1 /* 2 * Copyright (c) 2015, AVAGO Tech. All rights reserved. Author: Marian Choy 3 * Copyright (c) 2014, LSI Corp. All rights reserved. Author: Marian Choy 4 * Support: freebsdraid@avagotech.com 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are 8 * met: 9 * 10 * 1. Redistributions of source code must retain the above copyright notice, 11 * this list of conditions and the following disclaimer. 2. Redistributions 12 * in binary form must reproduce the above copyright notice, this list of 13 * conditions and the following disclaimer in the documentation and/or other 14 * materials provided with the distribution. 3. Neither the name of the 15 * <ORGANIZATION> nor the names of its contributors may be used to endorse or 16 * promote products derived from this software without specific prior written 17 * permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include "dev/mrsas/mrsas.h" 37 38 #include <cam/cam.h> 39 #include <cam/cam_ccb.h> 40 #include <cam/cam_sim.h> 41 #include <cam/cam_xpt_sim.h> 42 #include <cam/cam_debug.h> 43 #include <cam/cam_periph.h> 44 #include <cam/cam_xpt_periph.h> 45 46 #include <cam/scsi/scsi_all.h> 47 #include <cam/scsi/scsi_message.h> 48 #include <sys/taskqueue.h> 49 #include <sys/kernel.h> 50 51 #include <sys/time.h> /* XXX for pcpu.h */ 52 #include <sys/pcpu.h> /* XXX for PCPU_GET */ 53 54 #define smp_processor_id() PCPU_GET(cpuid) 55 56 /* 57 * Function prototypes 58 */ 59 int mrsas_cam_attach(struct mrsas_softc *sc); 60 int mrsas_find_io_type(struct cam_sim *sim, union ccb *ccb); 61 int mrsas_bus_scan(struct mrsas_softc *sc); 62 int mrsas_bus_scan_sim(struct mrsas_softc *sc, struct cam_sim *sim); 63 int 64 mrsas_map_request(struct mrsas_softc *sc, 65 struct mrsas_mpt_cmd *cmd, union ccb *ccb); 66 int 67 mrsas_build_ldio_rw(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd, 68 union ccb *ccb); 69 int 70 mrsas_build_ldio_nonrw(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd, 71 union ccb *ccb); 72 int 73 mrsas_build_syspdio(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd, 74 union ccb *ccb, struct cam_sim *sim, u_int8_t fp_possible); 75 int 76 mrsas_setup_io(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd, 77 union ccb *ccb, u_int32_t device_id, 78 MRSAS_RAID_SCSI_IO_REQUEST * io_request); 79 void mrsas_xpt_freeze(struct mrsas_softc *sc); 80 void mrsas_xpt_release(struct mrsas_softc *sc); 81 void mrsas_cam_detach(struct mrsas_softc *sc); 82 void mrsas_release_mpt_cmd(struct mrsas_mpt_cmd *cmd); 83 void mrsas_unmap_request(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd); 84 void mrsas_cmd_done(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd); 85 void 86 mrsas_fire_cmd(struct mrsas_softc *sc, u_int32_t req_desc_lo, 87 u_int32_t req_desc_hi); 88 void 89 mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request, 90 u_int8_t cdb_len, struct IO_REQUEST_INFO *io_info, union ccb *ccb, 91 MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag, 92 u_int32_t ld_block_size); 93 static void mrsas_freeze_simq(struct mrsas_mpt_cmd *cmd, struct cam_sim *sim); 94 static void mrsas_cam_poll(struct cam_sim *sim); 95 static void mrsas_action(struct cam_sim *sim, union ccb *ccb); 96 static void mrsas_scsiio_timeout(void *data); 97 static int mrsas_track_scsiio(struct mrsas_softc *sc, target_id_t id, u_int32_t bus_id); 98 static void mrsas_tm_response_code(struct mrsas_softc *sc, 99 MPI2_SCSI_TASK_MANAGE_REPLY *mpi_reply); 100 static int mrsas_issue_tm(struct mrsas_softc *sc, 101 MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc); 102 static void 103 mrsas_data_load_cb(void *arg, bus_dma_segment_t *segs, 104 int nseg, int error); 105 static int32_t 106 mrsas_startio(struct mrsas_softc *sc, struct cam_sim *sim, 107 union ccb *ccb); 108 109 static boolean_t mrsas_is_prp_possible(struct mrsas_mpt_cmd *cmd, 110 bus_dma_segment_t *segs, int nsegs); 111 static void mrsas_build_ieee_sgl(struct mrsas_mpt_cmd *cmd, 112 bus_dma_segment_t *segs, int nseg); 113 static void mrsas_build_prp_nvme(struct mrsas_mpt_cmd *cmd, 114 bus_dma_segment_t *segs, int nseg); 115 116 struct mrsas_mpt_cmd *mrsas_get_mpt_cmd(struct mrsas_softc *sc); 117 MRSAS_REQUEST_DESCRIPTOR_UNION * 118 mrsas_get_request_desc(struct mrsas_softc *sc, u_int16_t index); 119 120 extern int mrsas_reset_targets(struct mrsas_softc *sc); 121 extern u_int16_t MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map); 122 extern u_int32_t 123 MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map); 124 extern void mrsas_isr(void *arg); 125 extern void mrsas_aen_handler(struct mrsas_softc *sc); 126 extern u_int8_t 127 MR_BuildRaidContext(struct mrsas_softc *sc, 128 struct IO_REQUEST_INFO *io_info, RAID_CONTEXT * pRAID_Context, 129 MR_DRV_RAID_MAP_ALL * map); 130 extern u_int16_t 131 MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span, 132 MR_DRV_RAID_MAP_ALL * map); 133 extern u_int16_t 134 mrsas_get_updated_dev_handle(struct mrsas_softc *sc, 135 PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info); 136 extern int mrsas_complete_cmd(struct mrsas_softc *sc, u_int32_t MSIxIndex); 137 extern MR_LD_RAID *MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map); 138 extern void mrsas_disable_intr(struct mrsas_softc *sc); 139 extern void mrsas_enable_intr(struct mrsas_softc *sc); 140 void mrsas_prepare_secondRaid1_IO(struct mrsas_softc *sc, 141 struct mrsas_mpt_cmd *cmd); 142 143 /* 144 * mrsas_cam_attach: Main entry to CAM subsystem 145 * input: Adapter instance soft state 146 * 147 * This function is called from mrsas_attach() during initialization to perform 148 * SIM allocations and XPT bus registration. If the kernel version is 7.4 or 149 * earlier, it would also initiate a bus scan. 150 */ 151 int 152 mrsas_cam_attach(struct mrsas_softc *sc) 153 { 154 struct cam_devq *devq; 155 int mrsas_cam_depth; 156 157 mrsas_cam_depth = sc->max_scsi_cmds; 158 159 if ((devq = cam_simq_alloc(mrsas_cam_depth)) == NULL) { 160 device_printf(sc->mrsas_dev, "Cannot allocate SIM queue\n"); 161 return (ENOMEM); 162 } 163 /* 164 * Create SIM for bus 0 and register, also create path 165 */ 166 sc->sim_0 = cam_sim_alloc(mrsas_action, mrsas_cam_poll, "mrsas", sc, 167 device_get_unit(sc->mrsas_dev), &sc->sim_lock, mrsas_cam_depth, 168 mrsas_cam_depth, devq); 169 if (sc->sim_0 == NULL) { 170 cam_simq_free(devq); 171 device_printf(sc->mrsas_dev, "Cannot register SIM\n"); 172 return (ENXIO); 173 } 174 /* Initialize taskqueue for Event Handling */ 175 TASK_INIT(&sc->ev_task, 0, (void *)mrsas_aen_handler, sc); 176 sc->ev_tq = taskqueue_create("mrsas_taskq", M_NOWAIT | M_ZERO, 177 taskqueue_thread_enqueue, &sc->ev_tq); 178 179 /* Run the task queue with lowest priority */ 180 taskqueue_start_threads(&sc->ev_tq, 1, 255, "%s taskq", 181 device_get_nameunit(sc->mrsas_dev)); 182 mtx_lock(&sc->sim_lock); 183 if (xpt_bus_register(sc->sim_0, sc->mrsas_dev, 0) != CAM_SUCCESS) { 184 cam_sim_free(sc->sim_0, TRUE); /* passing true frees the devq */ 185 mtx_unlock(&sc->sim_lock); 186 return (ENXIO); 187 } 188 if (xpt_create_path(&sc->path_0, NULL, cam_sim_path(sc->sim_0), 189 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 190 xpt_bus_deregister(cam_sim_path(sc->sim_0)); 191 cam_sim_free(sc->sim_0, TRUE); /* passing true will free the 192 * devq */ 193 mtx_unlock(&sc->sim_lock); 194 return (ENXIO); 195 } 196 mtx_unlock(&sc->sim_lock); 197 198 /* 199 * Create SIM for bus 1 and register, also create path 200 */ 201 sc->sim_1 = cam_sim_alloc(mrsas_action, mrsas_cam_poll, "mrsas", sc, 202 device_get_unit(sc->mrsas_dev), &sc->sim_lock, mrsas_cam_depth, 203 mrsas_cam_depth, devq); 204 if (sc->sim_1 == NULL) { 205 cam_simq_free(devq); 206 device_printf(sc->mrsas_dev, "Cannot register SIM\n"); 207 return (ENXIO); 208 } 209 mtx_lock(&sc->sim_lock); 210 if (xpt_bus_register(sc->sim_1, sc->mrsas_dev, 1) != CAM_SUCCESS) { 211 cam_sim_free(sc->sim_1, TRUE); /* passing true frees the devq */ 212 mtx_unlock(&sc->sim_lock); 213 return (ENXIO); 214 } 215 if (xpt_create_path(&sc->path_1, NULL, cam_sim_path(sc->sim_1), 216 CAM_TARGET_WILDCARD, 217 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 218 xpt_bus_deregister(cam_sim_path(sc->sim_1)); 219 cam_sim_free(sc->sim_1, TRUE); 220 mtx_unlock(&sc->sim_lock); 221 return (ENXIO); 222 } 223 mtx_unlock(&sc->sim_lock); 224 225 #if (__FreeBSD_version <= 704000) 226 if (mrsas_bus_scan(sc)) { 227 device_printf(sc->mrsas_dev, "Error in bus scan.