1 /*- 2 * Generic routines for LSI Fusion adapters. 3 * FreeBSD Version. 4 * 5 * Copyright (c) 2000, 2001 by Greg Ansley 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice immediately at the beginning of the file, without modification, 12 * this list of conditions, and the following disclaimer. 13 * 2. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 /*- 29 * Copyright (c) 2002, 2006 by Matthew Jacob 30 * All rights reserved. 31 * 32 * Redistribution and use in source and binary forms, with or without 33 * modification, are permitted provided that the following conditions are 34 * met: 35 * 1. Redistributions of source code must retain the above copyright 36 * notice, this list of conditions and the following disclaimer. 37 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 38 * substantially similar to the "NO WARRANTY" disclaimer below 39 * ("Disclaimer") and any redistribution must be conditioned upon including 40 * a substantially similar Disclaimer requirement for further binary 41 * redistribution. 42 * 3. Neither the names of the above listed copyright holders nor the names 43 * of any contributors may be used to endorse or promote products derived 44 * from this software without specific prior written permission. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 47 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 50 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 56 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 57 * 58 * Support from Chris Ellsworth in order to make SAS adapters work 59 * is gratefully acknowledged. 60 * 61 * 62 * Support from LSI-Logic has also gone a great deal toward making this a 63 * workable subsystem and is gratefully acknowledged. 64 */ 65 /*- 66 * Copyright (c) 2004, Avid Technology, Inc. and its contributors. 67 * Copyright (c) 2005, WHEEL Sp. z o.o. 68 * Copyright (c) 2004, 2005 Justin T. Gibbs 69 * All rights reserved. 70 * 71 * Redistribution and use in source and binary forms, with or without 72 * modification, are permitted provided that the following conditions are 73 * met: 74 * 1. Redistributions of source code must retain the above copyright 75 * notice, this list of conditions and the following disclaimer. 76 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 77 * substantially similar to the "NO WARRANTY" disclaimer below 78 * ("Disclaimer") and any redistribution must be conditioned upon including 79 * a substantially similar Disclaimer requirement for further binary 80 * redistribution. 81 * 3. Neither the names of the above listed copyright holders nor the names 82 * of any contributors may be used to endorse or promote products derived 83 * from this software without specific prior written permission. 84 * 85 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 86 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 88 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 89 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 90 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 91 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 92 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 93 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 94 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 95 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 96 */ 97 98 #include <sys/cdefs.h> 99 __FBSDID("$FreeBSD$"); 100 101 #include <dev/mpt/mpt.h> 102 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */ 103 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */ 104 105 #include <dev/mpt/mpilib/mpi.h> 106 #include <dev/mpt/mpilib/mpi_ioc.h> 107 #include <dev/mpt/mpilib/mpi_fc.h> 108 #include <dev/mpt/mpilib/mpi_targ.h> 109 110 #include <sys/sysctl.h> 111 112 #define MPT_MAX_TRYS 3 113 #define MPT_MAX_WAIT 300000 114 115 static int maxwait_ack = 0; 116 static int maxwait_int = 0; 117 static int maxwait_state = 0; 118 119 static TAILQ_HEAD(, mpt_softc) mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq); 120 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS]; 121 122 static mpt_reply_handler_t mpt_default_reply_handler; 123 static mpt_reply_handler_t mpt_config_reply_handler; 124 static mpt_reply_handler_t mpt_handshake_reply_handler; 125 static mpt_reply_handler_t mpt_event_reply_handler; 126 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 127 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context); 128 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff); 129 static int mpt_soft_reset(struct mpt_softc *mpt); 130 static void mpt_hard_reset(struct mpt_softc *mpt); 131 static int mpt_dma_buf_alloc(struct mpt_softc *mpt); 132 static void mpt_dma_buf_free(struct mpt_softc *mpt); 133 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int); 134 static int mpt_enable_ioc(struct mpt_softc *mpt, int); 135 136 /************************* Personality Module Support *************************/ 137 /* 138 * We include one extra entry that is guaranteed to be NULL 139 * to simplify our itterator. 140 */ 141 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1]; 142 static __inline struct mpt_personality* 143 mpt_pers_find(struct mpt_softc *, u_int); 144 static __inline struct mpt_personality* 145 mpt_pers_find_reverse(struct mpt_softc *, u_int); 146 147 static __inline struct mpt_personality * 148 mpt_pers_find(struct mpt_softc *mpt, u_int start_at) 149 { 150 KASSERT(start_at <= MPT_MAX_PERSONALITIES, 151 ("mpt_pers_find: starting position out of range\n")); 152 153 while (start_at < MPT_MAX_PERSONALITIES 154 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 155 start_at++; 156 } 157 return (mpt_personalities[start_at]); 158 } 159 160 /* 161 * Used infrequently, so no need to optimize like a forward 162 * traversal where we use the MAX+1 is guaranteed to be NULL 163 * trick. 164 */ 165 static __inline struct mpt_personality * 166 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at) 167 { 168 while (start_at < MPT_MAX_PERSONALITIES 169 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 170 start_at--; 171 } 172 if (start_at < MPT_MAX_PERSONALITIES) 173 return (mpt_personalities[start_at]); 174 return (NULL); 175 } 176 177 #define MPT_PERS_FOREACH(mpt, pers) \ 178 for (pers = mpt_pers_find(mpt, /*start_at*/0); \ 179 pers != NULL; \ 180 pers = mpt_pers_find(mpt, /*start_at*/pers->id+1)) 181 182 #define MPT_PERS_FOREACH_REVERSE(mpt, pers) \ 183 for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\ 184 pers != NULL; \ 185 pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1)) 186 187 static mpt_load_handler_t mpt_stdload; 188 static mpt_probe_handler_t mpt_stdprobe; 189 static mpt_attach_handler_t mpt_stdattach; 190 static mpt_enable_handler_t mpt_stdenable; 191 static mpt_ready_handler_t mpt_stdready; 192 static mpt_event_handler_t mpt_stdevent; 193 static mpt_reset_handler_t mpt_stdreset; 194 static mpt_shutdown_handler_t mpt_stdshutdown; 195 static mpt_detach_handler_t mpt_stddetach; 196 static mpt_unload_handler_t mpt_stdunload; 197 static struct mpt_personality mpt_default_personality = 198 { 199 .load = mpt_stdload, 200 .probe = mpt_stdprobe, 201 .attach = mpt_stdattach, 202 .enable = mpt_stdenable, 203 .ready = mpt_stdready, 204 .event = mpt_stdevent, 205 .reset = mpt_stdreset, 206 .shutdown = mpt_stdshutdown, 207 .detach = mpt_stddetach, 208 .unload = mpt_stdunload 209 }; 210 211 static mpt_load_handler_t mpt_core_load; 212 static mpt_attach_handler_t mpt_core_attach; 213 static mpt_enable_handler_t mpt_core_enable; 214 static mpt_reset_handler_t mpt_core_ioc_reset; 215 static mpt_event_handler_t mpt_core_event; 216 static mpt_shutdown_handler_t mpt_core_shutdown; 217 static mpt_shutdown_handler_t mpt_core_detach; 218 static mpt_unload_handler_t mpt_core_unload; 219 static struct mpt_personality mpt_core_personality = 220 { 221 .name = "mpt_core", 222 .load = mpt_core_load, 223 // .attach = mpt_core_attach, 224 // .enable = mpt_core_enable, 225 .event = mpt_core_event, 226 .reset = mpt_core_ioc_reset, 227 .shutdown = mpt_core_shutdown, 228 .detach = mpt_core_detach, 229 .unload = mpt_core_unload, 230 }; 231 232 /* 233 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need 234 * ordering information. We want the core to always register FIRST. 235 * other modules are set to SI_ORDER_SECOND. 236 */ 237 static moduledata_t mpt_core_mod = { 238 "mpt_core", mpt_modevent, &mpt_core_personality 239 }; 240 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 241 MODULE_VERSION(mpt_core, 1); 242 243 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id)) 244 245 int 246 mpt_modevent(module_t mod, int type, void *data) 247 { 248 struct mpt_personality *pers; 249 int error; 250 251 pers = (struct mpt_personality *)data; 252 253 error = 0; 254 switch (type) { 255 case MOD_LOAD: 256 { 257 mpt_load_handler_t **def_handler; 258 mpt_load_handler_t **pers_handler; 259 int i; 260 261 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 262 if (mpt_personalities[i] == NULL) 263 break; 264 } 265 if (i >= MPT_MAX_PERSONALITIES) { 266 error = ENOMEM; 267 break; 268 } 269 pers->id = i; 270 mpt_personalities[i] = pers; 271 272 /* Install standard/noop handlers for any NULL entries. */ 273 def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality); 274 pers_handler = MPT_PERS_FIRST_HANDLER(pers); 275 while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) { 276 if (*pers_handler == NULL) 277 *pers_handler = *def_handler; 278 pers_handler++; 279 def_handler++; 280 } 281 282 error = (pers->load(pers)); 283 if (error != 0) 284 mpt_personalities[i] = NULL; 285 break; 286 } 287 case MOD_SHUTDOWN: 288 break; 289 #if __FreeBSD_version >= 500000 290 case MOD_QUIESCE: 291 break; 292 #endif 293 case MOD_UNLOAD: 294 error = pers->unload(pers); 295 mpt_personalities[pers->id] = NULL; 296 break; 297 default: 298 error = EINVAL; 299 break; 300 } 301 return (error); 302 } 303 304 int 305 mpt_stdload(struct mpt_personality *pers) 306 { 307 /* Load is always successful. */ 308 return (0); 309 } 310 311 int 312 mpt_stdprobe(struct mpt_softc *mpt) 313 { 314 /* Probe is always successful. */ 315 return (0); 316 } 317 318 int 319 mpt_stdattach(struct mpt_softc *mpt) 320 { 321 /* Attach is always successful. */ 322 return (0); 323 } 324 325 int 326 mpt_stdenable(struct mpt_softc *mpt) 327 { 328 /* Enable is always successful. */ 329 return (0); 330 } 331 332 void 333 mpt_stdready(struct mpt_softc *mpt) 334 { 335 } 336 337 338 int 339 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg) 340 { 341 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF); 342 /* Event was not for us. */ 343 return (0); 344 } 345 346 void 347 mpt_stdreset(struct mpt_softc *mpt, int type) 348 { 349 } 350 351 void 352 mpt_stdshutdown(struct mpt_softc *mpt) 353 { 354 } 355 356 void 357 mpt_stddetach(struct mpt_softc *mpt) 358 { 359 } 360 361 int 362 mpt_stdunload(struct mpt_personality *pers) 363 { 364 /* Unload is always successful. */ 365 return (0); 366 } 367 368 /* 369 * Post driver attachment, we may want to perform some global actions. 370 * Here is the hook to do so. 371 */ 372 373 static void 374 mpt_postattach(void *unused) 375 { 376 struct mpt_softc *mpt; 377 struct mpt_personality *pers; 378 379 TAILQ_FOREACH(mpt, &mpt_tailq, links) { 380 MPT_PERS_FOREACH(mpt, pers) 381 pers->ready(mpt); 382 } 383 } 384 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL); 385 386 387 /******************************* Bus DMA Support ******************************/ 388 void 389 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error) 390 { 391 struct mpt_map_info *map_info; 392 393 map_info = (struct mpt_map_info *)arg; 394 map_info->error = error; 395 map_info->phys = segs->ds_addr; 396 } 397 398 /**************************** Reply/Event Handling ****************************/ 399 int 400 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type, 401 mpt_handler_t handler, uint32_t *phandler_id) 402 { 403 404 switch (type) { 405 case MPT_HANDLER_REPLY: 406 { 407 u_int cbi; 408 u_int free_cbi; 409 410 if (phandler_id == NULL) 411 return (EINVAL); 412 413 free_cbi = MPT_HANDLER_ID_NONE; 414 for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) { 415 /* 416 * If the same handler is registered multiple 417 * times, don't error out. Just return the 418 * index of the original registration. 