1 /*- 2 * Generic routines for LSI Fusion adapters. 3 * FreeBSD Version. 4 * 5 * SPDX-License-Identifier: BSD-2-Clause AND BSD-3-Clause 6 * 7 * Copyright (c) 2000, 2001 by Greg Ansley 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice immediately at the beginning of the file, without modification, 14 * this list of conditions, and the following disclaimer. 15 * 2. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 /*- 31 * Copyright (c) 2002, 2006 by Matthew Jacob 32 * All rights reserved. 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions are 36 * met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 40 * substantially similar to the "NO WARRANTY" disclaimer below 41 * ("Disclaimer") and any redistribution must be conditioned upon including 42 * a substantially similar Disclaimer requirement for further binary 43 * redistribution. 44 * 3. Neither the names of the above listed copyright holders nor the names 45 * of any contributors may be used to endorse or promote products derived 46 * from this software without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 49 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 52 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 58 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 59 * 60 * Support from Chris Ellsworth in order to make SAS adapters work 61 * is gratefully acknowledged. 62 * 63 * 64 * Support from LSI-Logic has also gone a great deal toward making this a 65 * workable subsystem and is gratefully acknowledged. 66 */ 67 /*- 68 * Copyright (c) 2004, Avid Technology, Inc. and its contributors. 69 * Copyright (c) 2005, WHEEL Sp. z o.o. 70 * Copyright (c) 2004, 2005 Justin T. Gibbs 71 * All rights reserved. 72 * 73 * Redistribution and use in source and binary forms, with or without 74 * modification, are permitted provided that the following conditions are 75 * met: 76 * 1. Redistributions of source code must retain the above copyright 77 * notice, this list of conditions and the following disclaimer. 78 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 79 * substantially similar to the "NO WARRANTY" disclaimer below 80 * ("Disclaimer") and any redistribution must be conditioned upon including 81 * a substantially similar Disclaimer requirement for further binary 82 * redistribution. 83 * 3. Neither the names of the above listed copyright holders nor the names 84 * of any contributors may be used to endorse or promote products derived 85 * from this software without specific prior written permission. 86 * 87 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 88 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 90 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 91 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 92 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 93 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 94 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 95 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 96 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 97 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 98 */ 99 100 #include <sys/cdefs.h> 101 #include <dev/mpt/mpt.h> 102 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */ 103 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */ 104 105 #include <dev/mpt/mpilib/mpi.h> 106 #include <dev/mpt/mpilib/mpi_ioc.h> 107 #include <dev/mpt/mpilib/mpi_fc.h> 108 #include <dev/mpt/mpilib/mpi_targ.h> 109 110 #include <sys/sysctl.h> 111 112 #define MPT_MAX_TRYS 3 113 #define MPT_MAX_WAIT 300000 114 115 static int maxwait_ack = 0; 116 static int maxwait_int = 0; 117 static int maxwait_state = 0; 118 119 static TAILQ_HEAD(, mpt_softc) mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq); 120 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS]; 121 122 static mpt_reply_handler_t mpt_default_reply_handler; 123 static mpt_reply_handler_t mpt_config_reply_handler; 124 static mpt_reply_handler_t mpt_handshake_reply_handler; 125 static mpt_reply_handler_t mpt_event_reply_handler; 126 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 127 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context); 128 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff); 129 static int mpt_soft_reset(struct mpt_softc *mpt); 130 static void mpt_hard_reset(struct mpt_softc *mpt); 131 static int mpt_dma_buf_alloc(struct mpt_softc *mpt); 132 static void mpt_dma_buf_free(struct mpt_softc *mpt); 133 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int); 134 static int mpt_enable_ioc(struct mpt_softc *mpt, int); 135 136 /************************* Personality Module Support *************************/ 137 /* 138 * We include one extra entry that is guaranteed to be NULL 139 * to simplify our itterator. 140 */ 141 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1]; 142 static __inline struct mpt_personality* 143 mpt_pers_find(struct mpt_softc *, u_int); 144 static __inline struct mpt_personality* 145 mpt_pers_find_reverse(struct mpt_softc *, u_int); 146 147 static __inline struct mpt_personality * 148 mpt_pers_find(struct mpt_softc *mpt, u_int start_at) 149 { 150 KASSERT(start_at <= MPT_MAX_PERSONALITIES, 151 ("mpt_pers_find: starting position out of range")); 152 153 while (start_at < MPT_MAX_PERSONALITIES 154 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 155 start_at++; 156 } 157 return (mpt_personalities[start_at]); 158 } 159 160 /* 161 * Used infrequently, so no need to optimize like a forward 162 * traversal where we use the MAX+1 is guaranteed to be NULL 163 * trick. 164 */ 165 static __inline struct mpt_personality * 166 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at) 167 { 168 while (start_at < MPT_MAX_PERSONALITIES 169 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 170 start_at--; 171 } 172 if (start_at < MPT_MAX_PERSONALITIES) 173 return (mpt_personalities[start_at]); 174 return (NULL); 175 } 176 177 #define MPT_PERS_FOREACH(mpt, pers) \ 178 for (pers = mpt_pers_find(mpt, /*start_at*/0); \ 179 pers != NULL; \ 180 pers = mpt_pers_find(mpt, /*start_at*/pers->id+1)) 181 182 #define MPT_PERS_FOREACH_REVERSE(mpt, pers) \ 183 for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\ 184 pers != NULL; \ 185 pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1)) 186 187 static mpt_load_handler_t mpt_stdload; 188 static mpt_probe_handler_t mpt_stdprobe; 189 static mpt_attach_handler_t mpt_stdattach; 190 static mpt_enable_handler_t mpt_stdenable; 191 static mpt_ready_handler_t mpt_stdready; 192 static mpt_event_handler_t mpt_stdevent; 193 static mpt_reset_handler_t mpt_stdreset; 194 static mpt_shutdown_handler_t mpt_stdshutdown; 195 static mpt_detach_handler_t mpt_stddetach; 196 static mpt_unload_handler_t mpt_stdunload; 197 static struct mpt_personality mpt_default_personality = 198 { 199 .load = mpt_stdload, 200 .probe = mpt_stdprobe, 201 .attach = mpt_stdattach, 202 .enable = mpt_stdenable, 203 .ready = mpt_stdready, 204 .event = mpt_stdevent, 205 .reset = mpt_stdreset, 206 .shutdown = mpt_stdshutdown, 207 .detach = mpt_stddetach, 208 .unload = mpt_stdunload 209 }; 210 211 static mpt_load_handler_t mpt_core_load; 212 static mpt_attach_handler_t mpt_core_attach; 213 static mpt_enable_handler_t mpt_core_enable; 214 static mpt_reset_handler_t mpt_core_ioc_reset; 215 static mpt_event_handler_t mpt_core_event; 216 static mpt_shutdown_handler_t mpt_core_shutdown; 217 static mpt_shutdown_handler_t mpt_core_detach; 218 static mpt_unload_handler_t mpt_core_unload; 219 static struct mpt_personality mpt_core_personality = 220 { 221 .name = "mpt_core", 222 .load = mpt_core_load, 223 // .attach = mpt_core_attach, 224 // .enable = mpt_core_enable, 225 .event = mpt_core_event, 226 .reset = mpt_core_ioc_reset, 227 .shutdown = mpt_core_shutdown, 228 .detach = mpt_core_detach, 229 .unload = mpt_core_unload, 230 }; 231 232 /* 233 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need 234 * ordering information. We want the core to always register FIRST. 235 * other modules are set to SI_ORDER_SECOND. 236 */ 237 static moduledata_t mpt_core_mod = { 238 "mpt_core", mpt_modevent, &mpt_core_personality 239 }; 240 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 241 MODULE_VERSION(mpt_core, 1); 242 243 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id)) 244 245 int 246 mpt_modevent(module_t mod, int type, void *data) 247 { 248 struct mpt_personality *pers; 249 int error; 250 251 pers = (struct mpt_personality *)data; 252 253 error = 0; 254 switch (type) { 255 case MOD_LOAD: 256 { 257 mpt_load_handler_t **def_handler; 258 mpt_load_handler_t **pers_handler; 259 int i; 260 261 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 262 if (mpt_personalities[i] == NULL) 263 break; 264 } 265 if (i >= MPT_MAX_PERSONALITIES) { 266 error = ENOMEM; 267 break; 268 } 269 pers->id = i; 270 mpt_personalities[i] = pers; 271 272 /* Install standard/noop handlers for any NULL entries. */ 273 def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality); 274 pers_handler = MPT_PERS_FIRST_HANDLER(pers); 275 while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) { 276 if (*pers_handler == NULL) 277 *pers_handler = *def_handler; 278 pers_handler++; 279 def_handler++; 280 } 281 282 error = (pers->load(pers)); 283 if (error != 0) 284 mpt_personalities[i] = NULL; 285 break; 286 } 287 case MOD_SHUTDOWN: 288 break; 289 case MOD_QUIESCE: 290 break; 291 case MOD_UNLOAD: 292 error = pers->unload(pers); 293 mpt_personalities[pers->id] = NULL; 294 break; 295 default: 296 error = EINVAL; 297 break; 298 } 299 return (error); 300 } 301 302 static int 303 mpt_stdload(struct mpt_personality *pers) 304 { 305 306 /* Load is always successful. */ 307 return (0); 308 } 309 310 static int 311 mpt_stdprobe(struct mpt_softc *mpt) 312 { 313 314 /* Probe is always successful. */ 315 return (0); 316 } 317 318 static int 319 mpt_stdattach(struct mpt_softc *mpt) 320 { 321 322 /* Attach is always successful. */ 323 return (0); 324 } 325 326 static int 327 mpt_stdenable(struct mpt_softc *mpt) 328 { 329 330 /* Enable is always successful. */ 331 return (0); 332 } 333 334 static void 335 mpt_stdready(struct mpt_softc *mpt) 336 { 337 338 } 339 340 static int 341 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg) 342 { 343 344 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF); 345 /* Event was not for us. */ 346 return (0); 347 } 348 349 static void 350 mpt_stdreset(struct mpt_softc *mpt, int type) 351 { 352 353 } 354 355 static void 356 mpt_stdshutdown(struct mpt_softc *mpt) 357 { 358 359 } 360 361 static void 362 mpt_stddetach(struct mpt_softc *mpt) 363 { 364 365 } 366 367 static int 368 mpt_stdunload(struct mpt_personality *pers) 369 { 370 371 /* Unload is always successful. */ 372 return (0); 373 } 374 375 /* 376 * Post driver attachment, we may want to perform some global actions. 377 * Here is the hook to do so. 378 */ 379 380 static void 381 mpt_postattach(void *unused) 382 { 383 struct mpt_softc *mpt; 384 struct mpt_personality *pers; 385 386 TAILQ_FOREACH(mpt, &mpt_tailq, links) { 387 MPT_PERS_FOREACH(mpt, pers) 388 pers->ready(mpt); 389 } 390 } 391 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL); 392 393 /******************************* Bus DMA Support ******************************/ 394 void 395 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error) 396 { 397 struct mpt_map_info *map_info; 398 399 map_info = (struct mpt_map_info *)arg; 400 map_info->error = error; 401 map_info->phys = segs->ds_addr; 402 } 403 404 /**************************** Reply/Event Handling ****************************/ 405 int 406 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type, 407 mpt_handler_t handler, uint32_t *phandler_id) 408 { 409 410 switch (type) { 411 case MPT_HANDLER_REPLY: 412 { 413 u_int cbi; 414 u_int free_cbi; 415 416 if (phandler_id == NULL) 417 return (EINVAL); 418 419 free_cbi = MPT_HANDLER_ID_NONE; 420 for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) { 421 /* 422 * If the same handler is registered multiple 423 * times, don't error out. Just return the 424 * index of the original registration. 