\n"); 228 return (1); 229 } 230 #endif 231 return (0); 232 } 233 234 /* 235 * mrsas_cam_detach: De-allocates and teardown CAM 236 * input: Adapter instance soft state 237 * 238 * De-registers and frees the paths and SIMs. 239 */ 240 void 241 mrsas_cam_detach(struct mrsas_softc *sc) 242 { 243 if (sc->ev_tq != NULL) 244 taskqueue_free(sc->ev_tq); 245 mtx_lock(&sc->sim_lock); 246 if (sc->path_0) 247 xpt_free_path(sc->path_0); 248 if (sc->sim_0) { 249 xpt_bus_deregister(cam_sim_path(sc->sim_0)); 250 cam_sim_free(sc->sim_0, FALSE); 251 } 252 if (sc->path_1) 253 xpt_free_path(sc->path_1); 254 if (sc->sim_1) { 255 xpt_bus_deregister(cam_sim_path(sc->sim_1)); 256 cam_sim_free(sc->sim_1, TRUE); 257 } 258 mtx_unlock(&sc->sim_lock); 259 } 260 261 /* 262 * mrsas_action: SIM callback entry point 263 * input: pointer to SIM pointer to CAM Control Block 264 * 265 * This function processes CAM subsystem requests. The type of request is stored 266 * in ccb->ccb_h.func_code. The preprocessor #ifdef is necessary because 267 * ccb->cpi.maxio is not supported for FreeBSD version 7.4 or earlier. 268 */ 269 static void 270 mrsas_action(struct cam_sim *sim, union ccb *ccb) 271 { 272 struct mrsas_softc *sc = (struct mrsas_softc *)cam_sim_softc(sim); 273 struct ccb_hdr *ccb_h = &(ccb->ccb_h); 274 u_int32_t device_id; 275 276 /* 277 * Check if the system going down 278 * or the adapter is in unrecoverable critical error 279 */ 280 if (sc->remove_in_progress || 281 (sc->adprecovery == MRSAS_HW_CRITICAL_ERROR)) { 282 ccb->ccb_h.status |= CAM_DEV_NOT_THERE; 283 xpt_done(ccb); 284 return; 285 } 286 287 switch (ccb->ccb_h.func_code) { 288 case XPT_SCSI_IO: 289 { 290 device_id = ccb_h->target_id; 291 292 /* 293 * bus 0 is LD, bus 1 is for system-PD 294 */ 295 if (cam_sim_bus(sim) == 1 && 296 sc->pd_list[device_id].driveState != MR_PD_STATE_SYSTEM) { 297 ccb->ccb_h.status |= CAM_DEV_NOT_THERE; 298 xpt_done(ccb); 299 } else { 300 if (mrsas_startio(sc, sim, ccb)) { 301 ccb->ccb_h.status |= CAM_REQ_INVALID; 302 xpt_done(ccb); 303 } 304 } 305 break; 306 } 307 case XPT_ABORT: 308 { 309 ccb->ccb_h.status = CAM_UA_ABORT; 310 xpt_done(ccb); 311 break; 312 } 313 case XPT_RESET_BUS: 314 { 315 xpt_done(ccb); 316 break; 317 } 318 case XPT_GET_TRAN_SETTINGS: 319 { 320 ccb->cts.protocol = PROTO_SCSI; 321 ccb->cts.protocol_version = SCSI_REV_2; 322 ccb->cts.transport = XPORT_SPI; 323 ccb->cts.transport_version = 2; 324 ccb->cts.xport_specific.spi.valid = CTS_SPI_VALID_DISC; 325 ccb->cts.xport_specific.spi.flags = CTS_SPI_FLAGS_DISC_ENB; 326 ccb->cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ; 327 ccb->cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB; 328 ccb->ccb_h.status = CAM_REQ_CMP; 329 xpt_done(ccb); 330 break; 331 } 332 case XPT_SET_TRAN_SETTINGS: 333 { 334 ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 335 xpt_done(ccb); 336 break; 337 } 338 case XPT_CALC_GEOMETRY: 339 { 340 cam_calc_geometry(&ccb->ccg, 1); 341 xpt_done(ccb); 342 break; 343 } 344 case XPT_PATH_INQ: 345 { 346 ccb->cpi.version_num = 1; 347 ccb->cpi.hba_inquiry = 0; 348 ccb->cpi.target_sprt = 0; 349 #if (__FreeBSD_version >= 902001) 350 ccb->cpi.hba_misc = PIM_UNMAPPED; 351 #else 352 ccb->cpi.hba_misc = 0; 353 #endif 354 ccb->cpi.hba_eng_cnt = 0; 355 ccb->cpi.max_lun = MRSAS_SCSI_MAX_LUNS; 356 ccb->cpi.unit_number = cam_sim_unit(sim); 357 ccb->cpi.bus_id = cam_sim_bus(sim); 358 ccb->cpi.initiator_id = MRSAS_SCSI_INITIATOR_ID; 359 ccb->cpi.base_transfer_speed = 150000; 360 strlcpy(ccb->cpi.sim_vid, "FreeBSD", SIM_IDLEN); 361 strlcpy(ccb->cpi.hba_vid, "AVAGO", HBA_IDLEN); 362 strlcpy(ccb->cpi.dev_name, cam_sim_name(sim), DEV_IDLEN); 363 ccb->cpi.transport = XPORT_SPI; 364 ccb->cpi.transport_version = 2; 365 ccb->cpi.protocol = PROTO_SCSI; 366 ccb->cpi.protocol_version = SCSI_REV_2; 367 if (ccb->cpi.bus_id == 0) 368 ccb->cpi.max_target = MRSAS_MAX_PD - 1; 369 else 370 ccb->cpi.max_target = MRSAS_MAX_LD_IDS - 1; 371 #if (__FreeBSD_version > 704000) 372 ccb->cpi.maxio = sc->max_sectors_per_req * 512; 373 #endif 374 ccb->ccb_h.status = CAM_REQ_CMP; 375 xpt_done(ccb); 376 break; 377 } 378 default: 379 { 380 ccb->ccb_h.status = CAM_REQ_INVALID; 381 xpt_done(ccb); 382 break; 383 } 384 } 385 } 386 387 /* 388 * mrsas_scsiio_timeout: Callback function for IO timed out 389 * input: mpt command context 390 * 391 * This function will execute after timeout value provided by ccb header from 392 * CAM layer, if timer expires. Driver will run timer for all DCDM and LDIO 393 * coming from CAM layer. This function is callback function for IO timeout 394 * and it runs in no-sleep context. Set do_timedout_reset in Adapter context 395 * so that it will execute OCR/Kill adpter from ocr_thread context. 396 */ 397 static void 398 mrsas_scsiio_timeout(void *data) 399 { 400 struct mrsas_mpt_cmd *cmd; 401 struct mrsas_softc *sc; 402 u_int32_t target_id; 403 404 if (!data) 405 return; 406 407 cmd = (struct mrsas_mpt_cmd *)data; 408 sc = cmd->sc; 409 410 if (cmd->ccb_ptr == NULL) { 411 printf("command timeout with NULL ccb\n"); 412 return; 413 } 414 415 /* 416 * Below callout is dummy entry so that it will be cancelled from 417 * mrsas_cmd_done(). Now Controller will go to OCR/Kill Adapter based 418 * on OCR enable/disable property of Controller from ocr_thread 419 * context. 420 */ 421 #if (__FreeBSD_version >= 1000510) 422 callout_reset_sbt(&cmd->cm_callout, SBT_1S * 180, 0, 423 mrsas_scsiio_timeout, cmd, 0); 424 #else 425 callout_reset(&cmd->cm_callout, (180000 * hz) / 1000, 426 mrsas_scsiio_timeout, cmd); 427 #endif 428 429 if (cmd->ccb_ptr->cpi.bus_id == 0) 430 target_id = cmd->ccb_ptr->ccb_h.target_id; 431 else 432 target_id = (cmd->ccb_ptr->ccb_h.target_id + (MRSAS_MAX_PD - 1)); 433 434 /* Save the cmd to be processed for TM, if it is not there in the array */ 435 if (sc->target_reset_pool[target_id] == NULL) { 436 sc->target_reset_pool[target_id] = cmd; 437 mrsas_atomic_inc(&sc->target_reset_outstanding); 438 } 439 440 return; 441 } 442 443 /* 444 * mrsas_startio: SCSI IO entry point 445 * input: Adapter instance soft state 446 * pointer to CAM Control Block 447 * 448 * This function is the SCSI IO entry point and it initiates IO processing. It 449 * copies the IO and depending if the IO is read/write or inquiry, it would 450 * call mrsas_build_ldio() or mrsas_build_dcdb(), respectively. It returns 0 451 * if the command is sent to firmware successfully, otherwise it returns 1. 452 */ 453 static int32_t 454 mrsas_startio(struct mrsas_softc *sc, struct cam_sim *sim, 455 union ccb *ccb) 456 { 457 struct mrsas_mpt_cmd *cmd, *r1_cmd = NULL; 458 struct ccb_hdr *ccb_h = &(ccb->ccb_h); 459 struct ccb_scsiio *csio = &(ccb->csio); 460 MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc; 461 u_int8_t cmd_type; 462 463 if ((csio->cdb_io.cdb_bytes[0]) == SYNCHRONIZE_CACHE && 464 (!sc->fw_sync_cache_support)) { 465 ccb->ccb_h.status = CAM_REQ_CMP; 466 xpt_done(ccb); 467 return (0); 468 } 469 ccb_h->status |= CAM_SIM_QUEUED; 470 471 if (mrsas_atomic_inc_return(&sc->fw_outstanding) > sc->max_scsi_cmds) { 472 ccb_h->status |= CAM_REQUEUE_REQ; 473 xpt_done(ccb); 474 mrsas_atomic_dec(&sc->fw_outstanding); 475 return (0); 476 } 477 478 cmd = mrsas_get_mpt_cmd(sc); 479 480 if (!cmd) { 481 ccb_h->status |= CAM_REQUEUE_REQ; 482 xpt_done(ccb); 483 mrsas_atomic_dec(&sc->fw_outstanding); 484 return (0); 485 } 486 487 if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) { 488 if (ccb_h->flags & CAM_DIR_IN) 489 cmd->flags |= MRSAS_DIR_IN; 490 if (ccb_h->flags & CAM_DIR_OUT) 491 cmd->flags |= MRSAS_DIR_OUT; 492 } else 493 cmd->flags = MRSAS_DIR_NONE; /* no data */ 494 495 /* For FreeBSD 9.2 and higher */ 496 #if (__FreeBSD_version >= 902001) 497 /* 498 * XXX We don't yet support physical addresses here. 499 */ 500 switch ((ccb->ccb_h.flags & CAM_DATA_MASK)) { 501 case CAM_DATA_PADDR: 502 case CAM_DATA_SG_PADDR: 503 device_printf(sc->mrsas_dev, "%s: physical addresses not supported\n", 504 __func__); 505 mrsas_release_mpt_cmd(cmd); 506 ccb_h->status = CAM_REQ_INVALID; 507 ccb_h->status &= ~CAM_SIM_QUEUED; 508 goto done; 509 case CAM_DATA_SG: 510 device_printf(sc->mrsas_dev, "%s: scatter gather is not supported\n", 511 __func__); 512 mrsas_release_mpt_cmd(cmd); 513 ccb_h->status = CAM_REQ_INVALID; 514 goto done; 515 case CAM_DATA_VADDR: 516 cmd->length = csio->dxfer_len; 517 if (cmd->length) 518 cmd->data = csio->data_ptr; 519 break; 520 case CAM_DATA_BIO: 521 cmd->length = csio->dxfer_len; 522 if (cmd->length) 523 cmd->data = csio->data_ptr; 524 break; 525 default: 526 ccb->ccb_h.status = CAM_REQ_INVALID; 527 goto done; 528 } 529 #else 530 if (!(ccb_h->flags & CAM_DATA_PHYS)) { /* Virtual data address */ 531 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 532 cmd->length = csio->dxfer_len; 533 if (cmd->length) 534 cmd->data = csio->data_ptr; 535 } else { 536 mrsas_release_mpt_cmd(cmd); 537 ccb_h->status = CAM_REQ_INVALID; 538 goto done; 539 } 540 } else { /* Data addresses are physical. */ 541 mrsas_release_mpt_cmd(cmd); 542 ccb_h->status = CAM_REQ_INVALID; 543 ccb_h->status &= ~CAM_SIM_QUEUED; 544 goto done; 545 } 546 #endif 547 /* save ccb ptr */ 548 cmd->ccb_ptr = ccb; 549 550 req_desc = mrsas_get_request_desc(sc, (cmd->index) - 1); 551 if (!req_desc) { 552 device_printf(sc->mrsas_dev, "Cannot get request_descriptor.