xref: /freebsd/sys/dev/mrsas/mrsas_cam.c (revision 8c784bb8cf36911b828652f0bf7e88f443abec50)
1 /*
2  * Copyright (c) 2015, AVAGO Tech. All rights reserved. Author: Marian Choy
3  * Copyright (c) 2014, LSI Corp. All rights reserved. Author: Marian Choy
4  * Support: freebsdraid@avagotech.com
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are
8  * met:
9  *
10  * 1. Redistributions of source code must retain the above copyright notice,
11  * this list of conditions and the following disclaimer. 2. Redistributions
12  * in binary form must reproduce the above copyright notice, this list of
13  * conditions and the following disclaimer in the documentation and/or other
14  * materials provided with the distribution. 3. Neither the name of the
15  * <ORGANIZATION> nor the names of its contributors may be used to endorse or
16  * promote products derived from this software without specific prior written
17  * permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "dev/mrsas/mrsas.h"
37 
38 #include <cam/cam.h>
39 #include <cam/cam_ccb.h>
40 #include <cam/cam_sim.h>
41 #include <cam/cam_xpt_sim.h>
42 #include <cam/cam_debug.h>
43 #include <cam/cam_periph.h>
44 #include <cam/cam_xpt_periph.h>
45 
46 #include <cam/scsi/scsi_all.h>
47 #include <cam/scsi/scsi_message.h>
48 #include <sys/taskqueue.h>
49 #include <sys/kernel.h>
50 
51 #include <sys/time.h>			/* XXX for pcpu.h */
52 #include <sys/pcpu.h>			/* XXX for PCPU_GET */
53 
54 #define	smp_processor_id()  PCPU_GET(cpuid)
55 
56 /*
57  * Function prototypes
58  */
59 int	mrsas_cam_attach(struct mrsas_softc *sc);
60 int	mrsas_find_io_type(struct cam_sim *sim, union ccb *ccb);
61 int	mrsas_bus_scan(struct mrsas_softc *sc);
62 int	mrsas_bus_scan_sim(struct mrsas_softc *sc, struct cam_sim *sim);
63 int
64 mrsas_map_request(struct mrsas_softc *sc,
65     struct mrsas_mpt_cmd *cmd, union ccb *ccb);
66 int
67 mrsas_build_ldio_rw(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
68     union ccb *ccb);
69 int
70 mrsas_build_ldio_nonrw(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
71     union ccb *ccb);
72 int
73 mrsas_build_syspdio(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
74     union ccb *ccb, struct cam_sim *sim, u_int8_t fp_possible);
75 int
76 mrsas_setup_io(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
77     union ccb *ccb, u_int32_t device_id,
78     MRSAS_RAID_SCSI_IO_REQUEST * io_request);
79 void	mrsas_xpt_freeze(struct mrsas_softc *sc);
80 void	mrsas_xpt_release(struct mrsas_softc *sc);
81 void	mrsas_cam_detach(struct mrsas_softc *sc);
82 void	mrsas_release_mpt_cmd(struct mrsas_mpt_cmd *cmd);
83 void	mrsas_unmap_request(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd);
84 void	mrsas_cmd_done(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd);
85 void
86 mrsas_fire_cmd(struct mrsas_softc *sc, u_int32_t req_desc_lo,
87     u_int32_t req_desc_hi);
88 void
89 mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request,
90     u_int8_t cdb_len, struct IO_REQUEST_INFO *io_info, union ccb *ccb,
91     MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
92     u_int32_t ld_block_size);
93 static void mrsas_freeze_simq(struct mrsas_mpt_cmd *cmd, struct cam_sim *sim);
94 static void mrsas_cam_poll(struct cam_sim *sim);
95 static void mrsas_action(struct cam_sim *sim, union ccb *ccb);
96 static void mrsas_scsiio_timeout(void *data);
97 static int mrsas_track_scsiio(struct mrsas_softc *sc, target_id_t id, u_int32_t bus_id);
98 static void mrsas_tm_response_code(struct mrsas_softc *sc,
99     MPI2_SCSI_TASK_MANAGE_REPLY *mpi_reply);
100 static int mrsas_issue_tm(struct mrsas_softc *sc,
101     MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc);
102 static void
103 mrsas_data_load_cb(void *arg, bus_dma_segment_t *segs,
104     int nseg, int error);
105 static int32_t
106 mrsas_startio(struct mrsas_softc *sc, struct cam_sim *sim,
107     union ccb *ccb);
108 
109 static boolean_t mrsas_is_prp_possible(struct mrsas_mpt_cmd *cmd,
110 	bus_dma_segment_t *segs, int nsegs);
111 static void mrsas_build_ieee_sgl(struct mrsas_mpt_cmd *cmd,
112 	bus_dma_segment_t *segs, int nseg);
113 static void mrsas_build_prp_nvme(struct mrsas_mpt_cmd *cmd,
114 	bus_dma_segment_t *segs, int nseg);
115 
116 struct mrsas_mpt_cmd *mrsas_get_mpt_cmd(struct mrsas_softc *sc);
117 MRSAS_REQUEST_DESCRIPTOR_UNION *
118 	mrsas_get_request_desc(struct mrsas_softc *sc, u_int16_t index);
119 
120 extern int mrsas_reset_targets(struct mrsas_softc *sc);
121 extern u_int16_t MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
122 extern u_int32_t
123 MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
124 extern void mrsas_isr(void *arg);
125 extern void mrsas_aen_handler(struct mrsas_softc *sc);
126 extern u_int8_t
127 MR_BuildRaidContext(struct mrsas_softc *sc,
128     struct IO_REQUEST_INFO *io_info, RAID_CONTEXT * pRAID_Context,
129     MR_DRV_RAID_MAP_ALL * map);
130 extern u_int16_t
131 MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span,
132     MR_DRV_RAID_MAP_ALL * map);
133 extern u_int16_t
134 mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
135     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
136 extern int mrsas_complete_cmd(struct mrsas_softc *sc, u_int32_t MSIxIndex);
137 extern MR_LD_RAID *MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
138 extern void mrsas_disable_intr(struct mrsas_softc *sc);
139 extern void mrsas_enable_intr(struct mrsas_softc *sc);
140 void mrsas_prepare_secondRaid1_IO(struct mrsas_softc *sc,
141     struct mrsas_mpt_cmd *cmd);
142 
143 /*
144  * mrsas_cam_attach:	Main entry to CAM subsystem
145  * input:				Adapter instance soft state
146  *
147  * This function is called from mrsas_attach() during initialization to perform
148  * SIM allocations and XPT bus registration.  If the kernel version is 7.4 or
149  * earlier, it would also initiate a bus scan.
150  */
151 int
152 mrsas_cam_attach(struct mrsas_softc *sc)
153 {
154 	struct cam_devq *devq;
155 	int mrsas_cam_depth;
156 
157 	mrsas_cam_depth = sc->max_scsi_cmds;
158 
159 	if ((devq = cam_simq_alloc(mrsas_cam_depth)) == NULL) {
160 		device_printf(sc->mrsas_dev, "Cannot allocate SIM queue\n");
161 		return (ENOMEM);
162 	}
163 	/*
164 	 * Create SIM for bus 0 and register, also create path
165 	 */
166 	sc->sim_0 = cam_sim_alloc(mrsas_action, mrsas_cam_poll, "mrsas", sc,
167 	    device_get_unit(sc->mrsas_dev), &sc->sim_lock, mrsas_cam_depth,
168 	    mrsas_cam_depth, devq);
169 	if (sc->sim_0 == NULL) {
170 		cam_simq_free(devq);
171 		device_printf(sc->mrsas_dev, "Cannot register SIM\n");
172 		return (ENXIO);
173 	}
174 	/* Initialize taskqueue for Event Handling */
175 	TASK_INIT(&sc->ev_task, 0, (void *)mrsas_aen_handler, sc);
176 	sc->ev_tq = taskqueue_create("mrsas_taskq", M_NOWAIT | M_ZERO,
177 	    taskqueue_thread_enqueue, &sc->ev_tq);
178 
179 	/* Run the task queue with lowest priority */
180 	taskqueue_start_threads(&sc->ev_tq, 1, 255, "%s taskq",
181 	    device_get_nameunit(sc->mrsas_dev));
182 	mtx_lock(&sc->sim_lock);
183 	if (xpt_bus_register(sc->sim_0, sc->mrsas_dev, 0) != CAM_SUCCESS) {
184 		cam_sim_free(sc->sim_0, TRUE);	/* passing true frees the devq */
185 		mtx_unlock(&sc->sim_lock);
186 		return (ENXIO);
187 	}
188 	if (xpt_create_path(&sc->path_0, NULL, cam_sim_path(sc->sim_0),
189 	    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
190 		xpt_bus_deregister(cam_sim_path(sc->sim_0));
191 		cam_sim_free(sc->sim_0, TRUE);	/* passing true will free the
192 						 * devq */
193 		mtx_unlock(&sc->sim_lock);
194 		return (ENXIO);
195 	}
196 	mtx_unlock(&sc->sim_lock);
197 
198 	/*
199 	 * Create SIM for bus 1 and register, also create path
200 	 */
201 	sc->sim_1 = cam_sim_alloc(mrsas_action, mrsas_cam_poll, "mrsas", sc,
202 	    device_get_unit(sc->mrsas_dev), &sc->sim_lock, mrsas_cam_depth,
203 	    mrsas_cam_depth, devq);
204 	if (sc->sim_1 == NULL) {
205 		cam_simq_free(devq);
206 		device_printf(sc->mrsas_dev, "Cannot register SIM\n");
207 		return (ENXIO);
208 	}
209 	mtx_lock(&sc->sim_lock);
210 	if (xpt_bus_register(sc->sim_1, sc->mrsas_dev, 1) != CAM_SUCCESS) {
211 		cam_sim_free(sc->sim_1, TRUE);	/* passing true frees the devq */
212 		mtx_unlock(&sc->sim_lock);
213 		return (ENXIO);
214 	}
215 	if (xpt_create_path(&sc->path_1, NULL, cam_sim_path(sc->sim_1),
216 	    CAM_TARGET_WILDCARD,
217 	    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
218 		xpt_bus_deregister(cam_sim_path(sc->sim_1));
219 		cam_sim_free(sc->sim_1, TRUE);
220 		mtx_unlock(&sc->sim_lock);
221 		return (ENXIO);
222 	}
223 	mtx_unlock(&sc->sim_lock);
224 
225 	return (0);
226 }
227 
228 /*
229  * mrsas_cam_detach:	De-allocates and teardown CAM
230  * input:				Adapter instance soft state
231  *
232  * De-registers and frees the paths and SIMs.
233  */
234 void
235 mrsas_cam_detach(struct mrsas_softc *sc)
236 {
237 	if (sc->ev_tq != NULL)
238 		taskqueue_free(sc->ev_tq);
239 	mtx_lock(&sc->sim_lock);
240 	if (sc->path_0)
241 		xpt_free_path(sc->path_0);
242 	if (sc->sim_0) {
243 		xpt_bus_deregister(cam_sim_path(sc->sim_0));
244 		cam_sim_free(sc->sim_0, FALSE);
245 	}
246 	if (sc->path_1)
247 		xpt_free_path(sc->path_1);
248 	if (sc->sim_1) {
249 		xpt_bus_deregister(cam_sim_path(sc->sim_1));
250 		cam_sim_free(sc->sim_1, TRUE);
251 	}
252 	mtx_unlock(&sc->sim_lock);
253 }
254 
255 /*
256  * mrsas_action:	SIM callback entry point
257  * input:			pointer to SIM pointer to CAM Control Block
258  *
259  * This function processes CAM subsystem requests. The type of request is stored
260  * in ccb->ccb_h.func_code.  The preprocessor #ifdef is necessary because
261  * ccb->cpi.maxio is not supported for FreeBSD version 7.4 or earlier.
