xref: /freebsd/sys/dev/mrsas/mrsas.c (revision db3cb3640f547c063293e9fdc4db69e9dc120951)
1 /*
2  * Copyright (c) 2014, LSI Corp. All rights reserved. Author: Marian Choy
3  * Support: freebsdraid@lsi.com
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are
7  * met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice,
10  * this list of conditions and the following disclaimer. 2. Redistributions
11  * in binary form must reproduce the above copyright notice, this list of
12  * conditions and the following disclaimer in the documentation and/or other
13  * materials provided with the distribution. 3. Neither the name of the
14  * <ORGANIZATION> nor the names of its contributors may be used to endorse or
15  * promote products derived from this software without specific prior written
16  * permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  *
30  * The views and conclusions contained in the software and documentation are
31  * those of the authors and should not be interpreted as representing
32  * official policies,either expressed or implied, of the FreeBSD Project.
33  *
34  * Send feedback to: <megaraidfbsd@lsi.com> Mail to: LSI Corporation, 1621
35  * Barber Lane, Milpitas, CA 95035 ATTN: MegaRaid FreeBSD
36  *
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <dev/mrsas/mrsas.h>
43 #include <dev/mrsas/mrsas_ioctl.h>
44 
45 #include <cam/cam.h>
46 #include <cam/cam_ccb.h>
47 
48 #include <sys/sysctl.h>
49 #include <sys/types.h>
50 #include <sys/kthread.h>
51 #include <sys/taskqueue.h>
52 #include <sys/smp.h>
53 
54 
55 /*
56  * Function prototypes
57  */
58 static d_open_t mrsas_open;
59 static d_close_t mrsas_close;
60 static d_read_t mrsas_read;
61 static d_write_t mrsas_write;
62 static d_ioctl_t mrsas_ioctl;
63 static d_poll_t mrsas_poll;
64 
65 static struct mrsas_mgmt_info mrsas_mgmt_info;
66 static struct mrsas_ident *mrsas_find_ident(device_t);
67 static int mrsas_setup_msix(struct mrsas_softc *sc);
68 static int mrsas_allocate_msix(struct mrsas_softc *sc);
69 static void mrsas_shutdown_ctlr(struct mrsas_softc *sc, u_int32_t opcode);
70 static void mrsas_flush_cache(struct mrsas_softc *sc);
71 static void mrsas_reset_reply_desc(struct mrsas_softc *sc);
72 static void mrsas_ocr_thread(void *arg);
73 static int mrsas_get_map_info(struct mrsas_softc *sc);
74 static int mrsas_get_ld_map_info(struct mrsas_softc *sc);
75 static int mrsas_sync_map_info(struct mrsas_softc *sc);
76 static int mrsas_get_pd_list(struct mrsas_softc *sc);
77 static int mrsas_get_ld_list(struct mrsas_softc *sc);
78 static int mrsas_setup_irq(struct mrsas_softc *sc);
79 static int mrsas_alloc_mem(struct mrsas_softc *sc);
80 static int mrsas_init_fw(struct mrsas_softc *sc);
81 static int mrsas_setup_raidmap(struct mrsas_softc *sc);
82 static int mrsas_complete_cmd(struct mrsas_softc *sc, u_int32_t MSIxIndex);
83 static int mrsas_clear_intr(struct mrsas_softc *sc);
84 static int
85 mrsas_get_ctrl_info(struct mrsas_softc *sc,
86     struct mrsas_ctrl_info *ctrl_info);
87 static int
88 mrsas_issue_blocked_abort_cmd(struct mrsas_softc *sc,
89     struct mrsas_mfi_cmd *cmd_to_abort);
90 u_int32_t mrsas_read_reg(struct mrsas_softc *sc, int offset);
91 u_int8_t
92 mrsas_build_mptmfi_passthru(struct mrsas_softc *sc,
93     struct mrsas_mfi_cmd *mfi_cmd);
94 int	mrsas_transition_to_ready(struct mrsas_softc *sc, int ocr);
95 int	mrsas_init_adapter(struct mrsas_softc *sc);
96 int	mrsas_alloc_mpt_cmds(struct mrsas_softc *sc);
97 int	mrsas_alloc_ioc_cmd(struct mrsas_softc *sc);
98 int	mrsas_alloc_ctlr_info_cmd(struct mrsas_softc *sc);
99 int	mrsas_ioc_init(struct mrsas_softc *sc);
100 int	mrsas_bus_scan(struct mrsas_softc *sc);
101 int	mrsas_issue_dcmd(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd);
102 int	mrsas_issue_polled(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd);
103 int	mrsas_reset_ctrl(struct mrsas_softc *sc);
104 int	mrsas_wait_for_outstanding(struct mrsas_softc *sc);
105 int
106 mrsas_issue_blocked_cmd(struct mrsas_softc *sc,
107     struct mrsas_mfi_cmd *cmd);
108 int
109 mrsas_alloc_tmp_dcmd(struct mrsas_softc *sc, struct mrsas_tmp_dcmd *tcmd,
110     int size);
111 void	mrsas_release_mfi_cmd(struct mrsas_mfi_cmd *cmd);
112 void	mrsas_wakeup(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd);
113 void	mrsas_complete_aen(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd);
114 void	mrsas_complete_abort(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd);
115 void	mrsas_disable_intr(struct mrsas_softc *sc);
116 void	mrsas_enable_intr(struct mrsas_softc *sc);
117 void	mrsas_free_ioc_cmd(struct mrsas_softc *sc);
118 void	mrsas_free_mem(struct mrsas_softc *sc);
119 void	mrsas_free_tmp_dcmd(struct mrsas_tmp_dcmd *tmp);
120 void	mrsas_isr(void *arg);
121 void	mrsas_teardown_intr(struct mrsas_softc *sc);
122 void	mrsas_addr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error);
123 void	mrsas_kill_hba(struct mrsas_softc *sc);
124 void	mrsas_aen_handler(struct mrsas_softc *sc);
125 void
126 mrsas_write_reg(struct mrsas_softc *sc, int offset,
127     u_int32_t value);
128 void
129 mrsas_fire_cmd(struct mrsas_softc *sc, u_int32_t req_desc_lo,
130     u_int32_t req_desc_hi);
131 void	mrsas_free_ctlr_info_cmd(struct mrsas_softc *sc);
132 void
133 mrsas_complete_mptmfi_passthru(struct mrsas_softc *sc,
134     struct mrsas_mfi_cmd *cmd, u_int8_t status);
135 void
136 mrsas_map_mpt_cmd_status(struct mrsas_mpt_cmd *cmd, u_int8_t status,
137     u_int8_t extStatus);
138 struct mrsas_mfi_cmd *mrsas_get_mfi_cmd(struct mrsas_softc *sc);
139 
140 MRSAS_REQUEST_DESCRIPTOR_UNION *mrsas_build_mpt_cmd
141         (struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd);
142 
143 extern int mrsas_cam_attach(struct mrsas_softc *sc);
144 extern void mrsas_cam_detach(struct mrsas_softc *sc);
145 extern void mrsas_cmd_done(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd);
146 extern void mrsas_free_frame(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd);
147 extern int mrsas_alloc_mfi_cmds(struct mrsas_softc *sc);
148 extern void mrsas_release_mpt_cmd(struct mrsas_mpt_cmd *cmd);
149 extern struct mrsas_mpt_cmd *mrsas_get_mpt_cmd(struct mrsas_softc *sc);
150 extern int mrsas_passthru(struct mrsas_softc *sc, void *arg, u_long ioctlCmd);
151 extern uint8_t MR_ValidateMapInfo(struct mrsas_softc *sc);
152 extern u_int16_t MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
153 extern MR_LD_RAID *MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
154 extern void mrsas_xpt_freeze(struct mrsas_softc *sc);
155 extern void mrsas_xpt_release(struct mrsas_softc *sc);
156 extern MRSAS_REQUEST_DESCRIPTOR_UNION *
157 mrsas_get_request_desc(struct mrsas_softc *sc,
158     u_int16_t index);
159 extern int mrsas_bus_scan_sim(struct mrsas_softc *sc, struct cam_sim *sim);
160 static int mrsas_alloc_evt_log_info_cmd(struct mrsas_softc *sc);
161 static void mrsas_free_evt_log_info_cmd(struct mrsas_softc *sc);
162 
163 SYSCTL_NODE(_hw, OID_AUTO, mrsas, CTLFLAG_RD, 0, "MRSAS Driver Parameters");
164 
165 /*
166  * PCI device struct and table
167  *
168  */
169 typedef struct mrsas_ident {
170 	uint16_t vendor;
171 	uint16_t device;
172 	uint16_t subvendor;
173 	uint16_t subdevice;
174 	const char *desc;
175 }	MRSAS_CTLR_ID;
176 
177 MRSAS_CTLR_ID device_table[] = {
178 	{0x1000, MRSAS_TBOLT, 0xffff, 0xffff, "LSI Thunderbolt SAS Controller"},
179 	{0x1000, MRSAS_INVADER, 0xffff, 0xffff, "LSI Invader SAS Controller"},
180 	{0x1000, MRSAS_FURY, 0xffff, 0xffff, "LSI Fury SAS Controller"},
181 	{0, 0, 0, 0, NULL}
182 };
183 
184 /*
185  * Character device entry points
186  *
187  */
188 static struct cdevsw mrsas_cdevsw = {
189 	.d_version = D_VERSION,
190 	.d_open = mrsas_open,
191 	.d_close = mrsas_close,
192 	.d_read = mrsas_read,
193 	.d_write = mrsas_write,
194 	.d_ioctl = mrsas_ioctl,
195 	.d_poll = mrsas_poll,
196 	.d_name = "mrsas",
197 };
198 
199 MALLOC_DEFINE(M_MRSAS, "mrsasbuf", "Buffers for the MRSAS driver");
200 
201 /*
202  * In the cdevsw routines, we find our softc by using the si_drv1 member of
203  * struct cdev.  We set this variable to point to our softc in our attach
204  * routine when we create the /dev entry.
205  */
206 int
207 mrsas_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
208 {
209 	struct mrsas_softc *sc;
210 
211 	sc = dev->si_drv1;
212 	return (0);
213 }
214 
215 int
216 mrsas_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
217 {
218 	struct mrsas_softc *sc;
219 
220 	sc = dev->si_drv1;
221 	return (0);
222 }
223 
224 int
225 mrsas_read(struct cdev *dev, struct uio *uio, int ioflag)
226 {
227 	struct mrsas_softc *sc;
228 
229 	sc = dev->si_drv1;
230 	return (0);
231 }
232 int
233 mrsas_write(struct cdev *dev, struct uio *uio, int ioflag)
234 {
235 	struct mrsas_softc *sc;
236 
237 	sc = dev->si_drv1;
238 	return (0);
239 }
240 
241 /*
242  * Register Read/Write Functions
243  *
244  */
245 void
246 mrsas_write_reg(struct mrsas_softc *sc, int offset,
247     u_int32_t value)
248 {
249 	bus_space_tag_t bus_tag = sc->bus_tag;
250 	bus_space_handle_t bus_handle = sc->bus_handle;
251 
252 	bus_space_write_4(bus_tag, bus_handle, offset, value);
253 }
254 
255 u_int32_t
256 mrsas_read_reg(struct mrsas_softc *sc, int offset)
257 {
258 	bus_space_tag_t bus_tag = sc->bus_tag;
259 	bus_space_handle_t bus_handle = sc->bus_handle;
260 
261 	return ((u_int32_t)bus_space_read_4(bus_tag, bus_handle, offset));
262 }
263 
264 
265 /*
266  * Interrupt Disable/Enable/Clear Functions
267  *
268  */
269 void
270 mrsas_disable_intr(struct mrsas_softc *sc)
271 {
272 	u_int32_t mask = 0xFFFFFFFF;
273 	u_int32_t status;
274 
275 	mrsas_write_reg(sc, offsetof(mrsas_reg_set, outbound_intr_mask), mask);
276 	/* Dummy read to force pci flush */
277 	status = mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_intr_mask));
278 }
279 
280 void
281 mrsas_enable_intr(struct mrsas_softc *sc)
282 {
283 	u_int32_t mask = MFI_FUSION_ENABLE_INTERRUPT_MASK;
284 	u_int32_t status;
285 
286 	mrsas_write_reg(sc, offsetof(mrsas_reg_set, outbound_intr_status), ~0);
287 	status = mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_intr_status));
288 
289 	mrsas_write_reg(sc, offsetof(mrsas_reg_set, outbound_intr_mask), ~mask);
290 	status = mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_intr_mask));
291 }
292 
293 static int
294 mrsas_clear_intr(struct mrsas_softc *sc)
295 {
296 	u_int32_t status, fw_status, fw_state;
297 
298 	/* Read received interrupt */
299 	status = mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_intr_status));
300 
301 	/*
302 	 * If FW state change interrupt is received, write to it again to
303 	 * clear
304 	 */
305 	if (status & MRSAS_FW_STATE_CHNG_INTERRUPT) {
306 		fw_status = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
307 		    outbound_scratch_pad));
308 		fw_state = fw_status & MFI_STATE_MASK;
309 		if (fw_state == MFI_STATE_FAULT) {
310 			device_printf(sc->mrsas_dev, "FW is in FAULT state!\n");
311 			if (sc->ocr_thread_active)
312 				wakeup(&sc->ocr_chan);
313 		}
314 		mrsas_write_reg(sc, offsetof(mrsas_reg_set, outbound_intr_status), status);
315 		mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_intr_status));
316 		return (1);
317 	}
318 	/* Not our interrupt, so just return */
319 	if (!(status & MFI_FUSION_ENABLE_INTERRUPT_MASK))
320 		return (0);
321 
322 	/* We got a reply interrupt */
323 	return (1);
324 }
325 
326 /*
327  * PCI Support Functions
328  *
329  */
330 static struct mrsas_ident *
331 mrsas_find_ident(device_t dev)
332 {
333 	struct mrsas_ident *pci_device;
334 
335 	for (pci_device = device_table; pci_device->vendor != 0; pci_device++) {
336 		if ((pci_device->vendor == pci_get_vendor(dev)) &&
337 		    (pci_device->device == pci_get_device(dev)) &&
338 		    ((pci_device->subvendor == pci_get_subvendor(dev)) ||
339 		    (pci_device->subvendor == 0xffff)) &&
340 		    ((pci_device->subdevice == pci_get_subdevice(dev)) ||
341 		    (pci_device->subdevice == 0xffff)))
342 			return (pci_device);
343 	}
344 	return (NULL);
345 }
346 
347 static int
348 mrsas_probe(device_t dev)
349 {
350 	static u_int8_t first_ctrl = 1;
351 	struct mrsas_ident *id;
352 
353 	if ((id = mrsas_find_ident(dev)) != NULL) {
354 		if (first_ctrl) {
355 			printf("LSI MegaRAID SAS FreeBSD mrsas driver version: %s\n",
356 			    MRSAS_VERSION);
357 			first_ctrl = 0;
358 		}
359 		device_set_desc(dev, id->desc);
360 		/* between BUS_PROBE_DEFAULT and BUS_PROBE_LOW_PRIORITY */
361 		return (-30);
362 	}
363 	return (ENXIO);
364 }
365 
366 /*
367  * mrsas_setup_sysctl:	setup sysctl values for mrsas
368  * input:				Adapter instance soft state
369  *
370  * Setup sysctl entries for mrsas driver.
371  */
372 static void
373 mrsas_setup_sysctl(struct mrsas_softc *sc)
374 {
375 	struct sysctl_ctx_list *sysctl_ctx = NULL;
376 	struct sysctl_oid *sysctl_tree = NULL;
377 	char tmpstr[80], tmpstr2[80];
378 
379 	/*
380 	 * Setup the sysctl variable so the user can change the debug level
381 	 * on the fly.
382 	 */
383 	snprintf(tmpstr, sizeof(tmpstr), "MRSAS controller %d",
384 	    device_get_unit(sc->mrsas_dev));
385 	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mrsas_dev));
386 
387 	sysctl_ctx = device_get_sysctl_ctx(sc->mrsas_dev);
388 	if (sysctl_ctx != NULL)
389 		sysctl_tree = device_get_sysctl_tree(sc->mrsas_dev);
390 
391 	if (sysctl_tree == NULL) {
392 		sysctl_ctx_init(&sc->sysctl_ctx);
393 		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
394 		    SYSCTL_STATIC_CHILDREN(_hw_mrsas), OID_AUTO, tmpstr2,
395 		    CTLFLAG_RD, 0, tmpstr);
396 		if (sc->sysctl_tree == NULL)
397 			return;
398 		sysctl_ctx = &sc->sysctl_ctx;
399 		sysctl_tree = sc->sysctl_tree;
400 	}
401 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
402 	    OID_AUTO, "disable_ocr", CTLFLAG_RW, &sc->disableOnlineCtrlReset, 0,
403 	    "Disable the use of OCR");
404 
405 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
406 	    OID_AUTO, "driver_version", CTLFLAG_RD, MRSAS_VERSION,
407 	    strlen(MRSAS_VERSION), "driver version");
408 
409 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
410 	    OID_AUTO, "reset_count", CTLFLAG_RD,
411 	    &sc->reset_count, 0, "number of ocr from start of the day");
412 
413 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
414 	    OID_AUTO, "fw_outstanding", CTLFLAG_RD,
415 	    &sc->fw_outstanding.val_rdonly, 0, "FW outstanding commands");
416 
417 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
418 	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
419 	    &sc->io_cmds_highwater, 0, "Max FW outstanding commands");
420 
421 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
422 	    OID_AUTO, "mrsas_debug", CTLFLAG_RW, &sc->mrsas_debug, 0,
423 	    "Driver debug level");
424 
425 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
426 	    OID_AUTO, "mrsas_io_timeout", CTLFLAG_RW, &sc->mrsas_io_timeout,
427 	    0, "Driver IO timeout value in mili-second.");
428 
429 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
430 	    OID_AUTO, "mrsas_fw_fault_check_delay", CTLFLAG_RW,
431 	    &sc->mrsas_fw_fault_check_delay,
432 	    0, "FW fault check thread delay in seconds. <default is 1 sec>");
433 
434 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
435 	    OID_AUTO, "reset_in_progress", CTLFLAG_RD,
436 	    &sc->reset_in_progress, 0, "ocr in progress status");
437 
438 }
439 
440 /*
441  * mrsas_get_tunables:	get tunable parameters.
442  * input:				Adapter instance soft state
443  *
444  * Get tunable parameters. This will help to debug driver at boot time.
445  */
446 static void
447 mrsas_get_tunables(struct mrsas_softc *sc)
448 {
449 	char tmpstr[80];
450 
451 	/* XXX default to some debugging for now */
452 	sc->mrsas_debug = MRSAS_FAULT;
453 	sc->mrsas_io_timeout = MRSAS_IO_TIMEOUT;
454 	sc->mrsas_fw_fault_check_delay = 1;
455 	sc->reset_count = 0;
456 	sc->reset_in_progress = 0;
457 
458 	/*
459 	 * Grab the global variables.
460 	 */
461 	TUNABLE_INT_FETCH("hw.mrsas.debug_level", &sc->mrsas_debug);
462 
463 	/* Grab the unit-instance variables */
464 	snprintf(tmpstr, sizeof(tmpstr), "dev.mrsas.%d.debug_level",
465 	    device_get_unit(sc->mrsas_dev));
466 	TUNABLE_INT_FETCH(tmpstr, &sc->mrsas_debug);
467 }
468 
469 /*
470  * mrsas_alloc_evt_log_info cmd: Allocates memory to get event log information.
471  * Used to get sequence number at driver load time.
472  * input:		Adapter soft state
473  *
474  * Allocates DMAable memory for the event log info internal command.
475  */
476 int
477 mrsas_alloc_evt_log_info_cmd(struct mrsas_softc *sc)
478 {
479 	int el_info_size;
480 
481 	/* Allocate get event log info command */
482 	el_info_size = sizeof(struct mrsas_evt_log_info);
483 	if (bus_dma_tag_create(sc->mrsas_parent_tag,
484 	    1, 0,
485 	    BUS_SPACE_MAXADDR_32BIT,
486 	    BUS_SPACE_MAXADDR,
487 	    NULL, NULL,
488 	    el_info_size,
489 	    1,
490 	    el_info_size,
491 	    BUS_DMA_ALLOCNOW,
492 	    NULL, NULL,
493 	    &sc->el_info_tag)) {
494 		device_printf(sc->mrsas_dev, "Cannot allocate event log info tag\n");
495 		return (ENOMEM);
496 	}
497 	if (bus_dmamem_alloc(sc->el_info_tag, (void **)&sc->el_info_mem,
498 	    BUS_DMA_NOWAIT, &sc->el_info_dmamap)) {
499 		device_printf(sc->mrsas_dev, "Cannot allocate event log info cmd mem\n");
500 		return (ENOMEM);
501 	}
502 	if (bus_dmamap_load(sc->el_info_tag, sc->el_info_dmamap,
503 	    sc->el_info_mem, el_info_size, mrsas_addr_cb,
504 	    &sc->el_info_phys_addr, BUS_DMA_NOWAIT)) {
505 		device_printf(sc->mrsas_dev, "Cannot load event log info cmd mem\n");
506 		return (ENOMEM);
507 	}
508 	memset(sc->el_info_mem, 0, el_info_size);
509 	return (0);
510 }
511 
512 /*
513  * mrsas_free_evt_info_cmd:	Free memory for Event log info command
514  * input:					Adapter soft state
515  *
516  * Deallocates memory for the event log info internal command.
517  */
518 void
519 mrsas_free_evt_log_info_cmd(struct mrsas_softc *sc)
520 {
521 	if (sc->el_info_phys_addr)
522 		bus_dmamap_unload(sc->el_info_tag, sc->el_info_dmamap);
523 	if (sc->el_info_mem != NULL)
524 		bus_dmamem_free(sc->el_info_tag, sc->el_info_mem, sc->el_info_dmamap);
525 	if (sc->el_info_tag != NULL)
526 		bus_dma_tag_destroy(sc->el_info_tag);
527 }
528 
529 /*
530  *  mrsas_get_seq_num:	Get latest event sequence number
531  *  @sc:				Adapter soft state
532  *  @eli:				Firmware event log sequence number information.
533  *
534  * Firmware maintains a log of all events in a non-volatile area.
535  * Driver get the sequence number using DCMD
536  * "MR_DCMD_CTRL_EVENT_GET_INFO" at driver load time.