\n"); 553 return (FAIL); 554 } 555 memset(req_desc, 0, sizeof(MRSAS_REQUEST_DESCRIPTOR_UNION)); 556 cmd->request_desc = req_desc; 557 558 if (ccb_h->flags & CAM_CDB_POINTER) 559 bcopy(csio->cdb_io.cdb_ptr, cmd->io_request->CDB.CDB32, csio->cdb_len); 560 else 561 bcopy(csio->cdb_io.cdb_bytes, cmd->io_request->CDB.CDB32, csio->cdb_len); 562 mtx_lock(&sc->raidmap_lock); 563 564 /* Check for IO type READ-WRITE targeted for Logical Volume */ 565 cmd_type = mrsas_find_io_type(sim, ccb); 566 switch (cmd_type) { 567 case READ_WRITE_LDIO: 568 /* Build READ-WRITE IO for Logical Volume */ 569 if (mrsas_build_ldio_rw(sc, cmd, ccb)) { 570 device_printf(sc->mrsas_dev, "Build RW LDIO failed.\n"); 571 mtx_unlock(&sc->raidmap_lock); 572 mrsas_release_mpt_cmd(cmd); 573 return (1); 574 } 575 break; 576 case NON_READ_WRITE_LDIO: 577 /* Build NON READ-WRITE IO for Logical Volume */ 578 if (mrsas_build_ldio_nonrw(sc, cmd, ccb)) { 579 device_printf(sc->mrsas_dev, "Build NON-RW LDIO failed.\n"); 580 mtx_unlock(&sc->raidmap_lock); 581 mrsas_release_mpt_cmd(cmd); 582 return (1); 583 } 584 break; 585 case READ_WRITE_SYSPDIO: 586 case NON_READ_WRITE_SYSPDIO: 587 if (sc->secure_jbod_support && 588 (cmd_type == NON_READ_WRITE_SYSPDIO)) { 589 /* Build NON-RW IO for JBOD */ 590 if (mrsas_build_syspdio(sc, cmd, ccb, sim, 0)) { 591 device_printf(sc->mrsas_dev, 592 "Build SYSPDIO failed.\n"); 593 mtx_unlock(&sc->raidmap_lock); 594 mrsas_release_mpt_cmd(cmd); 595 return (1); 596 } 597 } else { 598 /* Build RW IO for JBOD */ 599 if (mrsas_build_syspdio(sc, cmd, ccb, sim, 1)) { 600 device_printf(sc->mrsas_dev, 601 "Build SYSPDIO failed.\n"); 602 mtx_unlock(&sc->raidmap_lock); 603 mrsas_release_mpt_cmd(cmd); 604 return (1); 605 } 606 } 607 } 608 mtx_unlock(&sc->raidmap_lock); 609 610 if (cmd->flags == MRSAS_DIR_IN) /* from device */ 611 cmd->io_request->Control |= htole32(MPI2_SCSIIO_CONTROL_READ); 612 else if (cmd->flags == MRSAS_DIR_OUT) /* to device */ 613 cmd->io_request->Control |= htole32(MPI2_SCSIIO_CONTROL_WRITE); 614 615 cmd->io_request->SGLFlags = htole16(MPI2_SGE_FLAGS_64_BIT_ADDRESSING); 616 cmd->io_request->SGLOffset0 = offsetof(MRSAS_RAID_SCSI_IO_REQUEST, SGL) / 4; 617 cmd->io_request->SenseBufferLowAddress = htole32(cmd->sense_phys_addr & 0xFFFFFFFF); 618 cmd->io_request->SenseBufferLength = MRSAS_SCSI_SENSE_BUFFERSIZE; 619 620 req_desc = cmd->request_desc; 621 req_desc->SCSIIO.SMID = htole16(cmd->index); 622 623 /* 624 * Start timer for IO timeout. Default timeout value is 90 second. 625 */ 626 cmd->callout_owner = true; 627 #if (__FreeBSD_version >= 1000510) 628 callout_reset_sbt(&cmd->cm_callout, SBT_1S * 180, 0, 629 mrsas_scsiio_timeout, cmd, 0); 630 #else 631 callout_reset(&cmd->cm_callout, (180000 * hz) / 1000, 632 mrsas_scsiio_timeout, cmd); 633 #endif 634 635 if (mrsas_atomic_read(&sc->fw_outstanding) > sc->io_cmds_highwater) 636 sc->io_cmds_highwater++; 637 638 /* 639 * if it is raid 1/10 fp write capable. 640 * try to get second command from pool and construct it. 641 * From FW, it has confirmed that lba values of two PDs corresponds to 642 * single R1/10 LD are always same 643 * 644 */ 645 /* 646 * driver side count always should be less than max_fw_cmds to get 647 * new command 648 */ 649 if (cmd->r1_alt_dev_handle != MR_DEVHANDLE_INVALID) { 650 mrsas_prepare_secondRaid1_IO(sc, cmd); 651 mrsas_fire_cmd(sc, req_desc->addr.u.low, 652 req_desc->addr.u.high); 653 r1_cmd = cmd->peer_cmd; 654 mrsas_fire_cmd(sc, r1_cmd->request_desc->addr.u.low, 655 r1_cmd->request_desc->addr.u.high); 656 } else { 657 mrsas_fire_cmd(sc, req_desc->addr.u.low, 658 req_desc->addr.u.high); 659 } 660 661 return (0); 662 663 done: 664 xpt_done(ccb); 665 mrsas_atomic_dec(&sc->fw_outstanding); 666 return (0); 667 } 668 669 /* 670 * mrsas_find_io_type: Determines if IO is read/write or inquiry 671 * input: pointer to CAM Control Block 672 * 673 * This function determines if the IO is read/write or inquiry. It returns a 1 674 * if the IO is read/write and 0 if it is inquiry. 675 */ 676 int 677 mrsas_find_io_type(struct cam_sim *sim, union ccb *ccb) 678 { 679 struct ccb_scsiio *csio = &(ccb->csio); 680 681 switch (csio->cdb_io.cdb_bytes[0]) { 682 case READ_10: 683 case WRITE_10: 684 case READ_12: 685 case WRITE_12: 686 case READ_6: 687 case WRITE_6: 688 case READ_16: 689 case WRITE_16: 690 return (cam_sim_bus(sim) ? 691 READ_WRITE_SYSPDIO : READ_WRITE_LDIO); 692 default: 693 return (cam_sim_bus(sim) ? 694 NON_READ_WRITE_SYSPDIO : NON_READ_WRITE_LDIO); 695 } 696 } 697 698 /* 699 * mrsas_get_mpt_cmd: Get a cmd from free command pool 700 * input: Adapter instance soft state 701 * 702 * This function removes an MPT command from the command free list and 703 * initializes it. 704 */ 705 struct mrsas_mpt_cmd * 706 mrsas_get_mpt_cmd(struct mrsas_softc *sc) 707 { 708 struct mrsas_mpt_cmd *cmd = NULL; 709 710 mtx_lock(&sc->mpt_cmd_pool_lock); 711 if (!TAILQ_EMPTY(&sc->mrsas_mpt_cmd_list_head)) { 712 cmd = TAILQ_FIRST(&sc->mrsas_mpt_cmd_list_head); 713 TAILQ_REMOVE(&sc->mrsas_mpt_cmd_list_head, cmd, next); 714 } else { 715 goto out; 716 } 717 718 memset((uint8_t *)cmd->io_request, 0, MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE); 719 cmd->data = NULL; 720 cmd->length = 0; 721 cmd->flags = 0; 722 cmd->error_code = 0; 723 cmd->load_balance = 0; 724 cmd->ccb_ptr = NULL; 725 out: 726 mtx_unlock(&sc->mpt_cmd_pool_lock); 727 return cmd; 728 } 729 730 /* 731 * mrsas_release_mpt_cmd: Return a cmd to free command pool 732 * input: Command packet for return to free command pool 733 * 734 * This function returns an MPT command to the free command list. 735 */ 736 void 737 mrsas_release_mpt_cmd(struct mrsas_mpt_cmd *cmd) 738 { 739 struct mrsas_softc *sc = cmd->sc; 740 741 mtx_lock(&sc->mpt_cmd_pool_lock); 742 cmd->r1_alt_dev_handle = MR_DEVHANDLE_INVALID; 743 cmd->sync_cmd_idx = (u_int32_t)MRSAS_ULONG_MAX; 744 cmd->peer_cmd = NULL; 745 cmd->cmd_completed = 0; 746 memset((uint8_t *)cmd->io_request, 0, 747 sizeof(MRSAS_RAID_SCSI_IO_REQUEST)); 748 TAILQ_INSERT_HEAD(&(sc->mrsas_mpt_cmd_list_head), cmd, next); 749 mtx_unlock(&sc->mpt_cmd_pool_lock); 750 751 return; 752 } 753 754 /* 755 * mrsas_get_request_desc: Get request descriptor from array 756 * input: Adapter instance soft state 757 * SMID index 758 * 759 * This function returns a pointer to the request descriptor. 760 */ 761 MRSAS_REQUEST_DESCRIPTOR_UNION * 762 mrsas_get_request_desc(struct mrsas_softc *sc, u_int16_t index) 763 { 764 u_int8_t *p; 765 766 KASSERT(index < sc->max_fw_cmds, ("req_desc is out of range")); 767 p = sc->req_desc + sizeof(MRSAS_REQUEST_DESCRIPTOR_UNION) * index; 768 769 return (MRSAS_REQUEST_DESCRIPTOR_UNION *) p; 770 } 771 772 /* mrsas_prepare_secondRaid1_IO 773 * It prepares the raid 1 second IO 774 */ 775 void 776 mrsas_prepare_secondRaid1_IO(struct mrsas_softc *sc, 777 struct mrsas_mpt_cmd *cmd) 778 { 779 MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc, *req_desc2 = NULL; 780 struct mrsas_mpt_cmd *r1_cmd; 781 782 r1_cmd = cmd->peer_cmd; 783 req_desc = cmd->request_desc; 784 785 /* 786 * copy the io request frame as well as 8 SGEs data for r1 787 * command 788 */ 789 memcpy(r1_cmd->io_request, cmd->io_request, 790 (sizeof(MRSAS_RAID_SCSI_IO_REQUEST))); 791 memcpy(&r1_cmd->io_request->SGL, &cmd->io_request->SGL, 792 (sc->max_sge_in_main_msg * sizeof(MPI2_SGE_IO_UNION))); 793 794 /* sense buffer is different for r1 command */ 795 r1_cmd->io_request->SenseBufferLowAddress = htole32(r1_cmd->sense_phys_addr & 0xFFFFFFFF); 796 r1_cmd->ccb_ptr = cmd->ccb_ptr; 797 798 req_desc2 = mrsas_get_request_desc(sc, r1_cmd->index - 1); 799 req_desc2->addr.Words = 0; 800 r1_cmd->request_desc = req_desc2; 801 req_desc2->SCSIIO.SMID = r1_cmd->index; 802 req_desc2->SCSIIO.RequestFlags = req_desc->SCSIIO.RequestFlags; 803 r1_cmd->request_desc->SCSIIO.DevHandle = cmd->r1_alt_dev_handle; 804 r1_cmd->r1_alt_dev_handle = cmd->io_request->DevHandle; 805 r1_cmd->io_request->DevHandle = cmd->r1_alt_dev_handle; 806 cmd->io_request->RaidContext.raid_context_g35.smid.peerSMID = 807 r1_cmd->index; 808 r1_cmd->io_request->RaidContext.raid_context_g35.smid.peerSMID = 809 cmd->index; 810 /* 811 * MSIxIndex of both commands request descriptors 812 * should be same 813 */ 814 r1_cmd->request_desc->SCSIIO.MSIxIndex = cmd->request_desc->SCSIIO.MSIxIndex; 815 /* span arm is different for r1 cmd */ 816 r1_cmd->io_request->RaidContext.raid_context_g35.spanArm = 817 cmd->io_request->RaidContext.raid_context_g35.spanArm + 1; 818 819 } 820 821 /* 822 * mrsas_build_ldio_rw: Builds an LDIO command 823 * input: Adapter instance soft state 824 * Pointer to command packet 825 * Pointer to CCB 826 * 827 * This function builds the LDIO command packet. It returns 0 if the command is 828 * built successfully, otherwise it returns a 1. 