xref: /freebsd/sys/dev/mrsas/mrsas_fp.c (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 /*
2  * Copyright (c) 2015, AVAGO Tech. All rights reserved. Author: Marian Choy
3  * Copyright (c) 2014, LSI Corp. All rights reserved. Author: Marian Choy
4  * Support: freebsdraid@avagotech.com
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are
8  * met:
9  *
10  * 1. Redistributions of source code must retain the above copyright notice,
11  * this list of conditions and the following disclaimer. 2. Redistributions
12  * in binary form must reproduce the above copyright notice, this list of
13  * conditions and the following disclaimer in the documentation and/or other
14  * materials provided with the distribution. 3. Neither the name of the
15  * <ORGANIZATION> nor the names of its contributors may be used to endorse or
16  * promote products derived from this software without specific prior written
17  * permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * The views and conclusions contained in the software and documentation are
32  * those of the authors and should not be interpreted as representing
33  * official policies,either expressed or implied, of the FreeBSD Project.
34  *
35  * Send feedback to: <megaraidfbsd@avagotech.com> Mail to: AVAGO TECHNOLOGIES, 1621
36  * Barber Lane, Milpitas, CA 95035 ATTN: MegaRaid FreeBSD
37  *
38  */
39 
40 #include <sys/cdefs.h>
41 #include <dev/mrsas/mrsas.h>
42 
43 #include <cam/cam.h>
44 #include <cam/cam_ccb.h>
45 #include <cam/cam_sim.h>
46 #include <cam/cam_xpt_sim.h>
47 #include <cam/cam_debug.h>
48 #include <cam/cam_periph.h>
49 #include <cam/cam_xpt_periph.h>
50 
51 /*
52  * Function prototypes
53  */
54 u_int8_t MR_ValidateMapInfo(struct mrsas_softc *sc);
55 u_int8_t
56 mrsas_get_best_arm_pd(struct mrsas_softc *sc,
57     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
58 u_int8_t
59 MR_BuildRaidContext(struct mrsas_softc *sc,
60     struct IO_REQUEST_INFO *io_info,
61     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
62 u_int8_t
63 MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
64     u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
65     RAID_CONTEXT * pRAID_Context,
66     MR_DRV_RAID_MAP_ALL * map);
67 u_int8_t MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL *map);
68 u_int32_t MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
69 u_int16_t MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
70 u_int16_t
71 mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
72     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
73 u_int32_t mega_mod64(u_int64_t dividend, u_int32_t divisor);
74 u_int32_t
75 MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
76     MR_DRV_RAID_MAP_ALL * map, int *div_error);
77 u_int64_t mega_div64_32(u_int64_t dividend, u_int32_t divisor);
78 void
79 mrsas_update_load_balance_params(struct mrsas_softc *sc,
80     MR_DRV_RAID_MAP_ALL * map, PLD_LOAD_BALANCE_INFO lbInfo);
81 void
82 mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request,
83     u_int8_t cdb_len, struct IO_REQUEST_INFO *io_info, union ccb *ccb,
84     MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
85     u_int32_t ld_block_size);
86 static u_int16_t
87 MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span,
88     MR_DRV_RAID_MAP_ALL * map);
89 static u_int16_t MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map);
90 static u_int16_t
91 MR_ArPdGet(u_int32_t ar, u_int32_t arm,
92     MR_DRV_RAID_MAP_ALL * map);
93 static MR_LD_SPAN *
94 MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span,
95     MR_DRV_RAID_MAP_ALL * map);
96 static u_int8_t
97 MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx,
98     MR_DRV_RAID_MAP_ALL * map);
99 static MR_SPAN_BLOCK_INFO *
100 MR_LdSpanInfoGet(u_int32_t ld,
101     MR_DRV_RAID_MAP_ALL * map);
102 MR_LD_RAID *MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
103 static int MR_PopulateDrvRaidMap(struct mrsas_softc *sc);
104 
105 /*
106  * Spanset related function prototypes Added for PRL11 configuration (Uneven
107  * span support)
108  */
109 void	mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo);
110 static u_int8_t
111 mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld,
112     u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
113     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
114 static u_int64_t
115 get_row_from_strip(struct mrsas_softc *sc, u_int32_t ld,
116     u_int64_t strip, MR_DRV_RAID_MAP_ALL * map);
117 static u_int32_t
118 mr_spanset_get_span_block(struct mrsas_softc *sc,
119     u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
120     MR_DRV_RAID_MAP_ALL * map, int *div_error);
121 static u_int8_t
122 get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span,
123     u_int64_t stripe, MR_DRV_RAID_MAP_ALL * map);
124 
125 /*
126  * Spanset related defines Added for PRL11 configuration(Uneven span support)
127  */
128 #define	SPAN_ROW_SIZE(map, ld, index_) MR_LdSpanPtrGet(ld, index_, map)->spanRowSize
129 #define	SPAN_ROW_DATA_SIZE(map_, ld, index_)	\
130 	MR_LdSpanPtrGet(ld, index_, map)->spanRowDataSize
131 #define	SPAN_INVALID	0xff
132 #define	SPAN_DEBUG		0
133 
134 /*
135  * Related Defines
136  */
137 
138 typedef u_int64_t REGION_KEY;
139 typedef u_int32_t REGION_LEN;
140 
141 #define	MR_LD_STATE_OPTIMAL		3
142 #define	FALSE					0
143 #define	TRUE					1
144 
145 #define	LB_PENDING_CMDS_DEFAULT 4
146 
147 /*
148  * Related Macros
149  */
150 
151 #define	ABS_DIFF(a,b)   ( ((a) > (b)) ? ((a) - (b)) : ((b) - (a)) )
152 
153 #define	swap32(x) \
154   ((unsigned int)( \
155     (((unsigned int)(x) & (unsigned int)0x000000ffUL) << 24) | \
156     (((unsigned int)(x) & (unsigned int)0x0000ff00UL) <<  8) | \
157     (((unsigned int)(x) & (unsigned int)0x00ff0000UL) >>  8) | \
158     (((unsigned int)(x) & (unsigned int)0xff000000UL) >> 24) ))
159 
160 /*
161  * In-line functions for mod and divide of 64-bit dividend and 32-bit
162  * divisor. Assumes a check for a divisor of zero is not possible.
163  *
164  * @param dividend:	Dividend
165  * @param divisor:	Divisor
166  * @return			remainder
167  */
168 
169 #define	mega_mod64(dividend, divisor) ({ \
170 int remainder; \
171 remainder = ((u_int64_t) (dividend)) % (u_int32_t) (divisor); \
172 remainder;})
173 
174 #define	mega_div64_32(dividend, divisor) ({ \
175 int quotient; \
176 quotient = ((u_int64_t) (dividend)) / (u_int32_t) (divisor); \
177 quotient;})
178 
179 /*
180  * Various RAID map access functions.  These functions access the various
181  * parts of the RAID map and returns the appropriate parameters.
182  */
183 
184 MR_LD_RAID *
185 MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
186 {
187 	return (&map->raidMap.ldSpanMap[ld].ldRaid);
188 }
189 
190 u_int16_t
191 MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
192 {
193 	return le16toh(map->raidMap.ldSpanMap[ld].ldRaid.targetId);
194 }
195 
196 static u_int16_t
197 MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
198 {
199 	return le16toh(map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef);
200 }
201 
202 static u_int8_t
203 MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx, MR_DRV_RAID_MAP_ALL * map)
204 {
205 	return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx];
206 }
207 
208 static u_int16_t
209 MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map)
210 {
211 	return map->raidMap.devHndlInfo[pd].curDevHdl;
212 }
213 
214 static u_int8_t MR_PdInterfaceTypeGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL *map)
215 {
216     return map->raidMap.devHndlInfo[pd].interfaceType;
217 }
218 
219 static u_int16_t
220 MR_ArPdGet(u_int32_t ar, u_int32_t arm, MR_DRV_RAID_MAP_ALL * map)
221 {
222 	return le16toh(map->raidMap.arMapInfo[ar].pd[arm]);
223 }
224 
225 static MR_LD_SPAN *
226 MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
227 {
228 	return &map->raidMap.ldSpanMap[ld].spanBlock[span].span;
229 }
230 
231 static MR_SPAN_BLOCK_INFO *
232 MR_LdSpanInfoGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
233 {
234 	return &map->raidMap.ldSpanMap[ld].spanBlock[0];
235 }
236 
237 u_int8_t
238 MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
239 {
240 	return map->raidMap.ldTgtIdToLd[ldTgtId];
241 }
242 
243 u_int32_t
244 MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
245 {
246 	MR_LD_RAID *raid;
247 	u_int32_t ld, ldBlockSize = MRSAS_SCSIBLOCKSIZE;
248 
249 	ld = MR_TargetIdToLdGet(ldTgtId, map);
250 
251 	/*
252 	 * Check if logical drive was removed.
