1 /*- 2 * Generic routines for LSI Fusion adapters. 3 * FreeBSD Version. 4 * 5 * Copyright (c) 2000, 2001 by Greg Ansley 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice immediately at the beginning of the file, without modification, 12 * this list of conditions, and the following disclaimer. 13 * 2. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 /*- 29 * Copyright (c) 2002, 2006 by Matthew Jacob 30 * All rights reserved. 31 * 32 * Redistribution and use in source and binary forms, with or without 33 * modification, are permitted provided that the following conditions are 34 * met: 35 * 1. Redistributions of source code must retain the above copyright 36 * notice, this list of conditions and the following disclaimer. 37 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 38 * substantially similar to the "NO WARRANTY" disclaimer below 39 * ("Disclaimer") and any redistribution must be conditioned upon including 40 * a substantially similar Disclaimer requirement for further binary 41 * redistribution. 42 * 3. Neither the names of the above listed copyright holders nor the names 43 * of any contributors may be used to endorse or promote products derived 44 * from this software without specific prior written permission. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 47 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 50 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 56 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 57 * 58 * Support from Chris Ellsworth in order to make SAS adapters work 59 * is gratefully acknowledged. 60 * 61 * 62 * Support from LSI-Logic has also gone a great deal toward making this a 63 * workable subsystem and is gratefully acknowledged. 64 */ 65 /*- 66 * Copyright (c) 2004, Avid Technology, Inc. and its contributors. 67 * Copyright (c) 2005, WHEEL Sp. z o.o. 68 * Copyright (c) 2004, 2005 Justin T. Gibbs 69 * All rights reserved. 70 * 71 * Redistribution and use in source and binary forms, with or without 72 * modification, are permitted provided that the following conditions are 73 * met: 74 * 1. Redistributions of source code must retain the above copyright 75 * notice, this list of conditions and the following disclaimer. 76 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 77 * substantially similar to the "NO WARRANTY" disclaimer below 78 * ("Disclaimer") and any redistribution must be conditioned upon including 79 * a substantially similar Disclaimer requirement for further binary 80 * redistribution. 81 * 3. Neither the names of the above listed copyright holders nor the names 82 * of any contributors may be used to endorse or promote products derived 83 * from this software without specific prior written permission. 84 * 85 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 86 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 88 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 89 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 90 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 91 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 92 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 93 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 94 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 95 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 96 */ 97 98 #include <sys/cdefs.h> 99 __FBSDID("$FreeBSD$"); 100 101 #include <dev/mpt/mpt.h> 102 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */ 103 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */ 104 105 #include <dev/mpt/mpilib/mpi.h> 106 #include <dev/mpt/mpilib/mpi_ioc.h> 107 #include <dev/mpt/mpilib/mpi_fc.h> 108 #include <dev/mpt/mpilib/mpi_targ.h> 109 110 #include <sys/sysctl.h> 111 112 #define MPT_MAX_TRYS 3 113 #define MPT_MAX_WAIT 300000 114 115 static int maxwait_ack = 0; 116 static int maxwait_int = 0; 117 static int maxwait_state = 0; 118 119 static TAILQ_HEAD(, mpt_softc) mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq); 120 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS]; 121 122 static mpt_reply_handler_t mpt_default_reply_handler; 123 static mpt_reply_handler_t mpt_config_reply_handler; 124 static mpt_reply_handler_t mpt_handshake_reply_handler; 125 static mpt_reply_handler_t mpt_event_reply_handler; 126 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 127 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context); 128 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff); 129 static int mpt_soft_reset(struct mpt_softc *mpt); 130 static void mpt_hard_reset(struct mpt_softc *mpt); 131 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int); 132 static int mpt_enable_ioc(struct mpt_softc *mpt, int); 133 134 /************************* Personality Module Support *************************/ 135 /* 136 * We include one extra entry that is guaranteed to be NULL 137 * to simplify our itterator. 138 */ 139 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1]; 140 static __inline struct mpt_personality* 141 mpt_pers_find(struct mpt_softc *, u_int); 142 static __inline struct mpt_personality* 143 mpt_pers_find_reverse(struct mpt_softc *, u_int); 144 145 static __inline struct mpt_personality * 146 mpt_pers_find(struct mpt_softc *mpt, u_int start_at) 147 { 148 KASSERT(start_at <= MPT_MAX_PERSONALITIES, 149 ("mpt_pers_find: starting position out of range\n")); 150 151 while (start_at < MPT_MAX_PERSONALITIES 152 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 153 start_at++; 154 } 155 return (mpt_personalities[start_at]); 156 } 157 158 /* 159 * Used infrequently, so no need to optimize like a forward 160 * traversal where we use the MAX+1 is guaranteed to be NULL 161 * trick. 162 */ 163 static __inline struct mpt_personality * 164 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at) 165 { 166 while (start_at < MPT_MAX_PERSONALITIES 167 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 168 start_at--; 169 } 170 if (start_at < MPT_MAX_PERSONALITIES) 171 return (mpt_personalities[start_at]); 172 return (NULL); 173 } 174 175 #define MPT_PERS_FOREACH(mpt, pers) \ 176 for (pers = mpt_pers_find(mpt, /*start_at*/0); \ 177 pers != NULL; \ 178 pers = mpt_pers_find(mpt, /*start_at*/pers->id+1)) 179 180 #define MPT_PERS_FOREACH_REVERSE(mpt, pers) \ 181 for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\ 182 pers != NULL; \ 183 pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1)) 184 185 static mpt_load_handler_t mpt_stdload; 186 static mpt_probe_handler_t mpt_stdprobe; 187 static mpt_attach_handler_t mpt_stdattach; 188 static mpt_enable_handler_t mpt_stdenable; 189 static mpt_ready_handler_t mpt_stdready; 190 static mpt_event_handler_t mpt_stdevent; 191 static mpt_reset_handler_t mpt_stdreset; 192 static mpt_shutdown_handler_t mpt_stdshutdown; 193 static mpt_detach_handler_t mpt_stddetach; 194 static mpt_unload_handler_t mpt_stdunload; 195 static struct mpt_personality mpt_default_personality = 196 { 197 .load = mpt_stdload, 198 .probe = mpt_stdprobe, 199 .attach = mpt_stdattach, 200 .enable = mpt_stdenable, 201 .ready = mpt_stdready, 202 .event = mpt_stdevent, 203 .reset = mpt_stdreset, 204 .shutdown = mpt_stdshutdown, 205 .detach = mpt_stddetach, 206 .unload = mpt_stdunload 207 }; 208 209 static mpt_load_handler_t mpt_core_load; 210 static mpt_attach_handler_t mpt_core_attach; 211 static mpt_enable_handler_t mpt_core_enable; 212 static mpt_reset_handler_t mpt_core_ioc_reset; 213 static mpt_event_handler_t mpt_core_event; 214 static mpt_shutdown_handler_t mpt_core_shutdown; 215 static mpt_shutdown_handler_t mpt_core_detach; 216 static mpt_unload_handler_t mpt_core_unload; 217 static struct mpt_personality mpt_core_personality = 218 { 219 .name = "mpt_core", 220 .load = mpt_core_load, 221 .attach = mpt_core_attach, 222 .enable = mpt_core_enable, 223 .event = mpt_core_event, 224 .reset = mpt_core_ioc_reset, 225 .shutdown = mpt_core_shutdown, 226 .detach = mpt_core_detach, 227 .unload = mpt_core_unload, 228 }; 229 230 /* 231 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need 232 * ordering information. We want the core to always register FIRST. 233 * other modules are set to SI_ORDER_SECOND. 234 */ 235 static moduledata_t mpt_core_mod = { 236 "mpt_core", mpt_modevent, &mpt_core_personality 237 }; 238 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 239 MODULE_VERSION(mpt_core, 1); 240 241 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id)) 242 243 int 244 mpt_modevent(module_t mod, int type, void *data) 245 { 246 struct mpt_personality *pers; 247 int error; 248 249 pers = (struct mpt_personality *)data; 250 251 error = 0; 252 switch (type) { 253 case MOD_LOAD: 254 { 255 mpt_load_handler_t **def_handler; 256 mpt_load_handler_t **pers_handler; 257 int i; 258 259 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 260 if (mpt_personalities[i] == NULL) 261 break; 262 } 263 if (i >= MPT_MAX_PERSONALITIES) { 264 error = ENOMEM; 265 break; 266 } 267 pers->id = i; 268 mpt_personalities[i] = pers; 269 270 /* Install standard/noop handlers for any NULL entries. */ 271 def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality); 272 pers_handler = MPT_PERS_FIRST_HANDLER(pers); 273 while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) { 274 if (*pers_handler == NULL) 275 *pers_handler = *def_handler; 276 pers_handler++; 277 def_handler++; 278 } 279 280 error = (pers->load(pers)); 281 if (error != 0) 282 mpt_personalities[i] = NULL; 283 break; 284 } 285 case MOD_SHUTDOWN: 286 break; 287 #if __FreeBSD_version >= 500000 288 case MOD_QUIESCE: 289 break; 290 #endif 291 case MOD_UNLOAD: 292 error = pers->unload(pers); 293 mpt_personalities[pers->id] = NULL; 294 break; 295 default: 296 error = EINVAL; 297 break; 298 } 299 return (error); 300 } 301 302 int 303 mpt_stdload(struct mpt_personality *pers) 304 { 305 /* Load is always successfull. */ 306 return (0); 307 } 308 309 int 310 mpt_stdprobe(struct mpt_softc *mpt) 311 { 312 /* Probe is always successfull. */ 313 return (0); 314 } 315 316 int 317 mpt_stdattach(struct mpt_softc *mpt) 318 { 319 /* Attach is always successfull. */ 320 return (0); 321 } 322 323 int 324 mpt_stdenable(struct mpt_softc *mpt) 325 { 326 /* Enable is always successfull. */ 327 return (0); 328 } 329 330 void 331 mpt_stdready(struct mpt_softc *mpt) 332 { 333 } 334 335 336 int 337 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg) 338 { 339 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF); 340 /* Event was not for us. */ 341 return (0); 342 } 343 344 void 345 mpt_stdreset(struct mpt_softc *mpt, int type) 346 { 347 } 348 349 void 350 mpt_stdshutdown(struct mpt_softc *mpt) 351 { 352 } 353 354 void 355 mpt_stddetach(struct mpt_softc *mpt) 356 { 357 } 358 359 int 360 mpt_stdunload(struct mpt_personality *pers) 361 { 362 /* Unload is always successfull. */ 363 return (0); 364 } 365 366 /* 367 * Post driver attachment, we may want to perform some global actions. 