829 */ 830 int 831 mrsas_build_ldio_rw(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd, 832 union ccb *ccb) 833 { 834 struct ccb_hdr *ccb_h = &(ccb->ccb_h); 835 struct ccb_scsiio *csio = &(ccb->csio); 836 u_int32_t device_id; 837 MRSAS_RAID_SCSI_IO_REQUEST *io_request; 838 839 device_id = ccb_h->target_id; 840 841 io_request = cmd->io_request; 842 io_request->RaidContext.raid_context.VirtualDiskTgtId = htole16(device_id); 843 io_request->RaidContext.raid_context.status = 0; 844 io_request->RaidContext.raid_context.exStatus = 0; 845 846 /* just the cdb len, other flags zero, and ORed-in later for FP */ 847 io_request->IoFlags = htole16(csio->cdb_len); 848 849 if (mrsas_setup_io(sc, cmd, ccb, device_id, io_request) != SUCCESS) 850 device_printf(sc->mrsas_dev, "Build ldio or fpio error\n"); 851 852 io_request->DataLength = htole32(cmd->length); 853 854 if (mrsas_map_request(sc, cmd, ccb) == SUCCESS) { 855 if (sc->is_ventura || sc->is_aero) 856 io_request->RaidContext.raid_context_g35.numSGE = cmd->sge_count; 857 else { 858 /* 859 * numSGE store lower 8 bit of sge_count. numSGEExt store 860 * higher 8 bit of sge_count 861 */ 862 io_request->RaidContext.raid_context.numSGE = cmd->sge_count; 863 io_request->RaidContext.raid_context.numSGEExt = (uint8_t)(cmd->sge_count >> 8); 864 } 865 866 } else { 867 device_printf(sc->mrsas_dev, "Data map/load failed.\n"); 868 return (FAIL); 869 } 870 return (0); 871 } 872 873 /* stream detection on read and and write IOs */ 874 static void 875 mrsas_stream_detect(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd, 876 struct IO_REQUEST_INFO *io_info) 877 { 878 u_int32_t device_id = io_info->ldTgtId; 879 LD_STREAM_DETECT *current_ld_SD = sc->streamDetectByLD[device_id]; 880 u_int32_t *track_stream = ¤t_ld_SD->mruBitMap; 881 u_int32_t streamNum, shiftedValues, unshiftedValues; 882 u_int32_t indexValueMask, shiftedValuesMask; 883 int i; 884 boolean_t isReadAhead = false; 885 STREAM_DETECT *current_SD; 886 887 /* find possible stream */ 888 for (i = 0; i < MAX_STREAMS_TRACKED; ++i) { 889 streamNum = (*track_stream >> (i * BITS_PER_INDEX_STREAM)) & 890 STREAM_MASK; 891 current_SD = ¤t_ld_SD->streamTrack[streamNum]; 892 /* 893 * if we found a stream, update the raid context and 894 * also update the mruBitMap 895 */ 896 if (current_SD->nextSeqLBA && 897 io_info->ldStartBlock >= current_SD->nextSeqLBA && 898 (io_info->ldStartBlock <= (current_SD->nextSeqLBA+32)) && 899 (current_SD->isRead == io_info->isRead)) { 900 if (io_info->ldStartBlock != current_SD->nextSeqLBA && 901 (!io_info->isRead || !isReadAhead)) { 902 /* 903 * Once the API availible we need to change this. 904 * At this point we are not allowing any gap 905 */ 906 continue; 907 } 908 cmd->io_request->RaidContext.raid_context_g35.streamDetected = TRUE; 909 current_SD->nextSeqLBA = io_info->ldStartBlock + io_info->numBlocks; 910 /* 911 * update the mruBitMap LRU 912 */ 913 shiftedValuesMask = (1 << i * BITS_PER_INDEX_STREAM) - 1 ; 914 shiftedValues = ((*track_stream & shiftedValuesMask) << 915 BITS_PER_INDEX_STREAM); 916 indexValueMask = STREAM_MASK << i * BITS_PER_INDEX_STREAM; 917 unshiftedValues = (*track_stream) & 918 (~(shiftedValuesMask | indexValueMask)); 919 *track_stream = 920 (unshiftedValues | shiftedValues | streamNum); 921 return; 922 } 923 } 924 /* 925 * if we did not find any stream, create a new one from the least recently used 926 */ 927 streamNum = (*track_stream >> 928 ((MAX_STREAMS_TRACKED - 1) * BITS_PER_INDEX_STREAM)) & STREAM_MASK; 929 current_SD = ¤t_ld_SD->streamTrack[streamNum]; 930 current_SD->isRead = io_info->isRead; 931 current_SD->nextSeqLBA = io_info->ldStartBlock + io_info->numBlocks; 932 *track_stream = (((*track_stream & ZERO_LAST_STREAM) << 4) | streamNum); 933 return; 934 } 935 936 /* 937 * mrsas_setup_io: Set up data including Fast Path I/O 938 * input: Adapter instance soft state 939 * Pointer to command packet 940 * Pointer to CCB 941 * 942 * This function builds the DCDB inquiry command. It returns 0 if the command 943 * is built successfully, otherwise it returns a 1. 944 */ 945 int 946 mrsas_setup_io(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd, 947 union ccb *ccb, u_int32_t device_id, 948 MRSAS_RAID_SCSI_IO_REQUEST * io_request) 949 { 950 struct ccb_hdr *ccb_h = &(ccb->ccb_h); 951 struct ccb_scsiio *csio = &(ccb->csio); 952 struct IO_REQUEST_INFO io_info; 953 MR_DRV_RAID_MAP_ALL *map_ptr; 954 struct mrsas_mpt_cmd *r1_cmd = NULL; 955 956 MR_LD_RAID *raid; 957 u_int8_t fp_possible; 958 u_int32_t start_lba_hi, start_lba_lo, ld_block_size, ld; 959 u_int32_t datalength = 0; 960 961 io_request->RaidContext.raid_context.VirtualDiskTgtId = htole16(device_id); 962 963 start_lba_lo = 0; 964 start_lba_hi = 0; 965 fp_possible = 0; 966 967 /* 968 * READ_6 (0x08) or WRITE_6 (0x0A) cdb 969 */ 970 if (csio->cdb_len == 6) { 971 datalength = (u_int32_t)csio->cdb_io.cdb_bytes[4]; 972 start_lba_lo = ((u_int32_t)csio->cdb_io.cdb_bytes[1] << 16) | 973 ((u_int32_t)csio->cdb_io.cdb_bytes[2] << 8) | 974 (u_int32_t)csio->cdb_io.cdb_bytes[3]; 975 start_lba_lo &= 0x1FFFFF; 976 } 977 /* 978 * READ_10 (0x28) or WRITE_6 (0x2A) cdb 979 */ 980 else if (csio->cdb_len == 10) { 981 datalength = (u_int32_t)csio->cdb_io.cdb_bytes[8] | 982 ((u_int32_t)csio->cdb_io.cdb_bytes[7] << 8); 983 start_lba_lo = ((u_int32_t)csio->cdb_io.cdb_bytes[2] << 24) | 984 ((u_int32_t)csio->cdb_io.cdb_bytes[3] << 16) | 985 (u_int32_t)csio->cdb_io.cdb_bytes[4] << 8 | 986 ((u_int32_t)csio->cdb_io.cdb_bytes[5]); 987 } 988 /* 989 * READ_12 (0xA8) or WRITE_12 (0xAA) cdb 990 */ 991 else if (csio->cdb_len == 12) { 992 datalength = (u_int32_t)csio->cdb_io.cdb_bytes[6] << 24 | 993 ((u_int32_t)csio->cdb_io.cdb_bytes[7] << 16) | 994 ((u_int32_t)csio->cdb_io.cdb_bytes[8] << 8) | 995 ((u_int32_t)csio->cdb_io.cdb_bytes[9]); 996 start_lba_lo = ((u_int32_t)csio->cdb_io.cdb_bytes[2] << 24) | 997 ((u_int32_t)csio->cdb_io.cdb_bytes[3] << 16) | 998 (u_int32_t)csio->cdb_io.cdb_bytes[4] << 8 | 999 ((u_int32_t)csio->cdb_io.cdb_bytes[5]); 1000 } 1001 /* 1002 * READ_16 (0x88) or WRITE_16 (0xx8A) cdb 1003 */ 1004 else if (csio->cdb_len == 16) { 1005 datalength = (u_int32_t)csio->cdb_io.cdb_bytes[10] << 24 | 1006 ((u_int32_t)csio->cdb_io.cdb_bytes[11] << 16) | 1007 ((u_int32_t)csio->cdb_io.cdb_bytes[12] << 8) | 1008 ((u_int32_t)csio->cdb_io.cdb_bytes[13]); 1009 start_lba_lo = ((u_int32_t)csio->cdb_io.cdb_bytes[6] << 24) | 1010 ((u_int32_t)csio->cdb_io.cdb_bytes[7] << 16) | 1011 (u_int32_t)csio->cdb_io.cdb_bytes[8] << 8 | 1012 ((u_int32_t)csio->cdb_io.cdb_bytes[9]); 1013 start_lba_hi = ((u_int32_t)csio->cdb_io.cdb_bytes[2] << 24) | 1014 ((u_int32_t)csio->cdb_io.cdb_bytes[3] << 16) | 1015 (u_int32_t)csio->cdb_io.cdb_bytes[4] << 8 | 1016 ((u_int32_t)csio->cdb_io.cdb_bytes[5]); 1017 } 1018 memset(&io_info, 0, sizeof(struct IO_REQUEST_INFO)); 1019 io_info.ldStartBlock = ((u_int64_t)start_lba_hi << 32) | start_lba_lo; 1020 io_info.numBlocks = datalength; 1021 io_info.ldTgtId = device_id; 1022 io_info.r1_alt_dev_handle = MR_DEVHANDLE_INVALID; 1023 1024 io_request->DataLength = htole32(cmd->length); 1025 1026 switch (ccb_h->flags & CAM_DIR_MASK) { 1027 case CAM_DIR_IN: 1028 io_info.isRead = 1; 1029 break; 1030 case CAM_DIR_OUT: 1031 io_info.isRead = 0; 1032 break; 1033 case CAM_DIR_NONE: 1034 default: 1035 mrsas_dprint(sc, MRSAS_TRACE, "From %s : DMA Flag is %d \n", __func__, ccb_h->flags & CAM_DIR_MASK); 1036 break; 1037 } 1038 1039 map_ptr = sc->ld_drv_map[(sc->map_id & 1)]; 1040 ld_block_size = MR_LdBlockSizeGet(device_id, map_ptr); 1041 1042 ld = MR_TargetIdToLdGet(device_id, map_ptr); 1043 if ((ld >= MAX_LOGICAL_DRIVES_EXT) || (!sc->fast_path_io)) { 1044 io_request->RaidContext.raid_context.regLockFlags = 0; 1045 fp_possible = 0; 1046 } else { 1047 if (MR_BuildRaidContext(sc, &io_info, &io_request->RaidContext.raid_context, map_ptr)) 1048 fp_possible = io_info.fpOkForIo; 1049 } 1050 1051 raid = MR_LdRaidGet(ld, map_ptr); 1052 /* Store the TM capability value in cmd */ 1053 cmd->tmCapable = raid->capability.tmCapable; 1054 1055 cmd->request_desc->SCSIIO.MSIxIndex = 1056 sc->msix_vectors ? smp_processor_id() % sc->msix_vectors : 0; 1057 1058 if (sc->is_ventura || sc->is_aero) { 1059 if (sc->streamDetectByLD) { 1060 mtx_lock(&sc->stream_lock); 1061 mrsas_stream_detect(sc, cmd, &io_info); 1062 mtx_unlock(&sc->stream_lock); 1063 /* In ventura if stream detected for a read and 1064 * it is read ahead capable make this IO as LDIO */ 1065 if (io_request->RaidContext.raid_context_g35.streamDetected && 1066 io_info.isRead && io_info.raCapable) 1067 fp_possible = FALSE; 1068 } 1069 1070 /* Set raid 1/10 fast path write capable bit in io_info. 1071 * Note - reset peer_cmd and