262  */
263 static void
264 mrsas_action(struct cam_sim *sim, union ccb *ccb)
265 {
266 	struct mrsas_softc *sc = (struct mrsas_softc *)cam_sim_softc(sim);
267 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
268 	u_int32_t device_id;
269 
270 	/*
271      * Check if the system going down
272      * or the adapter is in unrecoverable critical error
273      */
274     if (sc->remove_in_progress ||
275         (sc->adprecovery == MRSAS_HW_CRITICAL_ERROR)) {
276         ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
277         xpt_done(ccb);
278         return;
279     }
280 
281 	switch (ccb->ccb_h.func_code) {
282 	case XPT_SCSI_IO:
283 		{
284 			device_id = ccb_h->target_id;
285 
286 			/*
287 			 * bus 0 is LD, bus 1 is for system-PD
288 			 */
289 			if (cam_sim_bus(sim) == 1 &&
290 			    sc->pd_list[device_id].driveState != MR_PD_STATE_SYSTEM) {
291 				ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
292 				xpt_done(ccb);
293 			} else {
294 				if (mrsas_startio(sc, sim, ccb)) {
295 					ccb->ccb_h.status |= CAM_REQ_INVALID;
296 					xpt_done(ccb);
297 				}
298 			}
299 			break;
300 		}
301 	case XPT_ABORT:
302 		{
303 			ccb->ccb_h.status = CAM_UA_ABORT;
304 			xpt_done(ccb);
305 			break;
306 		}
307 	case XPT_RESET_BUS:
308 		{
309 			xpt_done(ccb);
310 			break;
311 		}
312 	case XPT_GET_TRAN_SETTINGS:
313 		{
314 			ccb->cts.protocol = PROTO_SCSI;
315 			ccb->cts.protocol_version = SCSI_REV_2;
316 			ccb->cts.transport = XPORT_SPI;
317 			ccb->cts.transport_version = 2;
318 			ccb->cts.xport_specific.spi.valid = CTS_SPI_VALID_DISC;
319 			ccb->cts.xport_specific.spi.flags = CTS_SPI_FLAGS_DISC_ENB;
320 			ccb->cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
321 			ccb->cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
322 			ccb->ccb_h.status = CAM_REQ_CMP;
323 			xpt_done(ccb);
324 			break;
325 		}
326 	case XPT_SET_TRAN_SETTINGS:
327 		{
328 			ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
329 			xpt_done(ccb);
330 			break;
331 		}
332 	case XPT_CALC_GEOMETRY:
333 		{
334 			cam_calc_geometry(&ccb->ccg, 1);
335 			xpt_done(ccb);
336 			break;
337 		}
338 	case XPT_PATH_INQ:
339 		{
340 			ccb->cpi.version_num = 1;
341 			ccb->cpi.hba_inquiry = 0;
342 			ccb->cpi.target_sprt = 0;
343 			ccb->cpi.hba_misc = PIM_UNMAPPED;
344 			ccb->cpi.hba_eng_cnt = 0;
345 			ccb->cpi.max_lun = MRSAS_SCSI_MAX_LUNS;
346 			ccb->cpi.unit_number = cam_sim_unit(sim);
347 			ccb->cpi.bus_id = cam_sim_bus(sim);
348 			ccb->cpi.initiator_id = MRSAS_SCSI_INITIATOR_ID;
349 			ccb->cpi.base_transfer_speed = 150000;
350 			strlcpy(ccb->cpi.sim_vid, "FreeBSD", SIM_IDLEN);
351 			strlcpy(ccb->cpi.hba_vid, "AVAGO", HBA_IDLEN);
352 			strlcpy(ccb->cpi.dev_name, cam_sim_name(sim), DEV_IDLEN);
353 			ccb->cpi.transport = XPORT_SPI;
354 			ccb->cpi.transport_version = 2;
355 			ccb->cpi.protocol = PROTO_SCSI;
356 			ccb->cpi.protocol_version = SCSI_REV_2;
357 			if (ccb->cpi.bus_id == 0)
358 				ccb->cpi.max_target = MRSAS_MAX_PD - 1;
359 			else
360 				ccb->cpi.max_target = MRSAS_MAX_LD_IDS - 1;
361 			ccb->cpi.maxio = sc->max_sectors_per_req * 512;
362 			ccb->ccb_h.status = CAM_REQ_CMP;
363 			xpt_done(ccb);
364 			break;
365 		}
366 	default:
367 		{
368 			ccb->ccb_h.status = CAM_REQ_INVALID;
369 			xpt_done(ccb);
370 			break;
371 		}
372 	}
373 }
374 
375 /*
376  * mrsas_scsiio_timeout:	Callback function for IO timed out
377  * input:					mpt command context
378  *
379  * This function will execute after timeout value provided by ccb header from
380  * CAM layer, if timer expires. Driver will run timer for all DCDM and LDIO
381  * coming from CAM layer. This function is callback function for IO timeout
382  * and it runs in no-sleep context. Set do_timedout_reset in Adapter context
383  * so that it will execute OCR/Kill adpter from ocr_thread context.
384  */
385 static void
386 mrsas_scsiio_timeout(void *data)
387 {
388 	struct mrsas_mpt_cmd *cmd;
389 	struct mrsas_softc *sc;
390 	u_int32_t target_id;
391 
392 	if (!data)
393 		return;
394 
395 	cmd = (struct mrsas_mpt_cmd *)data;
396 	sc = cmd->sc;
397 
398 	if (cmd->ccb_ptr == NULL) {
399 		printf("command timeout with NULL ccb\n");
400 		return;
401 	}
402 
403 	/*
404 	 * Below callout is dummy entry so that it will be cancelled from
405 	 * mrsas_cmd_done(). Now Controller will go to OCR/Kill Adapter based
406 	 * on OCR enable/disable property of Controller from ocr_thread
407 	 * context.
408 	 */
409 	callout_reset_sbt(&cmd->cm_callout, SBT_1S * 180, 0,
410 	    mrsas_scsiio_timeout, cmd, 0);
411 
412 	if (cmd->ccb_ptr->cpi.bus_id == 0)
413 		target_id = cmd->ccb_ptr->ccb_h.target_id;
414 	else
415 		target_id = (cmd->ccb_ptr->ccb_h.target_id + (MRSAS_MAX_PD - 1));
416 
417 	/* Save the cmd to be processed for TM, if it is not there in the array */
418 	if (sc->target_reset_pool[target_id] == NULL) {
419 		sc->target_reset_pool[target_id] = cmd;
420 		mrsas_atomic_inc(&sc->target_reset_outstanding);
421 	}
422 
423 	return;
424 }
425 
426 /*
427  * mrsas_startio:	SCSI IO entry point
428  * input:			Adapter instance soft state
429  * 					pointer to CAM Control Block
430  *
431  * This function is the SCSI IO entry point and it initiates IO processing. It
432  * copies the IO and depending if the IO is read/write or inquiry, it would
433  * call mrsas_build_ldio() or mrsas_build_dcdb(), respectively.  It returns 0
434  * if the command is sent to firmware successfully, otherwise it returns 1.
435  */
436 static int32_t
437 mrsas_startio(struct mrsas_softc *sc, struct cam_sim *sim,
438     union ccb *ccb)
439 {
440 	struct mrsas_mpt_cmd *cmd, *r1_cmd = NULL;
441 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
442 	struct ccb_scsiio *csio = &(ccb->csio);
443 	MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc;
444 	u_int8_t cmd_type;
445 
446 	if ((csio->cdb_io.cdb_bytes[0]) == SYNCHRONIZE_CACHE &&
447 		(!sc->fw_sync_cache_support)) {
448 		ccb->ccb_h.status = CAM_REQ_CMP;
449 		xpt_done(ccb);
450 		return (0);
451 	}
452 	ccb_h->status |= CAM_SIM_QUEUED;
453 
454 	if (mrsas_atomic_inc_return(&sc->fw_outstanding) > sc->max_scsi_cmds) {
455 		ccb_h->status |= CAM_REQUEUE_REQ;
456 		xpt_done(ccb);
457 		mrsas_atomic_dec(&sc->fw_outstanding);
458 		return (0);
459 	}
460 
461 	cmd = mrsas_get_mpt_cmd(sc);
462 
463 	if (!cmd) {
464 		ccb_h->status |= CAM_REQUEUE_REQ;
465 		xpt_done(ccb);
466 		mrsas_atomic_dec(&sc->fw_outstanding);
467 		return (0);
468 	}
469 
470 	if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
471 		if (ccb_h->flags & CAM_DIR_IN)
472 			cmd->flags |= MRSAS_DIR_IN;
473 		if (ccb_h->flags & CAM_DIR_OUT)
474 			cmd->flags |= MRSAS_DIR_OUT;
475 	} else
476 		cmd->flags = MRSAS_DIR_NONE;	/* no data */
477 
478 	/*
479 	 * XXX We don't yet support physical addresses here.
480 	 */
481 	switch ((ccb->ccb_h.flags & CAM_DATA_MASK)) {
482 	case CAM_DATA_PADDR:
483 	case CAM_DATA_SG_PADDR:
484 		device_printf(sc->mrsas_dev, "%s: physical addresses not supported\n",
485 		    __func__);
486 		mrsas_release_mpt_cmd(cmd);
487 		ccb_h->status = CAM_REQ_INVALID;
488 		ccb_h->status &= ~CAM_SIM_QUEUED;
489 		goto done;
490 	case CAM_DATA_SG:
491 		device_printf(sc->mrsas_dev, "%s: scatter gather is not supported\n",
492 		    __func__);
493 		mrsas_release_mpt_cmd(cmd);
494 		ccb_h->status = CAM_REQ_INVALID;
495 		goto done;
496 	case CAM_DATA_VADDR:
497 		cmd->length = csio->dxfer_len;
498 		if (cmd->length)
499 			cmd->data = csio->data_ptr;
500 		break;
501 	case CAM_DATA_BIO:
502 		cmd->length = csio->dxfer_len;
503 		if (cmd->length)
504 			cmd->data = csio->data_ptr;
505 		break;
506 	default:
507 		ccb->ccb_h.status = CAM_REQ_INVALID;
508 		goto done;
509 	}
510 
511 	/* save ccb ptr */
512 	cmd->ccb_ptr = ccb;
513 
514 	req_desc = mrsas_get_request_desc(sc, (cmd->index) - 1);
515 	if (!req_desc) {
516 		device_printf(sc->mrsas_dev, "Cannot get request_descriptor.\n");
517 		return (FAIL);
518 	}
519 	memset(req_desc, 0, sizeof(MRSAS_REQUEST_DESCRIPTOR_UNION));
520 	cmd->request_desc = req_desc;
521 
522 	if (ccb_h->flags & CAM_CDB_POINTER)
523 		bcopy(csio->cdb_io.cdb_ptr, cmd->io_request->CDB.CDB32, csio->cdb_len);
524 	else
525 		bcopy(csio->cdb_io.cdb_bytes, cmd->io_request->CDB.CDB32, csio->cdb_len);
526 	mtx_lock(&sc->raidmap_lock);
527 
528 	/* Check for IO type READ-WRITE targeted for Logical Volume */
529 	cmd_type = mrsas_find_io_type(sim, ccb);
530 	switch (cmd_type) {
531 	case READ_WRITE_LDIO:
532 		/* Build READ-WRITE IO for Logical Volume  */
533 		if (mrsas_build_ldio_rw(sc, cmd, ccb)) {
534 			device_printf(sc->mrsas_dev, "Build RW LDIO failed.\n");
535 			mtx_unlock(&sc->raidmap_lock);
536 			mrsas_release_mpt_cmd(cmd);
537 			return (1);
538 		}
539 		break;
540 	case NON_READ_WRITE_LDIO:
541 		/* Build NON READ-WRITE IO for Logical Volume  */
542 		if (mrsas_build_ldio_nonrw(sc, cmd, ccb)) {
543 			device_printf(sc->mrsas_dev, "Build NON-RW LDIO failed.\n");
544 			mtx_unlock(&sc->raidmap_lock);
545 			mrsas_release_mpt_cmd(cmd);
546 			return (1);
547 		}
548 		break;
549 	case READ_WRITE_SYSPDIO:
550 	case NON_READ_WRITE_SYSPDIO:
551 		if (sc->secure_jbod_support &&
552 		    (cmd_type == NON_READ_WRITE_SYSPDIO)) {
553 			/* Build NON-RW IO for JBOD */
554 			if (mrsas_build_syspdio(sc, cmd, ccb, sim, 0)) {
555 				device_printf(sc->mrsas_dev,
556 				    "Build SYSPDIO failed.\n");
557 				mtx_unlock(&sc->raidmap_lock);
558 				mrsas_release_mpt_cmd(cmd);
559 				return (1);
560 			}
561 		} else {
562 			/* Build RW IO for JBOD */
563 			if (mrsas_build_syspdio(sc, cmd, ccb, sim, 1)) {
564 				device_printf(sc->mrsas_dev,
565 				    "Build SYSPDIO failed.\n");
566 				mtx_unlock(&sc->raidmap_lock);
567 				mrsas_release_mpt_cmd(cmd);
568 				return (1);
569 			}
570 		}
571 	}
572 	mtx_unlock(&sc->raidmap_lock);
573 
574 	if (cmd->flags == MRSAS_DIR_IN)	/* from device */
575 		cmd->io_request->Control |= htole32(MPI2_SCSIIO_CONTROL_READ);
576 	else if (cmd->flags == MRSAS_DIR_OUT)	/* to device */
577 		cmd->io_request->Control |= htole32(MPI2_SCSIIO_CONTROL_WRITE);
578 
579 	cmd->io_request->SGLFlags = htole16(MPI2_SGE_FLAGS_64_BIT_ADDRESSING);
580 	cmd->io_request->SGLOffset0 = offsetof(MRSAS_RAID_SCSI_IO_REQUEST, SGL) / 4;
581 	cmd->io_request->SenseBufferLowAddress = htole32(cmd->sense_phys_addr & 0xFFFFFFFF);
582 	cmd->io_request->SenseBufferLength = MRSAS_SCSI_SENSE_BUFFERSIZE;
583 
584 	req_desc = cmd->request_desc;
585 	req_desc->SCSIIO.SMID = htole16(cmd->index);
586 
587 	/*
588 	 * Start timer for IO timeout. Default timeout value is 90 second.