419 */ 420 if (mpt_reply_handlers[cbi] == handler.reply_handler) { 421 *phandler_id = MPT_CBI_TO_HID(cbi); 422 return (0); 423 } 424 425 /* 426 * Fill from the front in the hope that 427 * all registered handlers consume only a 428 * single cache line. 429 * 430 * We don't break on the first empty slot so 431 * that the full table is checked to see if 432 * this handler was previously registered. 433 */ 434 if (free_cbi == MPT_HANDLER_ID_NONE && 435 (mpt_reply_handlers[cbi] 436 == mpt_default_reply_handler)) 437 free_cbi = cbi; 438 } 439 if (free_cbi == MPT_HANDLER_ID_NONE) { 440 return (ENOMEM); 441 } 442 mpt_reply_handlers[free_cbi] = handler.reply_handler; 443 *phandler_id = MPT_CBI_TO_HID(free_cbi); 444 break; 445 } 446 default: 447 mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type); 448 return (EINVAL); 449 } 450 return (0); 451 } 452 453 int 454 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type, 455 mpt_handler_t handler, uint32_t handler_id) 456 { 457 458 switch (type) { 459 case MPT_HANDLER_REPLY: 460 { 461 u_int cbi; 462 463 cbi = MPT_CBI(handler_id); 464 if (cbi >= MPT_NUM_REPLY_HANDLERS 465 || mpt_reply_handlers[cbi] != handler.reply_handler) 466 return (ENOENT); 467 mpt_reply_handlers[cbi] = mpt_default_reply_handler; 468 break; 469 } 470 default: 471 mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type); 472 return (EINVAL); 473 } 474 return (0); 475 } 476 477 static int 478 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req, 479 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 480 { 481 mpt_prt(mpt, 482 "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n", 483 req, req->serno, reply_desc, reply_frame); 484 485 if (reply_frame != NULL) 486 mpt_dump_reply_frame(mpt, reply_frame); 487 488 mpt_prt(mpt, "Reply Frame Ignored\n"); 489 490 return (/*free_reply*/TRUE); 491 } 492 493 static int 494 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req, 495 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 496 { 497 if (req != NULL) { 498 499 if (reply_frame != NULL) { 500 MSG_CONFIG *cfgp; 501 MSG_CONFIG_REPLY *reply; 502 503 cfgp = (MSG_CONFIG *)req->req_vbuf; 504 reply = (MSG_CONFIG_REPLY *)reply_frame; 505 req->IOCStatus = le16toh(reply_frame->IOCStatus); 506 bcopy(&reply->Header, &cfgp->Header, 507 sizeof(cfgp->Header)); 508 cfgp->ExtPageLength = reply->ExtPageLength; 509 cfgp->ExtPageType = reply->ExtPageType; 510 } 511 req->state &= ~REQ_STATE_QUEUED; 512 req->state |= REQ_STATE_DONE; 513 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 514 if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) { 515 wakeup(req); 516 } else if ((req->state & REQ_STATE_TIMEDOUT) != 0) { 517 /* 518 * Whew- we can free this request (late completion) 519 */ 520 mpt_free_request(mpt, req); 521 } 522 } 523 524 return (TRUE); 525 } 526 527 static int 528 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req, 529 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 530 { 531 /* Nothing to be done. */ 532 return (TRUE); 533 } 534 535 static int 536 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req, 537 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 538 { 539 int free_reply; 540 541 KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler")); 542 KASSERT(req != NULL, ("null request in mpt_event_reply_handler")); 543 544 free_reply = TRUE; 545 switch (reply_frame->Function) { 546 case MPI_FUNCTION_EVENT_NOTIFICATION: 547 { 548 MSG_EVENT_NOTIFY_REPLY *msg; 549 struct mpt_personality *pers; 550 u_int handled; 551 552 handled = 0; 553 msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 554 msg->EventDataLength = le16toh(msg->EventDataLength); 555 msg->IOCStatus = le16toh(msg->IOCStatus); 556 msg->IOCLogInfo = le32toh(msg->IOCLogInfo); 557 msg->Event = le32toh(msg->Event); 558 MPT_PERS_FOREACH(mpt, pers) 559 handled += pers->event(mpt, req, msg); 560 561 if (handled == 0 && mpt->mpt_pers_mask == 0) { 562 mpt_lprt(mpt, MPT_PRT_INFO, 563 "No Handlers For Any Event Notify Frames. " 564 "Event %#x (ACK %sequired).\n", 565 msg->Event, msg->AckRequired? "r" : "not r"); 566 } else if (handled == 0) { 567 mpt_lprt(mpt, 568 msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO, 569 "Unhandled Event Notify Frame. Event %#x " 570 "(ACK %sequired).\n", 571 msg->Event, msg->AckRequired? "r" : "not r"); 572 } 573 574 if (msg->AckRequired) { 575 request_t *ack_req; 576 uint32_t context; 577 578 context = req->index | MPT_REPLY_HANDLER_EVENTS; 579 ack_req = mpt_get_request(mpt, FALSE); 580 if (ack_req == NULL) { 581 struct mpt_evtf_record *evtf; 582 583 evtf = (struct mpt_evtf_record *)reply_frame; 584 evtf->context = context; 585 LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links); 586 free_reply = FALSE; 587 break; 588 } 589 mpt_send_event_ack(mpt, ack_req, msg, context); 590 /* 591 * Don't check for CONTINUATION_REPLY here 592 */ 593 return (free_reply); 594 } 595 break; 596 } 597 case MPI_FUNCTION_PORT_ENABLE: 598 mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n"); 599 break; 600 case MPI_FUNCTION_EVENT_ACK: 601 break; 602 default: 603 mpt_prt(mpt, "unknown event function: %x\n", 604 reply_frame->Function); 605 break; 606 } 607 608 /* 609 * I'm not sure that this continuation stuff works as it should. 610 * 611 * I've had FC async events occur that free the frame up because 612 * the continuation bit isn't set, and then additional async events 613 * then occur using the same context. As you might imagine, this 614 * leads to Very Bad Thing. 615 * 616 * Let's just be safe for now and not free them up until we figure 617 * out what's actually happening here. 618 */ 619 #if 0 620 if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) { 621 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 622 mpt_free_request(mpt, req); 623 mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation", 624 reply_frame->Function, req, req->serno); 625 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 626 MSG_EVENT_NOTIFY_REPLY *msg = 627 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 628 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 629 msg->Event, msg->AckRequired); 630 } 631 } else { 632 mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation", 633 reply_frame->Function, req, req->serno); 634 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 635 MSG_EVENT_NOTIFY_REPLY *msg = 636 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 637 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 638 msg->Event, msg->AckRequired); 639 } 640 mpt_prtc(mpt, "\n"); 641 } 642 #endif 643 return (free_reply); 644 } 645 646 /* 647 * Process an asynchronous event from the IOC. 648 */ 649 static int 650 mpt_core_event(struct mpt_softc *mpt, request_t *req, 651 MSG_EVENT_NOTIFY_REPLY *msg) 652 { 653 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n", 654 msg->Event & 0xFF); 655 switch(msg->Event & 0xFF) { 656 case MPI_EVENT_NONE: 657 break; 658 case MPI_EVENT_LOG_DATA: 659 { 660 int i; 661 662 /* Some error occurred that LSI wants logged */ 663 mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n", 664 msg->IOCLogInfo); 665 mpt_prt(mpt, "\tEvtLogData: Event Data:"); 666 for (i = 0; i < msg->EventDataLength; i++) 667 mpt_prtc(mpt, " %08x", msg->Data[i]); 668 mpt_prtc(mpt, "\n"); 669 break; 670 } 671 case MPI_EVENT_EVENT_CHANGE: 672 /* 673 * This is just an acknowledgement 674 * of our mpt_send_event_request. 675 */ 676 break; 677 case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE: 678 break; 679 default: 680 return (0); 681 break; 682 } 683 return (1); 684 } 685 686 static void 687 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 688 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context) 689 { 690 MSG_EVENT_ACK *ackp; 691 692 ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf; 693 memset(ackp, 0, sizeof (*ackp)); 694 ackp->Function = MPI_FUNCTION_EVENT_ACK; 695 ackp->Event = htole32(msg->Event); 696 ackp->EventContext = htole32(msg->EventContext); 697 ackp->MsgContext = htole32(context); 698 mpt_check_doorbell(mpt); 699 mpt_send_cmd(mpt, ack_req); 700 } 701 702 /***************************** Interrupt Handling *****************************/ 703 void 704 mpt_intr(void *arg) 705 { 706 struct mpt_softc *mpt; 707 uint32_t reply_desc; 708 int ntrips = 0; 709 710 mpt = (struct mpt_softc *)arg; 711 mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n"); 712 MPT_LOCK_ASSERT(mpt); 713 714 while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) { 715 request_t *req; 716 MSG_DEFAULT_REPLY *reply_frame; 717 uint32_t reply_baddr; 718 uint32_t ctxt_idx; 719 u_int cb_index; 720 u_int req_index; 721 u_int offset; 722 int free_rf; 723 724 req = NULL; 725 reply_frame = NULL; 726 reply_baddr = 0; 727 offset = 0; 728 if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) { 729 /* 730 * Ensure that the reply frame is coherent. 731 */ 732 reply_baddr = MPT_REPLY_BADDR(reply_desc); 733 offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF); 734 bus_dmamap_sync_range(mpt->reply_dmat, 735 mpt->reply_dmap, offset, MPT_REPLY_SIZE, 736 BUS_DMASYNC_POSTREAD); 737 reply_frame = MPT_REPLY_OTOV(mpt, offset); 738 ctxt_idx = le32toh(reply_frame->MsgContext); 739 } else { 740 uint32_t type; 741 742 type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc); 743 ctxt_idx = reply_desc; 744 mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n", 745 reply_desc); 746 747 switch (type) { 748 case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT: 749 ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK; 750 break; 751 case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET: 752 ctxt_idx = GET_IO_INDEX(reply_desc); 753 if (mpt->tgt_cmd_ptrs == NULL) { 754 mpt_prt(mpt, 755 "mpt_intr: no target cmd ptrs\n"); 756 reply_desc = MPT_REPLY_EMPTY; 757 break; 758 } 759 if (ctxt_idx >= mpt->tgt_cmds_allocated) { 760 mpt_prt(mpt, 761 "mpt_intr: bad tgt cmd ctxt %u\n", 762 ctxt_idx); 763 reply_desc = MPT_REPLY_EMPTY; 764 ntrips = 1000; 765 break; 766 } 767 req = mpt->tgt_cmd_ptrs[ctxt_idx]; 768 if (req == NULL) { 769 mpt_prt(mpt, "no request backpointer " 770 "at index %u", ctxt_idx); 771 reply_desc = MPT_REPLY_EMPTY; 772 ntrips = 1000; 773 break; 774 } 775 /* 776 * Reformulate ctxt_idx to be just as if 777 * it were another type of context reply 778 * so the code below will find the request 779 * via indexing into the pool. 780 */ 781 ctxt_idx = 782 req->index | mpt->scsi_tgt_handler_id; 783 req = NULL; 784 break; 785 case MPI_CONTEXT_REPLY_TYPE_LAN: 786 mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n", 787 reply_desc); 788 reply_desc = MPT_REPLY_EMPTY; 789 break; 790 default: 791 mpt_prt(mpt, "Context Reply 0x%08x?