r1_alt_dev_handle if fp_possible 1072 * disabled after this point. Try not to add more check for 1073 * fp_possible toggle after this. 1074 */ 1075 if (fp_possible && 1076 (io_info.r1_alt_dev_handle != MR_DEVHANDLE_INVALID) && 1077 (raid->level == 1) && !io_info.isRead) { 1078 if (mrsas_atomic_inc_return(&sc->fw_outstanding) > sc->max_scsi_cmds) { 1079 fp_possible = FALSE; 1080 mrsas_atomic_dec(&sc->fw_outstanding); 1081 } else { 1082 r1_cmd = mrsas_get_mpt_cmd(sc); 1083 if (!r1_cmd) { 1084 fp_possible = FALSE; 1085 mrsas_atomic_dec(&sc->fw_outstanding); 1086 } 1087 else { 1088 cmd->peer_cmd = r1_cmd; 1089 r1_cmd->peer_cmd = cmd; 1090 } 1091 } 1092 } 1093 } 1094 1095 if (fp_possible) { 1096 mrsas_set_pd_lba(io_request, csio->cdb_len, &io_info, ccb, map_ptr, 1097 start_lba_lo, ld_block_size); 1098 io_request->Function = MPI2_FUNCTION_SCSI_IO_REQUEST; 1099 cmd->request_desc->SCSIIO.RequestFlags = 1100 (MPI2_REQ_DESCRIPT_FLAGS_FP_IO << 1101 MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); 1102 if (sc->mrsas_gen3_ctrl) { 1103 if (io_request->RaidContext.raid_context.regLockFlags == REGION_TYPE_UNUSED) 1104 cmd->request_desc->SCSIIO.RequestFlags = 1105 (MRSAS_REQ_DESCRIPT_FLAGS_NO_LOCK << 1106 MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); 1107 io_request->RaidContext.raid_context.Type = MPI2_TYPE_CUDA; 1108 io_request->RaidContext.raid_context.nseg = 0x1; 1109 io_request->IoFlags |= htole16(MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH); 1110 io_request->RaidContext.raid_context.regLockFlags |= 1111 (MR_RL_FLAGS_GRANT_DESTINATION_CUDA | 1112 MR_RL_FLAGS_SEQ_NUM_ENABLE); 1113 } else if (sc->is_ventura || sc->is_aero) { 1114 io_request->RaidContext.raid_context_g35.Type = MPI2_TYPE_CUDA; 1115 io_request->RaidContext.raid_context_g35.nseg = 0x1; 1116 io_request->RaidContext.raid_context_g35.routingFlags.bits.sqn = 1; 1117 io_request->IoFlags |= htole16(MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH); 1118 if (io_request->RaidContext.raid_context_g35.routingFlags.bits.sld) { 1119 io_request->RaidContext.raid_context_g35.RAIDFlags = 1120 (MR_RAID_FLAGS_IO_SUB_TYPE_CACHE_BYPASS 1121 << MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT); 1122 } 1123 } 1124 if ((sc->load_balance_info[device_id].loadBalanceFlag) && 1125 (io_info.isRead)) { 1126 io_info.devHandle = 1127 mrsas_get_updated_dev_handle(sc, 1128 &sc->load_balance_info[device_id], &io_info); 1129 cmd->load_balance = MRSAS_LOAD_BALANCE_FLAG; 1130 cmd->pd_r1_lb = io_info.pd_after_lb; 1131 if (sc->is_ventura || sc->is_aero) 1132 io_request->RaidContext.raid_context_g35.spanArm = io_info.span_arm; 1133 else 1134 io_request->RaidContext.raid_context.spanArm = io_info.span_arm; 1135 } else 1136 cmd->load_balance = 0; 1137 1138 if (sc->is_ventura || sc->is_aero) 1139 cmd->r1_alt_dev_handle = io_info.r1_alt_dev_handle; 1140 else 1141 cmd->r1_alt_dev_handle = MR_DEVHANDLE_INVALID; 1142 1143 cmd->request_desc->SCSIIO.DevHandle = io_info.devHandle; 1144 io_request->DevHandle = io_info.devHandle; 1145 cmd->pdInterface = io_info.pdInterface; 1146 } else { 1147 /* Not FP IO */ 1148 io_request->RaidContext.raid_context.timeoutValue = htole16(map_ptr->raidMap.fpPdIoTimeoutSec); 1149 cmd->request_desc->SCSIIO.RequestFlags = 1150 (MRSAS_REQ_DESCRIPT_FLAGS_LD_IO << 1151 MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); 1152 if (sc->mrsas_gen3_ctrl) { 1153 if (io_request->RaidContext.raid_context.regLockFlags == REGION_TYPE_UNUSED) 1154 cmd->request_desc->SCSIIO.RequestFlags = 1155 (MRSAS_REQ_DESCRIPT_FLAGS_NO_LOCK << 1156 MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); 1157 io_request->RaidContext.raid_context.Type = MPI2_TYPE_CUDA; 1158 io_request->RaidContext.raid_context.regLockFlags |= 1159 (MR_RL_FLAGS_GRANT_DESTINATION_CPU0 | 1160 MR_RL_FLAGS_SEQ_NUM_ENABLE); 1161 io_request->RaidContext.raid_context.nseg = 0x1; 1162 } else if (sc->is_ventura || sc->is_aero) { 1163 io_request->RaidContext.raid_context_g35.Type = MPI2_TYPE_CUDA; 1164 io_request->RaidContext.raid_context_g35.routingFlags.bits.sqn = 1; 1165 io_request->RaidContext.raid_context_g35.nseg = 0x1; 1166 } 1167 io_request->Function = MRSAS_MPI2_FUNCTION_LD_IO_REQUEST; 1168 io_request->DevHandle = htole16(device_id); 1169 } 1170 return (0); 1171 } 1172 1173 /* 1174 * mrsas_build_ldio_nonrw: Builds an LDIO command 1175 * input: Adapter instance soft state 1176 * Pointer to command packet 1177 * Pointer to CCB 1178 * 1179 * This function builds the LDIO command packet. It returns 0 if the command is 1180 * built successfully, otherwise it returns a 1. 1181 */ 1182 int 1183 mrsas_build_ldio_nonrw(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd, 1184 union ccb *ccb) 1185 { 1186 struct ccb_hdr *ccb_h = &(ccb->ccb_h); 1187 u_int32_t device_id, ld; 1188 MR_DRV_RAID_MAP_ALL *map_ptr; 1189 MR_LD_RAID *raid; 1190 MRSAS_RAID_SCSI_IO_REQUEST *io_request; 1191 1192 io_request = cmd->io_request; 1193 device_id = ccb_h->target_id; 1194 1195 map_ptr = sc->ld_drv_map[(sc->map_id & 1)]; 1196 ld = MR_TargetIdToLdGet(device_id, map_ptr); 1197 raid = MR_LdRaidGet(ld, map_ptr); 1198 /* Store the TM capability value in cmd */ 1199 cmd->tmCapable = raid->capability.tmCapable; 1200 1201 /* FW path for LD Non-RW (SCSI management commands) */ 1202 io_request->Function = MRSAS_MPI2_FUNCTION_LD_IO_REQUEST; 1203 io_request->DevHandle = device_id; 1204 cmd->request_desc->SCSIIO.RequestFlags = 1205 (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO << 1206 MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); 1207 1208 io_request->RaidContext.raid_context.VirtualDiskTgtId = device_id; 1209 io_request->LUN[1] = ccb_h->target_lun & 0xF; 1210 io_request->DataLength = cmd->length; 1211 1212 if (mrsas_map_request(sc, cmd, ccb) == SUCCESS) { 1213 if (sc->is_ventura || sc->is_aero) 1214 io_request->RaidContext.raid_context_g35.numSGE = cmd->sge_count; 1215 else { 1216 /* 1217 * numSGE store lower 8 bit of sge_count. numSGEExt store 1218 * higher 8 bit of sge_count 1219 */ 1220 io_request->RaidContext.raid_context.numSGE = cmd->sge_count; 1221 io_request->RaidContext.raid_context.numSGEExt = (uint8_t)(cmd->sge_count >> 8); 1222 } 1223 } else { 1224 device_printf(sc->mrsas_dev, "Data map/load failed.\n"); 1225 return (1); 1226 } 1227 return (0); 1228 } 1229 1230 /* 1231 * mrsas_build_syspdio: Builds an DCDB command 1232 * input: Adapter instance soft state 1233 * Pointer to command packet 1234 * Pointer to CCB 1235 * 1236 * This function builds the DCDB inquiry command. It returns 0 if the command 1237 * is built successfully, otherwise it returns a 1. 1238 */ 1239 int 1240 mrsas_build_syspdio(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd, 1241 union ccb *ccb, struct cam_sim *sim, u_int8_t fp_possible) 1242 { 1243 struct ccb_hdr *ccb_h = &(ccb->ccb_h); 1244 u_int32_t device_id; 1245 MR_DRV_RAID_MAP_ALL *local_map_ptr; 1246 MRSAS_RAID_SCSI_IO_REQUEST *io_request; 1247 struct MR_PD_CFG_SEQ_NUM_SYNC *pd_sync; 1248 1249 io_request = cmd->io_request; 1250 device_id = ccb_h->target_id; 1251 local_map_ptr = sc->ld_drv_map[(sc->map_id & 1)]; 1252 io_request->RaidContext.raid_context.RAIDFlags = MR_RAID_FLAGS_IO_SUB_TYPE_SYSTEM_PD 1253 << MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT; 1254 io_request->RaidContext.raid_context.regLockFlags = 0; 1255 io_request->RaidContext.raid_context.regLockRowLBA = 0; 1256 io_request->RaidContext.raid_context.regLockLength = 0; 1257 1258 cmd->pdInterface = sc->target_list[device_id].interface_type; 1259 1260 /* If FW supports PD sequence number */ 1261 if (sc->use_seqnum_jbod_fp && 1262 sc->pd_list[device_id].driveType == 0x00) { 1263 //printf("Using Drv seq num\n"); 1264 pd_sync = (void *)sc->jbodmap_mem[(sc->pd_seq_map_id - 1) & 1]; 1265 cmd->tmCapable = pd_sync->seq[device_id].capability.tmCapable; 1266 /* More than 256 PD/JBOD support for Ventura */ 1267 if (sc->support_morethan256jbod) 1268 io_request->RaidContext.raid_context.VirtualDiskTgtId = 1269 pd_sync->seq[device_id].pdTargetId; 1270 else 1271 io_request->RaidContext.raid_context.VirtualDiskTgtId = 1272 htole16(device_id + 255); 1273 io_request->RaidContext.raid_context.configSeqNum = pd_sync->seq[device_id].seqNum; 1274 io_request->DevHandle = pd_sync->seq[device_id].devHandle; 1275 if (sc->is_ventura || sc->is_aero) 1276 io_request->RaidContext.raid_context_g35.routingFlags.bits.sqn = 1; 1277 else 1278 io_request->RaidContext.raid_context.regLockFlags |= 1279 (MR_RL_FLAGS_SEQ_NUM_ENABLE | MR_RL_FLAGS_GRANT_DESTINATION_CUDA); 1280 /* raid_context.Type = MPI2_TYPE_CUDA is valid only, 1281 * if FW support Jbod Sequence number 1282 */ 1283 io_request->RaidContext.raid_context.Type = MPI2_TYPE_CUDA; 1284 io_request->RaidContext.raid_context.nseg = 0x1; 1285 } else if (sc->fast_path_io) { 1286 //printf("Using