589 	 */
590 	cmd->callout_owner = true;
591 	callout_reset_sbt(&cmd->cm_callout, SBT_1S * 180, 0,
592 	    mrsas_scsiio_timeout, cmd, 0);
593 
594 	if (mrsas_atomic_read(&sc->fw_outstanding) > sc->io_cmds_highwater)
595 		sc->io_cmds_highwater++;
596 
597 	/*
598 	 *  if it is raid 1/10 fp write capable.
599 	 *  try to get second command from pool and construct it.
600 	 *  From FW, it has confirmed that lba values of two PDs corresponds to
601 	 *  single R1/10 LD are always same
602 	 *
603 	 */
604 	/*
605 	 * driver side count always should be less than max_fw_cmds to get
606 	 * new command
607 	 */
608 	if (cmd->r1_alt_dev_handle != MR_DEVHANDLE_INVALID) {
609 		mrsas_prepare_secondRaid1_IO(sc, cmd);
610 		mrsas_fire_cmd(sc, req_desc->addr.u.low,
611 			req_desc->addr.u.high);
612 		r1_cmd = cmd->peer_cmd;
613 		mrsas_fire_cmd(sc, r1_cmd->request_desc->addr.u.low,
614 				r1_cmd->request_desc->addr.u.high);
615 	} else {
616 		mrsas_fire_cmd(sc, req_desc->addr.u.low,
617 			req_desc->addr.u.high);
618 	}
619 
620 	return (0);
621 
622 done:
623 	xpt_done(ccb);
624 	mrsas_atomic_dec(&sc->fw_outstanding);
625 	return (0);
626 }
627 
628 /*
629  * mrsas_find_io_type:	Determines if IO is read/write or inquiry
630  * input:			pointer to CAM Control Block
631  *
632  * This function determines if the IO is read/write or inquiry.  It returns a 1
633  * if the IO is read/write and 0 if it is inquiry.
634  */
635 int
636 mrsas_find_io_type(struct cam_sim *sim, union ccb *ccb)
637 {
638 	struct ccb_scsiio *csio = &(ccb->csio);
639 
640 	switch (csio->cdb_io.cdb_bytes[0]) {
641 	case READ_10:
642 	case WRITE_10:
643 	case READ_12:
644 	case WRITE_12:
645 	case READ_6:
646 	case WRITE_6:
647 	case READ_16:
648 	case WRITE_16:
649 		return (cam_sim_bus(sim) ?
650 		    READ_WRITE_SYSPDIO : READ_WRITE_LDIO);
651 	default:
652 		return (cam_sim_bus(sim) ?
653 		    NON_READ_WRITE_SYSPDIO : NON_READ_WRITE_LDIO);
654 	}
655 }
656 
657 /*
658  * mrsas_get_mpt_cmd:	Get a cmd from free command pool
659  * input:				Adapter instance soft state
660  *
661  * This function removes an MPT command from the command free list and
662  * initializes it.
663  */
664 struct mrsas_mpt_cmd *
665 mrsas_get_mpt_cmd(struct mrsas_softc *sc)
666 {
667 	struct mrsas_mpt_cmd *cmd = NULL;
668 
669 	mtx_lock(&sc->mpt_cmd_pool_lock);
670 	if (!TAILQ_EMPTY(&sc->mrsas_mpt_cmd_list_head)) {
671 		cmd = TAILQ_FIRST(&sc->mrsas_mpt_cmd_list_head);
672 		TAILQ_REMOVE(&sc->mrsas_mpt_cmd_list_head, cmd, next);
673 	} else {
674 		goto out;
675 	}
676 
677 	memset((uint8_t *)cmd->io_request, 0, MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE);
678 	cmd->data = NULL;
679 	cmd->length = 0;
680 	cmd->flags = 0;
681 	cmd->error_code = 0;
682 	cmd->load_balance = 0;
683 	cmd->ccb_ptr = NULL;
684 out:
685 	mtx_unlock(&sc->mpt_cmd_pool_lock);
686 	return cmd;
687 }
688 
689 /*
690  * mrsas_release_mpt_cmd:	Return a cmd to free command pool
691  * input:					Command packet for return to free command pool
692  *
693  * This function returns an MPT command to the free command list.
694  */
695 void
696 mrsas_release_mpt_cmd(struct mrsas_mpt_cmd *cmd)
697 {
698 	struct mrsas_softc *sc = cmd->sc;
699 
700 	mtx_lock(&sc->mpt_cmd_pool_lock);
701 	cmd->r1_alt_dev_handle = MR_DEVHANDLE_INVALID;
702 	cmd->sync_cmd_idx = (u_int32_t)MRSAS_ULONG_MAX;
703 	cmd->peer_cmd = NULL;
704 	cmd->cmd_completed = 0;
705 	memset((uint8_t *)cmd->io_request, 0,
706 		sizeof(MRSAS_RAID_SCSI_IO_REQUEST));
707 	TAILQ_INSERT_HEAD(&(sc->mrsas_mpt_cmd_list_head), cmd, next);
708 	mtx_unlock(&sc->mpt_cmd_pool_lock);
709 
710 	return;
711 }
712 
713 /*
714  * mrsas_get_request_desc:	Get request descriptor from array
715  * input:					Adapter instance soft state
716  * 							SMID index
717  *
718  * This function returns a pointer to the request descriptor.
719  */
720 MRSAS_REQUEST_DESCRIPTOR_UNION *
721 mrsas_get_request_desc(struct mrsas_softc *sc, u_int16_t index)
722 {
723 	u_int8_t *p;
724 
725 	KASSERT(index < sc->max_fw_cmds, ("req_desc is out of range"));
726 	p = sc->req_desc + sizeof(MRSAS_REQUEST_DESCRIPTOR_UNION) * index;
727 
728 	return (MRSAS_REQUEST_DESCRIPTOR_UNION *) p;
729 }
730 
731 /* mrsas_prepare_secondRaid1_IO
732  * It prepares the raid 1 second IO
733  */
734 void
735 mrsas_prepare_secondRaid1_IO(struct mrsas_softc *sc,
736     struct mrsas_mpt_cmd *cmd)
737 {
738 	MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc, *req_desc2 = NULL;
739 	struct mrsas_mpt_cmd *r1_cmd;
740 
741 	r1_cmd = cmd->peer_cmd;
742 	req_desc = cmd->request_desc;
743 
744 	/*
745 	 * copy the io request frame as well as 8 SGEs data for r1
746 	 * command
747 	 */
748 	memcpy(r1_cmd->io_request, cmd->io_request,
749 	    (sizeof(MRSAS_RAID_SCSI_IO_REQUEST)));
750 	memcpy(&r1_cmd->io_request->SGL, &cmd->io_request->SGL,
751 	    (sc->max_sge_in_main_msg * sizeof(MPI2_SGE_IO_UNION)));
752 
753 	/* sense buffer is different for r1 command */
754 	r1_cmd->io_request->SenseBufferLowAddress = htole32(r1_cmd->sense_phys_addr & 0xFFFFFFFF);
755 	r1_cmd->ccb_ptr = cmd->ccb_ptr;
756 
757 	req_desc2 = mrsas_get_request_desc(sc, r1_cmd->index - 1);
758 	req_desc2->addr.Words = 0;
759 	r1_cmd->request_desc = req_desc2;
760 	req_desc2->SCSIIO.SMID = r1_cmd->index;
761 	req_desc2->SCSIIO.RequestFlags = req_desc->SCSIIO.RequestFlags;
762 	r1_cmd->request_desc->SCSIIO.DevHandle = cmd->r1_alt_dev_handle;
763 	r1_cmd->r1_alt_dev_handle =  cmd->io_request->DevHandle;
764 	r1_cmd->io_request->DevHandle = cmd->r1_alt_dev_handle;
765 	cmd->io_request->RaidContext.raid_context_g35.smid.peerSMID =
766 	    r1_cmd->index;
767 	r1_cmd->io_request->RaidContext.raid_context_g35.smid.peerSMID =
768 		cmd->index;
769 	/*
770 	 * MSIxIndex of both commands request descriptors
771 	 * should be same
772 	 */
773 	r1_cmd->request_desc->SCSIIO.MSIxIndex = cmd->request_desc->SCSIIO.MSIxIndex;
774 	/* span arm is different for r1 cmd */
775 	r1_cmd->io_request->RaidContext.raid_context_g35.spanArm =
776 	    cmd->io_request->RaidContext.raid_context_g35.spanArm + 1;
777 
778 }
779 
780 /*
781  * mrsas_build_ldio_rw:	Builds an LDIO command
782  * input:				Adapter instance soft state
783  * 						Pointer to command packet
784  * 						Pointer to CCB
785  *
786  * This function builds the LDIO command packet.  It returns 0 if the command is
787  * built successfully, otherwise it returns a 1.
