff == 0) {
1541 				*div_error = 1;
1542 				return span;
1543 			}
1544 			if (quad->logStart <= row && row <= quad->logEnd &&
1545 			    (mega_mod64(row - quad->logStart, quad->diff)) == 0) {
1546 				if (span_blk != NULL) {
1547 					blk = mega_div64_32((row - quad->logStart), quad->diff);
1548 					debugBlk = blk;
1549 					blk = (blk + quad->offsetInSpan) << raid->stripeShift;
1550 					*span_blk = blk;
1551 				}
1552 				return span;
1553 			}
1554 		}
1555 	}
1556 	return span;
1557 }
1558