425 */ 426 if (mpt_reply_handlers[cbi] == handler.reply_handler) { 427 *phandler_id = MPT_CBI_TO_HID(cbi); 428 return (0); 429 } 430 431 /* 432 * Fill from the front in the hope that 433 * all registered handlers consume only a 434 * single cache line. 435 * 436 * We don't break on the first empty slot so 437 * that the full table is checked to see if 438 * this handler was previously registered. 439 */ 440 if (free_cbi == MPT_HANDLER_ID_NONE && 441 (mpt_reply_handlers[cbi] 442 == mpt_default_reply_handler)) 443 free_cbi = cbi; 444 } 445 if (free_cbi == MPT_HANDLER_ID_NONE) { 446 return (ENOMEM); 447 } 448 mpt_reply_handlers[free_cbi] = handler.reply_handler; 449 *phandler_id = MPT_CBI_TO_HID(free_cbi); 450 break; 451 } 452 default: 453 mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type); 454 return (EINVAL); 455 } 456 return (0); 457 } 458 459 int 460 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type, 461 mpt_handler_t handler, uint32_t handler_id) 462 { 463 464 switch (type) { 465 case MPT_HANDLER_REPLY: 466 { 467 u_int cbi; 468 469 cbi = MPT_CBI(handler_id); 470 if (cbi >= MPT_NUM_REPLY_HANDLERS 471 || mpt_reply_handlers[cbi] != handler.reply_handler) 472 return (ENOENT); 473 mpt_reply_handlers[cbi] = mpt_default_reply_handler; 474 break; 475 } 476 default: 477 mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type); 478 return (EINVAL); 479 } 480 return (0); 481 } 482 483 static int 484 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req, 485 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 486 { 487 488 mpt_prt(mpt, 489 "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n", 490 req, req->serno, reply_desc, reply_frame); 491 492 if (reply_frame != NULL) 493 mpt_dump_reply_frame(mpt, reply_frame); 494 495 mpt_prt(mpt, "Reply Frame Ignored\n"); 496 497 return (/*free_reply*/TRUE); 498 } 499 500 static int 501 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req, 502 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 503 { 504 505 if (req != NULL) { 506 if (reply_frame != NULL) { 507 MSG_CONFIG *cfgp; 508 MSG_CONFIG_REPLY *reply; 509 510 cfgp = (MSG_CONFIG *)req->req_vbuf; 511 reply = (MSG_CONFIG_REPLY *)reply_frame; 512 req->IOCStatus = le16toh(reply_frame->IOCStatus); 513 bcopy(&reply->Header, &cfgp->Header, 514 sizeof(cfgp->Header)); 515 cfgp->ExtPageLength = reply->ExtPageLength; 516 cfgp->ExtPageType = reply->ExtPageType; 517 } 518 req->state &= ~REQ_STATE_QUEUED; 519 req->state |= REQ_STATE_DONE; 520 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 521 if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) { 522 wakeup(req); 523 } else if ((req->state & REQ_STATE_TIMEDOUT) != 0) { 524 /* 525 * Whew- we can free this request (late completion) 526 */ 527 mpt_free_request(mpt, req); 528 } 529 } 530 531 return (TRUE); 532 } 533 534 static int 535 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req, 536 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 537 { 538 539 /* Nothing to be done. */ 540 return (TRUE); 541 } 542 543 static int 544 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req, 545 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 546 { 547 int free_reply; 548 549 KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler")); 550 KASSERT(req != NULL, ("null request in mpt_event_reply_handler")); 551 552 free_reply = TRUE; 553 switch (reply_frame->Function) { 554 case MPI_FUNCTION_EVENT_NOTIFICATION: 555 { 556 MSG_EVENT_NOTIFY_REPLY *msg; 557 struct mpt_personality *pers; 558 u_int handled; 559 560 handled = 0; 561 msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 562 msg->EventDataLength = le16toh(msg->EventDataLength); 563 msg->IOCStatus = le16toh(msg->IOCStatus); 564 msg->IOCLogInfo = le32toh(msg->IOCLogInfo); 565 msg->Event = le32toh(msg->Event); 566 MPT_PERS_FOREACH(mpt, pers) 567 handled += pers->event(mpt, req, msg); 568 569 if (handled == 0 && mpt->mpt_pers_mask == 0) { 570 mpt_lprt(mpt, MPT_PRT_INFO, 571 "No Handlers For Any Event Notify Frames. " 572 "Event %#x (ACK %sequired).\n", 573 msg->Event, msg->AckRequired? "r" : "not r"); 574 } else if (handled == 0) { 575 mpt_lprt(mpt, 576 msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO, 577 "Unhandled Event Notify Frame. Event %#x " 578 "(ACK %sequired).\n", 579 msg->Event, msg->AckRequired? "r" : "not r"); 580 } 581 582 if (msg->AckRequired) { 583 request_t *ack_req; 584 uint32_t context; 585 586 context = req->index | MPT_REPLY_HANDLER_EVENTS; 587 ack_req = mpt_get_request(mpt, FALSE); 588 if (ack_req == NULL) { 589 struct mpt_evtf_record *evtf; 590 591 evtf = (struct mpt_evtf_record *)reply_frame; 592 evtf->context = context; 593 LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links); 594 free_reply = FALSE; 595 break; 596 } 597 mpt_send_event_ack(mpt, ack_req, msg, context); 598 /* 599 * Don't check for CONTINUATION_REPLY here 600 */ 601 return (free_reply); 602 } 603 break; 604 } 605 case MPI_FUNCTION_PORT_ENABLE: 606 mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n"); 607 break; 608 case MPI_FUNCTION_EVENT_ACK: 609 break; 610 default: 611 mpt_prt(mpt, "unknown event function: %x\n", 612 reply_frame->Function); 613 break; 614 } 615 616 /* 617 * I'm not sure that this continuation stuff works as it should. 618 * 619 * I've had FC async events occur that free the frame up because 620 * the continuation bit isn't set, and then additional async events 621 * then occur using the same context. As you might imagine, this 622 * leads to Very Bad Thing. 623 * 624 * Let's just be safe for now and not free them up until we figure 625 * out what's actually happening here. 626 */ 627 #if 0 628 if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) { 629 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 630 mpt_free_request(mpt, req); 631 mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation", 632 reply_frame->Function, req, req->serno); 633 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 634 MSG_EVENT_NOTIFY_REPLY *msg = 635 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 636 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 637 msg->Event, msg->AckRequired); 638 } 639 } else { 640 mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation", 641 reply_frame->Function, req, req->serno); 642 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 643 MSG_EVENT_NOTIFY_REPLY *msg = 644 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 645 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 646 msg->Event, msg->AckRequired); 647 } 648 mpt_prtc(mpt, "\n"); 649 } 650 #endif 651 return (free_reply); 652 } 653 654 /* 655 * Process an asynchronous event from the IOC. 656 */ 657 static int 658 mpt_core_event(struct mpt_softc *mpt, request_t *req, 659 MSG_EVENT_NOTIFY_REPLY *msg) 660 { 661 662 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n", 663 msg->Event & 0xFF); 664 switch(msg->Event & 0xFF) { 665 case MPI_EVENT_NONE: 666 break; 667 case MPI_EVENT_LOG_DATA: 668 { 669 int i; 670 671 /* Some error occurred that LSI wants logged */ 672 mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n", 673 msg->IOCLogInfo); 674 mpt_prt(mpt, "\tEvtLogData: Event Data:"); 675 for (i = 0; i < msg->EventDataLength; i++) 676 mpt_prtc(mpt, " %08x", msg->Data[i]); 677 mpt_prtc(mpt, "\n"); 678 break; 679 } 680 case MPI_EVENT_EVENT_CHANGE: 681 /* 682 * This is just an acknowledgement 683 * of our mpt_send_event_request. 684 */ 685 break; 686 case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE: 687 break; 688 default: 689 return (0); 690 break; 691 } 692 return (1); 693 } 694 695 static void 696 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 697 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context) 698 { 699 MSG_EVENT_ACK *ackp; 700 701 ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf; 702 memset(ackp, 0, sizeof (*ackp)); 703 ackp->Function = MPI_FUNCTION_EVENT_ACK; 704 ackp->Event = htole32(msg->Event); 705 ackp->EventContext = htole32(msg->EventContext); 706 ackp->MsgContext = htole32(context); 707 mpt_check_doorbell(mpt); 708 mpt_send_cmd(mpt, ack_req); 709 } 710 711 /***************************** Interrupt Handling *****************************/ 712 void 713 mpt_intr(void *arg) 714 { 715 struct mpt_softc *mpt; 716 uint32_t reply_desc; 717 int ntrips = 0; 718 719 mpt = (struct mpt_softc *)arg; 720 mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n"); 721 MPT_LOCK_ASSERT(mpt); 722 723 while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) { 724 request_t *req; 725 MSG_DEFAULT_REPLY *reply_frame; 726 uint32_t reply_baddr; 727 uint32_t ctxt_idx; 728 u_int cb_index; 729 u_int req_index; 730 u_int offset; 731 int free_rf; 732 733 req = NULL; 734 reply_frame = NULL; 735 reply_baddr = 0; 736 offset = 0; 737 if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) { 738 /* 739 * Ensure that the reply frame is coherent. 740 */ 741 reply_baddr = MPT_REPLY_BADDR(reply_desc); 742 offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF); 743 bus_dmamap_sync_range(mpt->reply_dmat, 744 mpt->reply_dmap, offset, MPT_REPLY_SIZE, 745 BUS_DMASYNC_POSTREAD); 746 reply_frame = MPT_REPLY_OTOV(mpt, offset); 747 ctxt_idx = le32toh(reply_frame->MsgContext); 748 } else { 749 uint32_t type; 750 751 type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc); 752 ctxt_idx = reply_desc; 753 mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n", 754 reply_desc); 755 756 switch (type) { 757 case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT: 758 ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK; 759 break; 760 case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET: 761 ctxt_idx = GET_IO_INDEX(reply_desc); 762 if (mpt->tgt_cmd_ptrs == NULL) { 763 mpt_prt(mpt, 764 "mpt_intr: no target cmd ptrs\n"); 765 reply_desc = MPT_REPLY_EMPTY; 766 break; 767 } 768 if (ctxt_idx >= mpt->tgt_cmds_allocated) { 769 mpt_prt(mpt, 770 "mpt_intr: bad tgt cmd ctxt %u\n", 771 ctxt_idx); 772 reply_desc = MPT_REPLY_EMPTY; 773 ntrips = 1000; 774 break; 775 } 776 req = mpt->tgt_cmd_ptrs[ctxt_idx]; 777 if (req == NULL) { 778 mpt_prt(mpt, "no request backpointer " 779 "at index %u", ctxt_idx); 780 reply_desc = MPT_REPLY_EMPTY; 781 ntrips = 1000; 782 break; 783 } 784 /* 785 * Reformulate ctxt_idx to be just as if 786 * it were another type of context reply 787 * so the code below will find the request 788 * via indexing into the pool. 789 */ 790 ctxt_idx = 791 req->index | mpt->scsi_tgt_handler_id; 792 req = NULL; 793 break; 794 case MPI_CONTEXT_REPLY_TYPE_LAN: 795 mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n", 796 reply_desc); 797 reply_desc = MPT_REPLY_EMPTY; 798 break; 799 default: 800 mpt_prt(mpt, "Context Reply 0x%08x?