788  */
789 int
790 mrsas_build_ldio_rw(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
791     union ccb *ccb)
792 {
793 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
794 	struct ccb_scsiio *csio = &(ccb->csio);
795 	u_int32_t device_id;
796 	MRSAS_RAID_SCSI_IO_REQUEST *io_request;
797 
798 	device_id = ccb_h->target_id;
799 
800 	io_request = cmd->io_request;
801 	io_request->RaidContext.raid_context.VirtualDiskTgtId = htole16(device_id);
802 	io_request->RaidContext.raid_context.status = 0;
803 	io_request->RaidContext.raid_context.exStatus = 0;
804 
805 	/* just the cdb len, other flags zero, and ORed-in later for FP */
806 	io_request->IoFlags = htole16(csio->cdb_len);
807 
808 	if (mrsas_setup_io(sc, cmd, ccb, device_id, io_request) != SUCCESS)
809 		device_printf(sc->mrsas_dev, "Build ldio or fpio error\n");
810 
811 	io_request->DataLength = htole32(cmd->length);
812 
813 	if (mrsas_map_request(sc, cmd, ccb) == SUCCESS) {
814 		if (sc->is_ventura || sc->is_aero)
815 			io_request->RaidContext.raid_context_g35.numSGE = cmd->sge_count;
816 		else {
817 			/*
818 			 * numSGE store lower 8 bit of sge_count. numSGEExt store
819 			 * higher 8 bit of sge_count
820 			 */
821 			io_request->RaidContext.raid_context.numSGE = cmd->sge_count;
822 			io_request->RaidContext.raid_context.numSGEExt = (uint8_t)(cmd->sge_count >> 8);
823 		}
824 
825 	} else {
826 		device_printf(sc->mrsas_dev, "Data map/load failed.\n");
827 		return (FAIL);
828 	}
829 	return (0);
830 }
831 
832 /* stream detection on read and and write IOs */
833 static void
834 mrsas_stream_detect(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
835     struct IO_REQUEST_INFO *io_info)
836 {
837 	u_int32_t device_id = io_info->ldTgtId;
838 	LD_STREAM_DETECT *current_ld_SD = sc->streamDetectByLD[device_id];
839 	u_int32_t *track_stream = &current_ld_SD->mruBitMap;
840 	u_int32_t streamNum, shiftedValues, unshiftedValues;
841 	u_int32_t indexValueMask, shiftedValuesMask;
842 	int i;
843 	boolean_t isReadAhead = false;
844 	STREAM_DETECT *current_SD;
845 
846 	/* find possible stream */
847 	for (i = 0; i < MAX_STREAMS_TRACKED; ++i) {
848 		streamNum = (*track_stream >> (i * BITS_PER_INDEX_STREAM)) &
849 				STREAM_MASK;
850 		current_SD = &current_ld_SD->streamTrack[streamNum];
851 		/*
852 		 * if we found a stream, update the raid context and
853 		 * also update the mruBitMap
854 		 */
855 		if (current_SD->nextSeqLBA &&
856 		    io_info->ldStartBlock >= current_SD->nextSeqLBA &&
857 		    (io_info->ldStartBlock <= (current_SD->nextSeqLBA+32)) &&
858 		    (current_SD->isRead == io_info->isRead)) {
859 			if (io_info->ldStartBlock != current_SD->nextSeqLBA &&
860 			    (!io_info->isRead || !isReadAhead)) {
861 				/*
862 				 * Once the API availible we need to change this.
863 				 * At this point we are not allowing any gap
864 				 */
865 				continue;
866 			}
867 			cmd->io_request->RaidContext.raid_context_g35.streamDetected = TRUE;
868 			current_SD->nextSeqLBA = io_info->ldStartBlock + io_info->numBlocks;
869 			/*
870 			 * update the mruBitMap LRU
871 			 */
872 			shiftedValuesMask = (1 << i * BITS_PER_INDEX_STREAM) - 1 ;
873 			shiftedValues = ((*track_stream & shiftedValuesMask) <<
874 			    BITS_PER_INDEX_STREAM);
875 			indexValueMask = STREAM_MASK << i * BITS_PER_INDEX_STREAM;
876 			unshiftedValues = (*track_stream) &
877 			    (~(shiftedValuesMask | indexValueMask));
878 			*track_stream =
879 			    (unshiftedValues | shiftedValues | streamNum);
880 			return;
881 		}
882 	}
883 	/*
884 	 * if we did not find any stream, create a new one from the least recently used
885 	 */
886 	streamNum = (*track_stream >>
887 	    ((MAX_STREAMS_TRACKED - 1) * BITS_PER_INDEX_STREAM)) & STREAM_MASK;
888 	current_SD = &current_ld_SD->streamTrack[streamNum];
889 	current_SD->isRead = io_info->isRead;
890 	current_SD->nextSeqLBA = io_info->ldStartBlock + io_info->numBlocks;
891 	*track_stream = (((*track_stream & ZERO_LAST_STREAM) << 4) | streamNum);
892 	return;
893 }
894 
895 /*
896  * mrsas_setup_io:	Set up data including Fast Path I/O
897  * input:			Adapter instance soft state
898  * 					Pointer to command packet
899  * 					Pointer to CCB
900  *
901  * This function builds the DCDB inquiry command.  It returns 0 if the command
902  * is built successfully, otherwise it returns a 1.
903  */
904 int
905 mrsas_setup_io(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
906     union ccb *ccb, u_int32_t device_id,
907     MRSAS_RAID_SCSI_IO_REQUEST * io_request)
908 {
909 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
910 	struct ccb_scsiio *csio = &(ccb->csio);
911 	struct IO_REQUEST_INFO io_info;
912 	MR_DRV_RAID_MAP_ALL *map_ptr;
913 	struct mrsas_mpt_cmd *r1_cmd = NULL;
914 
915 	MR_LD_RAID *raid;
916 	u_int8_t fp_possible;
917 	u_int32_t start_lba_hi, start_lba_lo, ld_block_size, ld;
918 	u_int32_t datalength = 0;
919 
920 	io_request->RaidContext.raid_context.VirtualDiskTgtId = htole16(device_id);
921 
922 	start_lba_lo = 0;
923 	start_lba_hi = 0;
924 	fp_possible = 0;
925 
926 	/*
927 	 * READ_6 (0x08) or WRITE_6 (0x0A) cdb
928 	 */
929 	if (csio->cdb_len == 6) {
930 		datalength = (u_int32_t)csio->cdb_io.cdb_bytes[4];
931 		start_lba_lo = ((u_int32_t)csio->cdb_io.cdb_bytes[1] << 16) |
932 		    ((u_int32_t)csio->cdb_io.cdb_bytes[2] << 8) |
933 		    (u_int32_t)csio->cdb_io.cdb_bytes[3];
934 		start_lba_lo &= 0x1FFFFF;
935 	}
936 	/*
937 	 * READ_10 (0x28) or WRITE_6 (0x2A) cdb
938 	 */
939 	else if (csio->cdb_len == 10) {
940 		datalength = (u_int32_t)csio->cdb_io.cdb_bytes[8] |
941 		    ((u_int32_t)csio->cdb_io.cdb_bytes[7] << 8);
942 		start_lba_lo = ((u_int32_t)csio->cdb_io.cdb_bytes[2] << 24) |
943 		    ((u_int32_t)csio->cdb_io.cdb_bytes[3] << 16) |
944 		    (u_int32_t)csio->cdb_io.cdb_bytes[4] << 8 |
945 		    ((u_int32_t)csio->cdb_io.cdb_bytes[5]);
946 	}
947 	/*
948 	 * READ_12 (0xA8) or WRITE_12 (0xAA) cdb
949 	 */
950 	else if (csio->cdb_len == 12) {
951 		datalength = (u_int32_t)csio->cdb_io.cdb_bytes[6] << 24 |
952 		    ((u_int32_t)csio->cdb_io.cdb_bytes[7] << 16) |
953 		    ((u_int32_t)csio->cdb_io.cdb_bytes[8] << 8) |
954 		    ((u_int32_t)csio->cdb_io.cdb_bytes[9]);
955 		start_lba_lo = ((u_int32_t)csio->cdb_io.cdb_bytes[2] << 24) |
956 		    ((u_int32_t)csio->cdb_io.cdb_bytes[3] << 16) |
957 		    (u_int32_t)csio->cdb_io.cdb_bytes[4] << 8 |
958 		    ((u_int32_t)csio->cdb_io.cdb_bytes[5]);
959 	}
960 	/*
961 	 * READ_16 (0x88) or WRITE_16 (0xx8A) cdb
962 	 */
963 	else if (csio->cdb_len == 16) {
964 		datalength = (u_int32_t)csio->cdb_io.cdb_bytes[10] << 24 |
965 		    ((u_int32_t)csio->cdb_io.cdb_bytes[11] << 16) |
966 		    ((u_int32_t)csio->cdb_io.cdb_bytes[12] << 8) |
967 		    ((u_int32_t)csio->cdb_io.cdb_bytes[13]);
968 		start_lba_lo = ((u_int32_t)csio->cdb_io.cdb_bytes[6] << 24) |
969 		    ((u_int32_t)csio->cdb_io.cdb_bytes[7] << 16) |
970 		    (u_int32_t)csio->cdb_io.cdb_bytes[8] << 8 |
971 		    ((u_int32_t)csio->cdb_io.cdb_bytes[9]);
972 		start_lba_hi = ((u_int32_t)csio->cdb_io.cdb_bytes[2] << 24) |
973 		    ((u_int32_t)csio->cdb_io.cdb_bytes[3] << 16) |
974 		    (u_int32_t)csio->cdb_io.cdb_bytes[4] << 8 |
975 		    ((u_int32_t)csio->cdb_io.cdb_bytes[5]);
976 	}
977 	memset(&io_info, 0, sizeof(struct IO_REQUEST_INFO));
978 	io_info.ldStartBlock = ((u_int64_t)start_lba_hi << 32) | start_lba_lo;
979 	io_info.numBlocks = datalength;
980 	io_info.ldTgtId = device_id;
981 	io_info.r1_alt_dev_handle = MR_DEVHANDLE_INVALID;
982 
983 	io_request->DataLength = htole32(cmd->length);
984 
985 	switch (ccb_h->flags & CAM_DIR_MASK) {
986 	case CAM_DIR_IN:
987 		io_info.isRead = 1;
988 		break;
989 	case CAM_DIR_OUT:
990 		io_info.isRead = 0;
991 		break;
992 	case CAM_DIR_NONE:
993 	default:
994 		mrsas_dprint(sc, MRSAS_TRACE, "From %s : DMA Flag is %d \n", __func__, ccb_h->flags & CAM_DIR_MASK);
995 		break;
996 	}
997 
998 	map_ptr = sc->ld_drv_map[(sc->map_id & 1)];
999 	ld_block_size = MR_LdBlockSizeGet(device_id, map_ptr);
1000 
1001 	ld = MR_TargetIdToLdGet(device_id, map_ptr);
1002 	if ((ld >= MAX_LOGICAL_DRIVES_EXT) || (!sc->fast_path_io)) {
1003 		io_request->RaidContext.raid_context.regLockFlags = 0;
1004 		fp_possible = 0;
1005 	} else {
1006 		if (MR_BuildRaidContext(sc, &io_info, &io_request->RaidContext.raid_context, map_ptr))
1007 			fp_possible = io_info.fpOkForIo;
1008 	}
1009 
1010 	raid = MR_LdRaidGet(ld, map_ptr);
1011 	/* Store the TM capability value in cmd */
1012 	cmd->tmCapable = raid->capability.tmCapable;
1013 
1014 	cmd->request_desc->SCSIIO.MSIxIndex =
1015 	    sc->msix_vectors ? smp_processor_id() % sc->msix_vectors : 0;
1016 
1017 	if (sc->is_ventura || sc->is_aero) {
1018 		if (sc->streamDetectByLD) {
1019 			mtx_lock(&sc->stream_lock);
1020 			mrsas_stream_detect(sc, cmd, &io_info);
1021 			mtx_unlock(&sc->stream_lock);
1022 			/* In ventura if stream detected for a read and
1023 			 * it is read ahead capable make this IO as LDIO */
1024 			if (io_request->RaidContext.raid_context_g35.streamDetected &&
1025 					io_info.isRead && io_info.raCapable)
1026 				fp_possible = FALSE;
1027 		}
1028 
1029 		/* Set raid 1/10 fast path write capable bit in io_info.
1030 		 * Note - reset peer_cmd and r1_alt_dev_handle if fp_possible
1031 		 * disabled after this point. Try not to add more check for
1032 		 * fp_possible toggle after this.
