xref: /freebsd/sys/dev/mpt/mpt.c (revision 774f94f14c92bf94afc21d8c8d7a1e8f2fdf5a48)
1 /*-
2  * Generic routines for LSI Fusion adapters.
3  * FreeBSD Version.
4  *
5  * Copyright (c) 2000, 2001 by Greg Ansley
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice immediately at the beginning of the file, without modification,
12  *    this list of conditions, and the following disclaimer.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 /*-
29  * Copyright (c) 2002, 2006 by Matthew Jacob
30  * All rights reserved.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions are
34  * met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
38  *    substantially similar to the "NO WARRANTY" disclaimer below
39  *    ("Disclaimer") and any redistribution must be conditioned upon including
40  *    a substantially similar Disclaimer requirement for further binary
41  *    redistribution.
42  * 3. Neither the names of the above listed copyright holders nor the names
43  *    of any contributors may be used to endorse or promote products derived
44  *    from this software without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
47  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
50  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
56  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
57  *
58  * Support from Chris Ellsworth in order to make SAS adapters work
59  * is gratefully acknowledged.
60  *
61  *
62  * Support from LSI-Logic has also gone a great deal toward making this a
63  * workable subsystem and is gratefully acknowledged.
64  */
65 /*-
66  * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
67  * Copyright (c) 2005, WHEEL Sp. z o.o.
68  * Copyright (c) 2004, 2005 Justin T. Gibbs
69  * All rights reserved.
70  *
71  * Redistribution and use in source and binary forms, with or without
72  * modification, are permitted provided that the following conditions are
73  * met:
74  * 1. Redistributions of source code must retain the above copyright
75  *    notice, this list of conditions and the following disclaimer.
76  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
77  *    substantially similar to the "NO WARRANTY" disclaimer below
78  *    ("Disclaimer") and any redistribution must be conditioned upon including
79  *    a substantially similar Disclaimer requirement for further binary
80  *    redistribution.
81  * 3. Neither the names of the above listed copyright holders nor the names
82  *    of any contributors may be used to endorse or promote products derived
83  *    from this software without specific prior written permission.
84  *
85  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
86  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
89  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
90  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
91  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
92  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
93  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
94  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
95  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
96  */
97 
98 #include <sys/cdefs.h>
99 __FBSDID("$FreeBSD$");
100 
101 #include <dev/mpt/mpt.h>
102 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
103 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
104 
105 #include <dev/mpt/mpilib/mpi.h>
106 #include <dev/mpt/mpilib/mpi_ioc.h>
107 #include <dev/mpt/mpilib/mpi_fc.h>
108 #include <dev/mpt/mpilib/mpi_targ.h>
109 
110 #include <sys/sysctl.h>
111 
112 #define MPT_MAX_TRYS 3
113 #define MPT_MAX_WAIT 300000
114 
115 static int maxwait_ack = 0;
116 static int maxwait_int = 0;
117 static int maxwait_state = 0;
118 
119 static TAILQ_HEAD(, mpt_softc)	mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
120 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
121 
122 static mpt_reply_handler_t mpt_default_reply_handler;
123 static mpt_reply_handler_t mpt_config_reply_handler;
124 static mpt_reply_handler_t mpt_handshake_reply_handler;
125 static mpt_reply_handler_t mpt_event_reply_handler;
126 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
127 			       MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
128 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
129 static int mpt_soft_reset(struct mpt_softc *mpt);
130 static void mpt_hard_reset(struct mpt_softc *mpt);
131 static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
132 static void mpt_dma_buf_free(struct mpt_softc *mpt);
133 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
134 static int mpt_enable_ioc(struct mpt_softc *mpt, int);
135 
136 /************************* Personality Module Support *************************/
137 /*
138  * We include one extra entry that is guaranteed to be NULL
139  * to simplify our itterator.
140  */
141 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
142 static __inline struct mpt_personality*
143 	mpt_pers_find(struct mpt_softc *, u_int);
144 static __inline struct mpt_personality*
145 	mpt_pers_find_reverse(struct mpt_softc *, u_int);
146 
147 static __inline struct mpt_personality *
148 mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
149 {
150 	KASSERT(start_at <= MPT_MAX_PERSONALITIES,
151 		("mpt_pers_find: starting position out of range\n"));
152 
153 	while (start_at < MPT_MAX_PERSONALITIES
154 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
155 		start_at++;
156 	}
157 	return (mpt_personalities[start_at]);
158 }
159 
160 /*
161  * Used infrequently, so no need to optimize like a forward
162  * traversal where we use the MAX+1 is guaranteed to be NULL
163  * trick.
164  */
165 static __inline struct mpt_personality *
166 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
167 {
168 	while (start_at < MPT_MAX_PERSONALITIES
169 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
170 		start_at--;
171 	}
172 	if (start_at < MPT_MAX_PERSONALITIES)
173 		return (mpt_personalities[start_at]);
174 	return (NULL);
175 }
176 
177 #define MPT_PERS_FOREACH(mpt, pers)				\
178 	for (pers = mpt_pers_find(mpt, /*start_at*/0);		\
179 	     pers != NULL;					\
180 	     pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
181 
182 #define MPT_PERS_FOREACH_REVERSE(mpt, pers)				\
183 	for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
184 	     pers != NULL;						\
185 	     pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
186 
187 static mpt_load_handler_t      mpt_stdload;
188 static mpt_probe_handler_t     mpt_stdprobe;
189 static mpt_attach_handler_t    mpt_stdattach;
190 static mpt_enable_handler_t    mpt_stdenable;
191 static mpt_ready_handler_t     mpt_stdready;
192 static mpt_event_handler_t     mpt_stdevent;
193 static mpt_reset_handler_t     mpt_stdreset;
194 static mpt_shutdown_handler_t  mpt_stdshutdown;
195 static mpt_detach_handler_t    mpt_stddetach;
196 static mpt_unload_handler_t    mpt_stdunload;
197 static struct mpt_personality mpt_default_personality =
198 {
199 	.load		= mpt_stdload,
200 	.probe		= mpt_stdprobe,
201 	.attach		= mpt_stdattach,
202 	.enable		= mpt_stdenable,
203 	.ready		= mpt_stdready,
204 	.event		= mpt_stdevent,
205 	.reset		= mpt_stdreset,
206 	.shutdown	= mpt_stdshutdown,
207 	.detach		= mpt_stddetach,
208 	.unload		= mpt_stdunload
209 };
210 
211 static mpt_load_handler_t      mpt_core_load;
212 static mpt_attach_handler_t    mpt_core_attach;
213 static mpt_enable_handler_t    mpt_core_enable;
214 static mpt_reset_handler_t     mpt_core_ioc_reset;
215 static mpt_event_handler_t     mpt_core_event;
216 static mpt_shutdown_handler_t  mpt_core_shutdown;
217 static mpt_shutdown_handler_t  mpt_core_detach;
218 static mpt_unload_handler_t    mpt_core_unload;
219 static struct mpt_personality mpt_core_personality =
220 {
221 	.name		= "mpt_core",
222 	.load		= mpt_core_load,
223 //	.attach		= mpt_core_attach,
224 //	.enable		= mpt_core_enable,
225 	.event		= mpt_core_event,
226 	.reset		= mpt_core_ioc_reset,
227 	.shutdown	= mpt_core_shutdown,
228 	.detach		= mpt_core_detach,
229 	.unload		= mpt_core_unload,
230 };
231 
232 /*
233  * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
234  * ordering information.  We want the core to always register FIRST.
235  * other modules are set to SI_ORDER_SECOND.