253 	 */
254 	if (ld >= MAX_LOGICAL_DRIVES)
255 		return ldBlockSize;
256 
257 	raid = MR_LdRaidGet(ld, map);
258 	ldBlockSize = raid->logicalBlockLength;
259 	if (!ldBlockSize)
260 		ldBlockSize = MRSAS_SCSIBLOCKSIZE;
261 
262 	return ldBlockSize;
263 }
264 
265 /*
266  * This function will Populate Driver Map using Dynamic firmware raid map
267  */
268 static int
269 MR_PopulateDrvRaidMapVentura(struct mrsas_softc *sc)
270 {
271 	unsigned int i, j;
272 	u_int16_t ld_count;
273 
274 	MR_FW_RAID_MAP_DYNAMIC *fw_map_dyn;
275 	MR_RAID_MAP_DESC_TABLE *desc_table;
276 	MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
277 	MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
278 	void *raid_map_data = NULL;
279 
280 	fw_map_dyn = (MR_FW_RAID_MAP_DYNAMIC *) sc->raidmap_mem[(sc->map_id & 1)];
281 
282 	if (fw_map_dyn == NULL) {
283 		device_printf(sc->mrsas_dev,
284 		    "from %s %d map0  %p map1 %p map size %d \n", __func__, __LINE__,
285 		    sc->raidmap_mem[0], sc->raidmap_mem[1], sc->maxRaidMapSize);
286 		return 1;
287 	}
288 #if VD_EXT_DEBUG
289 	device_printf(sc->mrsas_dev,
290 	    " raidMapSize 0x%x, descTableOffset 0x%x, "
291 	    " descTableSize 0x%x, descTableNumElements 0x%x \n",
292 	    fw_map_dyn->raidMapSize, le32toh(fw_map_dyn->descTableOffset),
293 	    fw_map_dyn->descTableSize, fw_map_dyn->descTableNumElements);
294 #endif
295 	desc_table = (MR_RAID_MAP_DESC_TABLE *) ((char *)fw_map_dyn +
296 	    le32toh(fw_map_dyn->descTableOffset));
297 	if (desc_table != fw_map_dyn->raidMapDescTable) {
298 		device_printf(sc->mrsas_dev,
299 		    "offsets of desc table are not matching returning "
300 		    " FW raid map has been changed: desc %p original %p\n",
301 		    desc_table, fw_map_dyn->raidMapDescTable);
302 	}
303 	memset(drv_map, 0, sc->drv_map_sz);
304 	ld_count = le16toh(fw_map_dyn->ldCount);
305 	pDrvRaidMap->ldCount = htole16(ld_count);
306 	pDrvRaidMap->fpPdIoTimeoutSec = fw_map_dyn->fpPdIoTimeoutSec;
307 	pDrvRaidMap->totalSize = htole32(sizeof(MR_DRV_RAID_MAP_ALL));
308 	/* point to actual data starting point */
309 	raid_map_data = (char *)fw_map_dyn +
310 	    le32toh(fw_map_dyn->descTableOffset) +
311 	    le32toh(fw_map_dyn->descTableSize);
312 
313 	for (i = 0; i < le32toh(fw_map_dyn->descTableNumElements); ++i) {
314 		if (!desc_table) {
315 			device_printf(sc->mrsas_dev,
316 			    "desc table is null, coming out %p \n", desc_table);
317 			return 1;
318 		}
319 #if VD_EXT_DEBUG
320 		device_printf(sc->mrsas_dev, "raid_map_data %p \n", raid_map_data);
321 		device_printf(sc->mrsas_dev,
322 		    "desc table %p \n", desc_table);
323 		device_printf(sc->mrsas_dev,
324 		    "raidmap type %d, raidmapOffset 0x%x, "
325 		    " raid map number of elements 0%x, raidmapsize 0x%x\n",
326 		    le32toh(desc_table->raidMapDescType), desc_table->raidMapDescOffset,
327 		    le32toh(desc_table->raidMapDescElements), desc_table->raidMapDescBufferSize);
328 #endif
329 		switch (le32toh(desc_table->raidMapDescType)) {
330 		case RAID_MAP_DESC_TYPE_DEVHDL_INFO:
331 			fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo = (MR_DEV_HANDLE_INFO *)
332 			    ((char *)raid_map_data + le32toh(desc_table->raidMapDescOffset));
333 #if VD_EXT_DEBUG
334 			device_printf(sc->mrsas_dev,
335 			    "devHndlInfo address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo);
336 #endif
337 			memcpy(pDrvRaidMap->devHndlInfo, fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo,
338 			    sizeof(MR_DEV_HANDLE_INFO) * le32toh(desc_table->raidMapDescElements));
339 			break;
340 		case RAID_MAP_DESC_TYPE_TGTID_INFO:
341 			fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd = (u_int16_t *)
342 			    ((char *)raid_map_data +
343 			     le32toh(desc_table->raidMapDescOffset));
344 #if VD_EXT_DEBUG
345 			device_printf(sc->mrsas_dev,
346 			    "ldTgtIdToLd  address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd);
347 #endif
348 			for (j = 0; j < le32toh(desc_table->raidMapDescElements); j++) {
349 				pDrvRaidMap->ldTgtIdToLd[j] = fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd[j];
350 #if VD_EXT_DEBUG
351 				device_printf(sc->mrsas_dev,
352 				    " %d drv ldTgtIdToLd %d\n",	j, pDrvRaidMap->ldTgtIdToLd[j]);
353 #endif
354 			}
355 			break;
356 		case RAID_MAP_DESC_TYPE_ARRAY_INFO:
357 			fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo = (MR_ARRAY_INFO *) ((char *)raid_map_data +
358 			    le32toh(desc_table->raidMapDescOffset));
359 #if VD_EXT_DEBUG
360 			device_printf(sc->mrsas_dev,
361 			    "arMapInfo  address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo);
362 #endif
363 			memcpy(pDrvRaidMap->arMapInfo, fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo,
364 			    sizeof(MR_ARRAY_INFO) * le32toh(desc_table->raidMapDescElements));
365 			break;
366 		case RAID_MAP_DESC_TYPE_SPAN_INFO:
367 			fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap = (MR_LD_SPAN_MAP *) ((char *)raid_map_data +
368 			    le32toh(desc_table->raidMapDescOffset));
369 			memcpy(pDrvRaidMap->ldSpanMap, fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap,
370 			    sizeof(MR_LD_SPAN_MAP) *
371 			    le32toh(desc_table->raidMapDescElements));
372 #if VD_EXT_DEBUG
373 			device_printf(sc->mrsas_dev,
374 			    "ldSpanMap  address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap);
375 			device_printf(sc->mrsas_dev,
376 			    "MR_LD_SPAN_MAP size 0x%lx\n", sizeof(MR_LD_SPAN_MAP));
377 			for (j = 0; j < ld_count; j++) {
378 				printf("mrsas(%d) : fw_map_dyn->ldSpanMap[%d].ldRaid.targetId 0x%x "
379 				    "fw_map_dyn->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
380 				    j, j, fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.targetId, j,
381 				    fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.seqNum,
382 				    (u_int32_t)fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.rowSize);
383 				printf("mrsas(%d) : pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x "
384 				    "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
385 				    j, j, pDrvRaidMap->ldSpanMap[j].ldRaid.targetId, j,
386 				    pDrvRaidMap->ldSpanMap[j].ldRaid.seqNum,
387 				    (u_int32_t)pDrvRaidMap->ldSpanMap[j].ldRaid.rowSize);
388 				printf("mrsas : drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
389 				    drv_map, pDrvRaidMap, &fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid,
390 				    &pDrvRaidMap->ldSpanMap[j].ldRaid);
391 			}
392 #endif
393 			break;
394 		default:
395 			device_printf(sc->mrsas_dev,
396 			    "wrong number of desctableElements %d\n",
397 			    fw_map_dyn->descTableNumElements);
398 		}
399 		++desc_table;
400 	}
401 	return 0;
402 }
403 
404 /*
405  * This function will Populate Driver Map using firmware raid map
406  */
407 static int
408 MR_PopulateDrvRaidMap(struct mrsas_softc *sc)
409 {
410 	MR_FW_RAID_MAP_ALL *fw_map_old = NULL;
411 	MR_FW_RAID_MAP_EXT *fw_map_ext;
412 	MR_FW_RAID_MAP *pFwRaidMap = NULL;
413 	unsigned int i;
414 	u_int16_t ld_count;
415 
416 	MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
417 	MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
418 
419 	if (sc->maxRaidMapSize) {
420 		return MR_PopulateDrvRaidMapVentura(sc);
421 	} else if (sc->max256vdSupport) {
422 		fw_map_ext = (MR_FW_RAID_MAP_EXT *) sc->raidmap_mem[(sc->map_id & 1)];
423 		ld_count = (u_int16_t)le16toh(fw_map_ext->ldCount);
424 		if (ld_count > MAX_LOGICAL_DRIVES_EXT) {
425 			device_printf(sc->mrsas_dev,
426 			    "mrsas: LD count exposed in RAID map in not valid\n");
427 			return 1;
428 		}
429 #if VD_EXT_DEBUG
430 		for (i = 0; i < ld_count; i++) {
431 			printf("mrsas : Index 0x%x Target Id 0x%x Seq Num 0x%x Size 0/%lx\n",
432 			    i, fw_map_ext->ldSpanMap[i].ldRaid.targetId,
433 			    fw_map_ext->ldSpanMap[i].ldRaid.seqNum,