537  */
538 
539 static int
540 mrsas_get_seq_num(struct mrsas_softc *sc,
541     struct mrsas_evt_log_info *eli)
542 {
543 	struct mrsas_mfi_cmd *cmd;
544 	struct mrsas_dcmd_frame *dcmd;
545 
546 	cmd = mrsas_get_mfi_cmd(sc);
547 
548 	if (!cmd) {
549 		device_printf(sc->mrsas_dev, "Failed to get a free cmd\n");
550 		return -ENOMEM;
551 	}
552 	dcmd = &cmd->frame->dcmd;
553 
554 	if (mrsas_alloc_evt_log_info_cmd(sc) != SUCCESS) {
555 		device_printf(sc->mrsas_dev, "Cannot allocate evt log info cmd\n");
556 		mrsas_release_mfi_cmd(cmd);
557 		return -ENOMEM;
558 	}
559 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
560 
561 	dcmd->cmd = MFI_CMD_DCMD;
562 	dcmd->cmd_status = 0x0;
563 	dcmd->sge_count = 1;
564 	dcmd->flags = MFI_FRAME_DIR_READ;
565 	dcmd->timeout = 0;
566 	dcmd->pad_0 = 0;
567 	dcmd->data_xfer_len = sizeof(struct mrsas_evt_log_info);
568 	dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
569 	dcmd->sgl.sge32[0].phys_addr = sc->el_info_phys_addr;
570 	dcmd->sgl.sge32[0].length = sizeof(struct mrsas_evt_log_info);
571 
572 	mrsas_issue_blocked_cmd(sc, cmd);
573 
574 	/*
575 	 * Copy the data back into callers buffer
576 	 */
577 	memcpy(eli, sc->el_info_mem, sizeof(struct mrsas_evt_log_info));
578 	mrsas_free_evt_log_info_cmd(sc);
579 	mrsas_release_mfi_cmd(cmd);
580 
581 	return 0;
582 }
583 
584 
585 /*
586  *  mrsas_register_aen:		Register for asynchronous event notification
587  *  @sc:			Adapter soft state
588  *  @seq_num:			Starting sequence number
589  *  @class_locale:		Class of the event
590  *
591  *  This function subscribes for events beyond the @seq_num
592  *  and type @class_locale.
593  *
594  */
595 static int
596 mrsas_register_aen(struct mrsas_softc *sc, u_int32_t seq_num,
597     u_int32_t class_locale_word)
598 {
599 	int ret_val;
600 	struct mrsas_mfi_cmd *cmd;
601 	struct mrsas_dcmd_frame *dcmd;
602 	union mrsas_evt_class_locale curr_aen;
603 	union mrsas_evt_class_locale prev_aen;
604 
605 	/*
606 	 * If there an AEN pending already (aen_cmd), check if the
607 	 * class_locale of that pending AEN is inclusive of the new AEN
608 	 * request we currently have. If it is, then we don't have to do
609 	 * anything. In other words, whichever events the current AEN request
610 	 * is subscribing to, have already been subscribed to. If the old_cmd
611 	 * is _not_ inclusive, then we have to abort that command, form a
612 	 * class_locale that is superset of both old and current and re-issue
613 	 * to the FW
614 	 */
615 
616 	curr_aen.word = class_locale_word;
617 
618 	if (sc->aen_cmd) {
619 
620 		prev_aen.word = sc->aen_cmd->frame->dcmd.mbox.w[1];
621 
622 		/*
623 		 * A class whose enum value is smaller is inclusive of all
624 		 * higher values. If a PROGRESS (= -1) was previously
625 		 * registered, then a new registration requests for higher
626 		 * classes need not be sent to FW. They are automatically
627 		 * included. Locale numbers don't have such hierarchy. They
628 		 * are bitmap values
629 		 */
630 		if ((prev_aen.members.class <= curr_aen.members.class) &&
631 		    !((prev_aen.members.locale & curr_aen.members.locale) ^
632 		    curr_aen.members.locale)) {
633 			/*
634 			 * Previously issued event registration includes
635 			 * current request. Nothing to do.
636 			 */
637 			return 0;
638 		} else {
639 			curr_aen.members.locale |= prev_aen.members.locale;
640 
641 			if (prev_aen.members.class < curr_aen.members.class)
642 				curr_aen.members.class = prev_aen.members.class;
643 
644 			sc->aen_cmd->abort_aen = 1;
645 			ret_val = mrsas_issue_blocked_abort_cmd(sc,
646 			    sc->aen_cmd);
647 
648 			if (ret_val) {
649 				printf("mrsas: Failed to abort "
650 				    "previous AEN command\n");
651 				return ret_val;
652 			}
653 		}
654 	}
655 	cmd = mrsas_get_mfi_cmd(sc);
656 
657 	if (!cmd)
658 		return -ENOMEM;
659 
660 	dcmd = &cmd->frame->dcmd;
661 
662 	memset(sc->evt_detail_mem, 0, sizeof(struct mrsas_evt_detail));
663 
664 	/*
665 	 * Prepare DCMD for aen registration
666 	 */
667 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
668 
669 	dcmd->cmd = MFI_CMD_DCMD;
670 	dcmd->cmd_status = 0x0;
671 	dcmd->sge_count = 1;
672 	dcmd->flags = MFI_FRAME_DIR_READ;
673 	dcmd->timeout = 0;
674 	dcmd->pad_0 = 0;
675 	dcmd->data_xfer_len = sizeof(struct mrsas_evt_detail);
676 	dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
677 	dcmd->mbox.w[0] = seq_num;
678 	sc->last_seq_num = seq_num;
679 	dcmd->mbox.w[1] = curr_aen.word;
680 	dcmd->sgl.sge32[0].phys_addr = (u_int32_t)sc->evt_detail_phys_addr;
681 	dcmd->sgl.sge32[0].length = sizeof(struct mrsas_evt_detail);
682 
683 	if (sc->aen_cmd != NULL) {
684 		mrsas_release_mfi_cmd(cmd);
685 		return 0;
686 	}
687 	/*
688 	 * Store reference to the cmd used to register for AEN. When an
689 	 * application wants us to register for AEN, we have to abort this
690 	 * cmd and re-register with a new EVENT LOCALE supplied by that app
691 	 */
692 	sc->aen_cmd = cmd;
693 
694 	/*
695 	 * Issue the aen registration frame
696 	 */
697 	if (mrsas_issue_dcmd(sc, cmd)) {
698 		device_printf(sc->mrsas_dev, "Cannot issue AEN DCMD command.\n");
699 		return (1);
700 	}
701 	return 0;
702 }
703 
704 /*
705  * mrsas_start_aen:	Subscribes to AEN during driver load time
706  * @instance:		Adapter soft state
707  */
708 static int
709 mrsas_start_aen(struct mrsas_softc *sc)
710 {
711 	struct mrsas_evt_log_info eli;
712 	union mrsas_evt_class_locale class_locale;
713 
714 
715 	/* Get the latest sequence number from FW */
716 
717 	memset(&eli, 0, sizeof(eli));
718 
719 	if (mrsas_get_seq_num(sc, &eli))
720 		return -1;
721 
722 	/* Register AEN with FW for latest sequence number plus 1 */
723 	class_locale.members.reserved = 0;
724 	class_locale.members.locale = MR_EVT_LOCALE_ALL;
725 	class_locale.members.class = MR_EVT_CLASS_DEBUG;
726 
727 	return mrsas_register_aen(sc, eli.newest_seq_num + 1,
728 	    class_locale.word);
729 
730 }
731 
732 /*
733  * mrsas_setup_msix:	Allocate MSI-x vectors
734  * @sc:					adapter soft state
735  */
736 static int
737 mrsas_setup_msix(struct mrsas_softc *sc)
738 {
739 	int i;
740 
741 	for (i = 0; i < sc->msix_vectors; i++) {
742 		sc->irq_context[i].sc = sc;
743 		sc->irq_context[i].MSIxIndex = i;
744 		sc->irq_id[i] = i + 1;
745 		sc->mrsas_irq[i] = bus_alloc_resource_any
746 		    (sc->mrsas_dev, SYS_RES_IRQ, &sc->irq_id[i]
747 		    ,RF_ACTIVE);
748 		if (sc->mrsas_irq[i] == NULL) {
749 			device_printf(sc->mrsas_dev, "Can't allocate MSI-x\n");
750 			goto irq_alloc_failed;
751 		}
752 		if (bus_setup_intr(sc->mrsas_dev,
753 		    sc->mrsas_irq[i],
754 		    INTR_MPSAFE | INTR_TYPE_CAM,
755 		    NULL, mrsas_isr, &sc->irq_context[i],
756 		    &sc->intr_handle[i])) {
757 			device_printf(sc->mrsas_dev,
758 			    "Cannot set up MSI-x interrupt handler\n");
759 			goto irq_alloc_failed;
760 		}
761 	}
762 	return SUCCESS;
763 
764 irq_alloc_failed:
765 	mrsas_teardown_intr(sc);
766 	return (FAIL);
767 }
768 
769 /*
770  * mrsas_allocate_msix:		Setup MSI-x vectors
771  * @sc:						adapter soft state
772  */
773 static int
774 mrsas_allocate_msix(struct mrsas_softc *sc)
775 {
776 	if (pci_alloc_msix(sc->mrsas_dev, &sc->msix_vectors) == 0) {
777 		device_printf(sc->mrsas_dev, "Using MSI-X with %d number"
778 		    " of vectors\n", sc->msix_vectors);
779 	} else {
780 		device_printf(sc->mrsas_dev, "MSI-x setup failed\n");
781 		goto irq_alloc_failed;
782 	}
783 	return SUCCESS;
784 
785 irq_alloc_failed:
786 	mrsas_teardown_intr(sc);
787 	return (FAIL);
788 }
789 
790 /*
791  * mrsas_attach:	PCI entry point
792  * input:			pointer to device struct
793  *
794  * Performs setup of PCI and registers, initializes mutexes and linked lists,
795  * registers interrupts and CAM, and initializes   the adapter/controller to
796  * its proper state.
797  */
798 static int
799 mrsas_attach(device_t dev)
800 {
801 	struct mrsas_softc *sc = device_get_softc(dev);
802 	uint32_t cmd, bar, error;
803 
804 	/* Look up our softc and initialize its fields. */
805 	sc->mrsas_dev = dev;
806 	sc->device_id = pci_get_device(dev);
807 
808 	mrsas_get_tunables(sc);
809 
810 	/*
811 	 * Set up PCI and registers
812 	 */
813 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
814 	if ((cmd & PCIM_CMD_PORTEN) == 0) {
815 		return (ENXIO);
816 	}
817 	/* Force the busmaster enable bit on. */
818 	cmd |= PCIM_CMD_BUSMASTEREN;
819 	pci_write_config(dev, PCIR_COMMAND, cmd, 2);
820 
821 	bar = pci_read_config(dev, MRSAS_PCI_BAR1, 4);
822 
823 	sc->reg_res_id = MRSAS_PCI_BAR1;/* BAR1 offset */
824 	if ((sc->reg_res = bus_alloc_resource(dev, SYS_RES_MEMORY,
825 	    &(sc->reg_res_id), 0, ~0, 1, RF_ACTIVE))
826 	    == NULL) {
827 		device_printf(dev, "Cannot allocate PCI registers\n");
828 		goto attach_fail;
829 	}
830 	sc->bus_tag = rman_get_bustag(sc->reg_res);
831 	sc->bus_handle = rman_get_bushandle(sc->reg_res);
832 
833 	/* Intialize mutexes */
834 	mtx_init(&sc->sim_lock, "mrsas_sim_lock", NULL, MTX_DEF);
835 	mtx_init(&sc->pci_lock, "mrsas_pci_lock", NULL, MTX_DEF);
836 	mtx_init(&sc->io_lock, "mrsas_io_lock", NULL, MTX_DEF);
837 	mtx_init(&sc->aen_lock, "mrsas_aen_lock", NULL, MTX_DEF);
838 	mtx_init(&sc->ioctl_lock, "mrsas_ioctl_lock", NULL, MTX_SPIN);
839 	mtx_init(&sc->mpt_cmd_pool_lock, "mrsas_mpt_cmd_pool_lock", NULL, MTX_DEF);
840 	mtx_init(&sc->mfi_cmd_pool_lock, "mrsas_mfi_cmd_pool_lock", NULL, MTX_DEF);
841 	mtx_init(&sc->raidmap_lock, "mrsas_raidmap_lock", NULL, MTX_DEF);
842 
843 	/*
844 	 * Intialize a counting Semaphore to take care no. of concurrent
845 	 * IOCTLs
846 	 */
847 	sema_init(&sc->ioctl_count_sema, MRSAS_MAX_MFI_CMDS - 5, IOCTL_SEMA_DESCRIPTION);
848 
849 	/* Intialize linked list */
850 	TAILQ_INIT(&sc->mrsas_mpt_cmd_list_head);
851 	TAILQ_INIT(&sc->mrsas_mfi_cmd_list_head);
852 
853 	mrsas_atomic_set(&sc->fw_outstanding, 0);
854 
855 	sc->io_cmds_highwater = 0;
856 
857 	/* Create a /dev entry for this device. */
858 	sc->mrsas_cdev = make_dev(&mrsas_cdevsw, device_get_unit(dev), UID_ROOT,
859 	    GID_OPERATOR, (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP), "mrsas%u",
860 	    device_get_unit(dev));
861 	if (device_get_unit(dev) == 0)
862 		make_dev_alias(sc->mrsas_cdev, "megaraid_sas_ioctl_node");
863 	if (sc->mrsas_cdev)
864 		sc->mrsas_cdev->si_drv1 = sc;
865 
866 	sc->adprecovery = MRSAS_HBA_OPERATIONAL;
867 	sc->UnevenSpanSupport = 0;
868 
869 	sc->msix_enable = 0;
870 
871 	/* Initialize Firmware */
872 	if (mrsas_init_fw(sc) != SUCCESS) {
873 		goto attach_fail_fw;
874 	}
875 	/* Register SCSI mid-layer */
876 	if ((mrsas_cam_attach(sc) != SUCCESS)) {
877 		goto attach_fail_cam;
878 	}
879 	/* Register IRQs */
880 	if (mrsas_setup_irq(sc) != SUCCESS) {
881 		goto attach_fail_irq;
882 	}
883 	/* Enable Interrupts */
884 	mrsas_enable_intr(sc);
885 
886 	error = mrsas_kproc_create(mrsas_ocr_thread, sc,
887 	    &sc->ocr_thread, 0, 0, "mrsas_ocr%d",
888 	    device_get_unit(sc->mrsas_dev));
889 	if (error) {
890 		printf("Error %d starting rescan thread\n", error);
891 		goto attach_fail_irq;
892 	}
893 	mrsas_setup_sysctl(sc);
894 
895 	/* Initiate AEN (Asynchronous Event Notification) */
896 
897 	if (mrsas_start_aen(sc)) {
898 		printf("Error: start aen failed\n");
899 		goto fail_start_aen;
900 	}
901 	/*
902 	 * Add this controller to mrsas_mgmt_info structure so that it can be
903 	 * exported to management applications
904 	 */
905 	if (device_get_unit(dev) == 0)
906 		memset(&mrsas_mgmt_info, 0, sizeof(mrsas_mgmt_info));
907 
908 	mrsas_mgmt_info.count++;
909 	mrsas_mgmt_info.sc_ptr[mrsas_mgmt_info.max_index] = sc;
910 	mrsas_mgmt_info.max_index++;
911 
912 	return (0);
913 
914 fail_start_aen:
915 attach_fail_irq:
916 	mrsas_teardown_intr(sc);
917 attach_fail_cam:
918 	mrsas_cam_detach(sc);
919 attach_fail_fw:
920 	/* if MSIX vector is allocated and FW Init FAILED then release MSIX */
921 	if (sc->msix_enable == 1)
922 		pci_release_msi(sc->mrsas_dev);
923 	mrsas_free_mem(sc);
924 	mtx_destroy(&sc->sim_lock);
925 	mtx_destroy(&sc->aen_lock);
926 	mtx_destroy(&sc->pci_lock);
927 	mtx_destroy(&sc->io_lock);
928 	mtx_destroy(&sc->ioctl_lock);
929 	mtx_destroy(&sc->mpt_cmd_pool_lock);
930 	mtx_destroy(&sc->mfi_cmd_pool_lock);
931 	mtx_destroy(&sc->raidmap_lock);
932 	/* Destroy the counting semaphore created for Ioctl */
933 	sema_destroy(&sc->ioctl_count_sema);
934 attach_fail:
935 	destroy_dev(sc->mrsas_cdev);
936 	if (sc->reg_res) {
937 		bus_release_resource(sc->mrsas_dev, SYS_RES_MEMORY,
938 		    sc->reg_res_id, sc->reg_res);
939 	}
940 	return (ENXIO);
941 }
942 
943 /*
944  * mrsas_detach:	De-allocates and teardown resources
945  * input:			pointer to device struct
946  *
947  * This function is the entry point for device disconnect and detach.
948  * It performs memory de-allocations, shutdown of the controller and various
949  * teardown and destroy resource functions.
950  */
951 static int
952 mrsas_detach(device_t dev)
953 {
954 	struct mrsas_softc *sc;
955 	int i = 0;
956 
957 	sc = device_get_softc(dev);
958 	sc->remove_in_progress = 1;
959 
960 	/* Destroy the character device so no other IOCTL will be handled */
961 	destroy_dev(sc->mrsas_cdev);
962 
963 	/*
964 	 * Take the instance off the instance array. Note that we will not
965 	 * decrement the max_index. We let this array be sparse array
966 	 */
967 	for (i = 0; i < mrsas_mgmt_info.max_index; i++) {
968 		if (mrsas_mgmt_info.sc_ptr[i] == sc) {
969 			mrsas_mgmt_info.count--;
970 			mrsas_mgmt_info.sc_ptr[i] = NULL;
971 			break;
972 		}
973 	}
974 
975 	if (sc->ocr_thread_active)
976 		wakeup(&sc->ocr_chan);
977 	while (sc->reset_in_progress) {
978 		i++;
979 		if (!(i % MRSAS_RESET_NOTICE_INTERVAL)) {
980 			mrsas_dprint(sc, MRSAS_INFO,
981 			    "[%2d]waiting for ocr to be finished\n", i);
982 		}
983 		pause("mr_shutdown", hz);
984 	}
985 	i = 0;
986 	while (sc->ocr_thread_active) {
987 		i++;
988 		if (!(i % MRSAS_RESET_NOTICE_INTERVAL)) {
989 			mrsas_dprint(sc, MRSAS_INFO,
990 			    "[%2d]waiting for "
991 			    "mrsas_ocr thread to quit ocr %d\n", i,
992 			    sc->ocr_thread_active);
993 		}
994 		pause("mr_shutdown", hz);
995 	}
996 	mrsas_flush_cache(sc);
997 	mrsas_shutdown_ctlr(sc, MR_DCMD_CTRL_SHUTDOWN);
998 	mrsas_disable_intr(sc);
999 	mrsas_cam_detach(sc);
1000 	mrsas_teardown_intr(sc);
1001 	mrsas_free_mem(sc);
1002 	mtx_destroy(&sc->sim_lock);
1003 	mtx_destroy(&sc->aen_lock);
1004 	mtx_destroy(&sc->pci_lock);
1005 	mtx_destroy(&sc->io_lock);
1006 	mtx_destroy(&sc->ioctl_lock);
1007 	mtx_destroy(&sc->mpt_cmd_pool_lock);
1008 	mtx_destroy(&sc->mfi_cmd_pool_lock);
1009 	mtx_destroy(&sc->raidmap_lock);
1010 
1011 	/* Wait for all the semaphores to be released */
1012 	while (sema_value(&sc->ioctl_count_sema) != (MRSAS_MAX_MFI_CMDS - 5))
1013 		pause("mr_shutdown", hz);
1014 
1015 	/* Destroy the counting semaphore created for Ioctl */
1016 	sema_destroy(&sc->ioctl_count_sema);
1017 
1018 	if (sc->reg_res) {
1019 		bus_release_resource(sc->mrsas_dev,
1020 		    SYS_RES_MEMORY, sc->reg_res_id, sc->reg_res);
1021 	}
1022 	if (sc->sysctl_tree != NULL)
1023 		sysctl_ctx_free(&sc->sysctl_ctx);
1024 
1025 	return (0);
1026 }
1027 
1028 /*
1029  * mrsas_free_mem:		Frees allocated memory
1030  * input:				Adapter instance soft state
1031  *
1032  * This function is called from mrsas_detach() to free previously allocated
1033  * memory.