236  */
237 static moduledata_t mpt_core_mod = {
238 	"mpt_core", mpt_modevent, &mpt_core_personality
239 };
240 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
241 MODULE_VERSION(mpt_core, 1);
242 
243 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
244 
245 int
246 mpt_modevent(module_t mod, int type, void *data)
247 {
248 	struct mpt_personality *pers;
249 	int error;
250 
251 	pers = (struct mpt_personality *)data;
252 
253 	error = 0;
254 	switch (type) {
255 	case MOD_LOAD:
256 	{
257 		mpt_load_handler_t **def_handler;
258 		mpt_load_handler_t **pers_handler;
259 		int i;
260 
261 		for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
262 			if (mpt_personalities[i] == NULL)
263 				break;
264 		}
265 		if (i >= MPT_MAX_PERSONALITIES) {
266 			error = ENOMEM;
267 			break;
268 		}
269 		pers->id = i;
270 		mpt_personalities[i] = pers;
271 
272 		/* Install standard/noop handlers for any NULL entries. */
273 		def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
274 		pers_handler = MPT_PERS_FIRST_HANDLER(pers);
275 		while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
276 			if (*pers_handler == NULL)
277 				*pers_handler = *def_handler;
278 			pers_handler++;
279 			def_handler++;
280 		}
281 
282 		error = (pers->load(pers));
283 		if (error != 0)
284 			mpt_personalities[i] = NULL;
285 		break;
286 	}
287 	case MOD_SHUTDOWN:
288 		break;
289 #if __FreeBSD_version >= 500000
290 	case MOD_QUIESCE:
291 		break;
292 #endif
293 	case MOD_UNLOAD:
294 		error = pers->unload(pers);
295 		mpt_personalities[pers->id] = NULL;
296 		break;
297 	default:
298 		error = EINVAL;
299 		break;
300 	}
301 	return (error);
302 }
303 
304 int
305 mpt_stdload(struct mpt_personality *pers)
306 {
307 	/* Load is always successfull. */
308 	return (0);
309 }
310 
311 int
312 mpt_stdprobe(struct mpt_softc *mpt)
313 {
314 	/* Probe is always successfull. */
315 	return (0);
316 }
317 
318 int
319 mpt_stdattach(struct mpt_softc *mpt)
320 {
321 	/* Attach is always successfull. */
322 	return (0);
323 }
324 
325 int
326 mpt_stdenable(struct mpt_softc *mpt)
327 {
328 	/* Enable is always successfull. */
329 	return (0);
330 }
331 
332 void
333 mpt_stdready(struct mpt_softc *mpt)
334 {
335 }
336 
337 
338 int
339 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
340 {
341 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
342 	/* Event was not for us. */
343 	return (0);
344 }
345 
346 void
347 mpt_stdreset(struct mpt_softc *mpt, int type)
348 {
349 }
350 
351 void
352 mpt_stdshutdown(struct mpt_softc *mpt)
353 {
354 }
355 
356 void
357 mpt_stddetach(struct mpt_softc *mpt)
358 {
359 }
360 
361 int
362 mpt_stdunload(struct mpt_personality *pers)
363 {
364 	/* Unload is always successfull. */
365 	return (0);
366 }
367 
368 /*
369  * Post driver attachment, we may want to perform some global actions.
370  * Here is the hook to do so.
371  */
372 
373 static void
374 mpt_postattach(void *unused)
375 {
376 	struct mpt_softc *mpt;
377 	struct mpt_personality *pers;
378 
379 	TAILQ_FOREACH(mpt, &mpt_tailq, links) {
380 		MPT_PERS_FOREACH(mpt, pers)
381 			pers->ready(mpt);
382 	}
383 }
384 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
385 
386 
387 /******************************* Bus DMA Support ******************************/
388 void
389 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
390 {
391 	struct mpt_map_info *map_info;
392 
393 	map_info = (struct mpt_map_info *)arg;
394 	map_info->error = error;
395 	map_info->phys = segs->ds_addr;
396 }
397 
398 /**************************** Reply/Event Handling ****************************/
399 int
400 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
401 		     mpt_handler_t handler, uint32_t *phandler_id)
402 {
403 
404 	switch (type) {
405 	case MPT_HANDLER_REPLY:
406 	{
407 		u_int cbi;
408 		u_int free_cbi;
409 
410 		if (phandler_id == NULL)
411 			return (EINVAL);
412 
413 		free_cbi = MPT_HANDLER_ID_NONE;
414 		for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
415 			/*
416 			 * If the same handler is registered multiple
417 			 * times, don't error out.  Just return the
418 			 * index of the original registration.
419 			 */
420 			if (mpt_reply_handlers[cbi] == handler.reply_handler) {
421 				*phandler_id = MPT_CBI_TO_HID(cbi);
422 				return (0);
423 			}
424 
425 			/*
426 			 * Fill from the front in the hope that
427 			 * all registered handlers consume only a
428 			 * single cache line.
429 			 *
430 			 * We don't break on the first empty slot so
431 			 * that the full table is checked to see if
432 			 * this handler was previously registered.
433 			 */
434 			if (free_cbi == MPT_HANDLER_ID_NONE &&
435 			    (mpt_reply_handlers[cbi]
436 			  == mpt_default_reply_handler))
437 				free_cbi = cbi;
438 		}
439 		if (free_cbi == MPT_HANDLER_ID_NONE) {
440 			return (ENOMEM);
441 		}
442 		mpt_reply_handlers[free_cbi] = handler.reply_handler;
443 		*phandler_id = MPT_CBI_TO_HID(free_cbi);
444 		break;
445 	}
446 	default:
447 		mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
448 		return (EINVAL);
449 	}
450 	return (0);
451 }
452 
453 int
454 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
455 		       mpt_handler_t handler, uint32_t handler_id)
456 {
457 
458 	switch (type) {
459 	case MPT_HANDLER_REPLY:
460 	{
461 		u_int cbi;
462 
463 		cbi = MPT_CBI(handler_id);
464 		if (cbi >= MPT_NUM_REPLY_HANDLERS
465 		 || mpt_reply_handlers[cbi] != handler.reply_handler)
466 			return (ENOENT);
467 		mpt_reply_handlers[cbi] = mpt_default_reply_handler;
468 		break;
469 	}
470 	default:
471 		mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
472 		return (EINVAL);
473 	}
474 	return (0);
475 }
476 
477 static int
478 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
479 	uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
480 {
481 	mpt_prt(mpt,
482 	    "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
483 	    req, req->serno, reply_desc, reply_frame);
484 
485 	if (reply_frame != NULL)
486 		mpt_dump_reply_frame(mpt, reply_frame);
487 
488 	mpt_prt(mpt, "Reply Frame Ignored\n");
489 
490 	return (/*free_reply*/TRUE);
491 }
492 
493 static int
494 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
495  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
496 {
497 	if (req != NULL) {
498 
499 		if (reply_frame != NULL) {
500 			MSG_CONFIG *cfgp;
501 			MSG_CONFIG_REPLY *reply;
502 
503 			cfgp = (MSG_CONFIG *)req->req_vbuf;
504 			reply = (MSG_CONFIG_REPLY *)reply_frame;
505 			req->IOCStatus = le16toh(reply_frame->IOCStatus);
506 			bcopy(&reply->Header, &cfgp->Header,
507 			      sizeof(cfgp->Header));
508 			cfgp->ExtPageLength = reply->ExtPageLength;
509 			cfgp->ExtPageType = reply->ExtPageType;
510 		}
511 		req->state &= ~REQ_STATE_QUEUED;
512 		req->state |= REQ_STATE_DONE;
513 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
514 		if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
515 			wakeup(req);
516 		} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
517 			/*
518 			 * Whew- we can free this request (late completion)
519 			 */
520 			mpt_free_request(mpt, req);
521 		}
522 	}
523 
524 	return (TRUE);
525 }
526 
527 static int
528 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
529  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
530 {
531 	/* Nothing to be done. */
532 	return (TRUE);
533 }
534 
535 static int
536 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
537     uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
538 {
539 	int free_reply;
540 
541 	KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