434 			    fw_map_ext->ldSpanMap[i].ldRaid.size);
435 		}
436 #endif
437 		memset(drv_map, 0, sc->drv_map_sz);
438 		pDrvRaidMap->ldCount = htole16(ld_count);
439 		pDrvRaidMap->fpPdIoTimeoutSec = fw_map_ext->fpPdIoTimeoutSec;
440 		for (i = 0; i < (MAX_LOGICAL_DRIVES_EXT); i++) {
441 			pDrvRaidMap->ldTgtIdToLd[i] = (u_int16_t)fw_map_ext->ldTgtIdToLd[i];
442 		}
443 		memcpy(pDrvRaidMap->ldSpanMap, fw_map_ext->ldSpanMap, sizeof(MR_LD_SPAN_MAP) * ld_count);
444 #if VD_EXT_DEBUG
445 		for (i = 0; i < ld_count; i++) {
446 			printf("mrsas(%d) : fw_map_ext->ldSpanMap[%d].ldRaid.targetId 0x%x "
447 			    "fw_map_ext->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
448 			    i, i, fw_map_ext->ldSpanMap[i].ldRaid.targetId, i,
449 			    fw_map_ext->ldSpanMap[i].ldRaid.seqNum,
450 			    (u_int32_t)fw_map_ext->ldSpanMap[i].ldRaid.rowSize);
451 			printf("mrsas(%d) : pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x"
452 			    "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i,
453 			    pDrvRaidMap->ldSpanMap[i].ldRaid.targetId, i,
454 			    pDrvRaidMap->ldSpanMap[i].ldRaid.seqNum,
455 			    (u_int32_t)pDrvRaidMap->ldSpanMap[i].ldRaid.rowSize);
456 			printf("mrsas : drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
457 			    drv_map, pDrvRaidMap, &fw_map_ext->ldSpanMap[i].ldRaid,
458 			    &pDrvRaidMap->ldSpanMap[i].ldRaid);
459 		}
460 #endif
461 		memcpy(pDrvRaidMap->arMapInfo, fw_map_ext->arMapInfo,
462 		    sizeof(MR_ARRAY_INFO) * MAX_API_ARRAYS_EXT);
463 		memcpy(pDrvRaidMap->devHndlInfo, fw_map_ext->devHndlInfo,
464 		    sizeof(MR_DEV_HANDLE_INFO) * MAX_RAIDMAP_PHYSICAL_DEVICES);
465 
466 		pDrvRaidMap->totalSize = htole32(sizeof(MR_FW_RAID_MAP_EXT));
467 	} else {
468 		fw_map_old = (MR_FW_RAID_MAP_ALL *) sc->raidmap_mem[(sc->map_id & 1)];
469 		pFwRaidMap = &fw_map_old->raidMap;
470 
471 #if VD_EXT_DEBUG
472 		for (i = 0; i < le32toh(pFwRaidMap->ldCount); i++) {
473 			device_printf(sc->mrsas_dev,
474 			    "Index 0x%x Target Id 0x%x Seq Num 0x%x Size 0/%lx\n", i,
475 			    fw_map_old->raidMap.ldSpanMap[i].ldRaid.targetId,
476 			    fw_map_old->raidMap.ldSpanMap[i].ldRaid.seqNum,
477 			    fw_map_old->raidMap.ldSpanMap[i].ldRaid.size);
478 		}
479 #endif
480 
481 		memset(drv_map, 0, sc->drv_map_sz);
482 		pDrvRaidMap->totalSize = pFwRaidMap->totalSize;
483 		pDrvRaidMap->ldCount = pFwRaidMap->ldCount;
484 		pDrvRaidMap->fpPdIoTimeoutSec =
485 		    pFwRaidMap->fpPdIoTimeoutSec;
486 
487 		for (i = 0; i < MAX_RAIDMAP_LOGICAL_DRIVES + MAX_RAIDMAP_VIEWS; i++) {
488 			pDrvRaidMap->ldTgtIdToLd[i] =
489 			    (u_int8_t)pFwRaidMap->ldTgtIdToLd[i];
490 		}
491 
492 		for (i = 0; i < pDrvRaidMap->ldCount; i++) {
493 			pDrvRaidMap->ldSpanMap[i] =
494 			    pFwRaidMap->ldSpanMap[i];
495 
496 #if VD_EXT_DEBUG
497 			device_printf(sc->mrsas_dev, "pFwRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x "
498 			    "pFwRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
499 			    i, i, pFwRaidMap->ldSpanMap[i].ldRaid.targetId,
500 			    pFwRaidMap->ldSpanMap[i].ldRaid.seqNum,
501 			    (u_int32_t)pFwRaidMap->ldSpanMap[i].ldRaid.rowSize);
502 			device_printf(sc->mrsas_dev, "pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x"
503 			    "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i,
504 			    pDrvRaidMap->ldSpanMap[i].ldRaid.targetId,
505 			    pDrvRaidMap->ldSpanMap[i].ldRaid.seqNum,
506 			    (u_int32_t)pDrvRaidMap->ldSpanMap[i].ldRaid.rowSize);
507 			device_printf(sc->mrsas_dev, "drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
508 			    drv_map, pDrvRaidMap,
509 			    &pFwRaidMap->ldSpanMap[i].ldRaid, &pDrvRaidMap->ldSpanMap[i].ldRaid);
510 #endif
511 		}
512 
513 		memcpy(pDrvRaidMap->arMapInfo, pFwRaidMap->arMapInfo,
514 		    sizeof(MR_ARRAY_INFO) * MAX_RAIDMAP_ARRAYS);
515 		memcpy(pDrvRaidMap->devHndlInfo, pFwRaidMap->devHndlInfo,
516 		    sizeof(MR_DEV_HANDLE_INFO) *
517 		    MAX_RAIDMAP_PHYSICAL_DEVICES);
518 	}
519 	return 0;
520 }
521 
522 /*
523  * MR_ValidateMapInfo:	Validate RAID map
524  * input:				Adapter instance soft state
525  *
526  * This function checks and validates the loaded RAID map. It returns 0 if
527  * successful, and 1 otherwise.
528  */
529 u_int8_t
530 MR_ValidateMapInfo(struct mrsas_softc *sc)
531 {
532 	if (!sc) {
533 		return 1;
534 	}
535 	if (MR_PopulateDrvRaidMap(sc))
536 		return 0;
537 
538 	MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
539 	MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
540 
541 	u_int32_t expected_map_size;
542 
543 	drv_map = sc->ld_drv_map[(sc->map_id & 1)];
544 	pDrvRaidMap = &drv_map->raidMap;
545 	PLD_SPAN_INFO ldSpanInfo = (PLD_SPAN_INFO) & sc->log_to_span;
546 
547 	if (sc->maxRaidMapSize)
548 		expected_map_size = sizeof(MR_DRV_RAID_MAP_ALL);
549 	else if (sc->max256vdSupport)
550 		expected_map_size = sizeof(MR_FW_RAID_MAP_EXT);
551 	else
552 		expected_map_size =
553 		    (sizeof(MR_FW_RAID_MAP) - sizeof(MR_LD_SPAN_MAP)) +
554 		    (sizeof(MR_LD_SPAN_MAP) * le16toh(pDrvRaidMap->ldCount));
555 
556 	if (le32toh(pDrvRaidMap->totalSize) != expected_map_size) {
557 		device_printf(sc->mrsas_dev, "map size %x not matching ld count\n", expected_map_size);
558 		device_printf(sc->mrsas_dev, "span map= %x\n", (unsigned int)sizeof(MR_LD_SPAN_MAP));
559 		device_printf(sc->mrsas_dev, "pDrvRaidMap->totalSize=%x\n", le32toh(pDrvRaidMap->totalSize));
560 		return 1;
561 	}
562 	if (sc->UnevenSpanSupport) {
563 		mr_update_span_set(drv_map, ldSpanInfo);
564 	}
565 	mrsas_update_load_balance_params(sc, drv_map, sc->load_balance_info);
566 
567 	return 0;
568 }
569 
570 /*
571  *
572  * Function to print info about span set created in driver from FW raid map
573  *
574  * Inputs:		map
575  * ldSpanInfo:	ld map span info per HBA instance
576  *
577  *
578  */
579 #if SPAN_DEBUG
580 static int
581 getSpanInfo(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
582 {
583 
584 	u_int8_t span;
585 	u_int32_t element;
586 	MR_LD_RAID *raid;
587 	LD_SPAN_SET *span_set;
588 	MR_QUAD_ELEMENT *quad;
589 	int ldCount;
590 	u_int16_t ld;
591 
592 	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
593 		ld = MR_TargetIdToLdGet(ldCount, map);
594 		if (ld >= MAX_LOGICAL_DRIVES) {
595 			continue;
596 		}
597 		raid = MR_LdRaidGet(ld, map);
598 		printf("LD %x: span_depth=%x\n", ld, raid->spanDepth);
599 		for (span = 0; span < raid->spanDepth; span++)
600 			printf("Span=%x, number of quads=%x\n", span,
601 			    le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
602 			    block_span_info.noElements));
603 		for (element = 0; element < MAX_QUAD_DEPTH; element++) {
604 			span_set = &(ldSpanInfo[ld].span_set[element]);
605 			if (span_set->span_row_data_width == 0)
606 				break;
607 
608 			printf("Span Set %x: width=%x, diff=%x\n", element,
609 			    (unsigned int)span_set->span_row_data_width,
610 			    (unsigned int)span_set->diff);
611 			printf("logical LBA start=0x%08lx, end=0x%08lx\n",
612 			    (long unsigned int)span_set->log_start_lba,
613 			    (long unsigned int)span_set->log_end_lba);
614 			printf("span row start=0x%08lx, end=0x%08lx\n",
615 			    (long unsigned int)span_set->span_row_start,
616 			    (long unsigned int)span_set->span_row_end);
617 			printf("data row start=0x%08lx, end=0x%08lx\n",
618 			    (long unsigned int)span_set->data_row_start,
619 			    (long unsigned int)span_set->data_row_end);
620 			printf("data strip start=0x%08lx, end=0x%08lx\n",
621 			    (long unsigned int)span_set->data_strip_start,
622 			    (long unsigned int)span_set->data_strip_end);
623 
624 			for (span = 0; span < raid->spanDepth; span++) {
625 				if (map->raidMap.ldSpanMap[ld].spanBlock[span].
626 				    block_span_info.noElements >= element + 1) {
627 					quad = &map->raidMap.ldSpanMap[ld].
628 					    spanBlock[span].block_span_info.
