1 /*- 2 * FreeBSD/CAM specific routines for LSI '909 FC adapters. 3 * FreeBSD Version. 4 * 5 * Copyright (c) 2000, 2001 by Greg Ansley 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice immediately at the beginning of the file, without modification, 12 * this list of conditions, and the following disclaimer. 13 * 2. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 /*- 29 * Copyright (c) 2002, 2006 by Matthew Jacob 30 * All rights reserved. 31 * 32 * Redistribution and use in source and binary forms, with or without 33 * modification, are permitted provided that the following conditions are 34 * met: 35 * 1. Redistributions of source code must retain the above copyright 36 * notice, this list of conditions and the following disclaimer. 37 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 38 * substantially similar to the "NO WARRANTY" disclaimer below 39 * ("Disclaimer") and any redistribution must be conditioned upon including 40 * a substantially similar Disclaimer requirement for further binary 41 * redistribution. 42 * 3. Neither the names of the above listed copyright holders nor the names 43 * of any contributors may be used to endorse or promote products derived 44 * from this software without specific prior written permission. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 47 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 50 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 56 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 57 * 58 * Support from Chris Ellsworth in order to make SAS adapters work 59 * is gratefully acknowledged. 60 * 61 * Support from LSI-Logic has also gone a great deal toward making this a 62 * workable subsystem and is gratefully acknowledged. 63 */ 64 /*- 65 * Copyright (c) 2004, Avid Technology, Inc. and its contributors. 66 * Copyright (c) 2005, WHEEL Sp. z o.o. 67 * Copyright (c) 2004, 2005 Justin T. Gibbs 68 * All rights reserved. 69 * 70 * Redistribution and use in source and binary forms, with or without 71 * modification, are permitted provided that the following conditions are 72 * met: 73 * 1. Redistributions of source code must retain the above copyright 74 * notice, this list of conditions and the following disclaimer. 75 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 76 * substantially similar to the "NO WARRANTY" disclaimer below 77 * ("Disclaimer") and any redistribution must be conditioned upon including 78 * a substantially similar Disclaimer requirement for further binary 79 * redistribution. 80 * 3. Neither the names of the above listed copyright holders nor the names 81 * of any contributors may be used to endorse or promote products derived 82 * from this software without specific prior written permission. 83 * 84 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 85 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 86 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 87 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 88 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 89 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 90 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 91 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 92 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 93 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 94 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 95 */ 96 #include <sys/cdefs.h> 97 __FBSDID("$FreeBSD$"); 98 99 #include <dev/mpt/mpt.h> 100 #include <dev/mpt/mpt_cam.h> 101 #include <dev/mpt/mpt_raid.h> 102 103 #include "dev/mpt/mpilib/mpi_ioc.h" /* XXX Fix Event Handling!!! */ 104 #include "dev/mpt/mpilib/mpi_init.h" 105 #include "dev/mpt/mpilib/mpi_targ.h" 106 #include "dev/mpt/mpilib/mpi_fc.h" 107 108 #include <sys/callout.h> 109 #include <sys/kthread.h> 110 111 static void mpt_poll(struct cam_sim *); 112 static timeout_t mpt_timeout; 113 static void mpt_action(struct cam_sim *, union ccb *); 114 static int 115 mpt_get_spi_settings(struct mpt_softc *, struct ccb_trans_settings *); 116 static void mpt_setwidth(struct mpt_softc *, int, int); 117 static void mpt_setsync(struct mpt_softc *, int, int, int); 118 static int mpt_update_spi_config(struct mpt_softc *, int); 119 static void mpt_calc_geometry(struct ccb_calc_geometry *ccg, int extended); 120 121 static mpt_reply_handler_t mpt_scsi_reply_handler; 122 static mpt_reply_handler_t mpt_scsi_tmf_reply_handler; 123 static mpt_reply_handler_t mpt_fc_els_reply_handler; 124 static int mpt_scsi_reply_frame_handler(struct mpt_softc *, request_t *, 125 MSG_DEFAULT_REPLY *); 126 static int mpt_bus_reset(struct mpt_softc *, int); 127 static int mpt_fc_reset_link(struct mpt_softc *, int); 128 129 static int mpt_spawn_recovery_thread(struct mpt_softc *mpt); 130 static void mpt_terminate_recovery_thread(struct mpt_softc *mpt); 131 static void mpt_recovery_thread(void *arg); 132 static void mpt_recover_commands(struct mpt_softc *mpt); 133 134 static int mpt_scsi_send_tmf(struct mpt_softc *, u_int, u_int, u_int, 135 u_int, u_int, u_int, int); 136 137 static void mpt_fc_post_els(struct mpt_softc *mpt, request_t *, int); 138 static void mpt_post_target_command(struct mpt_softc *, request_t *, int); 139 static int mpt_add_els_buffers(struct mpt_softc *mpt); 140 static int mpt_add_target_commands(struct mpt_softc *mpt); 141 static void mpt_free_els_buffers(struct mpt_softc *mpt); 142 static void mpt_free_target_commands(struct mpt_softc *mpt); 143 static int mpt_enable_lun(struct mpt_softc *, target_id_t, lun_id_t); 144 static int mpt_disable_lun(struct mpt_softc *, target_id_t, lun_id_t); 145 static void mpt_target_start_io(struct mpt_softc *, union ccb *); 146 static cam_status mpt_abort_target_ccb(struct mpt_softc *, union ccb *); 147 static int mpt_abort_target_cmd(struct mpt_softc *, request_t *); 148 static void mpt_scsi_tgt_status(struct mpt_softc *, union ccb *, request_t *, 149 uint8_t, uint8_t const *); 150 static void 151 mpt_scsi_tgt_tsk_mgmt(struct mpt_softc *, request_t *, mpt_task_mgmt_t, 152 tgt_resource_t *, int); 153 static void mpt_tgt_dump_tgt_state(struct mpt_softc *, request_t *); 154 static void mpt_tgt_dump_req_state(struct mpt_softc *, request_t *); 155 static mpt_reply_handler_t mpt_scsi_tgt_reply_handler; 156 157 static uint32_t scsi_io_handler_id = MPT_HANDLER_ID_NONE; 158 static uint32_t scsi_tmf_handler_id = MPT_HANDLER_ID_NONE; 159 static uint32_t fc_els_handler_id = MPT_HANDLER_ID_NONE; 160 161 static mpt_probe_handler_t mpt_cam_probe; 162 static mpt_attach_handler_t mpt_cam_attach; 163 static mpt_enable_handler_t mpt_cam_enable; 164 static mpt_event_handler_t mpt_cam_event; 165 static mpt_reset_handler_t mpt_cam_ioc_reset; 166 static mpt_detach_handler_t mpt_cam_detach; 167 168 static struct mpt_personality mpt_cam_personality = 169 { 170 .name = "mpt_cam", 171 .probe = mpt_cam_probe, 172 .attach = mpt_cam_attach, 173 .enable = mpt_cam_enable, 174 .event = mpt_cam_event, 175 .reset = mpt_cam_ioc_reset, 176 .detach = mpt_cam_detach, 177 }; 178 179 DECLARE_MPT_PERSONALITY(mpt_cam, SI_ORDER_SECOND); 180 181 int 182 mpt_cam_probe(struct mpt_softc *mpt) 183 { 184 /* 185 * Only attach to nodes that support the initiator or target 186 * role or have RAID physical devices that need CAM pass-thru support. 187 */ 188 if ((mpt->mpt_proto_flags & MPI_PORTFACTS_PROTOCOL_INITIATOR) != 0 189 || (mpt->mpt_proto_flags & MPI_PORTFACTS_PROTOCOL_TARGET) != 0 190 || (mpt->ioc_page2 != NULL && mpt->ioc_page2->MaxPhysDisks != 0)) { 191 return (0); 192 } 193 return (ENODEV); 194 } 195 196 int 197 mpt_cam_attach(struct mpt_softc *mpt) 198 { 199 struct cam_devq *devq; 200 mpt_handler_t handler; 201 int maxq; 202 int error; 203 204 TAILQ_INIT(&mpt->request_timeout_list); 205 maxq = (mpt->mpt_global_credits < MPT_MAX_REQUESTS(mpt))? 206 mpt->mpt_global_credits : MPT_MAX_REQUESTS(mpt); 207 208 handler.reply_handler = mpt_scsi_reply_handler; 209 error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler, 210 &scsi_io_handler_id); 211 if (error != 0) { 212 goto cleanup0; 213 } 214 215 handler.reply_handler = mpt_scsi_tmf_reply_handler; 216 error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler, 217 &scsi_tmf_handler_id); 218 if (error != 0) { 219 goto cleanup0; 220 } 221 222 /* 223 * If we're fibre channel and could support target mode, we register 224 * an ELS reply handler and give it resources. 225 */ 226 if (mpt->is_fc && (mpt->role & MPT_ROLE_TARGET) != 0) { 227 handler.reply_handler = mpt_fc_els_reply_handler; 228 error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler, 229 &fc_els_handler_id); 230 if (error != 0) { 231 goto cleanup0; 232 } 233 if (mpt_add_els_buffers(mpt) == FALSE) { 234 error = ENOMEM; 235 goto cleanup0; 236 } 237 maxq -= mpt->els_cmds_allocated; 238 } 239 240 /* 241 * If we support target mode, we register a reply handler for it, 242 * but don't add resources until we actually enable target mode. 243 */ 244 if ((mpt->role & MPT_ROLE_TARGET) != 0) { 245 handler.reply_handler = mpt_scsi_tgt_reply_handler; 246 error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler, 247 &mpt->scsi_tgt_handler_id); 248 if (error != 0) { 249 goto cleanup0; 250 } 251 } 252 253 /* 254 * We keep one request reserved for timeout TMF requests. 255 */ 256 mpt->tmf_req = mpt_get_request(mpt, FALSE); 257 if (mpt->tmf_req == NULL) { 258 mpt_prt(mpt, "Unable to allocate dedicated TMF request!\n"); 259 error = ENOMEM; 260 goto cleanup0; 261 } 262 263 /* 264 * Mark the request as free even though not on the free list. 265 * There is only one TMF request allowed to be outstanding at 266 * a time and the TMF routines perform their own allocation 267 * tracking using the standard state flags. 268 */ 269 mpt->tmf_req->state = REQ_STATE_FREE; 270 maxq--; 271 272 if (mpt_spawn_recovery_thread(mpt) != 0) { 273 mpt_prt(mpt, "Unable to spawn recovery thread!\n"); 274 error = ENOMEM; 275 goto cleanup0; 276 } 277 278 /* 279 * The rest of this is CAM foo, for which we need to drop our lock 280 */ 281 MPTLOCK_2_CAMLOCK(mpt); 282 283 /* 284 * Create the device queue for our SIM(s). 285 */ 286 devq = cam_simq_alloc(maxq); 287 if (devq == NULL) { 288 mpt_prt(mpt, "Unable to allocate CAM SIMQ!\n"); 289 error = ENOMEM; 290 goto cleanup; 291 } 292 293 /* 294 * Construct our SIM entry. 295 */ 296 mpt->sim = cam_sim_alloc(mpt_action, mpt_poll, "mpt", mpt, 297 mpt->unit, 1, maxq, devq); 298 if (mpt->sim == NULL) { 299 mpt_prt(mpt, "Unable to allocate CAM SIM!\n"); 300 cam_simq_free(devq); 301 error = ENOMEM; 302 goto cleanup; 303 } 304 305 /* 306 * Register exactly this bus. 307 */ 308 if (xpt_bus_register(mpt->sim, 0) != CAM_SUCCESS) { 309 mpt_prt(mpt, "Bus registration Failed!\n"); 310 error = ENOMEM; 311 goto cleanup; 312 } 313 314 if (xpt_create_path(&mpt->path, NULL, cam_sim_path(mpt->sim), 315 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 316 mpt_prt(mpt, "Unable to allocate Path!\n"); 317 error = ENOMEM; 318 goto cleanup; 319 } 320 321 /* 322 * Only register a second bus for RAID physical 323 * devices if the controller supports RAID. 324 */ 325 if (mpt->ioc_page2 == NULL || mpt->ioc_page2->MaxPhysDisks == 0) { 326 CAMLOCK_2_MPTLOCK(mpt); 327 return (0); 328 } 329 330 /* 331 * Create a "bus" to export all hidden disks to CAM. 332 */ 333 mpt->phydisk_sim = cam_sim_alloc(mpt_action, mpt_poll, "mpt", mpt, 334 mpt->unit, 1, maxq, devq); 335 if (mpt->phydisk_sim == NULL) { 336 mpt_prt(mpt, "Unable to allocate Physical Disk CAM SIM!\n"); 337 error = ENOMEM; 338 goto cleanup; 339 } 340 341 /* 342 * Register this bus. 343 */ 344 if (xpt_bus_register(mpt->phydisk_sim, 1) != CAM_SUCCESS) { 345 mpt_prt(mpt, "Physical Disk Bus registration Failed!\n"); 346 error = ENOMEM; 347 goto cleanup; 348 } 349 350 if (xpt_create_path(&mpt->phydisk_path, NULL, 351 cam_sim_path(mpt->phydisk_sim), 352 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 353 mpt_prt(mpt, "Unable to allocate Physical Disk Path!\n"); 354 error = ENOMEM; 355 goto cleanup; 356 } 357 CAMLOCK_2_MPTLOCK(mpt); 358 return (0); 359 360 cleanup: 361 CAMLOCK_2_MPTLOCK(mpt); 362 cleanup0: 363 mpt_cam_detach(mpt); 364 return (error); 365 } 366 367 /* 368 * Read FC configuration information 369 */ 370 static int 371 mpt_read_config_info_fc(struct mpt_softc *mpt) 372 { 373 char *topology = NULL; 374 int rv, speed = 0; 375 376 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_FC_PORT, 0, 377 0, &mpt->mpt_fcport_page0.Header, FALSE, 5000); 378 if (rv) { 379 return (-1); 380 } 381 mpt_lprt(mpt, MPT_PRT_DEBUG, "FC Port Page 0 Header: %x %x %x %x\n", 382 mpt->mpt_fcport_page0.Header.PageVersion, 383 mpt->mpt_fcport_page0.Header.PageLength, 384 mpt->mpt_fcport_page0.Header.PageNumber, 385 mpt->mpt_fcport_page0.Header.PageType); 386 387 388 rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->mpt_fcport_page0.Header, 389 sizeof(mpt->mpt_fcport_page0), FALSE, 5000); 390 if (rv) { 391 mpt_prt(mpt, "failed to read FC Port Page 0\n"); 392 return (-1); 393 } 394 395 speed = mpt->mpt_fcport_page0.CurrentSpeed; 396 397 switch (mpt->mpt_fcport_page0.Flags & 398 MPI_FCPORTPAGE0_FLAGS_ATTACH_TYPE_MASK) { 399 case MPI_FCPORTPAGE0_FLAGS_ATTACH_NO_INIT: 400 speed = 0; 401 topology = "<NO LOOP>"; 402 break; 403 case MPI_FCPORTPAGE0_FLAGS_ATTACH_POINT_TO_POINT: 404 topology = "N-Port"; 405 break; 406 case MPI_FCPORTPAGE0_FLAGS_ATTACH_PRIVATE_LOOP: 407 topology = "NL-Port"; 408 break; 409 case MPI_FCPORTPAGE0_FLAGS_ATTACH_FABRIC_DIRECT: 410 topology = "F-Port"; 411 break; 412 case MPI_FCPORTPAGE0_FLAGS_ATTACH_PUBLIC_LOOP: 413 topology = "FL-Port"; 414 break; 415 default: 416 speed = 0; 417 topology = "?"; 418 break; 419 } 420 421 mpt_lprt(mpt, MPT_PRT_INFO, 422 "FC Port Page 0: Topology <%s> WWNN 0x%08x%08x WWPN 0x%08x%08x " 423 "Speed %u-Gbit\n", topology, 424 mpt->mpt_fcport_page0.WWNN.High, 425 mpt->mpt_fcport_page0.WWNN.Low, 426 mpt->mpt_fcport_page0.WWPN.High, 427 mpt->mpt_fcport_page0.WWPN.Low, 428 speed); 429 430 return (0); 431 } 432 433 /* 434 * Set FC configuration information. 435 */ 436 static int 437 mpt_set_initial_config_fc(struct mpt_softc *mpt) 438 { 439 #if 0 440 CONFIG_PAGE_FC_PORT_1 fc; 441 U32 fl; 442 int r, doit = 0; 443 444 if ((mpt->role & MPT_ROLE_TARGET) == 0) { 445 return (0); 446 } 447 448 r = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_FC_PORT, 1, 0, 449 &fc.Header, FALSE, 5000); 450 if (r) { 451 return (mpt_fc_reset_link(mpt, 1)); 452 } 453 454 r = mpt_read_cfg_page(mpt, MPI_CONFIG_ACTION_PAGE_READ_CURRENT, 0, 455 &fc.Header, sizeof (fc), FALSE, 5000); 456 if (r) { 457 return (mpt_fc_reset_link(mpt, 1)); 458 } 459 460 fl = le32toh(fc.Flags); 461 if ((fl & MPI_FCPORTPAGE1_FLAGS_TARGET_MODE_OXID) == 0) { 462 fl |= MPI_FCPORTPAGE1_FLAGS_TARGET_MODE_OXID; 463 doit = 1; 464 } 465 if (doit) { 466 const char *cc; 467 468 mpt_lprt(mpt, MPT_PRT_INFO, 469 "FC Port Page 1: New Flags %x \n", fl); 470 fc.Flags = htole32(fl); 471 r = mpt_write_cfg_page(mpt, 472 MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT, 0, &fc.Header, 473 sizeof(fc), FALSE, 5000); 474 if (r != 0) { 475 cc = "FC PORT PAGE1 UPDATE: FAILED\n"; 476 } else { 477 cc = "FC PORT PAGE1 UPDATED: SYSTEM NEEDS RESET\n"; 478 } 479 mpt_prt(mpt, cc); 480 } 481 #endif 482 return (0); 483 } 484 485 /* 486 * Read SAS configuration information. Nothing to do yet. 487 */ 488 static int 489 mpt_read_config_info_sas(struct mpt_softc *mpt) 490 { 491 return (0); 492 } 493 494 /* 495 * Set SAS configuration information. Nothing to do yet. 496 */ 497 static int 498 mpt_set_initial_config_sas(struct mpt_softc *mpt) 499 { 500 return (0); 501 } 502 503 /* 504 * Read SCSI configuration information 505 */ 506 static int 507 mpt_read_config_info_spi(struct mpt_softc *mpt) 508 { 509 int rv, i; 510 511 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_PORT, 0, 0, 512 &mpt->mpt_port_page0.Header, FALSE, 5000); 513 if (rv) { 514 return (-1); 515 } 516 mpt_lprt(mpt, MPT_PRT_DEBUG, "SPI Port Page 0 Header: %x %x %x %x\n", 517 mpt->mpt_port_page0.Header.PageVersion, 518 mpt->mpt_port_page0.Header.PageLength, 519 mpt->mpt_port_page0.Header.PageNumber, 520 mpt->mpt_port_page0.Header.PageType); 521 522 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_PORT, 1, 0, 523 &mpt->mpt_port_page1.Header, FALSE, 5000); 524 if (rv) { 525 return (-1); 526 } 527 mpt_lprt(mpt, MPT_PRT_DEBUG, "SPI Port Page 1 Header: %x %x %x %x\n", 528 mpt->mpt_port_page1.Header.PageVersion, 529 mpt->mpt_port_page1.Header.PageLength, 530 mpt->mpt_port_page1.Header.PageNumber, 531 mpt->mpt_port_page1.Header.PageType); 532 533 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_PORT, 2, 0, 534 &mpt->mpt_port_page2.Header, FALSE, 5000); 535 if (rv) { 536 return (-1); 537 } 538 mpt_lprt(mpt, MPT_PRT_DEBUG, "SPI Port Page 2 Header: %x %x %x %x\n", 539 mpt->mpt_port_page2.Header.PageVersion, 540 mpt->mpt_port_page2.Header.PageLength, 541 mpt->mpt_port_page2.Header.PageNumber, 542 mpt->mpt_port_page2.Header.PageType); 543 544 for (i = 0; i < 16; i++) { 545 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_DEVICE, 546 0, i, &mpt->mpt_dev_page0[i].Header, FALSE, 5000); 547 if (rv) { 548 return (-1); 549 } 550 mpt_lprt(mpt, MPT_PRT_DEBUG, 551 "SPI Target %d Device Page 0 Header: %x %x %x %x\n", i, 552 mpt->mpt_dev_page0[i].Header.PageVersion, 553 mpt->mpt_dev_page0[i].Header.PageLength, 554 mpt->mpt_dev_page0[i].Header.PageNumber, 555 mpt->mpt_dev_page0[i].Header.PageType); 556 557 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_DEVICE, 558 1, i, &mpt->mpt_dev_page1[i].Header, FALSE, 5000); 559 if (rv) { 560 return (-1); 561 } 562 mpt_lprt(mpt, MPT_PRT_DEBUG, 563 "SPI Target %d Device Page 1 Header: %x %x %x %x\n", i, 564 mpt->mpt_dev_page1[i].Header.PageVersion, 565 mpt->mpt_dev_page1[i].Header.PageLength, 566 mpt->mpt_dev_page1[i].Header.PageNumber, 567 mpt->mpt_dev_page1[i].Header.PageType); 568 } 569 570 /* 571 * At this point, we don't *have* to fail. As long as we have 572 * valid config header information, we can (barely) lurch 573 * along. 