368 * Here is the hook to do so. 369 */ 370 371 static void 372 mpt_postattach(void *unused) 373 { 374 struct mpt_softc *mpt; 375 struct mpt_personality *pers; 376 377 TAILQ_FOREACH(mpt, &mpt_tailq, links) { 378 MPT_PERS_FOREACH(mpt, pers) 379 pers->ready(mpt); 380 } 381 } 382 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL); 383 384 385 /******************************* Bus DMA Support ******************************/ 386 void 387 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error) 388 { 389 struct mpt_map_info *map_info; 390 391 map_info = (struct mpt_map_info *)arg; 392 map_info->error = error; 393 map_info->phys = segs->ds_addr; 394 } 395 396 /**************************** Reply/Event Handling ****************************/ 397 int 398 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type, 399 mpt_handler_t handler, uint32_t *phandler_id) 400 { 401 402 switch (type) { 403 case MPT_HANDLER_REPLY: 404 { 405 u_int cbi; 406 u_int free_cbi; 407 408 if (phandler_id == NULL) 409 return (EINVAL); 410 411 free_cbi = MPT_HANDLER_ID_NONE; 412 for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) { 413 /* 414 * If the same handler is registered multiple 415 * times, don't error out. Just return the 416 * index of the original registration. 417 */ 418 if (mpt_reply_handlers[cbi] == handler.reply_handler) { 419 *phandler_id = MPT_CBI_TO_HID(cbi); 420 return (0); 421 } 422 423 /* 424 * Fill from the front in the hope that 425 * all registered handlers consume only a 426 * single cache line. 427 * 428 * We don't break on the first empty slot so 429 * that the full table is checked to see if 430 * this handler was previously registered. 431 */ 432 if (free_cbi == MPT_HANDLER_ID_NONE && 433 (mpt_reply_handlers[cbi] 434 == mpt_default_reply_handler)) 435 free_cbi = cbi; 436 } 437 if (free_cbi == MPT_HANDLER_ID_NONE) { 438 return (ENOMEM); 439 } 440 mpt_reply_handlers[free_cbi] = handler.reply_handler; 441 *phandler_id = MPT_CBI_TO_HID(free_cbi); 442 break; 443 } 444 default: 445 mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type); 446 return (EINVAL); 447 } 448 return (0); 449 } 450 451 int 452 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type, 453 mpt_handler_t handler, uint32_t handler_id) 454 { 455 456 switch (type) { 457 case MPT_HANDLER_REPLY: 458 { 459 u_int cbi; 460 461 cbi = MPT_CBI(handler_id); 462 if (cbi >= MPT_NUM_REPLY_HANDLERS 463 || mpt_reply_handlers[cbi] != handler.reply_handler) 464 return (ENOENT); 465 mpt_reply_handlers[cbi] = mpt_default_reply_handler; 466 break; 467 } 468 default: 469 mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type); 470 return (EINVAL); 471 } 472 return (0); 473 } 474 475 static int 476 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req, 477 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 478 { 479 mpt_prt(mpt, 480 "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n", 481 req, req->serno, reply_desc, reply_frame); 482 483 if (reply_frame != NULL) 484 mpt_dump_reply_frame(mpt, reply_frame); 485 486 mpt_prt(mpt, "Reply Frame Ignored\n"); 487 488 return (/*free_reply*/TRUE); 489 } 490 491 static int 492 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req, 493 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 494 { 495 if (req != NULL) { 496 497 if (reply_frame != NULL) { 498 MSG_CONFIG *cfgp; 499 MSG_CONFIG_REPLY *reply; 500 501 cfgp = (MSG_CONFIG *)req->req_vbuf; 502 reply = (MSG_CONFIG_REPLY *)reply_frame; 503 req->IOCStatus = le16toh(reply_frame->IOCStatus); 504 bcopy(&reply->Header, &cfgp->Header, 505 sizeof(cfgp->Header)); 506 } 507 req->state &= ~REQ_STATE_QUEUED; 508 req->state |= REQ_STATE_DONE; 509 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 510 if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) { 511 wakeup(req); 512 } else if ((req->state & REQ_STATE_TIMEDOUT) != 0) { 513 /* 514 * Whew- we can free this request (late completion) 515 */ 516 mpt_free_request(mpt, req); 517 } 518 } 519 520 return (TRUE); 521 } 522 523 static int 524 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req, 525 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 526 { 527 /* Nothing to be done. */ 528 return (TRUE); 529 } 530 531 static int 532 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req, 533 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 534 { 535 int free_reply; 536 537 KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler")); 538 KASSERT(req != NULL, ("null request in mpt_event_reply_handler")); 539 540 free_reply = TRUE; 541 switch (reply_frame->Function) { 542 case MPI_FUNCTION_EVENT_NOTIFICATION: 543 { 544 MSG_EVENT_NOTIFY_REPLY *msg; 545 struct mpt_personality *pers; 546 u_int handled; 547 548 handled = 0; 549 msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 550 msg->EventDataLength = le16toh(msg->EventDataLength); 551 msg->IOCStatus = le16toh(msg->IOCStatus); 552 msg->IOCLogInfo = le32toh(msg->IOCLogInfo); 553 msg->Event = le32toh(msg->Event); 554 MPT_PERS_FOREACH(mpt, pers) 555 handled += pers->event(mpt, req, msg); 556 557 if (handled == 0 && mpt->mpt_pers_mask == 0) { 558 mpt_lprt(mpt, MPT_PRT_INFO, 559 "No Handlers For Any Event Notify Frames. " 560 "Event %#x (ACK %sequired).\n", 561 msg->Event, msg->AckRequired? "r" : "not r"); 562 } else if (handled == 0) { 563 mpt_lprt(mpt, MPT_PRT_WARN, 564 "Unhandled Event Notify Frame. Event %#x " 565 "(ACK %sequired).\n", 566 msg->Event, msg->AckRequired? "r" : "not r"); 567 } 568 569 if (msg->AckRequired) { 570 request_t *ack_req; 571 uint32_t context; 572 573 context = req->index | MPT_REPLY_HANDLER_EVENTS; 574 ack_req = mpt_get_request(mpt, FALSE); 575 if (ack_req == NULL) { 576 struct mpt_evtf_record *evtf; 577 578 evtf = (struct mpt_evtf_record *)reply_frame; 579 evtf->context = context; 580 LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links); 581 free_reply = FALSE; 582 break; 583 } 584 mpt_send_event_ack(mpt, ack_req, msg, context); 585 /* 586 * Don't check for CONTINUATION_REPLY here 587 */ 588 return (free_reply); 589 } 590 break; 591 } 592 case MPI_FUNCTION_PORT_ENABLE: 593 mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n"); 594 break; 595 case MPI_FUNCTION_EVENT_ACK: 596 break; 597 default: 598 mpt_prt(mpt, "unknown event function: %x\n", 599 reply_frame->Function); 600 break; 601 } 602 603 /* 604 * I'm not sure that this continuation stuff works as it should. 605 * 606 * I've had FC async events occur that free the frame up because 607 * the continuation bit isn't set, and then additional async events 608 * then occur using the same context. As you might imagine, this 609 * leads to Very Bad Thing. 610 * 611 * Let's just be safe for now and not free them up until we figure 612 * out what's actually happening here. 613 */ 614 #if 0 615 if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) { 616 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 617 mpt_free_request(mpt, req); 618 mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation", 619 reply_frame->Function, req, req->serno); 620 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 621 MSG_EVENT_NOTIFY_REPLY *msg = 622 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 623 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 624 msg->Event, msg->AckRequired); 625 } 626 } else { 627 mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation", 628 reply_frame->Function, req, req->serno); 629 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 630 MSG_EVENT_NOTIFY_REPLY *msg = 631 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 632 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 633 msg->Event, msg->AckRequired); 634 } 635 mpt_prtc(mpt, "\n"); 636 } 637 #endif 638 return (free_reply); 639 } 640 641 /* 642 * Process an asynchronous event from the IOC. 643 */ 644 static int 645 mpt_core_event(struct mpt_softc *mpt, request_t *req, 646 MSG_EVENT_NOTIFY_REPLY *msg) 647 { 648 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n", 649 msg->Event & 0xFF); 650 switch(msg->Event & 0xFF) { 651 case MPI_EVENT_NONE: 652 break; 653 case MPI_EVENT_LOG_DATA: 654 { 655 int i; 656 657 /* Some error occured that LSI wants logged */ 658 mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n", 659 msg->IOCLogInfo); 660 mpt_prt(mpt, "\tEvtLogData: Event Data:"); 661 for (i = 0; i < msg->EventDataLength; i++) 662 mpt_prtc(mpt, " %08x", msg->Data[i]); 663 mpt_prtc(mpt, "\n"); 664 break; 665 } 666 case MPI_EVENT_EVENT_CHANGE: 667 /* 668 * This is just an acknowledgement 669 * of our mpt_send_event_request. 670 */ 671 break; 672 case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE: 673 break; 674 default: 675 return (0); 676 break; 677 } 678 return (1); 679 } 680 681 static void 682 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 683 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context) 684 { 685 MSG_EVENT_ACK *ackp; 686 687 ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf; 688 memset(ackp, 0, sizeof (*ackp)); 689 ackp->Function = MPI_FUNCTION_EVENT_ACK; 690 ackp->Event = htole32(msg->Event); 691 ackp->EventContext = htole32(msg->EventContext); 692 ackp->MsgContext = htole32(context); 693 mpt_check_doorbell(mpt); 694 mpt_send_cmd(mpt, ack_req); 695 } 696 697 /***************************** Interrupt Handling *****************************/ 698 void 699 mpt_intr(void *arg) 700 { 701 struct mpt_softc *mpt; 702 uint32_t reply_desc; 703 int ntrips = 0; 704 705 mpt = (struct mpt_softc *)arg; 706 mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n"); 707 MPT_LOCK_ASSERT(mpt); 708 709 while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) { 710 request_t *req; 711 MSG_DEFAULT_REPLY *reply_frame; 712 uint32_t reply_baddr; 713 uint32_t ctxt_idx; 714 u_int cb_index; 715 u_int req_index; 716 int free_rf; 717 718 req = NULL; 719 reply_frame = NULL; 720 reply_baddr = 0; 721 if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) { 722 u_int offset; 723 /* 724 * Insure that the reply frame is coherent. 