\n", type); 792 reply_desc = MPT_REPLY_EMPTY; 793 break; 794 } 795 if (reply_desc == MPT_REPLY_EMPTY) { 796 if (ntrips++ > 1000) { 797 break; 798 } 799 continue; 800 } 801 } 802 803 cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx); 804 req_index = MPT_CONTEXT_TO_REQI(ctxt_idx); 805 if (req_index < MPT_MAX_REQUESTS(mpt)) { 806 req = &mpt->request_pool[req_index]; 807 } else { 808 mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc ==" 809 " 0x%x)\n", req_index, reply_desc); 810 } 811 812 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 813 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 814 free_rf = mpt_reply_handlers[cb_index](mpt, req, 815 reply_desc, reply_frame); 816 817 if (reply_frame != NULL && free_rf) { 818 bus_dmamap_sync_range(mpt->reply_dmat, 819 mpt->reply_dmap, offset, MPT_REPLY_SIZE, 820 BUS_DMASYNC_PREREAD); 821 mpt_free_reply(mpt, reply_baddr); 822 } 823 824 /* 825 * If we got ourselves disabled, don't get stuck in a loop 826 */ 827 if (mpt->disabled) { 828 mpt_disable_ints(mpt); 829 break; 830 } 831 if (ntrips++ > 1000) { 832 break; 833 } 834 } 835 mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n"); 836 } 837 838 /******************************* Error Recovery *******************************/ 839 void 840 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain, 841 u_int iocstatus) 842 { 843 MSG_DEFAULT_REPLY ioc_status_frame; 844 request_t *req; 845 846 memset(&ioc_status_frame, 0, sizeof(ioc_status_frame)); 847 ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4); 848 ioc_status_frame.IOCStatus = iocstatus; 849 while((req = TAILQ_FIRST(chain)) != NULL) { 850 MSG_REQUEST_HEADER *msg_hdr; 851 u_int cb_index; 852 853 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 854 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 855 msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf; 856 ioc_status_frame.Function = msg_hdr->Function; 857 ioc_status_frame.MsgContext = msg_hdr->MsgContext; 858 cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext)); 859 mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext, 860 &ioc_status_frame); 861 if (mpt_req_on_pending_list(mpt, req) != 0) 862 TAILQ_REMOVE(chain, req, links); 863 } 864 } 865 866 /********************************* Diagnostics ********************************/ 867 /* 868 * Perform a diagnostic dump of a reply frame. 869 */ 870 void 871 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame) 872 { 873 mpt_prt(mpt, "Address Reply:\n"); 874 mpt_print_reply(reply_frame); 875 } 876 877 /******************************* Doorbell Access ******************************/ 878 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt); 879 static __inline uint32_t mpt_rd_intr(struct mpt_softc *mpt); 880 881 static __inline uint32_t 882 mpt_rd_db(struct mpt_softc *mpt) 883 { 884 return mpt_read(mpt, MPT_OFFSET_DOORBELL); 885 } 886 887 static __inline uint32_t 888 mpt_rd_intr(struct mpt_softc *mpt) 889 { 890 return mpt_read(mpt, MPT_OFFSET_INTR_STATUS); 891 } 892 893 /* Busy wait for a door bell to be read by IOC */ 894 static int 895 mpt_wait_db_ack(struct mpt_softc *mpt) 896 { 897 int i; 898 for (i=0; i < MPT_MAX_WAIT; i++) { 899 if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) { 900 maxwait_ack = i > maxwait_ack ? i : maxwait_ack; 901 return (MPT_OK); 902 } 903 DELAY(200); 904 } 905 return (MPT_FAIL); 906 } 907 908 /* Busy wait for a door bell interrupt */ 909 static int 910 mpt_wait_db_int(struct mpt_softc *mpt) 911 { 912 int i; 913 for (i = 0; i < MPT_MAX_WAIT; i++) { 914 if (MPT_DB_INTR(mpt_rd_intr(mpt))) { 915 maxwait_int = i > maxwait_int ? i : maxwait_int; 916 return MPT_OK; 917 } 918 DELAY(100); 919 } 920 return (MPT_FAIL); 921 } 922 923 /* Wait for IOC to transition to a give state */ 924 void 925 mpt_check_doorbell(struct mpt_softc *mpt) 926 { 927 uint32_t db = mpt_rd_db(mpt); 928 if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) { 929 mpt_prt(mpt, "Device not running\n"); 930 mpt_print_db(db); 931 } 932 } 933 934 /* Wait for IOC to transition to a give state */ 935 static int 936 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state) 937 { 938 int i; 939 940 for (i = 0; i < MPT_MAX_WAIT; i++) { 941 uint32_t db = mpt_rd_db(mpt); 942 if (MPT_STATE(db) == state) { 943 maxwait_state = i > maxwait_state ? i : maxwait_state; 944 return (MPT_OK); 945 } 946 DELAY(100); 947 } 948 return (MPT_FAIL); 949 } 950 951 952 /************************* Intialization/Configuration ************************/ 953 static int mpt_download_fw(struct mpt_softc *mpt); 954 955 /* Issue the reset COMMAND to the IOC */ 956 static int 957 mpt_soft_reset(struct mpt_softc *mpt) 958 { 959 mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n"); 960 961 /* Have to use hard reset if we are not in Running state */ 962 if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) { 963 mpt_prt(mpt, "soft reset failed: device not running\n"); 964 return (MPT_FAIL); 965 } 966 967 /* If door bell is in use we don't have a chance of getting 968 * a word in since the IOC probably crashed in message 969 * processing. So don't waste our time. 970 */ 971 if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) { 972 mpt_prt(mpt, "soft reset failed: doorbell wedged\n"); 973 return (MPT_FAIL); 974 } 975 976 /* Send the reset request to the IOC */ 977 mpt_write(mpt, MPT_OFFSET_DOORBELL, 978 MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT); 979 if (mpt_wait_db_ack(mpt) != MPT_OK) { 980 mpt_prt(mpt, "soft reset failed: ack timeout\n"); 981 return (MPT_FAIL); 982 } 983 984 /* Wait for the IOC to reload and come out of reset state */ 985 if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) { 986 mpt_prt(mpt, "soft reset failed: device did not restart\n"); 987 return (MPT_FAIL); 988 } 989 990 return MPT_OK; 991 } 992 993 static int 994 mpt_enable_diag_mode(struct mpt_softc *mpt) 995 { 996 int try; 997 998 try = 20; 999 while (--try) { 1000 1001 if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0) 1002 break; 1003 1004 /* Enable diagnostic registers */ 1005 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF); 1006 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE); 1007 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE); 1008 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE); 1009 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE); 1010 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE); 1011 1012 DELAY(100000); 1013 } 1014 if (try == 0) 1015 return (EIO); 1016 return (0); 1017 } 1018 1019 static void 1020 mpt_disable_diag_mode(struct mpt_softc *mpt) 1021 { 1022 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF); 1023 } 1024 1025 /* This is a magic diagnostic reset that resets all the ARM 1026 * processors in the chip. 1027 */ 1028 static void 1029 mpt_hard_reset(struct mpt_softc *mpt) 1030 { 1031 int error; 1032 int wait; 1033 uint32_t diagreg; 1034 1035 mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n"); 1036 1037 error = mpt_enable_diag_mode(mpt); 1038 if (error) { 1039 mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n"); 1040 mpt_prt(mpt, "Trying to reset anyway.\n"); 1041 } 1042 1043 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1044 1045 /* 1046 * This appears to be a workaround required for some 1047 * firmware or hardware revs. 1048 */ 1049 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM); 1050 DELAY(1000); 1051 1052 /* Diag. port is now active so we can now hit the reset bit */ 1053 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER); 1054 1055 /* 1056 * Ensure that the reset has finished. We delay 1ms 1057 * prior to reading the register to make sure the chip 1058 * has sufficiently completed its reset to handle register 1059 * accesses. 1060 */ 1061 wait = 5000; 1062 do { 1063 DELAY(1000); 1064 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1065 } while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0); 1066 1067 if (wait == 0) { 1068 mpt_prt(mpt, "WARNING - Failed hard reset! " 1069 "Trying to initialize anyway.\n"); 1070 } 1071 1072 /* 1073 * If we have firmware to download, it must be loaded before 1074 * the controller will become operational. Do so now. 1075 */ 1076 if (mpt->fw_image != NULL) { 1077 1078 error = mpt_download_fw(mpt); 1079 1080 if (error) { 1081 mpt_prt(mpt, "WARNING - Firmware Download Failed!\n"); 1082 mpt_prt(mpt, "Trying to initialize anyway.\n"); 1083 } 1084 } 1085 1086 /* 1087 * Reseting the controller should have disabled write 1088 * access to the diagnostic registers, but disable 1089 * manually to be sure. 1090 */ 1091 mpt_disable_diag_mode(mpt); 1092 } 1093 1094 static void 1095 mpt_core_ioc_reset(struct mpt_softc *mpt, int type) 1096 { 1097 /* 1098 * Complete all pending requests with a status 1099 * appropriate for an IOC reset. 1100 */ 1101 mpt_complete_request_chain(mpt, &mpt->request_pending_list, 1102 MPI_IOCSTATUS_INVALID_STATE); 1103 } 1104 1105 1106 /* 1107 * Reset the IOC when needed. Try software command first then if needed 1108 * poke at the magic diagnostic reset. Note that a hard reset resets 1109 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as 1110 * fouls up the PCI configuration registers. 1111 */ 1112 int 1113 mpt_reset(struct mpt_softc *mpt, int reinit) 1114 { 1115 struct mpt_personality *pers; 1116 int ret; 1117 int retry_cnt = 0; 1118 1119 /* 1120 * Try a soft reset. If that fails, get out the big hammer. 1121 */ 1122 again: 1123 if ((ret = mpt_soft_reset(mpt)) != MPT_OK) { 1124 int cnt; 1125 for (cnt = 0; cnt < 5; cnt++) { 1126 /* Failed; do a hard reset */ 1127 mpt_hard_reset(mpt); 1128 1129 /* 1130 * Wait for the IOC to reload 1131 * and come out of reset state 1132 */ 1133 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1134 if (ret == MPT_OK) { 1135 break; 1136 } 1137 /* 1138 * Okay- try to check again... 1139 */ 1140 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1141 if (ret == MPT_OK) { 1142 break; 1143 } 1144 mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n", 1145 retry_cnt, cnt); 1146 } 1147 } 1148 1149 if (retry_cnt == 0) { 1150 /* 1151 * Invoke reset handlers. We bump the reset count so 1152 * that mpt_wait_req() understands that regardless of 1153 * the specified wait condition, it should stop its wait. 1154 */ 1155 mpt->reset_cnt++; 1156 MPT_PERS_FOREACH(mpt, pers) 1157 pers->reset(mpt, ret); 1158 } 1159 1160 if (reinit) { 1161 ret = mpt_enable_ioc(mpt, 1); 1162 if (ret == MPT_OK) { 1163 mpt_enable_ints(mpt); 1164 } 1165 } 1166 if (ret != MPT_OK && retry_cnt++ < 2) { 1167 goto again; 1168 } 1169 return ret; 1170 } 1171 1172 /* Return a command buffer to the free queue */ 1173 void 1174 mpt_free_request(struct mpt_softc *mpt, request_t *req) 1175 { 1176 request_t *nxt; 1177 struct mpt_evtf_record *record; 1178 uint32_t offset, reply_baddr; 1179 1180 if (req == NULL || req != &mpt->request_pool[req->index]) { 1181 panic("mpt_free_request bad req ptr\n"); 1182 return; 1183 } 1184 if ((nxt = req->chain) != NULL) { 1185 req->chain = NULL; 1186 mpt_free_request(mpt, nxt); /* NB: recursion */ 1187 } 1188 KASSERT(req->state != REQ_STATE_FREE, ("freeing free request")); 1189 KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request")); 1190 MPT_LOCK_ASSERT(mpt); 1191 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 1192 ("mpt_free_request: req %p:%u func %x already on freelist", 1193 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1194 KASSERT(mpt_req_on_pending_list(mpt, req) == 0, 1195 ("mpt_free_request: req %p:%u func %x on pending list", 1196 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1197 #ifdef INVARIANTS 1198 mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__); 1199 #endif 1200 1201 req->ccb = NULL; 1202 if (LIST_EMPTY(&mpt->ack_frames)) { 1203 /* 1204 * Insert free ones at the tail 1205 */ 1206 req->serno = 0; 1207 req->state = REQ_STATE_FREE; 1208 #ifdef INVARIANTS 1209 memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER)); 1210 #endif 1211 TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links); 1212 if (mpt->getreqwaiter != 0) { 1213 mpt->getreqwaiter = 0; 1214 wakeup(&mpt->request_free_list); 1215 } 1216 return; 1217 } 1218 1219 /* 1220 * Process an ack frame deferred due to resource shortage. 