574 */ 575 576 rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->mpt_port_page0.Header, 577 sizeof(mpt->mpt_port_page0), FALSE, 5000); 578 if (rv) { 579 mpt_prt(mpt, "failed to read SPI Port Page 0\n"); 580 } else { 581 mpt_lprt(mpt, MPT_PRT_DEBUG, 582 "SPI Port Page 0: Capabilities %x PhysicalInterface %x\n", 583 mpt->mpt_port_page0.Capabilities, 584 mpt->mpt_port_page0.PhysicalInterface); 585 } 586 587 rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->mpt_port_page1.Header, 588 sizeof(mpt->mpt_port_page1), FALSE, 5000); 589 if (rv) { 590 mpt_prt(mpt, "failed to read SPI Port Page 1\n"); 591 } else { 592 mpt_lprt(mpt, MPT_PRT_DEBUG, 593 "SPI Port Page 1: Configuration %x OnBusTimerValue %x\n", 594 mpt->mpt_port_page1.Configuration, 595 mpt->mpt_port_page1.OnBusTimerValue); 596 } 597 598 rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->mpt_port_page2.Header, 599 sizeof(mpt->mpt_port_page2), FALSE, 5000); 600 if (rv) { 601 mpt_prt(mpt, "failed to read SPI Port Page 2\n"); 602 } else { 603 mpt_lprt(mpt, MPT_PRT_NEGOTIATION, 604 "Port Page 2: Flags %x Settings %x\n", 605 mpt->mpt_port_page2.PortFlags, 606 mpt->mpt_port_page2.PortSettings); 607 for (i = 0; i < 16; i++) { 608 mpt_lprt(mpt, MPT_PRT_NEGOTIATION, 609 " Port Page 2 Tgt %d: timo %x SF %x Flags %x\n", 610 i, mpt->mpt_port_page2.DeviceSettings[i].Timeout, 611 mpt->mpt_port_page2.DeviceSettings[i].SyncFactor, 612 mpt->mpt_port_page2.DeviceSettings[i].DeviceFlags); 613 } 614 } 615 616 for (i = 0; i < 16; i++) { 617 rv = mpt_read_cur_cfg_page(mpt, i, 618 &mpt->mpt_dev_page0[i].Header, sizeof(*mpt->mpt_dev_page0), 619 FALSE, 5000); 620 if (rv) { 621 mpt_prt(mpt, 622 "cannot read SPI Target %d Device Page 0\n", i); 623 continue; 624 } 625 mpt_lprt(mpt, MPT_PRT_NEGOTIATION, 626 "target %d page 0: Negotiated Params %x Information %x\n", 627 i, mpt->mpt_dev_page0[i].NegotiatedParameters, 628 mpt->mpt_dev_page0[i].Information); 629 630 rv = mpt_read_cur_cfg_page(mpt, i, 631 &mpt->mpt_dev_page1[i].Header, sizeof(*mpt->mpt_dev_page1), 632 FALSE, 5000); 633 if (rv) { 634 mpt_prt(mpt, 635 "cannot read SPI Target %d Device Page 1\n", i); 636 continue; 637 } 638 mpt_lprt(mpt, MPT_PRT_NEGOTIATION, 639 "target %d page 1: Requested Params %x Configuration %x\n", 640 i, mpt->mpt_dev_page1[i].RequestedParameters, 641 mpt->mpt_dev_page1[i].Configuration); 642 } 643 return (0); 644 } 645 646 /* 647 * Validate SPI configuration information. 648 * 649 * In particular, validate SPI Port Page 1. 650 */ 651 static int 652 mpt_set_initial_config_spi(struct mpt_softc *mpt) 653 { 654 int i, j, pp1val = ((1 << mpt->mpt_ini_id) << 16) | mpt->mpt_ini_id; 655 int error; 656 657 mpt->mpt_disc_enable = 0xff; 658 mpt->mpt_tag_enable = 0; 659 660 if (mpt->mpt_port_page1.Configuration != pp1val) { 661 CONFIG_PAGE_SCSI_PORT_1 tmp; 662 663 mpt_prt(mpt, "SPI Port Page 1 Config value bad (%x)- should " 664 "be %x\n", mpt->mpt_port_page1.Configuration, pp1val); 665 tmp = mpt->mpt_port_page1; 666 tmp.Configuration = pp1val; 667 error = mpt_write_cur_cfg_page(mpt, 0, 668 &tmp.Header, sizeof(tmp), FALSE, 5000); 669 if (error) { 670 return (-1); 671 } 672 error = mpt_read_cur_cfg_page(mpt, 0, 673 &tmp.Header, sizeof(tmp), FALSE, 5000); 674 if (error) { 675 return (-1); 676 } 677 if (tmp.Configuration != pp1val) { 678 mpt_prt(mpt, 679 "failed to reset SPI Port Page 1 Config value\n"); 680 return (-1); 681 } 682 mpt->mpt_port_page1 = tmp; 683 } 684 685 /* 686 * The purpose of this exercise is to get 687 * all targets back to async/narrow. 688 * 689 * We skip this step if the BIOS has already negotiated 690 * speeds with the targets and does not require us to 691 * do Domain Validation. 692 */ 693 i = mpt->mpt_port_page2.PortSettings & 694 MPI_SCSIPORTPAGE2_PORT_MASK_NEGO_MASTER_SETTINGS; 695 j = mpt->mpt_port_page2.PortFlags & 696 MPI_SCSIPORTPAGE2_PORT_FLAGS_DV_MASK; 697 if (i == MPI_SCSIPORTPAGE2_PORT_ALL_MASTER_SETTINGS /* && 698 j == MPI_SCSIPORTPAGE2_PORT_FLAGS_OFF_DV */) { 699 mpt_lprt(mpt, MPT_PRT_NEGOTIATION, 700 "honoring BIOS transfer negotiations\n"); 701 } else { 702 for (i = 0; i < 16; i++) { 703 mpt->mpt_dev_page1[i].RequestedParameters = 0; 704 mpt->mpt_dev_page1[i].Configuration = 0; 705 (void) mpt_update_spi_config(mpt, i); 706 } 707 } 708 return (0); 709 } 710 711 int 712 mpt_cam_enable(struct mpt_softc *mpt) 713 { 714 if (mpt->is_fc) { 715 if (mpt_read_config_info_fc(mpt)) { 716 return (EIO); 717 } 718 if (mpt_set_initial_config_fc(mpt)) { 719 return (EIO); 720 } 721 } else if (mpt->is_sas) { 722 if (mpt_read_config_info_sas(mpt)) { 723 return (EIO); 724 } 725 if (mpt_set_initial_config_sas(mpt)) { 726 return (EIO); 727 } 728 } else if (mpt->is_spi) { 729 if (mpt_read_config_info_spi(mpt)) { 730 return (EIO); 731 } 732 if (mpt_set_initial_config_spi(mpt)) { 733 return (EIO); 734 } 735 } 736 return (0); 737 } 738 739 void 740 mpt_cam_detach(struct mpt_softc *mpt) 741 { 742 mpt_handler_t handler; 743 744 mpt_terminate_recovery_thread(mpt); 745 746 handler.reply_handler = mpt_scsi_reply_handler; 747 mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler, 748 scsi_io_handler_id); 749 handler.reply_handler = mpt_scsi_tmf_reply_handler; 750 mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler, 751 scsi_tmf_handler_id); 752 handler.reply_handler = mpt_fc_els_reply_handler; 753 mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler, 754 fc_els_handler_id); 755 handler.reply_handler = mpt_scsi_tgt_reply_handler; 756 mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler, 757 mpt->scsi_tgt_handler_id); 758 759 if (mpt->tmf_req != NULL) { 760 mpt->tmf_req->state = REQ_STATE_ALLOCATED; 761 mpt_free_request(mpt, mpt->tmf_req); 762 mpt->tmf_req = NULL; 763 } 764 765 if (mpt->sim != NULL) { 766 MPTLOCK_2_CAMLOCK(mpt); 767 xpt_free_path(mpt->path); 768 xpt_bus_deregister(cam_sim_path(mpt->sim)); 769 cam_sim_free(mpt->sim, TRUE); 770 mpt->sim = NULL; 771 CAMLOCK_2_MPTLOCK(mpt); 772 } 773 774 if (mpt->phydisk_sim != NULL) { 775 MPTLOCK_2_CAMLOCK(mpt); 776 xpt_free_path(mpt->phydisk_path); 777 xpt_bus_deregister(cam_sim_path(mpt->phydisk_sim)); 778 cam_sim_free(mpt->phydisk_sim, TRUE); 779 mpt->phydisk_sim = NULL; 780 CAMLOCK_2_MPTLOCK(mpt); 781 } 782 } 783 784 /* This routine is used after a system crash to dump core onto the swap device. 785 */ 786 static void 787 mpt_poll(struct cam_sim *sim) 788 { 789 struct mpt_softc *mpt; 790 791 mpt = (struct mpt_softc *)cam_sim_softc(sim); 792 MPT_LOCK(mpt); 793 mpt_intr(mpt); 794 MPT_UNLOCK(mpt); 795 } 796 797 /* 798 * Watchdog timeout routine for SCSI requests. 799 */ 800 static void 801 mpt_timeout(void *arg) 802 { 803 union ccb *ccb; 804 struct mpt_softc *mpt; 805 request_t *req; 806 807 ccb = (union ccb *)arg; 808 mpt = ccb->ccb_h.ccb_mpt_ptr; 809 810 MPT_LOCK(mpt); 811 req = ccb->ccb_h.ccb_req_ptr; 812 mpt_prt(mpt, "request %p:%u timed out for ccb %p (req->ccb %p)\n", req, 813 req->serno, ccb, req->ccb); 814 /* XXX: WHAT ARE WE TRYING TO DO HERE? */ 815 if ((req->state & REQ_STATE_QUEUED) == REQ_STATE_QUEUED) { 816 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 817 TAILQ_INSERT_TAIL(&mpt->request_timeout_list, req, links); 818 req->state |= REQ_STATE_TIMEDOUT; 819 mpt_wakeup_recovery_thread(mpt); 820 } 821 MPT_UNLOCK(mpt); 822 } 823 824 /* 825 * Callback routine from "bus_dmamap_load" or, in simple cases, called directly. 826 * 827 * Takes a list of physical segments and builds the SGL for SCSI IO command 828 * and forwards the commard to the IOC after one last check that CAM has not 829 * aborted the transaction. 830 */ 831 static void 832 mpt_execute_req_a64(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) 833 { 834 request_t *req, *trq; 835 char *mpt_off; 836 union ccb *ccb; 837 struct mpt_softc *mpt; 838 int seg, first_lim; 839 uint32_t flags, nxt_off; 840 void *sglp = NULL; 841 MSG_REQUEST_HEADER *hdrp; 842 SGE_SIMPLE64 *se; 843 SGE_CHAIN64 *ce; 844 int istgt = 0; 845 846 req = (request_t *)arg; 847 ccb = req->ccb; 848 849 mpt = ccb->ccb_h.ccb_mpt_ptr; 850 req = ccb->ccb_h.ccb_req_ptr; 851 852 hdrp = req->req_vbuf; 853 mpt_off = req->req_vbuf; 854 855 if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) { 856 error = EFBIG; 857 } 858 859 if (error == 0) { 860 switch (hdrp->Function) { 861 case MPI_FUNCTION_SCSI_IO_REQUEST: 862 case MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH: 863 istgt = 0; 864 sglp = &((PTR_MSG_SCSI_IO_REQUEST)hdrp)->SGL; 865 break; 866 case MPI_FUNCTION_TARGET_ASSIST: 867 istgt = 1; 868 sglp = &((PTR_MSG_TARGET_ASSIST_REQUEST)hdrp)->SGL; 869 break; 870 default: 871 mpt_prt(mpt, "bad fct 0x%x in mpt_execute_req_a64\n", 872 hdrp->Function); 873 error = EINVAL; 874 break; 875 } 876 } 877 878 if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) { 879 error = EFBIG; 880 mpt_prt(mpt, "segment count %d too large (max %u)\n", 881 nseg, mpt->max_seg_cnt); 882 } 883 884 bad: 885 if (error != 0) { 886 if (error != EFBIG && error != ENOMEM) { 887 mpt_prt(mpt, "mpt_execute_req_a64: err %d\n", error); 888 } 889 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG) { 890 cam_status status; 891 mpt_freeze_ccb(ccb); 892 if (error == EFBIG) { 893 status = CAM_REQ_TOO_BIG; 894 } else if (error == ENOMEM) { 895 if (mpt->outofbeer == 0) { 896 mpt->outofbeer = 1; 897 xpt_freeze_simq(mpt->sim, 1); 898 mpt_lprt(mpt, MPT_PRT_DEBUG, 899 "FREEZEQ\n"); 900 } 901 status = CAM_REQUEUE_REQ; 902 } else { 903 status = CAM_REQ_CMP_ERR; 904 } 905 mpt_set_ccb_status(ccb, status); 906 } 907 if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) { 908 request_t *cmd_req = 909 MPT_TAG_2_REQ(mpt, ccb->csio.tag_id); 910 MPT_TGT_STATE(mpt, cmd_req)->state = TGT_STATE_IN_CAM; 911 MPT_TGT_STATE(mpt, cmd_req)->ccb = NULL; 912 MPT_TGT_STATE(mpt, cmd_req)->req = NULL; 913 } 914 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 915 KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__)); 916 xpt_done(ccb); 917 CAMLOCK_2_MPTLOCK(mpt); 918 mpt_free_request(mpt, req); 919 MPTLOCK_2_CAMLOCK(mpt); 920 return; 921 } 922 923 /* 924 * No data to transfer? 925 * Just make a single simple SGL with zero length. 926 */ 927 928 if (mpt->verbose >= MPT_PRT_DEBUG) { 929 int tidx = ((char *)sglp) - mpt_off; 930 memset(&mpt_off[tidx], 0xff, MPT_REQUEST_AREA - tidx); 931 } 932 933 if (nseg == 0) { 934 SGE_SIMPLE32 *se1 = (SGE_SIMPLE32 *) sglp; 935 MPI_pSGE_SET_FLAGS(se1, 936 (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | 937 MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_END_OF_LIST)); 938 goto out; 939 } 940 941 942 flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_64_BIT_ADDRESSING; 943 if (istgt == 0) { 944 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) { 945 flags |= MPI_SGE_FLAGS_HOST_TO_IOC; 946 } 947 } else { 948 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { 949 flags |= MPI_SGE_FLAGS_HOST_TO_IOC; 950 } 951 } 952 953 if (!(ccb->ccb_h.flags & (CAM_SG_LIST_PHYS|CAM_DATA_PHYS))) { 954 bus_dmasync_op_t op; 955 if (istgt == 0) { 956 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { 957 op = BUS_DMASYNC_PREREAD; 958 } else { 959 op = BUS_DMASYNC_PREWRITE; 960 } 961 } else { 962 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { 963 op = BUS_DMASYNC_PREWRITE; 964 } else { 965 op = BUS_DMASYNC_PREREAD; 966 } 967 } 968 bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op); 969 } 970 971 /* 972 * Okay, fill in what we can at the end of the command frame. 973 * If we have up to MPT_NSGL_FIRST, we can fit them all into 974 * the command frame. 975 * 976 * Otherwise, we fill up through MPT_NSGL_FIRST less one 977 * SIMPLE64 pointers and start doing CHAIN64 entries after 978 * that. 979 */ 980 981 if (nseg < MPT_NSGL_FIRST(mpt)) { 982 first_lim = nseg; 983 } else { 984 /* 985 * Leave room for CHAIN element 986 */ 987 first_lim = MPT_NSGL_FIRST(mpt) - 1; 988 } 989 990 se = (SGE_SIMPLE64 *) sglp; 991 for (seg = 0; seg < first_lim; seg++, se++, dm_segs++) { 992 uint32_t tf; 993 994 memset(se, 0, sizeof (*se)); 995 se->Address.Low = dm_segs->ds_addr; 996 if (sizeof(bus_addr_t) > 4) { 997 se->Address.High = ((uint64_t) dm_segs->ds_addr) >> 32; 998 } 999 MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len); 1000 tf = flags; 1001 if (seg == first_lim - 1) { 1002 tf |= MPI_SGE_FLAGS_LAST_ELEMENT; 1003 } 1004 if (seg == nseg - 1) { 1005 tf |= MPI_SGE_FLAGS_END_OF_LIST | 1006 MPI_SGE_FLAGS_END_OF_BUFFER; 1007 } 1008 MPI_pSGE_SET_FLAGS(se, tf); 1009 } 1010 1011 if (seg == nseg) { 1012 goto out; 1013 } 1014 1015 /* 1016 * Tell the IOC where to find the first chain element. 1017 */ 1018 hdrp->ChainOffset = ((char *)se - (char *)hdrp) >> 2; 1019 nxt_off = MPT_RQSL(mpt); 1020 trq = req; 1021 1022 /* 1023 * Make up the rest of the data segments out of a chain element 1024 * (contiained in the current request frame) which points to 1025 * SIMPLE64 elements in the next request frame, possibly ending 1026 * with *another* chain element (if there's more). 1027 */ 1028 while (seg < nseg) { 1029 int this_seg_lim; 1030 uint32_t tf, cur_off; 1031 bus_addr_t chain_list_addr; 1032 1033 /* 1034 * Point to the chain descriptor. Note that the chain 1035 * descriptor is at the end of the *previous* list (whether 1036 * chain or simple). 1037 */ 1038 ce = (SGE_CHAIN64 *) se; 1039 1040 /* 1041 * Before we change our current pointer, make sure we won't 1042 * overflow the request area with this frame. Note that we 1043 * test against 'greater than' here as it's okay in this case 1044 * to have next offset be just outside the request area. 1045 */ 1046 if ((nxt_off + MPT_RQSL(mpt)) > MPT_REQUEST_AREA) { 1047 nxt_off = MPT_REQUEST_AREA; 1048 goto next_chain; 1049 } 1050 1051 /* 1052 * Set our SGE element pointer to the beginning of the chain 1053 * list and update our next chain list offset. 1054 */ 1055 se = (SGE_SIMPLE64 *) &mpt_off[nxt_off]; 1056 cur_off = nxt_off; 1057 nxt_off += MPT_RQSL(mpt); 1058 1059 /* 1060 * Now initialized the chain descriptor. 1061 */ 1062 memset(ce, 0, sizeof (*ce)); 1063 1064 /* 1065 * Get the physical address of the chain list. 1066 */ 1067 chain_list_addr = trq->req_pbuf; 1068 chain_list_addr += cur_off; 1069 if (sizeof (bus_addr_t) > 4) { 1070 ce->Address.High = 1071 (uint32_t) ((uint64_t)chain_list_addr >> 32); 1072 } 1073 ce->Address.Low = (uint32_t) chain_list_addr; 1074 ce->Flags = MPI_SGE_FLAGS_CHAIN_ELEMENT | 1075 MPI_SGE_FLAGS_64_BIT_ADDRESSING; 1076 1077 /* 1078 * If we have more than a frame's worth of segments left, 1079 * set up the chain list to have the last element be another 1080 * chain descriptor. 1081 */ 1082 if ((nseg - seg) > MPT_NSGL(mpt)) { 1083 this_seg_lim = seg + MPT_NSGL(mpt) - 1; 1084 /* 1085 * The length of the chain is the length in bytes of the 1086 * number of segments plus the next chain element. 1087 * 1088 * The next chain descriptor offset is the length, 1089 * in words, of the number of segments. 1090 */ 1091 ce->Length = (this_seg_lim - seg) * 1092 sizeof (SGE_SIMPLE64); 1093 ce->NextChainOffset = ce->Length >> 2; 1094 ce->Length += sizeof (SGE_CHAIN64); 1095 } else { 1096 this_seg_lim = nseg; 1097 ce->Length = (this_seg_lim - seg) * 1098 sizeof (SGE_SIMPLE64); 1099 } 1100 1101 /* 1102 * Fill in the chain list SGE elements with our segment data. 1103 * 1104 * If we're the last element in this chain list, set the last 1105 * element flag. If we're the completely last element period, 1106 * set the end of list and end of buffer flags. 1107 */ 1108 while (seg < this_seg_lim) { 1109 memset(se, 0, sizeof (*se)); 1110 se->Address.Low = dm_segs->ds_addr; 1111 if (sizeof (bus_addr_t) > 4) { 1112 se->Address.High = 1113 ((uint64_t)dm_segs->ds_addr) >> 32; 1114 } 1115 MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len); 1116 tf = flags; 1117 if (seg == this_seg_lim - 1) { 1118 tf |= MPI_SGE_FLAGS_LAST_ELEMENT; 1119 } 1120 if (seg == nseg - 1) { 1121 tf |= MPI_SGE_FLAGS_END_OF_LIST | 1122 MPI_SGE_FLAGS_END_OF_BUFFER; 1123 } 1124 MPI_pSGE_SET_FLAGS(se, tf); 1125 se++; 1126 seg++; 1127 dm_segs++; 1128 } 1129 1130 next_chain: 1131 /* 1132 * If we have more segments to do and we've used up all of 1133 * the space in a request area, go allocate another one 1134 * and chain to that. 1135 */ 1136 if (seg < nseg && nxt_off >= MPT_REQUEST_AREA) { 1137 request_t *nrq; 1138 1139 CAMLOCK_2_MPTLOCK(mpt); 1140 nrq = mpt_get_request(mpt, FALSE); 1141 MPTLOCK_2_CAMLOCK(mpt); 1142 1143 if (nrq == NULL) { 1144 error = ENOMEM; 1145 goto bad; 1146 } 1147 1148 /* 1149 * Append the new request area on the tail of our list. 1150 */ 1151 if ((trq = req->chain) == NULL) { 1152 req->chain = nrq; 1153 } else { 1154 while (trq->chain != NULL) { 1155 trq = trq->chain; 1156 } 1157 trq->chain = nrq; 1158 } 1159 trq = nrq; 1160 mpt_off = trq->req_vbuf; 1161 if (mpt->verbose >= MPT_PRT_DEBUG) { 1162 memset(mpt_off, 0xff, MPT_REQUEST_AREA); 1163 } 1164 nxt_off = 0; 1165 } 1166 } 1167 out: 1168 1169 /* 1170 * Last time we need to check if this CCB needs to be aborted. 