\n", type); 801 reply_desc = MPT_REPLY_EMPTY; 802 break; 803 } 804 if (reply_desc == MPT_REPLY_EMPTY) { 805 if (ntrips++ > 1000) { 806 break; 807 } 808 continue; 809 } 810 } 811 812 cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx); 813 req_index = MPT_CONTEXT_TO_REQI(ctxt_idx); 814 if (req_index < MPT_MAX_REQUESTS(mpt)) { 815 req = &mpt->request_pool[req_index]; 816 } else { 817 mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc ==" 818 " 0x%x)\n", req_index, reply_desc); 819 } 820 821 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 822 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 823 free_rf = mpt_reply_handlers[cb_index](mpt, req, 824 reply_desc, reply_frame); 825 826 if (reply_frame != NULL && free_rf) { 827 bus_dmamap_sync_range(mpt->reply_dmat, 828 mpt->reply_dmap, offset, MPT_REPLY_SIZE, 829 BUS_DMASYNC_PREREAD); 830 mpt_free_reply(mpt, reply_baddr); 831 } 832 833 /* 834 * If we got ourselves disabled, don't get stuck in a loop 835 */ 836 if (mpt->disabled) { 837 mpt_disable_ints(mpt); 838 break; 839 } 840 if (ntrips++ > 1000) { 841 break; 842 } 843 } 844 mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n"); 845 } 846 847 /******************************* Error Recovery *******************************/ 848 void 849 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain, 850 u_int iocstatus) 851 { 852 MSG_DEFAULT_REPLY ioc_status_frame; 853 request_t *req; 854 855 memset(&ioc_status_frame, 0, sizeof(ioc_status_frame)); 856 ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4); 857 ioc_status_frame.IOCStatus = iocstatus; 858 while((req = TAILQ_FIRST(chain)) != NULL) { 859 MSG_REQUEST_HEADER *msg_hdr; 860 u_int cb_index; 861 862 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 863 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 864 msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf; 865 ioc_status_frame.Function = msg_hdr->Function; 866 ioc_status_frame.MsgContext = msg_hdr->MsgContext; 867 cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext)); 868 mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext, 869 &ioc_status_frame); 870 if (mpt_req_on_pending_list(mpt, req) != 0) 871 TAILQ_REMOVE(chain, req, links); 872 } 873 } 874 875 /********************************* Diagnostics ********************************/ 876 /* 877 * Perform a diagnostic dump of a reply frame. 878 */ 879 void 880 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame) 881 { 882 883 mpt_prt(mpt, "Address Reply:\n"); 884 mpt_print_reply(reply_frame); 885 } 886 887 /******************************* Doorbell Access ******************************/ 888 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt); 889 static __inline uint32_t mpt_rd_intr(struct mpt_softc *mpt); 890 891 static __inline uint32_t 892 mpt_rd_db(struct mpt_softc *mpt) 893 { 894 895 return mpt_read(mpt, MPT_OFFSET_DOORBELL); 896 } 897 898 static __inline uint32_t 899 mpt_rd_intr(struct mpt_softc *mpt) 900 { 901 902 return mpt_read(mpt, MPT_OFFSET_INTR_STATUS); 903 } 904 905 /* Busy wait for a door bell to be read by IOC */ 906 static int 907 mpt_wait_db_ack(struct mpt_softc *mpt) 908 { 909 int i; 910 911 for (i=0; i < MPT_MAX_WAIT; i++) { 912 if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) { 913 maxwait_ack = i > maxwait_ack ? i : maxwait_ack; 914 return (MPT_OK); 915 } 916 DELAY(200); 917 } 918 return (MPT_FAIL); 919 } 920 921 /* Busy wait for a door bell interrupt */ 922 static int 923 mpt_wait_db_int(struct mpt_softc *mpt) 924 { 925 int i; 926 927 for (i = 0; i < MPT_MAX_WAIT; i++) { 928 if (MPT_DB_INTR(mpt_rd_intr(mpt))) { 929 maxwait_int = i > maxwait_int ? i : maxwait_int; 930 return MPT_OK; 931 } 932 DELAY(100); 933 } 934 return (MPT_FAIL); 935 } 936 937 /* Wait for IOC to transition to a give state */ 938 void 939 mpt_check_doorbell(struct mpt_softc *mpt) 940 { 941 uint32_t db = mpt_rd_db(mpt); 942 943 if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) { 944 mpt_prt(mpt, "Device not running\n"); 945 mpt_print_db(db); 946 } 947 } 948 949 /* Wait for IOC to transition to a give state */ 950 static int 951 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state) 952 { 953 int i; 954 955 for (i = 0; i < MPT_MAX_WAIT; i++) { 956 uint32_t db = mpt_rd_db(mpt); 957 if (MPT_STATE(db) == state) { 958 maxwait_state = i > maxwait_state ? i : maxwait_state; 959 return (MPT_OK); 960 } 961 DELAY(100); 962 } 963 return (MPT_FAIL); 964 } 965 966 /************************* Initialization/Configuration ************************/ 967 static int mpt_download_fw(struct mpt_softc *mpt); 968 969 /* Issue the reset COMMAND to the IOC */ 970 static int 971 mpt_soft_reset(struct mpt_softc *mpt) 972 { 973 974 mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n"); 975 976 /* Have to use hard reset if we are not in Running state */ 977 if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) { 978 mpt_prt(mpt, "soft reset failed: device not running\n"); 979 return (MPT_FAIL); 980 } 981 982 /* If door bell is in use we don't have a chance of getting 983 * a word in since the IOC probably crashed in message 984 * processing. So don't waste our time. 985 */ 986 if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) { 987 mpt_prt(mpt, "soft reset failed: doorbell wedged\n"); 988 return (MPT_FAIL); 989 } 990 991 /* Send the reset request to the IOC */ 992 mpt_write(mpt, MPT_OFFSET_DOORBELL, 993 MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT); 994 if (mpt_wait_db_ack(mpt) != MPT_OK) { 995 mpt_prt(mpt, "soft reset failed: ack timeout\n"); 996 return (MPT_FAIL); 997 } 998 999 /* Wait for the IOC to reload and come out of reset state */ 1000 if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) { 1001 mpt_prt(mpt, "soft reset failed: device did not restart\n"); 1002 return (MPT_FAIL); 1003 } 1004 1005 return MPT_OK; 1006 } 1007 1008 static int 1009 mpt_enable_diag_mode(struct mpt_softc *mpt) 1010 { 1011 int try; 1012 1013 try = 20; 1014 while (--try) { 1015 if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0) 1016 break; 1017 1018 /* Enable diagnostic registers */ 1019 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF); 1020 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE); 1021 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE); 1022 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE); 1023 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE); 1024 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE); 1025 1026 DELAY(100000); 1027 } 1028 if (try == 0) 1029 return (EIO); 1030 return (0); 1031 } 1032 1033 static void 1034 mpt_disable_diag_mode(struct mpt_softc *mpt) 1035 { 1036 1037 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF); 1038 } 1039 1040 /* This is a magic diagnostic reset that resets all the ARM 1041 * processors in the chip. 1042 */ 1043 static void 1044 mpt_hard_reset(struct mpt_softc *mpt) 1045 { 1046 int error; 1047 int wait; 1048 uint32_t diagreg; 1049 1050 mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n"); 1051 1052 if (mpt->is_1078) { 1053 mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07); 1054 DELAY(1000); 1055 return; 1056 } 1057 1058 error = mpt_enable_diag_mode(mpt); 1059 if (error) { 1060 mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n"); 1061 mpt_prt(mpt, "Trying to reset anyway.\n"); 1062 } 1063 1064 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1065 1066 /* 1067 * This appears to be a workaround required for some 1068 * firmware or hardware revs. 1069 */ 1070 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM); 1071 DELAY(1000); 1072 1073 /* Diag. port is now active so we can now hit the reset bit */ 1074 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER); 1075 1076 /* 1077 * Ensure that the reset has finished. We delay 1ms 1078 * prior to reading the register to make sure the chip 1079 * has sufficiently completed its reset to handle register 1080 * accesses. 1081 */ 1082 wait = 5000; 1083 do { 1084 DELAY(1000); 1085 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1086 } while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0); 1087 1088 if (wait == 0) { 1089 mpt_prt(mpt, "WARNING - Failed hard reset! " 1090 "Trying to initialize anyway.\n"); 1091 } 1092 1093 /* 1094 * If we have firmware to download, it must be loaded before 1095 * the controller will become operational. Do so now. 1096 */ 1097 if (mpt->fw_image != NULL) { 1098 error = mpt_download_fw(mpt); 1099 1100 if (error) { 1101 mpt_prt(mpt, "WARNING - Firmware Download Failed!\n"); 1102 mpt_prt(mpt, "Trying to initialize anyway.\n"); 1103 } 1104 } 1105 1106 /* 1107 * Reseting the controller should have disabled write 1108 * access to the diagnostic registers, but disable 1109 * manually to be sure. 1110 */ 1111 mpt_disable_diag_mode(mpt); 1112 } 1113 1114 static void 1115 mpt_core_ioc_reset(struct mpt_softc *mpt, int type) 1116 { 1117 1118 /* 1119 * Complete all pending requests with a status 1120 * appropriate for an IOC reset. 1121 */ 1122 mpt_complete_request_chain(mpt, &mpt->request_pending_list, 1123 MPI_IOCSTATUS_INVALID_STATE); 1124 } 1125 1126 /* 1127 * Reset the IOC when needed. Try software command first then if needed 1128 * poke at the magic diagnostic reset. Note that a hard reset resets 1129 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as 1130 * fouls up the PCI configuration registers. 1131 */ 1132 int 1133 mpt_reset(struct mpt_softc *mpt, int reinit) 1134 { 1135 struct mpt_personality *pers; 1136 int ret; 1137 int retry_cnt = 0; 1138 1139 /* 1140 * Try a soft reset. If that fails, get out the big hammer. 1141 */ 1142 again: 1143 if ((ret = mpt_soft_reset(mpt)) != MPT_OK) { 1144 int cnt; 1145 for (cnt = 0; cnt < 5; cnt++) { 1146 /* Failed; do a hard reset */ 1147 mpt_hard_reset(mpt); 1148 1149 /* 1150 * Wait for the IOC to reload 1151 * and come out of reset state 1152 */ 1153 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1154 if (ret == MPT_OK) { 1155 break; 1156 } 1157 /* 1158 * Okay- try to check again... 1159 */ 1160 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1161 if (ret == MPT_OK) { 1162 break; 1163 } 1164 mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n", 1165 retry_cnt, cnt); 1166 } 1167 } 1168 1169 if (retry_cnt == 0) { 1170 /* 1171 * Invoke reset handlers. We bump the reset count so 1172 * that mpt_wait_req() understands that regardless of 1173 * the specified wait condition, it should stop its wait. 1174 */ 1175 mpt->reset_cnt++; 1176 MPT_PERS_FOREACH(mpt, pers) 1177 pers->reset(mpt, ret); 1178 } 1179 1180 if (reinit) { 1181 ret = mpt_enable_ioc(mpt, 1); 1182 if (ret == MPT_OK) { 1183 mpt_enable_ints(mpt); 1184 } 1185 } 1186 if (ret != MPT_OK && retry_cnt++ < 2) { 1187 goto again; 1188 } 1189 return ret; 1190 } 1191 1192 /* Return a command buffer to the free queue */ 1193 void 1194 mpt_free_request(struct mpt_softc *mpt, request_t *req) 1195 { 1196 request_t *nxt; 1197 struct mpt_evtf_record *record; 1198 uint32_t offset, reply_baddr; 1199 1200 if (req == NULL || req != &mpt->request_pool[req->index]) { 1201 panic("mpt_free_request: bad req ptr"); 1202 } 1203 if ((nxt = req->chain) != NULL) { 1204 req->chain = NULL; 1205 mpt_free_request(mpt, nxt); /* NB: recursion */ 1206 } 1207 KASSERT(req->state != REQ_STATE_FREE, ("freeing free request")); 1208 KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request")); 1209 MPT_LOCK_ASSERT(mpt); 1210 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 1211 ("mpt_free_request: req %p:%u func %x already on freelist", 1212 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1213 KASSERT(mpt_req_on_pending_list(mpt, req) == 0, 1214 ("mpt_free_request: req %p:%u func %x on pending list", 1215 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1216 #ifdef INVARIANTS 1217 mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__); 1218 #endif 1219 1220 req->ccb = NULL; 1221 if (LIST_EMPTY(&mpt->ack_frames)) { 1222 /* 1223 * Insert free ones at the tail 1224 */ 1225 req->serno = 0; 1226 req->state = REQ_STATE_FREE; 1227 #ifdef INVARIANTS 1228 memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER)); 1229 #endif 1230 TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links); 1231 if (mpt->getreqwaiter != 0) { 1232 mpt->getreqwaiter = 0; 1233 wakeup(&mpt->request_free_list); 1234 } 1235 return; 1236 } 1237 1238 /* 1239 * Process an ack frame deferred due to resource shortage. 