1 /*- 2 * Generic routines for LSI Fusion adapters. 3 * FreeBSD Version. 4 * 5 * Copyright (c) 2000, 2001 by Greg Ansley 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice immediately at the beginning of the file, without modification, 12 * this list of conditions, and the following disclaimer. 13 * 2. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 /*- 29 * Copyright (c) 2002, 2006 by Matthew Jacob 30 * All rights reserved. 31 * 32 * Redistribution and use in source and binary forms, with or without 33 * modification, are permitted provided that the following conditions are 34 * met: 35 * 1. Redistributions of source code must retain the above copyright 36 * notice, this list of conditions and the following disclaimer. 37 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 38 * substantially similar to the "NO WARRANTY" disclaimer below 39 * ("Disclaimer") and any redistribution must be conditioned upon including 40 * a substantially similar Disclaimer requirement for further binary 41 * redistribution. 42 * 3. Neither the names of the above listed copyright holders nor the names 43 * of any contributors may be used to endorse or promote products derived 44 * from this software without specific prior written permission. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 47 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 50 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 56 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 57 * 58 * Support from Chris Ellsworth in order to make SAS adapters work 59 * is gratefully acknowledged. 60 * 61 * 62 * Support from LSI-Logic has also gone a great deal toward making this a 63 * workable subsystem and is gratefully acknowledged. 64 */ 65 /*- 66 * Copyright (c) 2004, Avid Technology, Inc. and its contributors. 67 * Copyright (c) 2005, WHEEL Sp. z o.o. 68 * Copyright (c) 2004, 2005 Justin T. Gibbs 69 * All rights reserved. 70 * 71 * Redistribution and use in source and binary forms, with or without 72 * modification, are permitted provided that the following conditions are 73 * met: 74 * 1. Redistributions of source code must retain the above copyright 75 * notice, this list of conditions and the following disclaimer. 76 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 77 * substantially similar to the "NO WARRANTY" disclaimer below 78 * ("Disclaimer") and any redistribution must be conditioned upon including 79 * a substantially similar Disclaimer requirement for further binary 80 * redistribution. 81 * 3. Neither the names of the above listed copyright holders nor the names 82 * of any contributors may be used to endorse or promote products derived 83 * from this software without specific prior written permission. 84 * 85 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 86 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 88 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 89 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 90 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 91 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 92 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 93 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 94 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 95 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 96 */ 97 98 #include <sys/cdefs.h> 99 __FBSDID("$FreeBSD$"); 100 101 #include <dev/mpt/mpt.h> 102 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */ 103 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */ 104 105 #include <dev/mpt/mpilib/mpi.h> 106 #include <dev/mpt/mpilib/mpi_ioc.h> 107 #include <dev/mpt/mpilib/mpi_fc.h> 108 #include <dev/mpt/mpilib/mpi_targ.h> 109 110 #include <sys/sysctl.h> 111 112 #define MPT_MAX_TRYS 3 113 #define MPT_MAX_WAIT 300000 114 115 static int maxwait_ack = 0; 116 static int maxwait_int = 0; 117 static int maxwait_state = 0; 118 119 static TAILQ_HEAD(, mpt_softc) mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq); 120 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS]; 121 122 static mpt_reply_handler_t mpt_default_reply_handler; 123 static mpt_reply_handler_t mpt_config_reply_handler; 124 static mpt_reply_handler_t mpt_handshake_reply_handler; 125 static mpt_reply_handler_t mpt_event_reply_handler; 126 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 127 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context); 128 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff); 129 static int mpt_soft_reset(struct mpt_softc *mpt); 130 static void mpt_hard_reset(struct mpt_softc *mpt); 131 static int mpt_dma_buf_alloc(struct mpt_softc *mpt); 132 static void mpt_dma_buf_free(struct mpt_softc *mpt); 133 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int); 134 static int mpt_enable_ioc(struct mpt_softc *mpt, int); 135 136 /************************* Personality Module Support *************************/ 137 /* 138 * We include one extra entry that is guaranteed to be NULL 139 * to simplify our itterator. 140 */ 141 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1]; 142 static __inline struct mpt_personality* 143 mpt_pers_find(struct mpt_softc *, u_int); 144 static __inline struct mpt_personality* 145 mpt_pers_find_reverse(struct mpt_softc *, u_int); 146 147 static __inline struct mpt_personality * 148 mpt_pers_find(struct mpt_softc *mpt, u_int start_at) 149 { 150 KASSERT(start_at <= MPT_MAX_PERSONALITIES, 151 ("mpt_pers_find: starting position out of range")); 152 153 while (start_at < MPT_MAX_PERSONALITIES 154 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 155 start_at++; 156 } 157 return (mpt_personalities[start_at]); 158 } 159 160 /* 161 * Used infrequently, so no need to optimize like a forward 162 * traversal where we use the MAX+1 is guaranteed to be NULL 163 * trick. 164 */ 165 static __inline struct mpt_personality * 166 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at) 167 { 168 while (start_at < MPT_MAX_PERSONALITIES 169 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 170 start_at--; 171 } 172 if (start_at < MPT_MAX_PERSONALITIES) 173 return (mpt_personalities[start_at]); 174 return (NULL); 175 } 176 177 #define MPT_PERS_FOREACH(mpt, pers) \ 178 for (pers = mpt_pers_find(mpt, /*start_at*/0); \ 179 pers != NULL; \ 180 pers = mpt_pers_find(mpt, /*start_at*/pers->id+1)) 181 182 #define MPT_PERS_FOREACH_REVERSE(mpt, pers) \ 183 for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\ 184 pers != NULL; \ 185 pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1)) 186 187 static mpt_load_handler_t mpt_stdload; 188 static mpt_probe_handler_t mpt_stdprobe; 189 static mpt_attach_handler_t mpt_stdattach; 190 static mpt_enable_handler_t mpt_stdenable; 191 static mpt_ready_handler_t mpt_stdready; 192 static mpt_event_handler_t mpt_stdevent; 193 static mpt_reset_handler_t mpt_stdreset; 194 static mpt_shutdown_handler_t mpt_stdshutdown; 195 static mpt_detach_handler_t mpt_stddetach; 196 static mpt_unload_handler_t mpt_stdunload; 197 static struct mpt_personality mpt_default_personality = 198 { 199 .load = mpt_stdload, 200 .probe = mpt_stdprobe, 201 .attach = mpt_stdattach, 202 .enable = mpt_stdenable, 203 .ready = mpt_stdready, 204 .event = mpt_stdevent, 205 .reset = mpt_stdreset, 206 .shutdown = mpt_stdshutdown, 207 .detach = mpt_stddetach, 208 .unload = mpt_stdunload 209 }; 210 211 static mpt_load_handler_t mpt_core_load; 212 static mpt_attach_handler_t mpt_core_attach; 213 static mpt_enable_handler_t mpt_core_enable; 214 static mpt_reset_handler_t mpt_core_ioc_reset; 215 static mpt_event_handler_t mpt_core_event; 216 static mpt_shutdown_handler_t mpt_core_shutdown; 217 static mpt_shutdown_handler_t mpt_core_detach; 218 static mpt_unload_handler_t mpt_core_unload; 219 static struct mpt_personality mpt_core_personality = 220 { 221 .name = "mpt_core", 222 .load = mpt_core_load, 223 // .attach = mpt_core_attach, 224 // .enable = mpt_core_enable, 225 .event = mpt_core_event, 226 .reset = mpt_core_ioc_reset, 227 .shutdown = mpt_core_shutdown, 228 .detach = mpt_core_detach, 229 .unload = mpt_core_unload, 230 }; 231 232 /* 233 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need 234 * ordering information. We want the core to always register FIRST. 235 * other modules are set to SI_ORDER_SECOND. 236 */ 237 static moduledata_t mpt_core_mod = { 238 "mpt_core", mpt_modevent, &mpt_core_personality 239 }; 240 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 241 MODULE_VERSION(mpt_core, 1); 242 243 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id)) 244 245 int 246 mpt_modevent(module_t mod, int type, void *data) 247 { 248 struct mpt_personality *pers; 249 int error; 250 251 pers = (struct mpt_personality *)data; 252 253 error = 0; 254 switch (type) { 255 case MOD_LOAD: 256 { 257 mpt_load_handler_t **def_handler; 258 mpt_load_handler_t **pers_handler; 259 int i; 260 261 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 262 if (mpt_personalities[i] == NULL) 263 break; 264 } 265 if (i >= MPT_MAX_PERSONALITIES) { 266 error = ENOMEM; 267 break; 268 } 269 pers->id = i; 270 mpt_personalities[i] = pers; 271 272 /* Install standard/noop handlers for any NULL entries. */ 273 def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality); 274 pers_handler = MPT_PERS_FIRST_HANDLER(pers); 275 while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) { 276 if (*pers_handler == NULL) 277 *pers_handler = *def_handler; 278 pers_handler++; 279 def_handler++; 280 } 281 282 error = (pers->load(pers)); 283 if (error != 0) 284 mpt_personalities[i] = NULL; 285 break; 286 } 287 case MOD_SHUTDOWN: 288 break; 289 case MOD_QUIESCE: 290 break; 291 case MOD_UNLOAD: 292 error = pers->unload(pers); 293 mpt_personalities[pers->id] = NULL; 294 break; 295 default: 296 error = EINVAL; 297 break; 298 } 299 return (error); 300 } 301 302 static int 303 mpt_stdload(struct mpt_personality *pers) 304 { 305 306 /* Load is always successful. */ 307 return (0); 308 } 309 310 static int 311 mpt_stdprobe(struct mpt_softc *mpt) 312 { 313 314 /* Probe is always successful. */ 315 return (0); 316 } 317 318 static int 319 mpt_stdattach(struct mpt_softc *mpt) 320 { 321 322 /* Attach is always successful. */ 323 return (0); 324 } 325 326 static int 327 mpt_stdenable(struct mpt_softc *mpt) 328 { 329 330 /* Enable is always successful. */ 331 return (0); 332 } 333 334 static void 335 mpt_stdready(struct mpt_softc *mpt) 336 { 337 338 } 339 340 static int 341 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg) 342 { 343 344 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF); 345 /* Event was not for us. */ 346 return (0); 347 } 348 349 static void 350 mpt_stdreset(struct mpt_softc *mpt, int type) 351 { 352 353 } 354 355 static void 356 mpt_stdshutdown(struct mpt_softc *mpt) 357 { 358 359 } 360 361 static void 362 mpt_stddetach(struct mpt_softc *mpt) 363 { 364 365 } 366 367 static int 368 mpt_stdunload(struct mpt_personality *pers) 369 { 370 371 /* Unload is always successful. */ 372 return (0); 373 } 374 375 /* 376 * Post driver attachment, we may want to perform some global actions. 