542 	KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
543 
544 	free_reply = TRUE;
545 	switch (reply_frame->Function) {
546 	case MPI_FUNCTION_EVENT_NOTIFICATION:
547 	{
548 		MSG_EVENT_NOTIFY_REPLY *msg;
549 		struct mpt_personality *pers;
550 		u_int handled;
551 
552 		handled = 0;
553 		msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
554 		msg->EventDataLength = le16toh(msg->EventDataLength);
555 		msg->IOCStatus = le16toh(msg->IOCStatus);
556 		msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
557 		msg->Event = le32toh(msg->Event);
558 		MPT_PERS_FOREACH(mpt, pers)
559 			handled += pers->event(mpt, req, msg);
560 
561 		if (handled == 0 && mpt->mpt_pers_mask == 0) {
562 			mpt_lprt(mpt, MPT_PRT_INFO,
563 				"No Handlers For Any Event Notify Frames. "
564 				"Event %#x (ACK %sequired).\n",
565 				msg->Event, msg->AckRequired? "r" : "not r");
566 		} else if (handled == 0) {
567 			mpt_lprt(mpt,
568 				msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
569 				"Unhandled Event Notify Frame. Event %#x "
570 				"(ACK %sequired).\n",
571 				msg->Event, msg->AckRequired? "r" : "not r");
572 		}
573 
574 		if (msg->AckRequired) {
575 			request_t *ack_req;
576 			uint32_t context;
577 
578 			context = req->index | MPT_REPLY_HANDLER_EVENTS;
579 			ack_req = mpt_get_request(mpt, FALSE);
580 			if (ack_req == NULL) {
581 				struct mpt_evtf_record *evtf;
582 
583 				evtf = (struct mpt_evtf_record *)reply_frame;
584 				evtf->context = context;
585 				LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
586 				free_reply = FALSE;
587 				break;
588 			}
589 			mpt_send_event_ack(mpt, ack_req, msg, context);
590 			/*
591 			 * Don't check for CONTINUATION_REPLY here
592 			 */
593 			return (free_reply);
594 		}
595 		break;
596 	}
597 	case MPI_FUNCTION_PORT_ENABLE:
598 		mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
599 		break;
600 	case MPI_FUNCTION_EVENT_ACK:
601 		break;
602 	default:
603 		mpt_prt(mpt, "unknown event function: %x\n",
604 			reply_frame->Function);
605 		break;
606 	}
607 
608 	/*
609 	 * I'm not sure that this continuation stuff works as it should.
610 	 *
611 	 * I've had FC async events occur that free the frame up because
612 	 * the continuation bit isn't set, and then additional async events
613 	 * then occur using the same context. As you might imagine, this
614 	 * leads to Very Bad Thing.
615 	 *
616 	 *  Let's just be safe for now and not free them up until we figure
617 	 * out what's actually happening here.
618 	 */
619 #if	0
620 	if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
621 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
622 		mpt_free_request(mpt, req);
623 		mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
624 		    reply_frame->Function, req, req->serno);
625 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
626 			MSG_EVENT_NOTIFY_REPLY *msg =
627 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
628 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
629 			    msg->Event, msg->AckRequired);
630 		}
631 	} else {
632 		mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
633 		    reply_frame->Function, req, req->serno);
634 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
635 			MSG_EVENT_NOTIFY_REPLY *msg =
636 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
637 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
638 			    msg->Event, msg->AckRequired);
639 		}
640 		mpt_prtc(mpt, "\n");
641 	}
642 #endif
643 	return (free_reply);
644 }
645 
646 /*
647  * Process an asynchronous event from the IOC.
648  */
649 static int
650 mpt_core_event(struct mpt_softc *mpt, request_t *req,
651 	       MSG_EVENT_NOTIFY_REPLY *msg)
652 {
653 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
654                  msg->Event & 0xFF);
655 	switch(msg->Event & 0xFF) {
656 	case MPI_EVENT_NONE:
657 		break;
658 	case MPI_EVENT_LOG_DATA:
659 	{
660 		int i;
661 
662 		/* Some error occured that LSI wants logged */
663 		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
664 			msg->IOCLogInfo);
665 		mpt_prt(mpt, "\tEvtLogData: Event Data:");
666 		for (i = 0; i < msg->EventDataLength; i++)
667 			mpt_prtc(mpt, "  %08x", msg->Data[i]);
668 		mpt_prtc(mpt, "\n");
669 		break;
670 	}
671 	case MPI_EVENT_EVENT_CHANGE:
672 		/*
673 		 * This is just an acknowledgement
674 		 * of our mpt_send_event_request.
675 		 */
676 		break;
677 	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
678 		break;
679 	default:
680 		return (0);
681 		break;
682 	}
683 	return (1);
684 }
685 
686 static void
687 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
688 		   MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
689 {
690 	MSG_EVENT_ACK *ackp;
691 
692 	ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
693 	memset(ackp, 0, sizeof (*ackp));
694 	ackp->Function = MPI_FUNCTION_EVENT_ACK;
695 	ackp->Event = htole32(msg->Event);
696 	ackp->EventContext = htole32(msg->EventContext);
697 	ackp->MsgContext = htole32(context);
698 	mpt_check_doorbell(mpt);
699 	mpt_send_cmd(mpt, ack_req);
700 }
701 
702 /***************************** Interrupt Handling *****************************/
703 void
704 mpt_intr(void *arg)
705 {
706 	struct mpt_softc *mpt;
707 	uint32_t reply_desc;
708 	int ntrips = 0;
709 
710 	mpt = (struct mpt_softc *)arg;
711 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
712 	MPT_LOCK_ASSERT(mpt);
713 
714 	while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
715 		request_t	  *req;
716 		MSG_DEFAULT_REPLY *reply_frame;
717 		uint32_t	   reply_baddr;
718 		uint32_t           ctxt_idx;
719 		u_int		   cb_index;
720 		u_int		   req_index;
721 		int		   free_rf;
722 
723 		req = NULL;
724 		reply_frame = NULL;
725 		reply_baddr = 0;
726 		if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
727 			u_int offset;
728 			/*
729 			 * Insure that the reply frame is coherent.
730 			 */
731 			reply_baddr = MPT_REPLY_BADDR(reply_desc);
732 			offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
733 			bus_dmamap_sync_range(mpt->reply_dmat,
734 			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
735 			    BUS_DMASYNC_POSTREAD);
736 			reply_frame = MPT_REPLY_OTOV(mpt, offset);
737 			ctxt_idx = le32toh(reply_frame->MsgContext);
738 		} else {
739 			uint32_t type;
740 
741 			type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
742 			ctxt_idx = reply_desc;
743 			mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
744 				    reply_desc);
745 
746 			switch (type) {
747 			case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
748 				ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
749 				break;
750 			case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
751 				ctxt_idx = GET_IO_INDEX(reply_desc);
752 				if (mpt->tgt_cmd_ptrs == NULL) {
753 					mpt_prt(mpt,
754 					    "mpt_intr: no target cmd ptrs\n");
755 					reply_desc = MPT_REPLY_EMPTY;
756 					break;
757 				}
758 				if (ctxt_idx >= mpt->tgt_cmds_allocated) {
759 					mpt_prt(mpt,
760 					    "mpt_intr: bad tgt cmd ctxt %u\n",
761 					    ctxt_idx);
762 					reply_desc = MPT_REPLY_EMPTY;
763 					ntrips = 1000;
764 					break;
765 				}
766 				req = mpt->tgt_cmd_ptrs[ctxt_idx];
767 				if (req == NULL) {
768 					mpt_prt(mpt, "no request backpointer "
769 					    "at index %u", ctxt_idx);
770 					reply_desc = MPT_REPLY_EMPTY;
771 					ntrips = 1000;
772 					break;
773 				}
774 				/*
775 				 * Reformulate ctxt_idx to be just as if
776 				 * it were another type of context reply
777 				 * so the code below will find the request
778 				 * via indexing into the pool.