1034  */
1035 void
1036 mrsas_free_mem(struct mrsas_softc *sc)
1037 {
1038 	int i;
1039 	u_int32_t max_cmd;
1040 	struct mrsas_mfi_cmd *mfi_cmd;
1041 	struct mrsas_mpt_cmd *mpt_cmd;
1042 
1043 	/*
1044 	 * Free RAID map memory
1045 	 */
1046 	for (i = 0; i < 2; i++) {
1047 		if (sc->raidmap_phys_addr[i])
1048 			bus_dmamap_unload(sc->raidmap_tag[i], sc->raidmap_dmamap[i]);
1049 		if (sc->raidmap_mem[i] != NULL)
1050 			bus_dmamem_free(sc->raidmap_tag[i], sc->raidmap_mem[i], sc->raidmap_dmamap[i]);
1051 		if (sc->raidmap_tag[i] != NULL)
1052 			bus_dma_tag_destroy(sc->raidmap_tag[i]);
1053 
1054 		if (sc->ld_drv_map[i] != NULL)
1055 			free(sc->ld_drv_map[i], M_MRSAS);
1056 	}
1057 
1058 	/*
1059 	 * Free version buffer memroy
1060 	 */
1061 	if (sc->verbuf_phys_addr)
1062 		bus_dmamap_unload(sc->verbuf_tag, sc->verbuf_dmamap);
1063 	if (sc->verbuf_mem != NULL)
1064 		bus_dmamem_free(sc->verbuf_tag, sc->verbuf_mem, sc->verbuf_dmamap);
1065 	if (sc->verbuf_tag != NULL)
1066 		bus_dma_tag_destroy(sc->verbuf_tag);
1067 
1068 
1069 	/*
1070 	 * Free sense buffer memory
1071 	 */
1072 	if (sc->sense_phys_addr)
1073 		bus_dmamap_unload(sc->sense_tag, sc->sense_dmamap);
1074 	if (sc->sense_mem != NULL)
1075 		bus_dmamem_free(sc->sense_tag, sc->sense_mem, sc->sense_dmamap);
1076 	if (sc->sense_tag != NULL)
1077 		bus_dma_tag_destroy(sc->sense_tag);
1078 
1079 	/*
1080 	 * Free chain frame memory
1081 	 */
1082 	if (sc->chain_frame_phys_addr)
1083 		bus_dmamap_unload(sc->chain_frame_tag, sc->chain_frame_dmamap);
1084 	if (sc->chain_frame_mem != NULL)
1085 		bus_dmamem_free(sc->chain_frame_tag, sc->chain_frame_mem, sc->chain_frame_dmamap);
1086 	if (sc->chain_frame_tag != NULL)
1087 		bus_dma_tag_destroy(sc->chain_frame_tag);
1088 
1089 	/*
1090 	 * Free IO Request memory
1091 	 */
1092 	if (sc->io_request_phys_addr)
1093 		bus_dmamap_unload(sc->io_request_tag, sc->io_request_dmamap);
1094 	if (sc->io_request_mem != NULL)
1095 		bus_dmamem_free(sc->io_request_tag, sc->io_request_mem, sc->io_request_dmamap);
1096 	if (sc->io_request_tag != NULL)
1097 		bus_dma_tag_destroy(sc->io_request_tag);
1098 
1099 	/*
1100 	 * Free Reply Descriptor memory
1101 	 */
1102 	if (sc->reply_desc_phys_addr)
1103 		bus_dmamap_unload(sc->reply_desc_tag, sc->reply_desc_dmamap);
1104 	if (sc->reply_desc_mem != NULL)
1105 		bus_dmamem_free(sc->reply_desc_tag, sc->reply_desc_mem, sc->reply_desc_dmamap);
1106 	if (sc->reply_desc_tag != NULL)
1107 		bus_dma_tag_destroy(sc->reply_desc_tag);
1108 
1109 	/*
1110 	 * Free event detail memory
1111 	 */
1112 	if (sc->evt_detail_phys_addr)
1113 		bus_dmamap_unload(sc->evt_detail_tag, sc->evt_detail_dmamap);
1114 	if (sc->evt_detail_mem != NULL)
1115 		bus_dmamem_free(sc->evt_detail_tag, sc->evt_detail_mem, sc->evt_detail_dmamap);
1116 	if (sc->evt_detail_tag != NULL)
1117 		bus_dma_tag_destroy(sc->evt_detail_tag);
1118 
1119 	/*
1120 	 * Free MFI frames
1121 	 */
1122 	if (sc->mfi_cmd_list) {
1123 		for (i = 0; i < MRSAS_MAX_MFI_CMDS; i++) {
1124 			mfi_cmd = sc->mfi_cmd_list[i];
1125 			mrsas_free_frame(sc, mfi_cmd);
1126 		}
1127 	}
1128 	if (sc->mficmd_frame_tag != NULL)
1129 		bus_dma_tag_destroy(sc->mficmd_frame_tag);
1130 
1131 	/*
1132 	 * Free MPT internal command list
1133 	 */
1134 	max_cmd = sc->max_fw_cmds;
1135 	if (sc->mpt_cmd_list) {
1136 		for (i = 0; i < max_cmd; i++) {
1137 			mpt_cmd = sc->mpt_cmd_list[i];
1138 			bus_dmamap_destroy(sc->data_tag, mpt_cmd->data_dmamap);
1139 			free(sc->mpt_cmd_list[i], M_MRSAS);
1140 		}
1141 		free(sc->mpt_cmd_list, M_MRSAS);
1142 		sc->mpt_cmd_list = NULL;
1143 	}
1144 	/*
1145 	 * Free MFI internal command list
1146 	 */
1147 
1148 	if (sc->mfi_cmd_list) {
1149 		for (i = 0; i < MRSAS_MAX_MFI_CMDS; i++) {
1150 			free(sc->mfi_cmd_list[i], M_MRSAS);
1151 		}
1152 		free(sc->mfi_cmd_list, M_MRSAS);
1153 		sc->mfi_cmd_list = NULL;
1154 	}
1155 	/*
1156 	 * Free request descriptor memory
1157 	 */
1158 	free(sc->req_desc, M_MRSAS);
1159 	sc->req_desc = NULL;
1160 
1161 	/*
1162 	 * Destroy parent tag
1163 	 */
1164 	if (sc->mrsas_parent_tag != NULL)
1165 		bus_dma_tag_destroy(sc->mrsas_parent_tag);
1166 }
1167 
1168 /*
1169  * mrsas_teardown_intr:	Teardown interrupt
1170  * input:				Adapter instance soft state
1171  *
1172  * This function is called from mrsas_detach() to teardown and release bus
1173  * interrupt resourse.
1174  */
1175 void
1176 mrsas_teardown_intr(struct mrsas_softc *sc)
1177 {
1178 	int i;
1179 
1180 	if (!sc->msix_enable) {
1181 		if (sc->intr_handle[0])
1182 			bus_teardown_intr(sc->mrsas_dev, sc->mrsas_irq[0], sc->intr_handle[0]);
1183 		if (sc->mrsas_irq[0] != NULL)
1184 			bus_release_resource(sc->mrsas_dev, SYS_RES_IRQ,
1185 			    sc->irq_id[0], sc->mrsas_irq[0]);
1186 		sc->intr_handle[0] = NULL;
1187 	} else {
1188 		for (i = 0; i < sc->msix_vectors; i++) {
1189 			if (sc->intr_handle[i])
1190 				bus_teardown_intr(sc->mrsas_dev, sc->mrsas_irq[i],
1191 				    sc->intr_handle[i]);
1192 
1193 			if (sc->mrsas_irq[i] != NULL)
1194 				bus_release_resource(sc->mrsas_dev, SYS_RES_IRQ,
1195 				    sc->irq_id[i], sc->mrsas_irq[i]);
1196 
1197 			sc->intr_handle[i] = NULL;
1198 		}
1199 		pci_release_msi(sc->mrsas_dev);
1200 	}
1201 
1202 }
1203 
1204 /*
1205  * mrsas_suspend:	Suspend entry point
1206  * input:			Device struct pointer
1207  *
1208  * This function is the entry point for system suspend from the OS.
1209  */
1210 static int
1211 mrsas_suspend(device_t dev)
1212 {
1213 	struct mrsas_softc *sc;
1214 
1215 	sc = device_get_softc(dev);
1216 	return (0);
1217 }
1218 
1219 /*
1220  * mrsas_resume:	Resume entry point
1221  * input:			Device struct pointer
1222  *
1223  * This function is the entry point for system resume from the OS.
1224  */
1225 static int
1226 mrsas_resume(device_t dev)
1227 {
1228 	struct mrsas_softc *sc;
1229 
1230 	sc = device_get_softc(dev);
1231 	return (0);
1232 }
1233 
1234 /*
1235  * mrsas_ioctl:	IOCtl commands entry point.
1236  *
1237  * This function is the entry point for IOCtls from the OS.  It calls the
1238  * appropriate function for processing depending on the command received.
1239  */
1240 static int
1241 mrsas_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag,
1242     struct thread *td)
1243 {
1244 	struct mrsas_softc *sc;
1245 	int ret = 0, i = 0;
1246 
1247 	struct mrsas_iocpacket *user_ioc = (struct mrsas_iocpacket *)arg;
1248 
1249 	/* get the Host number & the softc from data sent by the Application */
1250 	sc = mrsas_mgmt_info.sc_ptr[user_ioc->host_no];
1251 
1252 	if ((mrsas_mgmt_info.max_index == user_ioc->host_no) || (sc == NULL)) {
1253 		printf("Please check the controller number\n");
1254 		if (sc == NULL)
1255 			printf("There is NO such Host no. %d\n", user_ioc->host_no);
1256 
1257 		return ENOENT;
1258 	}
1259 	if (sc->remove_in_progress) {
1260 		mrsas_dprint(sc, MRSAS_INFO,
1261 		    "Driver remove or shutdown called.\n");
1262 		return ENOENT;
1263 	}
1264 	mtx_lock_spin(&sc->ioctl_lock);
1265 	if (!sc->reset_in_progress) {
1266 		mtx_unlock_spin(&sc->ioctl_lock);
1267 		goto do_ioctl;
1268 	}
1269 	mtx_unlock_spin(&sc->ioctl_lock);
1270 	while (sc->reset_in_progress) {
1271 		i++;
1272 		if (!(i % MRSAS_RESET_NOTICE_INTERVAL)) {
1273 			mrsas_dprint(sc, MRSAS_INFO,
1274 			    "[%2d]waiting for "
1275 			    "OCR to be finished %d\n", i,
1276 			    sc->ocr_thread_active);
1277 		}
1278 		pause("mr_ioctl", hz);
1279 	}
1280 
1281 do_ioctl:
1282 	switch (cmd) {
1283 	case MRSAS_IOC_FIRMWARE_PASS_THROUGH64:
1284 #ifdef COMPAT_FREEBSD32
1285 	case MRSAS_IOC_FIRMWARE_PASS_THROUGH32:
1286 #endif
1287 		/*
1288 		 * Decrement the Ioctl counting Semaphore before getting an
1289 		 * mfi command
1290 		 */
1291 		sema_wait(&sc->ioctl_count_sema);
1292 
1293 		ret = mrsas_passthru(sc, (void *)arg, cmd);
1294 
1295 		/* Increment the Ioctl counting semaphore value */
1296 		sema_post(&sc->ioctl_count_sema);
1297 
1298 		break;
1299 	case MRSAS_IOC_SCAN_BUS:
1300 		ret = mrsas_bus_scan(sc);
1301 		break;
1302 	default:
1303 		mrsas_dprint(sc, MRSAS_TRACE, "IOCTL command 0x%lx is not handled\n", cmd);
1304 		ret = ENOENT;
1305 	}
1306 
1307 	return (ret);
1308 }
1309 
1310 /*
1311  * mrsas_poll:	poll entry point for mrsas driver fd
1312  *
1313  * This function is the entry point for poll from the OS.  It waits for some AEN
1314  * events to be triggered from the controller and notifies back.
1315  */
1316 static int
1317 mrsas_poll(struct cdev *dev, int poll_events, struct thread *td)
1318 {
1319 	struct mrsas_softc *sc;
1320 	int revents = 0;
1321 
1322 	sc = dev->si_drv1;
1323 
1324 	if (poll_events & (POLLIN | POLLRDNORM)) {
1325 		if (sc->mrsas_aen_triggered) {
1326 			revents |= poll_events & (POLLIN | POLLRDNORM);
1327 		}
1328 	}
1329 	if (revents == 0) {
1330 		if (poll_events & (POLLIN | POLLRDNORM)) {
1331 			sc->mrsas_poll_waiting = 1;
1332 			selrecord(td, &sc->mrsas_select);
1333 		}
1334 	}
1335 	return revents;
1336 }
1337 
1338 /*
1339  * mrsas_setup_irq:	Set up interrupt
1340  * input:			Adapter instance soft state
1341  *
1342  * This function sets up interrupts as a bus resource, with flags indicating
1343  * resource permitting contemporaneous sharing and for resource to activate
1344  * atomically.
1345  */
1346 static int
1347 mrsas_setup_irq(struct mrsas_softc *sc)
1348 {
1349 	if (sc->msix_enable && (mrsas_setup_msix(sc) == SUCCESS))
1350 		device_printf(sc->mrsas_dev, "MSI-x interrupts setup success\n");
1351 
1352 	else {
1353 		device_printf(sc->mrsas_dev, "Fall back to legacy interrupt\n");
1354 		sc->irq_context[0].sc = sc;
1355 		sc->irq_context[0].MSIxIndex = 0;
1356 		sc->irq_id[0] = 0;
1357 		sc->mrsas_irq[0] = bus_alloc_resource_any(sc->mrsas_dev,
1358 		    SYS_RES_IRQ, &sc->irq_id[0], RF_SHAREABLE | RF_ACTIVE);
1359 		if (sc->mrsas_irq[0] == NULL) {
1360 			device_printf(sc->mrsas_dev, "Cannot allocate legcay"
1361 			    "interrupt\n");
1362 			return (FAIL);
1363 		}
1364 		if (bus_setup_intr(sc->mrsas_dev, sc->mrsas_irq[0],
1365 		    INTR_MPSAFE | INTR_TYPE_CAM, NULL, mrsas_isr,
1366 		    &sc->irq_context[0], &sc->intr_handle[0])) {
1367 			device_printf(sc->mrsas_dev, "Cannot set up legacy"
1368 			    "interrupt\n");
1369 			return (FAIL);
1370 		}
1371 	}
1372 	return (0);
1373 }
1374 
1375 /*
1376  * mrsas_isr:	ISR entry point
1377  * input:		argument pointer
1378  *
1379  * This function is the interrupt service routine entry point.  There are two
1380  * types of interrupts, state change interrupt and response interrupt.  If an
1381  * interrupt is not ours, we just return.
1382  */
1383 void
1384 mrsas_isr(void *arg)
1385 {
1386 	struct mrsas_irq_context *irq_context = (struct mrsas_irq_context *)arg;
1387 	struct mrsas_softc *sc = irq_context->sc;
1388 	int status = 0;
1389 
1390 	if (!sc->msix_vectors) {
1391 		status = mrsas_clear_intr(sc);
1392 		if (!status)
1393 			return;
1394 	}
1395 	/* If we are resetting, bail */
1396 	if (mrsas_test_bit(MRSAS_FUSION_IN_RESET, &sc->reset_flags)) {
1397 		printf(" Entered into ISR when OCR is going active. \n");
1398 		mrsas_clear_intr(sc);
1399 		return;
1400 	}
1401 	/* Process for reply request and clear response interrupt */
1402 	if (mrsas_complete_cmd(sc, irq_context->MSIxIndex) != SUCCESS)
1403 		mrsas_clear_intr(sc);
1404 
1405 	return;
1406 }
1407 
1408 /*
1409  * mrsas_complete_cmd:	Process reply request
1410  * input:				Adapter instance soft state
1411  *
1412  * This function is called from mrsas_isr() to process reply request and clear
1413  * response interrupt. Processing of the reply request entails walking
1414  * through the reply descriptor array for the command request  pended from
1415  * Firmware.  We look at the Function field to determine the command type and
1416  * perform the appropriate action.  Before we return, we clear the response
1417  * interrupt.
1418  */
1419 static int
1420 mrsas_complete_cmd(struct mrsas_softc *sc, u_int32_t MSIxIndex)
1421 {
1422 	Mpi2ReplyDescriptorsUnion_t *desc;
1423 	MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR *reply_desc;
1424 	MRSAS_RAID_SCSI_IO_REQUEST *scsi_io_req;
1425 	struct mrsas_mpt_cmd *cmd_mpt;
1426 	struct mrsas_mfi_cmd *cmd_mfi;
1427 	u_int8_t arm, reply_descript_type;
1428 	u_int16_t smid, num_completed;
1429 	u_int8_t status, extStatus;
1430 	union desc_value desc_val;
1431 	PLD_LOAD_BALANCE_INFO lbinfo;
1432 	u_int32_t device_id;
1433 	int threshold_reply_count = 0;
1434 
1435 
1436 	/* If we have a hardware error, not need to continue */
1437 	if (sc->adprecovery == MRSAS_HW_CRITICAL_ERROR)
1438 		return (DONE);
1439 
1440 	desc = sc->reply_desc_mem;
1441 	desc += ((MSIxIndex * sc->reply_alloc_sz) / sizeof(MPI2_REPLY_DESCRIPTORS_UNION))
1442 	    + sc->last_reply_idx[MSIxIndex];
1443 
1444 	reply_desc = (MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR *) desc;
1445 
1446 	desc_val.word = desc->Words;
1447 	num_completed = 0;
1448 
1449 	reply_descript_type = reply_desc->ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1450 
1451 	/* Find our reply descriptor for the command and process */
1452 	while ((desc_val.u.low != 0xFFFFFFFF) && (desc_val.u.high != 0xFFFFFFFF)) {
1453 		smid = reply_desc->SMID;
1454 		cmd_mpt = sc->mpt_cmd_list[smid - 1];
1455 		scsi_io_req = (MRSAS_RAID_SCSI_IO_REQUEST *) cmd_mpt->io_request;
1456 
1457 		status = scsi_io_req->RaidContext.status;
1458 		extStatus = scsi_io_req->RaidContext.exStatus;
1459 
1460 		switch (scsi_io_req->Function) {
1461 		case MPI2_FUNCTION_SCSI_IO_REQUEST:	/* Fast Path IO. */
1462 			device_id = cmd_mpt->ccb_ptr->ccb_h.target_id;
1463 			lbinfo = &sc->load_balance_info[device_id];
1464 			if (cmd_mpt->load_balance == MRSAS_LOAD_BALANCE_FLAG) {
1465 				arm = lbinfo->raid1DevHandle[0] == scsi_io_req->DevHandle ? 0 : 1;
1466 				mrsas_atomic_dec(&lbinfo->scsi_pending_cmds[arm]);
1467 				cmd_mpt->load_balance &= ~MRSAS_LOAD_BALANCE_FLAG;
1468 			}
1469 			/* Fall thru and complete IO */
1470 		case MRSAS_MPI2_FUNCTION_LD_IO_REQUEST:
1471 			mrsas_map_mpt_cmd_status(cmd_mpt, status, extStatus);
1472 			mrsas_cmd_done(sc, cmd_mpt);
1473 			scsi_io_req->RaidContext.status = 0;
1474 			scsi_io_req->RaidContext.exStatus = 0;
1475 			mrsas_atomic_dec(&sc->fw_outstanding);
1476 			break;
1477 		case MRSAS_MPI2_FUNCTION_PASSTHRU_IO_REQUEST:	/* MFI command */
1478 			cmd_mfi = sc->mfi_cmd_list[cmd_mpt->sync_cmd_idx];
1479 			mrsas_complete_mptmfi_passthru(sc, cmd_mfi, status);
1480 			cmd_mpt->flags = 0;
1481 			mrsas_release_mpt_cmd(cmd_mpt);
1482 			break;
1483 		}
1484 
1485 		sc->last_reply_idx[MSIxIndex]++;
1486 		if (sc->last_reply_idx[MSIxIndex] >= sc->reply_q_depth)
1487 			sc->last_reply_idx[MSIxIndex] = 0;
1488 
1489 		desc->Words = ~((uint64_t)0x00);	/* set it back to all
1490 							 * 0xFFFFFFFFs */
1491 		num_completed++;
1492 		threshold_reply_count++;
1493 
1494 		/* Get the next reply descriptor */
1495 		if (!sc->last_reply_idx[MSIxIndex]) {
1496 			desc = sc->reply_desc_mem;
1497 			desc += ((MSIxIndex * sc->reply_alloc_sz) / sizeof(MPI2_REPLY_DESCRIPTORS_UNION));
1498 		} else
1499 			desc++;
1500 
1501 		reply_desc = (MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR *) desc;
1502 		desc_val.word = desc->Words;
1503 
1504 		reply_descript_type = reply_desc->ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1505 
1506 		if (reply_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1507 			break;
1508 
1509 		/*
1510 		 * Write to reply post index after completing threshold reply
1511 		 * count and still there are more replies in reply queue
1512 		 * pending to be completed.
1513 		 */
1514 		if (threshold_reply_count >= THRESHOLD_REPLY_COUNT) {
1515 			if (sc->msix_enable) {
1516 				if ((sc->device_id == MRSAS_INVADER) ||
1517 				    (sc->device_id == MRSAS_FURY))
1518 					mrsas_write_reg(sc, sc->msix_reg_offset[MSIxIndex / 8],
1519 					    ((MSIxIndex & 0x7) << 24) |
1520 					    sc->last_reply_idx[MSIxIndex]);
1521 				else
1522 					mrsas_write_reg(sc, sc->msix_reg_offset[0], (MSIxIndex << 24) |
1523 					    sc->last_reply_idx[MSIxIndex]);
1524 			} else
1525 				mrsas_write_reg(sc, offsetof(mrsas_reg_set,
1526 				    reply_post_host_index), sc->last_reply_idx[0]);
1527 
1528 			threshold_reply_count = 0;
1529 		}
1530 	}
1531 
1532 	/* No match, just return */
1533 	if (num_completed == 0)
1534 		return (DONE);
1535 
1536 	/* Clear response interrupt */
1537 	if (sc->msix_enable) {
1538 		if ((sc->device_id == MRSAS_INVADER) ||
1539 		    (sc->device_id == MRSAS_FURY)) {
1540 			mrsas_write_reg(sc, sc->msix_reg_offset[MSIxIndex / 8],
1541 			    ((MSIxIndex & 0x7) << 24) |
1542 			    sc->last_reply_idx[MSIxIndex]);
1543 		} else
1544 			mrsas_write_reg(sc, sc->msix_reg_offset[0], (MSIxIndex << 24) |
1545 			    sc->last_reply_idx[MSIxIndex]);
1546 	} else
1547 		mrsas_write_reg(sc, offsetof(mrsas_reg_set,
1548 		    reply_post_host_index), sc->last_reply_idx[0]);
1549 
1550 	return (0);
1551 }
1552 
1553 /*
1554  * mrsas_map_mpt_cmd_status:	Allocate DMAable memory.
1555  * input:						Adapter instance soft state
1556  *
1557  * This function is called from mrsas_complete_cmd(), for LD IO and FastPath IO.
1558  * It checks the command status and maps the appropriate CAM status for the
1559  * CCB.
1560  */
1561 void
1562 mrsas_map_mpt_cmd_status(struct mrsas_mpt_cmd *cmd, u_int8_t status, u_int8_t extStatus)
1563 {
1564 	struct mrsas_softc *sc = cmd->sc;
1565 	u_int8_t *sense_data;
1566 
1567 	switch (status) {
1568 	case MFI_STAT_OK:
1569 		cmd->ccb_ptr->ccb_h.status = CAM_REQ_CMP;
1570 		break;
1571 	case MFI_STAT_SCSI_IO_FAILED:
1572 	case MFI_STAT_SCSI_DONE_WITH_ERROR:
1573 		cmd->ccb_ptr->ccb_h.status = CAM_SCSI_STATUS_ERROR;
1574 		sense_data = (u_int8_t *)&cmd->ccb_ptr->csio.sense_data;
1575 		if (sense_data) {
1576 			/* For now just copy 18 bytes back */
1577 			memcpy(sense_data, cmd->sense, 18);
1578 			cmd->ccb_ptr->csio.sense_len = 18;
1579 			cmd->ccb_ptr->ccb_h.status |= CAM_AUTOSNS_VALID;
1580 		}
1581 		break;
1582 	case MFI_STAT_LD_OFFLINE:
1583 	case MFI_STAT_DEVICE_NOT_FOUND:
1584 		if (cmd->ccb_ptr->ccb_h.target_lun)
1585 			cmd->ccb_ptr->ccb_h.status |= CAM_LUN_INVALID;
1586 		else
1587 			cmd->ccb_ptr->ccb_h.status |= CAM_DEV_NOT_THERE;
1588 		break;
1589 	case MFI_STAT_CONFIG_SEQ_MISMATCH:
1590 		cmd->ccb_ptr->ccb_h.status |= CAM_REQUEUE_REQ;
1591 		break;
1592 	default:
1593 		device_printf(sc->mrsas_dev, "FW cmd complete status %x\n", status);
1594 		cmd->ccb_ptr->ccb_h.status = CAM_REQ_CMP_ERR;
1595 		cmd->ccb_ptr->csio.scsi_status = status;
1596 	}
1597 	return;
1598 }
1599 
1600 /*
1601  * mrsas_alloc_mem:	Allocate DMAable memory
1602  * input:			Adapter instance soft state
1603  *
1604  * This function creates the parent DMA tag and allocates DMAable memory. DMA
1605  * tag describes constraints of DMA mapping. Memory allocated is mapped into
1606  * Kernel virtual address. Callback argument is physical memory address.