1240 */ 1241 record = LIST_FIRST(&mpt->ack_frames); 1242 LIST_REMOVE(record, links); 1243 req->state = REQ_STATE_ALLOCATED; 1244 mpt_assign_serno(mpt, req); 1245 mpt_send_event_ack(mpt, req, &record->reply, record->context); 1246 offset = (uint32_t)((uint8_t *)record - mpt->reply); 1247 reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF); 1248 bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset, 1249 MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD); 1250 mpt_free_reply(mpt, reply_baddr); 1251 } 1252 1253 /* Get a command buffer from the free queue */ 1254 request_t * 1255 mpt_get_request(struct mpt_softc *mpt, int sleep_ok) 1256 { 1257 request_t *req; 1258 1259 retry: 1260 MPT_LOCK_ASSERT(mpt); 1261 req = TAILQ_FIRST(&mpt->request_free_list); 1262 if (req != NULL) { 1263 KASSERT(req == &mpt->request_pool[req->index], 1264 ("mpt_get_request: corrupted request free list")); 1265 KASSERT(req->state == REQ_STATE_FREE, 1266 ("req %p:%u not free on free list %x index %d function %x", 1267 req, req->serno, req->state, req->index, 1268 ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1269 TAILQ_REMOVE(&mpt->request_free_list, req, links); 1270 req->state = REQ_STATE_ALLOCATED; 1271 req->chain = NULL; 1272 mpt_assign_serno(mpt, req); 1273 } else if (sleep_ok != 0) { 1274 mpt->getreqwaiter = 1; 1275 mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0); 1276 goto retry; 1277 } 1278 return (req); 1279 } 1280 1281 /* Pass the command to the IOC */ 1282 void 1283 mpt_send_cmd(struct mpt_softc *mpt, request_t *req) 1284 { 1285 1286 if (mpt->verbose > MPT_PRT_DEBUG2) { 1287 mpt_dump_request(mpt, req); 1288 } 1289 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 1290 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1291 req->state |= REQ_STATE_QUEUED; 1292 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 1293 ("req %p:%u func %x on freelist list in mpt_send_cmd", 1294 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1295 KASSERT(mpt_req_on_pending_list(mpt, req) == 0, 1296 ("req %p:%u func %x already on pending list in mpt_send_cmd", 1297 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1298 TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links); 1299 mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf); 1300 } 1301 1302 /* 1303 * Wait for a request to complete. 1304 * 1305 * Inputs: 1306 * mpt softc of controller executing request 1307 * req request to wait for 1308 * sleep_ok nonzero implies may sleep in this context 1309 * time_ms timeout in ms. 0 implies no timeout. 1310 * 1311 * Return Values: 1312 * 0 Request completed 1313 * non-0 Timeout fired before request completion. 1314 */ 1315 int 1316 mpt_wait_req(struct mpt_softc *mpt, request_t *req, 1317 mpt_req_state_t state, mpt_req_state_t mask, 1318 int sleep_ok, int time_ms) 1319 { 1320 int timeout; 1321 u_int saved_cnt; 1322 sbintime_t sbt; 1323 1324 /* 1325 * time_ms is in ms, 0 indicates infinite wait. 1326 * Convert to sbintime_t or 500us units depending on 1327 * our sleep mode. 1328 */ 1329 if (sleep_ok != 0) { 1330 sbt = SBT_1MS * time_ms; 1331 /* Set timeout as well so final timeout check works. */ 1332 timeout = time_ms; 1333 } else { 1334 sbt = 0; /* Squelch bogus gcc warning. */ 1335 timeout = time_ms * 2; 1336 } 1337 req->state |= REQ_STATE_NEED_WAKEUP; 1338 mask &= ~REQ_STATE_NEED_WAKEUP; 1339 saved_cnt = mpt->reset_cnt; 1340 while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) { 1341 if (sleep_ok != 0) { 1342 if (mpt_sleep(mpt, req, PUSER, "mptreq", sbt) == 1343 EWOULDBLOCK) { 1344 timeout = 0; 1345 break; 1346 } 1347 } else { 1348 if (time_ms != 0 && --timeout == 0) { 1349 break; 1350 } 1351 DELAY(500); 1352 mpt_intr(mpt); 1353 } 1354 } 1355 req->state &= ~REQ_STATE_NEED_WAKEUP; 1356 if (mpt->reset_cnt != saved_cnt) { 1357 return (EIO); 1358 } 1359 if (time_ms && timeout <= 0) { 1360 MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf; 1361 req->state |= REQ_STATE_TIMEDOUT; 1362 mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function); 1363 return (ETIMEDOUT); 1364 } 1365 return (0); 1366 } 1367 1368 /* 1369 * Send a command to the IOC via the handshake register. 1370 * 1371 * Only done at initialization time and for certain unusual 1372 * commands such as device/bus reset as specified by LSI. 1373 */ 1374 int 1375 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd) 1376 { 1377 int i; 1378 uint32_t data, *data32; 1379 1380 /* Check condition of the IOC */ 1381 data = mpt_rd_db(mpt); 1382 if ((MPT_STATE(data) != MPT_DB_STATE_READY 1383 && MPT_STATE(data) != MPT_DB_STATE_RUNNING 1384 && MPT_STATE(data) != MPT_DB_STATE_FAULT) 1385 || MPT_DB_IS_IN_USE(data)) { 1386 mpt_prt(mpt, "handshake aborted - invalid doorbell state\n"); 1387 mpt_print_db(data); 1388 return (EBUSY); 1389 } 1390 1391 /* We move things in 32 bit chunks */ 1392 len = (len + 3) >> 2; 1393 data32 = cmd; 1394 1395 /* Clear any left over pending doorbell interrupts */ 1396 if (MPT_DB_INTR(mpt_rd_intr(mpt))) 1397 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1398 1399 /* 1400 * Tell the handshake reg. we are going to send a command 1401 * and how long it is going to be. 1402 */ 1403 data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) | 1404 (len << MPI_DOORBELL_ADD_DWORDS_SHIFT); 1405 mpt_write(mpt, MPT_OFFSET_DOORBELL, data); 1406 1407 /* Wait for the chip to notice */ 1408 if (mpt_wait_db_int(mpt) != MPT_OK) { 1409 mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n"); 1410 return (ETIMEDOUT); 1411 } 1412 1413 /* Clear the interrupt */ 1414 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1415 1416 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1417 mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n"); 1418 return (ETIMEDOUT); 1419 } 1420 1421 /* Send the command */ 1422 for (i = 0; i < len; i++) { 1423 mpt_write_stream(mpt, MPT_OFFSET_DOORBELL, *data32++); 1424 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1425 mpt_prt(mpt, 1426 "mpt_send_handshake_cmd: timeout @ index %d\n", i); 1427 return (ETIMEDOUT); 1428 } 1429 } 1430 return MPT_OK; 1431 } 1432 1433 /* Get the response from the handshake register */ 1434 int 1435 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply) 1436 { 1437 int left, reply_left; 1438 u_int16_t *data16; 1439 uint32_t data; 1440 MSG_DEFAULT_REPLY *hdr; 1441 1442 /* We move things out in 16 bit chunks */ 1443 reply_len >>= 1; 1444 data16 = (u_int16_t *)reply; 1445 1446 hdr = (MSG_DEFAULT_REPLY *)reply; 1447 1448 /* Get first word */ 1449 if (mpt_wait_db_int(mpt) != MPT_OK) { 1450 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n"); 1451 return ETIMEDOUT; 1452 } 1453 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1454 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1455 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1456 1457 /* Get second word */ 1458 if (mpt_wait_db_int(mpt) != MPT_OK) { 1459 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n"); 1460 return ETIMEDOUT; 1461 } 1462 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1463 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1464 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1465 1466 /* 1467 * With the second word, we can now look at the length. 1468 * Warn about a reply that's too short (except for IOC FACTS REPLY) 1469 */ 1470 if ((reply_len >> 1) != hdr->MsgLength && 1471 (hdr->Function != MPI_FUNCTION_IOC_FACTS)){ 1472 mpt_prt(mpt, "reply length does not match message length: " 1473 "got %x; expected %zx for function %x\n", 1474 hdr->MsgLength << 2, reply_len << 1, hdr->Function); 1475 } 1476 1477 /* Get rest of the reply; but don't overflow the provided buffer */ 1478 left = (hdr->MsgLength << 1) - 2; 1479 reply_left = reply_len - 2; 1480 while (left--) { 1481 if (mpt_wait_db_int(mpt) != MPT_OK) { 1482 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n"); 1483 return ETIMEDOUT; 1484 } 1485 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1486 if (reply_left-- > 0) 1487 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1488 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1489 } 1490 1491 /* One more wait & clear at the end */ 1492 if (mpt_wait_db_int(mpt) != MPT_OK) { 1493 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n"); 1494 return ETIMEDOUT; 1495 } 1496 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1497 1498 if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1499 if (mpt->verbose >= MPT_PRT_TRACE) 1500 mpt_print_reply(hdr); 1501 return (MPT_FAIL | hdr->IOCStatus); 1502 } 1503 1504 return (0); 1505 } 1506 1507 static int 1508 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp) 1509 { 1510 MSG_IOC_FACTS f_req; 1511 int error; 1512 1513 memset(&f_req, 0, sizeof f_req); 1514 f_req.Function = MPI_FUNCTION_IOC_FACTS; 1515 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1516 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1517 if (error) { 1518 return(error); 1519 } 1520 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1521 return (error); 1522 } 1523 1524 static int 1525 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp) 1526 { 1527 MSG_PORT_FACTS f_req; 1528 int error; 1529 1530 memset(&f_req, 0, sizeof f_req); 1531 f_req.Function = MPI_FUNCTION_PORT_FACTS; 1532 f_req.PortNumber = port; 1533 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1534 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1535 if (error) { 1536 return(error); 1537 } 1538 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1539 return (error); 1540 } 1541 1542 /* 1543 * Send the initialization request. This is where we specify how many 1544 * SCSI buses and how many devices per bus we wish to emulate. 1545 * This is also the command that specifies the max size of the reply 1546 * frames from the IOC that we will be allocating. 