779 				 */
780 				ctxt_idx =
781 				    req->index | mpt->scsi_tgt_handler_id;
782 				req = NULL;
783 				break;
784 			case MPI_CONTEXT_REPLY_TYPE_LAN:
785 				mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
786 				    reply_desc);
787 				reply_desc = MPT_REPLY_EMPTY;
788 				break;
789 			default:
790 				mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
791 				reply_desc = MPT_REPLY_EMPTY;
792 				break;
793 			}
794 			if (reply_desc == MPT_REPLY_EMPTY) {
795 				if (ntrips++ > 1000) {
796 					break;
797 				}
798 				continue;
799 			}
800 		}
801 
802 		cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
803 		req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
804 		if (req_index < MPT_MAX_REQUESTS(mpt)) {
805 			req = &mpt->request_pool[req_index];
806 		} else {
807 			mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
808 			    " 0x%x)\n", req_index, reply_desc);
809 		}
810 
811 		free_rf = mpt_reply_handlers[cb_index](mpt, req,
812 		    reply_desc, reply_frame);
813 
814 		if (reply_frame != NULL && free_rf) {
815 			mpt_free_reply(mpt, reply_baddr);
816 		}
817 
818 		/*
819 		 * If we got ourselves disabled, don't get stuck in a loop
820 		 */
821 		if (mpt->disabled) {
822 			mpt_disable_ints(mpt);
823 			break;
824 		}
825 		if (ntrips++ > 1000) {
826 			break;
827 		}
828 	}
829 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
830 }
831 
832 /******************************* Error Recovery *******************************/
833 void
834 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
835 			    u_int iocstatus)
836 {
837 	MSG_DEFAULT_REPLY  ioc_status_frame;
838 	request_t	  *req;
839 
840 	memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
841 	ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
842 	ioc_status_frame.IOCStatus = iocstatus;
843 	while((req = TAILQ_FIRST(chain)) != NULL) {
844 		MSG_REQUEST_HEADER *msg_hdr;
845 		u_int		    cb_index;
846 
847 		TAILQ_REMOVE(chain, req, links);
848 		msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
849 		ioc_status_frame.Function = msg_hdr->Function;
850 		ioc_status_frame.MsgContext = msg_hdr->MsgContext;
851 		cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
852 		mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
853 		    &ioc_status_frame);
854 	}
855 }
856 
857 /********************************* Diagnostics ********************************/
858 /*
859  * Perform a diagnostic dump of a reply frame.
860  */
861 void
862 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
863 {
864 	mpt_prt(mpt, "Address Reply:\n");
865 	mpt_print_reply(reply_frame);
866 }
867 
868 /******************************* Doorbell Access ******************************/
869 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
870 static __inline  uint32_t mpt_rd_intr(struct mpt_softc *mpt);
871 
872 static __inline uint32_t
873 mpt_rd_db(struct mpt_softc *mpt)
874 {
875 	return mpt_read(mpt, MPT_OFFSET_DOORBELL);
876 }
877 
878 static __inline uint32_t
879 mpt_rd_intr(struct mpt_softc *mpt)
880 {
881 	return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
882 }
883 
884 /* Busy wait for a door bell to be read by IOC */
885 static int
886 mpt_wait_db_ack(struct mpt_softc *mpt)
887 {
888 	int i;
889 	for (i=0; i < MPT_MAX_WAIT; i++) {
890 		if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
891 			maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
892 			return (MPT_OK);
893 		}
894 		DELAY(200);
895 	}
896 	return (MPT_FAIL);
897 }
898 
899 /* Busy wait for a door bell interrupt */
900 static int
901 mpt_wait_db_int(struct mpt_softc *mpt)
902 {
903 	int i;
904 	for (i = 0; i < MPT_MAX_WAIT; i++) {
905 		if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
906 			maxwait_int = i > maxwait_int ? i : maxwait_int;
907 			return MPT_OK;
908 		}
909 		DELAY(100);
910 	}
911 	return (MPT_FAIL);
912 }
913 
914 /* Wait for IOC to transition to a give state */
915 void
916 mpt_check_doorbell(struct mpt_softc *mpt)
917 {
918 	uint32_t db = mpt_rd_db(mpt);
919 	if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
920 		mpt_prt(mpt, "Device not running\n");
921 		mpt_print_db(db);
922 	}
923 }
924 
925 /* Wait for IOC to transition to a give state */
926 static int
927 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
928 {
929 	int i;
930 
931 	for (i = 0; i < MPT_MAX_WAIT; i++) {
932 		uint32_t db = mpt_rd_db(mpt);
933 		if (MPT_STATE(db) == state) {
934 			maxwait_state = i > maxwait_state ? i : maxwait_state;
935 			return (MPT_OK);
936 		}
937 		DELAY(100);
938 	}
939 	return (MPT_FAIL);
940 }
941 
942 
943 /************************* Intialization/Configuration ************************/
944 static int mpt_download_fw(struct mpt_softc *mpt);
945 
946 /* Issue the reset COMMAND to the IOC */
947 static int
948 mpt_soft_reset(struct mpt_softc *mpt)
949 {
950 	mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
951 
952 	/* Have to use hard reset if we are not in Running state */
953 	if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
954 		mpt_prt(mpt, "soft reset failed: device not running\n");
955 		return (MPT_FAIL);
956 	}
957 
958 	/* If door bell is in use we don't have a chance of getting
959 	 * a word in since the IOC probably crashed in message
960 	 * processing. So don't waste our time.
961 	 */
962 	if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
963 		mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
964 		return (MPT_FAIL);
965 	}
966 
967 	/* Send the reset request to the IOC */
968 	mpt_write(mpt, MPT_OFFSET_DOORBELL,
969 	    MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
970 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
971 		mpt_prt(mpt, "soft reset failed: ack timeout\n");
972 		return (MPT_FAIL);
973 	}
974 
975 	/* Wait for the IOC to reload and come out of reset state */
976 	if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
977 		mpt_prt(mpt, "soft reset failed: device did not restart\n");
978 		return (MPT_FAIL);
979 	}
980 
981 	return MPT_OK;
982 }
983 
984 static int
985 mpt_enable_diag_mode(struct mpt_softc *mpt)
986 {
987 	int try;
988 
989 	try = 20;
990 	while (--try) {
991 
992 		if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
993 			break;
994 
995 		/* Enable diagnostic registers */
996 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
997 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
998 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
999 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1000 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1001 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1002 
1003 		DELAY(100000);
1004 	}
1005 	if (try == 0)
1006 		return (EIO);
1007 	return (0);
1008 }
1009 
1010 static void
1011 mpt_disable_diag_mode(struct mpt_softc *mpt)
1012 {
1013 	mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1014 }
1015 
1016 /* This is a magic diagnostic reset that resets all the ARM
1017  * processors in the chip.