1221 */ 1222 record = LIST_FIRST(&mpt->ack_frames); 1223 LIST_REMOVE(record, links); 1224 req->state = REQ_STATE_ALLOCATED; 1225 mpt_assign_serno(mpt, req); 1226 mpt_send_event_ack(mpt, req, &record->reply, record->context); 1227 offset = (uint32_t)((uint8_t *)record - mpt->reply); 1228 reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF); 1229 bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset, 1230 MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD); 1231 mpt_free_reply(mpt, reply_baddr); 1232 } 1233 1234 /* Get a command buffer from the free queue */ 1235 request_t * 1236 mpt_get_request(struct mpt_softc *mpt, int sleep_ok) 1237 { 1238 request_t *req; 1239 1240 retry: 1241 MPT_LOCK_ASSERT(mpt); 1242 req = TAILQ_FIRST(&mpt->request_free_list); 1243 if (req != NULL) { 1244 KASSERT(req == &mpt->request_pool[req->index], 1245 ("mpt_get_request: corrupted request free list\n")); 1246 KASSERT(req->state == REQ_STATE_FREE, 1247 ("req %p:%u not free on free list %x index %d function %x", 1248 req, req->serno, req->state, req->index, 1249 ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1250 TAILQ_REMOVE(&mpt->request_free_list, req, links); 1251 req->state = REQ_STATE_ALLOCATED; 1252 req->chain = NULL; 1253 mpt_assign_serno(mpt, req); 1254 } else if (sleep_ok != 0) { 1255 mpt->getreqwaiter = 1; 1256 mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0); 1257 goto retry; 1258 } 1259 return (req); 1260 } 1261 1262 /* Pass the command to the IOC */ 1263 void 1264 mpt_send_cmd(struct mpt_softc *mpt, request_t *req) 1265 { 1266 if (mpt->verbose > MPT_PRT_DEBUG2) { 1267 mpt_dump_request(mpt, req); 1268 } 1269 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 1270 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1271 req->state |= REQ_STATE_QUEUED; 1272 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 1273 ("req %p:%u func %x on freelist list in mpt_send_cmd", 1274 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1275 KASSERT(mpt_req_on_pending_list(mpt, req) == 0, 1276 ("req %p:%u func %x already on pending list in mpt_send_cmd", 1277 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1278 TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links); 1279 mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf); 1280 } 1281 1282 /* 1283 * Wait for a request to complete. 1284 * 1285 * Inputs: 1286 * mpt softc of controller executing request 1287 * req request to wait for 1288 * sleep_ok nonzero implies may sleep in this context 1289 * time_ms timeout in ms. 0 implies no timeout. 1290 * 1291 * Return Values: 1292 * 0 Request completed 1293 * non-0 Timeout fired before request completion. 1294 */ 1295 int 1296 mpt_wait_req(struct mpt_softc *mpt, request_t *req, 1297 mpt_req_state_t state, mpt_req_state_t mask, 1298 int sleep_ok, int time_ms) 1299 { 1300 int error; 1301 int timeout; 1302 u_int saved_cnt; 1303 1304 /* 1305 * timeout is in ms. 0 indicates infinite wait. 1306 * Convert to ticks or 500us units depending on 1307 * our sleep mode. 1308 */ 1309 if (sleep_ok != 0) { 1310 timeout = (time_ms * hz) / 1000; 1311 } else { 1312 timeout = time_ms * 2; 1313 } 1314 req->state |= REQ_STATE_NEED_WAKEUP; 1315 mask &= ~REQ_STATE_NEED_WAKEUP; 1316 saved_cnt = mpt->reset_cnt; 1317 while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) { 1318 if (sleep_ok != 0) { 1319 error = mpt_sleep(mpt, req, PUSER, "mptreq", timeout); 1320 if (error == EWOULDBLOCK) { 1321 timeout = 0; 1322 break; 1323 } 1324 } else { 1325 if (time_ms != 0 && --timeout == 0) { 1326 break; 1327 } 1328 DELAY(500); 1329 mpt_intr(mpt); 1330 } 1331 } 1332 req->state &= ~REQ_STATE_NEED_WAKEUP; 1333 if (mpt->reset_cnt != saved_cnt) { 1334 return (EIO); 1335 } 1336 if (time_ms && timeout <= 0) { 1337 MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf; 1338 req->state |= REQ_STATE_TIMEDOUT; 1339 mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function); 1340 return (ETIMEDOUT); 1341 } 1342 return (0); 1343 } 1344 1345 /* 1346 * Send a command to the IOC via the handshake register. 1347 * 1348 * Only done at initialization time and for certain unusual 1349 * commands such as device/bus reset as specified by LSI. 1350 */ 1351 int 1352 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd) 1353 { 1354 int i; 1355 uint32_t data, *data32; 1356 1357 /* Check condition of the IOC */ 1358 data = mpt_rd_db(mpt); 1359 if ((MPT_STATE(data) != MPT_DB_STATE_READY 1360 && MPT_STATE(data) != MPT_DB_STATE_RUNNING 1361 && MPT_STATE(data) != MPT_DB_STATE_FAULT) 1362 || MPT_DB_IS_IN_USE(data)) { 1363 mpt_prt(mpt, "handshake aborted - invalid doorbell state\n"); 1364 mpt_print_db(data); 1365 return (EBUSY); 1366 } 1367 1368 /* We move things in 32 bit chunks */ 1369 len = (len + 3) >> 2; 1370 data32 = cmd; 1371 1372 /* Clear any left over pending doorbell interrupts */ 1373 if (MPT_DB_INTR(mpt_rd_intr(mpt))) 1374 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1375 1376 /* 1377 * Tell the handshake reg. we are going to send a command 1378 * and how long it is going to be. 1379 */ 1380 data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) | 1381 (len << MPI_DOORBELL_ADD_DWORDS_SHIFT); 1382 mpt_write(mpt, MPT_OFFSET_DOORBELL, data); 1383 1384 /* Wait for the chip to notice */ 1385 if (mpt_wait_db_int(mpt) != MPT_OK) { 1386 mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n"); 1387 return (ETIMEDOUT); 1388 } 1389 1390 /* Clear the interrupt */ 1391 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1392 1393 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1394 mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n"); 1395 return (ETIMEDOUT); 1396 } 1397 1398 /* Send the command */ 1399 for (i = 0; i < len; i++) { 1400 mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++)); 1401 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1402 mpt_prt(mpt, 1403 "mpt_send_handshake_cmd: timeout @ index %d\n", i); 1404 return (ETIMEDOUT); 1405 } 1406 } 1407 return MPT_OK; 1408 } 1409 1410 /* Get the response from the handshake register */ 1411 int 1412 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply) 1413 { 1414 int left, reply_left; 1415 u_int16_t *data16; 1416 uint32_t data; 1417 MSG_DEFAULT_REPLY *hdr; 1418 1419 /* We move things out in 16 bit chunks */ 1420 reply_len >>= 1; 1421 data16 = (u_int16_t *)reply; 1422 1423 hdr = (MSG_DEFAULT_REPLY *)reply; 1424 1425 /* Get first word */ 1426 if (mpt_wait_db_int(mpt) != MPT_OK) { 1427 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n"); 1428 return ETIMEDOUT; 1429 } 1430 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1431 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1432 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1433 1434 /* Get Second Word */ 1435 if (mpt_wait_db_int(mpt) != MPT_OK) { 1436 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n"); 1437 return ETIMEDOUT; 1438 } 1439 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1440 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1441 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1442 1443 /* 1444 * With the second word, we can now look at the length. 1445 * Warn about a reply that's too short (except for IOC FACTS REPLY) 1446 */ 1447 if ((reply_len >> 1) != hdr->MsgLength && 1448 (hdr->Function != MPI_FUNCTION_IOC_FACTS)){ 1449 #if __FreeBSD_version >= 500000 1450 mpt_prt(mpt, "reply length does not match message length: " 1451 "got %x; expected %zx for function %x\n", 1452 hdr->MsgLength << 2, reply_len << 1, hdr->Function); 1453 #else 1454 mpt_prt(mpt, "reply length does not match message length: " 1455 "got %x; expected %x for function %x\n", 1456 hdr->MsgLength << 2, reply_len << 1, hdr->Function); 1457 #endif 1458 } 1459 1460 /* Get rest of the reply; but don't overflow the provided buffer */ 1461 left = (hdr->MsgLength << 1) - 2; 1462 reply_left = reply_len - 2; 1463 while (left--) { 1464 u_int16_t datum; 1465 1466 if (mpt_wait_db_int(mpt) != MPT_OK) { 1467 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n"); 1468 return ETIMEDOUT; 1469 } 1470 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1471 datum = le16toh(data & MPT_DB_DATA_MASK); 1472 1473 if (reply_left-- > 0) 1474 *data16++ = datum; 1475 1476 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1477 } 1478 1479 /* One more wait & clear at the end */ 1480 if (mpt_wait_db_int(mpt) != MPT_OK) { 1481 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n"); 1482 return ETIMEDOUT; 1483 } 1484 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1485 1486 if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1487 if (mpt->verbose >= MPT_PRT_TRACE) 1488 mpt_print_reply(hdr); 1489 return (MPT_FAIL | hdr->IOCStatus); 1490 } 1491 1492 return (0); 1493 } 1494 1495 static int 1496 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp) 1497 { 1498 MSG_IOC_FACTS f_req; 1499 int error; 1500 1501 memset(&f_req, 0, sizeof f_req); 1502 f_req.Function = MPI_FUNCTION_IOC_FACTS; 1503 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1504 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1505 if (error) { 1506 return(error); 1507 } 1508 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1509 return (error); 1510 } 1511 1512 static int 1513 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp) 1514 { 1515 MSG_PORT_FACTS f_req; 1516 int error; 1517 1518 memset(&f_req, 0, sizeof f_req); 1519 f_req.Function = MPI_FUNCTION_PORT_FACTS; 1520 f_req.PortNumber = port; 1521 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1522 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1523 if (error) { 1524 return(error); 1525 } 1526 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1527 return (error); 1528 } 1529 1530 /* 1531 * Send the initialization request. This is where we specify how many 1532 * SCSI busses and how many devices per bus we wish to emulate. 1533 * This is also the command that specifies the max size of the reply 1534 * frames from the IOC that we will be allocating. 