1607  */
1608 static int
1609 mrsas_alloc_mem(struct mrsas_softc *sc)
1610 {
1611 	u_int32_t verbuf_size, io_req_size, reply_desc_size, sense_size, chain_frame_size,
1612 	          evt_detail_size, count;
1613 
1614 	/*
1615 	 * Allocate parent DMA tag
1616 	 */
1617 	if (bus_dma_tag_create(NULL,	/* parent */
1618 	    1,				/* alignment */
1619 	    0,				/* boundary */
1620 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1621 	    BUS_SPACE_MAXADDR,		/* highaddr */
1622 	    NULL, NULL,			/* filter, filterarg */
1623 	    MRSAS_MAX_IO_SIZE,		/* maxsize */
1624 	    MRSAS_MAX_SGL,		/* nsegments */
1625 	    MRSAS_MAX_IO_SIZE,		/* maxsegsize */
1626 	    0,				/* flags */
1627 	    NULL, NULL,			/* lockfunc, lockarg */
1628 	    &sc->mrsas_parent_tag	/* tag */
1629 	    )) {
1630 		device_printf(sc->mrsas_dev, "Cannot allocate parent DMA tag\n");
1631 		return (ENOMEM);
1632 	}
1633 	/*
1634 	 * Allocate for version buffer
1635 	 */
1636 	verbuf_size = MRSAS_MAX_NAME_LENGTH * (sizeof(bus_addr_t));
1637 	if (bus_dma_tag_create(sc->mrsas_parent_tag,
1638 	    1, 0,
1639 	    BUS_SPACE_MAXADDR_32BIT,
1640 	    BUS_SPACE_MAXADDR,
1641 	    NULL, NULL,
1642 	    verbuf_size,
1643 	    1,
1644 	    verbuf_size,
1645 	    BUS_DMA_ALLOCNOW,
1646 	    NULL, NULL,
1647 	    &sc->verbuf_tag)) {
1648 		device_printf(sc->mrsas_dev, "Cannot allocate verbuf DMA tag\n");
1649 		return (ENOMEM);
1650 	}
1651 	if (bus_dmamem_alloc(sc->verbuf_tag, (void **)&sc->verbuf_mem,
1652 	    BUS_DMA_NOWAIT, &sc->verbuf_dmamap)) {
1653 		device_printf(sc->mrsas_dev, "Cannot allocate verbuf memory\n");
1654 		return (ENOMEM);
1655 	}
1656 	bzero(sc->verbuf_mem, verbuf_size);
1657 	if (bus_dmamap_load(sc->verbuf_tag, sc->verbuf_dmamap, sc->verbuf_mem,
1658 	    verbuf_size, mrsas_addr_cb, &sc->verbuf_phys_addr,
1659 	    BUS_DMA_NOWAIT)) {
1660 		device_printf(sc->mrsas_dev, "Cannot load verbuf DMA map\n");
1661 		return (ENOMEM);
1662 	}
1663 	/*
1664 	 * Allocate IO Request Frames
1665 	 */
1666 	io_req_size = sc->io_frames_alloc_sz;
1667 	if (bus_dma_tag_create(sc->mrsas_parent_tag,
1668 	    16, 0,
1669 	    BUS_SPACE_MAXADDR_32BIT,
1670 	    BUS_SPACE_MAXADDR,
1671 	    NULL, NULL,
1672 	    io_req_size,
1673 	    1,
1674 	    io_req_size,
1675 	    BUS_DMA_ALLOCNOW,
1676 	    NULL, NULL,
1677 	    &sc->io_request_tag)) {
1678 		device_printf(sc->mrsas_dev, "Cannot create IO request tag\n");
1679 		return (ENOMEM);
1680 	}
1681 	if (bus_dmamem_alloc(sc->io_request_tag, (void **)&sc->io_request_mem,
1682 	    BUS_DMA_NOWAIT, &sc->io_request_dmamap)) {
1683 		device_printf(sc->mrsas_dev, "Cannot alloc IO request memory\n");
1684 		return (ENOMEM);
1685 	}
1686 	bzero(sc->io_request_mem, io_req_size);
1687 	if (bus_dmamap_load(sc->io_request_tag, sc->io_request_dmamap,
1688 	    sc->io_request_mem, io_req_size, mrsas_addr_cb,
1689 	    &sc->io_request_phys_addr, BUS_DMA_NOWAIT)) {
1690 		device_printf(sc->mrsas_dev, "Cannot load IO request memory\n");
1691 		return (ENOMEM);
1692 	}
1693 	/*
1694 	 * Allocate Chain Frames
1695 	 */
1696 	chain_frame_size = sc->chain_frames_alloc_sz;
1697 	if (bus_dma_tag_create(sc->mrsas_parent_tag,
1698 	    4, 0,
1699 	    BUS_SPACE_MAXADDR_32BIT,
1700 	    BUS_SPACE_MAXADDR,
1701 	    NULL, NULL,
1702 	    chain_frame_size,
1703 	    1,
1704 	    chain_frame_size,
1705 	    BUS_DMA_ALLOCNOW,
1706 	    NULL, NULL,
1707 	    &sc->chain_frame_tag)) {
1708 		device_printf(sc->mrsas_dev, "Cannot create chain frame tag\n");
1709 		return (ENOMEM);
1710 	}
1711 	if (bus_dmamem_alloc(sc->chain_frame_tag, (void **)&sc->chain_frame_mem,
1712 	    BUS_DMA_NOWAIT, &sc->chain_frame_dmamap)) {
1713 		device_printf(sc->mrsas_dev, "Cannot alloc chain frame memory\n");
1714 		return (ENOMEM);
1715 	}
1716 	bzero(sc->chain_frame_mem, chain_frame_size);
1717 	if (bus_dmamap_load(sc->chain_frame_tag, sc->chain_frame_dmamap,
1718 	    sc->chain_frame_mem, chain_frame_size, mrsas_addr_cb,
1719 	    &sc->chain_frame_phys_addr, BUS_DMA_NOWAIT)) {
1720 		device_printf(sc->mrsas_dev, "Cannot load chain frame memory\n");
1721 		return (ENOMEM);
1722 	}
1723 	count = sc->msix_vectors > 0 ? sc->msix_vectors : 1;
1724 	/*
1725 	 * Allocate Reply Descriptor Array
1726 	 */
1727 	reply_desc_size = sc->reply_alloc_sz * count;
1728 	if (bus_dma_tag_create(sc->mrsas_parent_tag,
1729 	    16, 0,
1730 	    BUS_SPACE_MAXADDR_32BIT,
1731 	    BUS_SPACE_MAXADDR,
1732 	    NULL, NULL,
1733 	    reply_desc_size,
1734 	    1,
1735 	    reply_desc_size,
1736 	    BUS_DMA_ALLOCNOW,
1737 	    NULL, NULL,
1738 	    &sc->reply_desc_tag)) {
1739 		device_printf(sc->mrsas_dev, "Cannot create reply descriptor tag\n");
1740 		return (ENOMEM);
1741 	}
1742 	if (bus_dmamem_alloc(sc->reply_desc_tag, (void **)&sc->reply_desc_mem,
1743 	    BUS_DMA_NOWAIT, &sc->reply_desc_dmamap)) {
1744 		device_printf(sc->mrsas_dev, "Cannot alloc reply descriptor memory\n");
1745 		return (ENOMEM);
1746 	}
1747 	if (bus_dmamap_load(sc->reply_desc_tag, sc->reply_desc_dmamap,
1748 	    sc->reply_desc_mem, reply_desc_size, mrsas_addr_cb,
1749 	    &sc->reply_desc_phys_addr, BUS_DMA_NOWAIT)) {
1750 		device_printf(sc->mrsas_dev, "Cannot load reply descriptor memory\n");
1751 		return (ENOMEM);
1752 	}
1753 	/*
1754 	 * Allocate Sense Buffer Array.  Keep in lower 4GB
1755 	 */
1756 	sense_size = sc->max_fw_cmds * MRSAS_SENSE_LEN;
1757 	if (bus_dma_tag_create(sc->mrsas_parent_tag,
1758 	    64, 0,
1759 	    BUS_SPACE_MAXADDR_32BIT,
1760 	    BUS_SPACE_MAXADDR,
1761 	    NULL, NULL,
1762 	    sense_size,
1763 	    1,
1764 	    sense_size,
1765 	    BUS_DMA_ALLOCNOW,
1766 	    NULL, NULL,
1767 	    &sc->sense_tag)) {
1768 		device_printf(sc->mrsas_dev, "Cannot allocate sense buf tag\n");
1769 		return (ENOMEM);
1770 	}
1771 	if (bus_dmamem_alloc(sc->sense_tag, (void **)&sc->sense_mem,
1772 	    BUS_DMA_NOWAIT, &sc->sense_dmamap)) {
1773 		device_printf(sc->mrsas_dev, "Cannot allocate sense buf memory\n");
1774 		return (ENOMEM);
1775 	}
1776 	if (bus_dmamap_load(sc->sense_tag, sc->sense_dmamap,
1777 	    sc->sense_mem, sense_size, mrsas_addr_cb, &sc->sense_phys_addr,
1778 	    BUS_DMA_NOWAIT)) {
1779 		device_printf(sc->mrsas_dev, "Cannot load sense buf memory\n");
1780 		return (ENOMEM);
1781 	}
1782 	/*
1783 	 * Allocate for Event detail structure
1784 	 */
1785 	evt_detail_size = sizeof(struct mrsas_evt_detail);
1786 	if (bus_dma_tag_create(sc->mrsas_parent_tag,
1787 	    1, 0,
1788 	    BUS_SPACE_MAXADDR_32BIT,
1789 	    BUS_SPACE_MAXADDR,
1790 	    NULL, NULL,
1791 	    evt_detail_size,
1792 	    1,
1793 	    evt_detail_size,
1794 	    BUS_DMA_ALLOCNOW,
1795 	    NULL, NULL,
1796 	    &sc->evt_detail_tag)) {
1797 		device_printf(sc->mrsas_dev, "Cannot create Event detail tag\n");
1798 		return (ENOMEM);
1799 	}
1800 	if (bus_dmamem_alloc(sc->evt_detail_tag, (void **)&sc->evt_detail_mem,
1801 	    BUS_DMA_NOWAIT, &sc->evt_detail_dmamap)) {
1802 		device_printf(sc->mrsas_dev, "Cannot alloc Event detail buffer memory\n");
1803 		return (ENOMEM);
1804 	}
1805 	bzero(sc->evt_detail_mem, evt_detail_size);
1806 	if (bus_dmamap_load(sc->evt_detail_tag, sc->evt_detail_dmamap,
1807 	    sc->evt_detail_mem, evt_detail_size, mrsas_addr_cb,
1808 	    &sc->evt_detail_phys_addr, BUS_DMA_NOWAIT)) {
1809 		device_printf(sc->mrsas_dev, "Cannot load Event detail buffer memory\n");
1810 		return (ENOMEM);
1811 	}
1812 	/*
1813 	 * Create a dma tag for data buffers; size will be the maximum
1814 	 * possible I/O size (280kB).
1815 	 */
1816 	if (bus_dma_tag_create(sc->mrsas_parent_tag,
1817 	    1,
1818 	    0,
1819 	    BUS_SPACE_MAXADDR,
1820 	    BUS_SPACE_MAXADDR,
1821 	    NULL, NULL,
1822 	    MRSAS_MAX_IO_SIZE,
1823 	    MRSAS_MAX_SGL,
1824 	    MRSAS_MAX_IO_SIZE,
1825 	    BUS_DMA_ALLOCNOW,
1826 	    busdma_lock_mutex,
1827 	    &sc->io_lock,
1828 	    &sc->data_tag)) {
1829 		device_printf(sc->mrsas_dev, "Cannot create data dma tag\n");
1830 		return (ENOMEM);
1831 	}
1832 	return (0);
1833 }
1834 
1835 /*
1836  * mrsas_addr_cb:	Callback function of bus_dmamap_load()
1837  * input:			callback argument, machine dependent type
1838  * 					that describes DMA segments, number of segments, error code
1839  *
1840  * This function is for the driver to receive mapping information resultant of
1841  * the bus_dmamap_load(). The information is actually not being used, but the
1842  * address is saved anyway.
1843  */
1844 void
1845 mrsas_addr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1846 {
1847 	bus_addr_t *addr;
1848 
1849 	addr = arg;
1850 	*addr = segs[0].ds_addr;
1851 }
1852 
1853 /*
1854  * mrsas_setup_raidmap:	Set up RAID map.
1855  * input:				Adapter instance soft state
1856  *
1857  * Allocate DMA memory for the RAID maps and perform setup.
1858  */
1859 static int
1860 mrsas_setup_raidmap(struct mrsas_softc *sc)
1861 {
1862 	int i;
1863 
1864 	sc->drv_supported_vd_count =
1865 	    MRSAS_MAX_LD_CHANNELS * MRSAS_MAX_DEV_PER_CHANNEL;
1866 	sc->drv_supported_pd_count =
1867 	    MRSAS_MAX_PD_CHANNELS * MRSAS_MAX_DEV_PER_CHANNEL;
1868 
1869 	if (sc->max256vdSupport) {
1870 		sc->fw_supported_vd_count = MAX_LOGICAL_DRIVES_EXT;
1871 		sc->fw_supported_pd_count = MAX_PHYSICAL_DEVICES;
1872 	} else {
1873 		sc->fw_supported_vd_count = MAX_LOGICAL_DRIVES;
1874 		sc->fw_supported_pd_count = MAX_PHYSICAL_DEVICES;
1875 	}
1876 
1877 #if VD_EXT_DEBUG
1878 	device_printf(sc->mrsas_dev, "FW supports: max256vdSupport = %s\n",
1879 	    sc->max256vdSupport ? "YES" : "NO");
1880 	device_printf(sc->mrsas_dev, "FW supports %dVDs %dPDs\n"
1881 	    "DRIVER supports %dVDs  %dPDs \n",
1882 	    sc->fw_supported_vd_count, sc->fw_supported_pd_count,
1883 	    sc->drv_supported_vd_count, sc->drv_supported_pd_count);
1884 #endif
1885 
1886 	sc->old_map_sz = sizeof(MR_FW_RAID_MAP) +
1887 	    (sizeof(MR_LD_SPAN_MAP) * (sc->fw_supported_vd_count - 1));
1888 	sc->new_map_sz = sizeof(MR_FW_RAID_MAP_EXT);
1889 	sc->drv_map_sz = sizeof(MR_DRV_RAID_MAP) +
1890 	    (sizeof(MR_LD_SPAN_MAP) * (sc->drv_supported_vd_count - 1));
1891 
1892 	for (i = 0; i < 2; i++) {
1893 		sc->ld_drv_map[i] =
1894 		    (void *)malloc(sc->drv_map_sz, M_MRSAS, M_NOWAIT);
1895 		/* Do Error handling */
1896 		if (!sc->ld_drv_map[i]) {
1897 			device_printf(sc->mrsas_dev, "Could not allocate memory for local map");
1898 
1899 			if (i == 1)
1900 				free(sc->ld_drv_map[0], M_MRSAS);
1901 			/* ABORT driver initialization */
1902 			goto ABORT;
1903 		}
1904 	}
1905 
1906 	sc->max_map_sz = max(sc->old_map_sz, sc->new_map_sz);
1907 
1908 	if (sc->max256vdSupport)
1909 		sc->current_map_sz = sc->new_map_sz;
1910 	else
1911 		sc->current_map_sz = sc->old_map_sz;
1912 
1913 
1914 	for (int i = 0; i < 2; i++) {
1915 		if (bus_dma_tag_create(sc->mrsas_parent_tag,
1916 		    4, 0,
1917 		    BUS_SPACE_MAXADDR_32BIT,
1918 		    BUS_SPACE_MAXADDR,
1919 		    NULL, NULL,
1920 		    sc->max_map_sz,
1921 		    1,
1922 		    sc->max_map_sz,
1923 		    BUS_DMA_ALLOCNOW,
1924 		    NULL, NULL,
1925 		    &sc->raidmap_tag[i])) {
1926 			device_printf(sc->mrsas_dev,
1927 			    "Cannot allocate raid map tag.\n");
1928 			return (ENOMEM);
1929 		}
1930 		if (bus_dmamem_alloc(sc->raidmap_tag[i],
1931 		    (void **)&sc->raidmap_mem[i],
1932 		    BUS_DMA_NOWAIT, &sc->raidmap_dmamap[i])) {
1933 			device_printf(sc->mrsas_dev,
1934 			    "Cannot allocate raidmap memory.\n");
1935 			return (ENOMEM);
1936 		}
1937 		bzero(sc->raidmap_mem[i], sc->max_map_sz);
1938 
1939 		if (bus_dmamap_load(sc->raidmap_tag[i], sc->raidmap_dmamap[i],
1940 		    sc->raidmap_mem[i], sc->max_map_sz,
1941 		    mrsas_addr_cb, &sc->raidmap_phys_addr[i],
1942 		    BUS_DMA_NOWAIT)) {
1943 			device_printf(sc->mrsas_dev, "Cannot load raidmap memory.\n");
1944 			return (ENOMEM);
1945 		}
1946 		if (!sc->raidmap_mem[i]) {
1947 			device_printf(sc->mrsas_dev,
1948 			    "Cannot allocate memory for raid map.\n");
1949 			return (ENOMEM);
1950 		}
1951 	}
1952 
1953 	if (!mrsas_get_map_info(sc))
1954 		mrsas_sync_map_info(sc);
1955 
1956 	return (0);
1957 
1958 ABORT:
1959 	return (1);
1960 }
1961 
1962 /*
1963  * mrsas_init_fw:	Initialize Firmware
1964  * input:			Adapter soft state
1965  *
1966  * Calls transition_to_ready() to make sure Firmware is in operational state and
1967  * calls mrsas_init_adapter() to send IOC_INIT command to Firmware.  It
1968  * issues internal commands to get the controller info after the IOC_INIT
1969  * command response is received by Firmware.  Note:  code relating to
1970  * get_pdlist, get_ld_list and max_sectors are currently not being used, it
1971  * is left here as placeholder.
1972  */
1973 static int
1974 mrsas_init_fw(struct mrsas_softc *sc)
1975 {
1976 
1977 	int ret, loop, ocr = 0;
1978 	u_int32_t max_sectors_1;
1979 	u_int32_t max_sectors_2;
1980 	u_int32_t tmp_sectors;
1981 	struct mrsas_ctrl_info *ctrl_info;
1982 	u_int32_t scratch_pad_2;
1983 	int msix_enable = 0;
1984 	int fw_msix_count = 0;
1985 
1986 	/* Make sure Firmware is ready */
1987 	ret = mrsas_transition_to_ready(sc, ocr);
1988 	if (ret != SUCCESS) {
1989 		return (ret);
1990 	}
1991 	/* MSI-x index 0- reply post host index register */
1992 	sc->msix_reg_offset[0] = MPI2_REPLY_POST_HOST_INDEX_OFFSET;
1993 	/* Check if MSI-X is supported while in ready state */
1994 	msix_enable = (mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_scratch_pad)) & 0x4000000) >> 0x1a;
1995 
1996 	if (msix_enable) {
1997 		scratch_pad_2 = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
1998 		    outbound_scratch_pad_2));
1999 
2000 		/* Check max MSI-X vectors */
2001 		if (sc->device_id == MRSAS_TBOLT) {
2002 			sc->msix_vectors = (scratch_pad_2
2003 			    & MR_MAX_REPLY_QUEUES_OFFSET) + 1;
2004 			fw_msix_count = sc->msix_vectors;
2005 		} else {
2006 			/* Invader/Fury supports 96 MSI-X vectors */
2007 			sc->msix_vectors = ((scratch_pad_2
2008 			    & MR_MAX_REPLY_QUEUES_EXT_OFFSET)
2009 			    >> MR_MAX_REPLY_QUEUES_EXT_OFFSET_SHIFT) + 1;
2010 			fw_msix_count = sc->msix_vectors;
2011 
2012 			for (loop = 1; loop < MR_MAX_MSIX_REG_ARRAY;
2013 			    loop++) {
2014 				sc->msix_reg_offset[loop] =
2015 				    MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2016 				    (loop * 0x10);
2017 			}
2018 		}
2019 
2020 		/* Don't bother allocating more MSI-X vectors than cpus */
2021 		sc->msix_vectors = min(sc->msix_vectors,
2022 		    mp_ncpus);
2023 
2024 		/* Allocate MSI-x vectors */
2025 		if (mrsas_allocate_msix(sc) == SUCCESS)
2026 			sc->msix_enable = 1;
2027 		else
2028 			sc->msix_enable = 0;
2029 
2030 		device_printf(sc->mrsas_dev, "FW supports <%d> MSIX vector,"
2031 		    "Online CPU %d Current MSIX <%d>\n",
2032 		    fw_msix_count, mp_ncpus, sc->msix_vectors);
2033 	}
2034 	if (mrsas_init_adapter(sc) != SUCCESS) {
2035 		device_printf(sc->mrsas_dev, "Adapter initialize Fail.\n");
2036 		return (1);
2037 	}
2038 	/* Allocate internal commands for pass-thru */
2039 	if (mrsas_alloc_mfi_cmds(sc) != SUCCESS) {
2040 		device_printf(sc->mrsas_dev, "Allocate MFI cmd failed.\n");
2041 		return (1);
2042 	}
2043 	/*
2044 	 * Get the controller info from FW, so that the MAX VD support
2045 	 * availability can be decided.
2046 	 */
2047 	ctrl_info = malloc(sizeof(struct mrsas_ctrl_info), M_MRSAS, M_NOWAIT);
2048 	if (!ctrl_info)
2049 		device_printf(sc->mrsas_dev, "Malloc for ctrl_info failed.\n");
2050 
2051 	if (mrsas_get_ctrl_info(sc, ctrl_info)) {
2052 		device_printf(sc->mrsas_dev, "Unable to get FW ctrl_info.\n");
2053 	}
2054 	sc->max256vdSupport =
2055 	    (u_int8_t)ctrl_info->adapterOperations3.supportMaxExtLDs;
2056 
2057 	if (ctrl_info->max_lds > 64) {
2058 		sc->max256vdSupport = 1;
2059 	}
2060 	if (mrsas_setup_raidmap(sc) != SUCCESS) {
2061 		device_printf(sc->mrsas_dev, "Set up RAID map failed.\n");
2062 		return (1);
2063 	}
2064 	/* For pass-thru, get PD/LD list and controller info */
2065 	memset(sc->pd_list, 0,
2066 	    MRSAS_MAX_PD * sizeof(struct mrsas_pd_list));
2067 	mrsas_get_pd_list(sc);
2068 
2069 	memset(sc->ld_ids, 0xff, MRSAS_MAX_LD_IDS);
2070 	mrsas_get_ld_list(sc);
2071 
2072 	/*
2073 	 * Compute the max allowed sectors per IO: The controller info has
2074 	 * two limits on max sectors. Driver should use the minimum of these
2075 	 * two.