1018  */
1019 static void
1020 mpt_hard_reset(struct mpt_softc *mpt)
1021 {
1022 	int error;
1023 	int wait;
1024 	uint32_t diagreg;
1025 
1026 	mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1027 
1028 	error = mpt_enable_diag_mode(mpt);
1029 	if (error) {
1030 		mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1031 		mpt_prt(mpt, "Trying to reset anyway.\n");
1032 	}
1033 
1034 	diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1035 
1036 	/*
1037 	 * This appears to be a workaround required for some
1038 	 * firmware or hardware revs.
1039 	 */
1040 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1041 	DELAY(1000);
1042 
1043 	/* Diag. port is now active so we can now hit the reset bit */
1044 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1045 
1046         /*
1047          * Ensure that the reset has finished.  We delay 1ms
1048          * prior to reading the register to make sure the chip
1049          * has sufficiently completed its reset to handle register
1050          * accesses.
1051          */
1052 	wait = 5000;
1053 	do {
1054 		DELAY(1000);
1055 		diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1056 	} while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1057 
1058 	if (wait == 0) {
1059 		mpt_prt(mpt, "WARNING - Failed hard reset! "
1060 			"Trying to initialize anyway.\n");
1061 	}
1062 
1063 	/*
1064 	 * If we have firmware to download, it must be loaded before
1065 	 * the controller will become operational.  Do so now.
1066 	 */
1067 	if (mpt->fw_image != NULL) {
1068 
1069 		error = mpt_download_fw(mpt);
1070 
1071 		if (error) {
1072 			mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1073 			mpt_prt(mpt, "Trying to initialize anyway.\n");
1074 		}
1075 	}
1076 
1077 	/*
1078 	 * Reseting the controller should have disabled write
1079 	 * access to the diagnostic registers, but disable
1080 	 * manually to be sure.
1081 	 */
1082 	mpt_disable_diag_mode(mpt);
1083 }
1084 
1085 static void
1086 mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1087 {
1088 	/*
1089 	 * Complete all pending requests with a status
1090 	 * appropriate for an IOC reset.
1091 	 */
1092 	mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1093 				   MPI_IOCSTATUS_INVALID_STATE);
1094 }
1095 
1096 
1097 /*
1098  * Reset the IOC when needed. Try software command first then if needed
1099  * poke at the magic diagnostic reset. Note that a hard reset resets
1100  * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1101  * fouls up the PCI configuration registers.
1102  */
1103 int
1104 mpt_reset(struct mpt_softc *mpt, int reinit)
1105 {
1106 	struct	mpt_personality *pers;
1107 	int	ret;
1108 	int	retry_cnt = 0;
1109 
1110 	/*
1111 	 * Try a soft reset. If that fails, get out the big hammer.
1112 	 */
1113  again:
1114 	if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1115 		int	cnt;
1116 		for (cnt = 0; cnt < 5; cnt++) {
1117 			/* Failed; do a hard reset */
1118 			mpt_hard_reset(mpt);
1119 
1120 			/*
1121 			 * Wait for the IOC to reload
1122 			 * and come out of reset state
1123 			 */
1124 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1125 			if (ret == MPT_OK) {
1126 				break;
1127 			}
1128 			/*
1129 			 * Okay- try to check again...
1130 			 */
1131 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1132 			if (ret == MPT_OK) {
1133 				break;
1134 			}
1135 			mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1136 			    retry_cnt, cnt);
1137 		}
1138 	}
1139 
1140 	if (retry_cnt == 0) {
1141 		/*
1142 		 * Invoke reset handlers.  We bump the reset count so
1143 		 * that mpt_wait_req() understands that regardless of
1144 		 * the specified wait condition, it should stop its wait.
1145 		 */
1146 		mpt->reset_cnt++;
1147 		MPT_PERS_FOREACH(mpt, pers)
1148 			pers->reset(mpt, ret);
1149 	}
1150 
1151 	if (reinit) {
1152 		ret = mpt_enable_ioc(mpt, 1);
1153 		if (ret == MPT_OK) {
1154 			mpt_enable_ints(mpt);
1155 		}
1156 	}
1157 	if (ret != MPT_OK && retry_cnt++ < 2) {
1158 		goto again;
1159 	}
1160 	return ret;
1161 }
1162 
1163 /* Return a command buffer to the free queue */
1164 void
1165 mpt_free_request(struct mpt_softc *mpt, request_t *req)
1166 {
1167 	request_t *nxt;
1168 	struct mpt_evtf_record *record;
1169 	uint32_t reply_baddr;
1170 
1171 	if (req == NULL || req != &mpt->request_pool[req->index]) {
1172 		panic("mpt_free_request bad req ptr\n");
1173 		return;
1174 	}
1175 	if ((nxt = req->chain) != NULL) {
1176 		req->chain = NULL;
1177 		mpt_free_request(mpt, nxt);	/* NB: recursion */
1178 	}
1179 	KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1180 	KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1181 	MPT_LOCK_ASSERT(mpt);
1182 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1183 	    ("mpt_free_request: req %p:%u func %x already on freelist",
1184 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1185 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1186 	    ("mpt_free_request: req %p:%u func %x on pending list",
1187 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1188 #ifdef	INVARIANTS
1189 	mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1190 #endif
1191 
1192 	req->ccb = NULL;
1193 	if (LIST_EMPTY(&mpt->ack_frames)) {
1194 		/*
1195 		 * Insert free ones at the tail
1196 		 */
1197 		req->serno = 0;
1198 		req->state = REQ_STATE_FREE;
1199 #ifdef	INVARIANTS
1200 		memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1201 #endif
1202 		TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1203 		if (mpt->getreqwaiter != 0) {
1204 			mpt->getreqwaiter = 0;
1205 			wakeup(&mpt->request_free_list);
1206 		}
1207 		return;
1208 	}
1209 
1210 	/*
1211 	 * Process an ack frame deferred due to resource shortage.
1212 	 */
1213 	record = LIST_FIRST(&mpt->ack_frames);
1214 	LIST_REMOVE(record, links);
1215 	req->state = REQ_STATE_ALLOCATED;
1216 	mpt_assign_serno(mpt, req);
1217 	mpt_send_event_ack(mpt, req, &record->reply, record->context);
1218 	reply_baddr = (uint32_t)((uint8_t *)record - mpt->reply)
1219 		    + (mpt->reply_phys & 0xFFFFFFFF);
1220 	mpt_free_reply(mpt, reply_baddr);
1221 }
1222 
1223 /* Get a command buffer from the free queue */
1224 request_t *
1225 mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1226 {
1227 	request_t *req;
1228 
1229 retry:
1230 	MPT_LOCK_ASSERT(mpt);
1231 	req = TAILQ_FIRST(&mpt->request_free_list);
1232 	if (req != NULL) {
1233 		KASSERT(req == &mpt->request_pool[req->index],
1234 		    ("mpt_get_request: corrupted request free list\n"));
1235 		KASSERT(req->state == REQ_STATE_FREE,
1236 		    ("req %p:%u not free on free list %x index %d function %x",
1237 		    req, req->serno, req->state, req->index,
1238 		    ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1239 		TAILQ_REMOVE(&mpt->request_free_list, req, links);
1240 		req->state = REQ_STATE_ALLOCATED;
1241 		req->chain = NULL;
1242 		mpt_assign_serno(mpt, req);
1243 	} else if (sleep_ok != 0) {
1244 		mpt->getreqwaiter = 1;
1245 		mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
1246 		goto retry;
1247 	}
1248 	return (req);
1249 }
1250 
1251 /* Pass the command to the IOC */
1252 void
1253 mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1254 {
1255 	if (mpt->verbose > MPT_PRT_DEBUG2) {
1256 		mpt_dump_request(mpt, req);
1257 	}
1258 	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1259 	    BUS_DMASYNC_PREWRITE);
1260 	req->state |= REQ_STATE_QUEUED;
1261 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1262 	    ("req %p:%u func %x on freelist list in mpt_send_cmd",
1263 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1264 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1265 	    ("req %p:%u func %x already on pending list in mpt_send_cmd",
1266 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1267 	TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1268 	mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1269 }
1270 
1271 /*
1272  * Wait for a request to complete.