629 					    quad[element];
630 					printf("Span=%x, Quad=%x, diff=%x\n", span,
631 					    element, le32toh(quad->diff));
632 					printf("offset_in_span=0x%08lx\n",
633 					    (long unsigned int)le64toh(quad->offsetInSpan));
634 					printf("logical start=0x%08lx, end=0x%08lx\n",
635 					    (long unsigned int)le64toh(quad->logStart),
636 					    (long unsigned int)le64toh(quad->logEnd));
637 				}
638 			}
639 		}
640 	}
641 	return 0;
642 }
643 
644 #endif
645 /*
646  *
647  * This routine calculates the Span block for given row using spanset.
648  *
649  * Inputs :	HBA instance
650  * ld:		Logical drive number
651  * row:		Row number
652  * map:		LD map
653  *
654  * Outputs :	span	- Span number block
655  * 						- Absolute Block number in the physical disk
656  * 				div_error    - Devide error code.
657  */
658 
659 u_int32_t
660 mr_spanset_get_span_block(struct mrsas_softc *sc, u_int32_t ld, u_int64_t row,
661     u_int64_t *span_blk, MR_DRV_RAID_MAP_ALL * map, int *div_error)
662 {
663 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
664 	LD_SPAN_SET *span_set;
665 	MR_QUAD_ELEMENT *quad;
666 	u_int32_t span, info;
667 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
668 
669 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
670 		span_set = &(ldSpanInfo[ld].span_set[info]);
671 
672 		if (span_set->span_row_data_width == 0)
673 			break;
674 		if (row > span_set->data_row_end)
675 			continue;
676 
677 		for (span = 0; span < raid->spanDepth; span++)
678 			if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
679 			    block_span_info.noElements) >= info + 1) {
680 				quad = &map->raidMap.ldSpanMap[ld].
681 				    spanBlock[span].
682 				    block_span_info.quad[info];
683 				if (quad->diff == 0) {
684 					*div_error = 1;
685 					return span;
686 				}
687 				if (le64toh(quad->logStart) <= row &&
688 				    row <= le64toh(quad->logEnd) &&
689 				    (mega_mod64(row - le64toh(quad->logStart),
690 				    le32toh(quad->diff))) == 0) {
691 					if (span_blk != NULL) {
692 						u_int64_t blk;
693 
694 						blk = mega_div64_32
695 						    ((row - le64toh(quad->logStart)),
696 						    le32toh(quad->diff));
697 						blk = (blk + le64toh(quad->offsetInSpan))
698 						    << raid->stripeShift;
699 						*span_blk = blk;
700 					}
701 					return span;
702 				}
703 			}
704 	}
705 	return SPAN_INVALID;
706 }
707 
708 /*
709  *
710  * This routine calculates the row for given strip using spanset.
711  *
712  * Inputs :	HBA instance
713  * ld:		Logical drive number
714  * Strip:	Strip
715  * map:		LD map
716  *
717  * Outputs :	row - row associated with strip
718  */
719 
720 static u_int64_t
721 get_row_from_strip(struct mrsas_softc *sc,
722     u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
723 {
724 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
725 	LD_SPAN_SET *span_set;
726 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
727 	u_int32_t info, strip_offset, span, span_offset;
728 	u_int64_t span_set_Strip, span_set_Row;
729 
730 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
731 		span_set = &(ldSpanInfo[ld].span_set[info]);
732 
733 		if (span_set->span_row_data_width == 0)
734 			break;
735 		if (strip > span_set->data_strip_end)
736 			continue;
737 
738 		span_set_Strip = strip - span_set->data_strip_start;
739 		strip_offset = mega_mod64(span_set_Strip,
740 		    span_set->span_row_data_width);
741 		span_set_Row = mega_div64_32(span_set_Strip,
742 		    span_set->span_row_data_width) * span_set->diff;
743 		for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
744 			if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
745 			    block_span_info.noElements) >= info + 1) {
746 				if (strip_offset >=
747 				    span_set->strip_offset[span])
748 					span_offset++;
749 				else
750 					break;
751 			}
752 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : Strip 0x%llx, span_set_Strip 0x%llx, span_set_Row 0x%llx "
753 		    "data width 0x%llx span offset 0x%llx\n", (unsigned long long)strip,
754 		    (unsigned long long)span_set_Strip,
755 		    (unsigned long long)span_set_Row,
756 		    (unsigned long long)span_set->span_row_data_width, (unsigned long long)span_offset);
757 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : For strip 0x%llx row is 0x%llx\n", (unsigned long long)strip,
758 		    (unsigned long long)span_set->data_row_start +
759 		    (unsigned long long)span_set_Row + (span_offset - 1));
760 		return (span_set->data_row_start + span_set_Row + (span_offset - 1));
761 	}
762 	return -1LLU;
763 }
764 
765 /*
766  *
767  * This routine calculates the Start Strip for given row using spanset.
768  *
769  * Inputs:	HBA instance
770  * ld:		Logical drive number
771  * row:		Row number
772  * map:		LD map
773  *
774  * Outputs :	Strip - Start strip associated with row
775  */
776 
777 static u_int64_t
778 get_strip_from_row(struct mrsas_softc *sc,
779     u_int32_t ld, u_int64_t row, MR_DRV_RAID_MAP_ALL * map)
780 {
781 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
782 	LD_SPAN_SET *span_set;
783 	MR_QUAD_ELEMENT *quad;
784 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
785 	u_int32_t span, info;
786 	u_int64_t strip;
787 
788 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
789 		span_set = &(ldSpanInfo[ld].span_set[info]);
790 
791 		if (span_set->span_row_data_width == 0)
792 			break;
793 		if (row > span_set->data_row_end)
794 			continue;
795 
796 		for (span = 0; span < raid->spanDepth; span++)
797 			if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
798 			    block_span_info.noElements) >= info + 1) {
799 				quad = &map->raidMap.ldSpanMap[ld].
800 				    spanBlock[span].block_span_info.quad[info];
801 				if (le64toh(quad->logStart) <= row &&
802 				    row <= le64toh(quad->logEnd) &&
803 				    mega_mod64((row - le64toh(quad->logStart)),
804 				    le32toh(quad->diff)) == 0) {
805 					strip = mega_div64_32
806 					    (((row - span_set->data_row_start)
807 					    - le64toh(quad->logStart)),
808 					    le32toh(quad->diff));
809 					strip *= span_set->span_row_data_width;
810 					strip += span_set->data_strip_start;
811 					strip += span_set->strip_offset[span];
812 					return strip;
813 				}
814 			}
815 	}
816 	mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug - get_strip_from_row: returns invalid "
817 	    "strip for ld=%x, row=%lx\n", ld, (long unsigned int)row);
818 	return -1;
819 }
820 
821 /*
822  * *****************************************************************************
823  *
824  *
825  * This routine calculates the Physical Arm for given strip using spanset.
826  *
827  * Inputs :	HBA instance
828  * 			Logical drive number
829  * 			Strip
830  * 			LD map
831  *
832  * Outputs :	Phys Arm - Phys Arm associated with strip
833  */
834 
835 static u_int32_t
836 get_arm_from_strip(struct mrsas_softc *sc,
837     u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
838 {
839 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
840 	LD_SPAN_SET *span_set;
841 	PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
842 	u_int32_t info, strip_offset, span, span_offset;
843 
844 	for (info = 0; info < MAX_QUAD_DEPTH; info++) {
845 		span_set = &(ldSpanInfo[ld].span_set[info]);
846 
847 		if (span_set->span_row_data_width == 0)
848 			break;
849 		if (strip > span_set->data_strip_end)
850 			continue;
851 
852 		strip_offset = (u_int32_t)mega_mod64
853 		    ((strip - span_set->data_strip_start),
854 		    span_set->span_row_data_width);
855 
856 		for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
857 			if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
858 			    block_span_info.noElements) >= info + 1) {
859 				if (strip_offset >= span_set->strip_offset[span])
860 					span_offset = span_set->strip_offset[span];
861 				else
862 					break;
863 			}
864 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO PRL11: get_arm_from_strip: "
865 		    "for ld=0x%x strip=0x%lx arm is  0x%x\n", ld,
866 		    (long unsigned int)strip, (strip_offset - span_offset));
867 		return (strip_offset - span_offset);
868 	}
869 
870 	mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: - get_arm_from_strip: returns invalid arm"
871 	    " for ld=%x strip=%lx\n", ld, (long unsigned int)strip);
872 
873 	return -1;
874 }
875 
876 /* This Function will return Phys arm */
877 u_int8_t
878 get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span, u_int64_t stripe,
879     MR_DRV_RAID_MAP_ALL * map)
880 {
881 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
882 
883 	/* Need to check correct default value */
884 	u_int32_t arm = 0;
885 
886 	switch (raid->level) {
887 	case 0:
888 	case 5:
889 	case 6:
890 		arm = mega_mod64(stripe, SPAN_ROW_SIZE(map, ld, span));
891 		break;
892 	case 1:
893 		/* start with logical arm */
894 		arm = get_arm_from_strip(sc, ld, stripe, map);
895 		arm *= 2;
896 		break;
897 	}
898 
899 	return arm;
900 }
901 
902 /*
903  *
904  * This routine calculates the arm, span and block for the specified stripe and
905  * reference in stripe using spanset
906  *
907  * Inputs :
908  * sc - HBA instance
909  * ld - Logical drive number
910  * stripRow: Stripe number
911  * stripRef: Reference in stripe
912  *
913  * Outputs :	span - Span number block - Absolute Block
914  * number in the physical disk
915  */
916 static u_int8_t
917 mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld, u_int64_t stripRow,
918     u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
919     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
920 {
921 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
922 	u_int32_t pd, arRef, r1_alt_pd;
923 	u_int8_t physArm, span;
924 	u_int64_t row;
925 	u_int8_t retval = TRUE;
926 	u_int64_t *pdBlock = &io_info->pdBlock;
927 	u_int16_t *pDevHandle = &io_info->devHandle;
928 	u_int8_t  *pPdInterface = &io_info->pdInterface;
929 
930 	u_int32_t logArm, rowMod, armQ, arm;
931 
932 	/* Get row and span from io_info for Uneven Span IO. */
933 	row = io_info->start_row;
934 	span = io_info->start_span;
935 
936 	if (raid->level == 6) {
937 		logArm = get_arm_from_strip(sc, ld, stripRow, map);
938 		rowMod = mega_mod64(row, SPAN_ROW_SIZE(map, ld, span));
939 		armQ = SPAN_ROW_SIZE(map, ld, span) - 1 - rowMod;
940 		arm = armQ + 1 + logArm;
941 		if (arm >= SPAN_ROW_SIZE(map, ld, span))
942 			arm -= SPAN_ROW_SIZE(map, ld, span);
943 		physArm = (u_int8_t)arm;
944 	} else
945 		/* Calculate the arm */
946 		physArm = get_arm(sc, ld, span, stripRow, map);
947 
948 	arRef = MR_LdSpanArrayGet(ld, span, map);
949 	pd = MR_ArPdGet(arRef, physArm, map);
950 
951 	if (pd != MR_PD_INVALID) {
952 		*pDevHandle = MR_PdDevHandleGet(pd, map);
953 		*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
954 		/* get second pd also for raid 1/10 fast path writes */
955 		if ((raid->level == 1) && !io_info->isRead) {
956 			r1_alt_pd = MR_ArPdGet(arRef, physArm + 1, map);
957 			if (r1_alt_pd != MR_PD_INVALID)
958 				io_info->r1_alt_dev_handle = MR_PdDevHandleGet(r1_alt_pd, map);
959 		}
960 	} else {
961 		*pDevHandle = htole16(MR_DEVHANDLE_INVALID);
962 		if ((raid->level >= 5) && ((sc->device_id == MRSAS_TBOLT) ||
963 			(sc->mrsas_gen3_ctrl &&
964 			raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
965 			pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
966 		else if (raid->level == 1) {
967 			physArm++;
968 			pd = MR_ArPdGet(arRef, physArm, map);
969 			if (pd != MR_PD_INVALID) {
970 				*pDevHandle = MR_PdDevHandleGet(pd, map);
971 				*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
972 			}
973 		}
974 	}
975 
976 	*pdBlock += stripRef + le64toh(MR_LdSpanPtrGet(ld, span, map)->startBlk);
977 	if (sc->is_ventura || sc->is_aero) {
978 		((RAID_CONTEXT_G35 *) pRAID_Context)->spanArm =
979 		    (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
980 		io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
981 	} else {
982 		pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
983 		io_info->span_arm = pRAID_Context->spanArm;
984 	}
985 	return retval;
986 }
987 
988 /*
989  * MR_BuildRaidContext:	Set up Fast path RAID context
990  *
991  * This function will initiate command processing.  The start/end row and strip
992  * information is calculated then the lock is acquired. This function will
993  * return 0 if region lock was acquired OR return num strips.