2076 	 *
2077 	 * 1 << stripe_sz_ops.min = max sectors per strip
2078 	 *
2079 	 * Note that older firmwares ( < FW ver 30) didn't report information to
2080 	 * calculate max_sectors_1. So the number ended up as zero always.
2081 	 */
2082 	tmp_sectors = 0;
2083 	max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
2084 	    ctrl_info->max_strips_per_io;
2085 	max_sectors_2 = ctrl_info->max_request_size;
2086 	tmp_sectors = min(max_sectors_1, max_sectors_2);
2087 	sc->max_sectors_per_req = sc->max_num_sge * MRSAS_PAGE_SIZE / 512;
2088 
2089 	if (tmp_sectors && (sc->max_sectors_per_req > tmp_sectors))
2090 		sc->max_sectors_per_req = tmp_sectors;
2091 
2092 	sc->disableOnlineCtrlReset =
2093 	    ctrl_info->properties.OnOffProperties.disableOnlineCtrlReset;
2094 	sc->UnevenSpanSupport =
2095 	    ctrl_info->adapterOperations2.supportUnevenSpans;
2096 	if (sc->UnevenSpanSupport) {
2097 		device_printf(sc->mrsas_dev, "FW supports: UnevenSpanSupport=%x\n\n",
2098 		    sc->UnevenSpanSupport);
2099 
2100 		if (MR_ValidateMapInfo(sc))
2101 			sc->fast_path_io = 1;
2102 		else
2103 			sc->fast_path_io = 0;
2104 	}
2105 	if (ctrl_info)
2106 		free(ctrl_info, M_MRSAS);
2107 
2108 	return (0);
2109 }
2110 
2111 /*
2112  * mrsas_init_adapter:	Initializes the adapter/controller
2113  * input:				Adapter soft state
2114  *
2115  * Prepares for the issuing of the IOC Init cmd to FW for initializing the
2116  * ROC/controller.  The FW register is read to determined the number of
2117  * commands that is supported.  All memory allocations for IO is based on
2118  * max_cmd.  Appropriate calculations are performed in this function.
2119  */
2120 int
2121 mrsas_init_adapter(struct mrsas_softc *sc)
2122 {
2123 	uint32_t status;
2124 	u_int32_t max_cmd;
2125 	int ret;
2126 	int i = 0;
2127 
2128 	/* Read FW status register */
2129 	status = mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_scratch_pad));
2130 
2131 	/* Get operational params from status register */
2132 	sc->max_fw_cmds = status & MRSAS_FWSTATE_MAXCMD_MASK;
2133 
2134 	/* Decrement the max supported by 1, to correlate with FW */
2135 	sc->max_fw_cmds = sc->max_fw_cmds - 1;
2136 	max_cmd = sc->max_fw_cmds;
2137 
2138 	/* Determine allocation size of command frames */
2139 	sc->reply_q_depth = ((max_cmd + 1 + 15) / 16 * 16);
2140 	sc->request_alloc_sz = sizeof(MRSAS_REQUEST_DESCRIPTOR_UNION) * max_cmd;
2141 	sc->reply_alloc_sz = sizeof(MPI2_REPLY_DESCRIPTORS_UNION) * (sc->reply_q_depth);
2142 	sc->io_frames_alloc_sz = MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE + (MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE * (max_cmd + 1));
2143 	sc->chain_frames_alloc_sz = 1024 * max_cmd;
2144 	sc->max_sge_in_main_msg = (MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE -
2145 	    offsetof(MRSAS_RAID_SCSI_IO_REQUEST, SGL)) / 16;
2146 
2147 	sc->max_sge_in_chain = MRSAS_MAX_SZ_CHAIN_FRAME / sizeof(MPI2_SGE_IO_UNION);
2148 	sc->max_num_sge = sc->max_sge_in_main_msg + sc->max_sge_in_chain - 2;
2149 
2150 	/* Used for pass thru MFI frame (DCMD) */
2151 	sc->chain_offset_mfi_pthru = offsetof(MRSAS_RAID_SCSI_IO_REQUEST, SGL) / 16;
2152 
2153 	sc->chain_offset_io_request = (MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE -
2154 	    sizeof(MPI2_SGE_IO_UNION)) / 16;
2155 
2156 	int count = sc->msix_vectors > 0 ? sc->msix_vectors : 1;
2157 
2158 	for (i = 0; i < count; i++)
2159 		sc->last_reply_idx[i] = 0;
2160 
2161 	ret = mrsas_alloc_mem(sc);
2162 	if (ret != SUCCESS)
2163 		return (ret);
2164 
2165 	ret = mrsas_alloc_mpt_cmds(sc);
2166 	if (ret != SUCCESS)
2167 		return (ret);
2168 
2169 	ret = mrsas_ioc_init(sc);
2170 	if (ret != SUCCESS)
2171 		return (ret);
2172 
2173 	return (0);
2174 }
2175 
2176 /*
2177  * mrsas_alloc_ioc_cmd:	Allocates memory for IOC Init command
2178  * input:				Adapter soft state
2179  *
2180  * Allocates for the IOC Init cmd to FW to initialize the ROC/controller.
2181  */
2182 int
2183 mrsas_alloc_ioc_cmd(struct mrsas_softc *sc)
2184 {
2185 	int ioc_init_size;
2186 
2187 	/* Allocate IOC INIT command */
2188 	ioc_init_size = 1024 + sizeof(MPI2_IOC_INIT_REQUEST);
2189 	if (bus_dma_tag_create(sc->mrsas_parent_tag,
2190 	    1, 0,
2191 	    BUS_SPACE_MAXADDR_32BIT,
2192 	    BUS_SPACE_MAXADDR,
2193 	    NULL, NULL,
2194 	    ioc_init_size,
2195 	    1,
2196 	    ioc_init_size,
2197 	    BUS_DMA_ALLOCNOW,
2198 	    NULL, NULL,
2199 	    &sc->ioc_init_tag)) {
2200 		device_printf(sc->mrsas_dev, "Cannot allocate ioc init tag\n");
2201 		return (ENOMEM);
2202 	}
2203 	if (bus_dmamem_alloc(sc->ioc_init_tag, (void **)&sc->ioc_init_mem,
2204 	    BUS_DMA_NOWAIT, &sc->ioc_init_dmamap)) {
2205 		device_printf(sc->mrsas_dev, "Cannot allocate ioc init cmd mem\n");
2206 		return (ENOMEM);
2207 	}
2208 	bzero(sc->ioc_init_mem, ioc_init_size);
2209 	if (bus_dmamap_load(sc->ioc_init_tag, sc->ioc_init_dmamap,
2210 	    sc->ioc_init_mem, ioc_init_size, mrsas_addr_cb,
2211 	    &sc->ioc_init_phys_mem, BUS_DMA_NOWAIT)) {
2212 		device_printf(sc->mrsas_dev, "Cannot load ioc init cmd mem\n");
2213 		return (ENOMEM);
2214 	}
2215 	return (0);
2216 }
2217 
2218 /*
2219  * mrsas_free_ioc_cmd:	Allocates memory for IOC Init command
2220  * input:				Adapter soft state
2221  *
2222  * Deallocates memory of the IOC Init cmd.
2223  */
2224 void
2225 mrsas_free_ioc_cmd(struct mrsas_softc *sc)
2226 {
2227 	if (sc->ioc_init_phys_mem)
2228 		bus_dmamap_unload(sc->ioc_init_tag, sc->ioc_init_dmamap);
2229 	if (sc->ioc_init_mem != NULL)
2230 		bus_dmamem_free(sc->ioc_init_tag, sc->ioc_init_mem, sc->ioc_init_dmamap);
2231 	if (sc->ioc_init_tag != NULL)
2232 		bus_dma_tag_destroy(sc->ioc_init_tag);
2233 }
2234 
2235 /*
2236  * mrsas_ioc_init:	Sends IOC Init command to FW
2237  * input:			Adapter soft state
2238  *
2239  * Issues the IOC Init cmd to FW to initialize the ROC/controller.
2240  */
2241 int
2242 mrsas_ioc_init(struct mrsas_softc *sc)
2243 {
2244 	struct mrsas_init_frame *init_frame;
2245 	pMpi2IOCInitRequest_t IOCInitMsg;
2246 	MRSAS_REQUEST_DESCRIPTOR_UNION req_desc;
2247 	u_int8_t max_wait = MRSAS_IOC_INIT_WAIT_TIME;
2248 	bus_addr_t phys_addr;
2249 	int i, retcode = 0;
2250 
2251 	/* Allocate memory for the IOC INIT command */
2252 	if (mrsas_alloc_ioc_cmd(sc)) {
2253 		device_printf(sc->mrsas_dev, "Cannot allocate IOC command.\n");
2254 		return (1);
2255 	}
2256 	IOCInitMsg = (pMpi2IOCInitRequest_t)(((char *)sc->ioc_init_mem) + 1024);
2257 	IOCInitMsg->Function = MPI2_FUNCTION_IOC_INIT;
2258 	IOCInitMsg->WhoInit = MPI2_WHOINIT_HOST_DRIVER;
2259 	IOCInitMsg->MsgVersion = MPI2_VERSION;
2260 	IOCInitMsg->HeaderVersion = MPI2_HEADER_VERSION;
2261 	IOCInitMsg->SystemRequestFrameSize = MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE / 4;
2262 	IOCInitMsg->ReplyDescriptorPostQueueDepth = sc->reply_q_depth;
2263 	IOCInitMsg->ReplyDescriptorPostQueueAddress = sc->reply_desc_phys_addr;
2264 	IOCInitMsg->SystemRequestFrameBaseAddress = sc->io_request_phys_addr;
2265 	IOCInitMsg->HostMSIxVectors = (sc->msix_vectors > 0 ? sc->msix_vectors : 0);
2266 
2267 	init_frame = (struct mrsas_init_frame *)sc->ioc_init_mem;
2268 	init_frame->cmd = MFI_CMD_INIT;
2269 	init_frame->cmd_status = 0xFF;
2270 	init_frame->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
2271 
2272 	/* driver support Extended MSIX */
2273 	if ((sc->device_id == MRSAS_INVADER) ||
2274 	    (sc->device_id == MRSAS_FURY)) {
2275 		init_frame->driver_operations.
2276 		    mfi_capabilities.support_additional_msix = 1;
2277 	}
2278 	if (sc->verbuf_mem) {
2279 		snprintf((char *)sc->verbuf_mem, strlen(MRSAS_VERSION) + 2, "%s\n",
2280 		    MRSAS_VERSION);
2281 		init_frame->driver_ver_lo = (bus_addr_t)sc->verbuf_phys_addr;
2282 		init_frame->driver_ver_hi = 0;
2283 	}
2284 	init_frame->driver_operations.mfi_capabilities.support_max_255lds = 1;
2285 	phys_addr = (bus_addr_t)sc->ioc_init_phys_mem + 1024;
2286 	init_frame->queue_info_new_phys_addr_lo = phys_addr;
2287 	init_frame->data_xfer_len = sizeof(Mpi2IOCInitRequest_t);
2288 
2289 	req_desc.addr.Words = (bus_addr_t)sc->ioc_init_phys_mem;
2290 	req_desc.MFAIo.RequestFlags =
2291 	    (MRSAS_REQ_DESCRIPT_FLAGS_MFA << MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
2292 
2293 	mrsas_disable_intr(sc);
2294 	mrsas_dprint(sc, MRSAS_OCR, "Issuing IOC INIT command to FW.\n");
2295 	mrsas_fire_cmd(sc, req_desc.addr.u.low, req_desc.addr.u.high);
2296 
2297 	/*
2298 	 * Poll response timer to wait for Firmware response.  While this
2299 	 * timer with the DELAY call could block CPU, the time interval for
2300 	 * this is only 1 millisecond.
2301 	 */
2302 	if (init_frame->cmd_status == 0xFF) {
2303 		for (i = 0; i < (max_wait * 1000); i++) {
2304 			if (init_frame->cmd_status == 0xFF)
2305 				DELAY(1000);
2306 			else
2307 				break;
2308 		}
2309 	}
2310 	if (init_frame->cmd_status == 0)
2311 		mrsas_dprint(sc, MRSAS_OCR,
2312 		    "IOC INIT response received from FW.\n");
2313 	else {
2314 		if (init_frame->cmd_status == 0xFF)
2315 			device_printf(sc->mrsas_dev, "IOC Init timed out after %d seconds.\n", max_wait);
2316 		else
2317 			device_printf(sc->mrsas_dev, "IOC Init failed, status = 0x%x\n", init_frame->cmd_status);
2318 		retcode = 1;
2319 	}
2320 
2321 	mrsas_free_ioc_cmd(sc);
2322 	return (retcode);
2323 }
2324 
2325 /*
2326  * mrsas_alloc_mpt_cmds:	Allocates the command packets
2327  * input:					Adapter instance soft state
2328  *
2329  * This function allocates the internal commands for IOs. Each command that is
2330  * issued to FW is wrapped in a local data structure called mrsas_mpt_cmd. An
2331  * array is allocated with mrsas_mpt_cmd context.  The free commands are
2332  * maintained in a linked list (cmd pool). SMID value range is from 1 to
2333  * max_fw_cmds.
2334  */
2335 int
2336 mrsas_alloc_mpt_cmds(struct mrsas_softc *sc)
2337 {
2338 	int i, j;
2339 	u_int32_t max_cmd, count;
2340 	struct mrsas_mpt_cmd *cmd;
2341 	pMpi2ReplyDescriptorsUnion_t reply_desc;
2342 	u_int32_t offset, chain_offset, sense_offset;
2343 	bus_addr_t io_req_base_phys, chain_frame_base_phys, sense_base_phys;
2344 	u_int8_t *io_req_base, *chain_frame_base, *sense_base;
2345 
2346 	max_cmd = sc->max_fw_cmds;
2347 
2348 	sc->req_desc = malloc(sc->request_alloc_sz, M_MRSAS, M_NOWAIT);
2349 	if (!sc->req_desc) {
2350 		device_printf(sc->mrsas_dev, "Out of memory, cannot alloc req desc\n");
2351 		return (ENOMEM);
2352 	}
2353 	memset(sc->req_desc, 0, sc->request_alloc_sz);
2354 
2355 	/*
2356 	 * sc->mpt_cmd_list is an array of struct mrsas_mpt_cmd pointers.
2357 	 * Allocate the dynamic array first and then allocate individual
2358 	 * commands.
2359 	 */
2360 	sc->mpt_cmd_list = malloc(sizeof(struct mrsas_mpt_cmd *) * max_cmd, M_MRSAS, M_NOWAIT);
2361 	if (!sc->mpt_cmd_list) {
2362 		device_printf(sc->mrsas_dev, "Cannot alloc memory for mpt_cmd_list.\n");
2363 		return (ENOMEM);
2364 	}
2365 	memset(sc->mpt_cmd_list, 0, sizeof(struct mrsas_mpt_cmd *) * max_cmd);
2366 	for (i = 0; i < max_cmd; i++) {
2367 		sc->mpt_cmd_list[i] = malloc(sizeof(struct mrsas_mpt_cmd),
2368 		    M_MRSAS, M_NOWAIT);
2369 		if (!sc->mpt_cmd_list[i]) {
2370 			for (j = 0; j < i; j++)
2371 				free(sc->mpt_cmd_list[j], M_MRSAS);
2372 			free(sc->mpt_cmd_list, M_MRSAS);
2373 			sc->mpt_cmd_list = NULL;
2374 			return (ENOMEM);
2375 		}
2376 	}
2377 
2378 	io_req_base = (u_int8_t *)sc->io_request_mem + MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE;
2379 	io_req_base_phys = (bus_addr_t)sc->io_request_phys_addr + MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE;
2380 	chain_frame_base = (u_int8_t *)sc->chain_frame_mem;
2381 	chain_frame_base_phys = (bus_addr_t)sc->chain_frame_phys_addr;
2382 	sense_base = (u_int8_t *)sc->sense_mem;
2383 	sense_base_phys = (bus_addr_t)sc->sense_phys_addr;
2384 	for (i = 0; i < max_cmd; i++) {
2385 		cmd = sc->mpt_cmd_list[i];
2386 		offset = MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE * i;
2387 		chain_offset = 1024 * i;
2388 		sense_offset = MRSAS_SENSE_LEN * i;
2389 		memset(cmd, 0, sizeof(struct mrsas_mpt_cmd));
2390 		cmd->index = i + 1;
2391 		cmd->ccb_ptr = NULL;
2392 		callout_init(&cmd->cm_callout, 0);
2393 		cmd->sync_cmd_idx = (u_int32_t)MRSAS_ULONG_MAX;
2394 		cmd->sc = sc;
2395 		cmd->io_request = (MRSAS_RAID_SCSI_IO_REQUEST *) (io_req_base + offset);
2396 		memset(cmd->io_request, 0, sizeof(MRSAS_RAID_SCSI_IO_REQUEST));
2397 		cmd->io_request_phys_addr = io_req_base_phys + offset;
2398 		cmd->chain_frame = (MPI2_SGE_IO_UNION *) (chain_frame_base + chain_offset);
2399 		cmd->chain_frame_phys_addr = chain_frame_base_phys + chain_offset;
2400 		cmd->sense = sense_base + sense_offset;
2401 		cmd->sense_phys_addr = sense_base_phys + sense_offset;
2402 		if (bus_dmamap_create(sc->data_tag, 0, &cmd->data_dmamap)) {
2403 			return (FAIL);
2404 		}
2405 		TAILQ_INSERT_TAIL(&(sc->mrsas_mpt_cmd_list_head), cmd, next);
2406 	}
2407 
2408 	/* Initialize reply descriptor array to 0xFFFFFFFF */
2409 	reply_desc = sc->reply_desc_mem;
2410 	count = sc->msix_vectors > 0 ? sc->msix_vectors : 1;
2411 	for (i = 0; i < sc->reply_q_depth * count; i++, reply_desc++) {
2412 		reply_desc->Words = MRSAS_ULONG_MAX;
2413 	}
2414 	return (0);
2415 }
2416 
2417 /*
2418  * mrsas_fire_cmd:	Sends command to FW
2419  * input:			Adapter softstate
2420  * 					request descriptor address low
2421  * 					request descriptor address high
2422  *
2423  * This functions fires the command to Firmware by writing to the
2424  * inbound_low_queue_port and inbound_high_queue_port.
2425  */
2426 void
2427 mrsas_fire_cmd(struct mrsas_softc *sc, u_int32_t req_desc_lo,
2428     u_int32_t req_desc_hi)
2429 {
2430 	mtx_lock(&sc->pci_lock);
2431 	mrsas_write_reg(sc, offsetof(mrsas_reg_set, inbound_low_queue_port),
2432 	    req_desc_lo);
2433 	mrsas_write_reg(sc, offsetof(mrsas_reg_set, inbound_high_queue_port),
2434 	    req_desc_hi);
2435 	mtx_unlock(&sc->pci_lock);
2436 }
2437 
2438 /*
2439  * mrsas_transition_to_ready:  Move FW to Ready state input:
2440  * Adapter instance soft state
2441  *
2442  * During the initialization, FW passes can potentially be in any one of several
2443  * possible states. If the FW in operational, waiting-for-handshake states,
2444  * driver must take steps to bring it to ready state. Otherwise, it has to
2445  * wait for the ready state.
2446  */
2447 int
2448 mrsas_transition_to_ready(struct mrsas_softc *sc, int ocr)
2449 {
2450 	int i;
2451 	u_int8_t max_wait;
2452 	u_int32_t val, fw_state;
2453 	u_int32_t cur_state;
2454 	u_int32_t abs_state, curr_abs_state;
2455 
2456 	val = mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_scratch_pad));
2457 	fw_state = val & MFI_STATE_MASK;
2458 	max_wait = MRSAS_RESET_WAIT_TIME;
2459 
2460 	if (fw_state != MFI_STATE_READY)
2461 		device_printf(sc->mrsas_dev, "Waiting for FW to come to ready state\n");
2462 
2463 	while (fw_state != MFI_STATE_READY) {
2464 		abs_state = mrsas_read_reg(sc, offsetof(mrsas_reg_set, outbound_scratch_pad));
2465 		switch (fw_state) {
2466 		case MFI_STATE_FAULT:
2467 			device_printf(sc->mrsas_dev, "FW is in FAULT state!!\n");
2468 			if (ocr) {
2469 				cur_state = MFI_STATE_FAULT;
2470 				break;
2471 			} else
2472 				return -ENODEV;
2473 		case MFI_STATE_WAIT_HANDSHAKE:
2474 			/* Set the CLR bit in inbound doorbell */
2475 			mrsas_write_reg(sc, offsetof(mrsas_reg_set, doorbell),
2476 			    MFI_INIT_CLEAR_HANDSHAKE | MFI_INIT_HOTPLUG);
2477 			cur_state = MFI_STATE_WAIT_HANDSHAKE;
2478 			break;
2479 		case MFI_STATE_BOOT_MESSAGE_PENDING:
2480 			mrsas_write_reg(sc, offsetof(mrsas_reg_set, doorbell),
2481 			    MFI_INIT_HOTPLUG);
2482 			cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
2483 			break;
2484 		case MFI_STATE_OPERATIONAL:
2485 			/*
2486 			 * Bring it to READY state; assuming max wait 10
2487 			 * secs
2488 			 */
2489 			mrsas_disable_intr(sc);
2490 			mrsas_write_reg(sc, offsetof(mrsas_reg_set, doorbell), MFI_RESET_FLAGS);
2491 			for (i = 0; i < max_wait * 1000; i++) {
2492 				if (mrsas_read_reg(sc, offsetof(mrsas_reg_set, doorbell)) & 1)
2493 					DELAY(1000);
2494 				else
2495 					break;
2496 			}
2497 			cur_state = MFI_STATE_OPERATIONAL;
2498 			break;
2499 		case MFI_STATE_UNDEFINED:
2500 			/*
2501 			 * This state should not last for more than 2
2502 			 * seconds
2503 			 */
2504 			cur_state = MFI_STATE_UNDEFINED;
2505 			break;
2506 		case MFI_STATE_BB_INIT:
2507 			cur_state = MFI_STATE_BB_INIT;
2508 			break;
2509 		case MFI_STATE_FW_INIT:
2510 			cur_state = MFI_STATE_FW_INIT;
2511 			break;
2512 		case MFI_STATE_FW_INIT_2:
2513 			cur_state = MFI_STATE_FW_INIT_2;
2514 			break;
2515 		case MFI_STATE_DEVICE_SCAN:
2516 			cur_state = MFI_STATE_DEVICE_SCAN;
2517 			break;
2518 		case MFI_STATE_FLUSH_CACHE:
2519 			cur_state = MFI_STATE_FLUSH_CACHE;
2520 			break;
2521 		default:
2522 			device_printf(sc->mrsas_dev, "Unknown state 0x%x\n", fw_state);
2523 			return -ENODEV;
2524 		}
2525 
2526 		/*
2527 		 * The cur_state should not last for more than max_wait secs
2528 		 */
2529 		for (i = 0; i < (max_wait * 1000); i++) {
2530 			fw_state = (mrsas_read_reg(sc, offsetof(mrsas_reg_set,
2531 			    outbound_scratch_pad)) & MFI_STATE_MASK);
2532 			curr_abs_state = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
2533 			    outbound_scratch_pad));
2534 			if (abs_state == curr_abs_state)
2535 				DELAY(1000);
2536 			else
2537 				break;
2538 		}
2539 
2540 		/*
2541 		 * Return error if fw_state hasn't changed after max_wait
2542 		 */
2543 		if (curr_abs_state == abs_state) {
2544 			device_printf(sc->mrsas_dev, "FW state [%d] hasn't changed "
2545 			    "in %d secs\n", fw_state, max_wait);
2546 			return -ENODEV;
2547 		}
2548 	}
2549 	mrsas_dprint(sc, MRSAS_OCR, "FW now in Ready state\n");
2550 	return 0;
2551 }
2552 
2553 /*
2554  * mrsas_get_mfi_cmd:	Get a cmd from free command pool
2555  * input:				Adapter soft state
2556  *
2557  * This function removes an MFI command from the command list.