1273  *
1274  * Inputs:
1275  *	mpt		softc of controller executing request
1276  *	req		request to wait for
1277  *	sleep_ok	nonzero implies may sleep in this context
1278  *	time_ms		timeout in ms.  0 implies no timeout.
1279  *
1280  * Return Values:
1281  *	0		Request completed
1282  *	non-0		Timeout fired before request completion.
1283  */
1284 int
1285 mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1286 	     mpt_req_state_t state, mpt_req_state_t mask,
1287 	     int sleep_ok, int time_ms)
1288 {
1289 	int   error;
1290 	int   timeout;
1291 	u_int saved_cnt;
1292 
1293 	/*
1294 	 * timeout is in ms.  0 indicates infinite wait.
1295 	 * Convert to ticks or 500us units depending on
1296 	 * our sleep mode.
1297 	 */
1298 	if (sleep_ok != 0) {
1299 		timeout = (time_ms * hz) / 1000;
1300 	} else {
1301 		timeout = time_ms * 2;
1302 	}
1303 	req->state |= REQ_STATE_NEED_WAKEUP;
1304 	mask &= ~REQ_STATE_NEED_WAKEUP;
1305 	saved_cnt = mpt->reset_cnt;
1306 	while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1307 		if (sleep_ok != 0) {
1308 			error = mpt_sleep(mpt, req, PUSER, "mptreq", timeout);
1309 			if (error == EWOULDBLOCK) {
1310 				timeout = 0;
1311 				break;
1312 			}
1313 		} else {
1314 			if (time_ms != 0 && --timeout == 0) {
1315 				break;
1316 			}
1317 			DELAY(500);
1318 			mpt_intr(mpt);
1319 		}
1320 	}
1321 	req->state &= ~REQ_STATE_NEED_WAKEUP;
1322 	if (mpt->reset_cnt != saved_cnt) {
1323 		return (EIO);
1324 	}
1325 	if (time_ms && timeout <= 0) {
1326 		MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1327 		req->state |= REQ_STATE_TIMEDOUT;
1328 		mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1329 		return (ETIMEDOUT);
1330 	}
1331 	return (0);
1332 }
1333 
1334 /*
1335  * Send a command to the IOC via the handshake register.
1336  *
1337  * Only done at initialization time and for certain unusual
1338  * commands such as device/bus reset as specified by LSI.
1339  */
1340 int
1341 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1342 {
1343 	int i;
1344 	uint32_t data, *data32;
1345 
1346 	/* Check condition of the IOC */
1347 	data = mpt_rd_db(mpt);
1348 	if ((MPT_STATE(data) != MPT_DB_STATE_READY
1349 	  && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1350 	  && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1351 	 || MPT_DB_IS_IN_USE(data)) {
1352 		mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1353 		mpt_print_db(data);
1354 		return (EBUSY);
1355 	}
1356 
1357 	/* We move things in 32 bit chunks */
1358 	len = (len + 3) >> 2;
1359 	data32 = cmd;
1360 
1361 	/* Clear any left over pending doorbell interrupts */
1362 	if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1363 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1364 
1365 	/*
1366 	 * Tell the handshake reg. we are going to send a command
1367          * and how long it is going to be.
1368 	 */
1369 	data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1370 	    (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1371 	mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1372 
1373 	/* Wait for the chip to notice */
1374 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1375 		mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1376 		return (ETIMEDOUT);
1377 	}
1378 
1379 	/* Clear the interrupt */
1380 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1381 
1382 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
1383 		mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1384 		return (ETIMEDOUT);
1385 	}
1386 
1387 	/* Send the command */
1388 	for (i = 0; i < len; i++) {
1389 		mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++));
1390 		if (mpt_wait_db_ack(mpt) != MPT_OK) {
1391 			mpt_prt(mpt,
1392 			    "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1393 			return (ETIMEDOUT);
1394 		}
1395 	}
1396 	return MPT_OK;
1397 }
1398 
1399 /* Get the response from the handshake register */
1400 int
1401 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1402 {
1403 	int left, reply_left;
1404 	u_int16_t *data16;
1405 	uint32_t data;
1406 	MSG_DEFAULT_REPLY *hdr;
1407 
1408 	/* We move things out in 16 bit chunks */
1409 	reply_len >>= 1;
1410 	data16 = (u_int16_t *)reply;
1411 
1412 	hdr = (MSG_DEFAULT_REPLY *)reply;
1413 
1414 	/* Get first word */
1415 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1416 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1417 		return ETIMEDOUT;
1418 	}
1419 	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1420 	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1421 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1422 
1423 	/* Get Second Word */
1424 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1425 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1426 		return ETIMEDOUT;
1427 	}
1428 	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1429 	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1430 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1431 
1432 	/*
1433 	 * With the second word, we can now look at the length.
1434 	 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1435 	 */
1436 	if ((reply_len >> 1) != hdr->MsgLength &&
1437 	    (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1438 #if __FreeBSD_version >= 500000
1439 		mpt_prt(mpt, "reply length does not match message length: "
1440 			"got %x; expected %zx for function %x\n",
1441 			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1442 #else
1443 		mpt_prt(mpt, "reply length does not match message length: "
1444 			"got %x; expected %x for function %x\n",
1445 			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1446 #endif
1447 	}
1448 
1449 	/* Get rest of the reply; but don't overflow the provided buffer */
1450 	left = (hdr->MsgLength << 1) - 2;
1451 	reply_left =  reply_len - 2;
1452 	while (left--) {
1453 		u_int16_t datum;
1454 
1455 		if (mpt_wait_db_int(mpt) != MPT_OK) {
1456 			mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1457 			return ETIMEDOUT;
1458 		}
1459 		data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1460 		datum = le16toh(data & MPT_DB_DATA_MASK);
1461 
1462 		if (reply_left-- > 0)
1463 			*data16++ = datum;
1464 
1465 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1466 	}
1467 
1468 	/* One more wait & clear at the end */
1469 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1470 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1471 		return ETIMEDOUT;
1472 	}
1473 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1474 
1475 	if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1476 		if (mpt->verbose >= MPT_PRT_TRACE)
1477 			mpt_print_reply(hdr);
1478 		return (MPT_FAIL | hdr->IOCStatus);
1479 	}
1480 
1481 	return (0);
1482 }
1483 
1484 static int
1485 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1486 {
1487 	MSG_IOC_FACTS f_req;
1488 	int error;
1489 
1490 	memset(&f_req, 0, sizeof f_req);
1491 	f_req.Function = MPI_FUNCTION_IOC_FACTS;
1492 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1493 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1494 	if (error) {
1495 		return(error);
1496 	}
1497 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1498 	return (error);
1499 }
1500 
1501 static int
1502 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1503 {
1504 	MSG_PORT_FACTS f_req;
1505 	int error;
1506 
1507 	memset(&f_req, 0, sizeof f_req);
1508 	f_req.Function = MPI_FUNCTION_PORT_FACTS;
1509 	f_req.PortNumber = port;
1510 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1511 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1512 	if (error) {
1513 		return(error);
1514 	}
1515 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1516 	return (error);
1517 }
1518 
1519 /*
1520  * Send the initialization request. This is where we specify how many
1521  * SCSI busses and how many devices per bus we wish to emulate.