1547 */ 1548 static int 1549 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who) 1550 { 1551 int error = 0; 1552 MSG_IOC_INIT init; 1553 MSG_IOC_INIT_REPLY reply; 1554 1555 memset(&init, 0, sizeof init); 1556 init.WhoInit = who; 1557 init.Function = MPI_FUNCTION_IOC_INIT; 1558 init.MaxDevices = 0; /* at least 256 devices per bus */ 1559 init.MaxBuses = 16; /* at least 16 buses */ 1560 1561 init.MsgVersion = htole16(MPI_VERSION); 1562 init.HeaderVersion = htole16(MPI_HEADER_VERSION); 1563 init.ReplyFrameSize = htole16(MPT_REPLY_SIZE); 1564 init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1565 1566 if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) { 1567 return(error); 1568 } 1569 1570 error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply); 1571 return (error); 1572 } 1573 1574 /* 1575 * Utiltity routine to read configuration headers and pages 1576 */ 1577 int 1578 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params, 1579 bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms) 1580 { 1581 MSG_CONFIG *cfgp; 1582 SGE_SIMPLE32 *se; 1583 1584 cfgp = req->req_vbuf; 1585 memset(cfgp, 0, sizeof *cfgp); 1586 cfgp->Action = params->Action; 1587 cfgp->Function = MPI_FUNCTION_CONFIG; 1588 cfgp->Header.PageVersion = params->PageVersion; 1589 cfgp->Header.PageNumber = params->PageNumber; 1590 cfgp->PageAddress = htole32(params->PageAddress); 1591 if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) == 1592 MPI_CONFIG_PAGETYPE_EXTENDED) { 1593 cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1594 cfgp->Header.PageLength = 0; 1595 cfgp->ExtPageLength = htole16(params->ExtPageLength); 1596 cfgp->ExtPageType = params->ExtPageType; 1597 } else { 1598 cfgp->Header.PageType = params->PageType; 1599 cfgp->Header.PageLength = params->PageLength; 1600 } 1601 se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE; 1602 se->Address = htole32(addr); 1603 MPI_pSGE_SET_LENGTH(se, len); 1604 MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT | 1605 MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | 1606 MPI_SGE_FLAGS_END_OF_LIST | 1607 ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT 1608 || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM) 1609 ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST))); 1610 se->FlagsLength = htole32(se->FlagsLength); 1611 cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 1612 1613 mpt_check_doorbell(mpt); 1614 mpt_send_cmd(mpt, req); 1615 return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 1616 sleep_ok, timeout_ms)); 1617 } 1618 1619 int 1620 mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber, 1621 uint32_t PageAddress, int ExtPageType, 1622 CONFIG_EXTENDED_PAGE_HEADER *rslt, 1623 int sleep_ok, int timeout_ms) 1624 { 1625 request_t *req; 1626 cfgparms_t params; 1627 MSG_CONFIG_REPLY *cfgp; 1628 int error; 1629 1630 req = mpt_get_request(mpt, sleep_ok); 1631 if (req == NULL) { 1632 mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n"); 1633 return (ENOMEM); 1634 } 1635 1636 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER; 1637 params.PageVersion = PageVersion; 1638 params.PageLength = 0; 1639 params.PageNumber = PageNumber; 1640 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1641 params.PageAddress = PageAddress; 1642 params.ExtPageType = ExtPageType; 1643 params.ExtPageLength = 0; 1644 error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0, 1645 sleep_ok, timeout_ms); 1646 if (error != 0) { 1647 /* 1648 * Leave the request. Without resetting the chip, it's 1649 * still owned by it and we'll just get into trouble 1650 * freeing it now. Mark it as abandoned so that if it 1651 * shows up later it can be freed. 1652 */ 1653 mpt_prt(mpt, "read_extcfg_header timed out\n"); 1654 return (ETIMEDOUT); 1655 } 1656 1657 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { 1658 case MPI_IOCSTATUS_SUCCESS: 1659 cfgp = req->req_vbuf; 1660 rslt->PageVersion = cfgp->Header.PageVersion; 1661 rslt->PageNumber = cfgp->Header.PageNumber; 1662 rslt->PageType = cfgp->Header.PageType; 1663 rslt->ExtPageLength = le16toh(cfgp->ExtPageLength); 1664 rslt->ExtPageType = cfgp->ExtPageType; 1665 error = 0; 1666 break; 1667 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: 1668 mpt_lprt(mpt, MPT_PRT_DEBUG, 1669 "Invalid Page Type %d Number %d Addr 0x%0x\n", 1670 MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress); 1671 error = EINVAL; 1672 break; 1673 default: 1674 mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n", 1675 req->IOCStatus); 1676 error = EIO; 1677 break; 1678 } 1679 mpt_free_request(mpt, req); 1680 return (error); 1681 } 1682 1683 int 1684 mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1685 CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len, 1686 int sleep_ok, int timeout_ms) 1687 { 1688 request_t *req; 1689 cfgparms_t params; 1690 int error; 1691 1692 req = mpt_get_request(mpt, sleep_ok); 1693 if (req == NULL) { 1694 mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n"); 1695 return (-1); 1696 } 1697 1698 params.Action = Action; 1699 params.PageVersion = hdr->PageVersion; 1700 params.PageLength = 0; 1701 params.PageNumber = hdr->PageNumber; 1702 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1703 params.PageAddress = PageAddress; 1704 params.ExtPageType = hdr->ExtPageType; 1705 params.ExtPageLength = hdr->ExtPageLength; 1706 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1707 req->req_pbuf + MPT_RQSL(mpt), 1708 len, sleep_ok, timeout_ms); 1709 if (error != 0) { 1710 mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action); 1711 return (-1); 1712 } 1713 1714 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1715 mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n", 1716 req->IOCStatus); 1717 mpt_free_request(mpt, req); 1718 return (-1); 1719 } 1720 memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); 1721 mpt_free_request(mpt, req); 1722 return (0); 1723 } 1724 1725 int 1726 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber, 1727 uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt, 1728 int sleep_ok, int timeout_ms) 1729 { 1730 request_t *req; 1731 cfgparms_t params; 1732 MSG_CONFIG *cfgp; 1733 int error; 1734 1735 req = mpt_get_request(mpt, sleep_ok); 1736 if (req == NULL) { 1737 mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n"); 1738 return (ENOMEM); 1739 } 1740 1741 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER; 1742 params.PageVersion = 0; 1743 params.PageLength = 0; 1744 params.PageNumber = PageNumber; 1745 params.PageType = PageType; 1746 params.PageAddress = PageAddress; 1747 error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0, 1748 sleep_ok, timeout_ms); 1749 if (error != 0) { 1750 /* 1751 * Leave the request. Without resetting the chip, it's 1752 * still owned by it and we'll just get into trouble 1753 * freeing it now. Mark it as abandoned so that if it 1754 * shows up later it can be freed. 1755 */ 1756 mpt_prt(mpt, "read_cfg_header timed out\n"); 1757 return (ETIMEDOUT); 1758 } 1759 1760 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { 1761 case MPI_IOCSTATUS_SUCCESS: 1762 cfgp = req->req_vbuf; 1763 bcopy(&cfgp->Header, rslt, sizeof(*rslt)); 1764 error = 0; 1765 break; 1766 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: 1767 mpt_lprt(mpt, MPT_PRT_DEBUG, 1768 "Invalid Page Type %d Number %d Addr 0x%0x\n", 1769 PageType, PageNumber, PageAddress); 1770 error = EINVAL; 1771 break; 1772 default: 1773 mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n", 1774 req->IOCStatus); 1775 error = EIO; 1776 break; 1777 } 1778 mpt_free_request(mpt, req); 1779 return (error); 1780 } 1781 1782 int 1783 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1784 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1785 int timeout_ms) 1786 { 1787 request_t *req; 1788 cfgparms_t params; 1789 int error; 1790 1791 req = mpt_get_request(mpt, sleep_ok); 1792 if (req == NULL) { 1793 mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n"); 1794 return (-1); 1795 } 1796 1797 params.Action = Action; 1798 params.PageVersion = hdr->PageVersion; 1799 params.PageLength = hdr->PageLength; 1800 params.PageNumber = hdr->PageNumber; 1801 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK; 1802 params.PageAddress = PageAddress; 1803 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1804 req->req_pbuf + MPT_RQSL(mpt), 1805 len, sleep_ok, timeout_ms); 1806 if (error != 0) { 1807 mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action); 1808 return (-1); 1809 } 1810 1811 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1812 mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n", 1813 req->IOCStatus); 1814 mpt_free_request(mpt, req); 1815 return (-1); 1816 } 1817 memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); 1818 mpt_free_request(mpt, req); 1819 return (0); 1820 } 1821 1822 int 1823 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1824 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1825 int timeout_ms) 1826 { 1827 request_t *req; 1828 cfgparms_t params; 1829 u_int hdr_attr; 1830 int error; 1831 1832 hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK; 1833 if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE && 1834 hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) { 1835 mpt_prt(mpt, "page type 0x%x not changeable\n", 1836 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK); 1837 return (-1); 1838 } 1839 1840 #if 0 1841 /* 1842 * We shouldn't mask off other bits here. 1843 */ 1844 hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK; 1845 #endif 1846 1847 req = mpt_get_request(mpt, sleep_ok); 1848 if (req == NULL) 1849 return (-1); 1850 1851 memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len); 1852 1853 /* 1854 * There isn't any point in restoring stripped out attributes 1855 * if you then mask them going down to issue the request. 1856 */ 1857 1858 params.Action = Action; 1859 params.PageVersion = hdr->PageVersion; 1860 params.PageLength = hdr->PageLength; 1861 params.PageNumber = hdr->PageNumber; 1862 params.PageAddress = PageAddress; 1863 #if 0 1864 /* Restore stripped out attributes */ 1865 hdr->PageType |= hdr_attr; 1866 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK; 1867 #else 1868 params.PageType = hdr->PageType; 1869 #endif 1870 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1871 req->req_pbuf + MPT_RQSL(mpt), 1872 len, sleep_ok, timeout_ms); 1873 if (error != 0) { 1874 mpt_prt(mpt, "mpt_write_cfg_page timed out\n"); 1875 return (-1); 1876 } 1877 1878 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1879 mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n", 1880 req->IOCStatus); 1881 mpt_free_request(mpt, req); 1882 return (-1); 1883 } 1884 mpt_free_request(mpt, req); 1885 return (0); 1886 } 1887 1888 /* 1889 * Read IOC configuration information 1890 */ 1891 static int 1892 mpt_read_config_info_ioc(struct mpt_softc *mpt) 1893 { 1894 CONFIG_PAGE_HEADER hdr; 1895 struct mpt_raid_volume *mpt_raid; 1896 int rv; 1897 int i; 1898 size_t len; 1899 1900 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 1901 2, 0, &hdr, FALSE, 5000); 1902 /* 1903 * If it's an invalid page, so what? Not a supported function.... 1904 */ 1905 if (rv == EINVAL) { 1906 return (0); 1907 } 1908 if (rv) { 1909 return (rv); 1910 } 1911 1912 mpt_lprt(mpt, MPT_PRT_DEBUG, 1913 "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n", 1914 hdr.PageVersion, hdr.PageLength << 2, 1915 hdr.PageNumber, hdr.PageType); 1916 1917 len = hdr.PageLength * sizeof(uint32_t); 1918 mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1919 if (mpt->ioc_page2 == NULL) { 1920 mpt_prt(mpt, "unable to allocate memory for IOC page 2\n"); 1921 mpt_raid_free_mem(mpt); 1922 return (ENOMEM); 1923 } 1924 memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr)); 1925 rv = mpt_read_cur_cfg_page(mpt, 0, 1926 &mpt->ioc_page2->Header, len, FALSE, 5000); 1927 if (rv) { 1928 mpt_prt(mpt, "failed to read IOC Page 2\n"); 1929 mpt_raid_free_mem(mpt); 1930 return (EIO); 1931 } 1932 mpt2host_config_page_ioc2(mpt->ioc_page2); 1933 1934 if (mpt->ioc_page2->CapabilitiesFlags != 0) { 1935 uint32_t mask; 1936 1937 mpt_prt(mpt, "Capabilities: ("); 1938 for (mask = 1; mask != 0; mask <<= 1) { 1939 if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) { 1940 continue; 1941 } 1942 switch (mask) { 1943 case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT: 1944 mpt_prtc(mpt, " RAID-0"); 1945 break; 1946 case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT: 1947 mpt_prtc(mpt, " RAID-1E"); 1948 break; 1949 case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT: 1950 mpt_prtc(mpt, " RAID-1"); 1951 break; 1952 case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT: 1953 mpt_prtc(mpt, " SES"); 1954 break; 1955 case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT: 1956 mpt_prtc(mpt, " SAFTE"); 1957 break; 1958 case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT: 1959 mpt_prtc(mpt, " Multi-Channel-Arrays"); 1960 default: 1961 break; 1962 } 1963 } 1964 mpt_prtc(mpt, " )\n"); 1965 if ((mpt->ioc_page2->CapabilitiesFlags 1966 & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT 1967 | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT 1968 | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) { 1969 mpt_prt(mpt, "%d Active Volume%s(%d Max)\n", 1970 mpt->ioc_page2->NumActiveVolumes, 1971 mpt->ioc_page2->NumActiveVolumes != 1 1972 ? "s " : " ", 1973 mpt->ioc_page2->MaxVolumes); 1974 mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n", 1975 mpt->ioc_page2->NumActivePhysDisks, 1976 mpt->ioc_page2->NumActivePhysDisks != 1 1977 ? "s " : " ", 1978 mpt->ioc_page2->MaxPhysDisks); 1979 } 1980 } 1981 1982 len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume); 1983 mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1984 if (mpt->raid_volumes == NULL) { 1985 mpt_prt(mpt, "Could not allocate RAID volume data\n"); 1986 mpt_raid_free_mem(mpt); 1987 return (ENOMEM); 1988 } 1989 1990 /* 1991 * Copy critical data out of ioc_page2 so that we can 1992 * safely refresh the page without windows of unreliable 1993 * data. 1994 */ 1995 mpt->raid_max_volumes = mpt->ioc_page2->MaxVolumes; 1996 1997 len = sizeof(*mpt->raid_volumes->config_page) + 1998 (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1)); 1999 for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) { 2000 mpt_raid = &mpt->raid_volumes[i]; 2001 mpt_raid->config_page = 2002 malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2003 if (mpt_raid->config_page == NULL) { 2004 mpt_prt(mpt, "Could not allocate RAID page data\n"); 2005 mpt_raid_free_mem(mpt); 2006 return (ENOMEM); 2007 } 2008 } 2009 mpt->raid_page0_len = len; 2010 2011 len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk); 2012 mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2013 if (mpt->raid_disks == NULL) { 2014 mpt_prt(mpt, "Could not allocate RAID disk data\n"); 2015 mpt_raid_free_mem(mpt); 2016 return (ENOMEM); 2017 } 2018 mpt->raid_max_disks = mpt->ioc_page2->MaxPhysDisks; 2019 2020 /* 2021 * Load page 3. 