1171 */ 1172 if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 1173 if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) { 1174 request_t *cmd_req = 1175 MPT_TAG_2_REQ(mpt, ccb->csio.tag_id); 1176 MPT_TGT_STATE(mpt, cmd_req)->state = TGT_STATE_IN_CAM; 1177 MPT_TGT_STATE(mpt, cmd_req)->ccb = NULL; 1178 MPT_TGT_STATE(mpt, cmd_req)->req = NULL; 1179 } 1180 mpt_prt(mpt, 1181 "mpt_execute_req_a64: I/O cancelled (status 0x%x)\n", 1182 ccb->ccb_h.status & CAM_STATUS_MASK); 1183 if (nseg && (ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) { 1184 bus_dmamap_unload(mpt->buffer_dmat, req->dmap); 1185 } 1186 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 1187 KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__)); 1188 xpt_done(ccb); 1189 CAMLOCK_2_MPTLOCK(mpt); 1190 mpt_free_request(mpt, req); 1191 MPTLOCK_2_CAMLOCK(mpt); 1192 return; 1193 } 1194 1195 ccb->ccb_h.status |= CAM_SIM_QUEUED; 1196 if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) { 1197 ccb->ccb_h.timeout_ch = 1198 timeout(mpt_timeout, (caddr_t)ccb, 1199 (ccb->ccb_h.timeout * hz) / 1000); 1200 } else { 1201 callout_handle_init(&ccb->ccb_h.timeout_ch); 1202 } 1203 if (mpt->verbose > MPT_PRT_DEBUG) { 1204 int nc = 0; 1205 mpt_print_request(req->req_vbuf); 1206 for (trq = req->chain; trq; trq = trq->chain) { 1207 printf(" Additional Chain Area %d\n", nc++); 1208 mpt_dump_sgl(trq->req_vbuf, 0); 1209 } 1210 } 1211 1212 if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) { 1213 request_t *cmd_req = MPT_TAG_2_REQ(mpt, ccb->csio.tag_id); 1214 mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, cmd_req); 1215 #ifdef WE_TRUST_AUTO_GOOD_STATUS 1216 if ((ccb->ccb_h.flags & CAM_SEND_STATUS) && 1217 csio->scsi_status == SCSI_STATUS_OK && tgt->resid == 0) { 1218 tgt->state = TGT_STATE_MOVING_DATA_AND_STATUS; 1219 } else { 1220 tgt->state = TGT_STATE_MOVING_DATA; 1221 } 1222 #else 1223 tgt->state = TGT_STATE_MOVING_DATA; 1224 #endif 1225 } 1226 CAMLOCK_2_MPTLOCK(mpt); 1227 mpt_send_cmd(mpt, req); 1228 MPTLOCK_2_CAMLOCK(mpt); 1229 } 1230 1231 static void 1232 mpt_execute_req(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) 1233 { 1234 request_t *req, *trq; 1235 char *mpt_off; 1236 union ccb *ccb; 1237 struct mpt_softc *mpt; 1238 int seg, first_lim; 1239 uint32_t flags, nxt_off; 1240 void *sglp = NULL; 1241 MSG_REQUEST_HEADER *hdrp; 1242 SGE_SIMPLE32 *se; 1243 SGE_CHAIN32 *ce; 1244 int istgt = 0; 1245 1246 req = (request_t *)arg; 1247 ccb = req->ccb; 1248 1249 mpt = ccb->ccb_h.ccb_mpt_ptr; 1250 req = ccb->ccb_h.ccb_req_ptr; 1251 1252 hdrp = req->req_vbuf; 1253 mpt_off = req->req_vbuf; 1254 1255 1256 if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) { 1257 error = EFBIG; 1258 } 1259 1260 if (error == 0) { 1261 switch (hdrp->Function) { 1262 case MPI_FUNCTION_SCSI_IO_REQUEST: 1263 case MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH: 1264 sglp = &((PTR_MSG_SCSI_IO_REQUEST)hdrp)->SGL; 1265 break; 1266 case MPI_FUNCTION_TARGET_ASSIST: 1267 istgt = 1; 1268 sglp = &((PTR_MSG_TARGET_ASSIST_REQUEST)hdrp)->SGL; 1269 break; 1270 default: 1271 mpt_prt(mpt, "bad fct 0x%x in mpt_execute_req\n", 1272 hdrp->Function); 1273 error = EINVAL; 1274 break; 1275 } 1276 } 1277 1278 if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) { 1279 error = EFBIG; 1280 mpt_prt(mpt, "segment count %d too large (max %u)\n", 1281 nseg, mpt->max_seg_cnt); 1282 } 1283 1284 bad: 1285 if (error != 0) { 1286 if (error != EFBIG && error != ENOMEM) { 1287 mpt_prt(mpt, "mpt_execute_req: err %d\n", error); 1288 } 1289 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG) { 1290 cam_status status; 1291 mpt_freeze_ccb(ccb); 1292 if (error == EFBIG) { 1293 status = CAM_REQ_TOO_BIG; 1294 } else if (error == ENOMEM) { 1295 if (mpt->outofbeer == 0) { 1296 mpt->outofbeer = 1; 1297 xpt_freeze_simq(mpt->sim, 1); 1298 mpt_lprt(mpt, MPT_PRT_DEBUG, 1299 "FREEZEQ\n"); 1300 } 1301 status = CAM_REQUEUE_REQ; 1302 } else { 1303 status = CAM_REQ_CMP_ERR; 1304 } 1305 mpt_set_ccb_status(ccb, status); 1306 } 1307 if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) { 1308 request_t *cmd_req = 1309 MPT_TAG_2_REQ(mpt, ccb->csio.tag_id); 1310 MPT_TGT_STATE(mpt, cmd_req)->state = TGT_STATE_IN_CAM; 1311 MPT_TGT_STATE(mpt, cmd_req)->ccb = NULL; 1312 MPT_TGT_STATE(mpt, cmd_req)->req = NULL; 1313 } 1314 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 1315 KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__)); 1316 xpt_done(ccb); 1317 CAMLOCK_2_MPTLOCK(mpt); 1318 mpt_free_request(mpt, req); 1319 MPTLOCK_2_CAMLOCK(mpt); 1320 return; 1321 } 1322 1323 /* 1324 * No data to transfer? 1325 * Just make a single simple SGL with zero length. 1326 */ 1327 1328 if (mpt->verbose >= MPT_PRT_DEBUG) { 1329 int tidx = ((char *)sglp) - mpt_off; 1330 memset(&mpt_off[tidx], 0xff, MPT_REQUEST_AREA - tidx); 1331 } 1332 1333 if (nseg == 0) { 1334 SGE_SIMPLE32 *se1 = (SGE_SIMPLE32 *) sglp; 1335 MPI_pSGE_SET_FLAGS(se1, 1336 (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | 1337 MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_END_OF_LIST)); 1338 goto out; 1339 } 1340 1341 1342 flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT; 1343 if (istgt == 0) { 1344 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) { 1345 flags |= MPI_SGE_FLAGS_HOST_TO_IOC; 1346 } 1347 } else { 1348 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { 1349 flags |= MPI_SGE_FLAGS_HOST_TO_IOC; 1350 } 1351 } 1352 1353 if (!(ccb->ccb_h.flags & (CAM_SG_LIST_PHYS|CAM_DATA_PHYS))) { 1354 bus_dmasync_op_t op; 1355 if (istgt) { 1356 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { 1357 op = BUS_DMASYNC_PREREAD; 1358 } else { 1359 op = BUS_DMASYNC_PREWRITE; 1360 } 1361 } else { 1362 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { 1363 op = BUS_DMASYNC_PREWRITE; 1364 } else { 1365 op = BUS_DMASYNC_PREREAD; 1366 } 1367 } 1368 bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op); 1369 } 1370 1371 /* 1372 * Okay, fill in what we can at the end of the command frame. 1373 * If we have up to MPT_NSGL_FIRST, we can fit them all into 1374 * the command frame. 1375 * 1376 * Otherwise, we fill up through MPT_NSGL_FIRST less one 1377 * SIMPLE32 pointers and start doing CHAIN32 entries after 1378 * that. 1379 */ 1380 1381 if (nseg < MPT_NSGL_FIRST(mpt)) { 1382 first_lim = nseg; 1383 } else { 1384 /* 1385 * Leave room for CHAIN element 1386 */ 1387 first_lim = MPT_NSGL_FIRST(mpt) - 1; 1388 } 1389 1390 se = (SGE_SIMPLE32 *) sglp; 1391 for (seg = 0; seg < first_lim; seg++, se++, dm_segs++) { 1392 uint32_t tf; 1393 1394 memset(se, 0,sizeof (*se)); 1395 se->Address = dm_segs->ds_addr; 1396 1397 1398 1399 MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len); 1400 tf = flags; 1401 if (seg == first_lim - 1) { 1402 tf |= MPI_SGE_FLAGS_LAST_ELEMENT; 1403 } 1404 if (seg == nseg - 1) { 1405 tf |= MPI_SGE_FLAGS_END_OF_LIST | 1406 MPI_SGE_FLAGS_END_OF_BUFFER; 1407 } 1408 MPI_pSGE_SET_FLAGS(se, tf); 1409 } 1410 1411 if (seg == nseg) { 1412 goto out; 1413 } 1414 1415 /* 1416 * Tell the IOC where to find the first chain element. 1417 */ 1418 hdrp->ChainOffset = ((char *)se - (char *)hdrp) >> 2; 1419 nxt_off = MPT_RQSL(mpt); 1420 trq = req; 1421 1422 /* 1423 * Make up the rest of the data segments out of a chain element 1424 * (contiained in the current request frame) which points to 1425 * SIMPLE32 elements in the next request frame, possibly ending 1426 * with *another* chain element (if there's more). 1427 */ 1428 while (seg < nseg) { 1429 int this_seg_lim; 1430 uint32_t tf, cur_off; 1431 bus_addr_t chain_list_addr; 1432 1433 /* 1434 * Point to the chain descriptor. Note that the chain 1435 * descriptor is at the end of the *previous* list (whether 1436 * chain or simple). 1437 */ 1438 ce = (SGE_CHAIN32 *) se; 1439 1440 /* 1441 * Before we change our current pointer, make sure we won't 1442 * overflow the request area with this frame. Note that we 1443 * test against 'greater than' here as it's okay in this case 1444 * to have next offset be just outside the request area. 1445 */ 1446 if ((nxt_off + MPT_RQSL(mpt)) > MPT_REQUEST_AREA) { 1447 nxt_off = MPT_REQUEST_AREA; 1448 goto next_chain; 1449 } 1450 1451 /* 1452 * Set our SGE element pointer to the beginning of the chain 1453 * list and update our next chain list offset. 1454 */ 1455 se = (SGE_SIMPLE32 *) &mpt_off[nxt_off]; 1456 cur_off = nxt_off; 1457 nxt_off += MPT_RQSL(mpt); 1458 1459 /* 1460 * Now initialized the chain descriptor. 1461 */ 1462 memset(ce, 0, sizeof (*ce)); 1463 1464 /* 1465 * Get the physical address of the chain list. 1466 */ 1467 chain_list_addr = trq->req_pbuf; 1468 chain_list_addr += cur_off; 1469 1470 1471 1472 ce->Address = chain_list_addr; 1473 ce->Flags = MPI_SGE_FLAGS_CHAIN_ELEMENT; 1474 1475 1476 /* 1477 * If we have more than a frame's worth of segments left, 1478 * set up the chain list to have the last element be another 1479 * chain descriptor. 1480 */ 1481 if ((nseg - seg) > MPT_NSGL(mpt)) { 1482 this_seg_lim = seg + MPT_NSGL(mpt) - 1; 1483 /* 1484 * The length of the chain is the length in bytes of the 1485 * number of segments plus the next chain element. 1486 * 1487 * The next chain descriptor offset is the length, 1488 * in words, of the number of segments. 1489 */ 1490 ce->Length = (this_seg_lim - seg) * 1491 sizeof (SGE_SIMPLE32); 1492 ce->NextChainOffset = ce->Length >> 2; 1493 ce->Length += sizeof (SGE_CHAIN32); 1494 } else { 1495 this_seg_lim = nseg; 1496 ce->Length = (this_seg_lim - seg) * 1497 sizeof (SGE_SIMPLE32); 1498 } 1499 1500 /* 1501 * Fill in the chain list SGE elements with our segment data. 1502 * 1503 * If we're the last element in this chain list, set the last 1504 * element flag. If we're the completely last element period, 1505 * set the end of list and end of buffer flags. 1506 */ 1507 while (seg < this_seg_lim) { 1508 memset(se, 0, sizeof (*se)); 1509 se->Address = dm_segs->ds_addr; 1510 1511 1512 1513 1514 MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len); 1515 tf = flags; 1516 if (seg == this_seg_lim - 1) { 1517 tf |= MPI_SGE_FLAGS_LAST_ELEMENT; 1518 } 1519 if (seg == nseg - 1) { 1520 tf |= MPI_SGE_FLAGS_END_OF_LIST | 1521 MPI_SGE_FLAGS_END_OF_BUFFER; 1522 } 1523 MPI_pSGE_SET_FLAGS(se, tf); 1524 se++; 1525 seg++; 1526 dm_segs++; 1527 } 1528 1529 next_chain: 1530 /* 1531 * If we have more segments to do and we've used up all of 1532 * the space in a request area, go allocate another one 1533 * and chain to that. 1534 */ 1535 if (seg < nseg && nxt_off >= MPT_REQUEST_AREA) { 1536 request_t *nrq; 1537 1538 CAMLOCK_2_MPTLOCK(mpt); 1539 nrq = mpt_get_request(mpt, FALSE); 1540 MPTLOCK_2_CAMLOCK(mpt); 1541 1542 if (nrq == NULL) { 1543 error = ENOMEM; 1544 goto bad; 1545 } 1546 1547 /* 1548 * Append the new request area on the tail of our list. 1549 */ 1550 if ((trq = req->chain) == NULL) { 1551 req->chain = nrq; 1552 } else { 1553 while (trq->chain != NULL) { 1554 trq = trq->chain; 1555 } 1556 trq->chain = nrq; 1557 } 1558 trq = nrq; 1559 mpt_off = trq->req_vbuf; 1560 if (mpt->verbose >= MPT_PRT_DEBUG) { 1561 memset(mpt_off, 0xff, MPT_REQUEST_AREA); 1562 } 1563 nxt_off = 0; 1564 } 1565 } 1566 out: 1567 1568 /* 1569 * Last time we need to check if this CCB needs to be aborted. 1570 */ 1571 if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 1572 if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) { 1573 request_t *cmd_req = 1574 MPT_TAG_2_REQ(mpt, ccb->csio.tag_id); 1575 MPT_TGT_STATE(mpt, cmd_req)->state = TGT_STATE_IN_CAM; 1576 MPT_TGT_STATE(mpt, cmd_req)->ccb = NULL; 1577 MPT_TGT_STATE(mpt, cmd_req)->req = NULL; 1578 } 1579 mpt_prt(mpt, 1580 "mpt_execute_req: I/O cancelled (status 0x%x)\n", 1581 ccb->ccb_h.status & CAM_STATUS_MASK); 1582 if (nseg && (ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) { 1583 bus_dmamap_unload(mpt->buffer_dmat, req->dmap); 1584 } 1585 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 1586 KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__)); 1587 xpt_done(ccb); 1588 CAMLOCK_2_MPTLOCK(mpt); 1589 mpt_free_request(mpt, req); 1590 MPTLOCK_2_CAMLOCK(mpt); 1591 return; 1592 } 1593 1594 ccb->ccb_h.status |= CAM_SIM_QUEUED; 1595 if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) { 1596 ccb->ccb_h.timeout_ch = 1597 timeout(mpt_timeout, (caddr_t)ccb, 1598 (ccb->ccb_h.timeout * hz) / 1000); 1599 } else { 1600 callout_handle_init(&ccb->ccb_h.timeout_ch); 1601 } 1602 if (mpt->verbose > MPT_PRT_DEBUG) { 1603 int nc = 0; 1604 mpt_print_request(req->req_vbuf); 1605 for (trq = req->chain; trq; trq = trq->chain) { 1606 printf(" Additional Chain Area %d\n", nc++); 1607 mpt_dump_sgl(trq->req_vbuf, 0); 1608 } 1609 } 1610 1611 if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) { 1612 request_t *cmd_req = MPT_TAG_2_REQ(mpt, ccb->csio.tag_id); 1613 mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, cmd_req); 1614 #ifdef WE_TRUST_AUTO_GOOD_STATUS 1615 if ((ccb->ccb_h.flags & CAM_SEND_STATUS) && 1616 csio->scsi_status == SCSI_STATUS_OK && tgt->resid == 0) { 1617 tgt->state = TGT_STATE_MOVING_DATA_AND_STATUS; 1618 } else { 1619 tgt->state = TGT_STATE_MOVING_DATA; 1620 } 1621 #else 1622 tgt->state = TGT_STATE_MOVING_DATA; 1623 #endif 1624 } 1625 CAMLOCK_2_MPTLOCK(mpt); 1626 mpt_send_cmd(mpt, req); 1627 MPTLOCK_2_CAMLOCK(mpt); 1628 } 1629 1630 static void 1631 mpt_start(struct cam_sim *sim, union ccb *ccb) 1632 { 1633 request_t *req; 1634 struct mpt_softc *mpt; 1635 MSG_SCSI_IO_REQUEST *mpt_req; 1636 struct ccb_scsiio *csio = &ccb->csio; 1637 struct ccb_hdr *ccbh = &ccb->ccb_h; 1638 bus_dmamap_callback_t *cb; 1639 target_id_t tgt; 1640 int raid_passthru; 1641 1642 /* Get the pointer for the physical addapter */ 1643 mpt = ccb->ccb_h.ccb_mpt_ptr; 1644 raid_passthru = (sim == mpt->phydisk_sim); 1645 1646 CAMLOCK_2_MPTLOCK(mpt); 1647 if ((req = mpt_get_request(mpt, FALSE)) == NULL) { 1648 if (mpt->outofbeer == 0) { 1649 mpt->outofbeer = 1; 1650 xpt_freeze_simq(mpt->sim, 1); 1651 mpt_lprt(mpt, MPT_PRT_DEBUG, "FREEZEQ\n"); 1652 } 1653 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 1654 mpt_set_ccb_status(ccb, CAM_REQUEUE_REQ); 1655 MPTLOCK_2_CAMLOCK(mpt); 1656 xpt_done(ccb); 1657 return; 1658 } 1659 #ifdef INVARIANTS 1660 mpt_req_not_spcl(mpt, req, "mpt_start", __LINE__); 1661 #endif 1662 MPTLOCK_2_CAMLOCK(mpt); 1663 1664 if (sizeof (bus_addr_t) > 4) { 1665 cb = mpt_execute_req_a64; 1666 } else { 1667 cb = mpt_execute_req; 1668 } 1669 1670 /* 1671 * Link the ccb and the request structure so we can find 1672 * the other knowing either the request or the ccb 1673 */ 1674 req->ccb = ccb; 1675 ccb->ccb_h.ccb_req_ptr = req; 1676 1677 /* Now we build the command for the IOC */ 1678 mpt_req = req->req_vbuf; 1679 memset(mpt_req, 0, sizeof (MSG_SCSI_IO_REQUEST)); 1680 1681 mpt_req->Function = MPI_FUNCTION_SCSI_IO_REQUEST; 1682 if (raid_passthru) { 1683 mpt_req->Function = MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH; 1684 CAMLOCK_2_MPTLOCK(mpt); 1685 if (mpt_map_physdisk(mpt, ccb, &tgt) != 0) { 1686 MPTLOCK_2_CAMLOCK(mpt); 1687 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 1688 mpt_set_ccb_status(ccb, CAM_DEV_NOT_THERE); 1689 xpt_done(ccb); 1690 return; 1691 } 1692 MPTLOCK_2_CAMLOCK(mpt); 1693 mpt_req->Bus = 0; /* we never set bus here */ 1694 } else { 1695 tgt = ccb->ccb_h.target_id; 1696 mpt_req->Bus = 0; /* XXX */ 1697 1698 } 1699 mpt_req->SenseBufferLength = 1700 (csio->sense_len < MPT_SENSE_SIZE) ? 1701 csio->sense_len : MPT_SENSE_SIZE; 1702 1703 /* 1704 * We use the message context to find the request structure when we 1705 * Get the command completion interrupt from the IOC. 1706 */ 1707 mpt_req->MsgContext = htole32(req->index | scsi_io_handler_id); 1708 1709 /* Which physical device to do the I/O on */ 1710 mpt_req->TargetID = tgt; 1711 1712 /* We assume a single level LUN type */ 1713 if (ccb->ccb_h.target_lun >= 256) { 1714 mpt_req->LUN[0] = 0x40 | ((ccb->ccb_h.target_lun >> 8) & 0x3f); 1715 mpt_req->LUN[1] = ccb->ccb_h.target_lun & 0xff; 1716 } else { 1717 mpt_req->LUN[1] = ccb->ccb_h.target_lun; 1718 } 1719 1720 /* Set the direction of the transfer */ 1721 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { 1722 mpt_req->Control = MPI_SCSIIO_CONTROL_READ; 1723 } else if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) { 1724 mpt_req->Control = MPI_SCSIIO_CONTROL_WRITE; 1725 } else { 1726 mpt_req->Control = MPI_SCSIIO_CONTROL_NODATATRANSFER; 1727 } 1728 1729 if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) { 1730 switch(ccb->csio.tag_action) { 1731 case MSG_HEAD_OF_Q_TAG: 1732 mpt_req->Control |= MPI_SCSIIO_CONTROL_HEADOFQ; 1733 break; 1734 case MSG_ACA_TASK: 1735 mpt_req->Control |= MPI_SCSIIO_CONTROL_ACAQ; 1736 break; 1737 case MSG_ORDERED_Q_TAG: 1738 mpt_req->Control |= MPI_SCSIIO_CONTROL_ORDEREDQ; 1739 break; 1740 case MSG_SIMPLE_Q_TAG: 1741 default: 1742 mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ; 1743 break; 1744 } 1745 } else { 1746 if (mpt->is_fc || mpt->is_sas) { 1747 mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ; 1748 } else { 1749 /* XXX No such thing for a target doing packetized. */ 1750 mpt_req->Control |= MPI_SCSIIO_CONTROL_UNTAGGED; 1751 } 1752 } 1753 1754 if (mpt->is_spi) { 1755 if (ccb->ccb_h.flags & CAM_DIS_DISCONNECT) { 1756 mpt_req->Control |= MPI_SCSIIO_CONTROL_NO_DISCONNECT; 1757 } 1758 } 1759 1760 /* Copy the scsi command block into place */ 1761 if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) { 1762 bcopy(csio->cdb_io.cdb_ptr, mpt_req->CDB, csio->cdb_len); 1763 } else { 1764 bcopy(csio->cdb_io.cdb_bytes, mpt_req->CDB, csio->cdb_len); 1765 } 1766 1767 mpt_req->CDBLength = csio->cdb_len; 1768 mpt_req->DataLength = csio->dxfer_len; 1769 mpt_req->SenseBufferLowAddr = req->sense_pbuf; 1770 1771 /* 1772 * Do a *short* print here if we're set to MPT_PRT_DEBUG 1773 */ 1774 if (mpt->verbose == MPT_PRT_DEBUG) { 1775 mpt_prt(mpt, "mpt_start: %s op 0x%x ", 1776 (mpt_req->Function == MPI_FUNCTION_SCSI_IO_REQUEST)? 1777 "SCSI_IO_REQUEST" : "SCSI_IO_PASSTHRU", mpt_req->CDB[0]); 1778 if (mpt_req->Control != MPI_SCSIIO_CONTROL_NODATATRANSFER) { 1779 mpt_prtc(mpt, "(%s %u byte%s ", 1780 (mpt_req->Control == MPI_SCSIIO_CONTROL_READ)? 1781 "read" : "write", csio->dxfer_len, 1782 (csio->dxfer_len == 1)? ")" : "s)"); 1783 } 1784 mpt_prtc(mpt, "tgt %u lun %u req %p:%u\n", tgt, 1785 ccb->ccb_h.target_lun, req, req->serno); 1786 } 1787 1788 /* 1789 * If we have any data to send with this command map it into bus space. 1790 */ 1791 if ((ccbh->flags & CAM_DIR_MASK) != CAM_DIR_NONE) { 1792 if ((ccbh->flags & CAM_SCATTER_VALID) == 0) { 1793 /* 1794 * We've been given a pointer to a single buffer. 1795 */ 1796 if ((ccbh->flags & CAM_DATA_PHYS) == 0) { 1797 /* 1798 * Virtual address that needs to translated into 1799 * one or more physical address ranges. 1800 */ 1801 int error; 1802 int s = splsoftvm(); 1803 error = bus_dmamap_load(mpt->buffer_dmat, 1804 req->dmap, csio->data_ptr, csio->dxfer_len, 1805 cb, req, 0); 1806 splx(s); 1807 if (error == EINPROGRESS) { 1808 /* 1809 * So as to maintain ordering, 1810 * freeze the controller queue 1811 * until our mapping is 1812 * returned. 1813 */ 1814 xpt_freeze_simq(mpt->sim, 1); 1815 ccbh->status |= CAM_RELEASE_SIMQ; 1816 } 1817 } else { 1818 /* 1819 * We have been given a pointer to single 1820 * physical buffer. 