377 * Here is the hook to do so. 378 */ 379 380 static void 381 mpt_postattach(void *unused) 382 { 383 struct mpt_softc *mpt; 384 struct mpt_personality *pers; 385 386 TAILQ_FOREACH(mpt, &mpt_tailq, links) { 387 MPT_PERS_FOREACH(mpt, pers) 388 pers->ready(mpt); 389 } 390 } 391 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL); 392 393 /******************************* Bus DMA Support ******************************/ 394 void 395 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error) 396 { 397 struct mpt_map_info *map_info; 398 399 map_info = (struct mpt_map_info *)arg; 400 map_info->error = error; 401 map_info->phys = segs->ds_addr; 402 } 403 404 /**************************** Reply/Event Handling ****************************/ 405 int 406 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type, 407 mpt_handler_t handler, uint32_t *phandler_id) 408 { 409 410 switch (type) { 411 case MPT_HANDLER_REPLY: 412 { 413 u_int cbi; 414 u_int free_cbi; 415 416 if (phandler_id == NULL) 417 return (EINVAL); 418 419 free_cbi = MPT_HANDLER_ID_NONE; 420 for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) { 421 /* 422 * If the same handler is registered multiple 423 * times, don't error out. Just return the 424 * index of the original registration. 425 */ 426 if (mpt_reply_handlers[cbi] == handler.reply_handler) { 427 *phandler_id = MPT_CBI_TO_HID(cbi); 428 return (0); 429 } 430 431 /* 432 * Fill from the front in the hope that 433 * all registered handlers consume only a 434 * single cache line. 435 * 436 * We don't break on the first empty slot so 437 * that the full table is checked to see if 438 * this handler was previously registered. 439 */ 440 if (free_cbi == MPT_HANDLER_ID_NONE && 441 (mpt_reply_handlers[cbi] 442 == mpt_default_reply_handler)) 443 free_cbi = cbi; 444 } 445 if (free_cbi == MPT_HANDLER_ID_NONE) { 446 return (ENOMEM); 447 } 448 mpt_reply_handlers[free_cbi] = handler.reply_handler; 449 *phandler_id = MPT_CBI_TO_HID(free_cbi); 450 break; 451 } 452 default: 453 mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type); 454 return (EINVAL); 455 } 456 return (0); 457 } 458 459 int 460 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type, 461 mpt_handler_t handler, uint32_t handler_id) 462 { 463 464 switch (type) { 465 case MPT_HANDLER_REPLY: 466 { 467 u_int cbi; 468 469 cbi = MPT_CBI(handler_id); 470 if (cbi >= MPT_NUM_REPLY_HANDLERS 471 || mpt_reply_handlers[cbi] != handler.reply_handler) 472 return (ENOENT); 473 mpt_reply_handlers[cbi] = mpt_default_reply_handler; 474 break; 475 } 476 default: 477 mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type); 478 return (EINVAL); 479 } 480 return (0); 481 } 482 483 static int 484 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req, 485 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 486 { 487 488 mpt_prt(mpt, 489 "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n", 490 req, req->serno, reply_desc, reply_frame); 491 492 if (reply_frame != NULL) 493 mpt_dump_reply_frame(mpt, reply_frame); 494 495 mpt_prt(mpt, "Reply Frame Ignored\n"); 496 497 return (/*free_reply*/TRUE); 498 } 499 500 static int 501 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req, 502 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 503 { 504 505 if (req != NULL) { 506 if (reply_frame != NULL) { 507 MSG_CONFIG *cfgp; 508 MSG_CONFIG_REPLY *reply; 509 510 cfgp = (MSG_CONFIG *)req->req_vbuf; 511 reply = (MSG_CONFIG_REPLY *)reply_frame; 512 req->IOCStatus = le16toh(reply_frame->IOCStatus); 513 bcopy(&reply->Header, &cfgp->Header, 514 sizeof(cfgp->Header)); 515 cfgp->ExtPageLength = reply->ExtPageLength; 516 cfgp->ExtPageType = reply->ExtPageType; 517 } 518 req->state &= ~REQ_STATE_QUEUED; 519 req->state |= REQ_STATE_DONE; 520 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 521 if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) { 522 wakeup(req); 523 } else if ((req->state & REQ_STATE_TIMEDOUT) != 0) { 524 /* 525 * Whew- we can free this request (late completion) 526 */ 527 mpt_free_request(mpt, req); 528 } 529 } 530 531 return (TRUE); 532 } 533 534 static int 535 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req, 536 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 537 { 538 539 /* Nothing to be done. */ 540 return (TRUE); 541 } 542 543 static int 544 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req, 545 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 546 { 547 int free_reply; 548 549 KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler")); 550 KASSERT(req != NULL, ("null request in mpt_event_reply_handler")); 551 552 free_reply = TRUE; 553 switch (reply_frame->Function) { 554 case MPI_FUNCTION_EVENT_NOTIFICATION: 555 { 556 MSG_EVENT_NOTIFY_REPLY *msg; 557 struct mpt_personality *pers; 558 u_int handled; 559 560 handled = 0; 561 msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 562 msg->EventDataLength = le16toh(msg->EventDataLength); 563 msg->IOCStatus = le16toh(msg->IOCStatus); 564 msg->IOCLogInfo = le32toh(msg->IOCLogInfo); 565 msg->Event = le32toh(msg->Event); 566 MPT_PERS_FOREACH(mpt, pers) 567 handled += pers->event(mpt, req, msg); 568 569 if (handled == 0 && mpt->mpt_pers_mask == 0) { 570 mpt_lprt(mpt, MPT_PRT_INFO, 571 "No Handlers For Any Event Notify Frames. " 572 "Event %#x (ACK %sequired).\n", 573 msg->Event, msg->AckRequired? "r" : "not r"); 574 } else if (handled == 0) { 575 mpt_lprt(mpt, 576 msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO, 577 "Unhandled Event Notify Frame. Event %#x " 578 "(ACK %sequired).\n", 579 msg->Event, msg->AckRequired? "r" : "not r"); 580 } 581 582 if (msg->AckRequired) { 583 request_t *ack_req; 584 uint32_t context; 585 586 context = req->index | MPT_REPLY_HANDLER_EVENTS; 587 ack_req = mpt_get_request(mpt, FALSE); 588 if (ack_req == NULL) { 589 struct mpt_evtf_record *evtf; 590 591 evtf = (struct mpt_evtf_record *)reply_frame; 592 evtf->context = context; 593 LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links); 594 free_reply = FALSE; 595 break; 596 } 597 mpt_send_event_ack(mpt, ack_req, msg, context); 598 /* 599 * Don't check for CONTINUATION_REPLY here 600 */ 601 return (free_reply); 602 } 603 break; 604 } 605 case MPI_FUNCTION_PORT_ENABLE: 606 mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n"); 607 break; 608 case MPI_FUNCTION_EVENT_ACK: 609 break; 610 default: 611 mpt_prt(mpt, "unknown event function: %x\n", 612 reply_frame->Function); 613 break; 614 } 615 616 /* 617 * I'm not sure that this continuation stuff works as it should. 618 * 619 * I've had FC async events occur that free the frame up because 620 * the continuation bit isn't set, and then additional async events 621 * then occur using the same context. As you might imagine, this 622 * leads to Very Bad Thing. 623 * 624 * Let's just be safe for now and not free them up until we figure 625 * out what's actually happening here. 626 */ 627 #if 0 628 if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) { 629 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 630 mpt_free_request(mpt, req); 631 mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation", 632 reply_frame->Function, req, req->serno); 633 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 634 MSG_EVENT_NOTIFY_REPLY *msg = 635 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 636 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 637 msg->Event, msg->AckRequired); 638 } 639 } else { 640 mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation", 641 reply_frame->Function, req, req->serno); 642 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 643 MSG_EVENT_NOTIFY_REPLY *msg = 644 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 645 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 646 msg->Event, msg->AckRequired); 647 } 648 mpt_prtc(mpt, "\n"); 649 } 650 #endif 651 return (free_reply); 652 } 653 654 /* 655 * Process an asynchronous event from the IOC. 656 */ 657 static int 658 mpt_core_event(struct mpt_softc *mpt, request_t *req, 659 MSG_EVENT_NOTIFY_REPLY *msg) 660 { 661 662 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n", 663 msg->Event & 0xFF); 664 switch(msg->Event & 0xFF) { 665 case MPI_EVENT_NONE: 666 break; 667 case MPI_EVENT_LOG_DATA: 668 { 669 int i; 670 671 /* Some error occurred that LSI wants logged */ 672 mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n", 673 msg->IOCLogInfo); 674 mpt_prt(mpt, "\tEvtLogData: Event Data:"); 675 for (i = 0; i < msg->EventDataLength; i++) 676 mpt_prtc(mpt, " %08x", msg->Data[i]); 677 mpt_prtc(mpt, "\n"); 678 break; 679 } 680 case MPI_EVENT_EVENT_CHANGE: 681 /* 682 * This is just an acknowledgement 683 * of our mpt_send_event_request. 684 */ 685 break; 686 case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE: 687 break; 688 default: 689 return (0); 690 break; 691 } 692 return (1); 693 } 694 695 static void 696 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 697 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context) 698 { 699 MSG_EVENT_ACK *ackp; 700 701 ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf; 702 memset(ackp, 0, sizeof (*ackp)); 703 ackp->Function = MPI_FUNCTION_EVENT_ACK; 704 ackp->Event = htole32(msg->Event); 705 ackp->EventContext = htole32(msg->EventContext); 706 ackp->MsgContext = htole32(context); 707 mpt_check_doorbell(mpt); 708 mpt_send_cmd(mpt, ack_req); 709 } 710 711 /***************************** Interrupt Handling *****************************/ 712 void 713 mpt_intr(void *arg) 714 { 715 struct mpt_softc *mpt; 716 uint32_t reply_desc; 717 int ntrips = 0; 718 719 mpt = (struct mpt_softc *)arg; 720 mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n"); 721 MPT_LOCK_ASSERT(mpt); 722 723 while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) { 724 request_t *req; 725 MSG_DEFAULT_REPLY *reply_frame; 726 uint32_t reply_baddr; 727 uint32_t ctxt_idx; 728 u_int cb_index; 729 u_int req_index; 730 u_int offset; 731 int free_rf; 732 733 req = NULL; 734 reply_frame = NULL; 735 reply_baddr = 0; 736 offset = 0; 737 if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) { 738 /* 739 * Ensure that the reply frame is coherent. 740 */ 741 reply_baddr = MPT_REPLY_BADDR(reply_desc); 742 offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF); 743 bus_dmamap_sync_range(mpt->reply_dmat, 744 mpt->reply_dmap, offset, MPT_REPLY_SIZE, 745 BUS_DMASYNC_POSTREAD); 746 reply_frame = MPT_REPLY_OTOV(mpt, offset); 747 ctxt_idx = le32toh(reply_frame->MsgContext); 748 } else { 749 uint32_t type; 750 751 type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc); 752 ctxt_idx = reply_desc; 753 mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n", 754 reply_desc); 755 756 switch (type) { 757 case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT: 758 ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK; 759 break; 760 case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET: 761 ctxt_idx = GET_IO_INDEX(reply_desc); 762 if (mpt->tgt_cmd_ptrs == NULL) { 763 mpt_prt(mpt, 764 "mpt_intr: no target cmd ptrs\n"); 765 reply_desc = MPT_REPLY_EMPTY; 766 break; 767 } 768 if (ctxt_idx >= mpt->tgt_cmds_allocated) { 769 mpt_prt(mpt, 770 "mpt_intr: bad tgt cmd ctxt %u\n", 771 ctxt_idx); 772 reply_desc = MPT_REPLY_EMPTY; 773 ntrips = 1000; 774 break; 775 } 776 req = mpt->tgt_cmd_ptrs[ctxt_idx]; 777 if (req == NULL) { 778 mpt_prt(mpt, "no request backpointer " 779 "at index %u", ctxt_idx); 780 reply_desc = MPT_REPLY_EMPTY; 781 ntrips = 1000; 782 break; 783 } 784 /* 785 * Reformulate ctxt_idx to be just as if 786 * it were another type of context reply 787 * so the code below will find the request 788 * via indexing into the pool. 789 */ 790 ctxt_idx = 791 req->index | mpt->scsi_tgt_handler_id; 792 req = NULL; 793 break; 794 case MPI_CONTEXT_REPLY_TYPE_LAN: 795 mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n", 796 reply_desc); 797 reply_desc = MPT_REPLY_EMPTY; 798 break; 799 default: 800 mpt_prt(mpt, "Context Reply 0x%08x?