994  */
995 u_int8_t
996 MR_BuildRaidContext(struct mrsas_softc *sc, struct IO_REQUEST_INFO *io_info,
997     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
998 {
999 	MR_LD_RAID *raid;
1000 	u_int32_t ld, stripSize, stripe_mask;
1001 	u_int64_t endLba, endStrip, endRow, start_row, start_strip;
1002 	REGION_KEY regStart;
1003 	REGION_LEN regSize;
1004 	u_int8_t num_strips, numRows;
1005 	u_int16_t ref_in_start_stripe, ref_in_end_stripe;
1006 	u_int64_t ldStartBlock;
1007 	u_int32_t numBlocks, ldTgtId;
1008 	u_int8_t isRead, stripIdx;
1009 	u_int8_t retval = 0;
1010 	u_int8_t startlba_span = SPAN_INVALID;
1011 	u_int64_t *pdBlock = &io_info->pdBlock;
1012 	int error_code = 0;
1013 
1014 	ldStartBlock = io_info->ldStartBlock;
1015 	numBlocks = io_info->numBlocks;
1016 	ldTgtId = io_info->ldTgtId;
1017 	isRead = io_info->isRead;
1018 
1019 	io_info->IoforUnevenSpan = 0;
1020 	io_info->start_span = SPAN_INVALID;
1021 
1022 	ld = MR_TargetIdToLdGet(ldTgtId, map);
1023 	raid = MR_LdRaidGet(ld, map);
1024 
1025 	/* check read ahead bit */
1026 	io_info->raCapable = raid->capability.raCapable;
1027 
1028 	if (raid->rowDataSize == 0) {
1029 		if (MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize == 0)
1030 			return FALSE;
1031 		else if (sc->UnevenSpanSupport) {
1032 			io_info->IoforUnevenSpan = 1;
1033 		} else {
1034 			mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: raid->rowDataSize is 0, but has SPAN[0] rowDataSize = 0x%0x,"
1035 			    " but there is _NO_ UnevenSpanSupport\n",
1036 			    MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize);
1037 			return FALSE;
1038 		}
1039 	}
1040 	stripSize = 1 << raid->stripeShift;
1041 	stripe_mask = stripSize - 1;
1042 	/*
1043 	 * calculate starting row and stripe, and number of strips and rows
1044 	 */
1045 	start_strip = ldStartBlock >> raid->stripeShift;
1046 	ref_in_start_stripe = (u_int16_t)(ldStartBlock & stripe_mask);
1047 	endLba = ldStartBlock + numBlocks - 1;
1048 	ref_in_end_stripe = (u_int16_t)(endLba & stripe_mask);
1049 	endStrip = endLba >> raid->stripeShift;
1050 	num_strips = (u_int8_t)(endStrip - start_strip + 1);	/* End strip */
1051 	if (io_info->IoforUnevenSpan) {
1052 		start_row = get_row_from_strip(sc, ld, start_strip, map);
1053 		endRow = get_row_from_strip(sc, ld, endStrip, map);
1054 		if (raid->spanDepth == 1) {
1055 			startlba_span = 0;
1056 			*pdBlock = start_row << raid->stripeShift;
1057 		} else {
1058 			startlba_span = (u_int8_t)mr_spanset_get_span_block(sc, ld, start_row,
1059 			    pdBlock, map, &error_code);
1060 			if (error_code == 1) {
1061 				mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d. Send IO w/o region lock.\n",
1062 				    __func__, __LINE__);
1063 				return FALSE;
1064 			}
1065 		}
1066 		if (startlba_span == SPAN_INVALID) {
1067 			mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d for row 0x%llx,"
1068 			    "start strip %llx endSrip %llx\n", __func__,
1069 			    __LINE__, (unsigned long long)start_row,
1070 			    (unsigned long long)start_strip,
1071 			    (unsigned long long)endStrip);
1072 			return FALSE;
1073 		}
1074 		io_info->start_span = startlba_span;
1075 		io_info->start_row = start_row;
1076 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: Check Span number from %s %d for row 0x%llx, "
1077 		    " start strip 0x%llx endSrip 0x%llx span 0x%x\n",
1078 		    __func__, __LINE__, (unsigned long long)start_row,
1079 		    (unsigned long long)start_strip,
1080 		    (unsigned long long)endStrip, startlba_span);
1081 		mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : 1. start_row 0x%llx endRow 0x%llx Start span 0x%x\n",
1082 		    (unsigned long long)start_row, (unsigned long long)endRow, startlba_span);
1083 	} else {
1084 		start_row = mega_div64_32(start_strip, raid->rowDataSize);
1085 		endRow = mega_div64_32(endStrip, raid->rowDataSize);
1086 	}
1087 
1088 	numRows = (u_int8_t)(endRow - start_row + 1);	/* get the row count */
1089 
1090 	/*
1091 	 * Calculate region info.  (Assume region at start of first row, and
1092 	 * assume this IO needs the full row - will adjust if not true.)
1093 	 */
1094 	regStart = start_row << raid->stripeShift;
1095 	regSize = stripSize;
1096 
1097 	/* Check if we can send this I/O via FastPath */
1098 	if (raid->capability.fpCapable) {
1099 		if (isRead)
1100 			io_info->fpOkForIo = (raid->capability.fpReadCapable &&
1101 			    ((num_strips == 1) ||
1102 			    raid->capability.fpReadAcrossStripe));
1103 		else
1104 			io_info->fpOkForIo = (raid->capability.fpWriteCapable &&
1105 			    ((num_strips == 1) ||
1106 			    raid->capability.fpWriteAcrossStripe));
1107 	} else
1108 		io_info->fpOkForIo = FALSE;
1109 
1110 	if (numRows == 1) {
1111 		if (num_strips == 1) {
1112 			regStart += ref_in_start_stripe;
1113 			regSize = numBlocks;
1114 		}
1115 	} else if (io_info->IoforUnevenSpan == 0) {
1116 		/*
1117 		 * For Even span region lock optimization. If the start strip
1118 		 * is the last in the start row
1119 		 */
1120 		if (start_strip == (start_row + 1) * raid->rowDataSize - 1) {
1121 			regStart += ref_in_start_stripe;
1122 			/*
1123 			 * initialize count to sectors from startRef to end
1124 			 * of strip
1125 			 */
1126 			regSize = stripSize - ref_in_start_stripe;
1127 		}
1128 		/* add complete rows in the middle of the transfer */
1129 		if (numRows > 2)
1130 			regSize += (numRows - 2) << raid->stripeShift;
1131 
1132 		/* if IO ends within first strip of last row */
1133 		if (endStrip == endRow * raid->rowDataSize)
1134 			regSize += ref_in_end_stripe + 1;
1135 		else
1136 			regSize += stripSize;
1137 	} else {
1138 		if (start_strip == (get_strip_from_row(sc, ld, start_row, map) +
1139 		    SPAN_ROW_DATA_SIZE(map, ld, startlba_span) - 1)) {
1140 			regStart += ref_in_start_stripe;
1141 			/*
1142 			 * initialize count to sectors from startRef to end
1143 			 * of strip
1144 			 */
1145 			regSize = stripSize - ref_in_start_stripe;
1146 		}
1147 		/* add complete rows in the middle of the transfer */
1148 		if (numRows > 2)
1149 			regSize += (numRows - 2) << raid->stripeShift;
1150 
1151 		/* if IO ends within first strip of last row */
1152 		if (endStrip == get_strip_from_row(sc, ld, endRow, map))
1153 			regSize += ref_in_end_stripe + 1;
1154 		else
1155 			regSize += stripSize;
1156 	}
1157 	pRAID_Context->timeoutValue = htole16(map->raidMap.fpPdIoTimeoutSec);
1158 	if (sc->mrsas_gen3_ctrl)
1159 		pRAID_Context->regLockFlags = (isRead) ? raid->regTypeReqOnRead : raid->regTypeReqOnWrite;
1160 	else if (sc->device_id == MRSAS_TBOLT)
1161 		pRAID_Context->regLockFlags = (isRead) ? REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite;
1162 	pRAID_Context->VirtualDiskTgtId = raid->targetId;
1163 	pRAID_Context->regLockRowLBA = htole64(regStart);
1164 	pRAID_Context->regLockLength = htole32(regSize);
1165 	pRAID_Context->configSeqNum = raid->seqNum;
1166 
1167 	/*
1168 	 * Get Phy Params only if FP capable, or else leave it to MR firmware
1169 	 * to do the calculation.