1821 */ 1822 struct bus_dma_segment seg; 1823 seg.ds_addr = 1824 (bus_addr_t)(vm_offset_t)csio->data_ptr; 1825 seg.ds_len = csio->dxfer_len; 1826 (*cb)(req, &seg, 1, 0); 1827 } 1828 } else { 1829 /* 1830 * We have been given a list of addresses. 1831 * This case could be easily supported but they are not 1832 * currently generated by the CAM subsystem so there 1833 * is no point in wasting the time right now. 1834 */ 1835 struct bus_dma_segment *segs; 1836 if ((ccbh->flags & CAM_SG_LIST_PHYS) == 0) { 1837 (*cb)(req, NULL, 0, EFAULT); 1838 } else { 1839 /* Just use the segments provided */ 1840 segs = (struct bus_dma_segment *)csio->data_ptr; 1841 (*cb)(req, segs, csio->sglist_cnt, 0); 1842 } 1843 } 1844 } else { 1845 (*cb)(req, NULL, 0, 0); 1846 } 1847 } 1848 1849 static int 1850 mpt_bus_reset(struct mpt_softc *mpt, int sleep_ok) 1851 { 1852 int error; 1853 uint16_t status; 1854 uint8_t response; 1855 1856 error = mpt_scsi_send_tmf(mpt, MPI_SCSITASKMGMT_TASKTYPE_RESET_BUS, 1857 mpt->is_fc ? MPI_SCSITASKMGMT_MSGFLAGS_LIP_RESET_OPTION : 0, 1858 0, 0, 0, 0, sleep_ok); 1859 1860 if (error != 0) { 1861 /* 1862 * mpt_scsi_send_tmf hard resets on failure, so no 1863 * need to do so here. 1864 */ 1865 mpt_prt(mpt, 1866 "mpt_bus_reset: mpt_scsi_send_tmf returned %d\n", error); 1867 return (EIO); 1868 } 1869 1870 /* Wait for bus reset to be processed by the IOC. */ 1871 error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_DONE, 1872 REQ_STATE_DONE, sleep_ok, 5000); 1873 1874 status = mpt->tmf_req->IOCStatus; 1875 response = mpt->tmf_req->ResponseCode; 1876 mpt->tmf_req->state = REQ_STATE_FREE; 1877 1878 if (error) { 1879 mpt_prt(mpt, "mpt_bus_reset: Reset timed-out. " 1880 "Resetting controller.\n"); 1881 mpt_reset(mpt, TRUE); 1882 return (ETIMEDOUT); 1883 } 1884 1885 if ((status & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1886 mpt_prt(mpt, "mpt_bus_reset: TMF IOC Status 0x%x. " 1887 "Resetting controller.\n", status); 1888 mpt_reset(mpt, TRUE); 1889 return (EIO); 1890 } 1891 1892 if (response != MPI_SCSITASKMGMT_RSP_TM_SUCCEEDED && 1893 response != MPI_SCSITASKMGMT_RSP_TM_COMPLETE) { 1894 mpt_prt(mpt, "mpt_bus_reset: TMF Response 0x%x. " 1895 "Resetting controller.\n", response); 1896 mpt_reset(mpt, TRUE); 1897 return (EIO); 1898 } 1899 return (0); 1900 } 1901 1902 static int 1903 mpt_fc_reset_link(struct mpt_softc *mpt, int dowait) 1904 { 1905 int r = 0; 1906 request_t *req; 1907 PTR_MSG_FC_PRIMITIVE_SEND_REQUEST fc; 1908 1909 req = mpt_get_request(mpt, FALSE); 1910 if (req == NULL) { 1911 return (ENOMEM); 1912 } 1913 fc = req->req_vbuf; 1914 memset(fc, 0, sizeof(*fc)); 1915 fc->SendFlags = MPI_FC_PRIM_SEND_FLAGS_RESET_LINK; 1916 fc->Function = MPI_FUNCTION_FC_PRIMITIVE_SEND; 1917 fc->MsgContext = htole32(req->index | fc_els_handler_id); 1918 mpt_send_cmd(mpt, req); 1919 if (dowait) { 1920 r = mpt_wait_req(mpt, req, REQ_STATE_DONE, 1921 REQ_STATE_DONE, FALSE, 60 * 1000); 1922 if (r == 0) { 1923 mpt_free_request(mpt, req); 1924 } 1925 } 1926 return (r); 1927 } 1928 1929 static int 1930 mpt_cam_event(struct mpt_softc *mpt, request_t *req, 1931 MSG_EVENT_NOTIFY_REPLY *msg) 1932 { 1933 switch(msg->Event & 0xFF) { 1934 case MPI_EVENT_UNIT_ATTENTION: 1935 mpt_prt(mpt, "Bus: 0x%02x TargetID: 0x%02x\n", 1936 (msg->Data[0] >> 8) & 0xff, msg->Data[0] & 0xff); 1937 break; 1938 1939 case MPI_EVENT_IOC_BUS_RESET: 1940 /* We generated a bus reset */ 1941 mpt_prt(mpt, "IOC Bus Reset Port: %d\n", 1942 (msg->Data[0] >> 8) & 0xff); 1943 xpt_async(AC_BUS_RESET, mpt->path, NULL); 1944 break; 1945 1946 case MPI_EVENT_EXT_BUS_RESET: 1947 /* Someone else generated a bus reset */ 1948 mpt_prt(mpt, "External Bus Reset Detected\n"); 1949 /* 1950 * These replies don't return EventData like the MPI 1951 * spec says they do 1952 */ 1953 xpt_async(AC_BUS_RESET, mpt->path, NULL); 1954 break; 1955 1956 case MPI_EVENT_RESCAN: 1957 /* 1958 * In general this means a device has been added to the loop. 1959 */ 1960 mpt_prt(mpt, "Rescan Port: %d\n", (msg->Data[0] >> 8) & 0xff); 1961 /* xpt_async(AC_FOUND_DEVICE, path, NULL); */ 1962 break; 1963 1964 case MPI_EVENT_LINK_STATUS_CHANGE: 1965 mpt_prt(mpt, "Port %d: LinkState: %s\n", 1966 (msg->Data[1] >> 8) & 0xff, 1967 ((msg->Data[0] & 0xff) == 0)? "Failed" : "Active"); 1968 break; 1969 1970 case MPI_EVENT_LOOP_STATE_CHANGE: 1971 switch ((msg->Data[0] >> 16) & 0xff) { 1972 case 0x01: 1973 mpt_prt(mpt, 1974 "Port 0x%x: FC LinkEvent: LIP(%02x,%02x) " 1975 "(Loop Initialization)\n", 1976 (msg->Data[1] >> 8) & 0xff, 1977 (msg->Data[0] >> 8) & 0xff, 1978 (msg->Data[0] ) & 0xff); 1979 switch ((msg->Data[0] >> 8) & 0xff) { 1980 case 0xF7: 1981 if ((msg->Data[0] & 0xff) == 0xF7) { 1982 mpt_prt(mpt, "Device needs AL_PA\n"); 1983 } else { 1984 mpt_prt(mpt, "Device %02x doesn't like " 1985 "FC performance\n", 1986 msg->Data[0] & 0xFF); 1987 } 1988 break; 1989 case 0xF8: 1990 if ((msg->Data[0] & 0xff) == 0xF7) { 1991 mpt_prt(mpt, "Device had loop failure " 1992 "at its receiver prior to acquiring" 1993 " AL_PA\n"); 1994 } else { 1995 mpt_prt(mpt, "Device %02x detected loop" 1996 " failure at its receiver\n", 1997 msg->Data[0] & 0xFF); 1998 } 1999 break; 2000 default: 2001 mpt_prt(mpt, "Device %02x requests that device " 2002 "%02x reset itself\n", 2003 msg->Data[0] & 0xFF, 2004 (msg->Data[0] >> 8) & 0xFF); 2005 break; 2006 } 2007 break; 2008 case 0x02: 2009 mpt_prt(mpt, "Port 0x%x: FC LinkEvent: " 2010 "LPE(%02x,%02x) (Loop Port Enable)\n", 2011 (msg->Data[1] >> 8) & 0xff, /* Port */ 2012 (msg->Data[0] >> 8) & 0xff, /* Character 3 */ 2013 (msg->Data[0] ) & 0xff /* Character 4 */); 2014 break; 2015 case 0x03: 2016 mpt_prt(mpt, "Port 0x%x: FC LinkEvent: " 2017 "LPB(%02x,%02x) (Loop Port Bypass)\n", 2018 (msg->Data[1] >> 8) & 0xff, /* Port */ 2019 (msg->Data[0] >> 8) & 0xff, /* Character 3 */ 2020 (msg->Data[0] ) & 0xff /* Character 4 */); 2021 break; 2022 default: 2023 mpt_prt(mpt, "Port 0x%x: FC LinkEvent: Unknown " 2024 "FC event (%02x %02x %02x)\n", 2025 (msg->Data[1] >> 8) & 0xff, /* Port */ 2026 (msg->Data[0] >> 16) & 0xff, /* Event */ 2027 (msg->Data[0] >> 8) & 0xff, /* Character 3 */ 2028 (msg->Data[0] ) & 0xff /* Character 4 */); 2029 } 2030 break; 2031 2032 case MPI_EVENT_LOGOUT: 2033 mpt_prt(mpt, "FC Logout Port: %d N_PortID: %02x\n", 2034 (msg->Data[1] >> 8) & 0xff, msg->Data[0]); 2035 break; 2036 case MPI_EVENT_EVENT_CHANGE: 2037 mpt_lprt(mpt, MPT_PRT_DEBUG, 2038 "mpt_cam_event: MPI_EVENT_EVENT_CHANGE\n"); 2039 break; 2040 case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE: 2041 /* 2042 * Devices are attachin'..... 2043 */ 2044 mpt_prt(mpt, 2045 "mpt_cam_event: MPI_EVENT_SAS_DEVICE_STATUS_CHANGE\n"); 2046 break; 2047 default: 2048 mpt_lprt(mpt, MPT_PRT_WARN, "mpt_cam_event: 0x%x\n", 2049 msg->Event & 0xFF); 2050 return (0); 2051 } 2052 return (1); 2053 } 2054 2055 /* 2056 * Reply path for all SCSI I/O requests, called from our 2057 * interrupt handler by extracting our handler index from 2058 * the MsgContext field of the reply from the IOC. 2059 * 2060 * This routine is optimized for the common case of a 2061 * completion without error. All exception handling is 2062 * offloaded to non-inlined helper routines to minimize 2063 * cache footprint. 2064 */ 2065 static int 2066 mpt_scsi_reply_handler(struct mpt_softc *mpt, request_t *req, 2067 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 2068 { 2069 MSG_SCSI_IO_REQUEST *scsi_req; 2070 union ccb *ccb; 2071 target_id_t tgt; 2072 2073 if (req->state == REQ_STATE_FREE) { 2074 mpt_prt(mpt, "mpt_scsi_reply_handler: req already free\n"); 2075 return (TRUE); 2076 } 2077 2078 scsi_req = (MSG_SCSI_IO_REQUEST *)req->req_vbuf; 2079 ccb = req->ccb; 2080 if (ccb == NULL) { 2081 mpt_prt(mpt, "mpt_scsi_reply_handler: req %p:%u with no ccb\n", 2082 req, req->serno); 2083 return (TRUE); 2084 } 2085 2086 tgt = scsi_req->TargetID; 2087 untimeout(mpt_timeout, ccb, ccb->ccb_h.timeout_ch); 2088 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2089 2090 if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { 2091 bus_dmasync_op_t op; 2092 2093 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) 2094 op = BUS_DMASYNC_POSTREAD; 2095 else 2096 op = BUS_DMASYNC_POSTWRITE; 2097 bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op); 2098 bus_dmamap_unload(mpt->buffer_dmat, req->dmap); 2099 } 2100 2101 if (reply_frame == NULL) { 2102 /* 2103 * Context only reply, completion without error status. 2104 */ 2105 ccb->csio.resid = 0; 2106 mpt_set_ccb_status(ccb, CAM_REQ_CMP); 2107 ccb->csio.scsi_status = SCSI_STATUS_OK; 2108 } else { 2109 mpt_scsi_reply_frame_handler(mpt, req, reply_frame); 2110 } 2111 2112 if (mpt->outofbeer) { 2113 ccb->ccb_h.status |= CAM_RELEASE_SIMQ; 2114 mpt->outofbeer = 0; 2115 mpt_lprt(mpt, MPT_PRT_DEBUG, "THAWQ\n"); 2116 } 2117 if (scsi_req->CDB[0] == INQUIRY && (scsi_req->CDB[1] & SI_EVPD) == 0) { 2118 struct scsi_inquiry_data *iq = 2119 (struct scsi_inquiry_data *)ccb->csio.data_ptr; 2120 if (scsi_req->Function == 2121 MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) { 2122 /* 2123 * Fake out the device type so that only the 2124 * pass-thru device will attach. 2125 */ 2126 iq->device &= ~0x1F; 2127 iq->device |= T_NODEVICE; 2128 } 2129 } 2130 if (mpt->verbose == MPT_PRT_DEBUG) { 2131 mpt_prt(mpt, "mpt_scsi_reply_handler: %p:%u complete\n", 2132 req, req->serno); 2133 } 2134 KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__)); 2135 MPTLOCK_2_CAMLOCK(mpt); 2136 xpt_done(ccb); 2137 CAMLOCK_2_MPTLOCK(mpt); 2138 if ((req->state & REQ_STATE_TIMEDOUT) == 0) { 2139 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 2140 } else { 2141 mpt_prt(mpt, "completing timedout/aborted req %p:%u\n", 2142 req, req->serno); 2143 TAILQ_REMOVE(&mpt->request_timeout_list, req, links); 2144 } 2145 KASSERT((req->state & REQ_STATE_NEED_WAKEUP) == 0, 2146 ("CCB req needed wakeup")); 2147 #ifdef INVARIANTS 2148 mpt_req_not_spcl(mpt, req, "mpt_scsi_reply_handler", __LINE__); 2149 #endif 2150 mpt_free_request(mpt, req); 2151 return (TRUE); 2152 } 2153 2154 static int 2155 mpt_scsi_tmf_reply_handler(struct mpt_softc *mpt, request_t *req, 2156 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 2157 { 2158 MSG_SCSI_TASK_MGMT_REPLY *tmf_reply; 2159 2160 KASSERT(req == mpt->tmf_req, ("TMF Reply not using mpt->tmf_req")); 2161 #ifdef INVARIANTS 2162 mpt_req_not_spcl(mpt, req, "mpt_scsi_tmf_reply_handler", __LINE__); 2163 #endif 2164 tmf_reply = (MSG_SCSI_TASK_MGMT_REPLY *)reply_frame; 2165 /* Record IOC Status and Response Code of TMF for any waiters. */ 2166 req->IOCStatus = le16toh(tmf_reply->IOCStatus); 2167 req->ResponseCode = tmf_reply->ResponseCode; 2168 2169 mpt_lprt(mpt, MPT_PRT_INFO, "TMF complete: req %p:%u status 0x%x\n", 2170 req, req->serno, le16toh(tmf_reply->IOCStatus)); 2171 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 2172 if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) { 2173 req->state |= REQ_STATE_DONE; 2174 wakeup(req); 2175 } else { 2176 mpt->tmf_req->state = REQ_STATE_FREE; 2177 } 2178 return (TRUE); 2179 } 2180 2181 /* 2182 * XXX: Move to definitions file 2183 */ 2184 #define ELS 0x22 2185 #define FC4LS 0x32 2186 #define ABTS 0x81 2187 #define BA_ACC 0x84 2188 2189 #define LS_RJT 0x01 2190 #define LS_ACC 0x02 2191 #define PLOGI 0x03 2192 #define LOGO 0x05 2193 #define SRR 0x14 2194 #define PRLI 0x20 2195 #define PRLO 0x21 2196 #define ADISC 0x52 2197 #define RSCN 0x61 2198 2199 static void 2200 mpt_fc_els_send_response(struct mpt_softc *mpt, request_t *req, 2201 PTR_MSG_LINK_SERVICE_BUFFER_POST_REPLY rp, U8 length) 2202 { 2203 MSG_LINK_SERVICE_RSP_REQUEST tmp; 2204 PTR_MSG_LINK_SERVICE_RSP_REQUEST rsp; 2205 2206 /* 2207 * We are going to reuse the ELS request to send this response back. 2208 */ 2209 rsp = &tmp; 2210 memset(rsp, 0, sizeof(*rsp)); 2211 2212 #ifdef USE_IMMEDIATE_LINK_DATA 2213 /* 2214 * Apparently the IMMEDIATE stuff doesn't seem to work. 2215 */ 2216 rsp->RspFlags = LINK_SERVICE_RSP_FLAGS_IMMEDIATE; 2217 #endif 2218 rsp->RspLength = length; 2219 rsp->Function = MPI_FUNCTION_FC_LINK_SRVC_RSP; 2220 rsp->MsgContext = htole32(req->index | fc_els_handler_id); 2221 2222 /* 2223 * Copy over information from the original reply frame to 2224 * it's correct place in the response. 2225 */ 2226 memcpy((U8 *)rsp + 0x0c, (U8 *)rp + 0x1c, 24); 2227 2228 /* 2229 * And now copy back the temporary area to the original frame. 2230 */ 2231 memcpy(req->req_vbuf, rsp, sizeof (MSG_LINK_SERVICE_RSP_REQUEST)); 2232 rsp = req->req_vbuf; 2233 2234 #ifdef USE_IMMEDIATE_LINK_DATA 2235 memcpy((U8 *)&rsp->SGL, &((U8 *)req->req_vbuf)[MPT_RQSL(mpt)], length); 2236 #else 2237 { 2238 PTR_SGE_SIMPLE32 se = (PTR_SGE_SIMPLE32) &rsp->SGL; 2239 bus_addr_t paddr = req->req_pbuf; 2240 paddr += MPT_RQSL(mpt); 2241 2242 se->FlagsLength = 2243 MPI_SGE_FLAGS_HOST_TO_IOC | 2244 MPI_SGE_FLAGS_SIMPLE_ELEMENT | 2245 MPI_SGE_FLAGS_LAST_ELEMENT | 2246 MPI_SGE_FLAGS_END_OF_LIST | 2247 MPI_SGE_FLAGS_END_OF_BUFFER; 2248 se->FlagsLength <<= MPI_SGE_FLAGS_SHIFT; 2249 se->FlagsLength |= (length); 2250 se->Address = (uint32_t) paddr; 2251 } 2252 #endif 2253 2254 /* 2255 * Send it on... 2256 */ 2257 mpt_send_cmd(mpt, req); 2258 } 2259 2260 static int 2261 mpt_fc_els_reply_handler(struct mpt_softc *mpt, request_t *req, 2262 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 2263 { 2264 PTR_MSG_LINK_SERVICE_BUFFER_POST_REPLY rp = 2265 (PTR_MSG_LINK_SERVICE_BUFFER_POST_REPLY) reply_frame; 2266 U8 rctl; 2267 U8 type; 2268 U8 cmd; 2269 U16 status = le16toh(reply_frame->IOCStatus); 2270 U32 *elsbuf; 2271 int ioindex; 2272 int do_refresh = TRUE; 2273 2274 #ifdef INVARIANTS 2275 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 2276 ("fc_els_reply_handler: req %p:%u for function %x on freelist!", 2277 req, req->serno, rp->Function)); 2278 if (rp->Function != MPI_FUNCTION_FC_PRIMITIVE_SEND) { 2279 mpt_req_spcl(mpt, req, "fc_els_reply_handler", __LINE__); 2280 } else { 2281 mpt_req_not_spcl(mpt, req, "fc_els_reply_handler", __LINE__); 2282 } 2283 #endif 2284 mpt_lprt(mpt, MPT_PRT_DEBUG, 2285 "FC_ELS Complete: req %p:%u, reply %p function %x\n", 2286 req, req->serno, reply_frame, reply_frame->Function); 2287 2288 if (status != MPI_IOCSTATUS_SUCCESS) { 2289 mpt_prt(mpt, "ELS REPLY STATUS 0x%x for Function %x\n", 2290 status, reply_frame->Function); 2291 if (status == MPI_IOCSTATUS_INVALID_STATE) { 2292 /* 2293 * XXX: to get around shutdown issue 2294 */ 2295 mpt->disabled = 1; 2296 return (TRUE); 2297 } 2298 return (TRUE); 2299 } 2300 2301 /* 2302 * If the function of a link service response, we recycle the 2303 * response to be a refresh for a new link service request. 2304 * 2305 * The request pointer is bogus in this case and we have to fetch 2306 * it based upon the TransactionContext. 2307 */ 2308 if (rp->Function == MPI_FUNCTION_FC_LINK_SRVC_RSP) { 2309 /* Freddie Uncle Charlie Katie */ 2310 /* We don't get the IOINDEX as part of the Link Svc Rsp */ 2311 for (ioindex = 0; ioindex < mpt->els_cmds_allocated; ioindex++) 2312 if (mpt->els_cmd_ptrs[ioindex] == req) { 2313 break; 2314 } 2315 2316 KASSERT(ioindex < mpt->els_cmds_allocated, 2317 ("can't find my mommie!")); 2318 2319 /* remove from active list as we're going to re-post it */ 2320 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 2321 req->state &= ~REQ_STATE_QUEUED; 2322 req->state |= REQ_STATE_DONE; 2323 mpt_fc_post_els(mpt, req, ioindex); 2324 return (TRUE); 2325 } 2326 2327 if (rp->Function == MPI_FUNCTION_FC_PRIMITIVE_SEND) { 2328 /* remove from active list as we're done */ 2329 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 2330 req->state &= ~REQ_STATE_QUEUED; 2331 req->state |= REQ_STATE_DONE; 2332 if ((req->state & REQ_STATE_NEED_WAKEUP) == 0) { 2333 mpt_lprt(mpt, MPT_PRT_DEBUG, 2334 "Async Primitive Send Complete\n"); 2335 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 2336 mpt_free_request(mpt, req); 2337 } else { 2338 mpt_lprt(mpt, MPT_PRT_DEBUG, 2339 "Sync Primitive Send Complete\n"); 2340 wakeup(req); 2341 } 2342 return (TRUE); 2343 } 2344 2345 if (rp->Function != MPI_FUNCTION_FC_LINK_SRVC_BUF_POST) { 2346 mpt_prt(mpt, "unexpected ELS_REPLY: Function 0x%x Flags %x " 2347 "Length %d Message Flags %x\n", rp->Function, rp->Flags, 2348 rp->MsgLength, rp->MsgFlags); 2349 return (TRUE); 2350 } 2351 2352 if (rp->MsgLength <= 5) { 2353 /* 2354 * This is just a ack of an original ELS buffer post 2355 */ 2356 mpt_lprt(mpt, MPT_PRT_DEBUG, 2357 "RECV'd ACK of FC_ELS buf post %p:%u\n", req, req->serno); 2358 return (TRUE); 2359 } 2360 2361 2362 rctl = (le32toh(rp->Rctl_Did) & MPI_FC_RCTL_MASK) >> MPI_FC_RCTL_SHIFT; 2363 type = (le32toh(rp->Type_Fctl) & MPI_FC_TYPE_MASK) >> MPI_FC_TYPE_SHIFT; 2364 2365 elsbuf = &((U32 *)req->req_vbuf)[MPT_RQSL(mpt)/sizeof (U32)]; 2366 cmd = be32toh(elsbuf[0]) >> 24; 2367 2368 if (rp->Flags & MPI_LS_BUF_POST_REPLY_FLAG_NO_RSP_NEEDED) { 2369 mpt_lprt(mpt, MPT_PRT_ALWAYS, "ELS_REPLY: response unneeded\n"); 2370 return (TRUE); 2371 } 2372 2373 ioindex = le32toh(rp->TransactionContext); 2374 req = mpt->els_cmd_ptrs[ioindex]; 2375 2376 if (rctl == ELS && type == 1) { 2377 switch (cmd) { 2378 case PRLI: 2379 /* 2380 * Send back a PRLI ACC 2381 */ 2382 mpt_prt(mpt, "PRLI from 0x%08x%08x\n", 2383 le32toh(rp->Wwn.PortNameHigh), 2384 le32toh(rp->Wwn.PortNameLow)); 2385 elsbuf[0] = htobe32(0x02100014); 2386 elsbuf[1] |= htobe32(0x00000100); 2387 elsbuf[4] = htobe32(0x00000002); 2388 if (mpt->role & MPT_ROLE_TARGET) 2389 elsbuf[4] |= htobe32(0x00000010); 2390 if (mpt->role & MPT_ROLE_INITIATOR) 2391 elsbuf[4] |= htobe32(0x00000020); 2392 /* remove from active list as we're done */ 2393 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 2394 req->state &= ~REQ_STATE_QUEUED; 2395 req->state |= REQ_STATE_DONE; 2396 mpt_fc_els_send_response(mpt, req, rp, 20); 2397 do_refresh = FALSE; 2398 break; 2399 case PRLO: 2400 memset(elsbuf, 0, 5 * (sizeof (U32))); 2401 elsbuf[0] = htobe32(0x02100014); 2402 elsbuf[1] = htobe32(0x08000100); 2403 mpt_prt(mpt, "PRLO from 0x%08x%08x\n", 2404 le32toh(rp->Wwn.PortNameHigh), 2405 le32toh(rp->Wwn.PortNameLow)); 2406 /* remove from active list as we're done */ 2407 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 2408 req->state &= ~REQ_STATE_QUEUED; 2409 req->state |= REQ_STATE_DONE; 2410 mpt_fc_els_send_response(mpt, req, rp, 20); 2411 do_refresh = FALSE; 2412 break; 2413 default: 2414 mpt_prt(mpt, "ELS TYPE 1 COMMAND: %x\n", cmd); 2415 break; 2416 } 2417 } else if (rctl == ABTS && type == 0) { 2418 uint16_t rx_id = le16toh(rp->Rxid); 2419 uint16_t ox_id = le16toh(rp->Oxid); 2420 request_t *tgt_req = NULL; 2421 2422 mpt_prt(mpt, 2423 "ELS: ABTS OX_ID 0x%x RX_ID 0x%x from 0x%08x%08x\n", 2424 ox_id, rx_id, le32toh(rp->Wwn.PortNameHigh), 2425 le32toh(rp->Wwn.PortNameLow)); 2426 if (rx_id >= mpt->mpt_max_tgtcmds) { 2427 mpt_prt(mpt, "Bad RX_ID 0x%x\n", rx_id); 2428 } else if (mpt->tgt_cmd_ptrs == NULL) { 2429 mpt_prt(mpt, "No TGT CMD PTRS\n"); 2430 } else { 2431 tgt_req = mpt->tgt_cmd_ptrs[rx_id]; 2432 } 2433 if (tgt_req) { 2434 mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, tgt_req); 2435 uint8_t *vbuf; 2436 union ccb *ccb = tgt->ccb; 2437 uint32_t ct_id; 2438 2439 vbuf = tgt_req->req_vbuf; 2440 vbuf += MPT_RQSL(mpt); 2441 2442 /* 2443 * Check to make sure we have the correct command 2444 * The reply descriptor in the target state should 2445 * should contain an IoIndex that should match the 2446 * RX_ID. 2447 * 2448 * It'd be nice to have OX_ID to crosscheck with 2449 * as well. 2450 */ 2451 ct_id = GET_IO_INDEX(tgt->reply_desc); 2452 2453 if (ct_id != rx_id) { 2454 mpt_lprt(mpt, MPT_PRT_ERROR, "ABORT Mismatch: " 2455 "RX_ID received=0x%x; RX_ID in cmd=0x%x\n", 2456 rx_id, ct_id); 2457 goto skip; 2458 } 2459 2460 ccb = tgt->ccb; 2461 if (ccb) { 2462 mpt_prt(mpt, 2463 "CCB (%p): lun %u flags %x status %x\n", 2464 ccb, ccb->ccb_h.target_lun, 2465 ccb->ccb_h.flags, ccb->ccb_h.status); 2466 } 2467 mpt_prt(mpt, "target state 0x%x resid %u xfrd %u rpwrd " 2468 "%x nxfers %x\n", tgt->state, 2469 tgt->resid, tgt->bytes_xfered, tgt->reply_desc, 2470 tgt->nxfers); 2471 skip: 2472 if (mpt_abort_target_cmd(mpt, tgt_req)) { 2473 mpt_prt(mpt, "unable to start TargetAbort\n"); 2474 } 2475 } else { 2476 mpt_prt(mpt, "no back pointer for RX_ID 0x%x\n", rx_id); 2477 } 2478 memset(elsbuf, 0, 5 * (sizeof (U32))); 2479 elsbuf[0] = htobe32(0); 2480 elsbuf[1] = htobe32((ox_id << 16) | rx_id); 2481 elsbuf[2] = htobe32(0x000ffff); 2482 /* 2483 * Dork with the reply frame so that the reponse to it 2484 * will be correct. 