725 */ 726 reply_baddr = MPT_REPLY_BADDR(reply_desc); 727 offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF); 728 bus_dmamap_sync_range(mpt->reply_dmat, 729 mpt->reply_dmap, offset, MPT_REPLY_SIZE, 730 BUS_DMASYNC_POSTREAD); 731 reply_frame = MPT_REPLY_OTOV(mpt, offset); 732 ctxt_idx = le32toh(reply_frame->MsgContext); 733 } else { 734 uint32_t type; 735 736 type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc); 737 ctxt_idx = reply_desc; 738 mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n", 739 reply_desc); 740 741 switch (type) { 742 case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT: 743 ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK; 744 break; 745 case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET: 746 ctxt_idx = GET_IO_INDEX(reply_desc); 747 if (mpt->tgt_cmd_ptrs == NULL) { 748 mpt_prt(mpt, 749 "mpt_intr: no target cmd ptrs\n"); 750 reply_desc = MPT_REPLY_EMPTY; 751 break; 752 } 753 if (ctxt_idx >= mpt->tgt_cmds_allocated) { 754 mpt_prt(mpt, 755 "mpt_intr: bad tgt cmd ctxt %u\n", 756 ctxt_idx); 757 reply_desc = MPT_REPLY_EMPTY; 758 ntrips = 1000; 759 break; 760 } 761 req = mpt->tgt_cmd_ptrs[ctxt_idx]; 762 if (req == NULL) { 763 mpt_prt(mpt, "no request backpointer " 764 "at index %u", ctxt_idx); 765 reply_desc = MPT_REPLY_EMPTY; 766 ntrips = 1000; 767 break; 768 } 769 /* 770 * Reformulate ctxt_idx to be just as if 771 * it were another type of context reply 772 * so the code below will find the request 773 * via indexing into the pool. 774 */ 775 ctxt_idx = 776 req->index | mpt->scsi_tgt_handler_id; 777 req = NULL; 778 break; 779 case MPI_CONTEXT_REPLY_TYPE_LAN: 780 mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n", 781 reply_desc); 782 reply_desc = MPT_REPLY_EMPTY; 783 break; 784 default: 785 mpt_prt(mpt, "Context Reply 0x%08x?\n", type); 786 reply_desc = MPT_REPLY_EMPTY; 787 break; 788 } 789 if (reply_desc == MPT_REPLY_EMPTY) { 790 if (ntrips++ > 1000) { 791 break; 792 } 793 continue; 794 } 795 } 796 797 cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx); 798 req_index = MPT_CONTEXT_TO_REQI(ctxt_idx); 799 if (req_index < MPT_MAX_REQUESTS(mpt)) { 800 req = &mpt->request_pool[req_index]; 801 } else { 802 mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc ==" 803 " 0x%x)\n", req_index, reply_desc); 804 } 805 806 free_rf = mpt_reply_handlers[cb_index](mpt, req, 807 reply_desc, reply_frame); 808 809 if (reply_frame != NULL && free_rf) { 810 mpt_free_reply(mpt, reply_baddr); 811 } 812 813 /* 814 * If we got ourselves disabled, don't get stuck in a loop 815 */ 816 if (mpt->disabled) { 817 mpt_disable_ints(mpt); 818 break; 819 } 820 if (ntrips++ > 1000) { 821 break; 822 } 823 } 824 mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n"); 825 } 826 827 /******************************* Error Recovery *******************************/ 828 void 829 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain, 830 u_int iocstatus) 831 { 832 MSG_DEFAULT_REPLY ioc_status_frame; 833 request_t *req; 834 835 memset(&ioc_status_frame, 0, sizeof(ioc_status_frame)); 836 ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4); 837 ioc_status_frame.IOCStatus = iocstatus; 838 while((req = TAILQ_FIRST(chain)) != NULL) { 839 MSG_REQUEST_HEADER *msg_hdr; 840 u_int cb_index; 841 842 TAILQ_REMOVE(chain, req, links); 843 msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf; 844 ioc_status_frame.Function = msg_hdr->Function; 845 ioc_status_frame.MsgContext = msg_hdr->MsgContext; 846 cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext)); 847 mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext, 848 &ioc_status_frame); 849 } 850 } 851 852 /********************************* Diagnostics ********************************/ 853 /* 854 * Perform a diagnostic dump of a reply frame. 855 */ 856 void 857 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame) 858 { 859 mpt_prt(mpt, "Address Reply:\n"); 860 mpt_print_reply(reply_frame); 861 } 862 863 /******************************* Doorbell Access ******************************/ 864 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt); 865 static __inline uint32_t mpt_rd_intr(struct mpt_softc *mpt); 866 867 static __inline uint32_t 868 mpt_rd_db(struct mpt_softc *mpt) 869 { 870 return mpt_read(mpt, MPT_OFFSET_DOORBELL); 871 } 872 873 static __inline uint32_t 874 mpt_rd_intr(struct mpt_softc *mpt) 875 { 876 return mpt_read(mpt, MPT_OFFSET_INTR_STATUS); 877 } 878 879 /* Busy wait for a door bell to be read by IOC */ 880 static int 881 mpt_wait_db_ack(struct mpt_softc *mpt) 882 { 883 int i; 884 for (i=0; i < MPT_MAX_WAIT; i++) { 885 if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) { 886 maxwait_ack = i > maxwait_ack ? i : maxwait_ack; 887 return (MPT_OK); 888 } 889 DELAY(200); 890 } 891 return (MPT_FAIL); 892 } 893 894 /* Busy wait for a door bell interrupt */ 895 static int 896 mpt_wait_db_int(struct mpt_softc *mpt) 897 { 898 int i; 899 for (i = 0; i < MPT_MAX_WAIT; i++) { 900 if (MPT_DB_INTR(mpt_rd_intr(mpt))) { 901 maxwait_int = i > maxwait_int ? i : maxwait_int; 902 return MPT_OK; 903 } 904 DELAY(100); 905 } 906 return (MPT_FAIL); 907 } 908 909 /* Wait for IOC to transition to a give state */ 910 void 911 mpt_check_doorbell(struct mpt_softc *mpt) 912 { 913 uint32_t db = mpt_rd_db(mpt); 914 if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) { 915 mpt_prt(mpt, "Device not running\n"); 916 mpt_print_db(db); 917 } 918 } 919 920 /* Wait for IOC to transition to a give state */ 921 static int 922 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state) 923 { 924 int i; 925 926 for (i = 0; i < MPT_MAX_WAIT; i++) { 927 uint32_t db = mpt_rd_db(mpt); 928 if (MPT_STATE(db) == state) { 929 maxwait_state = i > maxwait_state ? i : maxwait_state; 930 return (MPT_OK); 931 } 932 DELAY(100); 933 } 934 return (MPT_FAIL); 935 } 936 937 938 /************************* Intialization/Configuration ************************/ 939 static int mpt_download_fw(struct mpt_softc *mpt); 940 941 /* Issue the reset COMMAND to the IOC */ 942 static int 943 mpt_soft_reset(struct mpt_softc *mpt) 944 { 945 mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n"); 946 947 /* Have to use hard reset if we are not in Running state */ 948 if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) { 949 mpt_prt(mpt, "soft reset failed: device not running\n"); 950 return (MPT_FAIL); 951 } 952 953 /* If door bell is in use we don't have a chance of getting 954 * a word in since the IOC probably crashed in message 955 * processing. So don't waste our time. 956 */ 957 if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) { 958 mpt_prt(mpt, "soft reset failed: doorbell wedged\n"); 959 return (MPT_FAIL); 960 } 961 962 /* Send the reset request to the IOC */ 963 mpt_write(mpt, MPT_OFFSET_DOORBELL, 964 MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT); 965 if (mpt_wait_db_ack(mpt) != MPT_OK) { 966 mpt_prt(mpt, "soft reset failed: ack timeout\n"); 967 return (MPT_FAIL); 968 } 969 970 /* Wait for the IOC to reload and come out of reset state */ 971 if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) { 972 mpt_prt(mpt, "soft reset failed: device did not restart\n"); 973 return (MPT_FAIL); 974 } 975 976 return MPT_OK; 977 } 978 979 static int 980 mpt_enable_diag_mode(struct mpt_softc *mpt) 981 { 982 int try; 983 984 try = 20; 985 while (--try) { 986 987 if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0) 988 break; 989 990 /* Enable diagnostic registers */ 991 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF); 992 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE); 993 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE); 994 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE); 995 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE); 996 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE); 997 998 DELAY(100000); 999 } 1000 if (try == 0) 1001 return (EIO); 1002 return (0); 1003 } 1004 1005 static void 1006 mpt_disable_diag_mode(struct mpt_softc *mpt) 1007 { 1008 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF); 1009 } 1010 1011 /* This is a magic diagnostic reset that resets all the ARM 1012 * processors in the chip. 1013 */ 1014 static void 1015 mpt_hard_reset(struct mpt_softc *mpt) 1016 { 1017 int error; 1018 int wait; 1019 uint32_t diagreg; 1020 1021 mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n"); 1022 1023 error = mpt_enable_diag_mode(mpt); 1024 if (error) { 1025 mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n"); 1026 mpt_prt(mpt, "Trying to reset anyway.\n"); 1027 } 1028 1029 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1030 1031 /* 1032 * This appears to be a workaround required for some 1033 * firmware or hardware revs. 1034 */ 1035 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM); 1036 DELAY(1000); 1037 1038 /* Diag. port is now active so we can now hit the reset bit */ 1039 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER); 1040 1041 /* 1042 * Ensure that the reset has finished. We delay 1ms 1043 * prior to reading the register to make sure the chip 1044 * has sufficiently completed its reset to handle register 1045 * accesses. 1046 */ 1047 wait = 5000; 1048 do { 1049 DELAY(1000); 1050 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1051 } while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0); 1052 1053 if (wait == 0) { 1054 mpt_prt(mpt, "WARNING - Failed hard reset! " 1055 "Trying to initialize anyway.