1170 	 */
1171 	if (io_info->fpOkForIo) {
1172 		retval = io_info->IoforUnevenSpan ?
1173 		    mr_spanset_get_phy_params(sc, ld, start_strip,
1174 		    ref_in_start_stripe, io_info, pRAID_Context, map) :
1175 		    MR_GetPhyParams(sc, ld, start_strip,
1176 		    ref_in_start_stripe, io_info, pRAID_Context, map);
1177 		/* If IO on an invalid Pd, then FP is not possible */
1178 		if (io_info->devHandle == MR_DEVHANDLE_INVALID)
1179 			io_info->fpOkForIo = FALSE;
1180 		/*
1181 		 * if FP possible, set the SLUD bit in regLockFlags for
1182 		 * ventura
1183 		 */
1184 		else if ((sc->is_ventura || sc->is_aero) && !isRead &&
1185 			    (raid->writeMode == MR_RL_WRITE_BACK_MODE) && (raid->level <= 1) &&
1186 		    raid->capability.fpCacheBypassCapable) {
1187 			((RAID_CONTEXT_G35 *) pRAID_Context)->routingFlags.bits.sld = 1;
1188 		}
1189 
1190 		return retval;
1191 	} else if (isRead) {
1192 		for (stripIdx = 0; stripIdx < num_strips; stripIdx++) {
1193 			retval = io_info->IoforUnevenSpan ?
1194 			    mr_spanset_get_phy_params(sc, ld, start_strip + stripIdx,
1195 			    ref_in_start_stripe, io_info, pRAID_Context, map) :
1196 			    MR_GetPhyParams(sc, ld, start_strip + stripIdx,
1197 			    ref_in_start_stripe, io_info, pRAID_Context, map);
1198 			if (!retval)
1199 				return TRUE;
1200 		}
1201 	}
1202 #if SPAN_DEBUG
1203 	/* Just for testing what arm we get for strip. */
1204 	get_arm_from_strip(sc, ld, start_strip, map);
1205 #endif
1206 	return TRUE;
1207 }
1208 
1209 /*
1210  *
1211  * This routine pepare spanset info from Valid Raid map and store it into local
1212  * copy of ldSpanInfo per instance data structure.
1213  *
1214  * Inputs :	LD map
1215  * 			ldSpanInfo per HBA instance
1216  *
1217  */
1218 void
1219 mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
1220 {
1221 	u_int8_t span, count;
1222 	u_int32_t element, span_row_width;
1223 	u_int64_t span_row;
1224 	MR_LD_RAID *raid;
1225 	LD_SPAN_SET *span_set, *span_set_prev;
1226 	MR_QUAD_ELEMENT *quad;
1227 	int ldCount;
1228 	u_int16_t ld;
1229 
1230 	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
1231 		ld = MR_TargetIdToLdGet(ldCount, map);
1232 		if (ld >= MAX_LOGICAL_DRIVES)
1233 			continue;
1234 		raid = MR_LdRaidGet(ld, map);
1235 		for (element = 0; element < MAX_QUAD_DEPTH; element++) {
1236 			for (span = 0; span < raid->spanDepth; span++) {
1237 				if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
1238 				    block_span_info.noElements) < element + 1)
1239 					continue;
1240 				/* TO-DO */
1241 				span_set = &(ldSpanInfo[ld].span_set[element]);
1242 				quad = &map->raidMap.ldSpanMap[ld].
1243 				    spanBlock[span].block_span_info.quad[element];
1244 
1245 				span_set->diff = le32toh(quad->diff);
1246 
1247 				for (count = 0, span_row_width = 0;
1248 				    count < raid->spanDepth; count++) {
1249 					if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[count].
1250 					    block_span_info.noElements) >= element + 1) {
1251 						span_set->strip_offset[count] = span_row_width;
1252 						span_row_width +=
1253 						    MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize;
1254 #if SPAN_DEBUG
1255 						printf("AVAGO Debug span %x rowDataSize %x\n", count,
1256 						    MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize);
1257 #endif
1258 					}
1259 				}
1260 
1261 				span_set->span_row_data_width = span_row_width;
1262 				span_row = mega_div64_32(((le64toh(quad->logEnd) -
1263 				    le64toh(quad->logStart)) + le32toh(quad->diff)),
1264 				    le32toh(quad->diff));
1265 
1266 				if (element == 0) {
1267 					span_set->log_start_lba = 0;
1268 					span_set->log_end_lba =
1269 					    ((span_row << raid->stripeShift) * span_row_width) - 1;
1270 
1271 					span_set->span_row_start = 0;
1272 					span_set->span_row_end = span_row - 1;
1273 
1274 					span_set->data_strip_start = 0;
1275 					span_set->data_strip_end = (span_row * span_row_width) - 1;
1276 
1277 					span_set->data_row_start = 0;
1278 					span_set->data_row_end =
1279 					  (span_row * le32toh(quad->diff)) - 1;
1280 				} else {
1281 					span_set_prev = &(ldSpanInfo[ld].span_set[element - 1]);
1282 					span_set->log_start_lba = span_set_prev->log_end_lba + 1;
1283 					span_set->log_end_lba = span_set->log_start_lba +
1284 					    ((span_row << raid->stripeShift) * span_row_width) - 1;
1285 
1286 					span_set->span_row_start = span_set_prev->span_row_end + 1;
1287 					span_set->span_row_end =
1288 					    span_set->span_row_start + span_row - 1;
1289 
1290 					span_set->data_strip_start =
1291 					    span_set_prev->data_strip_end + 1;
1292 					span_set->data_strip_end = span_set->data_strip_start +
1293 					    (span_row * span_row_width) - 1;
1294 
1295 					span_set->data_row_start = span_set_prev->data_row_end + 1;
1296 					span_set->data_row_end = span_set->data_row_start +
1297 					    (span_row * le32toh(quad->diff)) - 1;
1298 				}
1299 				break;
1300 			}
1301 			if (span == raid->spanDepth)
1302 				break;	/* no quads remain */
1303 		}
1304 	}
1305 #if SPAN_DEBUG
1306 	getSpanInfo(map, ldSpanInfo);	/* to get span set info */
1307 #endif
1308 }
1309 
1310 /*
1311  * mrsas_update_load_balance_params:	Update load balance parmas
1312  * Inputs:
1313  * sc - driver softc instance
1314  * drv_map - driver RAID map
1315  * lbInfo - Load balance info
1316  *
1317  * This function updates the load balance parameters for the LD config of a two
1318  * drive optimal RAID-1.
1319  */
1320 void
1321 mrsas_update_load_balance_params(struct mrsas_softc *sc,
1322     MR_DRV_RAID_MAP_ALL * drv_map, PLD_LOAD_BALANCE_INFO lbInfo)
1323 {
1324 	int ldCount;
1325 	u_int16_t ld;
1326 	MR_LD_RAID *raid;
1327 
1328 	if (sc->lb_pending_cmds > 128 || sc->lb_pending_cmds < 1)
1329 		sc->lb_pending_cmds = LB_PENDING_CMDS_DEFAULT;
1330 
1331 	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) {
1332 		ld = MR_TargetIdToLdGet(ldCount, drv_map);
1333 		if (ld >= MAX_LOGICAL_DRIVES_EXT) {
1334 			lbInfo[ldCount].loadBalanceFlag = 0;
1335 			continue;
1336 		}
1337 		raid = MR_LdRaidGet(ld, drv_map);
1338 		le32_to_cpus(&raid->capability);
1339 		if ((raid->level != 1) ||
1340 		    (raid->ldState != MR_LD_STATE_OPTIMAL)) {
1341 			lbInfo[ldCount].loadBalanceFlag = 0;
1342 			continue;
1343 		}
1344 		lbInfo[ldCount].loadBalanceFlag = 1;
1345 	}
1346 }
1347 
1348 /*
1349  * mrsas_set_pd_lba:	Sets PD LBA
1350  * input:				io_request pointer
1351  * 						CDB length
1352  * 						io_info pointer
1353  * 						Pointer to CCB
1354  * 						Local RAID map pointer
1355  * 						Start block of IO Block Size
1356  *
1357  * Used to set the PD logical block address in CDB for FP IOs.