1033 		 */
1034 		if (fp_possible &&
1035 				(io_info.r1_alt_dev_handle != MR_DEVHANDLE_INVALID) &&
1036 				(raid->level == 1) && !io_info.isRead) {
1037 			if (mrsas_atomic_inc_return(&sc->fw_outstanding) > sc->max_scsi_cmds) {
1038 				fp_possible = FALSE;
1039 				mrsas_atomic_dec(&sc->fw_outstanding);
1040 			} else {
1041 				r1_cmd = mrsas_get_mpt_cmd(sc);
1042 				if (!r1_cmd) {
1043 					fp_possible = FALSE;
1044 					mrsas_atomic_dec(&sc->fw_outstanding);
1045 				}
1046 				else {
1047 					cmd->peer_cmd = r1_cmd;
1048 					r1_cmd->peer_cmd = cmd;
1049 				}
1050  			}
1051 		}
1052 	}
1053 
1054 	if (fp_possible) {
1055 		mrsas_set_pd_lba(io_request, csio->cdb_len, &io_info, ccb, map_ptr,
1056 		    start_lba_lo, ld_block_size);
1057 		io_request->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
1058 		cmd->request_desc->SCSIIO.RequestFlags =
1059 		    (MPI2_REQ_DESCRIPT_FLAGS_FP_IO <<
1060 		    MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
1061 		if (sc->mrsas_gen3_ctrl) {
1062 			if (io_request->RaidContext.raid_context.regLockFlags == REGION_TYPE_UNUSED)
1063 				cmd->request_desc->SCSIIO.RequestFlags =
1064 				    (MRSAS_REQ_DESCRIPT_FLAGS_NO_LOCK <<
1065 				    MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
1066 			io_request->RaidContext.raid_context.Type = MPI2_TYPE_CUDA;
1067 			io_request->RaidContext.raid_context.nseg = 0x1;
1068 			io_request->IoFlags |= htole16(MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH);
1069 			io_request->RaidContext.raid_context.regLockFlags |=
1070 			    (MR_RL_FLAGS_GRANT_DESTINATION_CUDA |
1071 			    MR_RL_FLAGS_SEQ_NUM_ENABLE);
1072 		} else if (sc->is_ventura || sc->is_aero) {
1073 			io_request->RaidContext.raid_context_g35.Type = MPI2_TYPE_CUDA;
1074 			io_request->RaidContext.raid_context_g35.nseg = 0x1;
1075 			io_request->RaidContext.raid_context_g35.routingFlags.bits.sqn = 1;
1076 			io_request->IoFlags |= htole16(MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH);
1077 			if (io_request->RaidContext.raid_context_g35.routingFlags.bits.sld) {
1078 					io_request->RaidContext.raid_context_g35.RAIDFlags =
1079 					(MR_RAID_FLAGS_IO_SUB_TYPE_CACHE_BYPASS
1080 					<< MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT);
1081 			}
1082 		}
1083 		if ((sc->load_balance_info[device_id].loadBalanceFlag) &&
1084 		    (io_info.isRead)) {
1085 			io_info.devHandle =
1086 			    mrsas_get_updated_dev_handle(sc,
1087 			    &sc->load_balance_info[device_id], &io_info);
1088 			cmd->load_balance = MRSAS_LOAD_BALANCE_FLAG;
1089 			cmd->pd_r1_lb = io_info.pd_after_lb;
1090 			if (sc->is_ventura || sc->is_aero)
1091 				io_request->RaidContext.raid_context_g35.spanArm = io_info.span_arm;
1092 			else
1093 				io_request->RaidContext.raid_context.spanArm = io_info.span_arm;
1094 		} else
1095 			cmd->load_balance = 0;
1096 
1097 		if (sc->is_ventura || sc->is_aero)
1098 				cmd->r1_alt_dev_handle = io_info.r1_alt_dev_handle;
1099 		else
1100 				cmd->r1_alt_dev_handle = MR_DEVHANDLE_INVALID;
1101 
1102 		cmd->request_desc->SCSIIO.DevHandle = io_info.devHandle;
1103 		io_request->DevHandle = io_info.devHandle;
1104 		cmd->pdInterface = io_info.pdInterface;
1105 	} else {
1106 		/* Not FP IO */
1107 		io_request->RaidContext.raid_context.timeoutValue = htole16(map_ptr->raidMap.fpPdIoTimeoutSec);
1108 		cmd->request_desc->SCSIIO.RequestFlags =
1109 		    (MRSAS_REQ_DESCRIPT_FLAGS_LD_IO <<
1110 		    MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
1111 		if (sc->mrsas_gen3_ctrl) {
1112 			if (io_request->RaidContext.raid_context.regLockFlags == REGION_TYPE_UNUSED)
1113 				cmd->request_desc->SCSIIO.RequestFlags =
1114 				    (MRSAS_REQ_DESCRIPT_FLAGS_NO_LOCK <<
1115 				    MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
1116 			io_request->RaidContext.raid_context.Type = MPI2_TYPE_CUDA;
1117 			io_request->RaidContext.raid_context.regLockFlags |=
1118 			    (MR_RL_FLAGS_GRANT_DESTINATION_CPU0 |
1119 			    MR_RL_FLAGS_SEQ_NUM_ENABLE);
1120 			io_request->RaidContext.raid_context.nseg = 0x1;
1121 		} else if (sc->is_ventura || sc->is_aero) {
1122 			io_request->RaidContext.raid_context_g35.Type = MPI2_TYPE_CUDA;
1123 			io_request->RaidContext.raid_context_g35.routingFlags.bits.sqn = 1;
1124 			io_request->RaidContext.raid_context_g35.nseg = 0x1;
1125 		}
1126 		io_request->Function = MRSAS_MPI2_FUNCTION_LD_IO_REQUEST;
1127 		io_request->DevHandle = htole16(device_id);
1128 	}
1129 	return (0);
1130 }
1131 
1132 /*
1133  * mrsas_build_ldio_nonrw:	Builds an LDIO command
1134  * input:				Adapter instance soft state
1135  * 						Pointer to command packet
1136  * 						Pointer to CCB
1137  *
1138  * This function builds the LDIO command packet.  It returns 0 if the command is
1139  * built successfully, otherwise it returns a 1.
1140  */
1141 int
1142 mrsas_build_ldio_nonrw(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
1143     union ccb *ccb)
1144 {
1145 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
1146 	u_int32_t device_id, ld;
1147 	MR_DRV_RAID_MAP_ALL *map_ptr;
1148 	MR_LD_RAID *raid;
1149 	MRSAS_RAID_SCSI_IO_REQUEST *io_request;
1150 
1151 	io_request = cmd->io_request;
1152 	device_id = ccb_h->target_id;
1153 
1154 	map_ptr = sc->ld_drv_map[(sc->map_id & 1)];
1155 	ld = MR_TargetIdToLdGet(device_id, map_ptr);
1156 	raid = MR_LdRaidGet(ld, map_ptr);
1157 	/* Store the TM capability value in cmd */
1158 	cmd->tmCapable = raid->capability.tmCapable;
1159 
1160 	/* FW path for LD Non-RW (SCSI management commands) */
1161 	io_request->Function = MRSAS_MPI2_FUNCTION_LD_IO_REQUEST;
1162 	io_request->DevHandle = device_id;
1163 	cmd->request_desc->SCSIIO.RequestFlags =
1164 	    (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
1165 	    MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
1166 
1167 	io_request->RaidContext.raid_context.VirtualDiskTgtId = device_id;
1168 	io_request->LUN[1] = ccb_h->target_lun & 0xF;
1169 	io_request->DataLength = cmd->length;
1170 
1171 	if (mrsas_map_request(sc, cmd, ccb) == SUCCESS) {
1172 		if (sc->is_ventura || sc->is_aero)
1173 			io_request->RaidContext.raid_context_g35.numSGE = cmd->sge_count;
1174 		else {
1175 			/*
1176 			 * numSGE store lower 8 bit of sge_count. numSGEExt store
1177 			 * higher 8 bit of sge_count
1178 			 */
1179 			io_request->RaidContext.raid_context.numSGE = cmd->sge_count;
1180 			io_request->RaidContext.raid_context.numSGEExt = (uint8_t)(cmd->sge_count >> 8);
1181 		}
1182 	} else {
1183 		device_printf(sc->mrsas_dev, "Data map/load failed.\n");
1184 		return (1);
1185 	}
1186 	return (0);
1187 }
1188 
1189 /*
1190  * mrsas_build_syspdio:	Builds an DCDB command
1191  * input:				Adapter instance soft state
1192  * 						Pointer to command packet
1193  * 						Pointer to CCB
1194  *
1195  * This function builds the DCDB inquiry command.  It returns 0 if the command
1196  * is built successfully, otherwise it returns a 1.
1197  */
1198 int
1199 mrsas_build_syspdio(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
1200     union ccb *ccb, struct cam_sim *sim, u_int8_t fp_possible)
1201 {
1202 	struct ccb_hdr *ccb_h = &(ccb->ccb_h);
1203 	u_int32_t device_id;
1204 	MR_DRV_RAID_MAP_ALL *local_map_ptr;
1205 	MRSAS_RAID_SCSI_IO_REQUEST *io_request;
1206 	struct MR_PD_CFG_SEQ_NUM_SYNC *pd_sync;
1207 
1208 	io_request = cmd->io_request;
1209 	device_id = ccb_h->target_id;
1210 	local_map_ptr = sc->ld_drv_map[(sc->map_id & 1)];
1211 	io_request->RaidContext.raid_context.RAIDFlags = MR_RAID_FLAGS_IO_SUB_TYPE_SYSTEM_PD
1212 	    << MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT;
1213 	io_request->RaidContext.raid_context.regLockFlags = 0;
1214 	io_request->RaidContext.raid_context.regLockRowLBA = 0;
1215 	io_request->RaidContext.raid_context.regLockLength = 0;
1216 
1217 	cmd->pdInterface = sc->target_list[device_id].interface_type;
1218 
1219 	/* If FW supports PD sequence number */
1220 	if (sc->use_seqnum_jbod_fp &&
1221 	    sc->pd_list[device_id].driveType == 0x00) {
1222 		//printf("Using Drv seq num\n");
1223 		pd_sync = (void *)sc->jbodmap_mem[(sc->pd_seq_map_id - 1) & 1];
1224 		cmd->tmCapable = pd_sync->seq[device_id].capability.tmCapable;
1225 		/* More than 256 PD/JBOD support for Ventura */
1226 		if (sc->support_morethan256jbod)
1227 			io_request->RaidContext.raid_context.VirtualDiskTgtId =
1228 				pd_sync->seq[device_id].pdTargetId;
1229 		else
1230 			io_request->RaidContext.raid_context.VirtualDiskTgtId =
1231 				htole16(device_id + 255);
1232 		io_request->RaidContext.raid_context.configSeqNum = pd_sync->seq[device_id].seqNum;
1233 		io_request->DevHandle = pd_sync->seq[device_id].devHandle;
1234 		if (sc->is_ventura || sc->is_aero)
1235 			io_request->RaidContext.raid_context_g35.routingFlags.bits.sqn = 1;
1236 		else
1237 			io_request->RaidContext.raid_context.regLockFlags |=
1238 			    (MR_RL_FLAGS_SEQ_NUM_ENABLE | MR_RL_FLAGS_GRANT_DESTINATION_CUDA);
1239 		/* raid_context.Type = MPI2_TYPE_CUDA is valid only,
1240 		 * if FW support Jbod Sequence number
1241 		 */
1242 		io_request->RaidContext.raid_context.Type = MPI2_TYPE_CUDA;
1243 		io_request->RaidContext.raid_context.nseg = 0x1;
1244 	} else if (sc->fast_path_io) {
1245 		//printf("Using LD RAID map\n");
1246 		io_request->RaidContext.raid_context.VirtualDiskTgtId = htole16(device_id);
1247 		io_request->RaidContext.raid_context.configSeqNum = 0;
1248 		local_map_ptr = sc->ld_drv_map[(sc->map_id & 1)];
1249 		io_request->DevHandle =
1250 		    local_map_ptr->raidMap.devHndlInfo[device_id].curDevHdl;
1251 	} else {
1252 		//printf("Using FW PATH\n");
1253 		/* Want to send all IO via FW path */
1254 		io_request->RaidContext.raid_context.VirtualDiskTgtId = htole16(device_id);
1255 		io_request->RaidContext.raid_context.configSeqNum = 0;
1256 		io_request->DevHandle = MR_DEVHANDLE_INVALID;
1257 	}