\n"); 1056 } 1057 1058 /* 1059 * If we have firmware to download, it must be loaded before 1060 * the controller will become operational. Do so now. 1061 */ 1062 if (mpt->fw_image != NULL) { 1063 1064 error = mpt_download_fw(mpt); 1065 1066 if (error) { 1067 mpt_prt(mpt, "WARNING - Firmware Download Failed!\n"); 1068 mpt_prt(mpt, "Trying to initialize anyway.\n"); 1069 } 1070 } 1071 1072 /* 1073 * Reseting the controller should have disabled write 1074 * access to the diagnostic registers, but disable 1075 * manually to be sure. 1076 */ 1077 mpt_disable_diag_mode(mpt); 1078 } 1079 1080 static void 1081 mpt_core_ioc_reset(struct mpt_softc *mpt, int type) 1082 { 1083 /* 1084 * Complete all pending requests with a status 1085 * appropriate for an IOC reset. 1086 */ 1087 mpt_complete_request_chain(mpt, &mpt->request_pending_list, 1088 MPI_IOCSTATUS_INVALID_STATE); 1089 } 1090 1091 1092 /* 1093 * Reset the IOC when needed. Try software command first then if needed 1094 * poke at the magic diagnostic reset. Note that a hard reset resets 1095 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as 1096 * fouls up the PCI configuration registers. 1097 */ 1098 int 1099 mpt_reset(struct mpt_softc *mpt, int reinit) 1100 { 1101 struct mpt_personality *pers; 1102 int ret; 1103 int retry_cnt = 0; 1104 1105 /* 1106 * Try a soft reset. If that fails, get out the big hammer. 1107 */ 1108 again: 1109 if ((ret = mpt_soft_reset(mpt)) != MPT_OK) { 1110 int cnt; 1111 for (cnt = 0; cnt < 5; cnt++) { 1112 /* Failed; do a hard reset */ 1113 mpt_hard_reset(mpt); 1114 1115 /* 1116 * Wait for the IOC to reload 1117 * and come out of reset state 1118 */ 1119 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1120 if (ret == MPT_OK) { 1121 break; 1122 } 1123 /* 1124 * Okay- try to check again... 1125 */ 1126 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1127 if (ret == MPT_OK) { 1128 break; 1129 } 1130 mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n", 1131 retry_cnt, cnt); 1132 } 1133 } 1134 1135 if (retry_cnt == 0) { 1136 /* 1137 * Invoke reset handlers. We bump the reset count so 1138 * that mpt_wait_req() understands that regardless of 1139 * the specified wait condition, it should stop its wait. 1140 */ 1141 mpt->reset_cnt++; 1142 MPT_PERS_FOREACH(mpt, pers) 1143 pers->reset(mpt, ret); 1144 } 1145 1146 if (reinit) { 1147 ret = mpt_enable_ioc(mpt, 1); 1148 if (ret == MPT_OK) { 1149 mpt_enable_ints(mpt); 1150 } 1151 } 1152 if (ret != MPT_OK && retry_cnt++ < 2) { 1153 goto again; 1154 } 1155 return ret; 1156 } 1157 1158 /* Return a command buffer to the free queue */ 1159 void 1160 mpt_free_request(struct mpt_softc *mpt, request_t *req) 1161 { 1162 request_t *nxt; 1163 struct mpt_evtf_record *record; 1164 uint32_t reply_baddr; 1165 1166 if (req == NULL || req != &mpt->request_pool[req->index]) { 1167 panic("mpt_free_request bad req ptr\n"); 1168 return; 1169 } 1170 if ((nxt = req->chain) != NULL) { 1171 req->chain = NULL; 1172 mpt_free_request(mpt, nxt); /* NB: recursion */ 1173 } 1174 KASSERT(req->state != REQ_STATE_FREE, ("freeing free request")); 1175 KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request")); 1176 MPT_LOCK_ASSERT(mpt); 1177 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 1178 ("mpt_free_request: req %p:%u func %x already on freelist", 1179 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1180 KASSERT(mpt_req_on_pending_list(mpt, req) == 0, 1181 ("mpt_free_request: req %p:%u func %x on pending list", 1182 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1183 #ifdef INVARIANTS 1184 mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__); 1185 #endif 1186 1187 req->ccb = NULL; 1188 if (LIST_EMPTY(&mpt->ack_frames)) { 1189 /* 1190 * Insert free ones at the tail 1191 */ 1192 req->serno = 0; 1193 req->state = REQ_STATE_FREE; 1194 #ifdef INVARIANTS 1195 memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER)); 1196 #endif 1197 TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links); 1198 if (mpt->getreqwaiter != 0) { 1199 mpt->getreqwaiter = 0; 1200 wakeup(&mpt->request_free_list); 1201 } 1202 return; 1203 } 1204 1205 /* 1206 * Process an ack frame deferred due to resource shortage. 1207 */ 1208 record = LIST_FIRST(&mpt->ack_frames); 1209 LIST_REMOVE(record, links); 1210 req->state = REQ_STATE_ALLOCATED; 1211 mpt_assign_serno(mpt, req); 1212 mpt_send_event_ack(mpt, req, &record->reply, record->context); 1213 reply_baddr = (uint32_t)((uint8_t *)record - mpt->reply) 1214 + (mpt->reply_phys & 0xFFFFFFFF); 1215 mpt_free_reply(mpt, reply_baddr); 1216 } 1217 1218 /* Get a command buffer from the free queue */ 1219 request_t * 1220 mpt_get_request(struct mpt_softc *mpt, int sleep_ok) 1221 { 1222 request_t *req; 1223 1224 retry: 1225 MPT_LOCK_ASSERT(mpt); 1226 req = TAILQ_FIRST(&mpt->request_free_list); 1227 if (req != NULL) { 1228 KASSERT(req == &mpt->request_pool[req->index], 1229 ("mpt_get_request: corrupted request free list\n")); 1230 KASSERT(req->state == REQ_STATE_FREE, 1231 ("req %p:%u not free on free list %x index %d function %x", 1232 req, req->serno, req->state, req->index, 1233 ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1234 TAILQ_REMOVE(&mpt->request_free_list, req, links); 1235 req->state = REQ_STATE_ALLOCATED; 1236 req->chain = NULL; 1237 mpt_assign_serno(mpt, req); 1238 } else if (sleep_ok != 0) { 1239 mpt->getreqwaiter = 1; 1240 mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0); 1241 goto retry; 1242 } 1243 return (req); 1244 } 1245 1246 /* Pass the command to the IOC */ 1247 void 1248 mpt_send_cmd(struct mpt_softc *mpt, request_t *req) 1249 { 1250 if (mpt->verbose > MPT_PRT_DEBUG2) { 1251 mpt_dump_request(mpt, req); 1252 } 1253 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 1254 BUS_DMASYNC_PREWRITE); 1255 req->state |= REQ_STATE_QUEUED; 1256 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 1257 ("req %p:%u func %x on freelist list in mpt_send_cmd", 1258 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1259 KASSERT(mpt_req_on_pending_list(mpt, req) == 0, 1260 ("req %p:%u func %x already on pending list in mpt_send_cmd", 1261 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1262 TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links); 1263 mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf); 1264 } 1265 1266 /* 1267 * Wait for a request to complete. 1268 * 1269 * Inputs: 1270 * mpt softc of controller executing request 1271 * req request to wait for 1272 * sleep_ok nonzero implies may sleep in this context 1273 * time_ms timeout in ms. 0 implies no timeout. 1274 * 1275 * Return Values: 1276 * 0 Request completed 1277 * non-0 Timeout fired before request completion. 1278 */ 1279 int 1280 mpt_wait_req(struct mpt_softc *mpt, request_t *req, 1281 mpt_req_state_t state, mpt_req_state_t mask, 1282 int sleep_ok, int time_ms) 1283 { 1284 int error; 1285 int timeout; 1286 u_int saved_cnt; 1287 1288 /* 1289 * timeout is in ms. 0 indicates infinite wait. 1290 * Convert to ticks or 500us units depending on 1291 * our sleep mode. 1292 */ 1293 if (sleep_ok != 0) { 1294 timeout = (time_ms * hz) / 1000; 1295 } else { 1296 timeout = time_ms * 2; 1297 } 1298 req->state |= REQ_STATE_NEED_WAKEUP; 1299 mask &= ~REQ_STATE_NEED_WAKEUP; 1300 saved_cnt = mpt->reset_cnt; 1301 while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) { 1302 if (sleep_ok != 0) { 1303 error = mpt_sleep(mpt, req, PUSER, "mptreq", timeout); 1304 if (error == EWOULDBLOCK) { 1305 timeout = 0; 1306 break; 1307 } 1308 } else { 1309 if (time_ms != 0 && --timeout == 0) { 1310 break; 1311 } 1312 DELAY(500); 1313 mpt_intr(mpt); 1314 } 1315 } 1316 req->state &= ~REQ_STATE_NEED_WAKEUP; 1317 if (mpt->reset_cnt != saved_cnt) { 1318 return (EIO); 1319 } 1320 if (time_ms && timeout <= 0) { 1321 MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf; 1322 req->state |= REQ_STATE_TIMEDOUT; 1323 mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function); 1324 return (ETIMEDOUT); 1325 } 1326 return (0); 1327 } 1328 1329 /* 1330 * Send a command to the IOC via the handshake register. 1331 * 1332 * Only done at initialization time and for certain unusual 1333 * commands such as device/bus reset as specified by LSI. 1334 */ 1335 int 1336 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd) 1337 { 1338 int i; 1339 uint32_t data, *data32; 1340 1341 /* Check condition of the IOC */ 1342 data = mpt_rd_db(mpt); 1343 if ((MPT_STATE(data) != MPT_DB_STATE_READY 1344 && MPT_STATE(data) != MPT_DB_STATE_RUNNING 1345 && MPT_STATE(data) != MPT_DB_STATE_FAULT) 1346 || MPT_DB_IS_IN_USE(data)) { 1347 mpt_prt(mpt, "handshake aborted - invalid doorbell state\n"); 1348 mpt_print_db(data); 1349 return (EBUSY); 1350 } 1351 1352 /* We move things in 32 bit chunks */ 1353 len = (len + 3) >> 2; 1354 data32 = cmd; 1355 1356 /* Clear any left over pending doorbell interupts */ 1357 if (MPT_DB_INTR(mpt_rd_intr(mpt))) 1358 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1359 1360 /* 1361 * Tell the handshake reg. we are going to send a command 1362 * and how long it is going to be. 1363 */ 1364 data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) | 1365 (len << MPI_DOORBELL_ADD_DWORDS_SHIFT); 1366 mpt_write(mpt, MPT_OFFSET_DOORBELL, data); 1367 1368 /* Wait for the chip to notice */ 1369 if (mpt_wait_db_int(mpt) != MPT_OK) { 1370 mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n"); 1371 return (ETIMEDOUT); 1372 } 1373 1374 /* Clear the interrupt */ 1375 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1376 1377 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1378 mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n"); 1379 return (ETIMEDOUT); 1380 } 1381 1382 /* Send the command */ 1383 for (i = 0; i < len; i++) { 1384 mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++)); 1385 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1386 mpt_prt(mpt, 1387 "mpt_send_handshake_cmd: timeout @ index %d\n", i); 1388 return (ETIMEDOUT); 1389 } 1390 } 1391 return MPT_OK; 1392 } 1393 1394 /* Get the response from the handshake register */ 1395 int 1396 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply) 1397 { 1398 int left, reply_left; 1399 u_int16_t *data16; 1400 uint32_t data; 1401 MSG_DEFAULT_REPLY *hdr; 1402 1403 /* We move things out in 16 bit chunks */ 1404 reply_len >>= 1; 1405 data16 = (u_int16_t *)reply; 1406 1407 hdr = (MSG_DEFAULT_REPLY *)reply; 1408 1409 /* Get first word */ 1410 if (mpt_wait_db_int(mpt) != MPT_OK) { 1411 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n"); 1412 return ETIMEDOUT; 1413 } 1414 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1415 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1416 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1417 1418 /* Get Second Word */ 1419 if (mpt_wait_db_int(mpt) != MPT_OK) { 1420 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n"); 1421 return ETIMEDOUT; 1422 } 1423 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1424 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1425 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1426 1427 /* 1428 * With the second word, we can now look at the length. 