2558  */
2559 struct mrsas_mfi_cmd *
2560 mrsas_get_mfi_cmd(struct mrsas_softc *sc)
2561 {
2562 	struct mrsas_mfi_cmd *cmd = NULL;
2563 
2564 	mtx_lock(&sc->mfi_cmd_pool_lock);
2565 	if (!TAILQ_EMPTY(&sc->mrsas_mfi_cmd_list_head)) {
2566 		cmd = TAILQ_FIRST(&sc->mrsas_mfi_cmd_list_head);
2567 		TAILQ_REMOVE(&sc->mrsas_mfi_cmd_list_head, cmd, next);
2568 	}
2569 	mtx_unlock(&sc->mfi_cmd_pool_lock);
2570 
2571 	return cmd;
2572 }
2573 
2574 /*
2575  * mrsas_ocr_thread:	Thread to handle OCR/Kill Adapter.
2576  * input:				Adapter Context.
2577  *
2578  * This function will check FW status register and flag do_timeout_reset flag.
2579  * It will do OCR/Kill adapter if FW is in fault state or IO timed out has
2580  * trigger reset.
2581  */
2582 static void
2583 mrsas_ocr_thread(void *arg)
2584 {
2585 	struct mrsas_softc *sc;
2586 	u_int32_t fw_status, fw_state;
2587 
2588 	sc = (struct mrsas_softc *)arg;
2589 
2590 	mrsas_dprint(sc, MRSAS_TRACE, "%s\n", __func__);
2591 
2592 	sc->ocr_thread_active = 1;
2593 	mtx_lock(&sc->sim_lock);
2594 	for (;;) {
2595 		/* Sleep for 1 second and check the queue status */
2596 		msleep(&sc->ocr_chan, &sc->sim_lock, PRIBIO,
2597 		    "mrsas_ocr", sc->mrsas_fw_fault_check_delay * hz);
2598 		if (sc->remove_in_progress) {
2599 			mrsas_dprint(sc, MRSAS_OCR,
2600 			    "Exit due to shutdown from %s\n", __func__);
2601 			break;
2602 		}
2603 		fw_status = mrsas_read_reg(sc,
2604 		    offsetof(mrsas_reg_set, outbound_scratch_pad));
2605 		fw_state = fw_status & MFI_STATE_MASK;
2606 		if (fw_state == MFI_STATE_FAULT || sc->do_timedout_reset) {
2607 			device_printf(sc->mrsas_dev, "OCR started due to %s!\n",
2608 			    sc->do_timedout_reset ? "IO Timeout" :
2609 			    "FW fault detected");
2610 			mtx_lock_spin(&sc->ioctl_lock);
2611 			sc->reset_in_progress = 1;
2612 			sc->reset_count++;
2613 			mtx_unlock_spin(&sc->ioctl_lock);
2614 			mrsas_xpt_freeze(sc);
2615 			mrsas_reset_ctrl(sc);
2616 			mrsas_xpt_release(sc);
2617 			sc->reset_in_progress = 0;
2618 			sc->do_timedout_reset = 0;
2619 		}
2620 	}
2621 	mtx_unlock(&sc->sim_lock);
2622 	sc->ocr_thread_active = 0;
2623 	mrsas_kproc_exit(0);
2624 }
2625 
2626 /*
2627  * mrsas_reset_reply_desc:	Reset Reply descriptor as part of OCR.
2628  * input:					Adapter Context.
2629  *
2630  * This function will clear reply descriptor so that post OCR driver and FW will
2631  * lost old history.
2632  */
2633 void
2634 mrsas_reset_reply_desc(struct mrsas_softc *sc)
2635 {
2636 	int i, count;
2637 	pMpi2ReplyDescriptorsUnion_t reply_desc;
2638 
2639 	count = sc->msix_vectors > 0 ? sc->msix_vectors : 1;
2640 	for (i = 0; i < count; i++)
2641 		sc->last_reply_idx[i] = 0;
2642 
2643 	reply_desc = sc->reply_desc_mem;
2644 	for (i = 0; i < sc->reply_q_depth; i++, reply_desc++) {
2645 		reply_desc->Words = MRSAS_ULONG_MAX;
2646 	}
2647 }
2648 
2649 /*
2650  * mrsas_reset_ctrl:	Core function to OCR/Kill adapter.
2651  * input:				Adapter Context.
2652  *
2653  * This function will run from thread context so that it can sleep. 1. Do not
2654  * handle OCR if FW is in HW critical error. 2. Wait for outstanding command
2655  * to complete for 180 seconds. 3. If #2 does not find any outstanding
2656  * command Controller is in working state, so skip OCR. Otherwise, do
2657  * OCR/kill Adapter based on flag disableOnlineCtrlReset. 4. Start of the
2658  * OCR, return all SCSI command back to CAM layer which has ccb_ptr. 5. Post
2659  * OCR, Re-fire Managment command and move Controller to Operation state.
2660  */
2661 int
2662 mrsas_reset_ctrl(struct mrsas_softc *sc)
2663 {
2664 	int retval = SUCCESS, i, j, retry = 0;
2665 	u_int32_t host_diag, abs_state, status_reg, reset_adapter;
2666 	union ccb *ccb;
2667 	struct mrsas_mfi_cmd *mfi_cmd;
2668 	struct mrsas_mpt_cmd *mpt_cmd;
2669 	MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc;
2670 
2671 	if (sc->adprecovery == MRSAS_HW_CRITICAL_ERROR) {
2672 		device_printf(sc->mrsas_dev,
2673 		    "mrsas: Hardware critical error, returning FAIL.\n");
2674 		return FAIL;
2675 	}
2676 	mrsas_set_bit(MRSAS_FUSION_IN_RESET, &sc->reset_flags);
2677 	sc->adprecovery = MRSAS_ADPRESET_SM_INFAULT;
2678 	mrsas_disable_intr(sc);
2679 	DELAY(1000 * 1000);
2680 
2681 	/* First try waiting for commands to complete */
2682 	if (mrsas_wait_for_outstanding(sc)) {
2683 		mrsas_dprint(sc, MRSAS_OCR,
2684 		    "resetting adapter from %s.\n",
2685 		    __func__);
2686 		/* Now return commands back to the CAM layer */
2687 		for (i = 0; i < sc->max_fw_cmds; i++) {
2688 			mpt_cmd = sc->mpt_cmd_list[i];
2689 			if (mpt_cmd->ccb_ptr) {
2690 				ccb = (union ccb *)(mpt_cmd->ccb_ptr);
2691 				ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
2692 				mrsas_cmd_done(sc, mpt_cmd);
2693 				mrsas_atomic_dec(&sc->fw_outstanding);
2694 			}
2695 		}
2696 
2697 		status_reg = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
2698 		    outbound_scratch_pad));
2699 		abs_state = status_reg & MFI_STATE_MASK;
2700 		reset_adapter = status_reg & MFI_RESET_ADAPTER;
2701 		if (sc->disableOnlineCtrlReset ||
2702 		    (abs_state == MFI_STATE_FAULT && !reset_adapter)) {
2703 			/* Reset not supported, kill adapter */
2704 			mrsas_dprint(sc, MRSAS_OCR, "Reset not supported, killing adapter.\n");
2705 			mrsas_kill_hba(sc);
2706 			sc->adprecovery = MRSAS_HW_CRITICAL_ERROR;
2707 			retval = FAIL;
2708 			goto out;
2709 		}
2710 		/* Now try to reset the chip */
2711 		for (i = 0; i < MRSAS_FUSION_MAX_RESET_TRIES; i++) {
2712 			mrsas_write_reg(sc, offsetof(mrsas_reg_set, fusion_seq_offset),
2713 			    MPI2_WRSEQ_FLUSH_KEY_VALUE);
2714 			mrsas_write_reg(sc, offsetof(mrsas_reg_set, fusion_seq_offset),
2715 			    MPI2_WRSEQ_1ST_KEY_VALUE);
2716 			mrsas_write_reg(sc, offsetof(mrsas_reg_set, fusion_seq_offset),
2717 			    MPI2_WRSEQ_2ND_KEY_VALUE);
2718 			mrsas_write_reg(sc, offsetof(mrsas_reg_set, fusion_seq_offset),
2719 			    MPI2_WRSEQ_3RD_KEY_VALUE);
2720 			mrsas_write_reg(sc, offsetof(mrsas_reg_set, fusion_seq_offset),
2721 			    MPI2_WRSEQ_4TH_KEY_VALUE);
2722 			mrsas_write_reg(sc, offsetof(mrsas_reg_set, fusion_seq_offset),
2723 			    MPI2_WRSEQ_5TH_KEY_VALUE);
2724 			mrsas_write_reg(sc, offsetof(mrsas_reg_set, fusion_seq_offset),
2725 			    MPI2_WRSEQ_6TH_KEY_VALUE);
2726 
2727 			/* Check that the diag write enable (DRWE) bit is on */
2728 			host_diag = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
2729 			    fusion_host_diag));
2730 			retry = 0;
2731 			while (!(host_diag & HOST_DIAG_WRITE_ENABLE)) {
2732 				DELAY(100 * 1000);
2733 				host_diag = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
2734 				    fusion_host_diag));
2735 				if (retry++ == 100) {
2736 					mrsas_dprint(sc, MRSAS_OCR,
2737 					    "Host diag unlock failed!\n");
2738 					break;
2739 				}
2740 			}
2741 			if (!(host_diag & HOST_DIAG_WRITE_ENABLE))
2742 				continue;
2743 
2744 			/* Send chip reset command */
2745 			mrsas_write_reg(sc, offsetof(mrsas_reg_set, fusion_host_diag),
2746 			    host_diag | HOST_DIAG_RESET_ADAPTER);
2747 			DELAY(3000 * 1000);
2748 
2749 			/* Make sure reset adapter bit is cleared */
2750 			host_diag = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
2751 			    fusion_host_diag));
2752 			retry = 0;
2753 			while (host_diag & HOST_DIAG_RESET_ADAPTER) {
2754 				DELAY(100 * 1000);
2755 				host_diag = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
2756 				    fusion_host_diag));
2757 				if (retry++ == 1000) {
2758 					mrsas_dprint(sc, MRSAS_OCR,
2759 					    "Diag reset adapter never cleared!\n");
2760 					break;
2761 				}
2762 			}
2763 			if (host_diag & HOST_DIAG_RESET_ADAPTER)
2764 				continue;
2765 
2766 			abs_state = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
2767 			    outbound_scratch_pad)) & MFI_STATE_MASK;
2768 			retry = 0;
2769 
2770 			while ((abs_state <= MFI_STATE_FW_INIT) && (retry++ < 1000)) {
2771 				DELAY(100 * 1000);
2772 				abs_state = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
2773 				    outbound_scratch_pad)) & MFI_STATE_MASK;
2774 			}
2775 			if (abs_state <= MFI_STATE_FW_INIT) {
2776 				mrsas_dprint(sc, MRSAS_OCR, "firmware state < MFI_STATE_FW_INIT,"
2777 				    " state = 0x%x\n", abs_state);
2778 				continue;
2779 			}
2780 			/* Wait for FW to become ready */
2781 			if (mrsas_transition_to_ready(sc, 1)) {
2782 				mrsas_dprint(sc, MRSAS_OCR,
2783 				    "mrsas: Failed to transition controller to ready.\n");
2784 				continue;
2785 			}
2786 			mrsas_reset_reply_desc(sc);
2787 			if (mrsas_ioc_init(sc)) {
2788 				mrsas_dprint(sc, MRSAS_OCR, "mrsas_ioc_init() failed!\n");
2789 				continue;
2790 			}
2791 			mrsas_clear_bit(MRSAS_FUSION_IN_RESET, &sc->reset_flags);
2792 			mrsas_enable_intr(sc);
2793 			sc->adprecovery = MRSAS_HBA_OPERATIONAL;
2794 
2795 			/* Re-fire management commands */
2796 			for (j = 0; j < sc->max_fw_cmds; j++) {
2797 				mpt_cmd = sc->mpt_cmd_list[j];
2798 				if (mpt_cmd->sync_cmd_idx != (u_int32_t)MRSAS_ULONG_MAX) {
2799 					mfi_cmd = sc->mfi_cmd_list[mpt_cmd->sync_cmd_idx];
2800 					if (mfi_cmd->frame->dcmd.opcode ==
2801 					    MR_DCMD_LD_MAP_GET_INFO) {
2802 						mrsas_release_mfi_cmd(mfi_cmd);
2803 						mrsas_release_mpt_cmd(mpt_cmd);
2804 					} else {
2805 						req_desc = mrsas_get_request_desc(sc,
2806 						    mfi_cmd->cmd_id.context.smid - 1);
2807 						mrsas_dprint(sc, MRSAS_OCR,
2808 						    "Re-fire command DCMD opcode 0x%x index %d\n ",
2809 						    mfi_cmd->frame->dcmd.opcode, j);
2810 						if (!req_desc)
2811 							device_printf(sc->mrsas_dev,
2812 							    "Cannot build MPT cmd.\n");
2813 						else
2814 							mrsas_fire_cmd(sc, req_desc->addr.u.low,
2815 							    req_desc->addr.u.high);
2816 					}
2817 				}
2818 			}
2819 
2820 			/* Reset load balance info */
2821 			memset(sc->load_balance_info, 0,
2822 			    sizeof(LD_LOAD_BALANCE_INFO) * MAX_LOGICAL_DRIVES_EXT);
2823 
2824 			if (!mrsas_get_map_info(sc))
2825 				mrsas_sync_map_info(sc);
2826 
2827 			/* Adapter reset completed successfully */
2828 			device_printf(sc->mrsas_dev, "Reset successful\n");
2829 			retval = SUCCESS;
2830 			goto out;
2831 		}
2832 		/* Reset failed, kill the adapter */
2833 		device_printf(sc->mrsas_dev, "Reset failed, killing adapter.\n");
2834 		mrsas_kill_hba(sc);
2835 		retval = FAIL;
2836 	} else {
2837 		mrsas_clear_bit(MRSAS_FUSION_IN_RESET, &sc->reset_flags);
2838 		mrsas_enable_intr(sc);
2839 		sc->adprecovery = MRSAS_HBA_OPERATIONAL;
2840 	}
2841 out:
2842 	mrsas_clear_bit(MRSAS_FUSION_IN_RESET, &sc->reset_flags);
2843 	mrsas_dprint(sc, MRSAS_OCR,
2844 	    "Reset Exit with %d.\n", retval);
2845 	return retval;
2846 }
2847 
2848 /*
2849  * mrsas_kill_hba:	Kill HBA when OCR is not supported
2850  * input:			Adapter Context.
2851  *
2852  * This function will kill HBA when OCR is not supported.
2853  */
2854 void
2855 mrsas_kill_hba(struct mrsas_softc *sc)
2856 {
2857 	mrsas_dprint(sc, MRSAS_OCR, "%s\n", __func__);
2858 	mrsas_write_reg(sc, offsetof(mrsas_reg_set, doorbell),
2859 	    MFI_STOP_ADP);
2860 	/* Flush */
2861 	mrsas_read_reg(sc, offsetof(mrsas_reg_set, doorbell));
2862 }
2863 
2864 /*
2865  * mrsas_wait_for_outstanding:	Wait for outstanding commands
2866  * input:						Adapter Context.
2867  *
2868  * This function will wait for 180 seconds for outstanding commands to be
2869  * completed.
2870  */
2871 int
2872 mrsas_wait_for_outstanding(struct mrsas_softc *sc)
2873 {
2874 	int i, outstanding, retval = 0;
2875 	u_int32_t fw_state, count, MSIxIndex;
2876 
2877 
2878 	for (i = 0; i < MRSAS_RESET_WAIT_TIME; i++) {
2879 		if (sc->remove_in_progress) {
2880 			mrsas_dprint(sc, MRSAS_OCR,
2881 			    "Driver remove or shutdown called.\n");
2882 			retval = 1;
2883 			goto out;
2884 		}
2885 		/* Check if firmware is in fault state */
2886 		fw_state = mrsas_read_reg(sc, offsetof(mrsas_reg_set,
2887 		    outbound_scratch_pad)) & MFI_STATE_MASK;
2888 		if (fw_state == MFI_STATE_FAULT) {
2889 			mrsas_dprint(sc, MRSAS_OCR,
2890 			    "Found FW in FAULT state, will reset adapter.\n");
2891 			retval = 1;
2892 			goto out;
2893 		}
2894 		outstanding = mrsas_atomic_read(&sc->fw_outstanding);
2895 		if (!outstanding)
2896 			goto out;
2897 
2898 		if (!(i % MRSAS_RESET_NOTICE_INTERVAL)) {
2899 			mrsas_dprint(sc, MRSAS_OCR, "[%2d]waiting for %d "
2900 			    "commands to complete\n", i, outstanding);
2901 			count = sc->msix_vectors > 0 ? sc->msix_vectors : 1;
2902 			for (MSIxIndex = 0; MSIxIndex < count; MSIxIndex++)
2903 				mrsas_complete_cmd(sc, MSIxIndex);
2904 		}
2905 		DELAY(1000 * 1000);
2906 	}
2907 
2908 	if (mrsas_atomic_read(&sc->fw_outstanding)) {
2909 		mrsas_dprint(sc, MRSAS_OCR,
2910 		    " pending commands remain after waiting,"
2911 		    " will reset adapter.\n");
2912 		retval = 1;
2913 	}
2914 out:
2915 	return retval;
2916 }
2917 
2918 /*
2919  * mrsas_release_mfi_cmd:	Return a cmd to free command pool
2920  * input:					Command packet for return to free cmd pool
2921  *
2922  * This function returns the MFI command to the command list.
2923  */
2924 void
2925 mrsas_release_mfi_cmd(struct mrsas_mfi_cmd *cmd)
2926 {
2927 	struct mrsas_softc *sc = cmd->sc;
2928 
2929 	mtx_lock(&sc->mfi_cmd_pool_lock);
2930 	cmd->ccb_ptr = NULL;
2931 	cmd->cmd_id.frame_count = 0;
2932 	TAILQ_INSERT_TAIL(&(sc->mrsas_mfi_cmd_list_head), cmd, next);
2933 	mtx_unlock(&sc->mfi_cmd_pool_lock);
2934 
2935 	return;
2936 }
2937 
2938 /*
2939  * mrsas_get_controller_info:	Returns FW's controller structure
2940  * input:						Adapter soft state
2941  * 								Controller information structure
2942  *
2943  * Issues an internal command (DCMD) to get the FW's controller structure. This
2944  * information is mainly used to find out the maximum IO transfer per command
2945  * supported by the FW.
2946  */
2947 static int
2948 mrsas_get_ctrl_info(struct mrsas_softc *sc,
2949     struct mrsas_ctrl_info *ctrl_info)
2950 {
2951 	int retcode = 0;
2952 	struct mrsas_mfi_cmd *cmd;
2953 	struct mrsas_dcmd_frame *dcmd;
2954 
2955 	cmd = mrsas_get_mfi_cmd(sc);
2956 
2957 	if (!cmd) {
2958 		device_printf(sc->mrsas_dev, "Failed to get a free cmd\n");
2959 		return -ENOMEM;
2960 	}
2961 	dcmd = &cmd->frame->dcmd;
2962 
2963 	if (mrsas_alloc_ctlr_info_cmd(sc) != SUCCESS) {
2964 		device_printf(sc->mrsas_dev, "Cannot allocate get ctlr info cmd\n");
2965 		mrsas_release_mfi_cmd(cmd);
2966 		return -ENOMEM;
2967 	}
2968 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2969 
2970 	dcmd->cmd = MFI_CMD_DCMD;
2971 	dcmd->cmd_status = 0xFF;
2972 	dcmd->sge_count = 1;
2973 	dcmd->flags = MFI_FRAME_DIR_READ;
2974 	dcmd->timeout = 0;
2975 	dcmd->pad_0 = 0;
2976 	dcmd->data_xfer_len = sizeof(struct mrsas_ctrl_info);
2977 	dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
2978 	dcmd->sgl.sge32[0].phys_addr = sc->ctlr_info_phys_addr;
2979 	dcmd->sgl.sge32[0].length = sizeof(struct mrsas_ctrl_info);
2980 
2981 	if (!mrsas_issue_polled(sc, cmd))
2982 		memcpy(ctrl_info, sc->ctlr_info_mem, sizeof(struct mrsas_ctrl_info));
2983 	else
2984 		retcode = 1;
2985 
2986 	mrsas_free_ctlr_info_cmd(sc);
2987 	mrsas_release_mfi_cmd(cmd);
2988 	return (retcode);
2989 }
2990 
2991 /*
2992  * mrsas_alloc_ctlr_info_cmd:	Allocates memory for controller info command
2993  * input:						Adapter soft state
2994  *
2995  * Allocates DMAable memory for the controller info internal command.