1258 
1259 	cmd->request_desc->SCSIIO.DevHandle = io_request->DevHandle;
1260 	cmd->request_desc->SCSIIO.MSIxIndex =
1261 	    sc->msix_vectors ? smp_processor_id() % sc->msix_vectors : 0;
1262 
1263 	if (!fp_possible) {
1264 		/* system pd firmware path */
1265 		io_request->Function = MRSAS_MPI2_FUNCTION_LD_IO_REQUEST;
1266 		cmd->request_desc->SCSIIO.RequestFlags =
1267 		    (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
1268 		    MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
1269 		io_request->RaidContext.raid_context.timeoutValue =
1270 		    htole16(local_map_ptr->raidMap.fpPdIoTimeoutSec);
1271 		io_request->RaidContext.raid_context.VirtualDiskTgtId = htole16(device_id);
1272 	} else {
1273 		/* system pd fast path */
1274 		io_request->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
1275 		io_request->RaidContext.raid_context.timeoutValue = htole16(local_map_ptr->raidMap.fpPdIoTimeoutSec);
1276 
1277 		/*
1278 		 * NOTE - For system pd RW cmds only IoFlags will be FAST_PATH
1279 		 * Because the NON RW cmds will now go via FW Queue
1280 		 * and not the Exception queue
1281 		 */
1282 		if (sc->mrsas_gen3_ctrl || sc->is_ventura || sc->is_aero)
1283 			io_request->IoFlags |= htole16(MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH);
1284 
1285 		cmd->request_desc->SCSIIO.RequestFlags =
1286 		    (MPI2_REQ_DESCRIPT_FLAGS_FP_IO <<
1287 		    MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
1288 	}
1289 
1290 	io_request->LUN[1] = ccb_h->target_lun & 0xF;
1291 	io_request->DataLength = htole32(cmd->length);
1292 
1293 	if (mrsas_map_request(sc, cmd, ccb) == SUCCESS) {
1294 		if (sc->is_ventura || sc->is_aero)
1295 			io_request->RaidContext.raid_context_g35.numSGE = cmd->sge_count;
1296 		else {
1297 			/*
1298 			 * numSGE store lower 8 bit of sge_count. numSGEExt store
1299 			 * higher 8 bit of sge_count
1300 			 */
1301 			io_request->RaidContext.raid_context.numSGE = cmd->sge_count;
1302 			io_request->RaidContext.raid_context.numSGEExt = (uint8_t)(cmd->sge_count >> 8);
1303 		}
1304 	} else {
1305 		device_printf(sc->mrsas_dev, "Data map/load failed.\n");
1306 		return (1);
1307 	}
1308 	return (0);
1309 }
1310 
1311 /*
1312  * mrsas_is_prp_possible:	This function will tell whether PRPs should be built or not
1313  * sc:						Adapter instance soft state
1314  * cmd:						MPT command frame pointer
1315  * nsesg:					Number of OS SGEs
1316  *
1317  * This function will check whether IO is qualified to build PRPs
1318  * return:				true: if PRP should be built
1319  *						false: if IEEE SGLs should be built
1320  */
1321 static boolean_t mrsas_is_prp_possible(struct mrsas_mpt_cmd *cmd,
1322 	bus_dma_segment_t *segs, int nsegs)
1323 {
1324 	struct mrsas_softc *sc = cmd->sc;
1325 	int i;
1326 	u_int32_t data_length = 0;
1327 	bool build_prp = false;
1328 	u_int32_t mr_nvme_pg_size;
1329 
1330 	mr_nvme_pg_size = max(sc->nvme_page_size, MR_DEFAULT_NVME_PAGE_SIZE);
1331 	data_length = cmd->length;
1332 
1333 	if (data_length > (mr_nvme_pg_size * 5))
1334 		build_prp = true;
1335 	else if ((data_length > (mr_nvme_pg_size * 4)) &&
1336 		(data_length <= (mr_nvme_pg_size * 5)))  {
1337 		/* check if 1st SG entry size is < residual beyond 4 pages */
1338 		if ((segs[0].ds_len) < (data_length - (mr_nvme_pg_size * 4)))
1339 			build_prp = true;
1340 	}
1341 
1342 	/*check for SGE holes here*/
1343 	for (i = 0; i < nsegs; i++) {
1344 		/* check for mid SGEs */
1345 		if ((i != 0) && (i != (nsegs - 1))) {
1346 				if ((segs[i].ds_addr % mr_nvme_pg_size) ||
1347 					(segs[i].ds_len % mr_nvme_pg_size)) {
1348 					build_prp = false;
1349 					mrsas_atomic_inc(&sc->sge_holes);
1350 					break;
1351 				}
1352 		}
1353 
1354 		/* check for first SGE*/
1355 		if ((nsegs > 1) && (i == 0)) {
1356 				if ((segs[i].ds_addr + segs[i].ds_len) % mr_nvme_pg_size) {
1357 					build_prp = false;
1358 					mrsas_atomic_inc(&sc->sge_holes);
1359 					break;
1360 				}
1361 		}
1362 
1363 		/* check for Last SGE*/
1364 		if ((nsegs > 1) && (i == (nsegs - 1))) {
1365 				if (segs[i].ds_addr % mr_nvme_pg_size) {
1366 					build_prp = false;
1367 					mrsas_atomic_inc(&sc->sge_holes);
1368 					break;
1369 				}
1370 		}
1371 	}
1372 
1373 	return build_prp;
1374 }
1375 
1376 /*
1377  * mrsas_map_request:	Map and load data
1378  * input:				Adapter instance soft state
1379  * 						Pointer to command packet
1380  *
1381  * For data from OS, map and load the data buffer into bus space.  The SG list
1382  * is built in the callback.  If the  bus dmamap load is not successful,
1383  * cmd->error_code will contain the  error code and a 1 is returned.
1384  */
1385 int
1386 mrsas_map_request(struct mrsas_softc *sc,
1387     struct mrsas_mpt_cmd *cmd, union ccb *ccb)
1388 {
1389 	u_int32_t retcode = 0;
1390 	struct cam_sim *sim;
1391 
1392 	sim = xpt_path_sim(cmd->ccb_ptr->ccb_h.path);
1393 
1394 	if (cmd->data != NULL) {
1395 		/* Map data buffer into bus space */
1396 		mtx_lock(&sc->io_lock);
1397 		retcode = bus_dmamap_load_ccb(sc->data_tag, cmd->data_dmamap, ccb,
1398 		    mrsas_data_load_cb, cmd, 0);
1399 		mtx_unlock(&sc->io_lock);
1400 		if (retcode)
1401 			device_printf(sc->mrsas_dev, "bus_dmamap_load(): retcode = %d\n", retcode);
1402 		if (retcode == EINPROGRESS) {
1403 			device_printf(sc->mrsas_dev, "request load in progress\n");
1404 			mrsas_freeze_simq(cmd, sim);
1405 		}
1406 	}
1407 	if (cmd->error_code)
1408 		return (1);
1409 	return (retcode);
1410 }
1411 
1412 /*
1413  * mrsas_unmap_request:	Unmap and unload data
1414  * input:				Adapter instance soft state
1415  * 						Pointer to command packet
1416  *
1417  * This function unmaps and unloads data from OS.
1418  */
1419 void
1420 mrsas_unmap_request(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd)
1421 {
1422 	if (cmd->data != NULL) {
1423 		if (cmd->flags & MRSAS_DIR_IN)
1424 			bus_dmamap_sync(sc->data_tag, cmd->data_dmamap, BUS_DMASYNC_POSTREAD);
1425 		if (cmd->flags & MRSAS_DIR_OUT)
1426 			bus_dmamap_sync(sc->data_tag, cmd->data_dmamap, BUS_DMASYNC_POSTWRITE);
1427 		mtx_lock(&sc->io_lock);
1428 		bus_dmamap_unload(sc->data_tag, cmd->data_dmamap);
1429 		mtx_unlock(&sc->io_lock);
1430 	}
1431 }
1432 
1433 /**
1434  * mrsas_build_ieee_sgl -	Prepare IEEE SGLs
1435  * @sc:						Adapter soft state
1436  * @segs:					OS SGEs pointers
1437  * @nseg:					Number of OS SGEs
1438  * @cmd:					Fusion command frame
1439  * return:					void
1440  */
1441 static void mrsas_build_ieee_sgl(struct mrsas_mpt_cmd *cmd, bus_dma_segment_t *segs, int nseg)
1442 {
1443 	struct mrsas_softc *sc = cmd->sc;
1444 	MRSAS_RAID_SCSI_IO_REQUEST *io_request;
1445 	pMpi25IeeeSgeChain64_t sgl_ptr;
1446 	int i = 0, sg_processed = 0;
1447 
1448 	io_request = cmd->io_request;
1449 	sgl_ptr = (pMpi25IeeeSgeChain64_t)&io_request->SGL;
1450 
1451 	if (sc->mrsas_gen3_ctrl || sc->is_ventura || sc->is_aero) {
1452 		pMpi25IeeeSgeChain64_t sgl_ptr_end = sgl_ptr;
1453 
1454 		sgl_ptr_end += sc->max_sge_in_main_msg - 1;
1455 		sgl_ptr_end->Flags = 0;
1456 	}
1457 	if (nseg != 0) {
1458 		for (i = 0; i < nseg; i++) {
1459 			sgl_ptr->Address = htole64(segs[i].ds_addr);
1460 			sgl_ptr->Length = htole32(segs[i].ds_len);
1461 			sgl_ptr->Flags = 0;
1462 			if (sc->mrsas_gen3_ctrl || sc->is_ventura || sc->is_aero) {
1463 				if (i == nseg - 1)
1464 					sgl_ptr->Flags = IEEE_SGE_FLAGS_END_OF_LIST;
1465 			}
1466 			sgl_ptr++;
1467 			sg_processed = i + 1;
1468 			if ((sg_processed == (sc->max_sge_in_main_msg - 1)) &&
1469 				(nseg > sc->max_sge_in_main_msg)) {
1470 				pMpi25IeeeSgeChain64_t sg_chain;
1471 
1472 				if (sc->mrsas_gen3_ctrl || sc->is_ventura || sc->is_aero) {
1473 					if ((cmd->io_request->IoFlags & MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH)
1474 						!= MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH)
1475 						cmd->io_request->ChainOffset = sc->chain_offset_io_request;
1476 					else
1477 						cmd->io_request->ChainOffset = 0;
1478 				} else
1479 					cmd->io_request->ChainOffset = sc->chain_offset_io_request;
1480 				sg_chain = sgl_ptr;
1481 				if (sc->mrsas_gen3_ctrl || sc->is_ventura || sc->is_aero)
1482 					sg_chain->Flags = IEEE_SGE_FLAGS_CHAIN_ELEMENT;
1483 				else
1484 					sg_chain->Flags = (IEEE_SGE_FLAGS_CHAIN_ELEMENT | MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR);
1485 				sg_chain->Length = htole32((sizeof(MPI2_SGE_IO_UNION) * (nseg - sg_processed)));
1486 				sg_chain->Address = htole64(cmd->chain_frame_phys_addr);
1487 				sgl_ptr = (pMpi25IeeeSgeChain64_t)cmd->chain_frame;
1488 			}
1489 		}
1490 	}
1491 }
1492 
1493 /**
1494  * mrsas_build_prp_nvme - Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
1495  * @sc:						Adapter soft state
1496  * @segs:					OS SGEs pointers
1497  * @nseg:					Number of OS SGEs
1498  * @cmd:					Fusion command frame
1499  * return:					void
1500  */
1501 static void mrsas_build_prp_nvme(struct mrsas_mpt_cmd *cmd, bus_dma_segment_t *segs, int nseg)
1502 {
1503 	struct mrsas_softc *sc = cmd->sc;
1504 	int sge_len, offset, num_prp_in_chain = 0;
1505 	pMpi25IeeeSgeChain64_t main_chain_element, ptr_first_sgl, sgl_ptr;
1506 	u_int64_t *ptr_sgl;
1507 	bus_addr_t ptr_sgl_phys;
1508 	u_int64_t sge_addr;
1509 	u_int32_t page_mask, page_mask_result, i = 0;
1510 	u_int32_t first_prp_len;
1511 	int data_len = cmd->length;
1512 	u_int32_t mr_nvme_pg_size = max(sc->nvme_page_size,
1513 					MR_DEFAULT_NVME_PAGE_SIZE);
1514 
1515 	sgl_ptr = (pMpi25IeeeSgeChain64_t) &cmd->io_request->SGL;
1516 	/*
1517 	 * NVMe has a very convoluted PRP format.  One PRP is required
1518 	 * for each page or partial page.  We need to split up OS SG
1519 	 * entries if they are longer than one page or cross a page
1520 	 * boundary.  We also have to insert a PRP list pointer entry as
1521 	 * the last entry in each physical page of the PRP list.