1429 * Warn about a reply that's too short (except for IOC FACTS REPLY) 1430 */ 1431 if ((reply_len >> 1) != hdr->MsgLength && 1432 (hdr->Function != MPI_FUNCTION_IOC_FACTS)){ 1433 #if __FreeBSD_version >= 500000 1434 mpt_prt(mpt, "reply length does not match message length: " 1435 "got %x; expected %zx for function %x\n", 1436 hdr->MsgLength << 2, reply_len << 1, hdr->Function); 1437 #else 1438 mpt_prt(mpt, "reply length does not match message length: " 1439 "got %x; expected %x for function %x\n", 1440 hdr->MsgLength << 2, reply_len << 1, hdr->Function); 1441 #endif 1442 } 1443 1444 /* Get rest of the reply; but don't overflow the provided buffer */ 1445 left = (hdr->MsgLength << 1) - 2; 1446 reply_left = reply_len - 2; 1447 while (left--) { 1448 u_int16_t datum; 1449 1450 if (mpt_wait_db_int(mpt) != MPT_OK) { 1451 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n"); 1452 return ETIMEDOUT; 1453 } 1454 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1455 datum = le16toh(data & MPT_DB_DATA_MASK); 1456 1457 if (reply_left-- > 0) 1458 *data16++ = datum; 1459 1460 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1461 } 1462 1463 /* One more wait & clear at the end */ 1464 if (mpt_wait_db_int(mpt) != MPT_OK) { 1465 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n"); 1466 return ETIMEDOUT; 1467 } 1468 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1469 1470 if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1471 if (mpt->verbose >= MPT_PRT_TRACE) 1472 mpt_print_reply(hdr); 1473 return (MPT_FAIL | hdr->IOCStatus); 1474 } 1475 1476 return (0); 1477 } 1478 1479 static int 1480 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp) 1481 { 1482 MSG_IOC_FACTS f_req; 1483 int error; 1484 1485 memset(&f_req, 0, sizeof f_req); 1486 f_req.Function = MPI_FUNCTION_IOC_FACTS; 1487 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1488 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1489 if (error) { 1490 return(error); 1491 } 1492 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1493 return (error); 1494 } 1495 1496 static int 1497 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp) 1498 { 1499 MSG_PORT_FACTS f_req; 1500 int error; 1501 1502 memset(&f_req, 0, sizeof f_req); 1503 f_req.Function = MPI_FUNCTION_PORT_FACTS; 1504 f_req.PortNumber = port; 1505 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1506 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1507 if (error) { 1508 return(error); 1509 } 1510 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1511 return (error); 1512 } 1513 1514 /* 1515 * Send the initialization request. This is where we specify how many 1516 * SCSI busses and how many devices per bus we wish to emulate. 1517 * This is also the command that specifies the max size of the reply 1518 * frames from the IOC that we will be allocating. 1519 */ 1520 static int 1521 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who) 1522 { 1523 int error = 0; 1524 MSG_IOC_INIT init; 1525 MSG_IOC_INIT_REPLY reply; 1526 1527 memset(&init, 0, sizeof init); 1528 init.WhoInit = who; 1529 init.Function = MPI_FUNCTION_IOC_INIT; 1530 init.MaxDevices = 0; /* at least 256 devices per bus */ 1531 init.MaxBuses = 16; /* at least 16 busses */ 1532 1533 init.MsgVersion = htole16(MPI_VERSION); 1534 init.HeaderVersion = htole16(MPI_HEADER_VERSION); 1535 init.ReplyFrameSize = htole16(MPT_REPLY_SIZE); 1536 init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1537 1538 if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) { 1539 return(error); 1540 } 1541 1542 error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply); 1543 return (error); 1544 } 1545 1546 1547 /* 1548 * Utiltity routine to read configuration headers and pages 1549 */ 1550 int 1551 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, u_int Action, 1552 u_int PageVersion, u_int PageLength, u_int PageNumber, 1553 u_int PageType, uint32_t PageAddress, bus_addr_t addr, 1554 bus_size_t len, int sleep_ok, int timeout_ms) 1555 { 1556 MSG_CONFIG *cfgp; 1557 SGE_SIMPLE32 *se; 1558 1559 cfgp = req->req_vbuf; 1560 memset(cfgp, 0, sizeof *cfgp); 1561 cfgp->Action = Action; 1562 cfgp->Function = MPI_FUNCTION_CONFIG; 1563 cfgp->Header.PageVersion = PageVersion; 1564 cfgp->Header.PageLength = PageLength; 1565 cfgp->Header.PageNumber = PageNumber; 1566 cfgp->Header.PageType = PageType; 1567 cfgp->PageAddress = htole32(PageAddress); 1568 se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE; 1569 se->Address = htole32(addr); 1570 MPI_pSGE_SET_LENGTH(se, len); 1571 MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT | 1572 MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | 1573 MPI_SGE_FLAGS_END_OF_LIST | 1574 ((Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT 1575 || Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM) 1576 ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST))); 1577 se->FlagsLength = htole32(se->FlagsLength); 1578 cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 1579 1580 mpt_check_doorbell(mpt); 1581 mpt_send_cmd(mpt, req); 1582 return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 1583 sleep_ok, timeout_ms)); 1584 } 1585 1586 1587 int 1588 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber, 1589 uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt, 1590 int sleep_ok, int timeout_ms) 1591 { 1592 request_t *req; 1593 MSG_CONFIG *cfgp; 1594 int error; 1595 1596 req = mpt_get_request(mpt, sleep_ok); 1597 if (req == NULL) { 1598 mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n"); 1599 return (ENOMEM); 1600 } 1601 1602 error = mpt_issue_cfg_req(mpt, req, MPI_CONFIG_ACTION_PAGE_HEADER, 1603 /*PageVersion*/0, /*PageLength*/0, PageNumber, 1604 PageType, PageAddress, /*addr*/0, /*len*/0, 1605 sleep_ok, timeout_ms); 1606 if (error != 0) { 1607 /* 1608 * Leave the request. Without resetting the chip, it's 1609 * still owned by it and we'll just get into trouble 1610 * freeing it now. Mark it as abandoned so that if it 1611 * shows up later it can be freed. 1612 */ 1613 mpt_prt(mpt, "read_cfg_header timed out\n"); 1614 return (ETIMEDOUT); 1615 } 1616 1617 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { 1618 case MPI_IOCSTATUS_SUCCESS: 1619 cfgp = req->req_vbuf; 1620 bcopy(&cfgp->Header, rslt, sizeof(*rslt)); 1621 error = 0; 1622 break; 1623 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: 1624 mpt_lprt(mpt, MPT_PRT_DEBUG, 1625 "Invalid Page Type %d Number %d Addr 0x%0x\n", 1626 PageType, PageNumber, PageAddress); 1627 error = EINVAL; 1628 break; 1629 default: 1630 mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n", 1631 req->IOCStatus); 1632 error = EIO; 1633 break; 1634 } 1635 mpt_free_request(mpt, req); 1636 return (error); 1637 } 1638 1639 int 1640 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1641 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1642 int timeout_ms) 1643 { 1644 request_t *req; 1645 int error; 1646 1647 req = mpt_get_request(mpt, sleep_ok); 1648 if (req == NULL) { 1649 mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n"); 1650 return (-1); 1651 } 1652 1653 error = mpt_issue_cfg_req(mpt, req, Action, hdr->PageVersion, 1654 hdr->PageLength, hdr->PageNumber, 1655 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK, 1656 PageAddress, req->req_pbuf + MPT_RQSL(mpt), 1657 len, sleep_ok, timeout_ms); 1658 if (error != 0) { 1659 mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action); 1660 return (-1); 1661 } 1662 1663 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1664 mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n", 1665 req->IOCStatus); 1666 mpt_free_request(mpt, req); 1667 return (-1); 1668 } 1669 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 1670 BUS_DMASYNC_POSTREAD); 1671 memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); 1672 mpt_free_request(mpt, req); 1673 return (0); 1674 } 1675 1676 int 1677 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1678 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1679 int timeout_ms) 1680 { 1681 request_t *req; 1682 u_int hdr_attr; 1683 int error; 1684 1685 hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK; 1686 if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE && 1687 hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) { 1688 mpt_prt(mpt, "page type 0x%x not changeable\n", 1689 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK); 1690 return (-1); 1691 } 1692 1693 #if 0 1694 /* 1695 * We shouldn't mask off other bits here. 1696 */ 1697 hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK; 1698 #endif 1699 1700 req = mpt_get_request(mpt, sleep_ok); 1701 if (req == NULL) 1702 return (-1); 1703 1704 memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len); 1705 1706 /* 1707 * There isn't any point in restoring stripped out attributes 1708 * if you then mask them going down to issue the request. 