1522  * This is also the command that specifies the max size of the reply
1523  * frames from the IOC that we will be allocating.
1524  */
1525 static int
1526 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1527 {
1528 	int error = 0;
1529 	MSG_IOC_INIT init;
1530 	MSG_IOC_INIT_REPLY reply;
1531 
1532 	memset(&init, 0, sizeof init);
1533 	init.WhoInit = who;
1534 	init.Function = MPI_FUNCTION_IOC_INIT;
1535 	init.MaxDevices = 0;	/* at least 256 devices per bus */
1536 	init.MaxBuses = 16;	/* at least 16 busses */
1537 
1538 	init.MsgVersion = htole16(MPI_VERSION);
1539 	init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1540 	init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1541 	init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1542 
1543 	if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1544 		return(error);
1545 	}
1546 
1547 	error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1548 	return (error);
1549 }
1550 
1551 
1552 /*
1553  * Utiltity routine to read configuration headers and pages
1554  */
1555 int
1556 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1557 		  bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1558 {
1559 	MSG_CONFIG *cfgp;
1560 	SGE_SIMPLE32 *se;
1561 
1562 	cfgp = req->req_vbuf;
1563 	memset(cfgp, 0, sizeof *cfgp);
1564 	cfgp->Action = params->Action;
1565 	cfgp->Function = MPI_FUNCTION_CONFIG;
1566 	cfgp->Header.PageVersion = params->PageVersion;
1567 	cfgp->Header.PageNumber = params->PageNumber;
1568 	cfgp->PageAddress = htole32(params->PageAddress);
1569 	if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1570 	    MPI_CONFIG_PAGETYPE_EXTENDED) {
1571 		cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1572 		cfgp->Header.PageLength = 0;
1573 		cfgp->ExtPageLength = htole16(params->ExtPageLength);
1574 		cfgp->ExtPageType = params->ExtPageType;
1575 	} else {
1576 		cfgp->Header.PageType = params->PageType;
1577 		cfgp->Header.PageLength = params->PageLength;
1578 	}
1579 	se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1580 	se->Address = htole32(addr);
1581 	MPI_pSGE_SET_LENGTH(se, len);
1582 	MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1583 	    MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1584 	    MPI_SGE_FLAGS_END_OF_LIST |
1585 	    ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1586 	  || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1587 	   ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1588 	se->FlagsLength = htole32(se->FlagsLength);
1589 	cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1590 
1591 	mpt_check_doorbell(mpt);
1592 	mpt_send_cmd(mpt, req);
1593 	return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1594 			     sleep_ok, timeout_ms));
1595 }
1596 
1597 int
1598 mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1599 		       uint32_t PageAddress, int ExtPageType,
1600 		       CONFIG_EXTENDED_PAGE_HEADER *rslt,
1601 		       int sleep_ok, int timeout_ms)
1602 {
1603 	request_t  *req;
1604 	cfgparms_t params;
1605 	MSG_CONFIG_REPLY *cfgp;
1606 	int	    error;
1607 
1608 	req = mpt_get_request(mpt, sleep_ok);
1609 	if (req == NULL) {
1610 		mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1611 		return (ENOMEM);
1612 	}
1613 
1614 	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1615 	params.PageVersion = PageVersion;
1616 	params.PageLength = 0;
1617 	params.PageNumber = PageNumber;
1618 	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1619 	params.PageAddress = PageAddress;
1620 	params.ExtPageType = ExtPageType;
1621 	params.ExtPageLength = 0;
1622 	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1623 				  sleep_ok, timeout_ms);
1624 	if (error != 0) {
1625 		/*
1626 		 * Leave the request. Without resetting the chip, it's
1627 		 * still owned by it and we'll just get into trouble
1628 		 * freeing it now. Mark it as abandoned so that if it
1629 		 * shows up later it can be freed.
1630 		 */
1631 		mpt_prt(mpt, "read_extcfg_header timed out\n");
1632 		return (ETIMEDOUT);
1633 	}
1634 
1635         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1636 	case MPI_IOCSTATUS_SUCCESS:
1637 		cfgp = req->req_vbuf;
1638 		rslt->PageVersion = cfgp->Header.PageVersion;
1639 		rslt->PageNumber = cfgp->Header.PageNumber;
1640 		rslt->PageType = cfgp->Header.PageType;
1641 		rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1642 		rslt->ExtPageType = cfgp->ExtPageType;
1643 		error = 0;
1644 		break;
1645 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1646 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1647 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1648 		    MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1649 		error = EINVAL;
1650 		break;
1651 	default:
1652 		mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1653 			req->IOCStatus);
1654 		error = EIO;
1655 		break;
1656 	}
1657 	mpt_free_request(mpt, req);
1658 	return (error);
1659 }
1660 
1661 int
1662 mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1663 		     CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1664 		     int sleep_ok, int timeout_ms)
1665 {
1666 	request_t    *req;
1667 	cfgparms_t    params;
1668 	int	      error;
1669 
1670 	req = mpt_get_request(mpt, sleep_ok);
1671 	if (req == NULL) {
1672 		mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1673 		return (-1);
1674 	}
1675 
1676 	params.Action = Action;
1677 	params.PageVersion = hdr->PageVersion;
1678 	params.PageLength = 0;
1679 	params.PageNumber = hdr->PageNumber;
1680 	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1681 	params.PageAddress = PageAddress;
1682 	params.ExtPageType = hdr->ExtPageType;
1683 	params.ExtPageLength = hdr->ExtPageLength;
1684 	error = mpt_issue_cfg_req(mpt, req, &params,
1685 				  req->req_pbuf + MPT_RQSL(mpt),
1686 				  len, sleep_ok, timeout_ms);
1687 	if (error != 0) {
1688 		mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1689 		return (-1);
1690 	}
1691 
1692 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1693 		mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1694 			req->IOCStatus);
1695 		mpt_free_request(mpt, req);
1696 		return (-1);
1697 	}
1698 	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1699 	    BUS_DMASYNC_POSTREAD);
1700 	memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1701 	mpt_free_request(mpt, req);
1702 	return (0);
1703 }
1704 
1705 int
1706 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1707 		    uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1708 		    int sleep_ok, int timeout_ms)
1709 {
1710 	request_t  *req;
1711 	cfgparms_t params;
1712 	MSG_CONFIG *cfgp;
1713 	int	    error;
1714 
1715 	req = mpt_get_request(mpt, sleep_ok);
1716 	if (req == NULL) {
1717 		mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1718 		return (ENOMEM);
1719 	}
1720 
1721 	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1722 	params.PageVersion = 0;
1723 	params.PageLength = 0;
1724 	params.PageNumber = PageNumber;
1725 	params.PageType = PageType;
1726 	params.PageAddress = PageAddress;
1727 	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1728 				  sleep_ok, timeout_ms);
1729 	if (error != 0) {
1730 		/*
1731 		 * Leave the request. Without resetting the chip, it's
1732 		 * still owned by it and we'll just get into trouble
1733 		 * freeing it now. Mark it as abandoned so that if it
1734 		 * shows up later it can be freed.