2996  */
2997 int
2998 mrsas_alloc_ctlr_info_cmd(struct mrsas_softc *sc)
2999 {
3000 	int ctlr_info_size;
3001 
3002 	/* Allocate get controller info command */
3003 	ctlr_info_size = sizeof(struct mrsas_ctrl_info);
3004 	if (bus_dma_tag_create(sc->mrsas_parent_tag,
3005 	    1, 0,
3006 	    BUS_SPACE_MAXADDR_32BIT,
3007 	    BUS_SPACE_MAXADDR,
3008 	    NULL, NULL,
3009 	    ctlr_info_size,
3010 	    1,
3011 	    ctlr_info_size,
3012 	    BUS_DMA_ALLOCNOW,
3013 	    NULL, NULL,
3014 	    &sc->ctlr_info_tag)) {
3015 		device_printf(sc->mrsas_dev, "Cannot allocate ctlr info tag\n");
3016 		return (ENOMEM);
3017 	}
3018 	if (bus_dmamem_alloc(sc->ctlr_info_tag, (void **)&sc->ctlr_info_mem,
3019 	    BUS_DMA_NOWAIT, &sc->ctlr_info_dmamap)) {
3020 		device_printf(sc->mrsas_dev, "Cannot allocate ctlr info cmd mem\n");
3021 		return (ENOMEM);
3022 	}
3023 	if (bus_dmamap_load(sc->ctlr_info_tag, sc->ctlr_info_dmamap,
3024 	    sc->ctlr_info_mem, ctlr_info_size, mrsas_addr_cb,
3025 	    &sc->ctlr_info_phys_addr, BUS_DMA_NOWAIT)) {
3026 		device_printf(sc->mrsas_dev, "Cannot load ctlr info cmd mem\n");
3027 		return (ENOMEM);
3028 	}
3029 	memset(sc->ctlr_info_mem, 0, ctlr_info_size);
3030 	return (0);
3031 }
3032 
3033 /*
3034  * mrsas_free_ctlr_info_cmd:	Free memory for controller info command
3035  * input:						Adapter soft state
3036  *
3037  * Deallocates memory of the get controller info cmd.
3038  */
3039 void
3040 mrsas_free_ctlr_info_cmd(struct mrsas_softc *sc)
3041 {
3042 	if (sc->ctlr_info_phys_addr)
3043 		bus_dmamap_unload(sc->ctlr_info_tag, sc->ctlr_info_dmamap);
3044 	if (sc->ctlr_info_mem != NULL)
3045 		bus_dmamem_free(sc->ctlr_info_tag, sc->ctlr_info_mem, sc->ctlr_info_dmamap);
3046 	if (sc->ctlr_info_tag != NULL)
3047 		bus_dma_tag_destroy(sc->ctlr_info_tag);
3048 }
3049 
3050 /*
3051  * mrsas_issue_polled:	Issues a polling command
3052  * inputs:				Adapter soft state
3053  * 						Command packet to be issued
3054  *
3055  * This function is for posting of internal commands to Firmware.  MFI requires
3056  * the cmd_status to be set to 0xFF before posting.  The maximun wait time of
3057  * the poll response timer is 180 seconds.
3058  */
3059 int
3060 mrsas_issue_polled(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd)
3061 {
3062 	struct mrsas_header *frame_hdr = &cmd->frame->hdr;
3063 	u_int8_t max_wait = MRSAS_INTERNAL_CMD_WAIT_TIME;
3064 	int i, retcode = 0;
3065 
3066 	frame_hdr->cmd_status = 0xFF;
3067 	frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
3068 
3069 	/* Issue the frame using inbound queue port */
3070 	if (mrsas_issue_dcmd(sc, cmd)) {
3071 		device_printf(sc->mrsas_dev, "Cannot issue DCMD internal command.\n");
3072 		return (1);
3073 	}
3074 	/*
3075 	 * Poll response timer to wait for Firmware response.  While this
3076 	 * timer with the DELAY call could block CPU, the time interval for
3077 	 * this is only 1 millisecond.
3078 	 */
3079 	if (frame_hdr->cmd_status == 0xFF) {
3080 		for (i = 0; i < (max_wait * 1000); i++) {
3081 			if (frame_hdr->cmd_status == 0xFF)
3082 				DELAY(1000);
3083 			else
3084 				break;
3085 		}
3086 	}
3087 	if (frame_hdr->cmd_status != 0) {
3088 		if (frame_hdr->cmd_status == 0xFF)
3089 			device_printf(sc->mrsas_dev, "DCMD timed out after %d seconds.\n", max_wait);
3090 		else
3091 			device_printf(sc->mrsas_dev, "DCMD failed, status = 0x%x\n", frame_hdr->cmd_status);
3092 		retcode = 1;
3093 	}
3094 	return (retcode);
3095 }
3096 
3097 /*
3098  * mrsas_issue_dcmd:	Issues a MFI Pass thru cmd
3099  * input:				Adapter soft state mfi cmd pointer
3100  *
3101  * This function is called by mrsas_issued_blocked_cmd() and
3102  * mrsas_issued_polled(), to build the MPT command and then fire the command
3103  * to Firmware.
3104  */
3105 int
3106 mrsas_issue_dcmd(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd)
3107 {
3108 	MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc;
3109 
3110 	req_desc = mrsas_build_mpt_cmd(sc, cmd);
3111 	if (!req_desc) {
3112 		device_printf(sc->mrsas_dev, "Cannot build MPT cmd.\n");
3113 		return (1);
3114 	}
3115 	mrsas_fire_cmd(sc, req_desc->addr.u.low, req_desc->addr.u.high);
3116 
3117 	return (0);
3118 }
3119 
3120 /*
3121  * mrsas_build_mpt_cmd:	Calls helper function to build Passthru cmd
3122  * input:				Adapter soft state mfi cmd to build
3123  *
3124  * This function is called by mrsas_issue_cmd() to build the MPT-MFI passthru
3125  * command and prepares the MPT command to send to Firmware.
3126  */
3127 MRSAS_REQUEST_DESCRIPTOR_UNION *
3128 mrsas_build_mpt_cmd(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd)
3129 {
3130 	MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc;
3131 	u_int16_t index;
3132 
3133 	if (mrsas_build_mptmfi_passthru(sc, cmd)) {
3134 		device_printf(sc->mrsas_dev, "Cannot build MPT-MFI passthru cmd.\n");
3135 		return NULL;
3136 	}
3137 	index = cmd->cmd_id.context.smid;
3138 
3139 	req_desc = mrsas_get_request_desc(sc, index - 1);
3140 	if (!req_desc)
3141 		return NULL;
3142 
3143 	req_desc->addr.Words = 0;
3144 	req_desc->SCSIIO.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO << MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
3145 
3146 	req_desc->SCSIIO.SMID = index;
3147 
3148 	return (req_desc);
3149 }
3150 
3151 /*
3152  * mrsas_build_mptmfi_passthru:	Builds a MPT MFI Passthru command
3153  * input:						Adapter soft state mfi cmd pointer
3154  *
3155  * The MPT command and the io_request are setup as a passthru command. The SGE
3156  * chain address is set to frame_phys_addr of the MFI command.
3157  */
3158 u_int8_t
3159 mrsas_build_mptmfi_passthru(struct mrsas_softc *sc, struct mrsas_mfi_cmd *mfi_cmd)
3160 {
3161 	MPI25_IEEE_SGE_CHAIN64 *mpi25_ieee_chain;
3162 	PTR_MRSAS_RAID_SCSI_IO_REQUEST io_req;
3163 	struct mrsas_mpt_cmd *mpt_cmd;
3164 	struct mrsas_header *frame_hdr = &mfi_cmd->frame->hdr;
3165 
3166 	mpt_cmd = mrsas_get_mpt_cmd(sc);
3167 	if (!mpt_cmd)
3168 		return (1);
3169 
3170 	/* Save the smid. To be used for returning the cmd */
3171 	mfi_cmd->cmd_id.context.smid = mpt_cmd->index;
3172 
3173 	mpt_cmd->sync_cmd_idx = mfi_cmd->index;
3174 
3175 	/*
3176 	 * For cmds where the flag is set, store the flag and check on
3177 	 * completion. For cmds with this flag, don't call
3178 	 * mrsas_complete_cmd.
3179 	 */
3180 
3181 	if (frame_hdr->flags & MFI_FRAME_DONT_POST_IN_REPLY_QUEUE)
3182 		mpt_cmd->flags = MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
3183 
3184 	io_req = mpt_cmd->io_request;
3185 
3186 	if ((sc->device_id == MRSAS_INVADER) || (sc->device_id == MRSAS_FURY)) {
3187 		pMpi25IeeeSgeChain64_t sgl_ptr_end = (pMpi25IeeeSgeChain64_t)&io_req->SGL;
3188 
3189 		sgl_ptr_end += sc->max_sge_in_main_msg - 1;
3190 		sgl_ptr_end->Flags = 0;
3191 	}
3192 	mpi25_ieee_chain = (MPI25_IEEE_SGE_CHAIN64 *) & io_req->SGL.IeeeChain;
3193 
3194 	io_req->Function = MRSAS_MPI2_FUNCTION_PASSTHRU_IO_REQUEST;
3195 	io_req->SGLOffset0 = offsetof(MRSAS_RAID_SCSI_IO_REQUEST, SGL) / 4;
3196 	io_req->ChainOffset = sc->chain_offset_mfi_pthru;
3197 
3198 	mpi25_ieee_chain->Address = mfi_cmd->frame_phys_addr;
3199 
3200 	mpi25_ieee_chain->Flags = IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3201 	    MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR;
3202 
3203 	mpi25_ieee_chain->Length = MRSAS_MAX_SZ_CHAIN_FRAME;
3204 
3205 	return (0);
3206 }
3207 
3208 /*
3209  * mrsas_issue_blocked_cmd:	Synchronous wrapper around regular FW cmds
3210  * input:					Adapter soft state Command to be issued
3211  *
3212  * This function waits on an event for the command to be returned from the ISR.
3213  * Max wait time is MRSAS_INTERNAL_CMD_WAIT_TIME secs. Used for issuing
3214  * internal and ioctl commands.
3215  */
3216 int
3217 mrsas_issue_blocked_cmd(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd)
3218 {
3219 	u_int8_t max_wait = MRSAS_INTERNAL_CMD_WAIT_TIME;
3220 	unsigned long total_time = 0;
3221 	int retcode = 0;
3222 
3223 	/* Initialize cmd_status */
3224 	cmd->cmd_status = ECONNREFUSED;
3225 
3226 	/* Build MPT-MFI command for issue to FW */
3227 	if (mrsas_issue_dcmd(sc, cmd)) {
3228 		device_printf(sc->mrsas_dev, "Cannot issue DCMD internal command.\n");
3229 		return (1);
3230 	}
3231 	sc->chan = (void *)&cmd;
3232 
3233 	while (1) {
3234 		if (cmd->cmd_status == ECONNREFUSED) {
3235 			tsleep((void *)&sc->chan, 0, "mrsas_sleep", hz);
3236 		} else
3237 			break;
3238 		total_time++;
3239 		if (total_time >= max_wait) {
3240 			device_printf(sc->mrsas_dev,
3241 			    "Internal command timed out after %d seconds.\n", max_wait);
3242 			retcode = 1;
3243 			break;
3244 		}
3245 	}
3246 	return (retcode);
3247 }
3248 
3249 /*
3250  * mrsas_complete_mptmfi_passthru:	Completes a command
3251  * input:	@sc:					Adapter soft state
3252  * 			@cmd:					Command to be completed
3253  * 			@status:				cmd completion status
3254  *
3255  * This function is called from mrsas_complete_cmd() after an interrupt is
3256  * received from Firmware, and io_request->Function is
3257  * MRSAS_MPI2_FUNCTION_PASSTHRU_IO_REQUEST.
3258  */
3259 void
3260 mrsas_complete_mptmfi_passthru(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd,
3261     u_int8_t status)
3262 {
3263 	struct mrsas_header *hdr = &cmd->frame->hdr;
3264 	u_int8_t cmd_status = cmd->frame->hdr.cmd_status;
3265 
3266 	/* Reset the retry counter for future re-tries */
3267 	cmd->retry_for_fw_reset = 0;
3268 
3269 	if (cmd->ccb_ptr)
3270 		cmd->ccb_ptr = NULL;
3271 
3272 	switch (hdr->cmd) {
3273 	case MFI_CMD_INVALID:
3274 		device_printf(sc->mrsas_dev, "MFI_CMD_INVALID command.\n");
3275 		break;
3276 	case MFI_CMD_PD_SCSI_IO:
3277 	case MFI_CMD_LD_SCSI_IO:
3278 		/*
3279 		 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
3280 		 * issued either through an IO path or an IOCTL path. If it
3281 		 * was via IOCTL, we will send it to internal completion.
3282 		 */
3283 		if (cmd->sync_cmd) {
3284 			cmd->sync_cmd = 0;
3285 			mrsas_wakeup(sc, cmd);
3286 			break;
3287 		}
3288 	case MFI_CMD_SMP:
3289 	case MFI_CMD_STP:
3290 	case MFI_CMD_DCMD:
3291 		/* Check for LD map update */
3292 		if ((cmd->frame->dcmd.opcode == MR_DCMD_LD_MAP_GET_INFO) &&
3293 		    (cmd->frame->dcmd.mbox.b[1] == 1)) {
3294 			sc->fast_path_io = 0;
3295 			mtx_lock(&sc->raidmap_lock);
3296 			if (cmd_status != 0) {
3297 				if (cmd_status != MFI_STAT_NOT_FOUND)
3298 					device_printf(sc->mrsas_dev, "map sync failed, status=%x\n", cmd_status);
3299 				else {
3300 					mrsas_release_mfi_cmd(cmd);
3301 					mtx_unlock(&sc->raidmap_lock);
3302 					break;
3303 				}
3304 			} else
3305 				sc->map_id++;
3306 			mrsas_release_mfi_cmd(cmd);
3307 			if (MR_ValidateMapInfo(sc))
3308 				sc->fast_path_io = 0;
3309 			else
3310 				sc->fast_path_io = 1;
3311 			mrsas_sync_map_info(sc);
3312 			mtx_unlock(&sc->raidmap_lock);
3313 			break;
3314 		}
3315 		if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_GET_INFO ||
3316 		    cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_GET) {
3317 			sc->mrsas_aen_triggered = 0;
3318 		}
3319 		/* See if got an event notification */
3320 		if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
3321 			mrsas_complete_aen(sc, cmd);
3322 		else
3323 			mrsas_wakeup(sc, cmd);
3324 		break;
3325 	case MFI_CMD_ABORT:
3326 		/* Command issued to abort another cmd return */
3327 		mrsas_complete_abort(sc, cmd);
3328 		break;
3329 	default:
3330 		device_printf(sc->mrsas_dev, "Unknown command completed! [0x%X]\n", hdr->cmd);
3331 		break;
3332 	}
3333 }
3334 
3335 /*
3336  * mrsas_wakeup:	Completes an internal command
3337  * input:			Adapter soft state
3338  * 					Command to be completed
3339  *
3340  * In mrsas_issue_blocked_cmd(), after a command is issued to Firmware, a wait
3341  * timer is started.  This function is called from
3342  * mrsas_complete_mptmfi_passthru() as it completes the command, to wake up
3343  * from the command wait.
3344  */
3345 void
3346 mrsas_wakeup(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd)
3347 {
3348 	cmd->cmd_status = cmd->frame->io.cmd_status;
3349 
3350 	if (cmd->cmd_status == ECONNREFUSED)
3351 		cmd->cmd_status = 0;
3352 
3353 	sc->chan = (void *)&cmd;
3354 	wakeup_one((void *)&sc->chan);
3355 	return;
3356 }
3357 
3358 /*
3359  * mrsas_shutdown_ctlr:       Instructs FW to shutdown the controller input:
3360  * Adapter soft state Shutdown/Hibernate
3361  *
3362  * This function issues a DCMD internal command to Firmware to initiate shutdown
3363  * of the controller.
3364  */
3365 static void
3366 mrsas_shutdown_ctlr(struct mrsas_softc *sc, u_int32_t opcode)
3367 {
3368 	struct mrsas_mfi_cmd *cmd;
3369 	struct mrsas_dcmd_frame *dcmd;
3370 
3371 	if (sc->adprecovery == MRSAS_HW_CRITICAL_ERROR)
3372 		return;
3373 
3374 	cmd = mrsas_get_mfi_cmd(sc);
3375 	if (!cmd) {
3376 		device_printf(sc->mrsas_dev, "Cannot allocate for shutdown cmd.\n");
3377 		return;
3378 	}
3379 	if (sc->aen_cmd)
3380 		mrsas_issue_blocked_abort_cmd(sc, sc->aen_cmd);
3381 
3382 	if (sc->map_update_cmd)
3383 		mrsas_issue_blocked_abort_cmd(sc, sc->map_update_cmd);
3384 
3385 	dcmd = &cmd->frame->dcmd;
3386 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3387 
3388 	dcmd->cmd = MFI_CMD_DCMD;
3389 	dcmd->cmd_status = 0x0;
3390 	dcmd->sge_count = 0;
3391 	dcmd->flags = MFI_FRAME_DIR_NONE;
3392 	dcmd->timeout = 0;
3393 	dcmd->pad_0 = 0;
3394 	dcmd->data_xfer_len = 0;
3395 	dcmd->opcode = opcode;
3396 
3397 	device_printf(sc->mrsas_dev, "Preparing to shut down controller.\n");
3398 
3399 	mrsas_issue_blocked_cmd(sc, cmd);
3400 	mrsas_release_mfi_cmd(cmd);
3401 
3402 	return;
3403 }
3404 
3405 /*
3406  * mrsas_flush_cache:         Requests FW to flush all its caches input:
3407  * Adapter soft state
3408  *
3409  * This function is issues a DCMD internal command to Firmware to initiate
3410  * flushing of all caches.
3411  */
3412 static void
3413 mrsas_flush_cache(struct mrsas_softc *sc)
3414 {
3415 	struct mrsas_mfi_cmd *cmd;
3416 	struct mrsas_dcmd_frame *dcmd;
3417 
3418 	if (sc->adprecovery == MRSAS_HW_CRITICAL_ERROR)
3419 		return;
3420 
3421 	cmd = mrsas_get_mfi_cmd(sc);
3422 	if (!cmd) {
3423 		device_printf(sc->mrsas_dev, "Cannot allocate for flush cache cmd.\n");
3424 		return;
3425 	}
3426 	dcmd = &cmd->frame->dcmd;
3427 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3428 
3429 	dcmd->cmd = MFI_CMD_DCMD;
3430 	dcmd->cmd_status = 0x0;
3431 	dcmd->sge_count = 0;
3432 	dcmd->flags = MFI_FRAME_DIR_NONE;
3433 	dcmd->timeout = 0;
3434 	dcmd->pad_0 = 0;
3435 	dcmd->data_xfer_len = 0;
3436 	dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
3437 	dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
3438 
3439 	mrsas_issue_blocked_cmd(sc, cmd);
3440 	mrsas_release_mfi_cmd(cmd);
3441 
3442 	return;
3443 }
3444 
3445 /*
3446  * mrsas_get_map_info:        Load and validate RAID map input:
3447  * Adapter instance soft state
3448  *
3449  * This function calls mrsas_get_ld_map_info() and MR_ValidateMapInfo() to load
3450  * and validate RAID map.  It returns 0 if successful, 1 other- wise.
3451  */
3452 static int
3453 mrsas_get_map_info(struct mrsas_softc *sc)
3454 {
3455 	uint8_t retcode = 0;
3456 
3457 	sc->fast_path_io = 0;
3458 	if (!mrsas_get_ld_map_info(sc)) {
3459 		retcode = MR_ValidateMapInfo(sc);
3460 		if (retcode == 0) {
3461 			sc->fast_path_io = 1;
3462 			return 0;
3463 		}
3464 	}
3465 	return 1;
3466 }
3467 
3468 /*
3469  * mrsas_get_ld_map_info:      Get FW's ld_map structure input:
3470  * Adapter instance soft state
3471  *
3472  * Issues an internal command (DCMD) to get the FW's controller PD list
3473  * structure.
3474  */
3475 static int
3476 mrsas_get_ld_map_info(struct mrsas_softc *sc)
3477 {
3478 	int retcode = 0;
3479 	struct mrsas_mfi_cmd *cmd;
3480 	struct mrsas_dcmd_frame *dcmd;
3481 	void *map;
3482 	bus_addr_t map_phys_addr = 0;
3483 
3484 	cmd = mrsas_get_mfi_cmd(sc);
3485 	if (!cmd) {
3486 		device_printf(sc->mrsas_dev,
3487 		    "Cannot alloc for ld map info cmd.\n");
3488 		return 1;
3489 	}
3490 	dcmd = &cmd->frame->dcmd;
3491 
3492 	map = (void *)sc->raidmap_mem[(sc->map_id & 1)];
3493 	map_phys_addr = sc->raidmap_phys_addr[(sc->map_id & 1)];
3494 	if (!map) {
3495 		device_printf(sc->mrsas_dev,
3496 		    "Failed to alloc mem for ld map info.\n");
3497 		mrsas_release_mfi_cmd(cmd);
3498 		return (ENOMEM);
3499 	}
3500 	memset(map, 0, sizeof(sc->max_map_sz));
3501 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3502 
3503 	dcmd->cmd = MFI_CMD_DCMD;
3504 	dcmd->cmd_status = 0xFF;
3505 	dcmd->sge_count = 1;
3506 	dcmd->flags = MFI_FRAME_DIR_READ;
3507 	dcmd->timeout = 0;
3508 	dcmd->pad_0 = 0;
3509 	dcmd->data_xfer_len = sc->current_map_sz;
3510 	dcmd->opcode = MR_DCMD_LD_MAP_GET_INFO;
3511 	dcmd->sgl.sge32[0].phys_addr = map_phys_addr;
3512 	dcmd->sgl.sge32[0].length = sc->current_map_sz;
3513 
3514 	if (!mrsas_issue_polled(sc, cmd))
3515 		retcode = 0;
3516 	else {
3517 		device_printf(sc->mrsas_dev,
3518 		    "Fail to send get LD map info cmd.\n");
3519 		retcode = 1;
3520 	}
3521 	mrsas_release_mfi_cmd(cmd);
3522 
3523 	return (retcode);
3524 }
3525 
3526 /*
3527  * mrsas_sync_map_info:        Get FW's ld_map structure input:
3528  * Adapter instance soft state
3529  *
3530  * Issues an internal command (DCMD) to get the FW's controller PD list
3531  * structure.