1522 	 *
1523 	 * NOTE: The first PRP "entry" is actually placed in the first
1524 	 * SGL entry in the main message in IEEE 64 format.  The 2nd
1525 	 * entry in the main message is the chain element, and the rest
1526 	 * of the PRP entries are built in the contiguous PCIe buffer.
1527 	 */
1528 	page_mask = mr_nvme_pg_size - 1;
1529 	ptr_sgl = (u_int64_t *) cmd->chain_frame;
1530 	ptr_sgl_phys = cmd->chain_frame_phys_addr;
1531 	memset(ptr_sgl, 0, sc->max_chain_frame_sz);
1532 
1533 	/* Build chain frame element which holds all PRPs except first*/
1534 	main_chain_element = (pMpi25IeeeSgeChain64_t)
1535 	    ((u_int8_t *)sgl_ptr + sizeof(MPI25_IEEE_SGE_CHAIN64));
1536 
1537 	main_chain_element->Address = cmd->chain_frame_phys_addr;
1538 	main_chain_element->NextChainOffset = 0;
1539 	main_chain_element->Flags = IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1540 					IEEE_SGE_FLAGS_SYSTEM_ADDR |
1541 					MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
1542 
1543 	/* Build first PRP, SGE need not to be PAGE aligned*/
1544 	ptr_first_sgl = sgl_ptr;
1545 	sge_addr = segs[i].ds_addr;
1546 	sge_len = segs[i].ds_len;
1547 	i++;
1548 
1549 	offset = (u_int32_t) (sge_addr & page_mask);
1550 	first_prp_len = mr_nvme_pg_size - offset;
1551 
1552 	ptr_first_sgl->Address = sge_addr;
1553 	ptr_first_sgl->Length = first_prp_len;
1554 
1555 	data_len -= first_prp_len;
1556 
1557 	if (sge_len > first_prp_len) {
1558 		sge_addr += first_prp_len;
1559 		sge_len -= first_prp_len;
1560 	} else if (sge_len == first_prp_len) {
1561 		sge_addr = segs[i].ds_addr;
1562 		sge_len = segs[i].ds_len;
1563 		i++;
1564 	}
1565 
1566 	for (;;) {
1567 		offset = (u_int32_t) (sge_addr & page_mask);
1568 
1569 		/* Put PRP pointer due to page boundary*/
1570 		page_mask_result = (uintptr_t)(ptr_sgl + 1) & page_mask;
1571 		if (!page_mask_result) {
1572 			device_printf(sc->mrsas_dev, "BRCM: Put prp pointer as we are at page boundary"
1573 					" ptr_sgl: 0x%p\n", ptr_sgl);
1574 			ptr_sgl_phys++;
1575 			*ptr_sgl = (uintptr_t)ptr_sgl_phys;
1576 			ptr_sgl++;
1577 			num_prp_in_chain++;
1578 		}
1579 
1580 		*ptr_sgl = sge_addr;
1581 		ptr_sgl++;
1582 		ptr_sgl_phys++;
1583 		num_prp_in_chain++;
1584 
1585 		sge_addr += mr_nvme_pg_size;
1586 		sge_len -= mr_nvme_pg_size;
1587 		data_len -= mr_nvme_pg_size;
1588 
1589 		if (data_len <= 0)
1590 			break;
1591 
1592 		if (sge_len > 0)
1593 			continue;
1594 
1595 		sge_addr = segs[i].ds_addr;
1596 		sge_len = segs[i].ds_len;
1597 		i++;
1598 	}
1599 
1600 	main_chain_element->Length = num_prp_in_chain * sizeof(u_int64_t);
1601 	mrsas_atomic_inc(&sc->prp_count);
1602 
1603 }
1604 
1605 /*
1606  * mrsas_data_load_cb:	Callback entry point to build SGLs
1607  * input:				Pointer to command packet as argument
1608  *						Pointer to segment
1609  *						Number of segments Error
1610  *
1611  * This is the callback function of the bus dma map load.  It builds SG list
1612  */
1613 static void
1614 mrsas_data_load_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1615 {
1616 	struct mrsas_mpt_cmd *cmd = (struct mrsas_mpt_cmd *)arg;
1617 	struct mrsas_softc *sc = cmd->sc;
1618 	boolean_t build_prp = false;
1619 
1620 	if (error) {
1621 		cmd->error_code = error;
1622 		device_printf(sc->mrsas_dev, "mrsas_data_load_cb_prp: error=%d\n", error);
1623 		if (error == EFBIG) {
1624 			cmd->ccb_ptr->ccb_h.status = CAM_REQ_TOO_BIG;
1625 			return;
1626 		}
1627 	}
1628 	if (cmd->flags & MRSAS_DIR_IN)
1629 		bus_dmamap_sync(cmd->sc->data_tag, cmd->data_dmamap,
1630 		    BUS_DMASYNC_PREREAD);
1631 	if (cmd->flags & MRSAS_DIR_OUT)
1632 		bus_dmamap_sync(cmd->sc->data_tag, cmd->data_dmamap,
1633 		    BUS_DMASYNC_PREWRITE);
1634 
1635 	/* Check for whether PRPs should be built or IEEE SGLs*/
1636 	if ((cmd->io_request->IoFlags & MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) &&
1637 			(cmd->pdInterface == NVME_PD))
1638 		build_prp = mrsas_is_prp_possible(cmd, segs, nseg);
1639 
1640 	if (build_prp == true)
1641 		mrsas_build_prp_nvme(cmd, segs, nseg);
1642 	else
1643 		mrsas_build_ieee_sgl(cmd, segs, nseg);
1644 
1645 	cmd->sge_count = nseg;
1646 }
1647 
1648 /*
1649  * mrsas_freeze_simq:	Freeze SIM queue
1650  * input:				Pointer to command packet
1651  * 						Pointer to SIM
1652  *
1653  * This function freezes the sim queue.
1654  */
1655 static void
1656 mrsas_freeze_simq(struct mrsas_mpt_cmd *cmd, struct cam_sim *sim)
1657 {
1658 	union ccb *ccb = (union ccb *)(cmd->ccb_ptr);
1659 
1660 	xpt_freeze_simq(sim, 1);
1661 	ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
1662 	ccb->ccb_h.status |= CAM_REQUEUE_REQ;
1663 }
1664 
1665 void
1666 mrsas_xpt_freeze(struct mrsas_softc *sc)
1667 {
1668 	xpt_freeze_simq(sc->sim_0, 1);
1669 	xpt_freeze_simq(sc->sim_1, 1);
1670 }
1671 
1672 void
1673 mrsas_xpt_release(struct mrsas_softc *sc)
1674 {
1675 	xpt_release_simq(sc->sim_0, 1);
1676 	xpt_release_simq(sc->sim_1, 1);
1677 }
1678 
1679 /*
1680  * mrsas_cmd_done:	Perform remaining command completion
1681  * input:			Adapter instance soft state  Pointer to command packet
1682  *
1683  * This function calls ummap request and releases the MPT command.
1684  */
1685 void
1686 mrsas_cmd_done(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd)
1687 {
1688 	mrsas_unmap_request(sc, cmd);
1689 
1690 	mtx_lock(&sc->sim_lock);
1691 	if (cmd->callout_owner) {
1692 		callout_stop(&cmd->cm_callout);
1693 		cmd->callout_owner  = false;
1694 	}
1695 	xpt_done(cmd->ccb_ptr);
1696 	cmd->ccb_ptr = NULL;
1697 	mtx_unlock(&sc->sim_lock);
1698 	mrsas_release_mpt_cmd(cmd);
1699 }
1700 
1701 /*
1702  * mrsas_cam_poll:	Polling entry point
1703  * input:			Pointer to SIM
1704  *
1705  * This is currently a stub function.
1706  */
1707 static void
1708 mrsas_cam_poll(struct cam_sim *sim)
1709 {
1710 	int i;
1711 	struct mrsas_softc *sc = (struct mrsas_softc *)cam_sim_softc(sim);
1712 
1713 	if (sc->msix_vectors != 0){
1714 		for (i=0; i<sc->msix_vectors; i++){
1715 			mrsas_complete_cmd(sc, i);
1716 		}
1717 	} else {
1718 		mrsas_complete_cmd(sc, 0);
1719 	}
1720 }
1721 
1722 /*
1723  * mrsas_bus_scan:	Perform bus scan
1724  * input:			Adapter instance soft state
1725  *
1726  * This mrsas_bus_scan function is needed for FreeBSD 7.x.  Also, it should not
1727  * be called in FreeBSD 8.x and later versions, where the bus scan is
1728  * automatic.
1729  */
1730 int
1731 mrsas_bus_scan(struct mrsas_softc *sc)
1732 {
1733 	union ccb *ccb_0;
1734 	union ccb *ccb_1;
1735 
1736 	if ((ccb_0 = xpt_alloc_ccb()) == NULL) {
1737 		return (ENOMEM);
1738 	}
1739 	if ((ccb_1 = xpt_alloc_ccb()) == NULL) {
1740 		xpt_free_ccb(ccb_0);
1741 		return (ENOMEM);
1742 	}
1743 	mtx_lock(&sc->sim_lock);
1744 	if (xpt_create_path(&ccb_0->ccb_h.path, xpt_periph, cam_sim_path(sc->sim_0),
1745 	    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
1746 		xpt_free_ccb(ccb_0);
1747 		xpt_free_ccb(ccb_1);
1748 		mtx_unlock(&sc->sim_lock);
1749 		return (EIO);
1750 	}
1751 	if (xpt_create_path(&ccb_1->ccb_h.path, xpt_periph, cam_sim_path(sc->sim_1),
1752 	    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
1753 		xpt_free_ccb(ccb_0);
1754 		xpt_free_ccb(ccb_1);
1755 		mtx_unlock(&sc->sim_lock);
1756 		return (EIO);
1757 	}
1758 	mtx_unlock(&sc->sim_lock);
1759 	xpt_rescan(ccb_0);
1760 	xpt_rescan(ccb_1);
1761 
1762 	return (0);
1763 }
1764 
1765 /*
1766  * mrsas_bus_scan_sim:	Perform bus scan per SIM
1767  * input:				adapter instance soft state
1768  *
1769  * This function will be called from Event handler on LD creation/deletion,
1770  * JBOD on/off.
1771  */
1772 int
1773 mrsas_bus_scan_sim(struct mrsas_softc *sc, struct cam_sim *sim)
1774 {
1775 	union ccb *ccb;
1776 
1777 	if ((ccb = xpt_alloc_ccb()) == NULL) {
1778 		return (ENOMEM);
1779 	}
1780 	mtx_lock(&sc->sim_lock);
1781 	if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, cam_sim_path(sim),
1782 	    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
1783 		xpt_free_ccb(ccb);
1784 		mtx_unlock(&sc->sim_lock);
1785 		return (EIO);
1786 	}
1787 	mtx_unlock(&sc->sim_lock);
1788 	xpt_rescan(ccb);
1789 
1790 	return (0);
1791 }
1792 
1793 /*
1794  * mrsas_track_scsiio:  Track IOs for a given target in the mpt_cmd_list
1795  * input:           Adapter instance soft state
1796  *                  Target ID of target
1797  *                  Bus ID of the target
1798  *
1799  * This function checks for any pending IO in the whole mpt_cmd_list pool
1800  * with the bus_id and target_id passed in arguments. If some IO is found
1801  * that means target reset is not successfully completed.