2485 */ 2486 rp->Rctl_Did += ((BA_ACC - ABTS) << MPI_FC_RCTL_SHIFT); 2487 /* remove from active list as we're done */ 2488 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 2489 req->state &= ~REQ_STATE_QUEUED; 2490 req->state |= REQ_STATE_DONE; 2491 mpt_fc_els_send_response(mpt, req, rp, 12); 2492 do_refresh = FALSE; 2493 } else { 2494 mpt_prt(mpt, "ELS: RCTL %x TYPE %x CMD %x\n", rctl, type, cmd); 2495 } 2496 if (do_refresh == TRUE) { 2497 /* remove from active list as we're done */ 2498 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 2499 req->state &= ~REQ_STATE_QUEUED; 2500 req->state |= REQ_STATE_DONE; 2501 mpt_fc_post_els(mpt, req, ioindex); 2502 } 2503 return (TRUE); 2504 } 2505 2506 /* 2507 * Clean up all SCSI Initiator personality state in response 2508 * to a controller reset. 2509 */ 2510 static void 2511 mpt_cam_ioc_reset(struct mpt_softc *mpt, int type) 2512 { 2513 /* 2514 * The pending list is already run down by 2515 * the generic handler. Perform the same 2516 * operation on the timed out request list. 2517 */ 2518 mpt_complete_request_chain(mpt, &mpt->request_timeout_list, 2519 MPI_IOCSTATUS_INVALID_STATE); 2520 2521 /* 2522 * XXX: We need to repost ELS and Target Command Buffers? 2523 */ 2524 2525 /* 2526 * Inform the XPT that a bus reset has occurred. 2527 */ 2528 xpt_async(AC_BUS_RESET, mpt->path, NULL); 2529 } 2530 2531 /* 2532 * Parse additional completion information in the reply 2533 * frame for SCSI I/O requests. 2534 */ 2535 static int 2536 mpt_scsi_reply_frame_handler(struct mpt_softc *mpt, request_t *req, 2537 MSG_DEFAULT_REPLY *reply_frame) 2538 { 2539 union ccb *ccb; 2540 MSG_SCSI_IO_REPLY *scsi_io_reply; 2541 u_int ioc_status; 2542 u_int sstate; 2543 u_int loginfo; 2544 2545 MPT_DUMP_REPLY_FRAME(mpt, reply_frame); 2546 KASSERT(reply_frame->Function == MPI_FUNCTION_SCSI_IO_REQUEST 2547 || reply_frame->Function == MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH, 2548 ("MPT SCSI I/O Handler called with incorrect reply type")); 2549 KASSERT((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0, 2550 ("MPT SCSI I/O Handler called with continuation reply")); 2551 2552 scsi_io_reply = (MSG_SCSI_IO_REPLY *)reply_frame; 2553 ioc_status = le16toh(scsi_io_reply->IOCStatus); 2554 loginfo = ioc_status & MPI_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE; 2555 ioc_status &= MPI_IOCSTATUS_MASK; 2556 sstate = scsi_io_reply->SCSIState; 2557 2558 ccb = req->ccb; 2559 ccb->csio.resid = 2560 ccb->csio.dxfer_len - le32toh(scsi_io_reply->TransferCount); 2561 2562 if ((sstate & MPI_SCSI_STATE_AUTOSENSE_VALID) != 0 2563 && (ccb->ccb_h.flags & (CAM_SENSE_PHYS | CAM_SENSE_PTR)) == 0) { 2564 ccb->ccb_h.status |= CAM_AUTOSNS_VALID; 2565 ccb->csio.sense_resid = 2566 ccb->csio.sense_len - scsi_io_reply->SenseCount; 2567 bcopy(req->sense_vbuf, &ccb->csio.sense_data, 2568 min(ccb->csio.sense_len, scsi_io_reply->SenseCount)); 2569 } 2570 2571 if ((sstate & MPI_SCSI_STATE_QUEUE_TAG_REJECTED) != 0) { 2572 /* 2573 * Tag messages rejected, but non-tagged retry 2574 * was successful. 2575 XXXX 2576 mpt_set_tags(mpt, devinfo, MPT_QUEUE_NONE); 2577 */ 2578 } 2579 2580 switch(ioc_status) { 2581 case MPI_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 2582 /* 2583 * XXX 2584 * Linux driver indicates that a zero 2585 * transfer length with this error code 2586 * indicates a CRC error. 2587 * 2588 * No need to swap the bytes for checking 2589 * against zero. 2590 */ 2591 if (scsi_io_reply->TransferCount == 0) { 2592 mpt_set_ccb_status(ccb, CAM_UNCOR_PARITY); 2593 break; 2594 } 2595 /* FALLTHROUGH */ 2596 case MPI_IOCSTATUS_SCSI_DATA_UNDERRUN: 2597 case MPI_IOCSTATUS_SUCCESS: 2598 case MPI_IOCSTATUS_SCSI_RECOVERED_ERROR: 2599 if ((sstate & MPI_SCSI_STATE_NO_SCSI_STATUS) != 0) { 2600 /* 2601 * Status was never returned for this transaction. 2602 */ 2603 mpt_set_ccb_status(ccb, CAM_UNEXP_BUSFREE); 2604 } else if (scsi_io_reply->SCSIStatus != SCSI_STATUS_OK) { 2605 ccb->csio.scsi_status = scsi_io_reply->SCSIStatus; 2606 mpt_set_ccb_status(ccb, CAM_SCSI_STATUS_ERROR); 2607 if ((sstate & MPI_SCSI_STATE_AUTOSENSE_FAILED) != 0) 2608 mpt_set_ccb_status(ccb, CAM_AUTOSENSE_FAIL); 2609 } else if ((sstate & MPI_SCSI_STATE_RESPONSE_INFO_VALID) != 0) { 2610 2611 /* XXX Handle SPI-Packet and FCP-2 reponse info. */ 2612 mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR); 2613 } else 2614 mpt_set_ccb_status(ccb, CAM_REQ_CMP); 2615 break; 2616 case MPI_IOCSTATUS_SCSI_DATA_OVERRUN: 2617 mpt_set_ccb_status(ccb, CAM_DATA_RUN_ERR); 2618 break; 2619 case MPI_IOCSTATUS_SCSI_IO_DATA_ERROR: 2620 mpt_set_ccb_status(ccb, CAM_UNCOR_PARITY); 2621 break; 2622 case MPI_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 2623 /* 2624 * Since selection timeouts and "device really not 2625 * there" are grouped into this error code, report 2626 * selection timeout. Selection timeouts are 2627 * typically retried before giving up on the device 2628 * whereas "device not there" errors are considered 2629 * unretryable. 2630 */ 2631 mpt_set_ccb_status(ccb, CAM_SEL_TIMEOUT); 2632 break; 2633 case MPI_IOCSTATUS_SCSI_PROTOCOL_ERROR: 2634 mpt_set_ccb_status(ccb, CAM_SEQUENCE_FAIL); 2635 break; 2636 case MPI_IOCSTATUS_SCSI_INVALID_BUS: 2637 mpt_set_ccb_status(ccb, CAM_PATH_INVALID); 2638 break; 2639 case MPI_IOCSTATUS_SCSI_INVALID_TARGETID: 2640 mpt_set_ccb_status(ccb, CAM_TID_INVALID); 2641 break; 2642 case MPI_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 2643 ccb->ccb_h.status = CAM_UA_TERMIO; 2644 break; 2645 case MPI_IOCSTATUS_INVALID_STATE: 2646 /* 2647 * The IOC has been reset. Emulate a bus reset. 2648 */ 2649 /* FALLTHROUGH */ 2650 case MPI_IOCSTATUS_SCSI_EXT_TERMINATED: 2651 ccb->ccb_h.status = CAM_SCSI_BUS_RESET; 2652 break; 2653 case MPI_IOCSTATUS_SCSI_TASK_TERMINATED: 2654 case MPI_IOCSTATUS_SCSI_IOC_TERMINATED: 2655 /* 2656 * Don't clobber any timeout status that has 2657 * already been set for this transaction. We 2658 * want the SCSI layer to be able to differentiate 2659 * between the command we aborted due to timeout 2660 * and any innocent bystanders. 2661 */ 2662 if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) 2663 break; 2664 mpt_set_ccb_status(ccb, CAM_REQ_TERMIO); 2665 break; 2666 2667 case MPI_IOCSTATUS_INSUFFICIENT_RESOURCES: 2668 mpt_set_ccb_status(ccb, CAM_RESRC_UNAVAIL); 2669 break; 2670 case MPI_IOCSTATUS_BUSY: 2671 mpt_set_ccb_status(ccb, CAM_BUSY); 2672 break; 2673 case MPI_IOCSTATUS_INVALID_FUNCTION: 2674 case MPI_IOCSTATUS_INVALID_SGL: 2675 case MPI_IOCSTATUS_INTERNAL_ERROR: 2676 case MPI_IOCSTATUS_INVALID_FIELD: 2677 default: 2678 /* XXX 2679 * Some of the above may need to kick 2680 * of a recovery action!!!! 2681 */ 2682 ccb->ccb_h.status = CAM_UNREC_HBA_ERROR; 2683 break; 2684 } 2685 2686 if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 2687 mpt_freeze_ccb(ccb); 2688 } 2689 2690 return (TRUE); 2691 } 2692 2693 static void 2694 mpt_action(struct cam_sim *sim, union ccb *ccb) 2695 { 2696 struct mpt_softc *mpt; 2697 struct ccb_trans_settings *cts; 2698 target_id_t tgt; 2699 int raid_passthru; 2700 2701 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("mpt_action\n")); 2702 2703 mpt = (struct mpt_softc *)cam_sim_softc(sim); 2704 KASSERT(MPT_OWNED(mpt) == 0, ("mpt owned on entrance to mpt_action")); 2705 raid_passthru = (sim == mpt->phydisk_sim); 2706 2707 tgt = ccb->ccb_h.target_id; 2708 if (raid_passthru && ccb->ccb_h.func_code != XPT_PATH_INQ && 2709 ccb->ccb_h.func_code != XPT_RESET_BUS) { 2710 CAMLOCK_2_MPTLOCK(mpt); 2711 if (mpt_map_physdisk(mpt, ccb, &tgt) != 0) { 2712 MPTLOCK_2_CAMLOCK(mpt); 2713 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2714 mpt_set_ccb_status(ccb, CAM_DEV_NOT_THERE); 2715 xpt_done(ccb); 2716 return; 2717 } 2718 MPTLOCK_2_CAMLOCK(mpt); 2719 } 2720 ccb->ccb_h.ccb_mpt_ptr = mpt; 2721 2722 switch (ccb->ccb_h.func_code) { 2723 case XPT_SCSI_IO: /* Execute the requested I/O operation */ 2724 /* 2725 * Do a couple of preliminary checks... 2726 */ 2727 if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) { 2728 if ((ccb->ccb_h.flags & CAM_CDB_PHYS) != 0) { 2729 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2730 mpt_set_ccb_status(ccb, CAM_REQ_INVALID); 2731 break; 2732 } 2733 } 2734 /* Max supported CDB length is 16 bytes */ 2735 /* XXX Unless we implement the new 32byte message type */ 2736 if (ccb->csio.cdb_len > 2737 sizeof (((PTR_MSG_SCSI_IO_REQUEST)0)->CDB)) { 2738 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2739 mpt_set_ccb_status(ccb, CAM_REQ_INVALID); 2740 break; 2741 } 2742 ccb->csio.scsi_status = SCSI_STATUS_OK; 2743 mpt_start(sim, ccb); 2744 return; 2745 2746 case XPT_RESET_BUS: 2747 mpt_lprt(mpt, MPT_PRT_DEBUG, "XPT_RESET_BUS\n"); 2748 2749 CAMLOCK_2_MPTLOCK(mpt); 2750 (void) mpt_bus_reset(mpt, FALSE); 2751 MPTLOCK_2_CAMLOCK(mpt); 2752 2753 /* 2754 * mpt_bus_reset is always successful in that it 2755 * will fall back to a hard reset should a bus 2756 * reset attempt fail. 2757 */ 2758 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2759 mpt_set_ccb_status(ccb, CAM_REQ_CMP); 2760 break; 2761 2762 case XPT_ABORT: 2763 { 2764 union ccb *accb = ccb->cab.abort_ccb; 2765 CAMLOCK_2_MPTLOCK(mpt); 2766 switch (accb->ccb_h.func_code) { 2767 case XPT_ACCEPT_TARGET_IO: 2768 case XPT_IMMED_NOTIFY: 2769 ccb->ccb_h.status = mpt_abort_target_ccb(mpt, ccb); 2770 break; 2771 case XPT_CONT_TARGET_IO: 2772 mpt_prt(mpt, "cannot abort active CTIOs yet\n"); 2773 ccb->ccb_h.status = CAM_UA_ABORT; 2774 break; 2775 case XPT_SCSI_IO: 2776 ccb->ccb_h.status = CAM_UA_ABORT; 2777 break; 2778 default: 2779 ccb->ccb_h.status = CAM_REQ_INVALID; 2780 break; 2781 } 2782 MPTLOCK_2_CAMLOCK(mpt); 2783 break; 2784 } 2785 2786 #ifdef CAM_NEW_TRAN_CODE 2787 #define IS_CURRENT_SETTINGS(c) (c->type == CTS_TYPE_CURRENT_SETTINGS) 2788 #else 2789 #define IS_CURRENT_SETTINGS(c) (c->flags & CCB_TRANS_CURRENT_SETTINGS) 2790 #endif 2791 #define DP_DISC_ENABLE 0x1 2792 #define DP_DISC_DISABL 0x2 2793 #define DP_DISC (DP_DISC_ENABLE|DP_DISC_DISABL) 2794 2795 #define DP_TQING_ENABLE 0x4 2796 #define DP_TQING_DISABL 0x8 2797 #define DP_TQING (DP_TQING_ENABLE|DP_TQING_DISABL) 2798 2799 #define DP_WIDE 0x10 2800 #define DP_NARROW 0x20 2801 #define DP_WIDTH (DP_WIDE|DP_NARROW) 2802 2803 #define DP_SYNC 0x40 2804 2805 case XPT_SET_TRAN_SETTINGS: /* Nexus Settings */ 2806 { 2807 #ifdef CAM_NEW_TRAN_CODE 2808 struct ccb_trans_settings_scsi *scsi; 2809 struct ccb_trans_settings_spi *spi; 2810 #endif 2811 uint8_t dval; 2812 u_int period; 2813 u_int offset; 2814 int i, j; 2815 2816 cts = &ccb->cts; 2817 if (!IS_CURRENT_SETTINGS(cts)) { 2818 mpt_prt(mpt, "Attempt to set User settings\n"); 2819 mpt_set_ccb_status(ccb, CAM_REQ_INVALID); 2820 break; 2821 } 2822 2823 if (mpt->is_fc || mpt->is_sas) { 2824 mpt_set_ccb_status(ccb, CAM_REQ_CMP); 2825 break; 2826 } 2827 2828 /* 2829 * Skip attempting settings on RAID volume disks. 2830 * Other devices on the bus get the normal treatment. 2831 */ 2832 if (mpt->phydisk_sim && raid_passthru == 0 && 2833 mpt_is_raid_volume(mpt, tgt) != 0) { 2834 mpt_lprt(mpt, MPT_PRT_NEGOTIATION, 2835 "skipping transfer settings for RAID volumes\n"); 2836 mpt_set_ccb_status(ccb, CAM_REQ_CMP); 2837 break; 2838 } 2839 2840 i = mpt->mpt_port_page2.PortSettings & 2841 MPI_SCSIPORTPAGE2_PORT_MASK_NEGO_MASTER_SETTINGS; 2842 j = mpt->mpt_port_page2.PortFlags & 2843 MPI_SCSIPORTPAGE2_PORT_FLAGS_DV_MASK; 2844 if (i == MPI_SCSIPORTPAGE2_PORT_ALL_MASTER_SETTINGS && 2845 j == MPI_SCSIPORTPAGE2_PORT_FLAGS_OFF_DV) { 2846 mpt_lprt(mpt, MPT_PRT_ALWAYS, 2847 "honoring BIOS transfer negotiations\n"); 2848 mpt_set_ccb_status(ccb, CAM_REQ_CMP); 2849 break; 2850 } 2851 2852 dval = 0; 2853 period = 0; 2854 offset = 0; 2855 2856 #ifndef CAM_NEW_TRAN_CODE 2857 if (cts->valid & CCB_TRANS_DISC_VALID) { 2858 dval |= DP_DISC_ENABLE; 2859 } 2860 if (cts->valid & CCB_TRANS_TQ_VALID) { 2861 dval |= DP_TQING_ENABLE; 2862 } 2863 if (cts->valid & CCB_TRANS_BUS_WIDTH_VALID) { 2864 if (cts->bus_width) 2865 dval |= DP_WIDE; 2866 else 2867 dval |= DP_NARROW; 2868 } 2869 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) && 2870 (cts->valid & CCB_TRANS_SYNC_OFFSET_VALID)) { 2871 dval |= DP_SYNC; 2872 period = cts->sync_period; 2873 offset = cts->sync_offset; 2874 } 2875 #else 2876 scsi = &cts->proto_specific.scsi; 2877 spi = &cts->xport_specific.spi; 2878 2879 if ((spi->valid & CTS_SPI_VALID_DISC) != 0) { 2880 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) { 2881 dval |= DP_DISC_ENABLE; 2882 } else { 2883 dval |= DP_DISC_DISABL; 2884 } 2885 } 2886 2887 if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 2888 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) { 2889 dval |= DP_TQING_ENABLE; 2890 } else { 2891 dval |= DP_TQING_DISABL; 2892 } 2893 } 2894 2895 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) { 2896 if (spi->bus_width == MSG_EXT_WDTR_BUS_16_BIT) { 2897 dval |= DP_WIDE; 2898 } else { 2899 dval |= DP_NARROW; 2900 } 2901 } 2902 2903 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) && 2904 (spi->valid & CTS_SPI_VALID_SYNC_RATE) && 2905 (spi->sync_period && spi->sync_offset)) { 2906 dval |= DP_SYNC; 2907 period = spi->sync_period; 2908 offset = spi->sync_offset; 2909 } 2910 #endif 2911 CAMLOCK_2_MPTLOCK(mpt); 2912 if (dval & DP_DISC_ENABLE) { 2913 mpt->mpt_disc_enable |= (1 << tgt); 2914 } else if (dval & DP_DISC_DISABL) { 2915 mpt->mpt_disc_enable &= ~(1 << tgt); 2916 } 2917 if (dval & DP_TQING_ENABLE) { 2918 mpt->mpt_tag_enable |= (1 << tgt); 2919 } else if (dval & DP_TQING_DISABL) { 2920 mpt->mpt_tag_enable &= ~(1 << tgt); 2921 } 2922 if (dval & DP_WIDTH) { 2923 mpt_setwidth(mpt, tgt, 1); 2924 } 2925 if (dval & DP_SYNC) { 2926 mpt_setsync(mpt, tgt, period, offset); 2927 } 2928 2929 if (mpt_update_spi_config(mpt, tgt)) { 2930 mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR); 2931 } else { 2932 mpt_set_ccb_status(ccb, CAM_REQ_CMP); 2933 } 2934 MPTLOCK_2_CAMLOCK(mpt); 2935 break; 2936 } 2937 case XPT_GET_TRAN_SETTINGS: 2938 cts = &ccb->cts; 2939 if (mpt->is_fc) { 2940 #ifndef CAM_NEW_TRAN_CODE 2941 /* 2942 * a lot of normal SCSI things don't make sense. 2943 */ 2944 cts->flags = CCB_TRANS_TAG_ENB | CCB_TRANS_DISC_ENB; 2945 cts->valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID; 2946 /* 2947 * How do you measure the width of a high 2948 * speed serial bus? Well, in bytes. 2949 * 2950 * Offset and period make no sense, though, so we set 2951 * (above) a 'base' transfer speed to be gigabit. 2952 */ 2953 cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 2954 #else 2955 struct ccb_trans_settings_fc *fc = 2956 &cts->xport_specific.fc; 2957 2958 cts->protocol = PROTO_SCSI; 2959 cts->protocol_version = SCSI_REV_2; 2960 cts->transport = XPORT_FC; 2961 cts->transport_version = 0; 2962 2963 fc->valid = CTS_FC_VALID_SPEED; 2964 fc->bitrate = 100000; /* XXX: Need for 2Gb/s */ 2965 /* XXX: need a port database for each target */ 2966 #endif 2967 } else if (mpt->is_sas) { 2968 #ifndef CAM_NEW_TRAN_CODE 2969 cts->flags = CCB_TRANS_TAG_ENB | CCB_TRANS_DISC_ENB; 2970 cts->valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID; 2971 /* 2972 * How do you measure the width of a high 2973 * speed serial bus? Well, in bytes. 2974 * 2975 * Offset and period make no sense, though, so we set 2976 * (above) a 'base' transfer speed to be gigabit. 