LD RAID map\n"); 1287 io_request->RaidContext.raid_context.VirtualDiskTgtId = htole16(device_id); 1288 io_request->RaidContext.raid_context.configSeqNum = 0; 1289 local_map_ptr = sc->ld_drv_map[(sc->map_id & 1)]; 1290 io_request->DevHandle = 1291 local_map_ptr->raidMap.devHndlInfo[device_id].curDevHdl; 1292 } else { 1293 //printf("Using FW PATH\n"); 1294 /* Want to send all IO via FW path */ 1295 io_request->RaidContext.raid_context.VirtualDiskTgtId = htole16(device_id); 1296 io_request->RaidContext.raid_context.configSeqNum = 0; 1297 io_request->DevHandle = MR_DEVHANDLE_INVALID; 1298 } 1299 1300 cmd->request_desc->SCSIIO.DevHandle = io_request->DevHandle; 1301 cmd->request_desc->SCSIIO.MSIxIndex = 1302 sc->msix_vectors ? smp_processor_id() % sc->msix_vectors : 0; 1303 1304 if (!fp_possible) { 1305 /* system pd firmware path */ 1306 io_request->Function = MRSAS_MPI2_FUNCTION_LD_IO_REQUEST; 1307 cmd->request_desc->SCSIIO.RequestFlags = 1308 (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO << 1309 MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); 1310 io_request->RaidContext.raid_context.timeoutValue = 1311 htole16(local_map_ptr->raidMap.fpPdIoTimeoutSec); 1312 io_request->RaidContext.raid_context.VirtualDiskTgtId = htole16(device_id); 1313 } else { 1314 /* system pd fast path */ 1315 io_request->Function = MPI2_FUNCTION_SCSI_IO_REQUEST; 1316 io_request->RaidContext.raid_context.timeoutValue = htole16(local_map_ptr->raidMap.fpPdIoTimeoutSec); 1317 1318 /* 1319 * NOTE - For system pd RW cmds only IoFlags will be FAST_PATH 1320 * Because the NON RW cmds will now go via FW Queue 1321 * and not the Exception queue 1322 */ 1323 if (sc->mrsas_gen3_ctrl || sc->is_ventura || sc->is_aero) 1324 io_request->IoFlags |= htole16(MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH); 1325 1326 cmd->request_desc->SCSIIO.RequestFlags = 1327 (MPI2_REQ_DESCRIPT_FLAGS_FP_IO << 1328 MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); 1329 } 1330 1331 io_request->LUN[1] = ccb_h->target_lun & 0xF; 1332 io_request->DataLength = htole32(cmd->length); 1333 1334 if (mrsas_map_request(sc, cmd, ccb) == SUCCESS) { 1335 if (sc->is_ventura || sc->is_aero) 1336 io_request->RaidContext.raid_context_g35.numSGE = cmd->sge_count; 1337 else { 1338 /* 1339 * numSGE store lower 8 bit of sge_count. numSGEExt store 1340 * higher 8 bit of sge_count 1341 */ 1342 io_request->RaidContext.raid_context.numSGE = cmd->sge_count; 1343 io_request->RaidContext.raid_context.numSGEExt = (uint8_t)(cmd->sge_count >> 8); 1344 } 1345 } else { 1346 device_printf(sc->mrsas_dev, "Data map/load failed.\n"); 1347 return (1); 1348 } 1349 return (0); 1350 } 1351 1352 /* 1353 * mrsas_is_prp_possible: This function will tell whether PRPs should be built or not 1354 * sc: Adapter instance soft state 1355 * cmd: MPT command frame pointer 1356 * nsesg: Number of OS SGEs 1357 * 1358 * This function will check whether IO is qualified to build PRPs 1359 * return: true: if PRP should be built 1360 * false: if IEEE SGLs should be built 1361 */ 1362 static boolean_t mrsas_is_prp_possible(struct mrsas_mpt_cmd *cmd, 1363 bus_dma_segment_t *segs, int nsegs) 1364 { 1365 struct mrsas_softc *sc = cmd->sc; 1366 int i; 1367 u_int32_t data_length = 0; 1368 bool build_prp = false; 1369 u_int32_t mr_nvme_pg_size; 1370 1371 mr_nvme_pg_size = max(sc->nvme_page_size, MR_DEFAULT_NVME_PAGE_SIZE); 1372 data_length = cmd->length; 1373 1374 if (data_length > (mr_nvme_pg_size * 5)) 1375 build_prp = true; 1376 else if ((data_length > (mr_nvme_pg_size * 4)) && 1377 (data_length <= (mr_nvme_pg_size * 5))) { 1378 /* check if 1st SG entry size is < residual beyond 4 pages */ 1379 if ((segs[0].ds_len) < (data_length - (mr_nvme_pg_size * 4))) 1380 build_prp = true; 1381 } 1382 1383 /*check for SGE holes here*/ 1384 for (i = 0; i < nsegs; i++) { 1385 /* check for mid SGEs */ 1386 if ((i != 0) && (i != (nsegs - 1))) { 1387 if ((segs[i].ds_addr % mr_nvme_pg_size) || 1388 (segs[i].ds_len % mr_nvme_pg_size)) { 1389 build_prp = false; 1390 mrsas_atomic_inc(&sc->sge_holes); 1391 break; 1392 } 1393 } 1394 1395 /* check for first SGE*/ 1396 if ((nsegs > 1) && (i == 0)) { 1397 if ((segs[i].ds_addr + segs[i].ds_len) % mr_nvme_pg_size) { 1398 build_prp = false; 1399 mrsas_atomic_inc(&sc->sge_holes); 1400 break; 1401 } 1402 } 1403 1404 /* check for Last SGE*/ 1405 if ((nsegs > 1) && (i == (nsegs - 1))) { 1406 if (segs[i].ds_addr % mr_nvme_pg_size) { 1407 build_prp = false; 1408 mrsas_atomic_inc(&sc->sge_holes); 1409 break; 1410 } 1411 } 1412 } 1413 1414 return build_prp; 1415 } 1416 1417 /* 1418 * mrsas_map_request: Map and load data 1419 * input: Adapter instance soft state 1420 * Pointer to command packet 1421 * 1422 * For data from OS, map and load the data buffer into bus space. The SG list 1423 * is built in the callback. If the bus dmamap load is not successful, 1424 * cmd->error_code will contain the error code and a 1 is returned. 1425 */ 1426 int 1427 mrsas_map_request(struct mrsas_softc *sc, 1428 struct mrsas_mpt_cmd *cmd, union ccb *ccb) 1429 { 1430 u_int32_t retcode = 0; 1431 struct cam_sim *sim; 1432 1433 sim = xpt_path_sim(cmd->ccb_ptr->ccb_h.path); 1434 1435 if (cmd->data != NULL) { 1436 /* Map data buffer into bus space */ 1437 mtx_lock(&sc->io_lock); 1438 #if (__FreeBSD_version >= 902001) 1439 retcode = bus_dmamap_load_ccb(sc->data_tag, cmd->data_dmamap, ccb, 1440 mrsas_data_load_cb, cmd, 0); 1441 #else 1442 retcode = bus_dmamap_load(sc->data_tag, cmd->data_dmamap, cmd->data, 1443 cmd->length, mrsas_data_load_cb, cmd, BUS_DMA_NOWAIT); 1444 #endif 1445 mtx_unlock(&sc->io_lock); 1446 if (retcode) 1447 device_printf(sc->mrsas_dev, "bus_dmamap_load(): retcode = %d\n", retcode); 1448 if (retcode == EINPROGRESS) { 1449 device_printf(sc->mrsas_dev, "request load in progress\n"); 1450 mrsas_freeze_simq(cmd, sim); 1451 } 1452 } 1453 if (cmd->error_code) 1454 return (1); 1455 return (retcode); 1456 } 1457 1458 /* 1459 * mrsas_unmap_request: Unmap and unload data 1460 * input: Adapter instance soft state 1461 * Pointer to command packet 1462 * 1463 * This function unmaps and unloads data from OS. 1464 */ 1465 void 1466 mrsas_unmap_request(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd) 1467 { 1468 if (cmd->data != NULL) { 1469 if (cmd->flags & MRSAS_DIR_IN) 1470 bus_dmamap_sync(sc->data_tag, cmd->data_dmamap, BUS_DMASYNC_POSTREAD); 1471 if (cmd->flags & MRSAS_DIR_OUT) 1472 bus_dmamap_sync(sc->data_tag, cmd->data_dmamap, BUS_DMASYNC_POSTWRITE); 1473 mtx_lock(&sc->io_lock); 1474 bus_dmamap_unload(sc->data_tag, cmd->data_dmamap); 1475 mtx_unlock(&sc->io_lock); 1476 } 1477 } 1478 1479 /** 1480 * mrsas_build_ieee_sgl - Prepare IEEE SGLs 1481 * @sc: Adapter soft state 1482 * @segs: OS SGEs pointers 1483 * @nseg: Number of OS SGEs 1484 * @cmd: Fusion command frame 1485 * return: void 1486 */ 1487 static void mrsas_build_ieee_sgl(struct mrsas_mpt_cmd *cmd, bus_dma_segment_t *segs, int nseg) 1488 { 1489 struct mrsas_softc *sc = cmd->sc; 1490 MRSAS_RAID_SCSI_IO_REQUEST *io_request; 1491 pMpi25IeeeSgeChain64_t sgl_ptr; 1492 int i = 0, sg_processed = 0; 1493 1494 io_request = cmd->io_request; 1495 sgl_ptr = (pMpi25IeeeSgeChain64_t)&io_request->SGL; 1496 1497 if (sc->mrsas_gen3_ctrl || sc->is_ventura || sc->is_aero) { 1498 pMpi25IeeeSgeChain64_t sgl_ptr_end = sgl_ptr; 1499 1500 sgl_ptr_end += sc->max_sge_in_main_msg - 1; 1501 sgl_ptr_end->Flags = 0; 1502 } 1503 if (nseg != 0) { 1504 for (i = 0; i < nseg; i++) { 1505 sgl_ptr->Address = htole64(segs[i].ds_addr); 1506 sgl_ptr->Length = htole32(segs[i].ds_len); 1507 sgl_ptr->Flags = 0; 1508 if (sc->mrsas_gen3_ctrl || sc->is_ventura || sc->is_aero) { 1509 if (i == nseg - 1) 1510 sgl_ptr->Flags = IEEE_SGE_FLAGS_END_OF_LIST; 1511 } 1512 sgl_ptr++; 1513 sg_processed = i + 1; 1514 if ((sg_processed == (sc->max_sge_in_main_msg - 1)) && 1515 (nseg > sc->max_sge_in_main_msg)) { 1516 pMpi25IeeeSgeChain64_t sg_chain; 1517 1518 if (sc->mrsas_gen3_ctrl || sc->is_ventura || sc->is_aero) { 1519 if ((cmd->io_request->IoFlags & MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) 1520 != MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) 1521 cmd->io_request->ChainOffset = sc->chain_offset_io_request; 1522 else 1523 cmd->io_request->ChainOffset = 0; 1524 } else 1525 cmd->io_request->ChainOffset = sc->chain_offset_io_request; 1526 sg_chain = sgl_ptr; 1527 if (sc->mrsas_gen3_ctrl || sc->is_ventura || sc->is_aero) 1528 sg_chain->Flags = IEEE_SGE_FLAGS_CHAIN_ELEMENT; 1529 else 1530 sg_chain->Flags = (IEEE_SGE_FLAGS_CHAIN_ELEMENT | MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR); 1531 sg_chain->Length = htole32((sizeof(MPI2_SGE_IO_UNION) * (nseg - sg_processed))); 1532 sg_chain->Address = htole64(cmd->chain_frame_phys_addr); 1533 sgl_ptr = (pMpi25IeeeSgeChain64_t)cmd->chain_frame; 