3532  */
3533 static int
3534 mrsas_sync_map_info(struct mrsas_softc *sc)
3535 {
3536 	int retcode = 0, i;
3537 	struct mrsas_mfi_cmd *cmd;
3538 	struct mrsas_dcmd_frame *dcmd;
3539 	uint32_t size_sync_info, num_lds;
3540 	MR_LD_TARGET_SYNC *target_map = NULL;
3541 	MR_DRV_RAID_MAP_ALL *map;
3542 	MR_LD_RAID *raid;
3543 	MR_LD_TARGET_SYNC *ld_sync;
3544 	bus_addr_t map_phys_addr = 0;
3545 
3546 	cmd = mrsas_get_mfi_cmd(sc);
3547 	if (!cmd) {
3548 		device_printf(sc->mrsas_dev,
3549 		    "Cannot alloc for sync map info cmd\n");
3550 		return 1;
3551 	}
3552 	map = sc->ld_drv_map[sc->map_id & 1];
3553 	num_lds = map->raidMap.ldCount;
3554 
3555 	dcmd = &cmd->frame->dcmd;
3556 	size_sync_info = sizeof(MR_LD_TARGET_SYNC) * num_lds;
3557 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3558 
3559 	target_map = (MR_LD_TARGET_SYNC *) sc->raidmap_mem[(sc->map_id - 1) & 1];
3560 	memset(target_map, 0, sc->max_map_sz);
3561 
3562 	map_phys_addr = sc->raidmap_phys_addr[(sc->map_id - 1) & 1];
3563 
3564 	ld_sync = (MR_LD_TARGET_SYNC *) target_map;
3565 
3566 	for (i = 0; i < num_lds; i++, ld_sync++) {
3567 		raid = MR_LdRaidGet(i, map);
3568 		ld_sync->targetId = MR_GetLDTgtId(i, map);
3569 		ld_sync->seqNum = raid->seqNum;
3570 	}
3571 
3572 	dcmd->cmd = MFI_CMD_DCMD;
3573 	dcmd->cmd_status = 0xFF;
3574 	dcmd->sge_count = 1;
3575 	dcmd->flags = MFI_FRAME_DIR_WRITE;
3576 	dcmd->timeout = 0;
3577 	dcmd->pad_0 = 0;
3578 	dcmd->data_xfer_len = sc->current_map_sz;
3579 	dcmd->mbox.b[0] = num_lds;
3580 	dcmd->mbox.b[1] = MRSAS_DCMD_MBOX_PEND_FLAG;
3581 	dcmd->opcode = MR_DCMD_LD_MAP_GET_INFO;
3582 	dcmd->sgl.sge32[0].phys_addr = map_phys_addr;
3583 	dcmd->sgl.sge32[0].length = sc->current_map_sz;
3584 
3585 	sc->map_update_cmd = cmd;
3586 	if (mrsas_issue_dcmd(sc, cmd)) {
3587 		device_printf(sc->mrsas_dev,
3588 		    "Fail to send sync map info command.\n");
3589 		return (1);
3590 	}
3591 	return (retcode);
3592 }
3593 
3594 /*
3595  * mrsas_get_pd_list:           Returns FW's PD list structure input:
3596  * Adapter soft state
3597  *
3598  * Issues an internal command (DCMD) to get the FW's controller PD list
3599  * structure.  This information is mainly used to find out about system
3600  * supported by Firmware.
3601  */
3602 static int
3603 mrsas_get_pd_list(struct mrsas_softc *sc)
3604 {
3605 	int retcode = 0, pd_index = 0, pd_count = 0, pd_list_size;
3606 	struct mrsas_mfi_cmd *cmd;
3607 	struct mrsas_dcmd_frame *dcmd;
3608 	struct MR_PD_LIST *pd_list_mem;
3609 	struct MR_PD_ADDRESS *pd_addr;
3610 	bus_addr_t pd_list_phys_addr = 0;
3611 	struct mrsas_tmp_dcmd *tcmd;
3612 
3613 	cmd = mrsas_get_mfi_cmd(sc);
3614 	if (!cmd) {
3615 		device_printf(sc->mrsas_dev,
3616 		    "Cannot alloc for get PD list cmd\n");
3617 		return 1;
3618 	}
3619 	dcmd = &cmd->frame->dcmd;
3620 
3621 	tcmd = malloc(sizeof(struct mrsas_tmp_dcmd), M_MRSAS, M_NOWAIT);
3622 	pd_list_size = MRSAS_MAX_PD * sizeof(struct MR_PD_LIST);
3623 	if (mrsas_alloc_tmp_dcmd(sc, tcmd, pd_list_size) != SUCCESS) {
3624 		device_printf(sc->mrsas_dev,
3625 		    "Cannot alloc dmamap for get PD list cmd\n");
3626 		mrsas_release_mfi_cmd(cmd);
3627 		return (ENOMEM);
3628 	} else {
3629 		pd_list_mem = tcmd->tmp_dcmd_mem;
3630 		pd_list_phys_addr = tcmd->tmp_dcmd_phys_addr;
3631 	}
3632 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3633 
3634 	dcmd->mbox.b[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST;
3635 	dcmd->mbox.b[1] = 0;
3636 	dcmd->cmd = MFI_CMD_DCMD;
3637 	dcmd->cmd_status = 0xFF;
3638 	dcmd->sge_count = 1;
3639 	dcmd->flags = MFI_FRAME_DIR_READ;
3640 	dcmd->timeout = 0;
3641 	dcmd->pad_0 = 0;
3642 	dcmd->data_xfer_len = MRSAS_MAX_PD * sizeof(struct MR_PD_LIST);
3643 	dcmd->opcode = MR_DCMD_PD_LIST_QUERY;
3644 	dcmd->sgl.sge32[0].phys_addr = pd_list_phys_addr;
3645 	dcmd->sgl.sge32[0].length = MRSAS_MAX_PD * sizeof(struct MR_PD_LIST);
3646 
3647 	if (!mrsas_issue_polled(sc, cmd))
3648 		retcode = 0;
3649 	else
3650 		retcode = 1;
3651 
3652 	/* Get the instance PD list */
3653 	pd_count = MRSAS_MAX_PD;
3654 	pd_addr = pd_list_mem->addr;
3655 	if (retcode == 0 && pd_list_mem->count < pd_count) {
3656 		memset(sc->local_pd_list, 0,
3657 		    MRSAS_MAX_PD * sizeof(struct mrsas_pd_list));
3658 		for (pd_index = 0; pd_index < pd_list_mem->count; pd_index++) {
3659 			sc->local_pd_list[pd_addr->deviceId].tid = pd_addr->deviceId;
3660 			sc->local_pd_list[pd_addr->deviceId].driveType =
3661 			    pd_addr->scsiDevType;
3662 			sc->local_pd_list[pd_addr->deviceId].driveState =
3663 			    MR_PD_STATE_SYSTEM;
3664 			pd_addr++;
3665 		}
3666 	}
3667 	/*
3668 	 * Use mutext/spinlock if pd_list component size increase more than
3669 	 * 32 bit.
3670 	 */
3671 	memcpy(sc->pd_list, sc->local_pd_list, sizeof(sc->local_pd_list));
3672 	mrsas_free_tmp_dcmd(tcmd);
3673 	mrsas_release_mfi_cmd(cmd);
3674 	free(tcmd, M_MRSAS);
3675 	return (retcode);
3676 }
3677 
3678 /*
3679  * mrsas_get_ld_list:           Returns FW's LD list structure input:
3680  * Adapter soft state
3681  *
3682  * Issues an internal command (DCMD) to get the FW's controller PD list
3683  * structure.  This information is mainly used to find out about supported by
3684  * the FW.
3685  */
3686 static int
3687 mrsas_get_ld_list(struct mrsas_softc *sc)
3688 {
3689 	int ld_list_size, retcode = 0, ld_index = 0, ids = 0;
3690 	struct mrsas_mfi_cmd *cmd;
3691 	struct mrsas_dcmd_frame *dcmd;
3692 	struct MR_LD_LIST *ld_list_mem;
3693 	bus_addr_t ld_list_phys_addr = 0;
3694 	struct mrsas_tmp_dcmd *tcmd;
3695 
3696 	cmd = mrsas_get_mfi_cmd(sc);
3697 	if (!cmd) {
3698 		device_printf(sc->mrsas_dev,
3699 		    "Cannot alloc for get LD list cmd\n");
3700 		return 1;
3701 	}
3702 	dcmd = &cmd->frame->dcmd;
3703 
3704 	tcmd = malloc(sizeof(struct mrsas_tmp_dcmd), M_MRSAS, M_NOWAIT);
3705 	ld_list_size = sizeof(struct MR_LD_LIST);
3706 	if (mrsas_alloc_tmp_dcmd(sc, tcmd, ld_list_size) != SUCCESS) {
3707 		device_printf(sc->mrsas_dev,
3708 		    "Cannot alloc dmamap for get LD list cmd\n");
3709 		mrsas_release_mfi_cmd(cmd);
3710 		return (ENOMEM);
3711 	} else {
3712 		ld_list_mem = tcmd->tmp_dcmd_mem;
3713 		ld_list_phys_addr = tcmd->tmp_dcmd_phys_addr;
3714 	}
3715 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3716 
3717 	if (sc->max256vdSupport)
3718 		dcmd->mbox.b[0] = 1;
3719 
3720 	dcmd->cmd = MFI_CMD_DCMD;
3721 	dcmd->cmd_status = 0xFF;
3722 	dcmd->sge_count = 1;
3723 	dcmd->flags = MFI_FRAME_DIR_READ;
3724 	dcmd->timeout = 0;
3725 	dcmd->data_xfer_len = sizeof(struct MR_LD_LIST);
3726 	dcmd->opcode = MR_DCMD_LD_GET_LIST;
3727 	dcmd->sgl.sge32[0].phys_addr = ld_list_phys_addr;
3728 	dcmd->sgl.sge32[0].length = sizeof(struct MR_LD_LIST);
3729 	dcmd->pad_0 = 0;
3730 
3731 	if (!mrsas_issue_polled(sc, cmd))
3732 		retcode = 0;
3733 	else
3734 		retcode = 1;
3735 
3736 #if VD_EXT_DEBUG
3737 	printf("Number of LDs %d\n", ld_list_mem->ldCount);
3738 #endif
3739 
3740 	/* Get the instance LD list */
3741 	if ((retcode == 0) &&
3742 	    (ld_list_mem->ldCount <= sc->fw_supported_vd_count)) {
3743 		sc->CurLdCount = ld_list_mem->ldCount;
3744 		memset(sc->ld_ids, 0xff, MAX_LOGICAL_DRIVES_EXT);
3745 		for (ld_index = 0; ld_index < ld_list_mem->ldCount; ld_index++) {
3746 			if (ld_list_mem->ldList[ld_index].state != 0) {
3747 				ids = ld_list_mem->ldList[ld_index].ref.ld_context.targetId;
3748 				sc->ld_ids[ids] = ld_list_mem->ldList[ld_index].ref.ld_context.targetId;
3749 			}
3750 		}
3751 	}
3752 	mrsas_free_tmp_dcmd(tcmd);
3753 	mrsas_release_mfi_cmd(cmd);
3754 	free(tcmd, M_MRSAS);
3755 	return (retcode);
3756 }
3757 
3758 /*
3759  * mrsas_alloc_tmp_dcmd:       Allocates memory for temporary command input:
3760  * Adapter soft state Temp command Size of alloction
3761  *
3762  * Allocates DMAable memory for a temporary internal command. The allocated
3763  * memory is initialized to all zeros upon successful loading of the dma
3764  * mapped memory.
3765  */
3766 int
3767 mrsas_alloc_tmp_dcmd(struct mrsas_softc *sc,
3768     struct mrsas_tmp_dcmd *tcmd, int size)
3769 {
3770 	if (bus_dma_tag_create(sc->mrsas_parent_tag,
3771 	    1, 0,
3772 	    BUS_SPACE_MAXADDR_32BIT,
3773 	    BUS_SPACE_MAXADDR,
3774 	    NULL, NULL,
3775 	    size,
3776 	    1,
3777 	    size,
3778 	    BUS_DMA_ALLOCNOW,
3779 	    NULL, NULL,
3780 	    &tcmd->tmp_dcmd_tag)) {
3781 		device_printf(sc->mrsas_dev, "Cannot allocate tmp dcmd tag\n");
3782 		return (ENOMEM);
3783 	}
3784 	if (bus_dmamem_alloc(tcmd->tmp_dcmd_tag, (void **)&tcmd->tmp_dcmd_mem,
3785 	    BUS_DMA_NOWAIT, &tcmd->tmp_dcmd_dmamap)) {
3786 		device_printf(sc->mrsas_dev, "Cannot allocate tmp dcmd mem\n");
3787 		return (ENOMEM);
3788 	}
3789 	if (bus_dmamap_load(tcmd->tmp_dcmd_tag, tcmd->tmp_dcmd_dmamap,
3790 	    tcmd->tmp_dcmd_mem, size, mrsas_addr_cb,
3791 	    &tcmd->tmp_dcmd_phys_addr, BUS_DMA_NOWAIT)) {
3792 		device_printf(sc->mrsas_dev, "Cannot load tmp dcmd mem\n");
3793 		return (ENOMEM);
3794 	}
3795 	memset(tcmd->tmp_dcmd_mem, 0, size);
3796 	return (0);
3797 }
3798 
3799 /*
3800  * mrsas_free_tmp_dcmd:      Free memory for temporary command input:
3801  * temporary dcmd pointer
3802  *
3803  * Deallocates memory of the temporary command for use in the construction of
3804  * the internal DCMD.
3805  */
3806 void
3807 mrsas_free_tmp_dcmd(struct mrsas_tmp_dcmd *tmp)
3808 {
3809 	if (tmp->tmp_dcmd_phys_addr)
3810 		bus_dmamap_unload(tmp->tmp_dcmd_tag, tmp->tmp_dcmd_dmamap);
3811 	if (tmp->tmp_dcmd_mem != NULL)
3812 		bus_dmamem_free(tmp->tmp_dcmd_tag, tmp->tmp_dcmd_mem, tmp->tmp_dcmd_dmamap);
3813 	if (tmp->tmp_dcmd_tag != NULL)
3814 		bus_dma_tag_destroy(tmp->tmp_dcmd_tag);
3815 }
3816 
3817 /*
3818  * mrsas_issue_blocked_abort_cmd:       Aborts previously issued cmd input:
3819  * Adapter soft state Previously issued cmd to be aborted
3820  *
3821  * This function is used to abort previously issued commands, such as AEN and
3822  * RAID map sync map commands.  The abort command is sent as a DCMD internal
3823  * command and subsequently the driver will wait for a return status.  The
3824  * max wait time is MRSAS_INTERNAL_CMD_WAIT_TIME seconds.
3825  */
3826 static int
3827 mrsas_issue_blocked_abort_cmd(struct mrsas_softc *sc,
3828     struct mrsas_mfi_cmd *cmd_to_abort)
3829 {
3830 	struct mrsas_mfi_cmd *cmd;
3831 	struct mrsas_abort_frame *abort_fr;
3832 	u_int8_t retcode = 0;
3833 	unsigned long total_time = 0;
3834 	u_int8_t max_wait = MRSAS_INTERNAL_CMD_WAIT_TIME;
3835 
3836 	cmd = mrsas_get_mfi_cmd(sc);
3837 	if (!cmd) {
3838 		device_printf(sc->mrsas_dev, "Cannot alloc for abort cmd\n");
3839 		return (1);
3840 	}
3841 	abort_fr = &cmd->frame->abort;
3842 
3843 	/* Prepare and issue the abort frame */
3844 	abort_fr->cmd = MFI_CMD_ABORT;
3845 	abort_fr->cmd_status = 0xFF;
3846 	abort_fr->flags = 0;
3847 	abort_fr->abort_context = cmd_to_abort->index;
3848 	abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
3849 	abort_fr->abort_mfi_phys_addr_hi = 0;
3850 
3851 	cmd->sync_cmd = 1;
3852 	cmd->cmd_status = 0xFF;
3853 
3854 	if (mrsas_issue_dcmd(sc, cmd)) {
3855 		device_printf(sc->mrsas_dev, "Fail to send abort command.\n");
3856 		return (1);
3857 	}
3858 	/* Wait for this cmd to complete */
3859 	sc->chan = (void *)&cmd;
3860 	while (1) {
3861 		if (cmd->cmd_status == 0xFF) {
3862 			tsleep((void *)&sc->chan, 0, "mrsas_sleep", hz);
3863 		} else
3864 			break;
3865 		total_time++;
3866 		if (total_time >= max_wait) {
3867 			device_printf(sc->mrsas_dev, "Abort cmd timed out after %d sec.\n", max_wait);
3868 			retcode = 1;
3869 			break;
3870 		}
3871 	}
3872 
3873 	cmd->sync_cmd = 0;
3874 	mrsas_release_mfi_cmd(cmd);
3875 	return (retcode);
3876 }
3877 
3878 /*
3879  * mrsas_complete_abort:      Completes aborting a command input:
3880  * Adapter soft state Cmd that was issued to abort another cmd
3881  *
3882  * The mrsas_issue_blocked_abort_cmd() function waits for the command status to
3883  * change after sending the command.  This function is called from
3884  * mrsas_complete_mptmfi_passthru() to wake up the sleep thread associated.
3885  */
3886 void
3887 mrsas_complete_abort(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd)
3888 {
3889 	if (cmd->sync_cmd) {
3890 		cmd->sync_cmd = 0;
3891 		cmd->cmd_status = 0;
3892 		sc->chan = (void *)&cmd;
3893 		wakeup_one((void *)&sc->chan);
3894 	}
3895 	return;
3896 }
3897 
3898 /*
3899  * mrsas_aen_handler:	AEN processing callback function from thread context
3900  * input:				Adapter soft state
3901  *
3902  * Asynchronous event handler
3903  */
3904 void
3905 mrsas_aen_handler(struct mrsas_softc *sc)
3906 {
3907 	union mrsas_evt_class_locale class_locale;
3908 	int doscan = 0;
3909 	u_int32_t seq_num;
3910 	int error;
3911 
3912 	if (!sc) {
3913 		device_printf(sc->mrsas_dev, "invalid instance!\n");
3914 		return;
3915 	}
3916 	if (sc->evt_detail_mem) {
3917 		switch (sc->evt_detail_mem->code) {
3918 		case MR_EVT_PD_INSERTED:
3919 			mrsas_get_pd_list(sc);
3920 			mrsas_bus_scan_sim(sc, sc->sim_1);
3921 			doscan = 0;
3922 			break;
3923 		case MR_EVT_PD_REMOVED:
3924 			mrsas_get_pd_list(sc);
3925 			mrsas_bus_scan_sim(sc, sc->sim_1);
3926 			doscan = 0;
3927 			break;
3928 		case MR_EVT_LD_OFFLINE:
3929 		case MR_EVT_CFG_CLEARED:
3930 		case MR_EVT_LD_DELETED:
3931 			mrsas_bus_scan_sim(sc, sc->sim_0);
3932 			doscan = 0;
3933 			break;
3934 		case MR_EVT_LD_CREATED:
3935 			mrsas_get_ld_list(sc);
3936 			mrsas_bus_scan_sim(sc, sc->sim_0);
3937 			doscan = 0;
3938 			break;
3939 		case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED:
3940 		case MR_EVT_FOREIGN_CFG_IMPORTED:
3941 		case MR_EVT_LD_STATE_CHANGE:
3942 			doscan = 1;
3943 			break;
3944 		default:
3945 			doscan = 0;
3946 			break;
3947 		}
3948 	} else {
3949 		device_printf(sc->mrsas_dev, "invalid evt_detail\n");
3950 		return;
3951 	}
3952 	if (doscan) {
3953 		mrsas_get_pd_list(sc);
3954 		mrsas_dprint(sc, MRSAS_AEN, "scanning ...sim 1\n");
3955 		mrsas_bus_scan_sim(sc, sc->sim_1);
3956 		mrsas_get_ld_list(sc);
3957 		mrsas_dprint(sc, MRSAS_AEN, "scanning ...sim 0\n");
3958 		mrsas_bus_scan_sim(sc, sc->sim_0);
3959 	}
3960 	seq_num = sc->evt_detail_mem->seq_num + 1;
3961 
3962 	/* Register AEN with FW for latest sequence number plus 1 */
3963 	class_locale.members.reserved = 0;
3964 	class_locale.members.locale = MR_EVT_LOCALE_ALL;
3965 	class_locale.members.class = MR_EVT_CLASS_DEBUG;
3966 
3967 	if (sc->aen_cmd != NULL)
3968 		return;
3969 
3970 	mtx_lock(&sc->aen_lock);
3971 	error = mrsas_register_aen(sc, seq_num,
3972 	    class_locale.word);
3973 	mtx_unlock(&sc->aen_lock);
3974 
3975 	if (error)
3976 		device_printf(sc->mrsas_dev, "register aen failed error %x\n", error);
3977 
3978 }
3979 
3980 
3981 /*
3982  * mrsas_complete_aen:	Completes AEN command
3983  * input:				Adapter soft state
3984  * 						Cmd that was issued to abort another cmd
3985  *
3986  * This function will be called from ISR and will continue event processing from
3987  * thread context by enqueuing task in ev_tq (callback function
3988  * "mrsas_aen_handler").
3989  */
3990 void
3991 mrsas_complete_aen(struct mrsas_softc *sc, struct mrsas_mfi_cmd *cmd)
3992 {
3993 	/*
3994 	 * Don't signal app if it is just an aborted previously registered
3995 	 * aen
3996 	 */
3997 	if ((!cmd->abort_aen) && (sc->remove_in_progress == 0)) {
3998 		sc->mrsas_aen_triggered = 1;
3999 		if (sc->mrsas_poll_waiting) {
4000 			sc->mrsas_poll_waiting = 0;
4001 			selwakeup(&sc->mrsas_select);
4002 		}
4003 	} else
4004 		cmd->abort_aen = 0;
4005 
4006 	sc->aen_cmd = NULL;
4007 	mrsas_release_mfi_cmd(cmd);
4008 
4009 	if (!sc->remove_in_progress)
4010 		taskqueue_enqueue(sc->ev_tq, &sc->ev_task);
4011 
4012 	return;
4013 }
4014 
4015 static device_method_t mrsas_methods[] = {
4016 	DEVMETHOD(device_probe, mrsas_probe),
4017 	DEVMETHOD(device_attach, mrsas_attach),
4018 	DEVMETHOD(device_detach, mrsas_detach),
4019 	DEVMETHOD(device_suspend, mrsas_suspend),
4020 	DEVMETHOD(device_resume, mrsas_resume),
4021 	DEVMETHOD(bus_print_child, bus_generic_print_child),
4022 	DEVMETHOD(bus_driver_added, bus_generic_driver_added),
4023 	{0, 0}
4024 };
4025 
4026 static driver_t mrsas_driver = {
4027 	"mrsas",
4028 	mrsas_methods,
4029 	sizeof(struct mrsas_softc)
4030 };
4031 
4032 static devclass_t mrsas_devclass;
4033 
4034 DRIVER_MODULE(mrsas, pci, mrsas_driver, mrsas_devclass, 0, 0);
4035 MODULE_DEPEND(mrsas, cam, 1, 1, 1);
4036