2977 */ 2978 cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 2979 #else 2980 struct ccb_trans_settings_sas *sas = 2981 &cts->xport_specific.sas; 2982 2983 cts->protocol = PROTO_SCSI; 2984 cts->protocol_version = SCSI_REV_3; 2985 cts->transport = XPORT_SAS; 2986 cts->transport_version = 0; 2987 2988 sas->valid = CTS_SAS_VALID_SPEED; 2989 sas->bitrate = 300000; /* XXX: Default 3Gbps */ 2990 #endif 2991 } else if (mpt_get_spi_settings(mpt, cts) != 0) { 2992 mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR); 2993 break; 2994 } 2995 mpt_set_ccb_status(ccb, CAM_REQ_CMP); 2996 break; 2997 2998 case XPT_CALC_GEOMETRY: 2999 { 3000 struct ccb_calc_geometry *ccg; 3001 3002 ccg = &ccb->ccg; 3003 if (ccg->block_size == 0) { 3004 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 3005 mpt_set_ccb_status(ccb, CAM_REQ_INVALID); 3006 break; 3007 } 3008 mpt_calc_geometry(ccg, /*extended*/1); 3009 KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__)); 3010 break; 3011 } 3012 case XPT_PATH_INQ: /* Path routing inquiry */ 3013 { 3014 struct ccb_pathinq *cpi = &ccb->cpi; 3015 3016 cpi->version_num = 1; 3017 cpi->target_sprt = 0; 3018 cpi->hba_eng_cnt = 0; 3019 cpi->max_lun = 7; 3020 cpi->bus_id = cam_sim_bus(sim); 3021 /* XXX Report base speed more accurately for FC/SAS, etc.*/ 3022 if (mpt->is_fc) { 3023 /* XXX SHOULD BE BASED UPON IOC FACTS XXX XXX */ 3024 cpi->max_target = 255; 3025 cpi->hba_misc = PIM_NOBUSRESET; 3026 cpi->initiator_id = mpt->mpt_ini_id; 3027 cpi->base_transfer_speed = 100000; 3028 cpi->hba_inquiry = PI_TAG_ABLE; 3029 } else if (mpt->is_sas) { 3030 cpi->max_target = 63; /* XXX */ 3031 cpi->hba_misc = PIM_NOBUSRESET; 3032 cpi->initiator_id = mpt->mpt_ini_id; 3033 cpi->base_transfer_speed = 300000; 3034 cpi->hba_inquiry = PI_TAG_ABLE; 3035 } else { 3036 cpi->max_target = 15; 3037 cpi->hba_misc = PIM_SEQSCAN; 3038 cpi->initiator_id = mpt->mpt_ini_id; 3039 cpi->base_transfer_speed = 3300; 3040 cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16; 3041 } 3042 3043 /* 3044 * We give our fake RAID passhtru bus a width that is MaxVolumes 3045 * wide, restrict it to one lun and have it *not* be a bus 3046 * that can have a SCSI bus reset. 3047 */ 3048 if (raid_passthru) { 3049 cpi->max_target = mpt->ioc_page2->MaxPhysDisks - 1; 3050 cpi->initiator_id = cpi->max_target + 1; 3051 cpi->max_lun = 0; 3052 cpi->hba_misc |= PIM_NOBUSRESET; 3053 } 3054 3055 if ((mpt->role & MPT_ROLE_INITIATOR) == 0) { 3056 cpi->hba_misc |= PIM_NOINITIATOR; 3057 } 3058 if ((mpt->role & MPT_ROLE_TARGET) != 0) { 3059 cpi->target_sprt = 3060 PIT_PROCESSOR | PIT_DISCONNECT | PIT_TERM_IO; 3061 } else { 3062 cpi->target_sprt = 0; 3063 } 3064 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 3065 strncpy(cpi->hba_vid, "LSI", HBA_IDLEN); 3066 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 3067 cpi->unit_number = cam_sim_unit(sim); 3068 cpi->ccb_h.status = CAM_REQ_CMP; 3069 break; 3070 } 3071 case XPT_EN_LUN: /* Enable LUN as a target */ 3072 { 3073 int result; 3074 3075 CAMLOCK_2_MPTLOCK(mpt); 3076 if (ccb->cel.enable) 3077 result = mpt_enable_lun(mpt, 3078 ccb->ccb_h.target_id, ccb->ccb_h.target_lun); 3079 else 3080 result = mpt_disable_lun(mpt, 3081 ccb->ccb_h.target_id, ccb->ccb_h.target_lun); 3082 MPTLOCK_2_CAMLOCK(mpt); 3083 if (result == 0) { 3084 mpt_set_ccb_status(ccb, CAM_REQ_CMP); 3085 } else { 3086 mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR); 3087 } 3088 break; 3089 } 3090 case XPT_NOTIFY_ACK: /* recycle notify ack */ 3091 case XPT_IMMED_NOTIFY: /* Add Immediate Notify Resource */ 3092 case XPT_ACCEPT_TARGET_IO: /* Add Accept Target IO Resource */ 3093 { 3094 tgt_resource_t *trtp; 3095 lun_id_t lun = ccb->ccb_h.target_lun; 3096 ccb->ccb_h.sim_priv.entries[0].field = 0; 3097 ccb->ccb_h.sim_priv.entries[1].ptr = mpt; 3098 ccb->ccb_h.flags = 0; 3099 3100 if (lun == CAM_LUN_WILDCARD) { 3101 if (ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) { 3102 mpt_set_ccb_status(ccb, CAM_REQ_INVALID); 3103 break; 3104 } 3105 trtp = &mpt->trt_wildcard; 3106 } else if (lun >= MPT_MAX_LUNS) { 3107 mpt_set_ccb_status(ccb, CAM_REQ_INVALID); 3108 break; 3109 } else { 3110 trtp = &mpt->trt[lun]; 3111 } 3112 CAMLOCK_2_MPTLOCK(mpt); 3113 if (ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) { 3114 mpt_lprt(mpt, MPT_PRT_DEBUG1, 3115 "Put FREE ATIO %p lun %d\n", ccb, lun); 3116 STAILQ_INSERT_TAIL(&trtp->atios, &ccb->ccb_h, 3117 sim_links.stqe); 3118 } else if (ccb->ccb_h.func_code == XPT_IMMED_NOTIFY) { 3119 mpt_lprt(mpt, MPT_PRT_DEBUG1, 3120 "Put FREE INOT lun %d\n", lun); 3121 STAILQ_INSERT_TAIL(&trtp->inots, &ccb->ccb_h, 3122 sim_links.stqe); 3123 } else { 3124 mpt_lprt(mpt, MPT_PRT_ALWAYS, "Got Notify ACK\n"); 3125 } 3126 mpt_set_ccb_status(ccb, CAM_REQ_INPROG); 3127 MPTLOCK_2_CAMLOCK(mpt); 3128 break; 3129 } 3130 case XPT_CONT_TARGET_IO: 3131 CAMLOCK_2_MPTLOCK(mpt); 3132 mpt_target_start_io(mpt, ccb); 3133 MPTLOCK_2_CAMLOCK(mpt); 3134 break; 3135 default: 3136 ccb->ccb_h.status = CAM_REQ_INVALID; 3137 break; 3138 } 3139 xpt_done(ccb); 3140 } 3141 3142 static int 3143 mpt_get_spi_settings(struct mpt_softc *mpt, struct ccb_trans_settings *cts) 3144 { 3145 #ifdef CAM_NEW_TRAN_CODE 3146 struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi; 3147 struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi; 3148 #endif 3149 target_id_t tgt; 3150 uint8_t dval, pval, oval; 3151 int rv; 3152 3153 if (xpt_path_sim(cts->ccb_h.path) == mpt->phydisk_sim) { 3154 if (mpt_map_physdisk(mpt, (union ccb *)cts, &tgt)) { 3155 return (-1); 3156 } 3157 } else { 3158 tgt = cts->ccb_h.target_id; 3159 } 3160 3161 /* 3162 * XXX: We aren't looking Port Page 2 BIOS settings here. 3163 * XXX: For goal settings, we pick the max from port page 0 3164 * 3165 * For current settings we read the current settings out from 3166 * device page 0 for that target. 3167 */ 3168 if (IS_CURRENT_SETTINGS(cts)) { 3169 CONFIG_PAGE_SCSI_DEVICE_0 tmp; 3170 dval = 0; 3171 3172 CAMLOCK_2_MPTLOCK(mpt); 3173 tmp = mpt->mpt_dev_page0[tgt]; 3174 rv = mpt_read_cur_cfg_page(mpt, tgt, &tmp.Header, 3175 sizeof(tmp), FALSE, 5000); 3176 if (rv) { 3177 MPTLOCK_2_CAMLOCK(mpt); 3178 mpt_prt(mpt, "can't get tgt %d config page 0\n", tgt); 3179 return (rv); 3180 } 3181 MPTLOCK_2_CAMLOCK(mpt); 3182 if (tmp.NegotiatedParameters & MPI_SCSIDEVPAGE0_NP_WIDE) { 3183 dval |= DP_WIDE; 3184 } 3185 if (mpt->mpt_disc_enable & (1 << tgt)) { 3186 dval |= DP_DISC_ENABLE; 3187 } 3188 if (mpt->mpt_tag_enable & (1 << tgt)) { 3189 dval |= DP_TQING_ENABLE; 3190 } 3191 oval = (tmp.NegotiatedParameters >> 16) & 0xff; 3192 pval = (tmp.NegotiatedParameters >> 8) & 0xff; 3193 mpt->mpt_dev_page0[tgt] = tmp; 3194 } else { 3195 /* 3196 * XXX: Just make theoretical maximum. 3197 */ 3198 dval = DP_WIDE|DP_DISC|DP_TQING; 3199 oval = (mpt->mpt_port_page0.Capabilities >> 16); 3200 pval = (mpt->mpt_port_page0.Capabilities >> 8); 3201 } 3202 #ifndef CAM_NEW_TRAN_CODE 3203 cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB); 3204 if (dval & DP_DISC_ENABLE) { 3205 cts->flags |= CCB_TRANS_DISC_ENB; 3206 } 3207 if (dval & DP_TQING_ENABLE) { 3208 cts->flags |= CCB_TRANS_TAG_ENB; 3209 } 3210 if (dval & DP_WIDE) { 3211 cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 3212 } else { 3213 cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 3214 } 3215 cts->valid = CCB_TRANS_BUS_WIDTH_VALID | 3216 CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID; 3217 if (oval) { 3218 cts->sync_period = pval; 3219 cts->sync_offset = oval; 3220 cts->valid |= 3221 CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID; 3222 } 3223 #else 3224 cts->protocol = PROTO_SCSI; 3225 cts->protocol_version = SCSI_REV_2; 3226 cts->transport = XPORT_SPI; 3227 cts->transport_version = 2; 3228 3229 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 3230 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 3231 if (dval & DP_DISC_ENABLE) { 3232 spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 3233 } 3234 if (dval & DP_TQING_ENABLE) { 3235 scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 3236 } 3237 if (oval && pval) { 3238 spi->sync_offset = oval; 3239 spi->sync_period = pval; 3240 spi->valid |= CTS_SPI_VALID_SYNC_OFFSET; 3241 spi->valid |= CTS_SPI_VALID_SYNC_RATE; 3242 } 3243 spi->valid |= CTS_SPI_VALID_BUS_WIDTH; 3244 if (dval & DP_WIDE) { 3245 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 3246 } else { 3247 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 3248 } 3249 if (cts->ccb_h.target_lun != CAM_LUN_WILDCARD) { 3250 scsi->valid = CTS_SCSI_VALID_TQ; 3251 spi->valid |= CTS_SPI_VALID_DISC; 3252 } else { 3253 scsi->valid = 0; 3254 } 3255 #endif 3256 mpt_lprt(mpt, MPT_PRT_NEGOTIATION, 3257 "mpt_get_spi_settings[%d]: %s 0x%x period 0x%x offset %d\n", tgt, 3258 IS_CURRENT_SETTINGS(cts)? "ACTIVE" : "NVRAM ", dval, pval, oval); 3259 return (0); 3260 } 3261 3262 static void 3263 mpt_setwidth(struct mpt_softc *mpt, int tgt, int onoff) 3264 { 3265 PTR_CONFIG_PAGE_SCSI_DEVICE_1 ptr; 3266 3267 ptr = &mpt->mpt_dev_page1[tgt]; 3268 if (onoff) { 3269 ptr->RequestedParameters |= MPI_SCSIDEVPAGE1_RP_WIDE; 3270 } else { 3271 ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_WIDE; 3272 } 3273 } 3274 3275 static void 3276 mpt_setsync(struct mpt_softc *mpt, int tgt, int period, int offset) 3277 { 3278 PTR_CONFIG_PAGE_SCSI_DEVICE_1 ptr; 3279 3280 ptr = &mpt->mpt_dev_page1[tgt]; 3281 ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_MIN_SYNC_PERIOD_MASK; 3282 ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_MAX_SYNC_OFFSET_MASK; 3283 ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_DT; 3284 ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_QAS; 3285 ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_IU; 3286 ptr->RequestedParameters |= (period << 8) | (offset << 16); 3287 if (period < 0xa) { 3288 ptr->RequestedParameters |= MPI_SCSIDEVPAGE1_RP_DT; 3289 } 3290 if (period < 0x9) { 3291 ptr->RequestedParameters |= MPI_SCSIDEVPAGE1_RP_QAS; 3292 ptr->RequestedParameters |= MPI_SCSIDEVPAGE1_RP_IU; 3293 } 3294 } 3295 3296 static int 3297 mpt_update_spi_config(struct mpt_softc *mpt, int tgt) 3298 { 3299 CONFIG_PAGE_SCSI_DEVICE_1 tmp; 3300 int rv; 3301 3302 mpt_lprt(mpt, MPT_PRT_NEGOTIATION, 3303 "mpt_update_spi_config[%d].page1: Requested Params 0x%08x\n", 3304 tgt, mpt->mpt_dev_page1[tgt].RequestedParameters); 3305 tmp = mpt->mpt_dev_page1[tgt]; 3306 rv = mpt_write_cur_cfg_page(mpt, tgt, 3307 &tmp.Header, sizeof(tmp), FALSE, 5000); 3308 if (rv) { 3309 mpt_prt(mpt, "mpt_update_spi_config: write cur page failed\n"); 3310 return (-1); 3311 } 3312 return (0); 3313 } 3314 3315 static void 3316 mpt_calc_geometry(struct ccb_calc_geometry *ccg, int extended) 3317 { 3318 #if __FreeBSD_version >= 500000 3319 cam_calc_geometry(ccg, extended); 3320 #else 3321 uint32_t size_mb; 3322 uint32_t secs_per_cylinder; 3323 3324 if (ccg->block_size == 0) { 3325 ccg->ccb_h.status = CAM_REQ_INVALID; 3326 return; 3327 } 3328 size_mb = ccg->volume_size / ((1024L * 1024L) / ccg->block_size); 3329 if (size_mb > 1024 && extended) { 3330 ccg->heads = 255; 3331 ccg->secs_per_track = 63; 3332 } else { 3333 ccg->heads = 64; 3334 ccg->secs_per_track = 32; 3335 } 3336 secs_per_cylinder = ccg->heads * ccg->secs_per_track; 3337 ccg->cylinders = ccg->volume_size / secs_per_cylinder; 3338 ccg->ccb_h.status = CAM_REQ_CMP; 3339 #endif 3340 } 3341 3342 /****************************** Timeout Recovery ******************************/ 3343 static int 3344 mpt_spawn_recovery_thread(struct mpt_softc *mpt) 3345 { 3346 int error; 3347 3348 error = mpt_kthread_create(mpt_recovery_thread, mpt, 3349 &mpt->recovery_thread, /*flags*/0, 3350 /*altstack*/0, "mpt_recovery%d", mpt->unit); 3351 return (error); 3352 } 3353 3354 static void 3355 mpt_terminate_recovery_thread(struct mpt_softc *mpt) 3356 { 3357 if (mpt->recovery_thread == NULL) { 3358 return; 3359 } 3360 mpt->shutdwn_recovery = 1; 3361 wakeup(mpt); 3362 /* 3363 * Sleep on a slightly different location 3364 * for this interlock just for added safety. 3365 */ 3366 mpt_sleep(mpt, &mpt->recovery_thread, PUSER, "thtrm", 0); 3367 } 3368 3369 static void 3370 mpt_recovery_thread(void *arg) 3371 { 3372 struct mpt_softc *mpt; 3373 3374 #if __FreeBSD_version >= 500000 3375 mtx_lock(&Giant); 3376 #endif 3377 mpt = (struct mpt_softc *)arg; 3378 MPT_LOCK(mpt); 3379 for (;;) { 3380 if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0) { 3381 if (mpt->shutdwn_recovery == 0) { 3382 mpt_sleep(mpt, mpt, PUSER, "idle", 0); 3383 } 3384 } 3385 if (mpt->shutdwn_recovery != 0) { 3386 break; 3387 } 3388 mpt_recover_commands(mpt); 3389 } 3390 mpt->recovery_thread = NULL; 3391 wakeup(&mpt->recovery_thread); 3392 MPT_UNLOCK(mpt); 3393 #if __FreeBSD_version >= 500000 3394 mtx_unlock(&Giant); 3395 #endif 3396 kthread_exit(0); 3397 } 3398 3399 static int 3400 mpt_scsi_send_tmf(struct mpt_softc *mpt, u_int type, u_int flags, 3401 u_int channel, u_int target, u_int lun, u_int abort_ctx, int sleep_ok) 3402 { 3403 MSG_SCSI_TASK_MGMT *tmf_req; 3404 int error; 3405 3406 /* 3407 * Wait for any current TMF request to complete. 3408 * We're only allowed to issue one TMF at a time. 3409 */ 3410 error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_FREE, REQ_STATE_FREE, 3411 sleep_ok, MPT_TMF_MAX_TIMEOUT); 3412 if (error != 0) { 3413 mpt_reset(mpt, TRUE); 3414 return (ETIMEDOUT); 3415 } 3416 3417 mpt_assign_serno(mpt, mpt->tmf_req); 3418 mpt->tmf_req->state = REQ_STATE_ALLOCATED|REQ_STATE_QUEUED; 3419 3420 tmf_req = (MSG_SCSI_TASK_MGMT *)mpt->tmf_req->req_vbuf; 3421 memset(tmf_req, 0, sizeof(*tmf_req)); 3422 tmf_req->TargetID = target; 3423 tmf_req->Bus = channel; 3424 tmf_req->ChainOffset = 0; 3425 tmf_req->Function = MPI_FUNCTION_SCSI_TASK_MGMT; 3426 tmf_req->Reserved = 0; 3427 tmf_req->TaskType = type; 3428 tmf_req->Reserved1 = 0; 3429 tmf_req->MsgFlags = flags; 3430 tmf_req->MsgContext = 3431 htole32(mpt->tmf_req->index | scsi_tmf_handler_id); 3432 memset(&tmf_req->LUN, 0, 3433 sizeof(tmf_req->LUN) + sizeof(tmf_req->Reserved2)); 3434 if (lun > 256) { 3435 tmf_req->LUN[0] = 0x40 | ((lun >> 8) & 0x3f); 3436 tmf_req->LUN[1] = lun & 0xff; 3437 } else { 3438 tmf_req->LUN[1] = lun; 3439 } 3440 tmf_req->TaskMsgContext = abort_ctx; 3441 3442 mpt_lprt(mpt, MPT_PRT_INFO, 3443 "Issuing TMF %p:%u with MsgContext of 0x%x\n", mpt->tmf_req, 3444 mpt->tmf_req->serno, tmf_req->MsgContext); 3445 if (mpt->verbose > MPT_PRT_DEBUG) { 3446 mpt_print_request(tmf_req); 3447 } 3448 3449 KASSERT(mpt_req_on_pending_list(mpt, mpt->tmf_req) == 0, 3450 ("mpt_scsi_send_tmf: tmf_req already on pending list")); 3451 TAILQ_INSERT_HEAD(&mpt->request_pending_list, mpt->tmf_req, links); 3452 error = mpt_send_handshake_cmd(mpt, sizeof(*tmf_req), tmf_req); 3453 if (error != MPT_OK) { 3454 mpt_reset(mpt, TRUE); 3455 } 3456 return (error); 3457 } 3458 3459 /* 3460 * When a command times out, it is placed on the requeust_timeout_list 3461 * and we wake our recovery thread. The MPT-Fusion architecture supports 3462 * only a single TMF operation at a time, so we serially abort/bdr, etc, 3463 * the timedout transactions. The next TMF is issued either by the 3464 * completion handler of the current TMF waking our recovery thread, 3465 * or the TMF timeout handler causing a hard reset sequence. 3466 */ 3467 static void 3468 mpt_recover_commands(struct mpt_softc *mpt) 3469 { 3470 request_t *req; 3471 union ccb *ccb; 3472 int error; 3473 3474 if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0) { 3475 /* 3476 * No work to do- leave. 3477 */ 3478 mpt_prt(mpt, "mpt_recover_commands: no requests.\n"); 3479 return; 3480 } 3481 3482 /* 3483 * Flush any commands whose completion coincides with their timeout. 3484 */ 3485 mpt_intr(mpt); 3486 3487 if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0) { 3488 /* 3489 * The timedout commands have already 3490 * completed. This typically means 3491 * that either the timeout value was on 3492 * the hairy edge of what the device 3493 * requires or - more likely - interrupts 3494 * are not happening. 3495 */ 3496 mpt_prt(mpt, "Timedout requests already complete. " 3497 "Interrupts may not be functioning.\n"); 3498 mpt_enable_ints(mpt); 3499 return; 3500 } 3501 3502 /* 3503 * We have no visibility into the current state of the 3504 * controller, so attempt to abort the commands in the 3505 * order they timed-out. For initiator commands, we 3506 * depend on the reply handler pulling requests off 3507 * the timeout list. 3508 */ 3509 while ((req = TAILQ_FIRST(&mpt->request_timeout_list)) != NULL) { 3510 uint16_t status; 3511 uint8_t response; 3512 MSG_REQUEST_HEADER *hdrp = req->req_vbuf; 3513 3514 mpt_prt(mpt, "attempting to abort req %p:%u function %x\n", 3515 req, req->serno, hdrp->Function); 3516 ccb = req->ccb; 3517 if (ccb == NULL) { 3518 mpt_prt(mpt, "null ccb in timed out request. " 3519 "Resetting Controller.\n"); 3520 mpt_reset(mpt, TRUE); 3521 continue; 3522 } 3523 mpt_set_ccb_status(ccb, CAM_CMD_TIMEOUT); 3524 3525 /* 3526 * Check to see if this is not an initiator command and 3527 * deal with it differently if it is. 3528 */ 3529 switch (hdrp->Function) { 3530 case MPI_FUNCTION_SCSI_IO_REQUEST: 3531 case MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH: 3532 break; 3533 default: 3534 /* 3535 * XXX: FIX ME: need to abort target assists... 3536 */ 3537 mpt_prt(mpt, "just putting it back on the pend q\n"); 3538 TAILQ_REMOVE(&mpt->request_timeout_list, req, links); 3539 TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, 3540 links); 3541 continue; 3542 } 3543 3544 error = mpt_scsi_send_tmf(mpt, 3545 MPI_SCSITASKMGMT_TASKTYPE_ABORT_TASK, 3546 0, 0, ccb->ccb_h.target_id, ccb->ccb_h.target_lun, 3547 htole32(req->index | scsi_io_handler_id), TRUE); 3548 3549 if (error != 0) { 3550 /* 3551 * mpt_scsi_send_tmf hard resets on failure, so no 3552 * need to do so here. Our queue should be emptied 3553 * by the hard reset. 3554 */ 3555 continue; 3556 } 3557 3558 error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_DONE, 3559 REQ_STATE_DONE, TRUE, 500); 3560 3561 status = mpt->tmf_req->IOCStatus; 3562 response = mpt->tmf_req->ResponseCode; 3563 mpt->tmf_req->state = REQ_STATE_FREE; 3564 3565 if (error != 0) { 3566 /* 3567 * If we've errored out,, reset the controller. 