1709 */ 1710 1711 #if 0 1712 /* Restore stripped out attributes */ 1713 hdr->PageType |= hdr_attr; 1714 1715 error = mpt_issue_cfg_req(mpt, req, Action, hdr->PageVersion, 1716 hdr->PageLength, hdr->PageNumber, 1717 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK, 1718 PageAddress, req->req_pbuf + MPT_RQSL(mpt), 1719 len, sleep_ok, timeout_ms); 1720 #else 1721 error = mpt_issue_cfg_req(mpt, req, Action, hdr->PageVersion, 1722 hdr->PageLength, hdr->PageNumber, 1723 hdr->PageType, PageAddress, 1724 req->req_pbuf + MPT_RQSL(mpt), 1725 len, sleep_ok, timeout_ms); 1726 #endif 1727 if (error != 0) { 1728 mpt_prt(mpt, "mpt_write_cfg_page timed out\n"); 1729 return (-1); 1730 } 1731 1732 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1733 mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n", 1734 req->IOCStatus); 1735 mpt_free_request(mpt, req); 1736 return (-1); 1737 } 1738 mpt_free_request(mpt, req); 1739 return (0); 1740 } 1741 1742 /* 1743 * Read IOC configuration information 1744 */ 1745 static int 1746 mpt_read_config_info_ioc(struct mpt_softc *mpt) 1747 { 1748 CONFIG_PAGE_HEADER hdr; 1749 struct mpt_raid_volume *mpt_raid; 1750 int rv; 1751 int i; 1752 size_t len; 1753 1754 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 1755 2, 0, &hdr, FALSE, 5000); 1756 /* 1757 * If it's an invalid page, so what? Not a supported function.... 1758 */ 1759 if (rv == EINVAL) { 1760 return (0); 1761 } 1762 if (rv) { 1763 return (rv); 1764 } 1765 1766 mpt_lprt(mpt, MPT_PRT_DEBUG, 1767 "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n", 1768 hdr.PageVersion, hdr.PageLength << 2, 1769 hdr.PageNumber, hdr.PageType); 1770 1771 len = hdr.PageLength * sizeof(uint32_t); 1772 mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1773 if (mpt->ioc_page2 == NULL) { 1774 mpt_prt(mpt, "unable to allocate memory for IOC page 2\n"); 1775 mpt_raid_free_mem(mpt); 1776 return (ENOMEM); 1777 } 1778 memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr)); 1779 rv = mpt_read_cur_cfg_page(mpt, 0, 1780 &mpt->ioc_page2->Header, len, FALSE, 5000); 1781 if (rv) { 1782 mpt_prt(mpt, "failed to read IOC Page 2\n"); 1783 mpt_raid_free_mem(mpt); 1784 return (EIO); 1785 } 1786 mpt2host_config_page_ioc2(mpt->ioc_page2); 1787 1788 if (mpt->ioc_page2->CapabilitiesFlags != 0) { 1789 uint32_t mask; 1790 1791 mpt_prt(mpt, "Capabilities: ("); 1792 for (mask = 1; mask != 0; mask <<= 1) { 1793 if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) { 1794 continue; 1795 } 1796 switch (mask) { 1797 case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT: 1798 mpt_prtc(mpt, " RAID-0"); 1799 break; 1800 case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT: 1801 mpt_prtc(mpt, " RAID-1E"); 1802 break; 1803 case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT: 1804 mpt_prtc(mpt, " RAID-1"); 1805 break; 1806 case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT: 1807 mpt_prtc(mpt, " SES"); 1808 break; 1809 case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT: 1810 mpt_prtc(mpt, " SAFTE"); 1811 break; 1812 case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT: 1813 mpt_prtc(mpt, " Multi-Channel-Arrays"); 1814 default: 1815 break; 1816 } 1817 } 1818 mpt_prtc(mpt, " )\n"); 1819 if ((mpt->ioc_page2->CapabilitiesFlags 1820 & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT 1821 | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT 1822 | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) { 1823 mpt_prt(mpt, "%d Active Volume%s(%d Max)\n", 1824 mpt->ioc_page2->NumActiveVolumes, 1825 mpt->ioc_page2->NumActiveVolumes != 1 1826 ? "s " : " ", 1827 mpt->ioc_page2->MaxVolumes); 1828 mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n", 1829 mpt->ioc_page2->NumActivePhysDisks, 1830 mpt->ioc_page2->NumActivePhysDisks != 1 1831 ? "s " : " ", 1832 mpt->ioc_page2->MaxPhysDisks); 1833 } 1834 } 1835 1836 len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume); 1837 mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1838 if (mpt->raid_volumes == NULL) { 1839 mpt_prt(mpt, "Could not allocate RAID volume data\n"); 1840 mpt_raid_free_mem(mpt); 1841 return (ENOMEM); 1842 } 1843 1844 /* 1845 * Copy critical data out of ioc_page2 so that we can 1846 * safely refresh the page without windows of unreliable 1847 * data. 1848 */ 1849 mpt->raid_max_volumes = mpt->ioc_page2->MaxVolumes; 1850 1851 len = sizeof(*mpt->raid_volumes->config_page) + 1852 (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1)); 1853 for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) { 1854 mpt_raid = &mpt->raid_volumes[i]; 1855 mpt_raid->config_page = 1856 malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1857 if (mpt_raid->config_page == NULL) { 1858 mpt_prt(mpt, "Could not allocate RAID page data\n"); 1859 mpt_raid_free_mem(mpt); 1860 return (ENOMEM); 1861 } 1862 } 1863 mpt->raid_page0_len = len; 1864 1865 len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk); 1866 mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1867 if (mpt->raid_disks == NULL) { 1868 mpt_prt(mpt, "Could not allocate RAID disk data\n"); 1869 mpt_raid_free_mem(mpt); 1870 return (ENOMEM); 1871 } 1872 mpt->raid_max_disks = mpt->ioc_page2->MaxPhysDisks; 1873 1874 /* 1875 * Load page 3. 1876 */ 1877 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 1878 3, 0, &hdr, FALSE, 5000); 1879 if (rv) { 1880 mpt_raid_free_mem(mpt); 1881 return (EIO); 1882 } 1883 1884 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n", 1885 hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType); 1886 1887 len = hdr.PageLength * sizeof(uint32_t); 1888 mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1889 if (mpt->ioc_page3 == NULL) { 1890 mpt_prt(mpt, "unable to allocate memory for IOC page 3\n"); 1891 mpt_raid_free_mem(mpt); 1892 return (ENOMEM); 1893 } 1894 memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr)); 1895 rv = mpt_read_cur_cfg_page(mpt, 0, 1896 &mpt->ioc_page3->Header, len, FALSE, 5000); 1897 if (rv) { 1898 mpt_raid_free_mem(mpt); 1899 return (EIO); 1900 } 1901 mpt_raid_wakeup(mpt); 1902 return (0); 1903 } 1904 1905 /* 1906 * Enable IOC port 1907 */ 1908 static int 1909 mpt_send_port_enable(struct mpt_softc *mpt, int port) 1910 { 1911 request_t *req; 1912 MSG_PORT_ENABLE *enable_req; 1913 int error; 1914 1915 req = mpt_get_request(mpt, /*sleep_ok*/FALSE); 1916 if (req == NULL) 1917 return (-1); 1918 1919 enable_req = req->req_vbuf; 1920 memset(enable_req, 0, MPT_RQSL(mpt)); 1921 1922 enable_req->Function = MPI_FUNCTION_PORT_ENABLE; 1923 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 1924 enable_req->PortNumber = port; 1925 1926 mpt_check_doorbell(mpt); 1927 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port); 1928 1929 mpt_send_cmd(mpt, req); 1930 error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 1931 FALSE, (mpt->is_sas || mpt->is_fc)? 30000 : 3000); 1932 if (error != 0) { 1933 mpt_prt(mpt, "port %d enable timed out\n", port); 1934 return (-1); 1935 } 1936 mpt_free_request(mpt, req); 1937 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port); 1938 return (0); 1939 } 1940 1941 /* 1942 * Enable/Disable asynchronous event reporting. 1943 */ 1944 static int 1945 mpt_send_event_request(struct mpt_softc *mpt, int onoff) 1946 { 1947 request_t *req; 1948 MSG_EVENT_NOTIFY *enable_req; 1949 1950 req = mpt_get_request(mpt, FALSE); 1951 if (req == NULL) { 1952 return (ENOMEM); 1953 } 1954 enable_req = req->req_vbuf; 1955 memset(enable_req, 0, sizeof *enable_req); 1956 1957 enable_req->Function = MPI_FUNCTION_EVENT_NOTIFICATION; 1958 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS); 1959 enable_req->Switch = onoff; 1960 1961 mpt_check_doorbell(mpt); 1962 mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n", 1963 onoff ? "en" : "dis"); 1964 /* 1965 * Send the command off, but don't wait for it. 1966 */ 1967 mpt_send_cmd(mpt, req); 1968 return (0); 1969 } 1970 1971 /* 1972 * Un-mask the interupts on the chip. 1973 */ 1974 void 1975 mpt_enable_ints(struct mpt_softc *mpt) 1976 { 1977 /* Unmask every thing except door bell int */ 1978 mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK); 1979 } 1980 1981 /* 1982 * Mask the interupts on the chip. 1983 */ 1984 void 1985 mpt_disable_ints(struct mpt_softc *mpt) 1986 { 1987 /* Mask all interrupts */ 1988 mpt_write(mpt, MPT_OFFSET_INTR_MASK, 1989 MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK); 1990 } 1991 1992 static void 1993 mpt_sysctl_attach(struct mpt_softc *mpt) 1994 { 1995 #if __FreeBSD_version >= 500000 1996 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev); 1997 struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev); 1998 1999 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2000 "debug", CTLFLAG_RW, &mpt->verbose, 0, 2001 "Debugging/Verbose level"); 2002 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2003 "role", CTLFLAG_RD, &mpt->role, 0, 2004 "HBA role"); 2005 #ifdef MPT_TEST_MULTIPATH 2006 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2007 "failure_id", CTLFLAG_RW, &mpt->failure_id, -1, 2008 "Next Target to Fail"); 2009 #endif 2010 #endif 2011 } 2012 2013 int 2014 mpt_attach(struct mpt_softc *mpt) 2015 { 2016 struct mpt_personality *pers; 2017 int i; 2018 int error; 2019 2020 TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links); 2021 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 2022 pers = mpt_personalities[i]; 2023 if (pers == NULL) { 2024 continue; 2025 } 2026 if (pers->probe(mpt) == 0) { 2027 error = pers->attach(mpt); 2028 if (error != 0) { 2029 mpt_detach(mpt); 2030 return (error); 2031 } 2032 mpt->mpt_pers_mask |= (0x1 << pers->id); 2033 pers->use_count++; 2034 } 2035 } 2036 2037 /* 2038 * Now that we've attached everything, do the enable function 2039 * for all of the personalities. This allows the personalities 2040 * to do setups that are appropriate for them prior to enabling 2041 * any ports. 