1535 */ 1536 static int 1537 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who) 1538 { 1539 int error = 0; 1540 MSG_IOC_INIT init; 1541 MSG_IOC_INIT_REPLY reply; 1542 1543 memset(&init, 0, sizeof init); 1544 init.WhoInit = who; 1545 init.Function = MPI_FUNCTION_IOC_INIT; 1546 init.MaxDevices = 0; /* at least 256 devices per bus */ 1547 init.MaxBuses = 16; /* at least 16 busses */ 1548 1549 init.MsgVersion = htole16(MPI_VERSION); 1550 init.HeaderVersion = htole16(MPI_HEADER_VERSION); 1551 init.ReplyFrameSize = htole16(MPT_REPLY_SIZE); 1552 init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1553 1554 if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) { 1555 return(error); 1556 } 1557 1558 error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply); 1559 return (error); 1560 } 1561 1562 1563 /* 1564 * Utiltity routine to read configuration headers and pages 1565 */ 1566 int 1567 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params, 1568 bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms) 1569 { 1570 MSG_CONFIG *cfgp; 1571 SGE_SIMPLE32 *se; 1572 1573 cfgp = req->req_vbuf; 1574 memset(cfgp, 0, sizeof *cfgp); 1575 cfgp->Action = params->Action; 1576 cfgp->Function = MPI_FUNCTION_CONFIG; 1577 cfgp->Header.PageVersion = params->PageVersion; 1578 cfgp->Header.PageNumber = params->PageNumber; 1579 cfgp->PageAddress = htole32(params->PageAddress); 1580 if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) == 1581 MPI_CONFIG_PAGETYPE_EXTENDED) { 1582 cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1583 cfgp->Header.PageLength = 0; 1584 cfgp->ExtPageLength = htole16(params->ExtPageLength); 1585 cfgp->ExtPageType = params->ExtPageType; 1586 } else { 1587 cfgp->Header.PageType = params->PageType; 1588 cfgp->Header.PageLength = params->PageLength; 1589 } 1590 se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE; 1591 se->Address = htole32(addr); 1592 MPI_pSGE_SET_LENGTH(se, len); 1593 MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT | 1594 MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | 1595 MPI_SGE_FLAGS_END_OF_LIST | 1596 ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT 1597 || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM) 1598 ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST))); 1599 se->FlagsLength = htole32(se->FlagsLength); 1600 cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 1601 1602 mpt_check_doorbell(mpt); 1603 mpt_send_cmd(mpt, req); 1604 return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 1605 sleep_ok, timeout_ms)); 1606 } 1607 1608 int 1609 mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber, 1610 uint32_t PageAddress, int ExtPageType, 1611 CONFIG_EXTENDED_PAGE_HEADER *rslt, 1612 int sleep_ok, int timeout_ms) 1613 { 1614 request_t *req; 1615 cfgparms_t params; 1616 MSG_CONFIG_REPLY *cfgp; 1617 int error; 1618 1619 req = mpt_get_request(mpt, sleep_ok); 1620 if (req == NULL) { 1621 mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n"); 1622 return (ENOMEM); 1623 } 1624 1625 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER; 1626 params.PageVersion = PageVersion; 1627 params.PageLength = 0; 1628 params.PageNumber = PageNumber; 1629 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1630 params.PageAddress = PageAddress; 1631 params.ExtPageType = ExtPageType; 1632 params.ExtPageLength = 0; 1633 error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0, 1634 sleep_ok, timeout_ms); 1635 if (error != 0) { 1636 /* 1637 * Leave the request. Without resetting the chip, it's 1638 * still owned by it and we'll just get into trouble 1639 * freeing it now. Mark it as abandoned so that if it 1640 * shows up later it can be freed. 1641 */ 1642 mpt_prt(mpt, "read_extcfg_header timed out\n"); 1643 return (ETIMEDOUT); 1644 } 1645 1646 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { 1647 case MPI_IOCSTATUS_SUCCESS: 1648 cfgp = req->req_vbuf; 1649 rslt->PageVersion = cfgp->Header.PageVersion; 1650 rslt->PageNumber = cfgp->Header.PageNumber; 1651 rslt->PageType = cfgp->Header.PageType; 1652 rslt->ExtPageLength = le16toh(cfgp->ExtPageLength); 1653 rslt->ExtPageType = cfgp->ExtPageType; 1654 error = 0; 1655 break; 1656 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: 1657 mpt_lprt(mpt, MPT_PRT_DEBUG, 1658 "Invalid Page Type %d Number %d Addr 0x%0x\n", 1659 MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress); 1660 error = EINVAL; 1661 break; 1662 default: 1663 mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n", 1664 req->IOCStatus); 1665 error = EIO; 1666 break; 1667 } 1668 mpt_free_request(mpt, req); 1669 return (error); 1670 } 1671 1672 int 1673 mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1674 CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len, 1675 int sleep_ok, int timeout_ms) 1676 { 1677 request_t *req; 1678 cfgparms_t params; 1679 int error; 1680 1681 req = mpt_get_request(mpt, sleep_ok); 1682 if (req == NULL) { 1683 mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n"); 1684 return (-1); 1685 } 1686 1687 params.Action = Action; 1688 params.PageVersion = hdr->PageVersion; 1689 params.PageLength = 0; 1690 params.PageNumber = hdr->PageNumber; 1691 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1692 params.PageAddress = PageAddress; 1693 params.ExtPageType = hdr->ExtPageType; 1694 params.ExtPageLength = hdr->ExtPageLength; 1695 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1696 req->req_pbuf + MPT_RQSL(mpt), 1697 len, sleep_ok, timeout_ms); 1698 if (error != 0) { 1699 mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action); 1700 return (-1); 1701 } 1702 1703 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1704 mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n", 1705 req->IOCStatus); 1706 mpt_free_request(mpt, req); 1707 return (-1); 1708 } 1709 memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); 1710 mpt_free_request(mpt, req); 1711 return (0); 1712 } 1713 1714 int 1715 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber, 1716 uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt, 1717 int sleep_ok, int timeout_ms) 1718 { 1719 request_t *req; 1720 cfgparms_t params; 1721 MSG_CONFIG *cfgp; 1722 int error; 1723 1724 req = mpt_get_request(mpt, sleep_ok); 1725 if (req == NULL) { 1726 mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n"); 1727 return (ENOMEM); 1728 } 1729 1730 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER; 1731 params.PageVersion = 0; 1732 params.PageLength = 0; 1733 params.PageNumber = PageNumber; 1734 params.PageType = PageType; 1735 params.PageAddress = PageAddress; 1736 error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0, 1737 sleep_ok, timeout_ms); 1738 if (error != 0) { 1739 /* 1740 * Leave the request. Without resetting the chip, it's 1741 * still owned by it and we'll just get into trouble 1742 * freeing it now. Mark it as abandoned so that if it 1743 * shows up later it can be freed. 1744 */ 1745 mpt_prt(mpt, "read_cfg_header timed out\n"); 1746 return (ETIMEDOUT); 1747 } 1748 1749 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { 1750 case MPI_IOCSTATUS_SUCCESS: 1751 cfgp = req->req_vbuf; 1752 bcopy(&cfgp->Header, rslt, sizeof(*rslt)); 1753 error = 0; 1754 break; 1755 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: 1756 mpt_lprt(mpt, MPT_PRT_DEBUG, 1757 "Invalid Page Type %d Number %d Addr 0x%0x\n", 1758 PageType, PageNumber, PageAddress); 1759 error = EINVAL; 1760 break; 1761 default: 1762 mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n", 1763 req->IOCStatus); 1764 error = EIO; 1765 break; 1766 } 1767 mpt_free_request(mpt, req); 1768 return (error); 1769 } 1770 1771 int 1772 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1773 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1774 int timeout_ms) 1775 { 1776 request_t *req; 1777 cfgparms_t params; 1778 int error; 1779 1780 req = mpt_get_request(mpt, sleep_ok); 1781 if (req == NULL) { 1782 mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n"); 1783 return (-1); 1784 } 1785 1786 params.Action = Action; 1787 params.PageVersion = hdr->PageVersion; 1788 params.PageLength = hdr->PageLength; 1789 params.PageNumber = hdr->PageNumber; 1790 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK; 1791 params.PageAddress = PageAddress; 1792 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1793 req->req_pbuf + MPT_RQSL(mpt), 1794 len, sleep_ok, timeout_ms); 1795 if (error != 0) { 1796 mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action); 1797 return (-1); 1798 } 1799 1800 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1801 mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n", 1802 req->IOCStatus); 1803 mpt_free_request(mpt, req); 1804 return (-1); 1805 } 1806 memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); 1807 mpt_free_request(mpt, req); 1808 return (0); 1809 } 1810 1811 int 1812 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1813 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1814 int timeout_ms) 1815 { 1816 request_t *req; 1817 cfgparms_t params; 1818 u_int hdr_attr; 1819 int error; 1820 1821 hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK; 1822 if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE && 1823 hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) { 1824 mpt_prt(mpt, "page type 0x%x not changeable\n", 1825 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK); 1826 return (-1); 1827 } 1828 1829 #if 0 1830 /* 1831 * We shouldn't mask off other bits here. 1832 */ 1833 hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK; 1834 #endif 1835 1836 req = mpt_get_request(mpt, sleep_ok); 1837 if (req == NULL) 1838 return (-1); 1839 1840 memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len); 1841 1842 /* 1843 * There isn't any point in restoring stripped out attributes 1844 * if you then mask them going down to issue the request. 1845 */ 1846 1847 params.Action = Action; 1848 params.PageVersion = hdr->PageVersion; 1849 params.PageLength = hdr->PageLength; 1850 params.PageNumber = hdr->PageNumber; 1851 params.PageAddress = PageAddress; 1852 #if 0 1853 /* Restore stripped out attributes */ 1854 hdr->PageType |= hdr_attr; 1855 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK; 1856 #else 1857 params.PageType = hdr->PageType; 1858 #endif 1859 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1860 req->req_pbuf + MPT_RQSL(mpt), 1861 len, sleep_ok, timeout_ms); 1862 if (error != 0) { 1863 mpt_prt(mpt, "mpt_write_cfg_page timed out\n"); 1864 return (-1); 1865 } 1866 1867 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1868 mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n", 1869 req->IOCStatus); 1870 mpt_free_request(mpt, req); 1871 return (-1); 1872 } 1873 mpt_free_request(mpt, req); 1874 return (0); 1875 } 1876 1877 /* 1878 * Read IOC configuration information 1879 */ 1880 static int 1881 mpt_read_config_info_ioc(struct mpt_softc *mpt) 1882 { 1883 CONFIG_PAGE_HEADER hdr; 1884 struct mpt_raid_volume *mpt_raid; 1885 int rv; 1886 int i; 1887 size_t len; 1888 1889 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 1890 2, 0, &hdr, FALSE, 5000); 1891 /* 1892 * If it's an invalid page, so what? Not a supported function.... 1893 */ 1894 if (rv == EINVAL) { 1895 return (0); 1896 } 1897 if (rv) { 1898 return (rv); 1899 } 1900 1901 mpt_lprt(mpt, MPT_PRT_DEBUG, 1902 "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n", 1903 hdr.PageVersion, hdr.PageLength << 2, 1904 hdr.PageNumber, hdr.PageType); 1905 1906 len = hdr.PageLength * sizeof(uint32_t); 1907 mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1908 if (mpt->ioc_page2 == NULL) { 1909 mpt_prt(mpt, "unable to allocate memory for IOC page 2\n"); 1910 mpt_raid_free_mem(mpt); 1911 return (ENOMEM); 1912 } 1913 memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr)); 1914 rv = mpt_read_cur_cfg_page(mpt, 0, 1915 &mpt->ioc_page2->Header, len, FALSE, 5000); 1916 if (rv) { 1917 mpt_prt(mpt, "failed to read IOC Page 2\n"); 1918 mpt_raid_free_mem(mpt); 1919 return (EIO); 1920 } 1921 mpt2host_config_page_ioc2(mpt->ioc_page2); 1922 1923 if (mpt->ioc_page2->CapabilitiesFlags != 0) { 1924 uint32_t mask; 1925 1926 mpt_prt(mpt, "Capabilities: ("); 1927 for (mask = 1; mask != 0; mask <<= 1) { 1928 if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) { 1929 continue; 1930 } 1931 switch (mask) { 1932 case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT: 1933 mpt_prtc(mpt, " RAID-0"); 1934 break; 1935 case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT: 1936 mpt_prtc(mpt, " RAID-1E"); 1937 break; 1938 case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT: 1939 mpt_prtc(mpt, " RAID-1"); 1940 break; 1941 case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT: 1942 mpt_prtc(mpt, " SES"); 1943 break; 1944 case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT: 1945 mpt_prtc(mpt, " SAFTE"); 1946 break; 1947 case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT: 1948 mpt_prtc(mpt, " Multi-Channel-Arrays"); 1949 default: 1950 break; 1951 } 1952 } 1953 mpt_prtc(mpt, " )\n"); 1954 if ((mpt->ioc_page2->CapabilitiesFlags 1955 & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT 1956 | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT 1957 | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) { 1958 mpt_prt(mpt, "%d Active Volume%s(%d Max)\n", 1959 mpt->ioc_page2->NumActiveVolumes, 1960 mpt->ioc_page2->NumActiveVolumes != 1 1961 ? "s " : " ", 1962 mpt->ioc_page2->MaxVolumes); 1963 mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n", 1964 mpt->ioc_page2->NumActivePhysDisks, 1965 mpt->ioc_page2->NumActivePhysDisks != 1 1966 ? "s " : " ", 1967 mpt->ioc_page2->MaxPhysDisks); 1968 } 1969 } 1970 1971 len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume); 1972 mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1973 if (mpt->raid_volumes == NULL) { 1974 mpt_prt(mpt, "Could not allocate RAID volume data\n"); 1975 mpt_raid_free_mem(mpt); 1976 return (ENOMEM); 1977 } 1978 1979 /* 1980 * Copy critical data out of ioc_page2 so that we can 1981 * safely refresh the page without windows of unreliable 1982 * data. 1983 */ 1984 mpt->raid_max_volumes = mpt->ioc_page2->MaxVolumes; 1985 1986 len = sizeof(*mpt->raid_volumes->config_page) + 1987 (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1)); 1988 for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) { 1989 mpt_raid = &mpt->raid_volumes[i]; 1990 mpt_raid->config_page = 1991 malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1992 if (mpt_raid->config_page == NULL) { 1993 mpt_prt(mpt, "Could not allocate RAID page data\n"); 1994 mpt_raid_free_mem(mpt); 1995 return (ENOMEM); 1996 } 1997 } 1998 mpt->raid_page0_len = len; 1999 2000 len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk); 2001 mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2002 if (mpt->raid_disks == NULL) { 2003 mpt_prt(mpt, "Could not allocate RAID disk data\n"); 2004 mpt_raid_free_mem(mpt); 2005 return (ENOMEM); 2006 } 2007 mpt->raid_max_disks = mpt->ioc_page2->MaxPhysDisks; 2008 2009 /* 2010 * Load page 3. 2011 */ 2012 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 2013 3, 0, &hdr, FALSE, 5000); 2014 if (rv) { 2015 mpt_raid_free_mem(mpt); 2016 return (EIO); 2017 } 2018 2019 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n", 2020 hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType); 2021 2022 len = hdr.PageLength * sizeof(uint32_t); 2023 mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2024 if (mpt->ioc_page3 == NULL) { 2025 mpt_prt(mpt, "unable to allocate memory for IOC page 3\n"); 2026 mpt_raid_free_mem(mpt); 2027 return (ENOMEM); 2028 } 2029 memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr)); 2030 rv = mpt_read_cur_cfg_page(mpt, 0, 2031 &mpt->ioc_page3->Header, len, FALSE, 5000); 2032 if (rv) { 2033 mpt_raid_free_mem(mpt); 2034 return (EIO); 2035 } 2036 mpt2host_config_page_ioc3(mpt->ioc_page3); 2037 mpt_raid_wakeup(mpt); 2038 return (0); 2039 } 2040 2041 /* 2042 * Enable IOC port 2043 */ 2044 static int 2045 mpt_send_port_enable(struct mpt_softc *mpt, int port) 2046 { 2047 request_t *req; 2048 MSG_PORT_ENABLE *enable_req; 2049 int error; 2050 2051 req = mpt_get_request(mpt, /*sleep_ok*/FALSE); 2052 if (req == NULL) 2053 return (-1); 2054 2055 enable_req = req->req_vbuf; 2056 memset(enable_req, 0, MPT_RQSL(mpt)); 2057 2058 enable_req->Function = MPI_FUNCTION_PORT_ENABLE; 2059 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 2060 enable_req->PortNumber = port; 2061 2062 mpt_check_doorbell(mpt); 2063 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port); 2064 2065 mpt_send_cmd(mpt, req); 2066 error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 2067 FALSE, (mpt->is_sas || mpt->is_fc)? 30000 : 3000); 2068 if (error != 0) { 2069 mpt_prt(mpt, "port %d enable timed out\n", port); 2070 return (-1); 2071 } 2072 mpt_free_request(mpt, req); 2073 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port); 2074 return (0); 2075 } 2076 2077 /* 2078 * Enable/Disable asynchronous event reporting. 2079 */ 2080 static int 2081 mpt_send_event_request(struct mpt_softc *mpt, int onoff) 2082 { 2083 request_t *req; 2084 MSG_EVENT_NOTIFY *enable_req; 2085 2086 req = mpt_get_request(mpt, FALSE); 2087 if (req == NULL) { 2088 return (ENOMEM); 2089 } 2090 enable_req = req->req_vbuf; 2091 memset(enable_req, 0, sizeof *enable_req); 2092 2093 enable_req->Function = MPI_FUNCTION_EVENT_NOTIFICATION; 2094 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS); 2095 enable_req->Switch = onoff; 2096 2097 mpt_check_doorbell(mpt); 2098 mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n", 2099 onoff ? "en" : "dis"); 2100 /* 2101 * Send the command off, but don't wait for it. 2102 */ 2103 mpt_send_cmd(mpt, req); 2104 return (0); 2105 } 2106 2107 /* 2108 * Un-mask the interrupts on the chip. 2109 */ 2110 void 2111 mpt_enable_ints(struct mpt_softc *mpt) 2112 { 2113 /* Unmask every thing except door bell int */ 2114 mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK); 2115 } 2116 2117 /* 2118 * Mask the interrupts on the chip. 2119 */ 2120 void 2121 mpt_disable_ints(struct mpt_softc *mpt) 2122 { 2123 /* Mask all interrupts */ 2124 mpt_write(mpt, MPT_OFFSET_INTR_MASK, 2125 MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK); 2126 } 2127 2128 static void 2129 mpt_sysctl_attach(struct mpt_softc *mpt) 2130 { 2131 #if __FreeBSD_version >= 500000 2132 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev); 2133 struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev); 2134 2135 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2136 "debug", CTLFLAG_RW, &mpt->verbose, 0, 2137 "Debugging/Verbose level"); 2138 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2139 "role", CTLFLAG_RD, &mpt->role, 0, 2140 "HBA role"); 2141 #ifdef MPT_TEST_MULTIPATH 2142 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2143 "failure_id", CTLFLAG_RW, &mpt->failure_id, -1, 2144 "Next Target to Fail"); 2145 #endif 2146 #endif 2147 } 2148 2149 int 2150 mpt_attach(struct mpt_softc *mpt) 2151 { 2152 struct mpt_personality *pers; 2153 int i; 2154 int error; 2155 2156 mpt_core_attach(mpt); 2157 mpt_core_enable(mpt); 2158 2159 TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links); 2160 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 2161 pers = mpt_personalities[i]; 2162 if (pers == NULL) { 2163 continue; 2164 } 2165 if (pers->probe(mpt) == 0) { 2166 error = pers->attach(mpt); 2167 if (error != 0) { 2168 mpt_detach(mpt); 2169 return (error); 2170 } 2171 mpt->mpt_pers_mask |= (0x1 << pers->id); 2172 pers->use_count++; 2173 } 2174 } 2175 2176 /* 2177 * Now that we've attached everything, do the enable function 2178 * for all of the personalities. This allows the personalities 2179 * to do setups that are appropriate for them prior to enabling 2180 * any ports. 2181 */ 2182 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 2183 pers = mpt_personalities[i]; 2184 if (pers != NULL && MPT_PERS_ATTACHED(pers, mpt) != 0) { 2185 error = pers->enable(mpt); 2186 if (error != 0) { 2187 mpt_prt(mpt, "personality %s attached but would" 2188 " not enable (%d)\n", pers->name, error); 2189 mpt_detach(mpt); 2190 return (error); 2191 } 2192 } 2193 } 2194 return (0); 2195 } 2196 2197 int 2198 mpt_shutdown(struct mpt_softc *mpt) 2199 { 2200 struct mpt_personality *pers; 2201 2202 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2203 pers->shutdown(mpt); 2204 } 2205 return (0); 2206 } 2207 2208 int 2209 mpt_detach(struct mpt_softc *mpt) 2210 { 2211 struct mpt_personality *pers; 2212 2213 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2214 pers->detach(mpt); 2215 mpt->mpt_pers_mask &= ~(0x1 << pers->id); 2216 pers->use_count--; 2217 } 2218 TAILQ_REMOVE(&mpt_tailq, mpt, links); 2219 return (0); 2220 } 2221 2222 int 2223 mpt_core_load(struct mpt_personality *pers) 2224 { 2225 int i; 2226 2227 /* 2228 * Setup core handlers and insert the default handler 2229 * into all "empty slots". 2230 */ 2231 for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) { 2232 mpt_reply_handlers[i] = mpt_default_reply_handler; 2233 } 2234 2235 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] = 2236 mpt_event_reply_handler; 2237 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] = 2238 mpt_config_reply_handler; 2239 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] = 2240 mpt_handshake_reply_handler; 2241 return (0); 2242 } 2243 2244 /* 2245 * Initialize per-instance driver data and perform 2246 * initial controller configuration. 2247 */ 2248 int 2249 mpt_core_attach(struct mpt_softc *mpt) 2250 { 2251 int val, error; 2252 2253 LIST_INIT(&mpt->ack_frames); 2254 /* Put all request buffers on the free list */ 2255 TAILQ_INIT(&mpt->request_pending_list); 2256 TAILQ_INIT(&mpt->request_free_list); 2257 TAILQ_INIT(&mpt->request_timeout_list); 2258 for (val = 0; val < MPT_MAX_LUNS; val++) { 2259 STAILQ_INIT(&mpt->trt[val].atios); 2260 STAILQ_INIT(&mpt->trt[val].inots); 2261 } 2262 STAILQ_INIT(&mpt->trt_wildcard.atios); 2263 STAILQ_INIT(&mpt->trt_wildcard.inots); 2264 #ifdef MPT_TEST_MULTIPATH 2265 mpt->failure_id = -1; 2266 #endif 2267 mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE; 2268 mpt_sysctl_attach(mpt); 2269 mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n", 2270 mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL))); 2271 2272 MPT_LOCK(mpt); 2273 error = mpt_configure_ioc(mpt, 0, 0); 2274 MPT_UNLOCK(mpt); 2275 2276 return (error); 2277 } 2278 2279 int 2280 mpt_core_enable(struct mpt_softc *mpt) 2281 { 2282 /* 2283 * We enter with the IOC enabled, but async events 2284 * not enabled, ports not enabled and interrupts 2285 * not enabled. 2286 */ 2287 MPT_LOCK(mpt); 2288 2289 /* 2290 * Enable asynchronous event reporting- all personalities 2291 * have attached so that they should be able to now field 2292 * async events. 2293 */ 2294 mpt_send_event_request(mpt, 1); 2295 2296 /* 2297 * Catch any pending interrupts 2298 * 2299 * This seems to be crucial- otherwise 2300 * the portenable below times out. 2301 */ 2302 mpt_intr(mpt); 2303 2304 /* 2305 * Enable Interrupts 2306 */ 2307 mpt_enable_ints(mpt); 2308 2309 /* 2310 * Catch any pending interrupts 2311 * 2312 * This seems to be crucial- otherwise 2313 * the portenable below times out. 2314 */ 2315 mpt_intr(mpt); 2316 2317 /* 2318 * Enable the port. 2319 */ 2320 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2321 mpt_prt(mpt, "failed to enable port 0\n"); 2322 MPT_UNLOCK(mpt); 2323 return (ENXIO); 2324 } 2325 MPT_UNLOCK(mpt); 2326 return (0); 2327 } 2328 2329 void 2330 mpt_core_shutdown(struct mpt_softc *mpt) 2331 { 2332 mpt_disable_ints(mpt); 2333 } 2334 2335 void 2336 mpt_core_detach(struct mpt_softc *mpt) 2337 { 2338 int val; 2339 2340 /* 2341 * XXX: FREE MEMORY 2342 */ 2343 mpt_disable_ints(mpt); 2344 2345 /* Make sure no request has pending timeouts. */ 2346 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { 2347 request_t *req = &mpt->request_pool[val]; 2348 mpt_callout_drain(mpt, &req->callout); 2349 } 2350 2351 mpt_dma_buf_free(mpt); 2352 } 2353 2354 int 2355 mpt_core_unload(struct mpt_personality *pers) 2356 { 2357 /* Unload is always successful. */ 2358 return (0); 2359 } 2360 2361 #define FW_UPLOAD_REQ_SIZE \ 2362 (sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION) \ 2363 + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32)) 2364 2365 static int 2366 mpt_upload_fw(struct mpt_softc *mpt) 2367 { 2368 uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE]; 2369 MSG_FW_UPLOAD_REPLY fw_reply; 2370 MSG_FW_UPLOAD *fw_req; 2371 FW_UPLOAD_TCSGE *tsge; 2372 SGE_SIMPLE32 *sge; 2373 uint32_t flags; 2374 int error; 2375 2376 memset(&fw_req_buf, 0, sizeof(fw_req_buf)); 2377 fw_req = (MSG_FW_UPLOAD *)fw_req_buf; 2378 fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM; 