1802  *
1803  * Returns FAIL if IOs pending to the target device, else return SUCCESS
1804  */
1805 static int
1806 mrsas_track_scsiio(struct mrsas_softc *sc, target_id_t tgt_id, u_int32_t bus_id)
1807 {
1808 	int i;
1809 	struct mrsas_mpt_cmd *mpt_cmd = NULL;
1810 
1811 	for (i = 0 ; i < sc->max_fw_cmds; i++) {
1812 		mpt_cmd = sc->mpt_cmd_list[i];
1813 
1814 		/*
1815 		 * Check if the target_id and bus_id is same as the timeout IO
1816 		 */
1817 		if (mpt_cmd->ccb_ptr) {
1818 			/* bus_id = 1 denotes a VD */
1819 			if (bus_id == 1)
1820 				tgt_id =
1821 				    (mpt_cmd->ccb_ptr->ccb_h.target_id - (MRSAS_MAX_PD - 1));
1822 
1823 			if (mpt_cmd->ccb_ptr->cpi.bus_id == bus_id &&
1824 			    mpt_cmd->ccb_ptr->ccb_h.target_id == tgt_id) {
1825 				device_printf(sc->mrsas_dev,
1826 				    "IO commands pending to target id %d\n", tgt_id);
1827 				return FAIL;
1828 			}
1829 		}
1830 	}
1831 
1832 	return SUCCESS;
1833 }
1834 
1835 #if TM_DEBUG
1836 /*
1837  * mrsas_tm_response_code: Prints TM response code received from FW
1838  * input:           Adapter instance soft state
1839  *                  MPI reply returned from firmware
1840  *
1841  * Returns nothing.
1842  */
1843 static void
1844 mrsas_tm_response_code(struct mrsas_softc *sc,
1845 	MPI2_SCSI_TASK_MANAGE_REPLY *mpi_reply)
1846 {
1847 	char *desc;
1848 
1849 	switch (mpi_reply->ResponseCode) {
1850 	case MPI2_SCSITASKMGMT_RSP_TM_COMPLETE:
1851 		desc = "task management request completed";
1852 		break;
1853 	case MPI2_SCSITASKMGMT_RSP_INVALID_FRAME:
1854 		desc = "invalid frame";
1855 		break;
1856 	case MPI2_SCSITASKMGMT_RSP_TM_NOT_SUPPORTED:
1857 		desc = "task management request not supported";
1858 		break;
1859 	case MPI2_SCSITASKMGMT_RSP_TM_FAILED:
1860 		desc = "task management request failed";
1861 		break;
1862 	case MPI2_SCSITASKMGMT_RSP_TM_SUCCEEDED:
1863 		desc = "task management request succeeded";
1864 		break;
1865 	case MPI2_SCSITASKMGMT_RSP_TM_INVALID_LUN:
1866 		desc = "invalid lun";
1867 		break;
1868 	case 0xA:
1869 		desc = "overlapped tag attempted";
1870 		break;
1871 	case MPI2_SCSITASKMGMT_RSP_IO_QUEUED_ON_IOC:
1872 		desc = "task queued, however not sent to target";
1873 		break;
1874 	default:
1875 		desc = "unknown";
1876 		break;
1877 	}
1878 	device_printf(sc->mrsas_dev, "response_code(%01x): %s\n",
1879 	    mpi_reply->ResponseCode, desc);
1880 	device_printf(sc->mrsas_dev,
1881 	    "TerminationCount/DevHandle/Function/TaskType/IOCStat/IOCLoginfo\n"
1882 	    "0x%x/0x%x/0x%x/0x%x/0x%x/0x%x\n",
1883 	    mpi_reply->TerminationCount, mpi_reply->DevHandle,
1884 	    mpi_reply->Function, mpi_reply->TaskType,
1885 	    mpi_reply->IOCStatus, mpi_reply->IOCLogInfo);
1886 }
1887 #endif
1888 
1889 /*
1890  * mrsas_issue_tm:  Fires the TM command to FW and waits for completion
1891  * input:           Adapter instance soft state
1892  *                  request descriptor compiled by mrsas_reset_targets
1893  *
1894  * Returns FAIL if TM command TIMEDOUT from FW else SUCCESS.
1895  */
1896 static int
1897 mrsas_issue_tm(struct mrsas_softc *sc,
1898 	MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc)
1899 {
1900 	int sleep_stat;
1901 
1902 	mrsas_fire_cmd(sc, req_desc->addr.u.low, req_desc->addr.u.high);
1903 	sleep_stat = msleep(&sc->ocr_chan, &sc->sim_lock, PRIBIO, "tm_sleep", 50*hz);
1904 
1905 	if (sleep_stat == EWOULDBLOCK) {
1906 		device_printf(sc->mrsas_dev, "tm cmd TIMEDOUT\n");
1907 		return FAIL;
1908 	}
1909 
1910 	return SUCCESS;
1911 }
1912 
1913 /*
1914  * mrsas_reset_targets : Gathers info to fire a target reset command
1915  * input:           Adapter instance soft state
1916  *
1917  * This function compiles data for a target reset command to be fired to the FW
1918  * and then traverse the target_reset_pool to see targets with TIMEDOUT IOs.
1919  *
1920  * Returns SUCCESS or FAIL
1921  */
1922 int mrsas_reset_targets(struct mrsas_softc *sc)
1923 {
1924 	struct mrsas_mpt_cmd *tm_mpt_cmd = NULL;
1925 	struct mrsas_mpt_cmd *tgt_mpt_cmd = NULL;
1926 	MR_TASK_MANAGE_REQUEST *mr_request;
1927 	MPI2_SCSI_TASK_MANAGE_REQUEST *tm_mpi_request;
1928 	MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc;
1929 	int retCode = FAIL, count, i, outstanding;
1930 	u_int32_t MSIxIndex, bus_id;
1931 	target_id_t tgt_id;
1932 #if TM_DEBUG
1933 	MPI2_SCSI_TASK_MANAGE_REPLY *mpi_reply;
1934 #endif
1935 
1936 	outstanding = mrsas_atomic_read(&sc->fw_outstanding);
1937 
1938 	if (!outstanding) {
1939 		device_printf(sc->mrsas_dev, "NO IOs pending...\n");
1940 		mrsas_atomic_set(&sc->target_reset_outstanding, 0);
1941 		retCode = SUCCESS;
1942 		goto return_status;
1943 	} else if (sc->adprecovery != MRSAS_HBA_OPERATIONAL) {
1944 		device_printf(sc->mrsas_dev, "Controller is not operational\n");
1945 		goto return_status;
1946 	} else {
1947 		/* Some more error checks will be added in future */
1948 	}
1949 
1950 	/* Get an mpt frame and an index to fire the TM cmd */
1951 	tm_mpt_cmd = mrsas_get_mpt_cmd(sc);
1952 	if (!tm_mpt_cmd) {
1953 		retCode = FAIL;
1954 		goto return_status;
1955 	}
1956 
1957 	req_desc = mrsas_get_request_desc(sc, (tm_mpt_cmd->index) - 1);
1958 	if (!req_desc) {
1959 		device_printf(sc->mrsas_dev, "Cannot get request_descriptor for tm.\n");
1960 		retCode = FAIL;
1961 		goto release_mpt;
1962 	}
1963 	memset(req_desc, 0, sizeof(MRSAS_REQUEST_DESCRIPTOR_UNION));
1964 
1965 	req_desc->HighPriority.SMID = tm_mpt_cmd->index;
1966 	req_desc->HighPriority.RequestFlags =
1967 	    (MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY <<
1968 	    MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
1969 	req_desc->HighPriority.MSIxIndex =  0;
1970 	req_desc->HighPriority.LMID = 0;
1971 	req_desc->HighPriority.Reserved1 = 0;
1972 	tm_mpt_cmd->request_desc = req_desc;
1973 
1974 	mr_request = (MR_TASK_MANAGE_REQUEST *) tm_mpt_cmd->io_request;
1975 	memset(mr_request, 0, sizeof(MR_TASK_MANAGE_REQUEST));
1976 
1977 	tm_mpi_request = (MPI2_SCSI_TASK_MANAGE_REQUEST *) &mr_request->TmRequest;
1978 	tm_mpi_request->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
1979 	tm_mpi_request->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
1980 	tm_mpi_request->TaskMID = 0; /* smid task */
1981 	tm_mpi_request->LUN[1] = 0;
1982 
1983 	/* Traverse the tm_mpt pool to get valid entries */
1984 	for (i = 0 ; i < MRSAS_MAX_TM_TARGETS; i++) {
1985 		if(!sc->target_reset_pool[i]) {
1986 			continue;
1987 		} else {
1988 			tgt_mpt_cmd = sc->target_reset_pool[i];
1989 		}
1990 
1991 		tgt_id = i;
1992 
1993 		/* See if the target is tm capable or NOT */
1994 		if (!tgt_mpt_cmd->tmCapable) {
1995 			device_printf(sc->mrsas_dev, "Task management NOT SUPPORTED for "
1996 			    "CAM target:%d\n", tgt_id);
1997 
1998 			retCode = FAIL;
1999 			goto release_mpt;
2000 		}
2001 
2002 		tm_mpi_request->DevHandle = tgt_mpt_cmd->io_request->DevHandle;
2003 
2004 		if (i < (MRSAS_MAX_PD - 1)) {
2005 			mr_request->uTmReqReply.tmReqFlags.isTMForPD = 1;
2006 			bus_id = 0;
2007 		} else {
2008 			mr_request->uTmReqReply.tmReqFlags.isTMForLD = 1;
2009 			bus_id = 1;
2010 		}
2011 
2012 		device_printf(sc->mrsas_dev, "TM will be fired for "
2013 		    "CAM target:%d and bus_id %d\n", tgt_id, bus_id);
2014 
2015 		sc->ocr_chan = (void *)&tm_mpt_cmd;
2016 		retCode = mrsas_issue_tm(sc, req_desc);
2017 		if (retCode == FAIL)
2018 			goto release_mpt;
2019 
2020 #if TM_DEBUG
2021 		mpi_reply =
2022 		    (MPI2_SCSI_TASK_MANAGE_REPLY *) &mr_request->uTmReqReply.TMReply;
2023 		mrsas_tm_response_code(sc, mpi_reply);
2024 #endif
2025 		mrsas_atomic_dec(&sc->target_reset_outstanding);
2026 		sc->target_reset_pool[i] = NULL;
2027 
2028 		/* Check for pending cmds in the mpt_cmd_pool with the tgt_id */
2029 		mrsas_disable_intr(sc);
2030 		/* Wait for 1 second to complete parallel ISR calling same
2031 		 * mrsas_complete_cmd()
2032 		 */
2033 		msleep(&sc->ocr_chan, &sc->sim_lock, PRIBIO, "mrsas_reset_wakeup",
2034 		   1 * hz);
2035 		count = sc->msix_vectors > 0 ? sc->msix_vectors : 1;
2036 		mtx_unlock(&sc->sim_lock);
2037 		for (MSIxIndex = 0; MSIxIndex < count; MSIxIndex++)
2038 		    mrsas_complete_cmd(sc, MSIxIndex);
2039 		mtx_lock(&sc->sim_lock);
2040 		retCode = mrsas_track_scsiio(sc, tgt_id, bus_id);
2041 		mrsas_enable_intr(sc);
2042 
2043 		if (retCode == FAIL)
2044 			goto release_mpt;
2045 	}
2046 
2047 	device_printf(sc->mrsas_dev, "Number of targets outstanding "
2048 	    "after reset: %d\n", mrsas_atomic_read(&sc->target_reset_outstanding));
2049 
2050 release_mpt:
2051 	mrsas_release_mpt_cmd(tm_mpt_cmd);
2052 return_status:
2053 	device_printf(sc->mrsas_dev, "target reset %s!!\n",
2054 		(retCode == SUCCESS) ? "SUCCESS" : "FAIL");
2055 
2056 	return retCode;
2057 }
2058