2042 */ 2043 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 2044 pers = mpt_personalities[i]; 2045 if (pers != NULL && MPT_PERS_ATTACHED(pers, mpt) != 0) { 2046 error = pers->enable(mpt); 2047 if (error != 0) { 2048 mpt_prt(mpt, "personality %s attached but would" 2049 " not enable (%d)\n", pers->name, error); 2050 mpt_detach(mpt); 2051 return (error); 2052 } 2053 } 2054 } 2055 return (0); 2056 } 2057 2058 int 2059 mpt_shutdown(struct mpt_softc *mpt) 2060 { 2061 struct mpt_personality *pers; 2062 2063 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2064 pers->shutdown(mpt); 2065 } 2066 return (0); 2067 } 2068 2069 int 2070 mpt_detach(struct mpt_softc *mpt) 2071 { 2072 struct mpt_personality *pers; 2073 2074 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2075 pers->detach(mpt); 2076 mpt->mpt_pers_mask &= ~(0x1 << pers->id); 2077 pers->use_count--; 2078 } 2079 TAILQ_REMOVE(&mpt_tailq, mpt, links); 2080 return (0); 2081 } 2082 2083 int 2084 mpt_core_load(struct mpt_personality *pers) 2085 { 2086 int i; 2087 2088 /* 2089 * Setup core handlers and insert the default handler 2090 * into all "empty slots". 2091 */ 2092 for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) { 2093 mpt_reply_handlers[i] = mpt_default_reply_handler; 2094 } 2095 2096 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] = 2097 mpt_event_reply_handler; 2098 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] = 2099 mpt_config_reply_handler; 2100 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] = 2101 mpt_handshake_reply_handler; 2102 return (0); 2103 } 2104 2105 /* 2106 * Initialize per-instance driver data and perform 2107 * initial controller configuration. 2108 */ 2109 int 2110 mpt_core_attach(struct mpt_softc *mpt) 2111 { 2112 int val, error; 2113 2114 LIST_INIT(&mpt->ack_frames); 2115 /* Put all request buffers on the free list */ 2116 TAILQ_INIT(&mpt->request_pending_list); 2117 TAILQ_INIT(&mpt->request_free_list); 2118 TAILQ_INIT(&mpt->request_timeout_list); 2119 MPT_LOCK(mpt); 2120 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { 2121 request_t *req = &mpt->request_pool[val]; 2122 req->state = REQ_STATE_ALLOCATED; 2123 mpt_free_request(mpt, req); 2124 } 2125 MPT_UNLOCK(mpt); 2126 for (val = 0; val < MPT_MAX_LUNS; val++) { 2127 STAILQ_INIT(&mpt->trt[val].atios); 2128 STAILQ_INIT(&mpt->trt[val].inots); 2129 } 2130 STAILQ_INIT(&mpt->trt_wildcard.atios); 2131 STAILQ_INIT(&mpt->trt_wildcard.inots); 2132 #ifdef MPT_TEST_MULTIPATH 2133 mpt->failure_id = -1; 2134 #endif 2135 mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE; 2136 mpt_sysctl_attach(mpt); 2137 mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n", 2138 mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL))); 2139 2140 MPT_LOCK(mpt); 2141 error = mpt_configure_ioc(mpt, 0, 0); 2142 MPT_UNLOCK(mpt); 2143 2144 return (error); 2145 } 2146 2147 int 2148 mpt_core_enable(struct mpt_softc *mpt) 2149 { 2150 /* 2151 * We enter with the IOC enabled, but async events 2152 * not enabled, ports not enabled and interrupts 2153 * not enabled. 2154 */ 2155 MPT_LOCK(mpt); 2156 2157 /* 2158 * Enable asynchronous event reporting- all personalities 2159 * have attached so that they should be able to now field 2160 * async events. 2161 */ 2162 mpt_send_event_request(mpt, 1); 2163 2164 /* 2165 * Catch any pending interrupts 2166 * 2167 * This seems to be crucial- otherwise 2168 * the portenable below times out. 2169 */ 2170 mpt_intr(mpt); 2171 2172 /* 2173 * Enable Interrupts 2174 */ 2175 mpt_enable_ints(mpt); 2176 2177 /* 2178 * Catch any pending interrupts 2179 * 2180 * This seems to be crucial- otherwise 2181 * the portenable below times out. 2182 */ 2183 mpt_intr(mpt); 2184 2185 /* 2186 * Enable the port. 2187 */ 2188 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2189 mpt_prt(mpt, "failed to enable port 0\n"); 2190 MPT_UNLOCK(mpt); 2191 return (ENXIO); 2192 } 2193 MPT_UNLOCK(mpt); 2194 return (0); 2195 } 2196 2197 void 2198 mpt_core_shutdown(struct mpt_softc *mpt) 2199 { 2200 mpt_disable_ints(mpt); 2201 } 2202 2203 void 2204 mpt_core_detach(struct mpt_softc *mpt) 2205 { 2206 /* 2207 * XXX: FREE MEMORY 2208 */ 2209 mpt_disable_ints(mpt); 2210 } 2211 2212 int 2213 mpt_core_unload(struct mpt_personality *pers) 2214 { 2215 /* Unload is always successfull. */ 2216 return (0); 2217 } 2218 2219 #define FW_UPLOAD_REQ_SIZE \ 2220 (sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION) \ 2221 + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32)) 2222 2223 static int 2224 mpt_upload_fw(struct mpt_softc *mpt) 2225 { 2226 uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE]; 2227 MSG_FW_UPLOAD_REPLY fw_reply; 2228 MSG_FW_UPLOAD *fw_req; 2229 FW_UPLOAD_TCSGE *tsge; 2230 SGE_SIMPLE32 *sge; 2231 uint32_t flags; 2232 int error; 2233 2234 memset(&fw_req_buf, 0, sizeof(fw_req_buf)); 2235 fw_req = (MSG_FW_UPLOAD *)fw_req_buf; 2236 fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM; 2237 fw_req->Function = MPI_FUNCTION_FW_UPLOAD; 2238 fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 2239 tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL; 2240 tsge->DetailsLength = 12; 2241 tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT; 2242 tsge->ImageSize = htole32(mpt->fw_image_size); 2243 sge = (SGE_SIMPLE32 *)(tsge + 1); 2244 flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER 2245 | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT 2246 | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST); 2247 flags <<= MPI_SGE_FLAGS_SHIFT; 2248 sge->FlagsLength = htole32(flags | mpt->fw_image_size); 2249 sge->Address = htole32(mpt->fw_phys); 2250 error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf); 2251 if (error) 2252 return(error); 2253 error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply); 2254 return (error); 2255 } 2256 2257 static void 2258 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr, 2259 uint32_t *data, bus_size_t len) 2260 { 2261 uint32_t *data_end; 2262 2263 data_end = data + (roundup2(len, sizeof(uint32_t)) / 4); 2264 if (mpt->is_sas) { 2265 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2266 } 2267 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr); 2268 while (data != data_end) { 2269 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data); 2270 data++; 2271 } 2272 if (mpt->is_sas) { 2273 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2274 } 2275 } 2276 2277 static int 2278 mpt_download_fw(struct mpt_softc *mpt) 2279 { 2280 MpiFwHeader_t *fw_hdr; 2281 int error; 2282 uint32_t ext_offset; 2283 uint32_t data; 2284 2285 mpt_prt(mpt, "Downloading Firmware - Image Size %d\n", 2286 mpt->fw_image_size); 2287 2288 error = mpt_enable_diag_mode(mpt); 2289 if (error != 0) { 2290 mpt_prt(mpt, "Could not enter diagnostic mode!\n"); 2291 return (EIO); 2292 } 2293 2294 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, 2295 MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM); 2296 2297 fw_hdr = (MpiFwHeader_t *)mpt->fw_image; 2298 mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr, 2299 fw_hdr->ImageSize); 2300 2301 ext_offset = fw_hdr->NextImageHeaderOffset; 2302 while (ext_offset != 0) { 2303 MpiExtImageHeader_t *ext; 2304 2305 ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset); 2306 ext_offset = ext->NextImageHeaderOffset; 2307 2308 mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext, 2309 ext->ImageSize); 2310 } 2311 2312 if (mpt->is_sas) { 2313 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2314 } 2315 /* Setup the address to jump to on reset. */ 2316 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr); 2317 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue); 2318 2319 /* 2320 * The controller sets the "flash bad" status after attempting 2321 * to auto-boot from flash. Clear the status so that the controller 2322 * will continue the boot process with our newly installed firmware. 2323 */ 2324 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2325 data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL; 2326 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2327 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data); 2328 2329 if (mpt->is_sas) { 2330 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2331 } 2332 2333 /* 2334 * Re-enable the processor and clear the boot halt flag. 2335 */ 2336 data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 2337 data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM); 2338 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data); 2339 2340 mpt_disable_diag_mode(mpt); 2341 return (0); 2342 } 2343 2344 /* 2345 * Allocate/Initialize data structures for the controller. Called 2346 * once at instance startup. 2347 */ 2348 static int 2349 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset) 2350 { 2351 PTR_MSG_PORT_FACTS_REPLY pfp; 2352 int error, port; 2353 size_t len; 2354 2355 if (tn == MPT_MAX_TRYS) { 2356 return (-1); 2357 } 2358 2359 /* 2360 * No need to reset if the IOC is already in the READY state. 2361 * 2362 * Force reset if initialization failed previously. 2363 * Note that a hard_reset of the second channel of a '929 2364 * will stop operation of the first channel. Hopefully, if the 2365 * first channel is ok, the second will not require a hard 2366 * reset. 2367 */ 2368 if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) { 2369 if (mpt_reset(mpt, FALSE) != MPT_OK) { 2370 return (mpt_configure_ioc(mpt, tn++, 1)); 2371 } 2372 needreset = 0; 2373 } 2374 2375 if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) { 2376 mpt_prt(mpt, "mpt_get_iocfacts failed\n"); 2377 return (mpt_configure_ioc(mpt, tn++, 1)); 2378 } 2379 mpt2host_iocfacts_reply(&mpt->ioc_facts); 2380 2381 mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n", 2382 mpt->ioc_facts.MsgVersion >> 8, 2383 mpt->ioc_facts.MsgVersion & 0xFF, 2384 mpt->ioc_facts.HeaderVersion >> 8, 2385 mpt->ioc_facts.HeaderVersion & 0xFF); 2386 2387 /* 2388 * Now that we know request frame size, we can calculate 2389 * the actual (reasonable) segment limit for read/write I/O. 2390 * 2391 * This limit is constrained by: 2392 * 2393 * + The size of each area we allocate per command (and how 2394 * many chain segments we can fit into it). 2395 * + The total number of areas we've set up. 2396 * + The actual chain depth the card will allow. 2397 * 2398 * The first area's segment count is limited by the I/O request 2399 * at the head of it. We cannot allocate realistically more 2400 * than MPT_MAX_REQUESTS areas. Therefore, to account for both 2401 * conditions, we'll just start out with MPT_MAX_REQUESTS-2. 