2022 */ 2023 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 2024 3, 0, &hdr, FALSE, 5000); 2025 if (rv) { 2026 mpt_raid_free_mem(mpt); 2027 return (EIO); 2028 } 2029 2030 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n", 2031 hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType); 2032 2033 len = hdr.PageLength * sizeof(uint32_t); 2034 mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2035 if (mpt->ioc_page3 == NULL) { 2036 mpt_prt(mpt, "unable to allocate memory for IOC page 3\n"); 2037 mpt_raid_free_mem(mpt); 2038 return (ENOMEM); 2039 } 2040 memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr)); 2041 rv = mpt_read_cur_cfg_page(mpt, 0, 2042 &mpt->ioc_page3->Header, len, FALSE, 5000); 2043 if (rv) { 2044 mpt_raid_free_mem(mpt); 2045 return (EIO); 2046 } 2047 mpt2host_config_page_ioc3(mpt->ioc_page3); 2048 mpt_raid_wakeup(mpt); 2049 return (0); 2050 } 2051 2052 /* 2053 * Enable IOC port 2054 */ 2055 static int 2056 mpt_send_port_enable(struct mpt_softc *mpt, int port) 2057 { 2058 request_t *req; 2059 MSG_PORT_ENABLE *enable_req; 2060 int error; 2061 2062 req = mpt_get_request(mpt, /*sleep_ok*/FALSE); 2063 if (req == NULL) 2064 return (-1); 2065 2066 enable_req = req->req_vbuf; 2067 memset(enable_req, 0, MPT_RQSL(mpt)); 2068 2069 enable_req->Function = MPI_FUNCTION_PORT_ENABLE; 2070 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 2071 enable_req->PortNumber = port; 2072 2073 mpt_check_doorbell(mpt); 2074 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port); 2075 2076 mpt_send_cmd(mpt, req); 2077 error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 2078 FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000); 2079 if (error != 0) { 2080 mpt_prt(mpt, "port %d enable timed out\n", port); 2081 return (-1); 2082 } 2083 mpt_free_request(mpt, req); 2084 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port); 2085 return (0); 2086 } 2087 2088 /* 2089 * Enable/Disable asynchronous event reporting. 2090 */ 2091 static int 2092 mpt_send_event_request(struct mpt_softc *mpt, int onoff) 2093 { 2094 request_t *req; 2095 MSG_EVENT_NOTIFY *enable_req; 2096 2097 req = mpt_get_request(mpt, FALSE); 2098 if (req == NULL) { 2099 return (ENOMEM); 2100 } 2101 enable_req = req->req_vbuf; 2102 memset(enable_req, 0, sizeof *enable_req); 2103 2104 enable_req->Function = MPI_FUNCTION_EVENT_NOTIFICATION; 2105 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS); 2106 enable_req->Switch = onoff; 2107 2108 mpt_check_doorbell(mpt); 2109 mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n", 2110 onoff ? "en" : "dis"); 2111 /* 2112 * Send the command off, but don't wait for it. 2113 */ 2114 mpt_send_cmd(mpt, req); 2115 return (0); 2116 } 2117 2118 /* 2119 * Un-mask the interrupts on the chip. 2120 */ 2121 void 2122 mpt_enable_ints(struct mpt_softc *mpt) 2123 { 2124 2125 /* Unmask every thing except door bell int */ 2126 mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK); 2127 } 2128 2129 /* 2130 * Mask the interrupts on the chip. 2131 */ 2132 void 2133 mpt_disable_ints(struct mpt_softc *mpt) 2134 { 2135 2136 /* Mask all interrupts */ 2137 mpt_write(mpt, MPT_OFFSET_INTR_MASK, 2138 MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK); 2139 } 2140 2141 static void 2142 mpt_sysctl_attach(struct mpt_softc *mpt) 2143 { 2144 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev); 2145 struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev); 2146 2147 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2148 "debug", CTLFLAG_RW, &mpt->verbose, 0, 2149 "Debugging/Verbose level"); 2150 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2151 "role", CTLFLAG_RD, &mpt->role, 0, 2152 "HBA role"); 2153 #ifdef MPT_TEST_MULTIPATH 2154 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2155 "failure_id", CTLFLAG_RW, &mpt->failure_id, -1, 2156 "Next Target to Fail"); 2157 #endif 2158 } 2159 2160 int 2161 mpt_attach(struct mpt_softc *mpt) 2162 { 2163 struct mpt_personality *pers; 2164 int i; 2165 int error; 2166 2167 mpt_core_attach(mpt); 2168 mpt_core_enable(mpt); 2169 2170 TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links); 2171 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 2172 pers = mpt_personalities[i]; 2173 if (pers == NULL) { 2174 continue; 2175 } 2176 if (pers->probe(mpt) == 0) { 2177 error = pers->attach(mpt); 2178 if (error != 0) { 2179 mpt_detach(mpt); 2180 return (error); 2181 } 2182 mpt->mpt_pers_mask |= (0x1 << pers->id); 2183 pers->use_count++; 2184 } 2185 } 2186 2187 /* 2188 * Now that we've attached everything, do the enable function 2189 * for all of the personalities. This allows the personalities 2190 * to do setups that are appropriate for them prior to enabling 2191 * any ports. 2192 */ 2193 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 2194 pers = mpt_personalities[i]; 2195 if (pers != NULL && MPT_PERS_ATTACHED(pers, mpt) != 0) { 2196 error = pers->enable(mpt); 2197 if (error != 0) { 2198 mpt_prt(mpt, "personality %s attached but would" 2199 " not enable (%d)\n", pers->name, error); 2200 mpt_detach(mpt); 2201 return (error); 2202 } 2203 } 2204 } 2205 return (0); 2206 } 2207 2208 int 2209 mpt_shutdown(struct mpt_softc *mpt) 2210 { 2211 struct mpt_personality *pers; 2212 2213 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2214 pers->shutdown(mpt); 2215 } 2216 return (0); 2217 } 2218 2219 int 2220 mpt_detach(struct mpt_softc *mpt) 2221 { 2222 struct mpt_personality *pers; 2223 2224 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2225 pers->detach(mpt); 2226 mpt->mpt_pers_mask &= ~(0x1 << pers->id); 2227 pers->use_count--; 2228 } 2229 TAILQ_REMOVE(&mpt_tailq, mpt, links); 2230 return (0); 2231 } 2232 2233 static int 2234 mpt_core_load(struct mpt_personality *pers) 2235 { 2236 int i; 2237 2238 /* 2239 * Setup core handlers and insert the default handler 2240 * into all "empty slots". 2241 */ 2242 for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) { 2243 mpt_reply_handlers[i] = mpt_default_reply_handler; 2244 } 2245 2246 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] = 2247 mpt_event_reply_handler; 2248 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] = 2249 mpt_config_reply_handler; 2250 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] = 2251 mpt_handshake_reply_handler; 2252 return (0); 2253 } 2254 2255 /* 2256 * Initialize per-instance driver data and perform 2257 * initial controller configuration. 2258 */ 2259 static int 2260 mpt_core_attach(struct mpt_softc *mpt) 2261 { 2262 int val, error; 2263 2264 LIST_INIT(&mpt->ack_frames); 2265 /* Put all request buffers on the free list */ 2266 TAILQ_INIT(&mpt->request_pending_list); 2267 TAILQ_INIT(&mpt->request_free_list); 2268 TAILQ_INIT(&mpt->request_timeout_list); 2269 for (val = 0; val < MPT_MAX_LUNS; val++) { 2270 STAILQ_INIT(&mpt->trt[val].atios); 2271 STAILQ_INIT(&mpt->trt[val].inots); 2272 } 2273 STAILQ_INIT(&mpt->trt_wildcard.atios); 2274 STAILQ_INIT(&mpt->trt_wildcard.inots); 2275 #ifdef MPT_TEST_MULTIPATH 2276 mpt->failure_id = -1; 2277 #endif 2278 mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE; 2279 mpt_sysctl_attach(mpt); 2280 mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n", 2281 mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL))); 2282 2283 MPT_LOCK(mpt); 2284 error = mpt_configure_ioc(mpt, 0, 0); 2285 MPT_UNLOCK(mpt); 2286 2287 return (error); 2288 } 2289 2290 static int 2291 mpt_core_enable(struct mpt_softc *mpt) 2292 { 2293 2294 /* 2295 * We enter with the IOC enabled, but async events 2296 * not enabled, ports not enabled and interrupts 2297 * not enabled. 2298 */ 2299 MPT_LOCK(mpt); 2300 2301 /* 2302 * Enable asynchronous event reporting- all personalities 2303 * have attached so that they should be able to now field 2304 * async events. 2305 */ 2306 mpt_send_event_request(mpt, 1); 2307 2308 /* 2309 * Catch any pending interrupts 2310 * 2311 * This seems to be crucial- otherwise 2312 * the portenable below times out. 2313 */ 2314 mpt_intr(mpt); 2315 2316 /* 2317 * Enable Interrupts 2318 */ 2319 mpt_enable_ints(mpt); 2320 2321 /* 2322 * Catch any pending interrupts 2323 * 2324 * This seems to be crucial- otherwise 2325 * the portenable below times out. 2326 */ 2327 mpt_intr(mpt); 2328 2329 /* 2330 * Enable the port. 2331 */ 2332 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2333 mpt_prt(mpt, "failed to enable port 0\n"); 2334 MPT_UNLOCK(mpt); 2335 return (ENXIO); 2336 } 2337 MPT_UNLOCK(mpt); 2338 return (0); 2339 } 2340 2341 static void 2342 mpt_core_shutdown(struct mpt_softc *mpt) 2343 { 2344 2345 mpt_disable_ints(mpt); 2346 } 2347 2348 static void 2349 mpt_core_detach(struct mpt_softc *mpt) 2350 { 2351 int val; 2352 2353 /* 2354 * XXX: FREE MEMORY 2355 */ 2356 mpt_disable_ints(mpt); 2357 2358 /* Make sure no request has pending timeouts. */ 2359 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { 2360 request_t *req = &mpt->request_pool[val]; 2361 mpt_callout_drain(mpt, &req->callout); 2362 } 2363 2364 mpt_dma_buf_free(mpt); 2365 } 2366 2367 static int 2368 mpt_core_unload(struct mpt_personality *pers) 2369 { 2370 2371 /* Unload is always successful. */ 2372 return (0); 2373 } 2374 2375 #define FW_UPLOAD_REQ_SIZE \ 2376 (sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION) \ 2377 + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32)) 2378 2379 static int 2380 mpt_upload_fw(struct mpt_softc *mpt) 2381 { 2382 uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE]; 2383 MSG_FW_UPLOAD_REPLY fw_reply; 2384 MSG_FW_UPLOAD *fw_req; 2385 FW_UPLOAD_TCSGE *tsge; 2386 SGE_SIMPLE32 *sge; 2387 uint32_t flags; 2388 int error; 2389 2390 memset(&fw_req_buf, 0, sizeof(fw_req_buf)); 2391 fw_req = (MSG_FW_UPLOAD *)fw_req_buf; 2392 fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM; 2393 fw_req->Function = MPI_FUNCTION_FW_UPLOAD; 2394 fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 2395 tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL; 2396 tsge->DetailsLength = 12; 2397 tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT; 2398 tsge->ImageSize = htole32(mpt->fw_image_size); 2399 sge = (SGE_SIMPLE32 *)(tsge + 1); 2400 flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER 2401 | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT 2402 | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST); 2403 flags <<= MPI_SGE_FLAGS_SHIFT; 2404 sge->FlagsLength = htole32(flags | mpt->fw_image_size); 2405 sge->Address = htole32(mpt->fw_phys); 2406 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD); 2407 error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf); 2408 if (error) 2409 return(error); 2410 error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply); 2411 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD); 2412 return (error); 2413 } 2414 2415 static void 2416 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr, 2417 uint32_t *data, bus_size_t len) 2418 { 2419 uint32_t *data_end; 2420 2421 data_end = data + (roundup2(len, sizeof(uint32_t)) / 4); 2422 if (mpt->is_sas) { 2423 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2424 } 2425 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr); 2426 while (data != data_end) { 2427 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data); 2428 data++; 2429 } 2430 if (mpt->is_sas) { 2431 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2432 } 2433 } 2434 2435 static int 2436 mpt_download_fw(struct mpt_softc *mpt) 2437 { 2438 MpiFwHeader_t *fw_hdr; 2439 int error; 2440 uint32_t ext_offset; 2441 uint32_t data; 2442 2443 if (mpt->pci_pio_reg == NULL) { 2444 mpt_prt(mpt, "No PIO resource!