\n", type); 801 reply_desc = MPT_REPLY_EMPTY; 802 break; 803 } 804 if (reply_desc == MPT_REPLY_EMPTY) { 805 if (ntrips++ > 1000) { 806 break; 807 } 808 continue; 809 } 810 } 811 812 cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx); 813 req_index = MPT_CONTEXT_TO_REQI(ctxt_idx); 814 if (req_index < MPT_MAX_REQUESTS(mpt)) { 815 req = &mpt->request_pool[req_index]; 816 } else { 817 mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc ==" 818 " 0x%x)\n", req_index, reply_desc); 819 } 820 821 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 822 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 823 free_rf = mpt_reply_handlers[cb_index](mpt, req, 824 reply_desc, reply_frame); 825 826 if (reply_frame != NULL && free_rf) { 827 bus_dmamap_sync_range(mpt->reply_dmat, 828 mpt->reply_dmap, offset, MPT_REPLY_SIZE, 829 BUS_DMASYNC_PREREAD); 830 mpt_free_reply(mpt, reply_baddr); 831 } 832 833 /* 834 * If we got ourselves disabled, don't get stuck in a loop 835 */ 836 if (mpt->disabled) { 837 mpt_disable_ints(mpt); 838 break; 839 } 840 if (ntrips++ > 1000) { 841 break; 842 } 843 } 844 mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n"); 845 } 846 847 /******************************* Error Recovery *******************************/ 848 void 849 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain, 850 u_int iocstatus) 851 { 852 MSG_DEFAULT_REPLY ioc_status_frame; 853 request_t *req; 854 855 memset(&ioc_status_frame, 0, sizeof(ioc_status_frame)); 856 ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4); 857 ioc_status_frame.IOCStatus = iocstatus; 858 while((req = TAILQ_FIRST(chain)) != NULL) { 859 MSG_REQUEST_HEADER *msg_hdr; 860 u_int cb_index; 861 862 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 863 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 864 msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf; 865 ioc_status_frame.Function = msg_hdr->Function; 866 ioc_status_frame.MsgContext = msg_hdr->MsgContext; 867 cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext)); 868 mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext, 869 &ioc_status_frame); 870 if (mpt_req_on_pending_list(mpt, req) != 0) 871 TAILQ_REMOVE(chain, req, links); 872 } 873 } 874 875 /********************************* Diagnostics ********************************/ 876 /* 877 * Perform a diagnostic dump of a reply frame. 878 */ 879 void 880 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame) 881 { 882 883 mpt_prt(mpt, "Address Reply:\n"); 884 mpt_print_reply(reply_frame); 885 } 886 887 /******************************* Doorbell Access ******************************/ 888 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt); 889 static __inline uint32_t mpt_rd_intr(struct mpt_softc *mpt); 890 891 static __inline uint32_t 892 mpt_rd_db(struct mpt_softc *mpt) 893 { 894 895 return mpt_read(mpt, MPT_OFFSET_DOORBELL); 896 } 897 898 static __inline uint32_t 899 mpt_rd_intr(struct mpt_softc *mpt) 900 { 901 902 return mpt_read(mpt, MPT_OFFSET_INTR_STATUS); 903 } 904 905 /* Busy wait for a door bell to be read by IOC */ 906 static int 907 mpt_wait_db_ack(struct mpt_softc *mpt) 908 { 909 int i; 910 911 for (i=0; i < MPT_MAX_WAIT; i++) { 912 if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) { 913 maxwait_ack = i > maxwait_ack ? i : maxwait_ack; 914 return (MPT_OK); 915 } 916 DELAY(200); 917 } 918 return (MPT_FAIL); 919 } 920 921 /* Busy wait for a door bell interrupt */ 922 static int 923 mpt_wait_db_int(struct mpt_softc *mpt) 924 { 925 int i; 926 927 for (i = 0; i < MPT_MAX_WAIT; i++) { 928 if (MPT_DB_INTR(mpt_rd_intr(mpt))) { 929 maxwait_int = i > maxwait_int ? i : maxwait_int; 930 return MPT_OK; 931 } 932 DELAY(100); 933 } 934 return (MPT_FAIL); 935 } 936 937 /* Wait for IOC to transition to a give state */ 938 void 939 mpt_check_doorbell(struct mpt_softc *mpt) 940 { 941 uint32_t db = mpt_rd_db(mpt); 942 943 if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) { 944 mpt_prt(mpt, "Device not running\n"); 945 mpt_print_db(db); 946 } 947 } 948 949 /* Wait for IOC to transition to a give state */ 950 static int 951 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state) 952 { 953 int i; 954 955 for (i = 0; i < MPT_MAX_WAIT; i++) { 956 uint32_t db = mpt_rd_db(mpt); 957 if (MPT_STATE(db) == state) { 958 maxwait_state = i > maxwait_state ? i : maxwait_state; 959 return (MPT_OK); 960 } 961 DELAY(100); 962 } 963 return (MPT_FAIL); 964 } 965 966 967 /************************* Intialization/Configuration ************************/ 968 static int mpt_download_fw(struct mpt_softc *mpt); 969 970 /* Issue the reset COMMAND to the IOC */ 971 static int 972 mpt_soft_reset(struct mpt_softc *mpt) 973 { 974 975 mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n"); 976 977 /* Have to use hard reset if we are not in Running state */ 978 if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) { 979 mpt_prt(mpt, "soft reset failed: device not running\n"); 980 return (MPT_FAIL); 981 } 982 983 /* If door bell is in use we don't have a chance of getting 984 * a word in since the IOC probably crashed in message 985 * processing. So don't waste our time. 986 */ 987 if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) { 988 mpt_prt(mpt, "soft reset failed: doorbell wedged\n"); 989 return (MPT_FAIL); 990 } 991 992 /* Send the reset request to the IOC */ 993 mpt_write(mpt, MPT_OFFSET_DOORBELL, 994 MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT); 995 if (mpt_wait_db_ack(mpt) != MPT_OK) { 996 mpt_prt(mpt, "soft reset failed: ack timeout\n"); 997 return (MPT_FAIL); 998 } 999 1000 /* Wait for the IOC to reload and come out of reset state */ 1001 if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) { 1002 mpt_prt(mpt, "soft reset failed: device did not restart\n"); 1003 return (MPT_FAIL); 1004 } 1005 1006 return MPT_OK; 1007 } 1008 1009 static int 1010 mpt_enable_diag_mode(struct mpt_softc *mpt) 1011 { 1012 int try; 1013 1014 try = 20; 1015 while (--try) { 1016 1017 if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0) 1018 break; 1019 1020 /* Enable diagnostic registers */ 1021 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF); 1022 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE); 1023 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE); 1024 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE); 1025 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE); 1026 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE); 1027 1028 DELAY(100000); 1029 } 1030 if (try == 0) 1031 return (EIO); 1032 return (0); 1033 } 1034 1035 static void 1036 mpt_disable_diag_mode(struct mpt_softc *mpt) 1037 { 1038 1039 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF); 1040 } 1041 1042 /* This is a magic diagnostic reset that resets all the ARM 1043 * processors in the chip. 1044 */ 1045 static void 1046 mpt_hard_reset(struct mpt_softc *mpt) 1047 { 1048 int error; 1049 int wait; 1050 uint32_t diagreg; 1051 1052 mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n"); 1053 1054 if (mpt->is_1078) { 1055 mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07); 1056 DELAY(1000); 1057 return; 1058 } 1059 1060 error = mpt_enable_diag_mode(mpt); 1061 if (error) { 1062 mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n"); 1063 mpt_prt(mpt, "Trying to reset anyway.\n"); 1064 } 1065 1066 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1067 1068 /* 1069 * This appears to be a workaround required for some 1070 * firmware or hardware revs. 1071 */ 1072 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM); 1073 DELAY(1000); 1074 1075 /* Diag. port is now active so we can now hit the reset bit */ 1076 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER); 1077 1078 /* 1079 * Ensure that the reset has finished. We delay 1ms 1080 * prior to reading the register to make sure the chip 1081 * has sufficiently completed its reset to handle register 1082 * accesses. 1083 */ 1084 wait = 5000; 1085 do { 1086 DELAY(1000); 1087 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1088 } while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0); 1089 1090 if (wait == 0) { 1091 mpt_prt(mpt, "WARNING - Failed hard reset! " 1092 "Trying to initialize anyway.\n"); 1093 } 1094 1095 /* 1096 * If we have firmware to download, it must be loaded before 1097 * the controller will become operational. Do so now. 1098 */ 1099 if (mpt->fw_image != NULL) { 1100 1101 error = mpt_download_fw(mpt); 1102 1103 if (error) { 1104 mpt_prt(mpt, "WARNING - Firmware Download Failed!\n"); 1105 mpt_prt(mpt, "Trying to initialize anyway.\n"); 1106 } 1107 } 1108 1109 /* 1110 * Reseting the controller should have disabled write 1111 * access to the diagnostic registers, but disable 1112 * manually to be sure. 1113 */ 1114 mpt_disable_diag_mode(mpt); 1115 } 1116 1117 static void 1118 mpt_core_ioc_reset(struct mpt_softc *mpt, int type) 1119 { 1120 1121 /* 1122 * Complete all pending requests with a status 1123 * appropriate for an IOC reset. 1124 */ 1125 mpt_complete_request_chain(mpt, &mpt->request_pending_list, 1126 MPI_IOCSTATUS_INVALID_STATE); 1127 } 1128 1129 /* 1130 * Reset the IOC when needed. Try software command first then if needed 1131 * poke at the magic diagnostic reset. Note that a hard reset resets 1132 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as 1133 * fouls up the PCI configuration registers. 1134 */ 1135 int 1136 mpt_reset(struct mpt_softc *mpt, int reinit) 1137 { 1138 struct mpt_personality *pers; 1139 int ret; 1140 int retry_cnt = 0; 1141 1142 /* 1143 * Try a soft reset. If that fails, get out the big hammer. 1144 */ 1145 again: 1146 if ((ret = mpt_soft_reset(mpt)) != MPT_OK) { 1147 int cnt; 1148 for (cnt = 0; cnt < 5; cnt++) { 1149 /* Failed; do a hard reset */ 1150 mpt_hard_reset(mpt); 1151 1152 /* 1153 * Wait for the IOC to reload 1154 * and come out of reset state 1155 */ 1156 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1157 if (ret == MPT_OK) { 1158 break; 1159 } 1160 /* 1161 * Okay- try to check again... 1162 */ 1163 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1164 if (ret == MPT_OK) { 1165 break; 1166 } 1167 mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n", 1168 retry_cnt, cnt); 1169 } 1170 } 1171 1172 if (retry_cnt == 0) { 1173 /* 1174 * Invoke reset handlers. We bump the reset count so 1175 * that mpt_wait_req() understands that regardless of 1176 * the specified wait condition, it should stop its wait. 1177 */ 1178 mpt->reset_cnt++; 1179 MPT_PERS_FOREACH(mpt, pers) 1180 pers->reset(mpt, ret); 1181 } 1182 1183 if (reinit) { 1184 ret = mpt_enable_ioc(mpt, 1); 1185 if (ret == MPT_OK) { 1186 mpt_enable_ints(mpt); 1187 } 1188 } 1189 if (ret != MPT_OK && retry_cnt++ < 2) { 1190 goto again; 1191 } 1192 return ret; 1193 } 1194 1195 /* Return a command buffer to the free queue */ 1196 void 1197 mpt_free_request(struct mpt_softc *mpt, request_t *req) 1198 { 1199 request_t *nxt; 1200 struct mpt_evtf_record *record; 1201 uint32_t offset, reply_baddr; 1202 1203 if (req == NULL || req != &mpt->request_pool[req->index]) { 1204 panic("mpt_free_request: bad req ptr"); 1205 } 1206 if ((nxt = req->chain) != NULL) { 1207 req->chain = NULL; 1208 mpt_free_request(mpt, nxt); /* NB: recursion */ 1209 } 1210 KASSERT(req->state != REQ_STATE_FREE, ("freeing free request")); 1211 KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request")); 1212 MPT_LOCK_ASSERT(mpt); 1213 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 1214 ("mpt_free_request: req %p:%u func %x already on freelist", 1215 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1216 KASSERT(mpt_req_on_pending_list(mpt, req) == 0, 1217 ("mpt_free_request: req %p:%u func %x on pending list", 1218 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1219 #ifdef INVARIANTS 1220 mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__); 1221 #endif 1222 1223 req->ccb = NULL; 1224 if (LIST_EMPTY(&mpt->ack_frames)) { 1225 /* 1226 * Insert free ones at the tail 1227 */ 1228 req->serno = 0; 1229 req->state = REQ_STATE_FREE; 1230 #ifdef INVARIANTS 1231 memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER)); 1232 #endif 1233 TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links); 1234 if (mpt->getreqwaiter != 0) { 1235 mpt->getreqwaiter = 0; 1236 wakeup(&mpt->request_free_list); 1237 } 1238 return; 1239 } 1240 1241 /* 1242 * Process an ack frame deferred due to resource shortage. 