2402 * 2403 */ 2404 /* total number of request areas we (can) allocate */ 2405 mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2; 2406 2407 /* converted to the number of chain areas possible */ 2408 mpt->max_seg_cnt *= MPT_NRFM(mpt); 2409 2410 /* limited by the number of chain areas the card will support */ 2411 if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) { 2412 mpt_lprt(mpt, MPT_PRT_DEBUG, 2413 "chain depth limited to %u (from %u)\n", 2414 mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt); 2415 mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth; 2416 } 2417 2418 /* converted to the number of simple sges in chain segments. */ 2419 mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1); 2420 2421 mpt_lprt(mpt, MPT_PRT_DEBUG, "Maximum Segment Count: %u\n", 2422 mpt->max_seg_cnt); 2423 mpt_lprt(mpt, MPT_PRT_DEBUG, "MsgLength=%u IOCNumber = %d\n", 2424 mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber); 2425 mpt_lprt(mpt, MPT_PRT_DEBUG, 2426 "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes " 2427 "Request Frame Size %u bytes Max Chain Depth %u\n", 2428 mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize, 2429 mpt->ioc_facts.RequestFrameSize << 2, 2430 mpt->ioc_facts.MaxChainDepth); 2431 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOCFACTS: Num Ports %d, FWImageSize %d, " 2432 "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts, 2433 mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags); 2434 2435 len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY); 2436 mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2437 if (mpt->port_facts == NULL) { 2438 mpt_prt(mpt, "unable to allocate memory for port facts\n"); 2439 return (ENOMEM); 2440 } 2441 2442 2443 if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) && 2444 (mpt->fw_uploaded == 0)) { 2445 struct mpt_map_info mi; 2446 2447 /* 2448 * In some configurations, the IOC's firmware is 2449 * stored in a shared piece of system NVRAM that 2450 * is only accessable via the BIOS. In this 2451 * case, the firmware keeps a copy of firmware in 2452 * RAM until the OS driver retrieves it. Once 2453 * retrieved, we are responsible for re-downloading 2454 * the firmware after any hard-reset. 2455 */ 2456 mpt->fw_image_size = mpt->ioc_facts.FWImageSize; 2457 error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0, 2458 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 2459 mpt->fw_image_size, 1, mpt->fw_image_size, 0, 2460 &mpt->fw_dmat); 2461 if (error != 0) { 2462 mpt_prt(mpt, "cannot create firmwarew dma tag\n"); 2463 return (ENOMEM); 2464 } 2465 error = bus_dmamem_alloc(mpt->fw_dmat, 2466 (void **)&mpt->fw_image, BUS_DMA_NOWAIT, &mpt->fw_dmap); 2467 if (error != 0) { 2468 mpt_prt(mpt, "cannot allocate firmware memory\n"); 2469 bus_dma_tag_destroy(mpt->fw_dmat); 2470 return (ENOMEM); 2471 } 2472 mi.mpt = mpt; 2473 mi.error = 0; 2474 bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap, 2475 mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0); 2476 mpt->fw_phys = mi.phys; 2477 2478 error = mpt_upload_fw(mpt); 2479 if (error != 0) { 2480 mpt_prt(mpt, "firmware upload failed.\n"); 2481 bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap); 2482 bus_dmamem_free(mpt->fw_dmat, mpt->fw_image, 2483 mpt->fw_dmap); 2484 bus_dma_tag_destroy(mpt->fw_dmat); 2485 mpt->fw_image = NULL; 2486 return (EIO); 2487 } 2488 mpt->fw_uploaded = 1; 2489 } 2490 2491 for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) { 2492 pfp = &mpt->port_facts[port]; 2493 error = mpt_get_portfacts(mpt, 0, pfp); 2494 if (error != MPT_OK) { 2495 mpt_prt(mpt, 2496 "mpt_get_portfacts on port %d failed\n", port); 2497 free(mpt->port_facts, M_DEVBUF); 2498 mpt->port_facts = NULL; 2499 return (mpt_configure_ioc(mpt, tn++, 1)); 2500 } 2501 mpt2host_portfacts_reply(pfp); 2502 2503 if (port > 0) { 2504 error = MPT_PRT_INFO; 2505 } else { 2506 error = MPT_PRT_DEBUG; 2507 } 2508 mpt_lprt(mpt, error, 2509 "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n", 2510 port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID, 2511 pfp->MaxDevices); 2512 2513 } 2514 2515 /* 2516 * XXX: Not yet supporting more than port 0 2517 */ 2518 pfp = &mpt->port_facts[0]; 2519 if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) { 2520 mpt->is_fc = 1; 2521 mpt->is_sas = 0; 2522 mpt->is_spi = 0; 2523 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) { 2524 mpt->is_fc = 0; 2525 mpt->is_sas = 1; 2526 mpt->is_spi = 0; 2527 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) { 2528 mpt->is_fc = 0; 2529 mpt->is_sas = 0; 2530 mpt->is_spi = 1; 2531 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) { 2532 mpt_prt(mpt, "iSCSI not supported yet\n"); 2533 return (ENXIO); 2534 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) { 2535 mpt_prt(mpt, "Inactive Port\n"); 2536 return (ENXIO); 2537 } else { 2538 mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType); 2539 return (ENXIO); 2540 } 2541 2542 /* 2543 * Set our role with what this port supports. 2544 * 2545 * Note this might be changed later in different modules 2546 * if this is different from what is wanted. 2547 */ 2548 mpt->role = MPT_ROLE_NONE; 2549 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) { 2550 mpt->role |= MPT_ROLE_INITIATOR; 2551 } 2552 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) { 2553 mpt->role |= MPT_ROLE_TARGET; 2554 } 2555 2556 /* 2557 * Enable the IOC 2558 */ 2559 if (mpt_enable_ioc(mpt, 0) != MPT_OK) { 2560 mpt_prt(mpt, "unable to initialize IOC\n"); 2561 return (ENXIO); 2562 } 2563 2564 /* 2565 * Read IOC configuration information. 2566 * 2567 * We need this to determine whether or not we have certain 2568 * settings for Integrated Mirroring (e.g.). 2569 */ 2570 mpt_read_config_info_ioc(mpt); 2571 2572 return (0); 2573 } 2574 2575 static int 2576 mpt_enable_ioc(struct mpt_softc *mpt, int portenable) 2577 { 2578 uint32_t pptr; 2579 int val; 2580 2581 if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) { 2582 mpt_prt(mpt, "mpt_send_ioc_init failed\n"); 2583 return (EIO); 2584 } 2585 2586 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n"); 2587 2588 if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) { 2589 mpt_prt(mpt, "IOC failed to go to run state\n"); 2590 return (ENXIO); 2591 } 2592 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n"); 2593 2594 /* 2595 * Give it reply buffers 2596 * 2597 * Do *not* exceed global credits. 2598 */ 2599 for (val = 0, pptr = mpt->reply_phys; 2600 (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE); 2601 pptr += MPT_REPLY_SIZE) { 2602 mpt_free_reply(mpt, pptr); 2603 if (++val == mpt->ioc_facts.GlobalCredits - 1) 2604 break; 2605 } 2606 2607 2608 /* 2609 * Enable the port if asked. This is only done if we're resetting 2610 * the IOC after initial startup. 2611 */ 2612 if (portenable) { 2613 /* 2614 * Enable asynchronous event reporting 2615 */ 2616 mpt_send_event_request(mpt, 1); 2617 2618 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2619 mpt_prt(mpt, "failed to enable port 0\n"); 2620 return (ENXIO); 2621 } 2622 } 2623 return (MPT_OK); 2624 } 2625 2626 /* 2627 * Endian Conversion Functions- only used on Big Endian machines 2628 */ 2629 #if _BYTE_ORDER == _BIG_ENDIAN 2630 void 2631 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge) 2632 { 2633 MPT_2_HOST32(sge, FlagsLength); 2634 MPT_2_HOST32(sge, u.Address64.Low); 2635 MPT_2_HOST32(sge, u.Address64.High); 2636 } 2637 2638 void 2639 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp) 2640 { 2641 MPT_2_HOST16(rp, MsgVersion); 2642 MPT_2_HOST16(rp, HeaderVersion); 2643 MPT_2_HOST32(rp, MsgContext); 2644 MPT_2_HOST16(rp, IOCExceptions); 2645 MPT_2_HOST16(rp, IOCStatus); 2646 MPT_2_HOST32(rp, IOCLogInfo); 2647 MPT_2_HOST16(rp, ReplyQueueDepth); 2648 MPT_2_HOST16(rp, RequestFrameSize); 2649 MPT_2_HOST16(rp, Reserved_0101_FWVersion); 2650 MPT_2_HOST16(rp, ProductID); 2651 MPT_2_HOST32(rp, CurrentHostMfaHighAddr); 2652 MPT_2_HOST16(rp, GlobalCredits); 2653 MPT_2_HOST32(rp, CurrentSenseBufferHighAddr); 2654 MPT_2_HOST16(rp, CurReplyFrameSize); 2655 MPT_2_HOST32(rp, FWImageSize); 2656 MPT_2_HOST32(rp, IOCCapabilities); 2657 MPT_2_HOST32(rp, FWVersion.Word); 2658 MPT_2_HOST16(rp, HighPriorityQueueDepth); 2659 MPT_2_HOST16(rp, Reserved2); 2660 mpt2host_sge_simple_union(&rp->HostPageBufferSGE); 2661 MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr); 2662 } 2663 2664 void 2665 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp) 2666 { 2667 MPT_2_HOST16(pfp, Reserved); 2668 MPT_2_HOST16(pfp, Reserved1); 2669 MPT_2_HOST32(pfp, MsgContext); 2670 MPT_2_HOST16(pfp, Reserved2); 2671 MPT_2_HOST16(pfp, IOCStatus); 2672 MPT_2_HOST32(pfp, IOCLogInfo); 2673 MPT_2_HOST16(pfp, MaxDevices); 2674 MPT_2_HOST16(pfp, PortSCSIID); 2675 MPT_2_HOST16(pfp, ProtocolFlags); 2676 MPT_2_HOST16(pfp, MaxPostedCmdBuffers); 2677 MPT_2_HOST16(pfp, MaxPersistentIDs); 2678 MPT_2_HOST16(pfp, MaxLanBuckets); 2679 MPT_2_HOST16(pfp, Reserved4); 2680 MPT_2_HOST32(pfp, Reserved5); 2681 } 2682 void 2683 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2) 2684 { 2685 int i; 2686 ioc2->CapabilitiesFlags = htole32(ioc2->CapabilitiesFlags); 2687 for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) { 2688 MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3); 2689 } 2690 } 2691 2692 void 2693 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp) 2694 { 2695 int i; 2696 MPT_2_HOST16(volp, VolumeStatus.Reserved); 2697 MPT_2_HOST16(volp, VolumeSettings.Settings); 2698 MPT_2_HOST32(volp, MaxLBA); 2699 MPT_2_HOST32(volp, Reserved1); 2700 MPT_2_HOST32(volp, StripeSize); 2701 MPT_2_HOST32(volp, Reserved2); 2702 MPT_2_HOST32(volp, Reserved3); 2703 for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) { 2704 MPT_2_HOST16(volp, PhysDisk[i].Reserved); 2705 } 2706 } 2707 2708 void 2709 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi) 2710 { 2711 MPT_2_HOST16(vi, TotalBlocks.High); 2712 MPT_2_HOST16(vi, TotalBlocks.Low); 2713 MPT_2_HOST16(vi, BlocksRemaining.High); 2714 MPT_2_HOST16(vi, BlocksRemaining.Low); 2715 } 2716 #endif 2717