\n"); 2445 return (ENXIO); 2446 } 2447 2448 mpt_prt(mpt, "Downloading Firmware - Image Size %d\n", 2449 mpt->fw_image_size); 2450 2451 error = mpt_enable_diag_mode(mpt); 2452 if (error != 0) { 2453 mpt_prt(mpt, "Could not enter diagnostic mode!\n"); 2454 return (EIO); 2455 } 2456 2457 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, 2458 MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM); 2459 2460 fw_hdr = (MpiFwHeader_t *)mpt->fw_image; 2461 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE); 2462 mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr, 2463 fw_hdr->ImageSize); 2464 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE); 2465 2466 ext_offset = fw_hdr->NextImageHeaderOffset; 2467 while (ext_offset != 0) { 2468 MpiExtImageHeader_t *ext; 2469 2470 ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset); 2471 ext_offset = ext->NextImageHeaderOffset; 2472 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, 2473 BUS_DMASYNC_PREWRITE); 2474 mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext, 2475 ext->ImageSize); 2476 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, 2477 BUS_DMASYNC_POSTWRITE); 2478 } 2479 2480 if (mpt->is_sas) { 2481 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2482 } 2483 /* Setup the address to jump to on reset. */ 2484 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr); 2485 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue); 2486 2487 /* 2488 * The controller sets the "flash bad" status after attempting 2489 * to auto-boot from flash. Clear the status so that the controller 2490 * will continue the boot process with our newly installed firmware. 2491 */ 2492 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2493 data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL; 2494 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2495 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data); 2496 2497 if (mpt->is_sas) { 2498 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2499 } 2500 2501 /* 2502 * Re-enable the processor and clear the boot halt flag. 2503 */ 2504 data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 2505 data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM); 2506 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data); 2507 2508 mpt_disable_diag_mode(mpt); 2509 return (0); 2510 } 2511 2512 static int 2513 mpt_dma_buf_alloc(struct mpt_softc *mpt) 2514 { 2515 struct mpt_map_info mi; 2516 uint8_t *vptr; 2517 uint32_t pptr, end; 2518 int i, error; 2519 2520 /* Create a child tag for data buffers */ 2521 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 2522 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 2523 NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE, 2524 mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0, 2525 &mpt->buffer_dmat) != 0) { 2526 mpt_prt(mpt, "cannot create a dma tag for data buffers\n"); 2527 return (1); 2528 } 2529 2530 /* Create a child tag for request buffers */ 2531 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0, 2532 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 2533 NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0, 2534 &mpt->request_dmat) != 0) { 2535 mpt_prt(mpt, "cannot create a dma tag for requests\n"); 2536 return (1); 2537 } 2538 2539 /* Allocate some DMA accessible memory for requests */ 2540 if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request, 2541 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) { 2542 mpt_prt(mpt, "cannot allocate %d bytes of request memory\n", 2543 MPT_REQ_MEM_SIZE(mpt)); 2544 return (1); 2545 } 2546 2547 mi.mpt = mpt; 2548 mi.error = 0; 2549 2550 /* Load and lock it into "bus space" */ 2551 bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request, 2552 MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0); 2553 2554 if (mi.error) { 2555 mpt_prt(mpt, "error %d loading dma map for DMA request queue\n", 2556 mi.error); 2557 return (1); 2558 } 2559 mpt->request_phys = mi.phys; 2560 2561 /* 2562 * Now create per-request dma maps 2563 */ 2564 i = 0; 2565 pptr = mpt->request_phys; 2566 vptr = mpt->request; 2567 end = pptr + MPT_REQ_MEM_SIZE(mpt); 2568 while(pptr < end) { 2569 request_t *req = &mpt->request_pool[i]; 2570 req->index = i++; 2571 2572 /* Store location of Request Data */ 2573 req->req_pbuf = pptr; 2574 req->req_vbuf = vptr; 2575 2576 pptr += MPT_REQUEST_AREA; 2577 vptr += MPT_REQUEST_AREA; 2578 2579 req->sense_pbuf = (pptr - MPT_SENSE_SIZE); 2580 req->sense_vbuf = (vptr - MPT_SENSE_SIZE); 2581 2582 error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap); 2583 if (error) { 2584 mpt_prt(mpt, "error %d creating per-cmd DMA maps\n", 2585 error); 2586 return (1); 2587 } 2588 } 2589 2590 return (0); 2591 } 2592 2593 static void 2594 mpt_dma_buf_free(struct mpt_softc *mpt) 2595 { 2596 int i; 2597 2598 if (mpt->request_dmat == 0) { 2599 mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n"); 2600 return; 2601 } 2602 for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) { 2603 bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap); 2604 } 2605 bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap); 2606 bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap); 2607 bus_dma_tag_destroy(mpt->request_dmat); 2608 mpt->request_dmat = 0; 2609 bus_dma_tag_destroy(mpt->buffer_dmat); 2610 } 2611 2612 /* 2613 * Allocate/Initialize data structures for the controller. Called 2614 * once at instance startup. 2615 */ 2616 static int 2617 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset) 2618 { 2619 PTR_MSG_PORT_FACTS_REPLY pfp; 2620 int error, port, val; 2621 size_t len; 2622 2623 if (tn == MPT_MAX_TRYS) { 2624 return (-1); 2625 } 2626 2627 /* 2628 * No need to reset if the IOC is already in the READY state. 2629 * 2630 * Force reset if initialization failed previously. 2631 * Note that a hard_reset of the second channel of a '929 2632 * will stop operation of the first channel. Hopefully, if the 2633 * first channel is ok, the second will not require a hard 2634 * reset. 2635 */ 2636 if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) { 2637 if (mpt_reset(mpt, FALSE) != MPT_OK) { 2638 return (mpt_configure_ioc(mpt, tn++, 1)); 2639 } 2640 needreset = 0; 2641 } 2642 2643 if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) { 2644 mpt_prt(mpt, "mpt_get_iocfacts failed\n"); 2645 return (mpt_configure_ioc(mpt, tn++, 1)); 2646 } 2647 mpt2host_iocfacts_reply(&mpt->ioc_facts); 2648 2649 mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n", 2650 mpt->ioc_facts.MsgVersion >> 8, 2651 mpt->ioc_facts.MsgVersion & 0xFF, 2652 mpt->ioc_facts.HeaderVersion >> 8, 2653 mpt->ioc_facts.HeaderVersion & 0xFF); 2654 2655 /* 2656 * Now that we know request frame size, we can calculate 2657 * the actual (reasonable) segment limit for read/write I/O. 2658 * 2659 * This limit is constrained by: 2660 * 2661 * + The size of each area we allocate per command (and how 2662 * many chain segments we can fit into it). 2663 * + The total number of areas we've set up. 2664 * + The actual chain depth the card will allow. 2665 * 2666 * The first area's segment count is limited by the I/O request 2667 * at the head of it. We cannot allocate realistically more 2668 * than MPT_MAX_REQUESTS areas. Therefore, to account for both 2669 * conditions, we'll just start out with MPT_MAX_REQUESTS-2. 2670 * 2671 */ 2672 /* total number of request areas we (can) allocate */ 2673 mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2; 2674 2675 /* converted to the number of chain areas possible */ 2676 mpt->max_seg_cnt *= MPT_NRFM(mpt); 2677 2678 /* limited by the number of chain areas the card will support */ 2679 if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) { 2680 mpt_lprt(mpt, MPT_PRT_INFO, 2681 "chain depth limited to %u (from %u)\n", 2682 mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt); 2683 mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth; 2684 } 2685 2686 /* converted to the number of simple sges in chain segments. */ 2687 mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1); 2688 2689 /* 2690 * Use this as the basis for reporting the maximum I/O size to CAM. 2691 */ 2692 mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, btoc(maxphys) + 1); 2693 2694 /* XXX Lame Locking! */ 2695 MPT_UNLOCK(mpt); 2696 error = mpt_dma_buf_alloc(mpt); 2697 MPT_LOCK(mpt); 2698 2699 if (error != 0) { 2700 mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n"); 2701 return (EIO); 2702 } 2703 2704 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { 2705 request_t *req = &mpt->request_pool[val]; 2706 req->state = REQ_STATE_ALLOCATED; 2707 mpt_callout_init(mpt, &req->callout); 2708 mpt_free_request(mpt, req); 2709 } 2710 2711 mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum " 2712 "CAM Segment Count: %u\n", mpt->max_seg_cnt, 2713 mpt->max_cam_seg_cnt); 2714 2715 mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n", 2716 mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber); 2717 mpt_lprt(mpt, MPT_PRT_INFO, 2718 "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes " 2719 "Request Frame Size %u bytes Max Chain Depth %u\n", 2720 mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize, 2721 mpt->ioc_facts.RequestFrameSize << 2, 2722 mpt->ioc_facts.MaxChainDepth); 2723 mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, " 2724 "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts, 2725 mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags); 2726 2727 len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY); 2728 mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2729 if (mpt->port_facts == NULL) { 2730 mpt_prt(mpt, "unable to allocate memory for port facts\n"); 2731 return (ENOMEM); 2732 } 2733 2734 if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) && 2735 (mpt->fw_uploaded == 0)) { 2736 struct mpt_map_info mi; 2737 2738 /* 2739 * In some configurations, the IOC's firmware is 2740 * stored in a shared piece of system NVRAM that 2741 * is only accessible via the BIOS. In this 2742 * case, the firmware keeps a copy of firmware in 2743 * RAM until the OS driver retrieves it. Once 2744 * retrieved, we are responsible for re-downloading 2745 * the firmware after any hard-reset. 