1243 */ 1244 record = LIST_FIRST(&mpt->ack_frames); 1245 LIST_REMOVE(record, links); 1246 req->state = REQ_STATE_ALLOCATED; 1247 mpt_assign_serno(mpt, req); 1248 mpt_send_event_ack(mpt, req, &record->reply, record->context); 1249 offset = (uint32_t)((uint8_t *)record - mpt->reply); 1250 reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF); 1251 bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset, 1252 MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD); 1253 mpt_free_reply(mpt, reply_baddr); 1254 } 1255 1256 /* Get a command buffer from the free queue */ 1257 request_t * 1258 mpt_get_request(struct mpt_softc *mpt, int sleep_ok) 1259 { 1260 request_t *req; 1261 1262 retry: 1263 MPT_LOCK_ASSERT(mpt); 1264 req = TAILQ_FIRST(&mpt->request_free_list); 1265 if (req != NULL) { 1266 KASSERT(req == &mpt->request_pool[req->index], 1267 ("mpt_get_request: corrupted request free list")); 1268 KASSERT(req->state == REQ_STATE_FREE, 1269 ("req %p:%u not free on free list %x index %d function %x", 1270 req, req->serno, req->state, req->index, 1271 ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1272 TAILQ_REMOVE(&mpt->request_free_list, req, links); 1273 req->state = REQ_STATE_ALLOCATED; 1274 req->chain = NULL; 1275 mpt_assign_serno(mpt, req); 1276 } else if (sleep_ok != 0) { 1277 mpt->getreqwaiter = 1; 1278 mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0); 1279 goto retry; 1280 } 1281 return (req); 1282 } 1283 1284 /* Pass the command to the IOC */ 1285 void 1286 mpt_send_cmd(struct mpt_softc *mpt, request_t *req) 1287 { 1288 1289 if (mpt->verbose > MPT_PRT_DEBUG2) { 1290 mpt_dump_request(mpt, req); 1291 } 1292 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 1293 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1294 req->state |= REQ_STATE_QUEUED; 1295 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 1296 ("req %p:%u func %x on freelist list in mpt_send_cmd", 1297 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1298 KASSERT(mpt_req_on_pending_list(mpt, req) == 0, 1299 ("req %p:%u func %x already on pending list in mpt_send_cmd", 1300 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1301 TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links); 1302 mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf); 1303 } 1304 1305 /* 1306 * Wait for a request to complete. 1307 * 1308 * Inputs: 1309 * mpt softc of controller executing request 1310 * req request to wait for 1311 * sleep_ok nonzero implies may sleep in this context 1312 * time_ms timeout in ms. 0 implies no timeout. 1313 * 1314 * Return Values: 1315 * 0 Request completed 1316 * non-0 Timeout fired before request completion. 1317 */ 1318 int 1319 mpt_wait_req(struct mpt_softc *mpt, request_t *req, 1320 mpt_req_state_t state, mpt_req_state_t mask, 1321 int sleep_ok, int time_ms) 1322 { 1323 int timeout; 1324 u_int saved_cnt; 1325 sbintime_t sbt; 1326 1327 /* 1328 * time_ms is in ms, 0 indicates infinite wait. 1329 * Convert to sbintime_t or 500us units depending on 1330 * our sleep mode. 1331 */ 1332 if (sleep_ok != 0) { 1333 sbt = SBT_1MS * time_ms; 1334 /* Set timeout as well so final timeout check works. */ 1335 timeout = time_ms; 1336 } else { 1337 sbt = 0; /* Squelch bogus gcc warning. */ 1338 timeout = time_ms * 2; 1339 } 1340 req->state |= REQ_STATE_NEED_WAKEUP; 1341 mask &= ~REQ_STATE_NEED_WAKEUP; 1342 saved_cnt = mpt->reset_cnt; 1343 while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) { 1344 if (sleep_ok != 0) { 1345 if (mpt_sleep(mpt, req, PUSER, "mptreq", sbt) == 1346 EWOULDBLOCK) { 1347 timeout = 0; 1348 break; 1349 } 1350 } else { 1351 if (time_ms != 0 && --timeout == 0) { 1352 break; 1353 } 1354 DELAY(500); 1355 mpt_intr(mpt); 1356 } 1357 } 1358 req->state &= ~REQ_STATE_NEED_WAKEUP; 1359 if (mpt->reset_cnt != saved_cnt) { 1360 return (EIO); 1361 } 1362 if (time_ms && timeout <= 0) { 1363 MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf; 1364 req->state |= REQ_STATE_TIMEDOUT; 1365 mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function); 1366 return (ETIMEDOUT); 1367 } 1368 return (0); 1369 } 1370 1371 /* 1372 * Send a command to the IOC via the handshake register. 1373 * 1374 * Only done at initialization time and for certain unusual 1375 * commands such as device/bus reset as specified by LSI. 1376 */ 1377 int 1378 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd) 1379 { 1380 int i; 1381 uint32_t data, *data32; 1382 1383 /* Check condition of the IOC */ 1384 data = mpt_rd_db(mpt); 1385 if ((MPT_STATE(data) != MPT_DB_STATE_READY 1386 && MPT_STATE(data) != MPT_DB_STATE_RUNNING 1387 && MPT_STATE(data) != MPT_DB_STATE_FAULT) 1388 || MPT_DB_IS_IN_USE(data)) { 1389 mpt_prt(mpt, "handshake aborted - invalid doorbell state\n"); 1390 mpt_print_db(data); 1391 return (EBUSY); 1392 } 1393 1394 /* We move things in 32 bit chunks */ 1395 len = (len + 3) >> 2; 1396 data32 = cmd; 1397 1398 /* Clear any left over pending doorbell interrupts */ 1399 if (MPT_DB_INTR(mpt_rd_intr(mpt))) 1400 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1401 1402 /* 1403 * Tell the handshake reg. we are going to send a command 1404 * and how long it is going to be. 1405 */ 1406 data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) | 1407 (len << MPI_DOORBELL_ADD_DWORDS_SHIFT); 1408 mpt_write(mpt, MPT_OFFSET_DOORBELL, data); 1409 1410 /* Wait for the chip to notice */ 1411 if (mpt_wait_db_int(mpt) != MPT_OK) { 1412 mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n"); 1413 return (ETIMEDOUT); 1414 } 1415 1416 /* Clear the interrupt */ 1417 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1418 1419 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1420 mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n"); 1421 return (ETIMEDOUT); 1422 } 1423 1424 /* Send the command */ 1425 for (i = 0; i < len; i++) { 1426 mpt_write_stream(mpt, MPT_OFFSET_DOORBELL, *data32++); 1427 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1428 mpt_prt(mpt, 1429 "mpt_send_handshake_cmd: timeout @ index %d\n", i); 1430 return (ETIMEDOUT); 1431 } 1432 } 1433 return MPT_OK; 1434 } 1435 1436 /* Get the response from the handshake register */ 1437 int 1438 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply) 1439 { 1440 int left, reply_left; 1441 u_int16_t *data16; 1442 uint32_t data; 1443 MSG_DEFAULT_REPLY *hdr; 1444 1445 /* We move things out in 16 bit chunks */ 1446 reply_len >>= 1; 1447 data16 = (u_int16_t *)reply; 1448 1449 hdr = (MSG_DEFAULT_REPLY *)reply; 1450 1451 /* Get first word */ 1452 if (mpt_wait_db_int(mpt) != MPT_OK) { 1453 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n"); 1454 return ETIMEDOUT; 1455 } 1456 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1457 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1458 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1459 1460 /* Get second word */ 1461 if (mpt_wait_db_int(mpt) != MPT_OK) { 1462 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n"); 1463 return ETIMEDOUT; 1464 } 1465 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1466 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1467 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1468 1469 /* 1470 * With the second word, we can now look at the length. 1471 * Warn about a reply that's too short (except for IOC FACTS REPLY) 1472 */ 1473 if ((reply_len >> 1) != hdr->MsgLength && 1474 (hdr->Function != MPI_FUNCTION_IOC_FACTS)){ 1475 mpt_prt(mpt, "reply length does not match message length: " 1476 "got %x; expected %zx for function %x\n", 1477 hdr->MsgLength << 2, reply_len << 1, hdr->Function); 1478 } 1479 1480 /* Get rest of the reply; but don't overflow the provided buffer */ 1481 left = (hdr->MsgLength << 1) - 2; 1482 reply_left = reply_len - 2; 1483 while (left--) { 1484 if (mpt_wait_db_int(mpt) != MPT_OK) { 1485 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n"); 1486 return ETIMEDOUT; 1487 } 1488 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1489 if (reply_left-- > 0) 1490 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1491 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1492 } 1493 1494 /* One more wait & clear at the end */ 1495 if (mpt_wait_db_int(mpt) != MPT_OK) { 1496 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n"); 1497 return ETIMEDOUT; 1498 } 1499 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1500 1501 if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1502 if (mpt->verbose >= MPT_PRT_TRACE) 1503 mpt_print_reply(hdr); 1504 return (MPT_FAIL | hdr->IOCStatus); 1505 } 1506 1507 return (0); 1508 } 1509 1510 static int 1511 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp) 1512 { 1513 MSG_IOC_FACTS f_req; 1514 int error; 1515 1516 memset(&f_req, 0, sizeof f_req); 1517 f_req.Function = MPI_FUNCTION_IOC_FACTS; 1518 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1519 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1520 if (error) { 1521 return(error); 1522 } 1523 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1524 return (error); 1525 } 1526 1527 static int 1528 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp) 1529 { 1530 MSG_PORT_FACTS f_req; 1531 int error; 1532 1533 memset(&f_req, 0, sizeof f_req); 1534 f_req.Function = MPI_FUNCTION_PORT_FACTS; 1535 f_req.PortNumber = port; 1536 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1537 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1538 if (error) { 1539 return(error); 1540 } 1541 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1542 return (error); 1543 } 1544 1545 /* 1546 * Send the initialization request. This is where we specify how many 1547 * SCSI busses and how many devices per bus we wish to emulate. 1548 * This is also the command that specifies the max size of the reply 1549 * frames from the IOC that we will be allocating. 