1534 } 1535 } 1536 } 1537 } 1538 1539 /** 1540 * mrsas_build_prp_nvme - Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only 1541 * @sc: Adapter soft state 1542 * @segs: OS SGEs pointers 1543 * @nseg: Number of OS SGEs 1544 * @cmd: Fusion command frame 1545 * return: void 1546 */ 1547 static void mrsas_build_prp_nvme(struct mrsas_mpt_cmd *cmd, bus_dma_segment_t *segs, int nseg) 1548 { 1549 struct mrsas_softc *sc = cmd->sc; 1550 int sge_len, offset, num_prp_in_chain = 0; 1551 pMpi25IeeeSgeChain64_t main_chain_element, ptr_first_sgl, sgl_ptr; 1552 u_int64_t *ptr_sgl; 1553 bus_addr_t ptr_sgl_phys; 1554 u_int64_t sge_addr; 1555 u_int32_t page_mask, page_mask_result, i = 0; 1556 u_int32_t first_prp_len; 1557 int data_len = cmd->length; 1558 u_int32_t mr_nvme_pg_size = max(sc->nvme_page_size, 1559 MR_DEFAULT_NVME_PAGE_SIZE); 1560 1561 sgl_ptr = (pMpi25IeeeSgeChain64_t) &cmd->io_request->SGL; 1562 /* 1563 * NVMe has a very convoluted PRP format. One PRP is required 1564 * for each page or partial page. We need to split up OS SG 1565 * entries if they are longer than one page or cross a page 1566 * boundary. We also have to insert a PRP list pointer entry as 1567 * the last entry in each physical page of the PRP list. 1568 * 1569 * NOTE: The first PRP "entry" is actually placed in the first 1570 * SGL entry in the main message in IEEE 64 format. The 2nd 1571 * entry in the main message is the chain element, and the rest 1572 * of the PRP entries are built in the contiguous PCIe buffer. 1573 */ 1574 page_mask = mr_nvme_pg_size - 1; 1575 ptr_sgl = (u_int64_t *) cmd->chain_frame; 1576 ptr_sgl_phys = cmd->chain_frame_phys_addr; 1577 memset(ptr_sgl, 0, sc->max_chain_frame_sz); 1578 1579 /* Build chain frame element which holds all PRPs except first*/ 1580 main_chain_element = (pMpi25IeeeSgeChain64_t) 1581 ((u_int8_t *)sgl_ptr + sizeof(MPI25_IEEE_SGE_CHAIN64)); 1582 1583 main_chain_element->Address = cmd->chain_frame_phys_addr; 1584 main_chain_element->NextChainOffset = 0; 1585 main_chain_element->Flags = IEEE_SGE_FLAGS_CHAIN_ELEMENT | 1586 IEEE_SGE_FLAGS_SYSTEM_ADDR | 1587 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 1588 1589 /* Build first PRP, SGE need not to be PAGE aligned*/ 1590 ptr_first_sgl = sgl_ptr; 1591 sge_addr = segs[i].ds_addr; 1592 sge_len = segs[i].ds_len; 1593 i++; 1594 1595 offset = (u_int32_t) (sge_addr & page_mask); 1596 first_prp_len = mr_nvme_pg_size - offset; 1597 1598 ptr_first_sgl->Address = sge_addr; 1599 ptr_first_sgl->Length = first_prp_len; 1600 1601 data_len -= first_prp_len; 1602 1603 if (sge_len > first_prp_len) { 1604 sge_addr += first_prp_len; 1605 sge_len -= first_prp_len; 1606 } else if (sge_len == first_prp_len) { 1607 sge_addr = segs[i].ds_addr; 1608 sge_len = segs[i].ds_len; 1609 i++; 1610 } 1611 1612 for (;;) { 1613 offset = (u_int32_t) (sge_addr & page_mask); 1614 1615 /* Put PRP pointer due to page boundary*/ 1616 page_mask_result = (uintptr_t)(ptr_sgl + 1) & page_mask; 1617 if (!page_mask_result) { 1618 device_printf(sc->mrsas_dev, "BRCM: Put prp pointer as we are at page boundary" 1619 " ptr_sgl: 0x%p\n", ptr_sgl); 1620 ptr_sgl_phys++; 1621 *ptr_sgl = (uintptr_t)ptr_sgl_phys; 1622 ptr_sgl++; 1623 num_prp_in_chain++; 1624 } 1625 1626 *ptr_sgl = sge_addr; 1627 ptr_sgl++; 1628 ptr_sgl_phys++; 1629 num_prp_in_chain++; 1630 1631 sge_addr += mr_nvme_pg_size; 1632 sge_len -= mr_nvme_pg_size; 1633 data_len -= mr_nvme_pg_size; 1634 1635 if (data_len <= 0) 1636 break; 1637 1638 if (sge_len > 0) 1639 continue; 1640 1641 sge_addr = segs[i].ds_addr; 1642 sge_len = segs[i].ds_len; 1643 i++; 1644 } 1645 1646 main_chain_element->Length = num_prp_in_chain * sizeof(u_int64_t); 1647 mrsas_atomic_inc(&sc->prp_count); 1648 1649 } 1650 1651 /* 1652 * mrsas_data_load_cb: Callback entry point to build SGLs 1653 * input: Pointer to command packet as argument 1654 * Pointer to segment 1655 * Number of segments Error 1656 * 1657 * This is the callback function of the bus dma map load. It builds SG list 1658 */ 1659 static void 1660 mrsas_data_load_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1661 { 1662 struct mrsas_mpt_cmd *cmd = (struct mrsas_mpt_cmd *)arg; 1663 struct mrsas_softc *sc = cmd->sc; 1664 boolean_t build_prp = false; 1665 1666 if (error) { 1667 cmd->error_code = error; 1668 device_printf(sc->mrsas_dev, "mrsas_data_load_cb_prp: error=%d\n", error); 1669 if (error == EFBIG) { 1670 cmd->ccb_ptr->ccb_h.status = CAM_REQ_TOO_BIG; 1671 return; 1672 } 1673 } 1674 if (cmd->flags & MRSAS_DIR_IN) 1675 bus_dmamap_sync(cmd->sc->data_tag, cmd->data_dmamap, 1676 BUS_DMASYNC_PREREAD); 1677 if (cmd->flags & MRSAS_DIR_OUT) 1678 bus_dmamap_sync(cmd->sc->data_tag, cmd->data_dmamap, 1679 BUS_DMASYNC_PREWRITE); 1680 1681 /* Check for whether PRPs should be built or IEEE SGLs*/ 1682 if ((cmd->io_request->IoFlags & MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) && 1683 (cmd->pdInterface == NVME_PD)) 1684 build_prp = mrsas_is_prp_possible(cmd, segs, nseg); 1685 1686 if (build_prp == true) 1687 mrsas_build_prp_nvme(cmd, segs, nseg); 1688 else 1689 mrsas_build_ieee_sgl(cmd, segs, nseg); 1690 1691 cmd->sge_count = nseg; 1692 } 1693 1694 /* 1695 * mrsas_freeze_simq: Freeze SIM queue 1696 * input: Pointer to command packet 1697 * Pointer to SIM 1698 * 1699 * This function freezes the sim queue. 1700 */ 1701 static void 1702 mrsas_freeze_simq(struct mrsas_mpt_cmd *cmd, struct cam_sim *sim) 1703 { 1704 union ccb *ccb = (union ccb *)(cmd->ccb_ptr); 1705 1706 xpt_freeze_simq(sim, 1); 1707 ccb->ccb_h.status |= CAM_RELEASE_SIMQ; 1708 ccb->ccb_h.status |= CAM_REQUEUE_REQ; 1709 } 1710 1711 void 1712 mrsas_xpt_freeze(struct mrsas_softc *sc) 1713 { 1714 xpt_freeze_simq(sc->sim_0, 1); 1715 xpt_freeze_simq(sc->sim_1, 1); 1716 } 1717 1718 void 1719 mrsas_xpt_release(struct mrsas_softc *sc) 1720 { 1721 xpt_release_simq(sc->sim_0, 1); 1722 xpt_release_simq(sc->sim_1, 1); 1723 } 1724 1725 /* 1726 * mrsas_cmd_done: Perform remaining command completion 1727 * input: Adapter instance soft state Pointer to command packet 1728 * 1729 * This function calls ummap request and releases the MPT command. 1730 */ 1731 void 1732 mrsas_cmd_done(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd) 1733 { 1734 mrsas_unmap_request(sc, cmd); 1735 1736 mtx_lock(&sc->sim_lock); 1737 if (cmd->callout_owner) { 1738 callout_stop(&cmd->cm_callout); 1739 cmd->callout_owner = false; 1740 } 1741 xpt_done(cmd->ccb_ptr); 1742 cmd->ccb_ptr = NULL; 1743 mtx_unlock(&sc->sim_lock); 1744 mrsas_release_mpt_cmd(cmd); 1745 } 1746 1747 /* 1748 * mrsas_cam_poll: Polling entry point 1749 * input: Pointer to SIM 1750 * 1751 * This is currently a stub function. 1752 */ 1753 static void 1754 mrsas_cam_poll(struct cam_sim *sim) 1755 { 1756 int i; 1757 struct mrsas_softc *sc = (struct mrsas_softc *)cam_sim_softc(sim); 1758 1759 if (sc->msix_vectors != 0){ 1760 for (i=0; i<sc->msix_vectors; i++){ 1761 mrsas_complete_cmd(sc, i); 1762 } 1763 } else { 1764 mrsas_complete_cmd(sc, 0); 1765 } 1766 } 1767 1768 /* 1769 * mrsas_bus_scan: Perform bus scan 1770 * input: Adapter instance soft state 1771 * 1772 * This mrsas_bus_scan function is needed for FreeBSD 7.x. Also, it should not 1773 * be called in FreeBSD 8.x and later versions, where the bus scan is 1774 * automatic. 1775 */ 1776 int 1777 mrsas_bus_scan(struct mrsas_softc *sc) 1778 { 1779 union ccb *ccb_0; 1780 union ccb *ccb_1; 1781 1782 if ((ccb_0 = xpt_alloc_ccb()) == NULL) { 1783 return (ENOMEM); 1784 } 1785 if ((ccb_1 = xpt_alloc_ccb()) == NULL) { 1786 xpt_free_ccb(ccb_0); 1787 return (ENOMEM); 1788 } 1789 mtx_lock(&sc->sim_lock); 1790 if (xpt_create_path(&ccb_0->ccb_h.path, xpt_periph, cam_sim_path(sc->sim_0), 1791 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 1792 xpt_free_ccb(ccb_0); 1793 xpt_free_ccb(ccb_1); 1794 mtx_unlock(&sc->sim_lock); 1795 return (EIO); 1796 } 1797 if (xpt_create_path(&ccb_1->ccb_h.path, xpt_periph, cam_sim_path(sc->sim_1), 1798 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 1799 xpt_free_ccb(ccb_0); 1800 xpt_free_ccb(ccb_1); 1801 mtx_unlock(&sc->sim_lock); 1802 return (EIO); 1803 } 1804 mtx_unlock(&sc->sim_lock); 1805 xpt_rescan(ccb_0); 1806 xpt_rescan(ccb_1); 1807 1808 return (0); 1809 } 1810 1811 /* 1812 * mrsas_bus_scan_sim: Perform bus scan per SIM 1813 * input: adapter instance soft state 1814 * 1815 * This function will be called from Event handler on LD creation/deletion, 1816 * JBOD on/off. 1817 */ 1818 int 1819 mrsas_bus_scan_sim(struct mrsas_softc *sc, struct cam_sim *sim) 1820 { 1821 union ccb *ccb; 1822 1823 if ((ccb = xpt_alloc_ccb()) == NULL) { 1824 return (ENOMEM); 1825 } 1826 mtx_lock(&sc->sim_lock); 1827 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, cam_sim_path(sim), 1828 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 1829 xpt_free_ccb(ccb); 1830 mtx_unlock(&sc->sim_lock); 1831 return (EIO); 1832 } 1833 mtx_unlock(&sc->sim_lock); 1834 xpt_rescan(ccb); 1835 1836 return (0); 1837 } 1838 1839 /* 1840 * mrsas_track_scsiio: Track IOs for a given target in the mpt_cmd_list 1841 * input: Adapter instance soft state 1842 * Target ID of target 1843 * Bus ID of the target 1844 * 1845 * This function checks for any pending IO in the whole mpt_cmd_list pool 1846 * with the bus_id and target_id passed in arguments. If some IO is found 1847 * that means target reset is not successfully completed. 