3568 */ 3569 mpt_prt(mpt, "mpt_recover_commands: abort timed-out. " 3570 "Resetting controller\n"); 3571 mpt_reset(mpt, TRUE); 3572 continue; 3573 } 3574 3575 if ((status & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 3576 mpt_prt(mpt, "mpt_recover_commands: IOC Status 0x%x. " 3577 "Resetting controller.\n", status); 3578 mpt_reset(mpt, TRUE); 3579 continue; 3580 } 3581 3582 if (response != MPI_SCSITASKMGMT_RSP_TM_SUCCEEDED && 3583 response != MPI_SCSITASKMGMT_RSP_TM_COMPLETE) { 3584 mpt_prt(mpt, "mpt_recover_commands: TMF Response 0x%x. " 3585 "Resetting controller.\n", response); 3586 mpt_reset(mpt, TRUE); 3587 continue; 3588 } 3589 mpt_prt(mpt, "abort of req %p:%u completed\n", req, req->serno); 3590 } 3591 } 3592 3593 /************************ Target Mode Support ****************************/ 3594 static void 3595 mpt_fc_post_els(struct mpt_softc *mpt, request_t *req, int ioindex) 3596 { 3597 MSG_LINK_SERVICE_BUFFER_POST_REQUEST *fc; 3598 PTR_SGE_TRANSACTION32 tep; 3599 PTR_SGE_SIMPLE32 se; 3600 bus_addr_t paddr; 3601 3602 paddr = req->req_pbuf; 3603 paddr += MPT_RQSL(mpt); 3604 3605 fc = req->req_vbuf; 3606 memset(fc, 0, MPT_REQUEST_AREA); 3607 fc->BufferCount = 1; 3608 fc->Function = MPI_FUNCTION_FC_LINK_SRVC_BUF_POST; 3609 fc->MsgContext = htole32(req->index | fc_els_handler_id); 3610 3611 /* 3612 * Okay, set up ELS buffer pointers. ELS buffer pointers 3613 * consist of a TE SGL element (with details length of zero) 3614 * followe by a SIMPLE SGL element which holds the address 3615 * of the buffer. 3616 */ 3617 3618 tep = (PTR_SGE_TRANSACTION32) &fc->SGL; 3619 3620 tep->ContextSize = 4; 3621 tep->Flags = 0; 3622 tep->TransactionContext[0] = htole32(ioindex); 3623 3624 se = (PTR_SGE_SIMPLE32) &tep->TransactionDetails[0]; 3625 se->FlagsLength = 3626 MPI_SGE_FLAGS_HOST_TO_IOC | 3627 MPI_SGE_FLAGS_SIMPLE_ELEMENT | 3628 MPI_SGE_FLAGS_LAST_ELEMENT | 3629 MPI_SGE_FLAGS_END_OF_LIST | 3630 MPI_SGE_FLAGS_END_OF_BUFFER; 3631 se->FlagsLength <<= MPI_SGE_FLAGS_SHIFT; 3632 se->FlagsLength |= (MPT_NRFM(mpt) - MPT_RQSL(mpt)); 3633 se->Address = (uint32_t) paddr; 3634 mpt_lprt(mpt, MPT_PRT_DEBUG, 3635 "add ELS index %d ioindex %d for %p:%u\n", 3636 req->index, ioindex, req, req->serno); 3637 KASSERT(((req->state & REQ_STATE_LOCKED) != 0), 3638 ("mpt_fc_post_els: request not locked")); 3639 mpt_send_cmd(mpt, req); 3640 } 3641 3642 static void 3643 mpt_post_target_command(struct mpt_softc *mpt, request_t *req, int ioindex) 3644 { 3645 PTR_MSG_TARGET_CMD_BUFFER_POST_REQUEST fc; 3646 PTR_CMD_BUFFER_DESCRIPTOR cb; 3647 bus_addr_t paddr; 3648 3649 paddr = req->req_pbuf; 3650 paddr += MPT_RQSL(mpt); 3651 memset(req->req_vbuf, 0, MPT_REQUEST_AREA); 3652 MPT_TGT_STATE(mpt, req)->state = TGT_STATE_LOADING; 3653 3654 fc = req->req_vbuf; 3655 fc->BufferCount = 1; 3656 fc->Function = MPI_FUNCTION_TARGET_CMD_BUFFER_POST; 3657 fc->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id); 3658 3659 cb = &fc->Buffer[0]; 3660 cb->IoIndex = htole16(ioindex); 3661 cb->u.PhysicalAddress32 = (U32) paddr; 3662 3663 mpt_check_doorbell(mpt); 3664 mpt_send_cmd(mpt, req); 3665 } 3666 3667 static int 3668 mpt_add_els_buffers(struct mpt_softc *mpt) 3669 { 3670 int i; 3671 3672 if (mpt->is_fc == 0) { 3673 return (TRUE); 3674 } 3675 3676 if (mpt->els_cmds_allocated) { 3677 return (TRUE); 3678 } 3679 3680 mpt->els_cmd_ptrs = malloc(MPT_MAX_ELS * sizeof (request_t *), 3681 M_DEVBUF, M_NOWAIT | M_ZERO); 3682 3683 if (mpt->els_cmd_ptrs == NULL) { 3684 return (FALSE); 3685 } 3686 3687 /* 3688 * Feed the chip some ELS buffer resources 3689 */ 3690 for (i = 0; i < MPT_MAX_ELS; i++) { 3691 request_t *req = mpt_get_request(mpt, FALSE); 3692 if (req == NULL) { 3693 break; 3694 } 3695 req->state |= REQ_STATE_LOCKED; 3696 mpt->els_cmd_ptrs[i] = req; 3697 mpt_fc_post_els(mpt, req, i); 3698 } 3699 3700 if (i == 0) { 3701 mpt_prt(mpt, "unable to add ELS buffer resources\n"); 3702 free(mpt->els_cmd_ptrs, M_DEVBUF); 3703 mpt->els_cmd_ptrs = NULL; 3704 return (FALSE); 3705 } 3706 if (i != MPT_MAX_ELS) { 3707 mpt_lprt(mpt, MPT_PRT_INFO, 3708 "only added %d of %d ELS buffers\n", i, MPT_MAX_ELS); 3709 } 3710 mpt->els_cmds_allocated = i; 3711 return(TRUE); 3712 } 3713 3714 static int 3715 mpt_add_target_commands(struct mpt_softc *mpt) 3716 { 3717 int i, max; 3718 3719 if (mpt->tgt_cmd_ptrs) { 3720 return (TRUE); 3721 } 3722 3723 max = MPT_MAX_REQUESTS(mpt) >> 1; 3724 if (max > mpt->mpt_max_tgtcmds) { 3725 max = mpt->mpt_max_tgtcmds; 3726 } 3727 mpt->tgt_cmd_ptrs = 3728 malloc(max * sizeof (request_t *), M_DEVBUF, M_NOWAIT | M_ZERO); 3729 if (mpt->tgt_cmd_ptrs == NULL) { 3730 mpt_prt(mpt, 3731 "mpt_add_target_commands: could not allocate cmd ptrs\n"); 3732 return (FALSE); 3733 } 3734 3735 for (i = 0; i < max; i++) { 3736 request_t *req; 3737 3738 req = mpt_get_request(mpt, FALSE); 3739 if (req == NULL) { 3740 break; 3741 } 3742 req->state |= REQ_STATE_LOCKED; 3743 mpt->tgt_cmd_ptrs[i] = req; 3744 mpt_post_target_command(mpt, req, i); 3745 } 3746 3747 3748 if (i == 0) { 3749 mpt_lprt(mpt, MPT_PRT_ERROR, "could not add any target bufs\n"); 3750 free(mpt->tgt_cmd_ptrs, M_DEVBUF); 3751 mpt->tgt_cmd_ptrs = NULL; 3752 return (FALSE); 3753 } 3754 3755 mpt->tgt_cmds_allocated = i; 3756 3757 if (i < max) { 3758 mpt_lprt(mpt, MPT_PRT_INFO, 3759 "added %d of %d target bufs\n", i, max); 3760 } 3761 return (i); 3762 } 3763 3764 static void 3765 mpt_free_els_buffers(struct mpt_softc *mpt) 3766 { 3767 mpt_prt(mpt, "fix me! need to implement mpt_free_els_buffers"); 3768 } 3769 3770 static void 3771 mpt_free_target_commands(struct mpt_softc *mpt) 3772 { 3773 mpt_prt(mpt, "fix me! need to implement mpt_free_target_commands"); 3774 } 3775 3776 3777 static int 3778 mpt_enable_lun(struct mpt_softc *mpt, target_id_t tgt, lun_id_t lun) 3779 { 3780 if (tgt == CAM_TARGET_WILDCARD && lun == CAM_LUN_WILDCARD) { 3781 mpt->twildcard = 1; 3782 } else if (lun >= MPT_MAX_LUNS) { 3783 return (EINVAL); 3784 } else if (tgt != CAM_TARGET_WILDCARD && tgt != 0) { 3785 return (EINVAL); 3786 } 3787 if (mpt->tenabled == 0) { 3788 /* 3789 * Try to add some target command resources 3790 */ 3791 if (mpt_add_target_commands(mpt) == FALSE) { 3792 mpt_free_els_buffers(mpt); 3793 return (ENOMEM); 3794 } 3795 if (mpt->is_fc) { 3796 (void) mpt_fc_reset_link(mpt, 0); 3797 } 3798 mpt->tenabled = 1; 3799 } 3800 if (lun == CAM_LUN_WILDCARD) { 3801 mpt->trt_wildcard.enabled = 1; 3802 } else { 3803 mpt->trt[lun].enabled = 1; 3804 } 3805 return (0); 3806 } 3807 3808 static int 3809 mpt_disable_lun(struct mpt_softc *mpt, target_id_t tgt, lun_id_t lun) 3810 { 3811 int i; 3812 if (tgt == CAM_TARGET_WILDCARD && lun == CAM_LUN_WILDCARD) { 3813 mpt->twildcard = 0; 3814 } else if (lun >= MPT_MAX_LUNS) { 3815 return (EINVAL); 3816 } else if (tgt != CAM_TARGET_WILDCARD && tgt != 0) { 3817 return (EINVAL); 3818 } 3819 if (lun == CAM_LUN_WILDCARD) { 3820 mpt->trt_wildcard.enabled = 0; 3821 } else { 3822 mpt->trt[lun].enabled = 0; 3823 } 3824 for (i = 0; i < MPT_MAX_LUNS; i++) { 3825 if (mpt->trt[lun].enabled) { 3826 break; 3827 } 3828 } 3829 if (i == MPT_MAX_LUNS && mpt->twildcard == 0) { 3830 mpt_free_els_buffers(mpt); 3831 mpt_free_target_commands(mpt); 3832 if (mpt->is_fc) { 3833 (void) mpt_fc_reset_link(mpt, 0); 3834 } 3835 mpt->tenabled = 0; 3836 } 3837 return (0); 3838 } 3839 3840 /* 3841 * Called with MPT lock held 3842 */ 3843 static void 3844 mpt_target_start_io(struct mpt_softc *mpt, union ccb *ccb) 3845 { 3846 struct ccb_scsiio *csio = &ccb->csio; 3847 request_t *cmd_req = MPT_TAG_2_REQ(mpt, csio->tag_id); 3848 mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, cmd_req); 3849 3850 switch (tgt->state) { 3851 case TGT_STATE_IN_CAM: 3852 break; 3853 case TGT_STATE_MOVING_DATA: 3854 mpt_set_ccb_status(ccb, CAM_REQUEUE_REQ); 3855 xpt_freeze_simq(mpt->sim, 1); 3856 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 3857 tgt->ccb->ccb_h.status |= CAM_RELEASE_SIMQ; 3858 MPTLOCK_2_CAMLOCK(mpt); 3859 xpt_done(ccb); 3860 CAMLOCK_2_MPTLOCK(mpt); 3861 return; 3862 default: 3863 mpt_prt(mpt, "ccb %p flags 0x%x tag 0x%08x had bad request " 3864 "starting I/O\n", ccb, csio->ccb_h.flags, csio->tag_id); 3865 mpt_tgt_dump_req_state(mpt, cmd_req); 3866 mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR); 3867 MPTLOCK_2_CAMLOCK(mpt); 3868 xpt_done(ccb); 3869 CAMLOCK_2_MPTLOCK(mpt); 3870 return; 3871 } 3872 3873 if (csio->dxfer_len) { 3874 bus_dmamap_callback_t *cb; 3875 PTR_MSG_TARGET_ASSIST_REQUEST ta; 3876 request_t *req; 3877 3878 KASSERT((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE, 3879 ("dxfer_len %u but direction is NONE\n", csio->dxfer_len)); 3880 3881 if ((req = mpt_get_request(mpt, FALSE)) == NULL) { 3882 if (mpt->outofbeer == 0) { 3883 mpt->outofbeer = 1; 3884 xpt_freeze_simq(mpt->sim, 1); 3885 mpt_lprt(mpt, MPT_PRT_DEBUG, "FREEZEQ\n"); 3886 } 3887 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 3888 mpt_set_ccb_status(ccb, CAM_REQUEUE_REQ); 3889 MPTLOCK_2_CAMLOCK(mpt); 3890 xpt_done(ccb); 3891 CAMLOCK_2_MPTLOCK(mpt); 3892 return; 3893 } 3894 ccb->ccb_h.status = CAM_SIM_QUEUED | CAM_REQ_INPROG; 3895 if (sizeof (bus_addr_t) > 4) { 3896 cb = mpt_execute_req_a64; 3897 } else { 3898 cb = mpt_execute_req; 3899 } 3900 3901 req->ccb = ccb; 3902 ccb->ccb_h.ccb_req_ptr = req; 3903 3904 /* 3905 * Record the currently active ccb and the 3906 * request for it in our target state area. 3907 */ 3908 tgt->ccb = ccb; 3909 tgt->req = req; 3910 3911 memset(req->req_vbuf, 0, MPT_RQSL(mpt)); 3912 ta = req->req_vbuf; 3913 3914 if (mpt->is_sas == 0) { 3915 PTR_MPI_TARGET_SSP_CMD_BUFFER ssp = 3916 cmd_req->req_vbuf; 3917 ta->QueueTag = ssp->InitiatorTag; 3918 } else if (mpt->is_spi) { 3919 PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER sp = 3920 cmd_req->req_vbuf; 3921 ta->QueueTag = sp->Tag; 3922 } 3923 ta->Function = MPI_FUNCTION_TARGET_ASSIST; 3924 ta->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id); 3925 ta->ReplyWord = htole32(tgt->reply_desc); 3926 if (csio->ccb_h.target_lun > 256) { 3927 ta->LUN[0] = 3928 0x40 | ((csio->ccb_h.target_lun >> 8) & 0x3f); 3929 ta->LUN[1] = csio->ccb_h.target_lun & 0xff; 3930 } else { 3931 ta->LUN[1] = csio->ccb_h.target_lun; 3932 } 3933 3934 ta->RelativeOffset = tgt->bytes_xfered; 3935 ta->DataLength = ccb->csio.dxfer_len; 3936 if (ta->DataLength > tgt->resid) { 3937 ta->DataLength = tgt->resid; 3938 } 3939 3940 /* 3941 * XXX Should be done after data transfer completes? 3942 */ 3943 tgt->resid -= csio->dxfer_len; 3944 tgt->bytes_xfered += csio->dxfer_len; 3945 3946 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { 3947 ta->TargetAssistFlags |= 3948 TARGET_ASSIST_FLAGS_DATA_DIRECTION; 3949 } 3950 3951 #ifdef WE_TRUST_AUTO_GOOD_STATUS 3952 if ((ccb->ccb_h.flags & CAM_SEND_STATUS) && 3953 csio->scsi_status == SCSI_STATUS_OK && tgt->resid == 0) { 3954 ta->TargetAssistFlags |= 3955 TARGET_ASSIST_FLAGS_AUTO_STATUS; 3956 } 3957 #endif 3958 tgt->state = TGT_STATE_SETTING_UP_FOR_DATA; 3959 3960 mpt_lprt(mpt, MPT_PRT_DEBUG, 3961 "DATA_CCB %p tag %x %u bytes %u resid flg %x req %p:%u " 3962 "nxtstate=%d\n", csio, csio->tag_id, csio->dxfer_len, 3963 tgt->resid, ccb->ccb_h.flags, req, req->serno, tgt->state); 3964 3965 MPTLOCK_2_CAMLOCK(mpt); 3966 if ((ccb->ccb_h.flags & CAM_SCATTER_VALID) == 0) { 3967 if ((ccb->ccb_h.flags & CAM_DATA_PHYS) == 0) { 3968 int error; 3969 int s = splsoftvm(); 3970 error = bus_dmamap_load(mpt->buffer_dmat, 3971 req->dmap, csio->data_ptr, csio->dxfer_len, 3972 cb, req, 0); 3973 splx(s); 3974 if (error == EINPROGRESS) { 3975 xpt_freeze_simq(mpt->sim, 1); 3976 ccb->ccb_h.status |= CAM_RELEASE_SIMQ; 3977 } 3978 } else { 3979 /* 3980 * We have been given a pointer to single 3981 * physical buffer. 3982 */ 3983 struct bus_dma_segment seg; 3984 seg.ds_addr = (bus_addr_t) 3985 (vm_offset_t)csio->data_ptr; 3986 seg.ds_len = csio->dxfer_len; 3987 (*cb)(req, &seg, 1, 0); 3988 } 3989 } else { 3990 /* 3991 * We have been given a list of addresses. 3992 * This case could be easily supported but they are not 3993 * currently generated by the CAM subsystem so there 3994 * is no point in wasting the time right now. 3995 */ 3996 struct bus_dma_segment *sgs; 3997 if ((ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) { 3998 (*cb)(req, NULL, 0, EFAULT); 3999 } else { 4000 /* Just use the segments provided */ 4001 sgs = (struct bus_dma_segment *)csio->data_ptr; 4002 (*cb)(req, sgs, csio->sglist_cnt, 0); 4003 } 4004 } 4005 CAMLOCK_2_MPTLOCK(mpt); 4006 } else { 4007 uint8_t *sp = NULL, sense[MPT_SENSE_SIZE]; 4008 4009 /* 4010 * XXX: I don't know why this seems to happen, but 4011 * XXX: completing the CCB seems to make things happy. 4012 * XXX: This seems to happen if the initiator requests 4013 * XXX: enough data that we have to do multiple CTIOs. 4014 */ 4015 if ((ccb->ccb_h.flags & CAM_SEND_STATUS) == 0) { 4016 mpt_lprt(mpt, MPT_PRT_DEBUG, 4017 "Meaningless STATUS CCB (%p): flags %x status %x " 4018 "resid %d bytes_xfered %u\n", ccb, ccb->ccb_h.flags, 4019 ccb->ccb_h.status, tgt->resid, tgt->bytes_xfered); 4020 mpt_set_ccb_status(ccb, CAM_REQ_CMP); 4021 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 4022 MPTLOCK_2_CAMLOCK(mpt); 4023 xpt_done(ccb); 4024 CAMLOCK_2_MPTLOCK(mpt); 4025 return; 4026 } 4027 if (ccb->ccb_h.flags & CAM_SEND_SENSE) { 4028 sp = sense; 4029 memcpy(sp, &csio->sense_data, 4030 min(csio->sense_len, MPT_SENSE_SIZE)); 4031 } 4032 mpt_scsi_tgt_status(mpt, ccb, cmd_req, csio->scsi_status, sp); 4033 } 4034 } 4035 4036 /* 4037 * Abort queued up CCBs 4038 */ 4039 static cam_status 4040 mpt_abort_target_ccb(struct mpt_softc *mpt, union ccb *ccb) 4041 { 4042 struct mpt_hdr_stailq *lp; 4043 struct ccb_hdr *srch; 4044 int found = 0; 4045 union ccb *accb = ccb->cab.abort_ccb; 4046 tgt_resource_t *trtp; 4047 4048 mpt_lprt(mpt, MPT_PRT_DEBUG, "aborting ccb %p\n", accb); 4049 4050 if (ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) { 4051 trtp = &mpt->trt_wildcard; 4052 } else { 4053 trtp = &mpt->trt[ccb->ccb_h.target_lun]; 4054 } 4055 4056 if (accb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) { 4057 lp = &trtp->atios; 4058 } else if (accb->ccb_h.func_code == XPT_IMMED_NOTIFY) { 4059 lp = &trtp->inots; 4060 } else { 4061 return (CAM_REQ_INVALID); 4062 } 4063 4064 STAILQ_FOREACH(srch, lp, sim_links.stqe) { 4065 if (srch == &accb->ccb_h) { 4066 found = 1; 4067 STAILQ_REMOVE(lp, srch, ccb_hdr, sim_links.stqe); 4068 break; 4069 } 4070 } 4071 if (found) { 4072 accb->ccb_h.status = CAM_REQ_ABORTED; 4073 xpt_done(accb); 4074 return (CAM_REQ_CMP); 4075 } 4076 mpt_prt(mpt, "mpt_abort_tgt_ccb: CCB %p not found\n", ccb); 4077 return (CAM_PATH_INVALID); 4078 } 4079 4080 /* 4081 * Ask the MPT to abort the current target command 4082 */ 4083 static int 4084 mpt_abort_target_cmd(struct mpt_softc *mpt, request_t *cmd_req) 4085 { 4086 int error; 4087 request_t *req; 4088 PTR_MSG_TARGET_MODE_ABORT abtp; 4089 4090 req = mpt_get_request(mpt, FALSE); 4091 if (req == NULL) { 4092 return (-1); 4093 } 4094 abtp = req->req_vbuf; 4095 memset(abtp, 0, sizeof (*abtp)); 4096 4097 abtp->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id); 4098 abtp->AbortType = TARGET_MODE_ABORT_TYPE_EXACT_IO; 4099 abtp->Function = MPI_FUNCTION_TARGET_MODE_ABORT; 4100 abtp->ReplyWord = htole32(MPT_TGT_STATE(mpt, cmd_req)->reply_desc); 4101 error = 0; 4102 if (mpt->is_fc || mpt->is_sas) { 4103 mpt_send_cmd(mpt, req); 4104 } else { 4105 error = mpt_send_handshake_cmd(mpt, sizeof(*req), req); 4106 } 4107 return (error); 4108 } 4109 4110 /* 4111 * WE_TRUST_AUTO_GOOD_STATUS- I've found that setting 4112 * TARGET_STATUS_SEND_FLAGS_AUTO_GOOD_STATUS leads the 4113 * FC929 to set bogus FC_RSP fields (nonzero residuals 4114 * but w/o RESID fields set). This causes QLogic initiators 4115 * to think maybe that a frame was lost. 4116 * 4117 * WE_CAN_USE_AUTO_REPOST- we can't use AUTO_REPOST because 4118 * we use allocated requests to do TARGET_ASSIST and we 4119 * need to know when to release them. 4120 */ 4121 4122 static void 4123 mpt_scsi_tgt_status(struct mpt_softc *mpt, union ccb *ccb, request_t *cmd_req, 4124 uint8_t status, uint8_t const *sense_data) 4125 { 4126 uint8_t *cmd_vbuf; 4127 mpt_tgt_state_t *tgt; 4128 PTR_MSG_TARGET_STATUS_SEND_REQUEST tp; 4129 request_t *req; 4130 bus_addr_t paddr; 4131 int resplen = 0; 4132 4133 cmd_vbuf = cmd_req->req_vbuf; 4134 cmd_vbuf += MPT_RQSL(mpt); 4135 tgt = MPT_TGT_STATE(mpt, cmd_req); 4136 4137 if ((req = mpt_get_request(mpt, FALSE)) == NULL) { 4138 if (mpt->outofbeer == 0) { 4139 mpt->outofbeer = 1; 4140 xpt_freeze_simq(mpt->sim, 1); 4141 mpt_lprt(mpt, MPT_PRT_DEBUG, "FREEZEQ\n"); 4142 } 4143 if (ccb) { 4144 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 4145 mpt_set_ccb_status(ccb, CAM_REQUEUE_REQ); 4146 MPTLOCK_2_CAMLOCK(mpt); 4147 xpt_done(ccb); 4148 CAMLOCK_2_MPTLOCK(mpt); 4149 } else { 4150 mpt_prt(mpt, 4151 "XXXX could not allocate status req- dropping\n"); 4152 } 4153 return; 4154 } 4155 req->ccb = ccb; 4156 if (ccb) { 4157 ccb->ccb_h.ccb_mpt_ptr = mpt; 4158 ccb->ccb_h.ccb_req_ptr = req; 4159 } 4160 4161 /* 4162 * Record the currently active ccb, if any, and the 4163 * request for it in our target state area. 4164 */ 4165 tgt->ccb = ccb; 4166 tgt->req = req; 4167 tgt->state = TGT_STATE_SENDING_STATUS; 4168 4169 tp = req->req_vbuf; 4170 paddr = req->req_pbuf; 4171 paddr += MPT_RQSL(mpt); 4172 4173 memset(tp, 0, sizeof (*tp)); 4174 tp->Function = MPI_FUNCTION_TARGET_STATUS_SEND; 4175 if (mpt->is_fc) { 4176 PTR_MPI_TARGET_FCP_CMD_BUFFER fc = 4177 (PTR_MPI_TARGET_FCP_CMD_BUFFER) cmd_vbuf; 4178 uint8_t *sts_vbuf; 4179 uint32_t *rsp; 4180 4181 sts_vbuf = req->req_vbuf; 4182 sts_vbuf += MPT_RQSL(mpt); 4183 rsp = (uint32_t *) sts_vbuf; 4184 memcpy(tp->LUN, fc->FcpLun, sizeof (tp->LUN)); 4185 4186 /* 4187 * The MPI_TARGET_FCP_RSP_BUFFER define is unfortunate. 4188 * It has to be big-endian in memory and is organized 4189 * in 32 bit words, which are much easier to deal with 4190 * as words which are swizzled as needed. 4191 * 4192 * All we're filling here is the FC_RSP payload. 4193 * We may just have the chip synthesize it if 4194 * we have no residual and an OK status. 