1550 */ 1551 static int 1552 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who) 1553 { 1554 int error = 0; 1555 MSG_IOC_INIT init; 1556 MSG_IOC_INIT_REPLY reply; 1557 1558 memset(&init, 0, sizeof init); 1559 init.WhoInit = who; 1560 init.Function = MPI_FUNCTION_IOC_INIT; 1561 init.MaxDevices = 0; /* at least 256 devices per bus */ 1562 init.MaxBuses = 16; /* at least 16 busses */ 1563 1564 init.MsgVersion = htole16(MPI_VERSION); 1565 init.HeaderVersion = htole16(MPI_HEADER_VERSION); 1566 init.ReplyFrameSize = htole16(MPT_REPLY_SIZE); 1567 init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1568 1569 if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) { 1570 return(error); 1571 } 1572 1573 error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply); 1574 return (error); 1575 } 1576 1577 1578 /* 1579 * Utiltity routine to read configuration headers and pages 1580 */ 1581 int 1582 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params, 1583 bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms) 1584 { 1585 MSG_CONFIG *cfgp; 1586 SGE_SIMPLE32 *se; 1587 1588 cfgp = req->req_vbuf; 1589 memset(cfgp, 0, sizeof *cfgp); 1590 cfgp->Action = params->Action; 1591 cfgp->Function = MPI_FUNCTION_CONFIG; 1592 cfgp->Header.PageVersion = params->PageVersion; 1593 cfgp->Header.PageNumber = params->PageNumber; 1594 cfgp->PageAddress = htole32(params->PageAddress); 1595 if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) == 1596 MPI_CONFIG_PAGETYPE_EXTENDED) { 1597 cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1598 cfgp->Header.PageLength = 0; 1599 cfgp->ExtPageLength = htole16(params->ExtPageLength); 1600 cfgp->ExtPageType = params->ExtPageType; 1601 } else { 1602 cfgp->Header.PageType = params->PageType; 1603 cfgp->Header.PageLength = params->PageLength; 1604 } 1605 se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE; 1606 se->Address = htole32(addr); 1607 MPI_pSGE_SET_LENGTH(se, len); 1608 MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT | 1609 MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | 1610 MPI_SGE_FLAGS_END_OF_LIST | 1611 ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT 1612 || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM) 1613 ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST))); 1614 se->FlagsLength = htole32(se->FlagsLength); 1615 cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 1616 1617 mpt_check_doorbell(mpt); 1618 mpt_send_cmd(mpt, req); 1619 return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 1620 sleep_ok, timeout_ms)); 1621 } 1622 1623 int 1624 mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber, 1625 uint32_t PageAddress, int ExtPageType, 1626 CONFIG_EXTENDED_PAGE_HEADER *rslt, 1627 int sleep_ok, int timeout_ms) 1628 { 1629 request_t *req; 1630 cfgparms_t params; 1631 MSG_CONFIG_REPLY *cfgp; 1632 int error; 1633 1634 req = mpt_get_request(mpt, sleep_ok); 1635 if (req == NULL) { 1636 mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n"); 1637 return (ENOMEM); 1638 } 1639 1640 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER; 1641 params.PageVersion = PageVersion; 1642 params.PageLength = 0; 1643 params.PageNumber = PageNumber; 1644 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1645 params.PageAddress = PageAddress; 1646 params.ExtPageType = ExtPageType; 1647 params.ExtPageLength = 0; 1648 error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0, 1649 sleep_ok, timeout_ms); 1650 if (error != 0) { 1651 /* 1652 * Leave the request. Without resetting the chip, it's 1653 * still owned by it and we'll just get into trouble 1654 * freeing it now. Mark it as abandoned so that if it 1655 * shows up later it can be freed. 1656 */ 1657 mpt_prt(mpt, "read_extcfg_header timed out\n"); 1658 return (ETIMEDOUT); 1659 } 1660 1661 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { 1662 case MPI_IOCSTATUS_SUCCESS: 1663 cfgp = req->req_vbuf; 1664 rslt->PageVersion = cfgp->Header.PageVersion; 1665 rslt->PageNumber = cfgp->Header.PageNumber; 1666 rslt->PageType = cfgp->Header.PageType; 1667 rslt->ExtPageLength = le16toh(cfgp->ExtPageLength); 1668 rslt->ExtPageType = cfgp->ExtPageType; 1669 error = 0; 1670 break; 1671 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: 1672 mpt_lprt(mpt, MPT_PRT_DEBUG, 1673 "Invalid Page Type %d Number %d Addr 0x%0x\n", 1674 MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress); 1675 error = EINVAL; 1676 break; 1677 default: 1678 mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n", 1679 req->IOCStatus); 1680 error = EIO; 1681 break; 1682 } 1683 mpt_free_request(mpt, req); 1684 return (error); 1685 } 1686 1687 int 1688 mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1689 CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len, 1690 int sleep_ok, int timeout_ms) 1691 { 1692 request_t *req; 1693 cfgparms_t params; 1694 int error; 1695 1696 req = mpt_get_request(mpt, sleep_ok); 1697 if (req == NULL) { 1698 mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n"); 1699 return (-1); 1700 } 1701 1702 params.Action = Action; 1703 params.PageVersion = hdr->PageVersion; 1704 params.PageLength = 0; 1705 params.PageNumber = hdr->PageNumber; 1706 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1707 params.PageAddress = PageAddress; 1708 params.ExtPageType = hdr->ExtPageType; 1709 params.ExtPageLength = hdr->ExtPageLength; 1710 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1711 req->req_pbuf + MPT_RQSL(mpt), 1712 len, sleep_ok, timeout_ms); 1713 if (error != 0) { 1714 mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action); 1715 return (-1); 1716 } 1717 1718 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1719 mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n", 1720 req->IOCStatus); 1721 mpt_free_request(mpt, req); 1722 return (-1); 1723 } 1724 memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); 1725 mpt_free_request(mpt, req); 1726 return (0); 1727 } 1728 1729 int 1730 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber, 1731 uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt, 1732 int sleep_ok, int timeout_ms) 1733 { 1734 request_t *req; 1735 cfgparms_t params; 1736 MSG_CONFIG *cfgp; 1737 int error; 1738 1739 req = mpt_get_request(mpt, sleep_ok); 1740 if (req == NULL) { 1741 mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n"); 1742 return (ENOMEM); 1743 } 1744 1745 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER; 1746 params.PageVersion = 0; 1747 params.PageLength = 0; 1748 params.PageNumber = PageNumber; 1749 params.PageType = PageType; 1750 params.PageAddress = PageAddress; 1751 error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0, 1752 sleep_ok, timeout_ms); 1753 if (error != 0) { 1754 /* 1755 * Leave the request. Without resetting the chip, it's 1756 * still owned by it and we'll just get into trouble 1757 * freeing it now. Mark it as abandoned so that if it 1758 * shows up later it can be freed. 1759 */ 1760 mpt_prt(mpt, "read_cfg_header timed out\n"); 1761 return (ETIMEDOUT); 1762 } 1763 1764 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { 1765 case MPI_IOCSTATUS_SUCCESS: 1766 cfgp = req->req_vbuf; 1767 bcopy(&cfgp->Header, rslt, sizeof(*rslt)); 1768 error = 0; 1769 break; 1770 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: 1771 mpt_lprt(mpt, MPT_PRT_DEBUG, 1772 "Invalid Page Type %d Number %d Addr 0x%0x\n", 1773 PageType, PageNumber, PageAddress); 1774 error = EINVAL; 1775 break; 1776 default: 1777 mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n", 1778 req->IOCStatus); 1779 error = EIO; 1780 break; 1781 } 1782 mpt_free_request(mpt, req); 1783 return (error); 1784 } 1785 1786 int 1787 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1788 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1789 int timeout_ms) 1790 { 1791 request_t *req; 1792 cfgparms_t params; 1793 int error; 1794 1795 req = mpt_get_request(mpt, sleep_ok); 1796 if (req == NULL) { 1797 mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n"); 1798 return (-1); 1799 } 1800 1801 params.Action = Action; 1802 params.PageVersion = hdr->PageVersion; 1803 params.PageLength = hdr->PageLength; 1804 params.PageNumber = hdr->PageNumber; 1805 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK; 1806 params.PageAddress = PageAddress; 1807 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1808 req->req_pbuf + MPT_RQSL(mpt), 1809 len, sleep_ok, timeout_ms); 1810 if (error != 0) { 1811 mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action); 1812 return (-1); 1813 } 1814 1815 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1816 mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n", 1817 req->IOCStatus); 1818 mpt_free_request(mpt, req); 1819 return (-1); 1820 } 1821 memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); 1822 mpt_free_request(mpt, req); 1823 return (0); 1824 } 1825 1826 int 1827 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1828 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1829 int timeout_ms) 1830 { 1831 request_t *req; 1832 cfgparms_t params; 1833 u_int hdr_attr; 1834 int error; 1835 1836 hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK; 1837 if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE && 1838 hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) { 1839 mpt_prt(mpt, "page type 0x%x not changeable\n", 1840 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK); 1841 return (-1); 1842 } 1843 1844 #if 0 1845 /* 1846 * We shouldn't mask off other bits here. 1847 */ 1848 hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK; 1849 #endif 1850 1851 req = mpt_get_request(mpt, sleep_ok); 1852 if (req == NULL) 1853 return (-1); 1854 1855 memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len); 1856 1857 /* 1858 * There isn't any point in restoring stripped out attributes 1859 * if you then mask them going down to issue the request. 1860 */ 1861 1862 params.Action = Action; 1863 params.PageVersion = hdr->PageVersion; 1864 params.PageLength = hdr->PageLength; 1865 params.PageNumber = hdr->PageNumber; 1866 params.PageAddress = PageAddress; 1867 #if 0 1868 /* Restore stripped out attributes */ 1869 hdr->PageType |= hdr_attr; 1870 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK; 1871 #else 1872 params.PageType = hdr->PageType; 1873 #endif 1874 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1875 req->req_pbuf + MPT_RQSL(mpt), 1876 len, sleep_ok, timeout_ms); 1877 if (error != 0) { 1878 mpt_prt(mpt, "mpt_write_cfg_page timed out\n"); 1879 return (-1); 1880 } 1881 1882 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1883 mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n", 1884 req->IOCStatus); 1885 mpt_free_request(mpt, req); 1886 return (-1); 1887 } 1888 mpt_free_request(mpt, req); 1889 return (0); 1890 } 1891 1892 /* 1893 * Read IOC configuration information 1894 */ 1895 static int 1896 mpt_read_config_info_ioc(struct mpt_softc *mpt) 1897 { 1898 CONFIG_PAGE_HEADER hdr; 1899 struct mpt_raid_volume *mpt_raid; 1900 int rv; 1901 int i; 1902 size_t len; 1903 1904 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 1905 2, 0, &hdr, FALSE, 5000); 1906 /* 1907 * If it's an invalid page, so what? Not a supported function.... 1908 */ 1909 if (rv == EINVAL) { 1910 return (0); 1911 } 1912 if (rv) { 1913 return (rv); 1914 } 1915 1916 mpt_lprt(mpt, MPT_PRT_DEBUG, 1917 "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n", 1918 hdr.PageVersion, hdr.PageLength << 2, 1919 hdr.PageNumber, hdr.PageType); 1920 1921 len = hdr.PageLength * sizeof(uint32_t); 1922 mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1923 if (mpt->ioc_page2 == NULL) { 1924 mpt_prt(mpt, "unable to allocate memory for IOC page 2\n"); 1925 mpt_raid_free_mem(mpt); 1926 return (ENOMEM); 1927 } 1928 memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr)); 1929 rv = mpt_read_cur_cfg_page(mpt, 0, 1930 &mpt->ioc_page2->Header, len, FALSE, 5000); 1931 if (rv) { 1932 mpt_prt(mpt, "failed to read IOC Page 2\n"); 1933 mpt_raid_free_mem(mpt); 1934 return (EIO); 1935 } 1936 mpt2host_config_page_ioc2(mpt->ioc_page2); 1937 1938 if (mpt->ioc_page2->CapabilitiesFlags != 0) { 1939 uint32_t mask; 1940 1941 mpt_prt(mpt, "Capabilities: ("); 1942 for (mask = 1; mask != 0; mask <<= 1) { 1943 if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) { 1944 continue; 1945 } 1946 switch (mask) { 1947 case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT: 1948 mpt_prtc(mpt, " RAID-0"); 1949 break; 1950 case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT: 1951 mpt_prtc(mpt, " RAID-1E"); 1952 break; 1953 case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT: 1954 mpt_prtc(mpt, " RAID-1"); 1955 break; 1956 case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT: 1957 mpt_prtc(mpt, " SES"); 1958 break; 1959 case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT: 1960 mpt_prtc(mpt, " SAFTE"); 1961 break; 1962 case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT: 1963 mpt_prtc(mpt, " Multi-Channel-Arrays"); 1964 default: 1965 break; 1966 } 1967 } 1968 mpt_prtc(mpt, " )\n"); 1969 if ((mpt->ioc_page2->CapabilitiesFlags 1970 & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT 1971 | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT 1972 | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) { 1973 mpt_prt(mpt, "%d Active Volume%s(%d Max)\n", 1974 mpt->ioc_page2->NumActiveVolumes, 1975 mpt->ioc_page2->NumActiveVolumes != 1 1976 ? "s " : " ", 1977 mpt->ioc_page2->MaxVolumes); 1978 mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n", 1979 mpt->ioc_page2->NumActivePhysDisks, 1980 mpt->ioc_page2->NumActivePhysDisks != 1 1981 ? "s " : " ", 1982 mpt->ioc_page2->MaxPhysDisks); 1983 } 1984 } 1985 1986 len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume); 1987 mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1988 if (mpt->raid_volumes == NULL) { 1989 mpt_prt(mpt, "Could not allocate RAID volume data\n"); 1990 mpt_raid_free_mem(mpt); 1991 return (ENOMEM); 1992 } 1993 1994 /* 1995 * Copy critical data out of ioc_page2 so that we can 1996 * safely refresh the page without windows of unreliable 1997 * data. 1998 */ 1999 mpt->raid_max_volumes = mpt->ioc_page2->MaxVolumes; 2000 2001 len = sizeof(*mpt->raid_volumes->config_page) + 2002 (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1)); 2003 for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) { 2004 mpt_raid = &mpt->raid_volumes[i]; 2005 mpt_raid->config_page = 2006 malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2007 if (mpt_raid->config_page == NULL) { 2008 mpt_prt(mpt, "Could not allocate RAID page data\n"); 2009 mpt_raid_free_mem(mpt); 2010 return (ENOMEM); 2011 } 2012 } 2013 mpt->raid_page0_len = len; 2014 2015 len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk); 2016 mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2017 if (mpt->raid_disks == NULL) { 2018 mpt_prt(mpt, "Could not allocate RAID disk data\n"); 2019 mpt_raid_free_mem(mpt); 2020 return (ENOMEM); 2021 } 2022 mpt->raid_max_disks = mpt->ioc_page2->MaxPhysDisks; 2023 2024 /* 2025 * Load page 3. 2026 */ 2027 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 2028 3, 0, &hdr, FALSE, 5000); 2029 if (rv) { 2030 mpt_raid_free_mem(mpt); 2031 return (EIO); 2032 } 2033 2034 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n", 2035 hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType); 2036 2037 len = hdr.PageLength * sizeof(uint32_t); 2038 mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2039 if (mpt->ioc_page3 == NULL) { 2040 mpt_prt(mpt, "unable to allocate memory for IOC page 3\n"); 2041 mpt_raid_free_mem(mpt); 2042 return (ENOMEM); 2043 } 2044 memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr)); 2045 rv = mpt_read_cur_cfg_page(mpt, 0, 2046 &mpt->ioc_page3->Header, len, FALSE, 5000); 2047 if (rv) { 2048 mpt_raid_free_mem(mpt); 2049 return (EIO); 2050 } 2051 mpt2host_config_page_ioc3(mpt->ioc_page3); 2052 mpt_raid_wakeup(mpt); 2053 return (0); 2054 } 2055 2056 /* 2057 * Enable IOC port 2058 */ 2059 static int 2060 mpt_send_port_enable(struct mpt_softc *mpt, int port) 2061 { 2062 request_t *req; 2063 MSG_PORT_ENABLE *enable_req; 2064 int error; 2065 2066 req = mpt_get_request(mpt, /*sleep_ok*/FALSE); 2067 if (req == NULL) 2068 return (-1); 2069 2070 enable_req = req->req_vbuf; 2071 memset(enable_req, 0, MPT_RQSL(mpt)); 2072 2073 enable_req->Function = MPI_FUNCTION_PORT_ENABLE; 2074 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 2075 enable_req->PortNumber = port; 2076 2077 mpt_check_doorbell(mpt); 2078 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port); 2079 2080 mpt_send_cmd(mpt, req); 2081 error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 2082 FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000); 2083 if (error != 0) { 2084 mpt_prt(mpt, "port %d enable timed out\n", port); 2085 return (-1); 2086 } 2087 mpt_free_request(mpt, req); 2088 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port); 2089 return (0); 2090 } 2091 2092 /* 2093 * Enable/Disable asynchronous event reporting. 2094 */ 2095 static int 2096 mpt_send_event_request(struct mpt_softc *mpt, int onoff) 2097 { 2098 request_t *req; 2099 MSG_EVENT_NOTIFY *enable_req; 2100 2101 req = mpt_get_request(mpt, FALSE); 2102 if (req == NULL) { 2103 return (ENOMEM); 2104 } 2105 enable_req = req->req_vbuf; 2106 memset(enable_req, 0, sizeof *enable_req); 2107 2108 enable_req->Function = MPI_FUNCTION_EVENT_NOTIFICATION; 2109 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS); 2110 enable_req->Switch = onoff; 2111 2112 mpt_check_doorbell(mpt); 2113 mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n", 2114 onoff ? "en" : "dis"); 2115 /* 2116 * Send the command off, but don't wait for it. 2117 */ 2118 mpt_send_cmd(mpt, req); 2119 return (0); 2120 } 2121 2122 /* 2123 * Un-mask the interrupts on the chip. 2124 */ 2125 void 2126 mpt_enable_ints(struct mpt_softc *mpt) 2127 { 2128 2129 /* Unmask every thing except door bell int */ 2130 mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK); 2131 } 2132 2133 /* 2134 * Mask the interrupts on the chip. 2135 */ 2136 void 2137 mpt_disable_ints(struct mpt_softc *mpt) 2138 { 2139 2140 /* Mask all interrupts */ 2141 mpt_write(mpt, MPT_OFFSET_INTR_MASK, 2142 MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK); 2143 } 2144 2145 static void 2146 mpt_sysctl_attach(struct mpt_softc *mpt) 2147 { 2148 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev); 2149 struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev); 2150 2151 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2152 "debug", CTLFLAG_RW, &mpt->verbose, 0, 2153 "Debugging/Verbose level"); 2154 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2155 "role", CTLFLAG_RD, &mpt->role, 0, 2156 "HBA role"); 2157 #ifdef MPT_TEST_MULTIPATH 2158 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2159 "failure_id", CTLFLAG_RW, &mpt->failure_id, -1, 2160 "Next Target to Fail"); 2161 #endif 2162 } 2163 2164 int 2165 mpt_attach(struct mpt_softc *mpt) 2166 { 2167 struct mpt_personality *pers; 2168 int i; 2169 int error; 2170 2171 mpt_core_attach(mpt); 2172 mpt_core_enable(mpt); 2173 2174 TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links); 2175 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 2176 pers = mpt_personalities[i]; 2177 if (pers == NULL) { 2178 continue; 2179 } 2180 if (pers->probe(mpt) == 0) { 2181 error = pers->attach(mpt); 2182 if (error != 0) { 2183 mpt_detach(mpt); 2184 return (error); 2185 } 2186 mpt->mpt_pers_mask |= (0x1 << pers->id); 2187 pers->use_count++; 2188 } 2189 } 2190 2191 /* 2192 * Now that we've attached everything, do the enable function 2193 * for all of the personalities. This allows the personalities 2194 * to do setups that are appropriate for them prior to enabling 2195 * any ports. 2196 */ 2197 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 2198 pers = mpt_personalities[i]; 2199 if (pers != NULL && MPT_PERS_ATTACHED(pers, mpt) != 0) { 2200 error = pers->enable(mpt); 2201 if (error != 0) { 2202 mpt_prt(mpt, "personality %s attached but would" 2203 " not enable (%d)\n", pers->name, error); 2204 mpt_detach(mpt); 2205 return (error); 2206 } 2207 } 2208 } 2209 return (0); 2210 } 2211 2212 int 2213 mpt_shutdown(struct mpt_softc *mpt) 2214 { 2215 struct mpt_personality *pers; 2216 2217 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2218 pers->shutdown(mpt); 2219 } 2220 return (0); 2221 } 2222 2223 int 2224 mpt_detach(struct mpt_softc *mpt) 2225 { 2226 struct mpt_personality *pers; 2227 2228 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2229 pers->detach(mpt); 2230 mpt->mpt_pers_mask &= ~(0x1 << pers->id); 2231 pers->use_count--; 2232 } 2233 TAILQ_REMOVE(&mpt_tailq, mpt, links); 2234 return (0); 2235 } 2236 2237 static int 2238 mpt_core_load(struct mpt_personality *pers) 2239 { 2240 int i; 2241 2242 /* 2243 * Setup core handlers and insert the default handler 2244 * into all "empty slots". 2245 */ 2246 for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) { 2247 mpt_reply_handlers[i] = mpt_default_reply_handler; 2248 } 2249 2250 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] = 2251 mpt_event_reply_handler; 2252 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] = 2253 mpt_config_reply_handler; 2254 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] = 2255 mpt_handshake_reply_handler; 2256 return (0); 2257 } 2258 2259 /* 2260 * Initialize per-instance driver data and perform 2261 * initial controller configuration. 2262 */ 2263 static int 2264 mpt_core_attach(struct mpt_softc *mpt) 2265 { 2266 int val, error; 2267 2268 LIST_INIT(&mpt->ack_frames); 2269 /* Put all request buffers on the free list */ 2270 TAILQ_INIT(&mpt->request_pending_list); 2271 TAILQ_INIT(&mpt->request_free_list); 2272 TAILQ_INIT(&mpt->request_timeout_list); 2273 for (val = 0; val < MPT_MAX_LUNS; val++) { 2274 STAILQ_INIT(&mpt->trt[val].atios); 2275 STAILQ_INIT(&mpt->trt[val].inots); 2276 } 2277 STAILQ_INIT(&mpt->trt_wildcard.atios); 2278 STAILQ_INIT(&mpt->trt_wildcard.inots); 2279 #ifdef MPT_TEST_MULTIPATH 2280 mpt->failure_id = -1; 2281 #endif 2282 mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE; 2283 mpt_sysctl_attach(mpt); 2284 mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n", 2285 mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL))); 2286 2287 MPT_LOCK(mpt); 2288 error = mpt_configure_ioc(mpt, 0, 0); 2289 MPT_UNLOCK(mpt); 2290 2291 return (error); 2292 } 2293 2294 static int 2295 mpt_core_enable(struct mpt_softc *mpt) 2296 { 2297 2298 /* 2299 * We enter with the IOC enabled, but async events 2300 * not enabled, ports not enabled and interrupts 2301 * not enabled. 2302 */ 2303 MPT_LOCK(mpt); 2304 2305 /* 2306 * Enable asynchronous event reporting- all personalities 2307 * have attached so that they should be able to now field 2308 * async events. 2309 */ 2310 mpt_send_event_request(mpt, 1); 2311 2312 /* 2313 * Catch any pending interrupts 2314 * 2315 * This seems to be crucial- otherwise 2316 * the portenable below times out. 2317 */ 2318 mpt_intr(mpt); 2319 2320 /* 2321 * Enable Interrupts 2322 */ 2323 mpt_enable_ints(mpt); 2324 2325 /* 2326 * Catch any pending interrupts 2327 * 2328 * This seems to be crucial- otherwise 2329 * the portenable below times out. 2330 */ 2331 mpt_intr(mpt); 2332 2333 /* 2334 * Enable the port. 2335 */ 2336 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2337 mpt_prt(mpt, "failed to enable port 0\n"); 2338 MPT_UNLOCK(mpt); 2339 return (ENXIO); 2340 } 2341 MPT_UNLOCK(mpt); 2342 return (0); 2343 } 2344 2345 static void 2346 mpt_core_shutdown(struct mpt_softc *mpt) 2347 { 2348 2349 mpt_disable_ints(mpt); 2350 } 2351 2352 static void 2353 mpt_core_detach(struct mpt_softc *mpt) 2354 { 2355 int val; 2356 2357 /* 2358 * XXX: FREE MEMORY 2359 */ 2360 mpt_disable_ints(mpt); 2361 2362 /* Make sure no request has pending timeouts. */ 2363 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { 2364 request_t *req = &mpt->request_pool[val]; 2365 mpt_callout_drain(mpt, &req->callout); 2366 } 2367 2368 mpt_dma_buf_free(mpt); 2369 } 2370 2371 static int 2372 mpt_core_unload(struct mpt_personality *pers) 2373 { 2374 2375 /* Unload is always successful. */ 2376 return (0); 2377 } 2378 2379 #define FW_UPLOAD_REQ_SIZE \ 2380 (sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION) \ 2381 + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32)) 2382 2383 static int 2384 mpt_upload_fw(struct mpt_softc *mpt) 2385 { 2386 uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE]; 2387 MSG_FW_UPLOAD_REPLY fw_reply; 2388 MSG_FW_UPLOAD *fw_req; 2389 FW_UPLOAD_TCSGE *tsge; 2390 SGE_SIMPLE32 *sge; 2391 uint32_t flags; 2392 int error; 2393 2394 memset(&fw_req_buf, 0, sizeof(fw_req_buf)); 2395 fw_req = (MSG_FW_UPLOAD *)fw_req_buf; 2396 fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM; 2397 fw_req->Function = MPI_FUNCTION_FW_UPLOAD; 2398 fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 2399 tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL; 2400 tsge->DetailsLength = 12; 2401 tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT; 2402 tsge->ImageSize = htole32(mpt->fw_image_size); 2403 sge = (SGE_SIMPLE32 *)(tsge + 1); 2404 flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER 2405 | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT 2406 | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST); 2407 flags <<= MPI_SGE_FLAGS_SHIFT; 2408 sge->FlagsLength = htole32(flags | mpt->fw_image_size); 2409 sge->Address = htole32(mpt->fw_phys); 2410 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD); 2411 error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf); 2412 if (error) 2413 return(error); 2414 error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply); 2415 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD); 2416 return (error); 2417 } 2418 2419 static void 2420 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr, 2421 uint32_t *data, bus_size_t len) 2422 { 2423 uint32_t *data_end; 2424 2425 data_end = data + (roundup2(len, sizeof(uint32_t)) / 4); 2426 if (mpt->is_sas) { 2427 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2428 } 2429 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr); 2430 while (data != data_end) { 2431 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data); 2432 data++; 2433 } 2434 if (mpt->is_sas) { 2435 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2436 } 2437 } 2438 2439 static int 2440 mpt_download_fw(struct mpt_softc *mpt) 2441 { 2442 MpiFwHeader_t *fw_hdr; 2443 int error; 2444 uint32_t ext_offset; 2445 uint32_t data; 2446 2447 if (mpt->pci_pio_reg == NULL) { 2448 mpt_prt(mpt, "No PIO resource!\n"); 2449 return (ENXIO); 2450 } 2451 2452 mpt_prt(mpt, "Downloading Firmware - Image Size %d\n", 2453 mpt->fw_image_size); 2454 2455 error = mpt_enable_diag_mode(mpt); 2456 if (error != 0) { 2457 mpt_prt(mpt, "Could not enter diagnostic mode!\n"); 2458 return (EIO); 2459 } 2460 2461 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, 2462 MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM); 2463 2464 fw_hdr = (MpiFwHeader_t *)mpt->fw_image; 2465 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE); 2466 mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr, 2467 fw_hdr->ImageSize); 2468 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE); 2469 2470 ext_offset = fw_hdr->NextImageHeaderOffset; 2471 while (ext_offset != 0) { 2472 MpiExtImageHeader_t *ext; 2473 2474 ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset); 2475 ext_offset = ext->NextImageHeaderOffset; 2476 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, 2477 BUS_DMASYNC_PREWRITE); 2478 mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext, 2479 ext->ImageSize); 2480 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, 2481 BUS_DMASYNC_POSTWRITE); 2482 } 2483 2484 if (mpt->is_sas) { 2485 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2486 } 2487 /* Setup the address to jump to on reset. */ 2488 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr); 2489 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue); 2490 2491 /* 2492 * The controller sets the "flash bad" status after attempting 2493 * to auto-boot from flash. Clear the status so that the controller 2494 * will continue the boot process with our newly installed firmware. 2495 */ 2496 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2497 data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL; 2498 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2499 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data); 2500 2501 if (mpt->is_sas) { 2502 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2503 } 2504 2505 /* 2506 * Re-enable the processor and clear the boot halt flag. 2507 */ 2508 data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 2509 data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM); 2510 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data); 2511 2512 mpt_disable_diag_mode(mpt); 2513 return (0); 2514 } 2515 2516 static int 2517 mpt_dma_buf_alloc(struct mpt_softc *mpt) 2518 { 2519 struct mpt_map_info mi; 2520 uint8_t *vptr; 2521 uint32_t pptr, end; 2522 int i, error; 2523 2524 /* Create a child tag for data buffers */ 2525 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 2526 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 2527 NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE, 2528 mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0, 2529 &mpt->buffer_dmat) != 0) { 2530 mpt_prt(mpt, "cannot create a dma tag for data buffers\n"); 2531 return (1); 2532 } 2533 2534 /* Create a child tag for request buffers */ 2535 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0, 2536 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 2537 NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0, 2538 &mpt->request_dmat) != 0) { 2539 mpt_prt(mpt, "cannot create a dma tag for requests\n"); 2540 return (1); 2541 } 2542 2543 /* Allocate some DMA accessible memory for requests */ 2544 if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request, 2545 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) { 2546 mpt_prt(mpt, "cannot allocate %d bytes of request memory\n", 2547 MPT_REQ_MEM_SIZE(mpt)); 2548 return (1); 2549 } 2550 2551 mi.mpt = mpt; 2552 mi.error = 0; 2553 2554 /* Load and lock it into "bus space" */ 2555 bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request, 2556 MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0); 2557 2558 if (mi.error) { 2559 mpt_prt(mpt, "error %d loading dma map for DMA request queue\n", 2560 mi.error); 2561 return (1); 2562 } 2563 mpt->request_phys = mi.phys; 2564 2565 /* 2566 * Now create per-request dma maps 2567 */ 2568 i = 0; 2569 pptr = mpt->request_phys; 2570 vptr = mpt->request; 2571 end = pptr + MPT_REQ_MEM_SIZE(mpt); 2572 while(pptr < end) { 2573 request_t *req = &mpt->request_pool[i]; 2574 req->index = i++; 2575 2576 /* Store location of Request Data */ 2577 req->req_pbuf = pptr; 2578 req->req_vbuf = vptr; 2579 2580 pptr += MPT_REQUEST_AREA; 2581 vptr += MPT_REQUEST_AREA; 2582 2583 req->sense_pbuf = (pptr - MPT_SENSE_SIZE); 2584 req->sense_vbuf = (vptr - MPT_SENSE_SIZE); 2585 2586 error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap); 2587 if (error) { 2588 mpt_prt(mpt, "error %d creating per-cmd DMA maps\n", 2589 error); 2590 return (1); 2591 } 2592 } 2593 2594 return (0); 2595 } 2596 2597 static void 2598 mpt_dma_buf_free(struct mpt_softc *mpt) 2599 { 2600 int i; 2601 2602 if (mpt->request_dmat == 0) { 2603 mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n"); 2604 return; 2605 } 2606 for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) { 2607 bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap); 2608 } 2609 bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap); 2610 bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap); 2611 bus_dma_tag_destroy(mpt->request_dmat); 2612 mpt->request_dmat = 0; 2613 bus_dma_tag_destroy(mpt->buffer_dmat); 2614 } 2615 2616 /* 2617 * Allocate/Initialize data structures for the controller. Called 2618 * once at instance startup. 2619 */ 2620 static int 2621 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset) 2622 { 2623 PTR_MSG_PORT_FACTS_REPLY pfp; 2624 int error, port, val; 2625 size_t len; 2626 2627 if (tn == MPT_MAX_TRYS) { 2628 return (-1); 2629 } 2630 2631 /* 2632 * No need to reset if the IOC is already in the READY state. 2633 * 2634 * Force reset if initialization failed previously. 2635 * Note that a hard_reset of the second channel of a '929 2636 * will stop operation of the first channel. Hopefully, if the 2637 * first channel is ok, the second will not require a hard 2638 * reset. 2639 */ 2640 if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) { 2641 if (mpt_reset(mpt, FALSE) != MPT_OK) { 2642 return (mpt_configure_ioc(mpt, tn++, 1)); 2643 } 2644 needreset = 0; 2645 } 2646 2647 if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) { 2648 mpt_prt(mpt, "mpt_get_iocfacts failed\n"); 2649 return (mpt_configure_ioc(mpt, tn++, 1)); 2650 } 2651 mpt2host_iocfacts_reply(&mpt->ioc_facts); 2652 2653 mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n", 2654 mpt->ioc_facts.MsgVersion >> 8, 2655 mpt->ioc_facts.MsgVersion & 0xFF, 2656 mpt->ioc_facts.HeaderVersion >> 8, 2657 mpt->ioc_facts.HeaderVersion & 0xFF); 2658 2659 /* 2660 * Now that we know request frame size, we can calculate 2661 * the actual (reasonable) segment limit for read/write I/O. 2662 * 2663 * This limit is constrained by: 2664 * 2665 * + The size of each area we allocate per command (and how 2666 * many chain segments we can fit into it). 2667 * + The total number of areas we've set up. 2668 * + The actual chain depth the card will allow. 2669 * 2670 * The first area's segment count is limited by the I/O request 2671 * at the head of it. We cannot allocate realistically more 2672 * than MPT_MAX_REQUESTS areas. Therefore, to account for both 2673 * conditions, we'll just start out with MPT_MAX_REQUESTS-2. 2674 * 2675 */ 2676 /* total number of request areas we (can) allocate */ 2677 mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2; 2678 2679 /* converted to the number of chain areas possible */ 2680 mpt->max_seg_cnt *= MPT_NRFM(mpt); 2681 2682 /* limited by the number of chain areas the card will support */ 2683 if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) { 2684 mpt_lprt(mpt, MPT_PRT_INFO, 2685 "chain depth limited to %u (from %u)\n", 2686 mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt); 2687 mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth; 2688 } 2689 2690 /* converted to the number of simple sges in chain segments. */ 2691 mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1); 2692 2693 /* 2694 * Use this as the basis for reporting the maximum I/O size to CAM. 2695 */ 2696 mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1); 2697 2698 error = mpt_dma_buf_alloc(mpt); 2699 if (error != 0) { 2700 mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n"); 2701 return (EIO); 2702 } 2703 2704 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { 2705 request_t *req = &mpt->request_pool[val]; 2706 req->state = REQ_STATE_ALLOCATED; 2707 mpt_callout_init(mpt, &req->callout); 2708 mpt_free_request(mpt, req); 2709 } 2710 2711 mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum " 2712 "CAM Segment Count: %u\n", mpt->max_seg_cnt, 2713 mpt->max_cam_seg_cnt); 2714 2715 mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n", 2716 mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber); 2717 mpt_lprt(mpt, MPT_PRT_INFO, 2718 "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes " 2719 "Request Frame Size %u bytes Max Chain Depth %u\n", 2720 mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize, 2721 mpt->ioc_facts.RequestFrameSize << 2, 2722 mpt->ioc_facts.MaxChainDepth); 2723 mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, " 2724 "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts, 2725 mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags); 2726 2727 len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY); 2728 mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2729 if (mpt->port_facts == NULL) { 2730 mpt_prt(mpt, "unable to allocate memory for port facts\n"); 2731 return (ENOMEM); 2732 } 2733 2734 2735 if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) && 2736 (mpt->fw_uploaded == 0)) { 2737 struct mpt_map_info mi; 2738 2739 /* 2740 * In some configurations, the IOC's firmware is 2741 * stored in a shared piece of system NVRAM that 2742 * is only accessible via the BIOS. In this 2743 * case, the firmware keeps a copy of firmware in 2744 * RAM until the OS driver retrieves it. Once 2745 * retrieved, we are responsible for re-downloading 2746 * the firmware after any hard-reset. 