1848 * 1849 * Returns FAIL if IOs pending to the target device, else return SUCCESS 1850 */ 1851 static int 1852 mrsas_track_scsiio(struct mrsas_softc *sc, target_id_t tgt_id, u_int32_t bus_id) 1853 { 1854 int i; 1855 struct mrsas_mpt_cmd *mpt_cmd = NULL; 1856 1857 for (i = 0 ; i < sc->max_fw_cmds; i++) { 1858 mpt_cmd = sc->mpt_cmd_list[i]; 1859 1860 /* 1861 * Check if the target_id and bus_id is same as the timeout IO 1862 */ 1863 if (mpt_cmd->ccb_ptr) { 1864 /* bus_id = 1 denotes a VD */ 1865 if (bus_id == 1) 1866 tgt_id = 1867 (mpt_cmd->ccb_ptr->ccb_h.target_id - (MRSAS_MAX_PD - 1)); 1868 1869 if (mpt_cmd->ccb_ptr->cpi.bus_id == bus_id && 1870 mpt_cmd->ccb_ptr->ccb_h.target_id == tgt_id) { 1871 device_printf(sc->mrsas_dev, 1872 "IO commands pending to target id %d\n", tgt_id); 1873 return FAIL; 1874 } 1875 } 1876 } 1877 1878 return SUCCESS; 1879 } 1880 1881 #if TM_DEBUG 1882 /* 1883 * mrsas_tm_response_code: Prints TM response code received from FW 1884 * input: Adapter instance soft state 1885 * MPI reply returned from firmware 1886 * 1887 * Returns nothing. 1888 */ 1889 static void 1890 mrsas_tm_response_code(struct mrsas_softc *sc, 1891 MPI2_SCSI_TASK_MANAGE_REPLY *mpi_reply) 1892 { 1893 char *desc; 1894 1895 switch (mpi_reply->ResponseCode) { 1896 case MPI2_SCSITASKMGMT_RSP_TM_COMPLETE: 1897 desc = "task management request completed"; 1898 break; 1899 case MPI2_SCSITASKMGMT_RSP_INVALID_FRAME: 1900 desc = "invalid frame"; 1901 break; 1902 case MPI2_SCSITASKMGMT_RSP_TM_NOT_SUPPORTED: 1903 desc = "task management request not supported"; 1904 break; 1905 case MPI2_SCSITASKMGMT_RSP_TM_FAILED: 1906 desc = "task management request failed"; 1907 break; 1908 case MPI2_SCSITASKMGMT_RSP_TM_SUCCEEDED: 1909 desc = "task management request succeeded"; 1910 break; 1911 case MPI2_SCSITASKMGMT_RSP_TM_INVALID_LUN: 1912 desc = "invalid lun"; 1913 break; 1914 case 0xA: 1915 desc = "overlapped tag attempted"; 1916 break; 1917 case MPI2_SCSITASKMGMT_RSP_IO_QUEUED_ON_IOC: 1918 desc = "task queued, however not sent to target"; 1919 break; 1920 default: 1921 desc = "unknown"; 1922 break; 1923 } 1924 device_printf(sc->mrsas_dev, "response_code(%01x): %s\n", 1925 mpi_reply->ResponseCode, desc); 1926 device_printf(sc->mrsas_dev, 1927 "TerminationCount/DevHandle/Function/TaskType/IOCStat/IOCLoginfo\n" 1928 "0x%x/0x%x/0x%x/0x%x/0x%x/0x%x\n", 1929 mpi_reply->TerminationCount, mpi_reply->DevHandle, 1930 mpi_reply->Function, mpi_reply->TaskType, 1931 mpi_reply->IOCStatus, mpi_reply->IOCLogInfo); 1932 } 1933 #endif 1934 1935 /* 1936 * mrsas_issue_tm: Fires the TM command to FW and waits for completion 1937 * input: Adapter instance soft state 1938 * reqest descriptor compiled by mrsas_reset_targets 1939 * 1940 * Returns FAIL if TM command TIMEDOUT from FW else SUCCESS. 1941 */ 1942 static int 1943 mrsas_issue_tm(struct mrsas_softc *sc, 1944 MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc) 1945 { 1946 int sleep_stat; 1947 1948 mrsas_fire_cmd(sc, req_desc->addr.u.low, req_desc->addr.u.high); 1949 sleep_stat = msleep(&sc->ocr_chan, &sc->sim_lock, PRIBIO, "tm_sleep", 50*hz); 1950 1951 if (sleep_stat == EWOULDBLOCK) { 1952 device_printf(sc->mrsas_dev, "tm cmd TIMEDOUT\n"); 1953 return FAIL; 1954 } 1955 1956 return SUCCESS; 1957 } 1958 1959 /* 1960 * mrsas_reset_targets : Gathers info to fire a target reset command 1961 * input: Adapter instance soft state 1962 * 1963 * This function compiles data for a target reset command to be fired to the FW 1964 * and then traverse the target_reset_pool to see targets with TIMEDOUT IOs. 1965 * 1966 * Returns SUCCESS or FAIL 1967 */ 1968 int mrsas_reset_targets(struct mrsas_softc *sc) 1969 { 1970 struct mrsas_mpt_cmd *tm_mpt_cmd = NULL; 1971 struct mrsas_mpt_cmd *tgt_mpt_cmd = NULL; 1972 MR_TASK_MANAGE_REQUEST *mr_request; 1973 MPI2_SCSI_TASK_MANAGE_REQUEST *tm_mpi_request; 1974 MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc; 1975 int retCode = FAIL, count, i, outstanding; 1976 u_int32_t MSIxIndex, bus_id; 1977 target_id_t tgt_id; 1978 #if TM_DEBUG 1979 MPI2_SCSI_TASK_MANAGE_REPLY *mpi_reply; 1980 #endif 1981 1982 outstanding = mrsas_atomic_read(&sc->fw_outstanding); 1983 1984 if (!outstanding) { 1985 device_printf(sc->mrsas_dev, "NO IOs pending...\n"); 1986 mrsas_atomic_set(&sc->target_reset_outstanding, 0); 1987 retCode = SUCCESS; 1988 goto return_status; 1989 } else if (sc->adprecovery != MRSAS_HBA_OPERATIONAL) { 1990 device_printf(sc->mrsas_dev, "Controller is not operational\n"); 1991 goto return_status; 1992 } else { 1993 /* Some more error checks will be added in future */ 1994 } 1995 1996 /* Get an mpt frame and an index to fire the TM cmd */ 1997 tm_mpt_cmd = mrsas_get_mpt_cmd(sc); 1998 if (!tm_mpt_cmd) { 1999 retCode = FAIL; 2000 goto return_status; 2001 } 2002 2003 req_desc = mrsas_get_request_desc(sc, (tm_mpt_cmd->index) - 1); 2004 if (!req_desc) { 2005 device_printf(sc->mrsas_dev, "Cannot get request_descriptor for tm.\n"); 2006 retCode = FAIL; 2007 goto release_mpt; 2008 } 2009 memset(req_desc, 0, sizeof(MRSAS_REQUEST_DESCRIPTOR_UNION)); 2010 2011 req_desc->HighPriority.SMID = tm_mpt_cmd->index; 2012 req_desc->HighPriority.RequestFlags = 2013 (MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY << 2014 MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); 2015 req_desc->HighPriority.MSIxIndex = 0; 2016 req_desc->HighPriority.LMID = 0; 2017 req_desc->HighPriority.Reserved1 = 0; 2018 tm_mpt_cmd->request_desc = req_desc; 2019 2020 mr_request = (MR_TASK_MANAGE_REQUEST *) tm_mpt_cmd->io_request; 2021 memset(mr_request, 0, sizeof(MR_TASK_MANAGE_REQUEST)); 2022 2023 tm_mpi_request = (MPI2_SCSI_TASK_MANAGE_REQUEST *) &mr_request->TmRequest; 2024 tm_mpi_request->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 2025 tm_mpi_request->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET; 2026 tm_mpi_request->TaskMID = 0; /* smid task */ 2027 tm_mpi_request->LUN[1] = 0; 2028 2029 /* Traverse the tm_mpt pool to get valid entries */ 2030 for (i = 0 ; i < MRSAS_MAX_TM_TARGETS; i++) { 2031 if(!sc->target_reset_pool[i]) { 2032 continue; 2033 } else { 2034 tgt_mpt_cmd = sc->target_reset_pool[i]; 2035 } 2036 2037 tgt_id = i; 2038 2039 /* See if the target is tm capable or NOT */ 2040 if (!tgt_mpt_cmd->tmCapable) { 2041 device_printf(sc->mrsas_dev, "Task management NOT SUPPORTED for " 2042 "CAM target:%d\n", tgt_id); 2043 2044 retCode = FAIL; 2045 goto release_mpt; 2046 } 2047 2048 tm_mpi_request->DevHandle = tgt_mpt_cmd->io_request->DevHandle; 2049 2050 if (i < (MRSAS_MAX_PD - 1)) { 2051 mr_request->uTmReqReply.tmReqFlags.isTMForPD = 1; 2052 bus_id = 0; 2053 } else { 2054 mr_request->uTmReqReply.tmReqFlags.isTMForLD = 1; 2055 bus_id = 1; 2056 } 2057 2058 device_printf(sc->mrsas_dev, "TM will be fired for " 2059 "CAM target:%d and bus_id %d\n", tgt_id, bus_id); 2060 2061 sc->ocr_chan = (void *)&tm_mpt_cmd; 2062 retCode = mrsas_issue_tm(sc, req_desc); 2063 if (retCode == FAIL) 2064 goto release_mpt; 2065 2066 #if TM_DEBUG 2067 mpi_reply = 2068 (MPI2_SCSI_TASK_MANAGE_REPLY *) &mr_request->uTmReqReply.TMReply; 2069 mrsas_tm_response_code(sc, mpi_reply); 2070 #endif 2071 mrsas_atomic_dec(&sc->target_reset_outstanding); 2072 sc->target_reset_pool[i] = NULL; 2073 2074 /* Check for pending cmds in the mpt_cmd_pool with the tgt_id */ 2075 mrsas_disable_intr(sc); 2076 /* Wait for 1 second to complete parallel ISR calling same 2077 * mrsas_complete_cmd() 2078 */ 2079 msleep(&sc->ocr_chan, &sc->sim_lock, PRIBIO, "mrsas_reset_wakeup", 2080 1 * hz); 2081 count = sc->msix_vectors > 0 ? sc->msix_vectors : 1; 2082 mtx_unlock(&sc->sim_lock); 2083 for (MSIxIndex = 0; MSIxIndex < count; MSIxIndex++) 2084 mrsas_complete_cmd(sc, MSIxIndex); 2085 mtx_lock(&sc->sim_lock); 2086 retCode = mrsas_track_scsiio(sc, tgt_id, bus_id); 2087 mrsas_enable_intr(sc); 2088 2089 if (retCode == FAIL) 2090 goto release_mpt; 2091 } 2092 2093 device_printf(sc->mrsas_dev, "Number of targets outstanding " 2094 "after reset: %d\n", mrsas_atomic_read(&sc->target_reset_outstanding)); 2095 2096 release_mpt: 2097 mrsas_release_mpt_cmd(tm_mpt_cmd); 2098 return_status: 2099 device_printf(sc->mrsas_dev, "target reset %s!!\n", 2100 (retCode == SUCCESS) ? "SUCCESS" : "FAIL"); 2101 2102 return retCode; 2103 } 2104