4195 * 4196 */ 4197 memset(rsp, 0, sizeof (MPI_TARGET_FCP_RSP_BUFFER)); 4198 4199 rsp[2] = status; 4200 if (tgt->resid) { 4201 rsp[2] |= 0x800; /* XXXX NEED MNEMONIC!!!! */ 4202 rsp[3] = htobe32(tgt->resid); 4203 #ifdef WE_TRUST_AUTO_GOOD_STATUS 4204 resplen = sizeof (MPI_TARGET_FCP_RSP_BUFFER); 4205 #endif 4206 } 4207 if (status == SCSI_STATUS_CHECK_COND) { 4208 int i; 4209 4210 rsp[2] |= 0x200; /* XXXX NEED MNEMONIC!!!! */ 4211 rsp[4] = htobe32(MPT_SENSE_SIZE); 4212 if (sense_data) { 4213 memcpy(&rsp[8], sense_data, MPT_SENSE_SIZE); 4214 } else { 4215 mpt_prt(mpt, "mpt_scsi_tgt_status: CHECK CONDI" 4216 "TION but no sense data?\n"); 4217 memset(&rsp, 0, MPT_SENSE_SIZE); 4218 } 4219 for (i = 8; i < (8 + (MPT_SENSE_SIZE >> 2)); i++) { 4220 rsp[i] = htobe32(rsp[i]); 4221 } 4222 #ifdef WE_TRUST_AUTO_GOOD_STATUS 4223 resplen = sizeof (MPI_TARGET_FCP_RSP_BUFFER); 4224 #endif 4225 } 4226 #ifndef WE_TRUST_AUTO_GOOD_STATUS 4227 resplen = sizeof (MPI_TARGET_FCP_RSP_BUFFER); 4228 #endif 4229 rsp[2] = htobe32(rsp[2]); 4230 } else if (mpt->is_sas) { 4231 PTR_MPI_TARGET_SSP_CMD_BUFFER ssp = 4232 (PTR_MPI_TARGET_SSP_CMD_BUFFER) cmd_vbuf; 4233 memcpy(tp->LUN, ssp->LogicalUnitNumber, sizeof (tp->LUN)); 4234 } else { 4235 PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER sp = 4236 (PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER) cmd_vbuf; 4237 tp->StatusCode = status; 4238 tp->QueueTag = htole16(sp->Tag); 4239 memcpy(tp->LUN, sp->LogicalUnitNumber, sizeof (tp->LUN)); 4240 } 4241 4242 tp->ReplyWord = htole32(tgt->reply_desc); 4243 tp->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id); 4244 4245 #ifdef WE_CAN_USE_AUTO_REPOST 4246 tp->MsgFlags = TARGET_STATUS_SEND_FLAGS_REPOST_CMD_BUFFER; 4247 #endif 4248 if (status == SCSI_STATUS_OK && resplen == 0) { 4249 tp->MsgFlags |= TARGET_STATUS_SEND_FLAGS_AUTO_GOOD_STATUS; 4250 } else { 4251 tp->StatusDataSGE.u.Address32 = (uint32_t) paddr; 4252 tp->StatusDataSGE.FlagsLength = 4253 MPI_SGE_FLAGS_HOST_TO_IOC | 4254 MPI_SGE_FLAGS_SIMPLE_ELEMENT | 4255 MPI_SGE_FLAGS_LAST_ELEMENT | 4256 MPI_SGE_FLAGS_END_OF_LIST | 4257 MPI_SGE_FLAGS_END_OF_BUFFER; 4258 tp->StatusDataSGE.FlagsLength <<= MPI_SGE_FLAGS_SHIFT; 4259 tp->StatusDataSGE.FlagsLength |= resplen; 4260 } 4261 4262 mpt_lprt(mpt, MPT_PRT_DEBUG, 4263 "STATUS_CCB %p (wit%s sense) tag %x req %p:%u resid %u\n", 4264 ccb, sense_data?"h" : "hout", ccb? ccb->csio.tag_id : -1, req, 4265 req->serno, tgt->resid); 4266 if (ccb) { 4267 ccb->ccb_h.status = CAM_SIM_QUEUED | CAM_REQ_INPROG; 4268 ccb->ccb_h.timeout_ch = timeout(mpt_timeout, ccb, 60 * hz); 4269 } 4270 mpt_send_cmd(mpt, req); 4271 } 4272 4273 static void 4274 mpt_scsi_tgt_tsk_mgmt(struct mpt_softc *mpt, request_t *req, mpt_task_mgmt_t fc, 4275 tgt_resource_t *trtp, int init_id) 4276 { 4277 struct ccb_immed_notify *inot; 4278 mpt_tgt_state_t *tgt; 4279 4280 tgt = MPT_TGT_STATE(mpt, req); 4281 inot = (struct ccb_immed_notify *) STAILQ_FIRST(&trtp->inots); 4282 if (inot == NULL) { 4283 mpt_lprt(mpt, MPT_PRT_WARN, "no INOTSs- sending back BSY\n"); 4284 mpt_scsi_tgt_status(mpt, NULL, req, SCSI_STATUS_BUSY, NULL); 4285 return; 4286 } 4287 STAILQ_REMOVE_HEAD(&trtp->inots, sim_links.stqe); 4288 mpt_lprt(mpt, MPT_PRT_DEBUG1, 4289 "Get FREE INOT %p lun %d\n", inot, inot->ccb_h.target_lun); 4290 4291 memset(&inot->sense_data, 0, sizeof (inot->sense_data)); 4292 inot->sense_len = 0; 4293 memset(inot->message_args, 0, sizeof (inot->message_args)); 4294 inot->initiator_id = init_id; /* XXX */ 4295 4296 /* 4297 * This is a somewhat grotesque attempt to map from task management 4298 * to old style SCSI messages. God help us all. 4299 */ 4300 switch (fc) { 4301 case MPT_ABORT_TASK_SET: 4302 inot->message_args[0] = MSG_ABORT_TAG; 4303 break; 4304 case MPT_CLEAR_TASK_SET: 4305 inot->message_args[0] = MSG_CLEAR_TASK_SET; 4306 break; 4307 case MPT_TARGET_RESET: 4308 inot->message_args[0] = MSG_TARGET_RESET; 4309 break; 4310 case MPT_CLEAR_ACA: 4311 inot->message_args[0] = MSG_CLEAR_ACA; 4312 break; 4313 case MPT_TERMINATE_TASK: 4314 inot->message_args[0] = MSG_ABORT_TAG; 4315 break; 4316 default: 4317 inot->message_args[0] = MSG_NOOP; 4318 break; 4319 } 4320 tgt->ccb = (union ccb *) inot; 4321 inot->ccb_h.status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN; 4322 MPTLOCK_2_CAMLOCK(mpt); 4323 xpt_done((union ccb *)inot); 4324 CAMLOCK_2_MPTLOCK(mpt); 4325 } 4326 4327 static void 4328 mpt_scsi_tgt_atio(struct mpt_softc *mpt, request_t *req, uint32_t reply_desc) 4329 { 4330 struct ccb_accept_tio *atiop; 4331 lun_id_t lun; 4332 int tag_action = 0; 4333 mpt_tgt_state_t *tgt; 4334 tgt_resource_t *trtp = NULL; 4335 U8 *lunptr; 4336 U8 *vbuf; 4337 U16 itag; 4338 U16 ioindex; 4339 mpt_task_mgmt_t fct = MPT_NIL_TMT_VALUE; 4340 uint8_t *cdbp; 4341 4342 /* 4343 * First, DMA sync the received command- which is in the *request* 4344 * phys area. 4345 * XXX: We could optimize this for a range 4346 */ 4347 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 4348 BUS_DMASYNC_POSTREAD); 4349 4350 /* 4351 * Stash info for the current command where we can get at it later. 4352 */ 4353 vbuf = req->req_vbuf; 4354 vbuf += MPT_RQSL(mpt); 4355 4356 /* 4357 * Get our state pointer set up. 4358 */ 4359 tgt = MPT_TGT_STATE(mpt, req); 4360 if (tgt->state != TGT_STATE_LOADED) { 4361 mpt_tgt_dump_req_state(mpt, req); 4362 panic("bad target state in mpt_scsi_tgt_atio"); 4363 } 4364 memset(tgt, 0, sizeof (mpt_tgt_state_t)); 4365 tgt->state = TGT_STATE_IN_CAM; 4366 tgt->reply_desc = reply_desc; 4367 ioindex = GET_IO_INDEX(reply_desc); 4368 4369 if (mpt->is_fc) { 4370 PTR_MPI_TARGET_FCP_CMD_BUFFER fc; 4371 fc = (PTR_MPI_TARGET_FCP_CMD_BUFFER) vbuf; 4372 if (fc->FcpCntl[2]) { 4373 /* 4374 * Task Management Request 4375 */ 4376 switch (fc->FcpCntl[2]) { 4377 case 0x2: 4378 fct = MPT_ABORT_TASK_SET; 4379 break; 4380 case 0x4: 4381 fct = MPT_CLEAR_TASK_SET; 4382 break; 4383 case 0x20: 4384 fct = MPT_TARGET_RESET; 4385 break; 4386 case 0x40: 4387 fct = MPT_CLEAR_ACA; 4388 break; 4389 case 0x80: 4390 fct = MPT_TERMINATE_TASK; 4391 break; 4392 default: 4393 mpt_prt(mpt, "CORRUPTED TASK MGMT BITS: 0x%x\n", 4394 fc->FcpCntl[2]); 4395 mpt_scsi_tgt_status(mpt, 0, req, 4396 SCSI_STATUS_OK, 0); 4397 return; 4398 } 4399 } else { 4400 switch (fc->FcpCntl[1]) { 4401 case 0: 4402 tag_action = MSG_SIMPLE_Q_TAG; 4403 break; 4404 case 1: 4405 tag_action = MSG_HEAD_OF_Q_TAG; 4406 break; 4407 case 2: 4408 tag_action = MSG_ORDERED_Q_TAG; 4409 break; 4410 default: 4411 /* 4412 * Bah. Ignore Untagged Queing and ACA 4413 */ 4414 tag_action = MSG_SIMPLE_Q_TAG; 4415 break; 4416 } 4417 } 4418 tgt->resid = be32toh(fc->FcpDl); 4419 cdbp = fc->FcpCdb; 4420 lunptr = fc->FcpLun; 4421 itag = be16toh(fc->OptionalOxid); 4422 } else if (mpt->is_sas) { 4423 PTR_MPI_TARGET_SSP_CMD_BUFFER ssp; 4424 ssp = (PTR_MPI_TARGET_SSP_CMD_BUFFER) vbuf; 4425 cdbp = ssp->CDB; 4426 lunptr = ssp->LogicalUnitNumber; 4427 itag = ssp->InitiatorTag; 4428 } else { 4429 PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER sp; 4430 sp = (PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER) vbuf; 4431 cdbp = sp->CDB; 4432 lunptr = sp->LogicalUnitNumber; 4433 itag = sp->Tag; 4434 } 4435 4436 /* 4437 * Generate a simple lun 4438 */ 4439 switch (lunptr[0] & 0xc0) { 4440 case 0x40: 4441 lun = ((lunptr[0] & 0x3f) << 8) | lunptr[1]; 4442 break; 4443 case 0: 4444 lun = lunptr[1]; 4445 break; 4446 default: 4447 mpt_lprt(mpt, MPT_PRT_ERROR, "cannot handle this type lun\n"); 4448 lun = 0xffff; 4449 break; 4450 } 4451 4452 /* 4453 * Deal with non-enabled or bad luns here. 4454 */ 4455 if (lun >= MPT_MAX_LUNS || mpt->tenabled == 0 || 4456 mpt->trt[lun].enabled == 0) { 4457 if (mpt->twildcard) { 4458 trtp = &mpt->trt_wildcard; 4459 } else if (fct != MPT_NIL_TMT_VALUE) { 4460 const uint8_t sp[MPT_SENSE_SIZE] = { 4461 0xf0, 0, 0x5, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0x25 4462 }; 4463 mpt_scsi_tgt_status(mpt, NULL, req, 4464 SCSI_STATUS_CHECK_COND, sp); 4465 return; 4466 } 4467 } else { 4468 trtp = &mpt->trt[lun]; 4469 } 4470 4471 /* 4472 * Deal with any task management 4473 */ 4474 if (fct != MPT_NIL_TMT_VALUE) { 4475 if (trtp == NULL) { 4476 mpt_prt(mpt, "task mgmt function %x but no listener\n", 4477 fct); 4478 mpt_scsi_tgt_status(mpt, 0, req, 4479 SCSI_STATUS_OK, 0); 4480 } else { 4481 mpt_scsi_tgt_tsk_mgmt(mpt, req, fct, trtp, 4482 GET_INITIATOR_INDEX(reply_desc)); 4483 } 4484 return; 4485 } 4486 4487 4488 atiop = (struct ccb_accept_tio *) STAILQ_FIRST(&trtp->atios); 4489 if (atiop == NULL) { 4490 mpt_lprt(mpt, MPT_PRT_WARN, 4491 "no ATIOs for lun %u- sending back %s\n", lun, 4492 mpt->tenabled? "QUEUE FULL" : "BUSY"); 4493 mpt_scsi_tgt_status(mpt, NULL, req, 4494 mpt->tenabled? SCSI_STATUS_QUEUE_FULL : SCSI_STATUS_BUSY, 4495 NULL); 4496 return; 4497 } 4498 STAILQ_REMOVE_HEAD(&trtp->atios, sim_links.stqe); 4499 mpt_lprt(mpt, MPT_PRT_DEBUG1, 4500 "Get FREE ATIO %p lun %d\n", atiop, atiop->ccb_h.target_lun); 4501 atiop->ccb_h.ccb_mpt_ptr = mpt; 4502 atiop->ccb_h.status = CAM_CDB_RECVD; 4503 atiop->ccb_h.target_lun = lun; 4504 atiop->sense_len = 0; 4505 atiop->init_id = GET_INITIATOR_INDEX(reply_desc); 4506 atiop->cdb_len = mpt_cdblen(cdbp[0], 16); 4507 memcpy(atiop->cdb_io.cdb_bytes, cdbp, atiop->cdb_len); 4508 4509 /* 4510 * The tag we construct here allows us to find the 4511 * original request that the command came in with. 4512 * 4513 * This way we don't have to depend on anything but the 4514 * tag to find things when CCBs show back up from CAM. 4515 */ 4516 atiop->tag_id = MPT_MAKE_TAGID(mpt, req, ioindex); 4517 tgt->tag_id = atiop->tag_id; 4518 if (tag_action) { 4519 atiop->tag_action = tag_action; 4520 atiop->ccb_h.flags = CAM_TAG_ACTION_VALID; 4521 } 4522 if (mpt->verbose >= MPT_PRT_DEBUG) { 4523 int i; 4524 mpt_prt(mpt, "START_CCB %p for lun %u CDB=<", atiop, 4525 atiop->ccb_h.target_lun); 4526 for (i = 0; i < atiop->cdb_len; i++) { 4527 mpt_prtc(mpt, "%02x%c", cdbp[i] & 0xff, 4528 (i == (atiop->cdb_len - 1))? '>' : ' '); 4529 } 4530 mpt_prtc(mpt, " itag %x tag %x rdesc %x dl=%u\n", 4531 itag, atiop->tag_id, tgt->reply_desc, tgt->resid); 4532 } 4533 4534 MPTLOCK_2_CAMLOCK(mpt); 4535 xpt_done((union ccb *)atiop); 4536 CAMLOCK_2_MPTLOCK(mpt); 4537 } 4538 4539 static void 4540 mpt_tgt_dump_tgt_state(struct mpt_softc *mpt, request_t *req) 4541 { 4542 mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, req); 4543 4544 mpt_prt(mpt, "req %p:%u tgt:rdesc 0x%x resid %u xfrd %u ccb %p treq %p " 4545 "nx %d tag 0x%08x state=%d\n", req, req->serno, tgt->reply_desc, 4546 tgt->resid, tgt->bytes_xfered, tgt->ccb, tgt->req, tgt->nxfers, 4547 tgt->tag_id, tgt->state); 4548 } 4549 4550 static void 4551 mpt_tgt_dump_req_state(struct mpt_softc *mpt, request_t *req) 4552 { 4553 mpt_prt(mpt, "req %p:%u index %u (%x) state %x\n", req, req->serno, 4554 req->index, req->index, req->state); 4555 mpt_tgt_dump_tgt_state(mpt, req); 4556 } 4557 4558 static int 4559 mpt_scsi_tgt_reply_handler(struct mpt_softc *mpt, request_t *req, 4560 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 4561 { 4562 int dbg; 4563 union ccb *ccb; 4564 U16 status; 4565 4566 if (reply_frame == NULL) { 4567 /* 4568 * Figure out what the state of the command is. 4569 */ 4570 mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, req); 4571 4572 #ifdef INVARIANTS 4573 mpt_req_spcl(mpt, req, "turbo scsi_tgt_reply", __LINE__); 4574 if (tgt->req) { 4575 mpt_req_not_spcl(mpt, tgt->req, 4576 "turbo scsi_tgt_reply associated req", __LINE__); 4577 } 4578 #endif 4579 switch(tgt->state) { 4580 case TGT_STATE_LOADED: 4581 /* 4582 * This is a new command starting. 4583 */ 4584 mpt_scsi_tgt_atio(mpt, req, reply_desc); 4585 break; 4586 case TGT_STATE_MOVING_DATA: 4587 { 4588 uint8_t *sp = NULL, sense[MPT_SENSE_SIZE]; 4589 4590 ccb = tgt->ccb; 4591 if (tgt->req == NULL) { 4592 panic("mpt: turbo target reply with null " 4593 "associated request moving data"); 4594 /* NOTREACHED */ 4595 } 4596 if (ccb == NULL) { 4597 panic("mpt: turbo target reply with null " 4598 "associated ccb moving data"); 4599 /* NOTREACHED */ 4600 } 4601 tgt->ccb = NULL; 4602 tgt->nxfers++; 4603 untimeout(mpt_timeout, ccb, ccb->ccb_h.timeout_ch); 4604 mpt_lprt(mpt, MPT_PRT_DEBUG, 4605 "TARGET_ASSIST %p (req %p:%u) done tag 0x%x\n", 4606 ccb, tgt->req, tgt->req->serno, ccb->csio.tag_id); 4607 /* 4608 * Free the Target Assist Request 4609 */ 4610 KASSERT(tgt->req->ccb == ccb, 4611 ("tgt->req %p:%u tgt->req->ccb %p", tgt->req, 4612 tgt->req->serno, tgt->req->ccb)); 4613 TAILQ_REMOVE(&mpt->request_pending_list, 4614 tgt->req, links); 4615 mpt_free_request(mpt, tgt->req); 4616 tgt->req = NULL; 4617 4618 /* 4619 * Do we need to send status now? That is, are 4620 * we done with all our data transfers? 4621 */ 4622 if ((ccb->ccb_h.flags & CAM_SEND_STATUS) == 0) { 4623 mpt_set_ccb_status(ccb, CAM_REQ_CMP); 4624 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 4625 KASSERT(ccb->ccb_h.status, 4626 ("zero ccb sts at %d\n", __LINE__)); 4627 tgt->state = TGT_STATE_IN_CAM; 4628 if (mpt->outofbeer) { 4629 ccb->ccb_h.status |= CAM_RELEASE_SIMQ; 4630 mpt->outofbeer = 0; 4631 mpt_lprt(mpt, MPT_PRT_DEBUG, "THAWQ\n"); 4632 } 4633 MPTLOCK_2_CAMLOCK(mpt); 4634 xpt_done(ccb); 4635 CAMLOCK_2_MPTLOCK(mpt); 4636 break; 4637 } 4638 /* 4639 * Otherwise, send status (and sense) 4640 */ 4641 if (ccb->ccb_h.flags & CAM_SEND_SENSE) { 4642 sp = sense; 4643 memcpy(sp, &ccb->csio.sense_data, 4644 min(ccb->csio.sense_len, MPT_SENSE_SIZE)); 4645 } 4646 mpt_scsi_tgt_status(mpt, ccb, req, 4647 ccb->csio.scsi_status, sp); 4648 break; 4649 } 4650 case TGT_STATE_SENDING_STATUS: 4651 case TGT_STATE_MOVING_DATA_AND_STATUS: 4652 { 4653 int ioindex; 4654 ccb = tgt->ccb; 4655 4656 if (tgt->req == NULL) { 4657 panic("mpt: turbo target reply with null " 4658 "associated request sending status"); 4659 /* NOTREACHED */ 4660 } 4661 4662 if (ccb) { 4663 tgt->ccb = NULL; 4664 if (tgt->state == 4665 TGT_STATE_MOVING_DATA_AND_STATUS) { 4666 tgt->nxfers++; 4667 } 4668 untimeout(mpt_timeout, ccb, 4669 ccb->ccb_h.timeout_ch); 4670 if (ccb->ccb_h.flags & CAM_SEND_SENSE) { 4671 ccb->ccb_h.status |= CAM_SENT_SENSE; 4672 } 4673 mpt_lprt(mpt, MPT_PRT_DEBUG, 4674 "TARGET_STATUS tag %x sts %x flgs %x req " 4675 "%p\n", ccb->csio.tag_id, ccb->ccb_h.status, 4676 ccb->ccb_h.flags, tgt->req); 4677 /* 4678 * Free the Target Send Status Request 4679 */ 4680 KASSERT(tgt->req->ccb == ccb, 4681 ("tgt->req %p:%u tgt->req->ccb %p", 4682 tgt->req, tgt->req->serno, tgt->req->ccb)); 4683 /* 4684 * Notify CAM that we're done 4685 */ 4686 mpt_set_ccb_status(ccb, CAM_REQ_CMP); 4687 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 4688 KASSERT(ccb->ccb_h.status, 4689 ("ZERO ccb sts at %d\n", __LINE__)); 4690 tgt->ccb = NULL; 4691 } else { 4692 mpt_lprt(mpt, MPT_PRT_DEBUG, 4693 "TARGET_STATUS non-CAM for req %p:%u\n", 4694 tgt->req, tgt->req->serno); 4695 } 4696 TAILQ_REMOVE(&mpt->request_pending_list, 4697 tgt->req, links); 4698 mpt_free_request(mpt, tgt->req); 4699 tgt->req = NULL; 4700 4701 /* 4702 * And re-post the Command Buffer. 4703 * This wil reset the state. 4704 */ 4705 ioindex = GET_IO_INDEX(reply_desc); 4706 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 4707 mpt_post_target_command(mpt, req, ioindex); 4708 4709 /* 4710 * And post a done for anyone who cares 4711 */ 4712 if (ccb) { 4713 if (mpt->outofbeer) { 4714 ccb->ccb_h.status |= CAM_RELEASE_SIMQ; 4715 mpt->outofbeer = 0; 4716 mpt_lprt(mpt, MPT_PRT_DEBUG, "THAWQ\n"); 4717 } 4718 MPTLOCK_2_CAMLOCK(mpt); 4719 xpt_done(ccb); 4720 CAMLOCK_2_MPTLOCK(mpt); 4721 } 4722 break; 4723 } 4724 case TGT_STATE_NIL: /* XXX This Never Happens XXX */ 4725 tgt->state = TGT_STATE_LOADED; 4726 break; 4727 default: 4728 mpt_prt(mpt, "Unknown Target State 0x%x in Context " 4729 "Reply Function\n", tgt->state); 4730 } 4731 return (TRUE); 4732 } 4733 4734 status = le16toh(reply_frame->IOCStatus); 4735 if (status != MPI_IOCSTATUS_SUCCESS) { 4736 dbg = MPT_PRT_ERROR; 4737 } else { 4738 dbg = MPT_PRT_DEBUG1; 4739 } 4740 4741 mpt_lprt(mpt, dbg, 4742 "SCSI_TGT REPLY: req=%p:%u reply=%p func=%x IOCstatus 0x%x\n", 4743 req, req->serno, reply_frame, reply_frame->Function, status); 4744 4745 switch (reply_frame->Function) { 4746 case MPI_FUNCTION_TARGET_CMD_BUFFER_POST: 4747 { 4748 mpt_tgt_state_t *tgt; 4749 #ifdef INVARIANTS 4750 mpt_req_spcl(mpt, req, "tgt reply BUFFER POST", __LINE__); 4751 #endif 4752 if (status != MPI_IOCSTATUS_SUCCESS) { 4753 /* 4754 * XXX What to do? 4755 */ 4756 break; 4757 } 4758 tgt = MPT_TGT_STATE(mpt, req); 4759 KASSERT(tgt->state == TGT_STATE_LOADING, 4760 ("bad state 0x%x on reply to buffer post\n", tgt->state)); 4761 mpt_assign_serno(mpt, req); 4762 tgt->state = TGT_STATE_LOADED; 4763 break; 4764 } 4765 case MPI_FUNCTION_TARGET_ASSIST: 4766 #ifdef INVARIANTS 4767 mpt_req_not_spcl(mpt, req, "tgt reply TARGET ASSIST", __LINE__); 4768 #endif 4769 mpt_prt(mpt, "target assist completion\n"); 4770 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 4771 mpt_free_request(mpt, req); 4772 break; 4773 case MPI_FUNCTION_TARGET_STATUS_SEND: 4774 #ifdef INVARIANTS 4775 mpt_req_not_spcl(mpt, req, "tgt reply STATUS SEND", __LINE__); 4776 #endif 4777 mpt_prt(mpt, "status send completion\n"); 4778 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 4779 mpt_free_request(mpt, req); 4780 break; 4781 case MPI_FUNCTION_TARGET_MODE_ABORT: 4782 { 4783 PTR_MSG_TARGET_MODE_ABORT_REPLY abtrp = 4784 (PTR_MSG_TARGET_MODE_ABORT_REPLY) reply_frame; 4785 PTR_MSG_TARGET_MODE_ABORT abtp = 4786 (PTR_MSG_TARGET_MODE_ABORT) req->req_vbuf; 4787 uint32_t cc = GET_IO_INDEX(le32toh(abtp->ReplyWord)); 4788 #ifdef INVARIANTS 4789 mpt_req_not_spcl(mpt, req, "tgt reply TMODE ABORT", __LINE__); 4790 #endif 4791 mpt_prt(mpt, "ABORT RX_ID 0x%x Complete; status 0x%x cnt %u\n", 4792 cc, le16toh(abtrp->IOCStatus), le32toh(abtrp->AbortCount)); 4793 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 4794 mpt_free_request(mpt, req); 4795 break; 4796 } 4797 default: 4798 mpt_prt(mpt, "Unknown Target Address Reply Function code: " 4799 "0x%x\n", reply_frame->Function); 4800 break; 4801 } 4802 return (TRUE); 4803 } 4804