2747 */ 2748 mpt->fw_image_size = mpt->ioc_facts.FWImageSize; 2749 error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0, 2750 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 2751 mpt->fw_image_size, 1, mpt->fw_image_size, 0, 2752 &mpt->fw_dmat); 2753 if (error != 0) { 2754 mpt_prt(mpt, "cannot create firmware dma tag\n"); 2755 return (ENOMEM); 2756 } 2757 error = bus_dmamem_alloc(mpt->fw_dmat, 2758 (void **)&mpt->fw_image, BUS_DMA_NOWAIT | 2759 BUS_DMA_COHERENT, &mpt->fw_dmap); 2760 if (error != 0) { 2761 mpt_prt(mpt, "cannot allocate firmware memory\n"); 2762 bus_dma_tag_destroy(mpt->fw_dmat); 2763 return (ENOMEM); 2764 } 2765 mi.mpt = mpt; 2766 mi.error = 0; 2767 bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap, 2768 mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0); 2769 mpt->fw_phys = mi.phys; 2770 2771 error = mpt_upload_fw(mpt); 2772 if (error != 0) { 2773 mpt_prt(mpt, "firmware upload failed.\n"); 2774 bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap); 2775 bus_dmamem_free(mpt->fw_dmat, mpt->fw_image, 2776 mpt->fw_dmap); 2777 bus_dma_tag_destroy(mpt->fw_dmat); 2778 mpt->fw_image = NULL; 2779 return (EIO); 2780 } 2781 mpt->fw_uploaded = 1; 2782 } 2783 2784 for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) { 2785 pfp = &mpt->port_facts[port]; 2786 error = mpt_get_portfacts(mpt, 0, pfp); 2787 if (error != MPT_OK) { 2788 mpt_prt(mpt, 2789 "mpt_get_portfacts on port %d failed\n", port); 2790 free(mpt->port_facts, M_DEVBUF); 2791 mpt->port_facts = NULL; 2792 return (mpt_configure_ioc(mpt, tn++, 1)); 2793 } 2794 mpt2host_portfacts_reply(pfp); 2795 2796 if (port > 0) { 2797 error = MPT_PRT_INFO; 2798 } else { 2799 error = MPT_PRT_DEBUG; 2800 } 2801 mpt_lprt(mpt, error, 2802 "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n", 2803 port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID, 2804 pfp->MaxDevices); 2805 2806 } 2807 2808 /* 2809 * XXX: Not yet supporting more than port 0 2810 */ 2811 pfp = &mpt->port_facts[0]; 2812 if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) { 2813 mpt->is_fc = 1; 2814 mpt->is_sas = 0; 2815 mpt->is_spi = 0; 2816 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) { 2817 mpt->is_fc = 0; 2818 mpt->is_sas = 1; 2819 mpt->is_spi = 0; 2820 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) { 2821 mpt->is_fc = 0; 2822 mpt->is_sas = 0; 2823 mpt->is_spi = 1; 2824 if (mpt->mpt_ini_id == MPT_INI_ID_NONE) 2825 mpt->mpt_ini_id = pfp->PortSCSIID; 2826 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) { 2827 mpt_prt(mpt, "iSCSI not supported yet\n"); 2828 return (ENXIO); 2829 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) { 2830 mpt_prt(mpt, "Inactive Port\n"); 2831 return (ENXIO); 2832 } else { 2833 mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType); 2834 return (ENXIO); 2835 } 2836 2837 /* 2838 * Set our role with what this port supports. 2839 * 2840 * Note this might be changed later in different modules 2841 * if this is different from what is wanted. 2842 */ 2843 mpt->role = MPT_ROLE_NONE; 2844 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) { 2845 mpt->role |= MPT_ROLE_INITIATOR; 2846 } 2847 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) { 2848 mpt->role |= MPT_ROLE_TARGET; 2849 } 2850 2851 /* 2852 * Enable the IOC 2853 */ 2854 if (mpt_enable_ioc(mpt, 1) != MPT_OK) { 2855 mpt_prt(mpt, "unable to initialize IOC\n"); 2856 return (ENXIO); 2857 } 2858 2859 /* 2860 * Read IOC configuration information. 2861 * 2862 * We need this to determine whether or not we have certain 2863 * settings for Integrated Mirroring (e.g.). 2864 */ 2865 mpt_read_config_info_ioc(mpt); 2866 2867 return (0); 2868 } 2869 2870 static int 2871 mpt_enable_ioc(struct mpt_softc *mpt, int portenable) 2872 { 2873 uint32_t pptr; 2874 int val; 2875 2876 if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) { 2877 mpt_prt(mpt, "mpt_send_ioc_init failed\n"); 2878 return (EIO); 2879 } 2880 2881 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n"); 2882 2883 if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) { 2884 mpt_prt(mpt, "IOC failed to go to run state\n"); 2885 return (ENXIO); 2886 } 2887 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n"); 2888 2889 /* 2890 * Give it reply buffers 2891 * 2892 * Do *not* exceed global credits. 2893 */ 2894 for (val = 0, pptr = mpt->reply_phys; 2895 (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE); 2896 pptr += MPT_REPLY_SIZE) { 2897 mpt_free_reply(mpt, pptr); 2898 if (++val == mpt->ioc_facts.GlobalCredits - 1) 2899 break; 2900 } 2901 2902 2903 /* 2904 * Enable the port if asked. This is only done if we're resetting 2905 * the IOC after initial startup. 2906 */ 2907 if (portenable) { 2908 /* 2909 * Enable asynchronous event reporting 2910 */ 2911 mpt_send_event_request(mpt, 1); 2912 2913 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2914 mpt_prt(mpt, "%s: failed to enable port 0\n", __func__); 2915 return (ENXIO); 2916 } 2917 } 2918 return (MPT_OK); 2919 } 2920 2921 /* 2922 * Endian Conversion Functions- only used on Big Endian machines 2923 */ 2924 #if _BYTE_ORDER == _BIG_ENDIAN 2925 void 2926 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge) 2927 { 2928 2929 MPT_2_HOST32(sge, FlagsLength); 2930 MPT_2_HOST32(sge, u.Address64.Low); 2931 MPT_2_HOST32(sge, u.Address64.High); 2932 } 2933 2934 void 2935 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp) 2936 { 2937 2938 MPT_2_HOST16(rp, MsgVersion); 2939 MPT_2_HOST16(rp, HeaderVersion); 2940 MPT_2_HOST32(rp, MsgContext); 2941 MPT_2_HOST16(rp, IOCExceptions); 2942 MPT_2_HOST16(rp, IOCStatus); 2943 MPT_2_HOST32(rp, IOCLogInfo); 2944 MPT_2_HOST16(rp, ReplyQueueDepth); 2945 MPT_2_HOST16(rp, RequestFrameSize); 2946 MPT_2_HOST16(rp, Reserved_0101_FWVersion); 2947 MPT_2_HOST16(rp, ProductID); 2948 MPT_2_HOST32(rp, CurrentHostMfaHighAddr); 2949 MPT_2_HOST16(rp, GlobalCredits); 2950 MPT_2_HOST32(rp, CurrentSenseBufferHighAddr); 2951 MPT_2_HOST16(rp, CurReplyFrameSize); 2952 MPT_2_HOST32(rp, FWImageSize); 2953 MPT_2_HOST32(rp, IOCCapabilities); 2954 MPT_2_HOST32(rp, FWVersion.Word); 2955 MPT_2_HOST16(rp, HighPriorityQueueDepth); 2956 MPT_2_HOST16(rp, Reserved2); 2957 mpt2host_sge_simple_union(&rp->HostPageBufferSGE); 2958 MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr); 2959 } 2960 2961 void 2962 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp) 2963 { 2964 2965 MPT_2_HOST16(pfp, Reserved); 2966 MPT_2_HOST16(pfp, Reserved1); 2967 MPT_2_HOST32(pfp, MsgContext); 2968 MPT_2_HOST16(pfp, Reserved2); 2969 MPT_2_HOST16(pfp, IOCStatus); 2970 MPT_2_HOST32(pfp, IOCLogInfo); 2971 MPT_2_HOST16(pfp, MaxDevices); 2972 MPT_2_HOST16(pfp, PortSCSIID); 2973 MPT_2_HOST16(pfp, ProtocolFlags); 2974 MPT_2_HOST16(pfp, MaxPostedCmdBuffers); 2975 MPT_2_HOST16(pfp, MaxPersistentIDs); 2976 MPT_2_HOST16(pfp, MaxLanBuckets); 2977 MPT_2_HOST16(pfp, Reserved4); 2978 MPT_2_HOST32(pfp, Reserved5); 2979 } 2980 2981 void 2982 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2) 2983 { 2984 int i; 2985 2986 MPT_2_HOST32(ioc2, CapabilitiesFlags); 2987 for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) { 2988 MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3); 2989 } 2990 } 2991 2992 void 2993 mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3) 2994 { 2995 2996 MPT_2_HOST16(ioc3, Reserved2); 2997 } 2998 2999 void 3000 mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0) 3001 { 3002 3003 MPT_2_HOST32(sp0, Capabilities); 3004 MPT_2_HOST32(sp0, PhysicalInterface); 3005 } 3006 3007 void 3008 mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1) 3009 { 3010 3011 MPT_2_HOST32(sp1, Configuration); 3012 MPT_2_HOST32(sp1, OnBusTimerValue); 3013 MPT_2_HOST16(sp1, IDConfig); 3014 } 3015 3016 void 3017 host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1) 3018 { 3019 3020 HOST_2_MPT32(sp1, Configuration); 3021 HOST_2_MPT32(sp1, OnBusTimerValue); 3022 HOST_2_MPT16(sp1, IDConfig); 3023 } 3024 3025 void 3026 mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2) 3027 { 3028 int i; 3029 3030 MPT_2_HOST32(sp2, PortFlags); 3031 MPT_2_HOST32(sp2, PortSettings); 3032 for (i = 0; i < sizeof(sp2->DeviceSettings) / 3033 sizeof(*sp2->DeviceSettings); i++) { 3034 MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags); 3035 } 3036 } 3037 3038 void 3039 mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0) 3040 { 3041 3042 MPT_2_HOST32(sd0, NegotiatedParameters); 3043 MPT_2_HOST32(sd0, Information); 3044 } 3045 3046 void 3047 mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1) 3048 { 3049 3050 MPT_2_HOST32(sd1, RequestedParameters); 3051 MPT_2_HOST32(sd1, Reserved); 3052 MPT_2_HOST32(sd1, Configuration); 3053 } 3054 3055 void 3056 host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1) 3057 { 3058 3059 HOST_2_MPT32(sd1, RequestedParameters); 3060 HOST_2_MPT32(sd1, Reserved); 3061 HOST_2_MPT32(sd1, Configuration); 3062 } 3063 3064 void 3065 mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0) 3066 { 3067 3068 MPT_2_HOST32(fp0, Flags); 3069 MPT_2_HOST32(fp0, PortIdentifier); 3070 MPT_2_HOST32(fp0, WWNN.Low); 3071 MPT_2_HOST32(fp0, WWNN.High); 3072 MPT_2_HOST32(fp0, WWPN.Low); 3073 MPT_2_HOST32(fp0, WWPN.High); 3074 MPT_2_HOST32(fp0, SupportedServiceClass); 3075 MPT_2_HOST32(fp0, SupportedSpeeds); 3076 MPT_2_HOST32(fp0, CurrentSpeed); 3077 MPT_2_HOST32(fp0, MaxFrameSize); 3078 MPT_2_HOST32(fp0, FabricWWNN.Low); 3079 MPT_2_HOST32(fp0, FabricWWNN.High); 3080 MPT_2_HOST32(fp0, FabricWWPN.Low); 3081 MPT_2_HOST32(fp0, FabricWWPN.High); 3082 MPT_2_HOST32(fp0, DiscoveredPortsCount); 3083 MPT_2_HOST32(fp0, MaxInitiators); 3084 } 3085 3086 void 3087 mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1) 3088 { 3089 3090 MPT_2_HOST32(fp1, Flags); 3091 MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low); 3092 MPT_2_HOST32(fp1, NoSEEPROMWWNN.High); 3093 MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low); 3094 MPT_2_HOST32(fp1, NoSEEPROMWWPN.High); 3095 } 3096 3097 void 3098 host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1) 3099 { 3100 3101 HOST_2_MPT32(fp1, Flags); 3102 HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low); 3103 HOST_2_MPT32(fp1, NoSEEPROMWWNN.High); 3104 HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low); 3105 HOST_2_MPT32(fp1, NoSEEPROMWWPN.High); 3106 } 3107 3108 void 3109 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp) 3110 { 3111 int i; 3112 3113 MPT_2_HOST16(volp, VolumeStatus.Reserved); 3114 MPT_2_HOST16(volp, VolumeSettings.Settings); 3115 MPT_2_HOST32(volp, MaxLBA); 3116 MPT_2_HOST32(volp, MaxLBAHigh); 3117 MPT_2_HOST32(volp, StripeSize); 3118 MPT_2_HOST32(volp, Reserved2); 3119 MPT_2_HOST32(volp, Reserved3); 3120 for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) { 3121 MPT_2_HOST16(volp, PhysDisk[i].Reserved); 3122 } 3123 } 3124 3125 void 3126 mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0) 3127 { 3128 3129 MPT_2_HOST32(rpd0, Reserved1); 3130 MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved); 3131 MPT_2_HOST32(rpd0, MaxLBA); 3132 MPT_2_HOST16(rpd0, ErrorData.Reserved); 3133 MPT_2_HOST16(rpd0, ErrorData.ErrorCount); 3134 MPT_2_HOST16(rpd0, ErrorData.SmartCount); 3135 } 3136 3137 void 3138 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi) 3139 { 3140 3141 MPT_2_HOST16(vi, TotalBlocks.High); 3142 MPT_2_HOST16(vi, TotalBlocks.Low); 3143 MPT_2_HOST16(vi, BlocksRemaining.High); 3144 MPT_2_HOST16(vi, BlocksRemaining.Low); 3145 } 3146 #endif 3147