1358  */
1359 void
1360 mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request, u_int8_t cdb_len,
1361     struct IO_REQUEST_INFO *io_info, union ccb *ccb,
1362     MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
1363     u_int32_t ld_block_size)
1364 {
1365 	MR_LD_RAID *raid;
1366 	u_int32_t ld;
1367 	u_int64_t start_blk = io_info->pdBlock;
1368 	u_int8_t *cdb = io_request->CDB.CDB32;
1369 	u_int32_t num_blocks = io_info->numBlocks;
1370 	u_int8_t opcode = 0, flagvals = 0, groupnum = 0, control = 0;
1371 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
1372 
1373 	/* Check if T10 PI (DIF) is enabled for this LD */
1374 	ld = MR_TargetIdToLdGet(io_info->ldTgtId, local_map_ptr);
1375 	raid = MR_LdRaidGet(ld, local_map_ptr);
1376 	if (raid->capability.ldPiMode == MR_PROT_INFO_TYPE_CONTROLLER) {
1377 		memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1378 		cdb[0] = MRSAS_SCSI_VARIABLE_LENGTH_CMD;
1379 		cdb[7] = MRSAS_SCSI_ADDL_CDB_LEN;
1380 
1381 		if (ccb_h->flags == CAM_DIR_OUT)
1382 			cdb[9] = MRSAS_SCSI_SERVICE_ACTION_READ32;
1383 		else
1384 			cdb[9] = MRSAS_SCSI_SERVICE_ACTION_WRITE32;
1385 		cdb[10] = MRSAS_RD_WR_PROTECT_CHECK_ALL;
1386 
1387 		/* LBA */
1388 		cdb[12] = (u_int8_t)((start_blk >> 56) & 0xff);
1389 		cdb[13] = (u_int8_t)((start_blk >> 48) & 0xff);
1390 		cdb[14] = (u_int8_t)((start_blk >> 40) & 0xff);
1391 		cdb[15] = (u_int8_t)((start_blk >> 32) & 0xff);
1392 		cdb[16] = (u_int8_t)((start_blk >> 24) & 0xff);
1393 		cdb[17] = (u_int8_t)((start_blk >> 16) & 0xff);
1394 		cdb[18] = (u_int8_t)((start_blk >> 8) & 0xff);
1395 		cdb[19] = (u_int8_t)(start_blk & 0xff);
1396 
1397 		/* Logical block reference tag */
1398 		io_request->CDB.EEDP32.PrimaryReferenceTag = htobe32(ref_tag);
1399 		io_request->CDB.EEDP32.PrimaryApplicationTagMask = htobe16(0xffff);
1400 		io_request->IoFlags = htole16(32);	/* Specify 32-byte cdb */
1401 
1402 		/* Transfer length */
1403 		cdb[28] = (u_int8_t)((num_blocks >> 24) & 0xff);
1404 		cdb[29] = (u_int8_t)((num_blocks >> 16) & 0xff);
1405 		cdb[30] = (u_int8_t)((num_blocks >> 8) & 0xff);
1406 		cdb[31] = (u_int8_t)(num_blocks & 0xff);
1407 
1408 		/* set SCSI IO EEDP Flags */
1409 		if (ccb_h->flags == CAM_DIR_OUT) {
1410 			io_request->EEDPFlags = htole16(
1411 			    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1412 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
1413 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP |
1414 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG |
1415 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD);
1416 		} else {
1417 			io_request->EEDPFlags = htole16(
1418 			    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1419 			    MPI2_SCSIIO_EEDPFLAGS_INSERT_OP);
1420 		}
1421 		io_request->Control |= htole32(0x4 << 26);
1422 		io_request->EEDPBlockSize = htole32(ld_block_size);
1423 	} else {
1424 		/* Some drives don't support 16/12 byte CDB's, convert to 10 */
1425 		if (((cdb_len == 12) || (cdb_len == 16)) &&
1426 		    (start_blk <= 0xffffffff)) {
1427 			if (cdb_len == 16) {
1428 				opcode = cdb[0] == READ_16 ? READ_10 : WRITE_10;
1429 				flagvals = cdb[1];
1430 				groupnum = cdb[14];
1431 				control = cdb[15];
1432 			} else {
1433 				opcode = cdb[0] == READ_12 ? READ_10 : WRITE_10;
1434 				flagvals = cdb[1];
1435 				groupnum = cdb[10];
1436 				control = cdb[11];
1437 			}
1438 
1439 			memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1440 
1441 			cdb[0] = opcode;
1442 			cdb[1] = flagvals;
1443 			cdb[6] = groupnum;
1444 			cdb[9] = control;
1445 
1446 			/* Transfer length */
1447 			cdb[8] = (u_int8_t)(num_blocks & 0xff);
1448 			cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
1449 
1450 			io_request->IoFlags = htole16(10);	/* Specify 10-byte cdb */
1451 			cdb_len = 10;
1452 		} else if ((cdb_len < 16) && (start_blk > 0xffffffff)) {
1453 			/* Convert to 16 byte CDB for large LBA's */
1454 			switch (cdb_len) {
1455 			case 6:
1456 				opcode = cdb[0] == READ_6 ? READ_16 : WRITE_16;
1457 				control = cdb[5];
1458 				break;
1459 			case 10:
1460 				opcode = cdb[0] == READ_10 ? READ_16 : WRITE_16;
1461 				flagvals = cdb[1];
1462 				groupnum = cdb[6];
1463 				control = cdb[9];
1464 				break;
1465 			case 12:
1466 				opcode = cdb[0] == READ_12 ? READ_16 : WRITE_16;
1467 				flagvals = cdb[1];
1468 				groupnum = cdb[10];
1469 				control = cdb[11];
1470 				break;
1471 			}
1472 
1473 			memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1474 
1475 			cdb[0] = opcode;
1476 			cdb[1] = flagvals;
1477 			cdb[14] = groupnum;
1478 			cdb[15] = control;
1479 
1480 			/* Transfer length */
1481 			cdb[13] = (u_int8_t)(num_blocks & 0xff);
1482 			cdb[12] = (u_int8_t)((num_blocks >> 8) & 0xff);
1483 			cdb[11] = (u_int8_t)((num_blocks >> 16) & 0xff);
1484 			cdb[10] = (u_int8_t)((num_blocks >> 24) & 0xff);
1485 
1486 			io_request->IoFlags = htole16(16);	/* Specify 16-byte cdb */
1487 			cdb_len = 16;
1488 		} else if ((cdb_len == 6) && (start_blk > 0x1fffff)) {
1489 			/* convert to 10 byte CDB */
1490 			opcode = cdb[0] == READ_6 ? READ_10 : WRITE_10;
1491 			control = cdb[5];
1492 
1493 			memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1494 			cdb[0] = opcode;
1495 			cdb[9] = control;
1496 
1497 			/* Set transfer length */
1498 			cdb[8] = (u_int8_t)(num_blocks & 0xff);
1499 			cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
1500 
1501 			/* Specify 10-byte cdb */
1502 			cdb_len = 10;
1503 		}
1504 		/* Fall through normal case, just load LBA here */
1505 		u_int8_t val = cdb[1] & 0xE0;
1506 
1507 		switch (cdb_len) {
1508 		case 6:
1509 			cdb[3] = (u_int8_t)(start_blk & 0xff);
1510 			cdb[2] = (u_int8_t)((start_blk >> 8) & 0xff);
1511 			cdb[1] = val | ((u_int8_t)(start_blk >> 16) & 0x1f);
1512 			break;
1513 		case 10:
1514 			cdb[5] = (u_int8_t)(start_blk & 0xff);
1515 			cdb[4] = (u_int8_t)((start_blk >> 8) & 0xff);
1516 			cdb[3] = (u_int8_t)((start_blk >> 16) & 0xff);
1517 			cdb[2] = (u_int8_t)((start_blk >> 24) & 0xff);
1518 			break;
1519 		case 16:
1520 			cdb[9] = (u_int8_t)(start_blk & 0xff);
1521 			cdb[8] = (u_int8_t)((start_blk >> 8) & 0xff);
1522 			cdb[7] = (u_int8_t)((start_blk >> 16) & 0xff);
1523 			cdb[6] = (u_int8_t)((start_blk >> 24) & 0xff);
1524 			cdb[5] = (u_int8_t)((start_blk >> 32) & 0xff);
1525 			cdb[4] = (u_int8_t)((start_blk >> 40) & 0xff);
1526 			cdb[3] = (u_int8_t)((start_blk >> 48) & 0xff);
1527 			cdb[2] = (u_int8_t)((start_blk >> 56) & 0xff);
1528 			break;
1529 		}
1530 	}
1531 }
1532 
1533 /*
1534  * mrsas_get_best_arm_pd:	Determine the best spindle arm
1535  * Inputs:
1536  *    sc - HBA instance
1537  *    lbInfo - Load balance info
1538  *    io_info - IO request info
1539  *
1540  * This function determines and returns the best arm by looking at the
1541  * parameters of the last PD access.
1542  */
1543 u_int8_t
1544 mrsas_get_best_arm_pd(struct mrsas_softc *sc,
1545     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
1546 {
1547 	MR_LD_RAID *raid;
1548 	MR_DRV_RAID_MAP_ALL *drv_map;
1549 	u_int16_t pd1_devHandle;
1550 	u_int16_t pend0, pend1, ld;
1551 	u_int64_t diff0, diff1;
1552 	u_int8_t bestArm, pd0, pd1, span, arm;
1553 	u_int32_t arRef, span_row_size;
1554 
1555 	u_int64_t block = io_info->ldStartBlock;
1556 	u_int32_t count = io_info->numBlocks;
1557 
1558 	span = ((io_info->span_arm & RAID_CTX_SPANARM_SPAN_MASK)
1559 	    >> RAID_CTX_SPANARM_SPAN_SHIFT);
1560 	arm = (io_info->span_arm & RAID_CTX_SPANARM_ARM_MASK);
1561 
1562 	drv_map = sc->ld_drv_map[(sc->map_id & 1)];
1563 	ld = MR_TargetIdToLdGet(io_info->ldTgtId, drv_map);
1564 	raid = MR_LdRaidGet(ld, drv_map);
1565 	span_row_size = sc->UnevenSpanSupport ?