2379 fw_req->Function = MPI_FUNCTION_FW_UPLOAD; 2380 fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 2381 tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL; 2382 tsge->DetailsLength = 12; 2383 tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT; 2384 tsge->ImageSize = htole32(mpt->fw_image_size); 2385 sge = (SGE_SIMPLE32 *)(tsge + 1); 2386 flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER 2387 | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT 2388 | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST); 2389 flags <<= MPI_SGE_FLAGS_SHIFT; 2390 sge->FlagsLength = htole32(flags | mpt->fw_image_size); 2391 sge->Address = htole32(mpt->fw_phys); 2392 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD); 2393 error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf); 2394 if (error) 2395 return(error); 2396 error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply); 2397 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD); 2398 return (error); 2399 } 2400 2401 static void 2402 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr, 2403 uint32_t *data, bus_size_t len) 2404 { 2405 uint32_t *data_end; 2406 2407 data_end = data + (roundup2(len, sizeof(uint32_t)) / 4); 2408 if (mpt->is_sas) { 2409 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2410 } 2411 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr); 2412 while (data != data_end) { 2413 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data); 2414 data++; 2415 } 2416 if (mpt->is_sas) { 2417 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2418 } 2419 } 2420 2421 static int 2422 mpt_download_fw(struct mpt_softc *mpt) 2423 { 2424 MpiFwHeader_t *fw_hdr; 2425 int error; 2426 uint32_t ext_offset; 2427 uint32_t data; 2428 2429 mpt_prt(mpt, "Downloading Firmware - Image Size %d\n", 2430 mpt->fw_image_size); 2431 2432 error = mpt_enable_diag_mode(mpt); 2433 if (error != 0) { 2434 mpt_prt(mpt, "Could not enter diagnostic mode!\n"); 2435 return (EIO); 2436 } 2437 2438 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, 2439 MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM); 2440 2441 fw_hdr = (MpiFwHeader_t *)mpt->fw_image; 2442 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE); 2443 mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr, 2444 fw_hdr->ImageSize); 2445 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE); 2446 2447 ext_offset = fw_hdr->NextImageHeaderOffset; 2448 while (ext_offset != 0) { 2449 MpiExtImageHeader_t *ext; 2450 2451 ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset); 2452 ext_offset = ext->NextImageHeaderOffset; 2453 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, 2454 BUS_DMASYNC_PREWRITE); 2455 mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext, 2456 ext->ImageSize); 2457 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, 2458 BUS_DMASYNC_POSTWRITE); 2459 } 2460 2461 if (mpt->is_sas) { 2462 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2463 } 2464 /* Setup the address to jump to on reset. */ 2465 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr); 2466 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue); 2467 2468 /* 2469 * The controller sets the "flash bad" status after attempting 2470 * to auto-boot from flash. Clear the status so that the controller 2471 * will continue the boot process with our newly installed firmware. 2472 */ 2473 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2474 data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL; 2475 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2476 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data); 2477 2478 if (mpt->is_sas) { 2479 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2480 } 2481 2482 /* 2483 * Re-enable the processor and clear the boot halt flag. 2484 */ 2485 data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 2486 data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM); 2487 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data); 2488 2489 mpt_disable_diag_mode(mpt); 2490 return (0); 2491 } 2492 2493 static int 2494 mpt_dma_buf_alloc(struct mpt_softc *mpt) 2495 { 2496 struct mpt_map_info mi; 2497 uint8_t *vptr; 2498 uint32_t pptr, end; 2499 int i, error; 2500 2501 /* Create a child tag for data buffers */ 2502 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 2503 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 2504 NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE, 2505 mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0, 2506 &mpt->buffer_dmat) != 0) { 2507 mpt_prt(mpt, "cannot create a dma tag for data buffers\n"); 2508 return (1); 2509 } 2510 2511 /* Create a child tag for request buffers */ 2512 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0, 2513 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 2514 NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0, 2515 &mpt->request_dmat) != 0) { 2516 mpt_prt(mpt, "cannot create a dma tag for requests\n"); 2517 return (1); 2518 } 2519 2520 /* Allocate some DMA accessible memory for requests */ 2521 if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request, 2522 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) { 2523 mpt_prt(mpt, "cannot allocate %d bytes of request memory\n", 2524 MPT_REQ_MEM_SIZE(mpt)); 2525 return (1); 2526 } 2527 2528 mi.mpt = mpt; 2529 mi.error = 0; 2530 2531 /* Load and lock it into "bus space" */ 2532 bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request, 2533 MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0); 2534 2535 if (mi.error) { 2536 mpt_prt(mpt, "error %d loading dma map for DMA request queue\n", 2537 mi.error); 2538 return (1); 2539 } 2540 mpt->request_phys = mi.phys; 2541 2542 /* 2543 * Now create per-request dma maps 2544 */ 2545 i = 0; 2546 pptr = mpt->request_phys; 2547 vptr = mpt->request; 2548 end = pptr + MPT_REQ_MEM_SIZE(mpt); 2549 while(pptr < end) { 2550 request_t *req = &mpt->request_pool[i]; 2551 req->index = i++; 2552 2553 /* Store location of Request Data */ 2554 req->req_pbuf = pptr; 2555 req->req_vbuf = vptr; 2556 2557 pptr += MPT_REQUEST_AREA; 2558 vptr += MPT_REQUEST_AREA; 2559 2560 req->sense_pbuf = (pptr - MPT_SENSE_SIZE); 2561 req->sense_vbuf = (vptr - MPT_SENSE_SIZE); 2562 2563 error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap); 2564 if (error) { 2565 mpt_prt(mpt, "error %d creating per-cmd DMA maps\n", 2566 error); 2567 return (1); 2568 } 2569 } 2570 2571 return (0); 2572 } 2573 2574 static void 2575 mpt_dma_buf_free(struct mpt_softc *mpt) 2576 { 2577 int i; 2578 if (mpt->request_dmat == 0) { 2579 mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n"); 2580 return; 2581 } 2582 for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) { 2583 bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap); 2584 } 2585 bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap); 2586 bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap); 2587 bus_dma_tag_destroy(mpt->request_dmat); 2588 mpt->request_dmat = 0; 2589 bus_dma_tag_destroy(mpt->buffer_dmat); 2590 } 2591 2592 /* 2593 * Allocate/Initialize data structures for the controller. Called 2594 * once at instance startup. 2595 */ 2596 static int 2597 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset) 2598 { 2599 PTR_MSG_PORT_FACTS_REPLY pfp; 2600 int error, port, val; 2601 size_t len; 2602 2603 if (tn == MPT_MAX_TRYS) { 2604 return (-1); 2605 } 2606 2607 /* 2608 * No need to reset if the IOC is already in the READY state. 2609 * 2610 * Force reset if initialization failed previously. 2611 * Note that a hard_reset of the second channel of a '929 2612 * will stop operation of the first channel. Hopefully, if the 2613 * first channel is ok, the second will not require a hard 2614 * reset. 2615 */ 2616 if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) { 2617 if (mpt_reset(mpt, FALSE) != MPT_OK) { 2618 return (mpt_configure_ioc(mpt, tn++, 1)); 2619 } 2620 needreset = 0; 2621 } 2622 2623 if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) { 2624 mpt_prt(mpt, "mpt_get_iocfacts failed\n"); 2625 return (mpt_configure_ioc(mpt, tn++, 1)); 2626 } 2627 mpt2host_iocfacts_reply(&mpt->ioc_facts); 2628 2629 mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n", 2630 mpt->ioc_facts.MsgVersion >> 8, 2631 mpt->ioc_facts.MsgVersion & 0xFF, 2632 mpt->ioc_facts.HeaderVersion >> 8, 2633 mpt->ioc_facts.HeaderVersion & 0xFF); 2634 2635 /* 2636 * Now that we know request frame size, we can calculate 2637 * the actual (reasonable) segment limit for read/write I/O. 2638 * 2639 * This limit is constrained by: 2640 * 2641 * + The size of each area we allocate per command (and how 2642 * many chain segments we can fit into it). 2643 * + The total number of areas we've set up. 2644 * + The actual chain depth the card will allow. 2645 * 2646 * The first area's segment count is limited by the I/O request 2647 * at the head of it. We cannot allocate realistically more 2648 * than MPT_MAX_REQUESTS areas. Therefore, to account for both 2649 * conditions, we'll just start out with MPT_MAX_REQUESTS-2. 2650 * 2651 */ 2652 /* total number of request areas we (can) allocate */ 2653 mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2; 2654 2655 /* converted to the number of chain areas possible */ 2656 mpt->max_seg_cnt *= MPT_NRFM(mpt); 2657 2658 /* limited by the number of chain areas the card will support */ 2659 if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) { 2660 mpt_lprt(mpt, MPT_PRT_INFO, 2661 "chain depth limited to %u (from %u)\n", 2662 mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt); 2663 mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth; 2664 } 2665 2666 /* converted to the number of simple sges in chain segments. */ 2667 mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1); 2668 2669 /* 2670 * Use this as the basis for reporting the maximum I/O size to CAM. 2671 */ 2672 mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1); 2673 2674 error = mpt_dma_buf_alloc(mpt); 2675 if (error != 0) { 2676 mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n"); 2677 return (EIO); 2678 } 2679 2680 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { 2681 request_t *req = &mpt->request_pool[val]; 2682 req->state = REQ_STATE_ALLOCATED; 2683 mpt_callout_init(mpt, &req->callout); 2684 mpt_free_request(mpt, req); 2685 } 2686 2687 mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum " 2688 "CAM Segment Count: %u\n", mpt->max_seg_cnt, 2689 mpt->max_cam_seg_cnt); 2690 2691 mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n", 2692 mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber); 2693 mpt_lprt(mpt, MPT_PRT_INFO, 2694 "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes " 2695 "Request Frame Size %u bytes Max Chain Depth %u\n", 2696 mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize, 2697 mpt->ioc_facts.RequestFrameSize << 2, 2698 mpt->ioc_facts.MaxChainDepth); 2699 mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, " 2700 "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts, 2701 mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags); 2702 2703 len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY); 2704 mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2705 if (mpt->port_facts == NULL) { 2706 mpt_prt(mpt, "unable to allocate memory for port facts\n"); 2707 return (ENOMEM); 2708 } 2709 2710 2711 if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) && 2712 (mpt->fw_uploaded == 0)) { 2713 struct mpt_map_info mi; 2714 2715 /* 2716 * In some configurations, the IOC's firmware is 2717 * stored in a shared piece of system NVRAM that 2718 * is only accessible via the BIOS. In this 2719 * case, the firmware keeps a copy of firmware in 2720 * RAM until the OS driver retrieves it. Once 2721 * retrieved, we are responsible for re-downloading 2722 * the firmware after any hard-reset. 