2746 */ 2747 MPT_UNLOCK(mpt); 2748 mpt->fw_image_size = mpt->ioc_facts.FWImageSize; 2749 error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0, 2750 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 2751 mpt->fw_image_size, 1, mpt->fw_image_size, 0, 2752 &mpt->fw_dmat); 2753 if (error != 0) { 2754 mpt_prt(mpt, "cannot create firmware dma tag\n"); 2755 MPT_LOCK(mpt); 2756 return (ENOMEM); 2757 } 2758 error = bus_dmamem_alloc(mpt->fw_dmat, 2759 (void **)&mpt->fw_image, BUS_DMA_NOWAIT | 2760 BUS_DMA_COHERENT, &mpt->fw_dmap); 2761 if (error != 0) { 2762 mpt_prt(mpt, "cannot allocate firmware memory\n"); 2763 bus_dma_tag_destroy(mpt->fw_dmat); 2764 MPT_LOCK(mpt); 2765 return (ENOMEM); 2766 } 2767 mi.mpt = mpt; 2768 mi.error = 0; 2769 bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap, 2770 mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0); 2771 mpt->fw_phys = mi.phys; 2772 2773 MPT_LOCK(mpt); 2774 error = mpt_upload_fw(mpt); 2775 if (error != 0) { 2776 mpt_prt(mpt, "firmware upload failed.\n"); 2777 bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap); 2778 bus_dmamem_free(mpt->fw_dmat, mpt->fw_image, 2779 mpt->fw_dmap); 2780 bus_dma_tag_destroy(mpt->fw_dmat); 2781 mpt->fw_image = NULL; 2782 return (EIO); 2783 } 2784 mpt->fw_uploaded = 1; 2785 } 2786 2787 for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) { 2788 pfp = &mpt->port_facts[port]; 2789 error = mpt_get_portfacts(mpt, 0, pfp); 2790 if (error != MPT_OK) { 2791 mpt_prt(mpt, 2792 "mpt_get_portfacts on port %d failed\n", port); 2793 free(mpt->port_facts, M_DEVBUF); 2794 mpt->port_facts = NULL; 2795 return (mpt_configure_ioc(mpt, tn++, 1)); 2796 } 2797 mpt2host_portfacts_reply(pfp); 2798 2799 if (port > 0) { 2800 error = MPT_PRT_INFO; 2801 } else { 2802 error = MPT_PRT_DEBUG; 2803 } 2804 mpt_lprt(mpt, error, 2805 "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n", 2806 port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID, 2807 pfp->MaxDevices); 2808 } 2809 2810 /* 2811 * XXX: Not yet supporting more than port 0 2812 */ 2813 pfp = &mpt->port_facts[0]; 2814 if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) { 2815 mpt->is_fc = 1; 2816 mpt->is_sas = 0; 2817 mpt->is_spi = 0; 2818 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) { 2819 mpt->is_fc = 0; 2820 mpt->is_sas = 1; 2821 mpt->is_spi = 0; 2822 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) { 2823 mpt->is_fc = 0; 2824 mpt->is_sas = 0; 2825 mpt->is_spi = 1; 2826 if (mpt->mpt_ini_id == MPT_INI_ID_NONE) 2827 mpt->mpt_ini_id = pfp->PortSCSIID; 2828 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) { 2829 mpt_prt(mpt, "iSCSI not supported yet\n"); 2830 return (ENXIO); 2831 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) { 2832 mpt_prt(mpt, "Inactive Port\n"); 2833 return (ENXIO); 2834 } else { 2835 mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType); 2836 return (ENXIO); 2837 } 2838 2839 /* 2840 * Set our role with what this port supports. 2841 * 2842 * Note this might be changed later in different modules 2843 * if this is different from what is wanted. 2844 */ 2845 mpt->role = MPT_ROLE_NONE; 2846 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) { 2847 mpt->role |= MPT_ROLE_INITIATOR; 2848 } 2849 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) { 2850 mpt->role |= MPT_ROLE_TARGET; 2851 } 2852 2853 /* 2854 * Enable the IOC 2855 */ 2856 if (mpt_enable_ioc(mpt, 1) != MPT_OK) { 2857 mpt_prt(mpt, "unable to initialize IOC\n"); 2858 return (ENXIO); 2859 } 2860 2861 /* 2862 * Read IOC configuration information. 2863 * 2864 * We need this to determine whether or not we have certain 2865 * settings for Integrated Mirroring (e.g.). 2866 */ 2867 mpt_read_config_info_ioc(mpt); 2868 2869 return (0); 2870 } 2871 2872 static int 2873 mpt_enable_ioc(struct mpt_softc *mpt, int portenable) 2874 { 2875 uint32_t pptr; 2876 int val; 2877 2878 if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) { 2879 mpt_prt(mpt, "mpt_send_ioc_init failed\n"); 2880 return (EIO); 2881 } 2882 2883 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n"); 2884 2885 if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) { 2886 mpt_prt(mpt, "IOC failed to go to run state\n"); 2887 return (ENXIO); 2888 } 2889 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n"); 2890 2891 /* 2892 * Give it reply buffers 2893 * 2894 * Do *not* exceed global credits. 2895 */ 2896 for (val = 0, pptr = mpt->reply_phys; 2897 (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE); 2898 pptr += MPT_REPLY_SIZE) { 2899 mpt_free_reply(mpt, pptr); 2900 if (++val == mpt->ioc_facts.GlobalCredits - 1) 2901 break; 2902 } 2903 2904 /* 2905 * Enable the port if asked. This is only done if we're resetting 2906 * the IOC after initial startup. 2907 */ 2908 if (portenable) { 2909 /* 2910 * Enable asynchronous event reporting 2911 */ 2912 mpt_send_event_request(mpt, 1); 2913 2914 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2915 mpt_prt(mpt, "%s: failed to enable port 0\n", __func__); 2916 return (ENXIO); 2917 } 2918 } 2919 return (MPT_OK); 2920 } 2921 2922 /* 2923 * Endian Conversion Functions- only used on Big Endian machines 2924 */ 2925 #if _BYTE_ORDER == _BIG_ENDIAN 2926 void 2927 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge) 2928 { 2929 2930 MPT_2_HOST32(sge, FlagsLength); 2931 MPT_2_HOST32(sge, u.Address64.Low); 2932 MPT_2_HOST32(sge, u.Address64.High); 2933 } 2934 2935 void 2936 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp) 2937 { 2938 2939 MPT_2_HOST16(rp, MsgVersion); 2940 MPT_2_HOST16(rp, HeaderVersion); 2941 MPT_2_HOST32(rp, MsgContext); 2942 MPT_2_HOST16(rp, IOCExceptions); 2943 MPT_2_HOST16(rp, IOCStatus); 2944 MPT_2_HOST32(rp, IOCLogInfo); 2945 MPT_2_HOST16(rp, ReplyQueueDepth); 2946 MPT_2_HOST16(rp, RequestFrameSize); 2947 MPT_2_HOST16(rp, Reserved_0101_FWVersion); 2948 MPT_2_HOST16(rp, ProductID); 2949 MPT_2_HOST32(rp, CurrentHostMfaHighAddr); 2950 MPT_2_HOST16(rp, GlobalCredits); 2951 MPT_2_HOST32(rp, CurrentSenseBufferHighAddr); 2952 MPT_2_HOST16(rp, CurReplyFrameSize); 2953 MPT_2_HOST32(rp, FWImageSize); 2954 MPT_2_HOST32(rp, IOCCapabilities); 2955 MPT_2_HOST32(rp, FWVersion.Word); 2956 MPT_2_HOST16(rp, HighPriorityQueueDepth); 2957 MPT_2_HOST16(rp, Reserved2); 2958 mpt2host_sge_simple_union(&rp->HostPageBufferSGE); 2959 MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr); 2960 } 2961 2962 void 2963 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp) 2964 { 2965 2966 MPT_2_HOST16(pfp, Reserved); 2967 MPT_2_HOST16(pfp, Reserved1); 2968 MPT_2_HOST32(pfp, MsgContext); 2969 MPT_2_HOST16(pfp, Reserved2); 2970 MPT_2_HOST16(pfp, IOCStatus); 2971 MPT_2_HOST32(pfp, IOCLogInfo); 2972 MPT_2_HOST16(pfp, MaxDevices); 2973 MPT_2_HOST16(pfp, PortSCSIID); 2974 MPT_2_HOST16(pfp, ProtocolFlags); 2975 MPT_2_HOST16(pfp, MaxPostedCmdBuffers); 2976 MPT_2_HOST16(pfp, MaxPersistentIDs); 2977 MPT_2_HOST16(pfp, MaxLanBuckets); 2978 MPT_2_HOST16(pfp, Reserved4); 2979 MPT_2_HOST32(pfp, Reserved5); 2980 } 2981 2982 void 2983 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2) 2984 { 2985 int i; 2986 2987 MPT_2_HOST32(ioc2, CapabilitiesFlags); 2988 for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) { 2989 MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3); 2990 } 2991 } 2992 2993 void 2994 mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3) 2995 { 2996 2997 MPT_2_HOST16(ioc3, Reserved2); 2998 } 2999 3000 void 3001 mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0) 3002 { 3003 3004 MPT_2_HOST32(sp0, Capabilities); 3005 MPT_2_HOST32(sp0, PhysicalInterface); 3006 } 3007 3008 void 3009 mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1) 3010 { 3011 3012 MPT_2_HOST32(sp1, Configuration); 3013 MPT_2_HOST32(sp1, OnBusTimerValue); 3014 MPT_2_HOST16(sp1, IDConfig); 3015 } 3016 3017 void 3018 host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1) 3019 { 3020 3021 HOST_2_MPT32(sp1, Configuration); 3022 HOST_2_MPT32(sp1, OnBusTimerValue); 3023 HOST_2_MPT16(sp1, IDConfig); 3024 } 3025 3026 void 3027 mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2) 3028 { 3029 int i; 3030 3031 MPT_2_HOST32(sp2, PortFlags); 3032 MPT_2_HOST32(sp2, PortSettings); 3033 for (i = 0; i < sizeof(sp2->DeviceSettings) / 3034 sizeof(*sp2->DeviceSettings); i++) { 3035 MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags); 3036 } 3037 } 3038 3039 void 3040 mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0) 3041 { 3042 3043 MPT_2_HOST32(sd0, NegotiatedParameters); 3044 MPT_2_HOST32(sd0, Information); 3045 } 3046 3047 void 3048 mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1) 3049 { 3050 3051 MPT_2_HOST32(sd1, RequestedParameters); 3052 MPT_2_HOST32(sd1, Reserved); 3053 MPT_2_HOST32(sd1, Configuration); 3054 } 3055 3056 void 3057 host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1) 3058 { 3059 3060 HOST_2_MPT32(sd1, RequestedParameters); 3061 HOST_2_MPT32(sd1, Reserved); 3062 HOST_2_MPT32(sd1, Configuration); 3063 } 3064 3065 void 3066 mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0) 3067 { 3068 3069 MPT_2_HOST32(fp0, Flags); 3070 MPT_2_HOST32(fp0, PortIdentifier); 3071 MPT_2_HOST32(fp0, WWNN.Low); 3072 MPT_2_HOST32(fp0, WWNN.High); 3073 MPT_2_HOST32(fp0, WWPN.Low); 3074 MPT_2_HOST32(fp0, WWPN.High); 3075 MPT_2_HOST32(fp0, SupportedServiceClass); 3076 MPT_2_HOST32(fp0, SupportedSpeeds); 3077 MPT_2_HOST32(fp0, CurrentSpeed); 3078 MPT_2_HOST32(fp0, MaxFrameSize); 3079 MPT_2_HOST32(fp0, FabricWWNN.Low); 3080 MPT_2_HOST32(fp0, FabricWWNN.High); 3081 MPT_2_HOST32(fp0, FabricWWPN.Low); 3082 MPT_2_HOST32(fp0, FabricWWPN.High); 3083 MPT_2_HOST32(fp0, DiscoveredPortsCount); 3084 MPT_2_HOST32(fp0, MaxInitiators); 3085 } 3086 3087 void 3088 mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1) 3089 { 3090 3091 MPT_2_HOST32(fp1, Flags); 3092 MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low); 3093 MPT_2_HOST32(fp1, NoSEEPROMWWNN.High); 3094 MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low); 3095 MPT_2_HOST32(fp1, NoSEEPROMWWPN.High); 3096 } 3097 3098 void 3099 host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1) 3100 { 3101 3102 HOST_2_MPT32(fp1, Flags); 3103 HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low); 3104 HOST_2_MPT32(fp1, NoSEEPROMWWNN.High); 3105 HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low); 3106 HOST_2_MPT32(fp1, NoSEEPROMWWPN.High); 3107 } 3108 3109 void 3110 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp) 3111 { 3112 int i; 3113 3114 MPT_2_HOST16(volp, VolumeStatus.Reserved); 3115 MPT_2_HOST16(volp, VolumeSettings.Settings); 3116 MPT_2_HOST32(volp, MaxLBA); 3117 MPT_2_HOST32(volp, MaxLBAHigh); 3118 MPT_2_HOST32(volp, StripeSize); 3119 MPT_2_HOST32(volp, Reserved2); 3120 MPT_2_HOST32(volp, Reserved3); 3121 for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) { 3122 MPT_2_HOST16(volp, PhysDisk[i].Reserved); 3123 } 3124 } 3125 3126 void 3127 mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0) 3128 { 3129 3130 MPT_2_HOST32(rpd0, Reserved1); 3131 MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved); 3132 MPT_2_HOST32(rpd0, MaxLBA); 3133 MPT_2_HOST16(rpd0, ErrorData.Reserved); 3134 MPT_2_HOST16(rpd0, ErrorData.ErrorCount); 3135 MPT_2_HOST16(rpd0, ErrorData.SmartCount); 3136 } 3137 3138 void 3139 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi) 3140 { 3141 3142 MPT_2_HOST16(vi, TotalBlocks.High); 3143 MPT_2_HOST16(vi, TotalBlocks.Low); 3144 MPT_2_HOST16(vi, BlocksRemaining.High); 3145 MPT_2_HOST16(vi, BlocksRemaining.Low); 3146 } 3147 #endif 3148