1566 	    SPAN_ROW_SIZE(drv_map, ld, span) : raid->rowSize;
1567 
1568 	arRef = MR_LdSpanArrayGet(ld, span, drv_map);
1569 	pd0 = MR_ArPdGet(arRef, arm, drv_map);
1570 	pd1 = MR_ArPdGet(arRef, (arm + 1) >= span_row_size ?
1571 	    (arm + 1 - span_row_size) : arm + 1, drv_map);
1572 
1573 	/* Get PD1 Dev Handle */
1574 	pd1_devHandle = MR_PdDevHandleGet(pd1, drv_map);
1575 	if (pd1_devHandle == MR_DEVHANDLE_INVALID) {
1576 		bestArm = arm;
1577 	} else {
1578 		/* get the pending cmds for the data and mirror arms */
1579 		pend0 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd0]);
1580 		pend1 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd1]);
1581 
1582 		/* Determine the disk whose head is nearer to the req. block */
1583 		diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[pd0]);
1584 		diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[pd1]);
1585 		bestArm = (diff0 <= diff1 ? arm : arm ^ 1);
1586 
1587 		if ((bestArm == arm && pend0 > pend1 + sc->lb_pending_cmds) ||
1588 		    (bestArm != arm && pend1 > pend0 + sc->lb_pending_cmds))
1589 			bestArm ^= 1;
1590 
1591 		/* Update the last accessed block on the correct pd */
1592 		io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | bestArm;
1593 		io_info->pd_after_lb = (bestArm == arm) ? pd0 : pd1;
1594 	}
1595 
1596 	lbInfo->last_accessed_block[bestArm == arm ? pd0 : pd1] = block + count - 1;
1597 #if SPAN_DEBUG
1598 	if (arm != bestArm)
1599 		printf("AVAGO Debug R1 Load balance occur - span 0x%x arm 0x%x bestArm 0x%x "
1600 		    "io_info->span_arm 0x%x\n",
1601 		    span, arm, bestArm, io_info->span_arm);
1602 #endif
1603 
1604 	return io_info->pd_after_lb;
1605 }
1606 
1607 /*
1608  * mrsas_get_updated_dev_handle:	Get the update dev handle
1609  * Inputs:
1610  *	sc - Adapter instance soft state
1611  *	lbInfo - Load balance info
1612  *	io_info - io_info pointer
1613  *
1614  * This function determines and returns the updated dev handle.
1615  */
1616 u_int16_t
1617 mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
1618     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
1619 {
1620 	u_int8_t arm_pd;
1621 	u_int16_t devHandle;
1622 	MR_DRV_RAID_MAP_ALL *drv_map;
1623 
1624 	drv_map = sc->ld_drv_map[(sc->map_id & 1)];
1625 
1626 	/* get best new arm */
1627 	arm_pd = mrsas_get_best_arm_pd(sc, lbInfo, io_info);
1628 	devHandle = MR_PdDevHandleGet(arm_pd, drv_map);
1629 	io_info->pdInterface = MR_PdInterfaceTypeGet(arm_pd, drv_map);
1630 	mrsas_atomic_inc(&lbInfo->scsi_pending_cmds[arm_pd]);
1631 
1632 	return devHandle;
1633 }
1634 
1635 /*
1636  * MR_GetPhyParams:	Calculates arm, span, and block
1637  * Inputs:			Adapter soft state
1638  * 					Logical drive number (LD)
1639  * 					Stripe number(stripRow)
1640  * 					Reference in stripe (stripRef)
1641  *
1642  * Outputs:			Absolute Block number in the physical disk
1643  *
1644  * This routine calculates the arm, span and block for the specified stripe and
1645  * reference in stripe.
1646  */
1647 u_int8_t
1648 MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
1649     u_int64_t stripRow,
1650     u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
1651     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
1652 {
1653 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
1654 	u_int32_t pd, arRef, r1_alt_pd;
1655 	u_int8_t physArm, span;
1656 	u_int64_t row;
1657 	u_int8_t retval = TRUE;
1658 	int error_code = 0;
1659 	u_int64_t *pdBlock = &io_info->pdBlock;
1660 	u_int16_t *pDevHandle = &io_info->devHandle;
1661 	u_int8_t  *pPdInterface = &io_info->pdInterface;
1662 	u_int32_t rowMod, armQ, arm, logArm;
1663 
1664 	row = mega_div64_32(stripRow, raid->rowDataSize);
1665 
1666 	if (raid->level == 6) {
1667 		/* logical arm within row */
1668 		logArm = mega_mod64(stripRow, raid->rowDataSize);
1669 		if (raid->rowSize == 0)
1670 			return FALSE;
1671 		rowMod = mega_mod64(row, raid->rowSize);	/* get logical row mod */
1672 		armQ = raid->rowSize - 1 - rowMod;	/* index of Q drive */
1673 		arm = armQ + 1 + logArm;/* data always logically follows Q */
1674 		if (arm >= raid->rowSize)	/* handle wrap condition */
1675 			arm -= raid->rowSize;
1676 		physArm = (u_int8_t)arm;
1677 	} else {
1678 		if (raid->modFactor == 0)
1679 			return FALSE;
1680 		physArm = MR_LdDataArmGet(ld, mega_mod64(stripRow, raid->modFactor), map);
1681 	}
1682 
1683 	if (raid->spanDepth == 1) {
1684 		span = 0;
1685 		*pdBlock = row << raid->stripeShift;
1686 	} else {
1687 		span = (u_int8_t)MR_GetSpanBlock(ld, row, pdBlock, map, &error_code);
1688 		if (error_code == 1)
1689 			return FALSE;
1690 	}
1691 
1692 	/* Get the array on which this span is present */
1693 	arRef = MR_LdSpanArrayGet(ld, span, map);
1694 
1695 	pd = MR_ArPdGet(arRef, physArm, map);	/* Get the Pd. */
1696 
1697 	if (pd != MR_PD_INVALID) {
1698 		/* Get dev handle from Pd */
1699 		*pDevHandle = MR_PdDevHandleGet(pd, map);
1700 		*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
1701 		/* get second pd also for raid 1/10 fast path writes */
1702 		if ((raid->level == 1) && !io_info->isRead) {
1703 			r1_alt_pd = MR_ArPdGet(arRef, physArm + 1, map);
1704 			if (r1_alt_pd != MR_PD_INVALID)
1705 				io_info->r1_alt_dev_handle = MR_PdDevHandleGet(r1_alt_pd, map);
1706 		}
1707 	} else {
1708 		*pDevHandle = htole16(MR_DEVHANDLE_INVALID);	/* set dev handle as invalid. */
1709 		if ((raid->level >= 5) && ((sc->device_id == MRSAS_TBOLT) ||
1710 			(sc->mrsas_gen3_ctrl &&
1711 			raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
1712 			pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
1713 		else if (raid->level == 1) {
1714 			/* Get Alternate Pd. */
1715 			physArm++;
1716 			pd = MR_ArPdGet(arRef, physArm, map);
1717 			if (pd != MR_PD_INVALID) {
1718 				/* Get dev handle from Pd. */
1719 				*pDevHandle = MR_PdDevHandleGet(pd, map);
1720 				*pPdInterface = MR_PdInterfaceTypeGet(pd, map);
1721 			}
1722 		}
1723 	}
1724 
1725 	*pdBlock += stripRef + le64toh(MR_LdSpanPtrGet(ld, span, map)->startBlk);
1726 	if (sc->is_ventura || sc->is_aero) {
1727 		((RAID_CONTEXT_G35 *) pRAID_Context)->spanArm =
1728 		    (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
1729 		io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
1730 	} else {
1731 		pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
1732 		io_info->span_arm = pRAID_Context->spanArm;
1733 	}
1734 	return retval;
1735 }
1736 
1737 /*
1738  * MR_GetSpanBlock:	Calculates span block
1739  * Inputs:			LD
1740  * 					row PD
1741  * 					span block
1742  * 					RAID map pointer
1743  *
1744  * Outputs:			Span number Error code
1745  *
1746  * This routine calculates the span from the span block info.
1747  */
1748 u_int32_t
1749 MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
1750     MR_DRV_RAID_MAP_ALL * map, int *div_error)
1751 {
1752 	MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map);
1753 	MR_QUAD_ELEMENT *quad;
1754 	MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
1755 	u_int32_t span, j;
1756 	u_int64_t blk;
1757 
1758 	for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) {
1759 		for (j = 0; j < pSpanBlock->block_span_info.noElements; j++) {
1760 			quad = &pSpanBlock->block_span_info.quad[j];
1761 			if (quad->diff == 0) {
1762 				*div_error = 1;
1763 				return span;
1764 			}
1765 			if (quad->logStart <= row && row <= quad->logEnd &&
1766 			    (mega_mod64(row - quad->logStart, quad->diff)) == 0) {
1767 				if (span_blk != NULL) {
1768 					blk = mega_div64_32((row - quad->logStart), quad->diff);
1769 					blk = (blk + quad->offsetInSpan) << raid->stripeShift;
1770 					*span_blk = blk;
1771 				}
1772 				return span;
1773 			}
1774 		}
1775 	}
1776 	return span;
1777 }
1778