2723 */ 2724 mpt->fw_image_size = mpt->ioc_facts.FWImageSize; 2725 error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0, 2726 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 2727 mpt->fw_image_size, 1, mpt->fw_image_size, 0, 2728 &mpt->fw_dmat); 2729 if (error != 0) { 2730 mpt_prt(mpt, "cannot create firmware dma tag\n"); 2731 return (ENOMEM); 2732 } 2733 error = bus_dmamem_alloc(mpt->fw_dmat, 2734 (void **)&mpt->fw_image, BUS_DMA_NOWAIT | 2735 BUS_DMA_COHERENT, &mpt->fw_dmap); 2736 if (error != 0) { 2737 mpt_prt(mpt, "cannot allocate firmware memory\n"); 2738 bus_dma_tag_destroy(mpt->fw_dmat); 2739 return (ENOMEM); 2740 } 2741 mi.mpt = mpt; 2742 mi.error = 0; 2743 bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap, 2744 mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0); 2745 mpt->fw_phys = mi.phys; 2746 2747 error = mpt_upload_fw(mpt); 2748 if (error != 0) { 2749 mpt_prt(mpt, "firmware upload failed.\n"); 2750 bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap); 2751 bus_dmamem_free(mpt->fw_dmat, mpt->fw_image, 2752 mpt->fw_dmap); 2753 bus_dma_tag_destroy(mpt->fw_dmat); 2754 mpt->fw_image = NULL; 2755 return (EIO); 2756 } 2757 mpt->fw_uploaded = 1; 2758 } 2759 2760 for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) { 2761 pfp = &mpt->port_facts[port]; 2762 error = mpt_get_portfacts(mpt, 0, pfp); 2763 if (error != MPT_OK) { 2764 mpt_prt(mpt, 2765 "mpt_get_portfacts on port %d failed\n", port); 2766 free(mpt->port_facts, M_DEVBUF); 2767 mpt->port_facts = NULL; 2768 return (mpt_configure_ioc(mpt, tn++, 1)); 2769 } 2770 mpt2host_portfacts_reply(pfp); 2771 2772 if (port > 0) { 2773 error = MPT_PRT_INFO; 2774 } else { 2775 error = MPT_PRT_DEBUG; 2776 } 2777 mpt_lprt(mpt, error, 2778 "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n", 2779 port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID, 2780 pfp->MaxDevices); 2781 2782 } 2783 2784 /* 2785 * XXX: Not yet supporting more than port 0 2786 */ 2787 pfp = &mpt->port_facts[0]; 2788 if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) { 2789 mpt->is_fc = 1; 2790 mpt->is_sas = 0; 2791 mpt->is_spi = 0; 2792 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) { 2793 mpt->is_fc = 0; 2794 mpt->is_sas = 1; 2795 mpt->is_spi = 0; 2796 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) { 2797 mpt->is_fc = 0; 2798 mpt->is_sas = 0; 2799 mpt->is_spi = 1; 2800 if (mpt->mpt_ini_id == MPT_INI_ID_NONE) 2801 mpt->mpt_ini_id = pfp->PortSCSIID; 2802 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) { 2803 mpt_prt(mpt, "iSCSI not supported yet\n"); 2804 return (ENXIO); 2805 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) { 2806 mpt_prt(mpt, "Inactive Port\n"); 2807 return (ENXIO); 2808 } else { 2809 mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType); 2810 return (ENXIO); 2811 } 2812 2813 /* 2814 * Set our role with what this port supports. 2815 * 2816 * Note this might be changed later in different modules 2817 * if this is different from what is wanted. 2818 */ 2819 mpt->role = MPT_ROLE_NONE; 2820 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) { 2821 mpt->role |= MPT_ROLE_INITIATOR; 2822 } 2823 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) { 2824 mpt->role |= MPT_ROLE_TARGET; 2825 } 2826 2827 /* 2828 * Enable the IOC 2829 */ 2830 if (mpt_enable_ioc(mpt, 1) != MPT_OK) { 2831 mpt_prt(mpt, "unable to initialize IOC\n"); 2832 return (ENXIO); 2833 } 2834 2835 /* 2836 * Read IOC configuration information. 2837 * 2838 * We need this to determine whether or not we have certain 2839 * settings for Integrated Mirroring (e.g.). 2840 */ 2841 mpt_read_config_info_ioc(mpt); 2842 2843 return (0); 2844 } 2845 2846 static int 2847 mpt_enable_ioc(struct mpt_softc *mpt, int portenable) 2848 { 2849 uint32_t pptr; 2850 int val; 2851 2852 if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) { 2853 mpt_prt(mpt, "mpt_send_ioc_init failed\n"); 2854 return (EIO); 2855 } 2856 2857 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n"); 2858 2859 if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) { 2860 mpt_prt(mpt, "IOC failed to go to run state\n"); 2861 return (ENXIO); 2862 } 2863 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n"); 2864 2865 /* 2866 * Give it reply buffers 2867 * 2868 * Do *not* exceed global credits. 2869 */ 2870 for (val = 0, pptr = mpt->reply_phys; 2871 (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE); 2872 pptr += MPT_REPLY_SIZE) { 2873 mpt_free_reply(mpt, pptr); 2874 if (++val == mpt->ioc_facts.GlobalCredits - 1) 2875 break; 2876 } 2877 2878 2879 /* 2880 * Enable the port if asked. This is only done if we're resetting 2881 * the IOC after initial startup. 2882 */ 2883 if (portenable) { 2884 /* 2885 * Enable asynchronous event reporting 2886 */ 2887 mpt_send_event_request(mpt, 1); 2888 2889 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2890 mpt_prt(mpt, "%s: failed to enable port 0\n", __func__); 2891 return (ENXIO); 2892 } 2893 } 2894 return (MPT_OK); 2895 } 2896 2897 /* 2898 * Endian Conversion Functions- only used on Big Endian machines 2899 */ 2900 #if _BYTE_ORDER == _BIG_ENDIAN 2901 void 2902 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge) 2903 { 2904 2905 MPT_2_HOST32(sge, FlagsLength); 2906 MPT_2_HOST32(sge, u.Address64.Low); 2907 MPT_2_HOST32(sge, u.Address64.High); 2908 } 2909 2910 void 2911 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp) 2912 { 2913 2914 MPT_2_HOST16(rp, MsgVersion); 2915 MPT_2_HOST16(rp, HeaderVersion); 2916 MPT_2_HOST32(rp, MsgContext); 2917 MPT_2_HOST16(rp, IOCExceptions); 2918 MPT_2_HOST16(rp, IOCStatus); 2919 MPT_2_HOST32(rp, IOCLogInfo); 2920 MPT_2_HOST16(rp, ReplyQueueDepth); 2921 MPT_2_HOST16(rp, RequestFrameSize); 2922 MPT_2_HOST16(rp, Reserved_0101_FWVersion); 2923 MPT_2_HOST16(rp, ProductID); 2924 MPT_2_HOST32(rp, CurrentHostMfaHighAddr); 2925 MPT_2_HOST16(rp, GlobalCredits); 2926 MPT_2_HOST32(rp, CurrentSenseBufferHighAddr); 2927 MPT_2_HOST16(rp, CurReplyFrameSize); 2928 MPT_2_HOST32(rp, FWImageSize); 2929 MPT_2_HOST32(rp, IOCCapabilities); 2930 MPT_2_HOST32(rp, FWVersion.Word); 2931 MPT_2_HOST16(rp, HighPriorityQueueDepth); 2932 MPT_2_HOST16(rp, Reserved2); 2933 mpt2host_sge_simple_union(&rp->HostPageBufferSGE); 2934 MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr); 2935 } 2936 2937 void 2938 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp) 2939 { 2940 2941 MPT_2_HOST16(pfp, Reserved); 2942 MPT_2_HOST16(pfp, Reserved1); 2943 MPT_2_HOST32(pfp, MsgContext); 2944 MPT_2_HOST16(pfp, Reserved2); 2945 MPT_2_HOST16(pfp, IOCStatus); 2946 MPT_2_HOST32(pfp, IOCLogInfo); 2947 MPT_2_HOST16(pfp, MaxDevices); 2948 MPT_2_HOST16(pfp, PortSCSIID); 2949 MPT_2_HOST16(pfp, ProtocolFlags); 2950 MPT_2_HOST16(pfp, MaxPostedCmdBuffers); 2951 MPT_2_HOST16(pfp, MaxPersistentIDs); 2952 MPT_2_HOST16(pfp, MaxLanBuckets); 2953 MPT_2_HOST16(pfp, Reserved4); 2954 MPT_2_HOST32(pfp, Reserved5); 2955 } 2956 2957 void 2958 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2) 2959 { 2960 int i; 2961 2962 MPT_2_HOST32(ioc2, CapabilitiesFlags); 2963 for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) { 2964 MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3); 2965 } 2966 } 2967 2968 void 2969 mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3) 2970 { 2971 2972 MPT_2_HOST16(ioc3, Reserved2); 2973 } 2974 2975 void 2976 mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0) 2977 { 2978 2979 MPT_2_HOST32(sp0, Capabilities); 2980 MPT_2_HOST32(sp0, PhysicalInterface); 2981 } 2982 2983 void 2984 mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1) 2985 { 2986 2987 MPT_2_HOST32(sp1, Configuration); 2988 MPT_2_HOST32(sp1, OnBusTimerValue); 2989 MPT_2_HOST16(sp1, IDConfig); 2990 } 2991 2992 void 2993 host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1) 2994 { 2995 2996 HOST_2_MPT32(sp1, Configuration); 2997 HOST_2_MPT32(sp1, OnBusTimerValue); 2998 HOST_2_MPT16(sp1, IDConfig); 2999 } 3000 3001 void 3002 mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2) 3003 { 3004 int i; 3005 3006 MPT_2_HOST32(sp2, PortFlags); 3007 MPT_2_HOST32(sp2, PortSettings); 3008 for (i = 0; i < sizeof(sp2->DeviceSettings) / 3009 sizeof(*sp2->DeviceSettings); i++) { 3010 MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags); 3011 } 3012 } 3013 3014 void 3015 mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0) 3016 { 3017 3018 MPT_2_HOST32(sd0, NegotiatedParameters); 3019 MPT_2_HOST32(sd0, Information); 3020 } 3021 3022 void 3023 mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1) 3024 { 3025 3026 MPT_2_HOST32(sd1, RequestedParameters); 3027 MPT_2_HOST32(sd1, Reserved); 3028 MPT_2_HOST32(sd1, Configuration); 3029 } 3030 3031 void 3032 host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1) 3033 { 3034 3035 HOST_2_MPT32(sd1, RequestedParameters); 3036 HOST_2_MPT32(sd1, Reserved); 3037 HOST_2_MPT32(sd1, Configuration); 3038 } 3039 3040 void 3041 mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0) 3042 { 3043 3044 MPT_2_HOST32(fp0, Flags); 3045 MPT_2_HOST32(fp0, PortIdentifier); 3046 MPT_2_HOST32(fp0, WWNN.Low); 3047 MPT_2_HOST32(fp0, WWNN.High); 3048 MPT_2_HOST32(fp0, WWPN.Low); 3049 MPT_2_HOST32(fp0, WWPN.High); 3050 MPT_2_HOST32(fp0, SupportedServiceClass); 3051 MPT_2_HOST32(fp0, SupportedSpeeds); 3052 MPT_2_HOST32(fp0, CurrentSpeed); 3053 MPT_2_HOST32(fp0, MaxFrameSize); 3054 MPT_2_HOST32(fp0, FabricWWNN.Low); 3055 MPT_2_HOST32(fp0, FabricWWNN.High); 3056 MPT_2_HOST32(fp0, FabricWWPN.Low); 3057 MPT_2_HOST32(fp0, FabricWWPN.High); 3058 MPT_2_HOST32(fp0, DiscoveredPortsCount); 3059 MPT_2_HOST32(fp0, MaxInitiators); 3060 } 3061 3062 void 3063 mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1) 3064 { 3065 3066 MPT_2_HOST32(fp1, Flags); 3067 MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low); 3068 MPT_2_HOST32(fp1, NoSEEPROMWWNN.High); 3069 MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low); 3070 MPT_2_HOST32(fp1, NoSEEPROMWWPN.High); 3071 } 3072 3073 void 3074 host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1) 3075 { 3076 3077 HOST_2_MPT32(fp1, Flags); 3078 HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low); 3079 HOST_2_MPT32(fp1, NoSEEPROMWWNN.High); 3080 HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low); 3081 HOST_2_MPT32(fp1, NoSEEPROMWWPN.High); 3082 } 3083 3084 void 3085 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp) 3086 { 3087 int i; 3088 3089 MPT_2_HOST16(volp, VolumeStatus.Reserved); 3090 MPT_2_HOST16(volp, VolumeSettings.Settings); 3091 MPT_2_HOST32(volp, MaxLBA); 3092 MPT_2_HOST32(volp, MaxLBAHigh); 3093 MPT_2_HOST32(volp, StripeSize); 3094 MPT_2_HOST32(volp, Reserved2); 3095 MPT_2_HOST32(volp, Reserved3); 3096 for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) { 3097 MPT_2_HOST16(volp, PhysDisk[i].Reserved); 3098 } 3099 } 3100 3101 void 3102 mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0) 3103 { 3104 3105 MPT_2_HOST32(rpd0, Reserved1); 3106 MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved); 3107 MPT_2_HOST32(rpd0, MaxLBA); 3108 MPT_2_HOST16(rpd0, ErrorData.Reserved); 3109 MPT_2_HOST16(rpd0, ErrorData.ErrorCount); 3110 MPT_2_HOST16(rpd0, ErrorData.SmartCount); 3111 } 3112 3113 void 3114 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi) 3115 { 3116 3117 MPT_2_HOST16(vi, TotalBlocks.High); 3118 MPT_2_HOST16(vi, TotalBlocks.Low); 3119 MPT_2_HOST16(vi, BlocksRemaining.High); 3120 MPT_2_HOST16(vi, BlocksRemaining.Low); 3121 } 3122 #endif 3123