1735 		 */
1736 		mpt_prt(mpt, "read_cfg_header timed out\n");
1737 		return (ETIMEDOUT);
1738 	}
1739 
1740         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1741 	case MPI_IOCSTATUS_SUCCESS:
1742 		cfgp = req->req_vbuf;
1743 		bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1744 		error = 0;
1745 		break;
1746 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1747 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1748 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1749 		    PageType, PageNumber, PageAddress);
1750 		error = EINVAL;
1751 		break;
1752 	default:
1753 		mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1754 			req->IOCStatus);
1755 		error = EIO;
1756 		break;
1757 	}
1758 	mpt_free_request(mpt, req);
1759 	return (error);
1760 }
1761 
1762 int
1763 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1764 		  CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1765 		  int timeout_ms)
1766 {
1767 	request_t    *req;
1768 	cfgparms_t    params;
1769 	int	      error;
1770 
1771 	req = mpt_get_request(mpt, sleep_ok);
1772 	if (req == NULL) {
1773 		mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1774 		return (-1);
1775 	}
1776 
1777 	params.Action = Action;
1778 	params.PageVersion = hdr->PageVersion;
1779 	params.PageLength = hdr->PageLength;
1780 	params.PageNumber = hdr->PageNumber;
1781 	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1782 	params.PageAddress = PageAddress;
1783 	error = mpt_issue_cfg_req(mpt, req, &params,
1784 				  req->req_pbuf + MPT_RQSL(mpt),
1785 				  len, sleep_ok, timeout_ms);
1786 	if (error != 0) {
1787 		mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1788 		return (-1);
1789 	}
1790 
1791 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1792 		mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1793 			req->IOCStatus);
1794 		mpt_free_request(mpt, req);
1795 		return (-1);
1796 	}
1797 	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1798 	    BUS_DMASYNC_POSTREAD);
1799 	memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1800 	mpt_free_request(mpt, req);
1801 	return (0);
1802 }
1803 
1804 int
1805 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1806 		   CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1807 		   int timeout_ms)
1808 {
1809 	request_t    *req;
1810 	cfgparms_t    params;
1811 	u_int	      hdr_attr;
1812 	int	      error;
1813 
1814 	hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1815 	if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1816 	    hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1817 		mpt_prt(mpt, "page type 0x%x not changeable\n",
1818 			hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1819 		return (-1);
1820 	}
1821 
1822 #if	0
1823 	/*
1824 	 * We shouldn't mask off other bits here.
1825 	 */
1826 	hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1827 #endif
1828 
1829 	req = mpt_get_request(mpt, sleep_ok);
1830 	if (req == NULL)
1831 		return (-1);
1832 
1833 	memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1834 
1835 	/*
1836 	 * There isn't any point in restoring stripped out attributes
1837 	 * if you then mask them going down to issue the request.
1838 	 */
1839 
1840 	params.Action = Action;
1841 	params.PageVersion = hdr->PageVersion;
1842 	params.PageLength = hdr->PageLength;
1843 	params.PageNumber = hdr->PageNumber;
1844 	params.PageAddress = PageAddress;
1845 #if	0
1846 	/* Restore stripped out attributes */
1847 	hdr->PageType |= hdr_attr;
1848 	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1849 #else
1850 	params.PageType = hdr->PageType;
1851 #endif
1852 	error = mpt_issue_cfg_req(mpt, req, &params,
1853 				  req->req_pbuf + MPT_RQSL(mpt),
1854 				  len, sleep_ok, timeout_ms);
1855 	if (error != 0) {
1856 		mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1857 		return (-1);
1858 	}
1859 
1860         if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1861 		mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1862 			req->IOCStatus);
1863 		mpt_free_request(mpt, req);
1864 		return (-1);
1865 	}
1866 	mpt_free_request(mpt, req);
1867 	return (0);
1868 }
1869 
1870 /*
1871  * Read IOC configuration information
1872  */
1873 static int
1874 mpt_read_config_info_ioc(struct mpt_softc *mpt)
1875 {
1876 	CONFIG_PAGE_HEADER hdr;
1877 	struct mpt_raid_volume *mpt_raid;
1878 	int rv;
1879 	int i;
1880 	size_t len;
1881 
1882 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1883 		2, 0, &hdr, FALSE, 5000);
1884 	/*
1885 	 * If it's an invalid page, so what? Not a supported function....
1886 	 */
1887 	if (rv == EINVAL) {
1888 		return (0);
1889 	}
1890 	if (rv) {
1891 		return (rv);
1892 	}
1893 
1894 	mpt_lprt(mpt, MPT_PRT_DEBUG,
1895 	    "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1896 	    hdr.PageVersion, hdr.PageLength << 2,
1897 	    hdr.PageNumber, hdr.PageType);
1898 
1899 	len = hdr.PageLength * sizeof(uint32_t);
1900 	mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1901 	if (mpt->ioc_page2 == NULL) {
1902 		mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1903 		mpt_raid_free_mem(mpt);
1904 		return (ENOMEM);
1905 	}
1906 	memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1907 	rv = mpt_read_cur_cfg_page(mpt, 0,
1908 	    &mpt->ioc_page2->Header, len, FALSE, 5000);
1909 	if (rv) {
1910 		mpt_prt(mpt, "failed to read IOC Page 2\n");
1911 		mpt_raid_free_mem(mpt);
1912 		return (EIO);
1913 	}
1914 	mpt2host_config_page_ioc2(mpt->ioc_page2);
1915 
1916 	if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1917 		uint32_t mask;
1918 
1919 		mpt_prt(mpt, "Capabilities: (");
1920 		for (mask = 1; mask != 0; mask <<= 1) {
1921 			if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1922 				continue;
1923 			}
1924 			switch (mask) {
1925 			case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1926 				mpt_prtc(mpt, " RAID-0");
1927 				break;
1928 			case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1929 				mpt_prtc(mpt, " RAID-1E");
1930 				break;
1931 			case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1932 				mpt_prtc(mpt, " RAID-1");
1933 				break;
1934 			case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1935 				mpt_prtc(mpt, " SES");
1936 				break;
1937 			case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1938 				mpt_prtc(mpt, " SAFTE");
1939 				break;
1940 			case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1941 				mpt_prtc(mpt, " Multi-Channel-Arrays");
1942 			default:
1943 				break;
1944 			}
1945 		}
1946 		mpt_prtc(mpt, " )\n");
1947 		if ((mpt->ioc_page2->CapabilitiesFlags
1948 		   & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1949 		    | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1950 		    | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1951 			mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1952 				mpt->ioc_page2->NumActiveVolumes,
1953 				mpt->ioc_page2->NumActiveVolumes != 1
1954 			      ? "s " : " ",
1955 				mpt->ioc_page2->MaxVolumes);
1956 			mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1957 				mpt->ioc_page2->NumActivePhysDisks,
1958 				mpt->ioc_page2->NumActivePhysDisks != 1
1959 			      ? "s " : " ",
1960 				mpt->ioc_page2->MaxPhysDisks);
1961 		}
1962 	}
1963 
1964 	len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1965 	mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1966 	if (mpt->raid_volumes == NULL) {
1967 		mpt_prt(mpt, "Could not allocate RAID volume data\n");
1968 		mpt_raid_free_mem(mpt);
1969 		return (ENOMEM);
1970 	}
1971 
1972 	/*
1973 	 * Copy critical data out of ioc_page2 so that we can
1974 	 * safely refresh the page without windows of unreliable
1975 	 * data.
1976 	 */
1977 	mpt->raid_max_volumes =  mpt->ioc_page2->MaxVolumes;
1978 
1979 	len = sizeof(*mpt->raid_volumes->config_page) +
1980 	    (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
1981 	for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
1982 		mpt_raid = &mpt->raid_volumes[i];
1983 		mpt_raid->config_page =
1984 		    malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1985 		if (mpt_raid->config_page == NULL) {
1986 			mpt_prt(mpt, "Could not allocate RAID page data\n");
1987 			mpt_raid_free_mem(mpt);
1988 			return (ENOMEM);
1989 		}
1990 	}
1991 	mpt->raid_page0_len = len;
1992 
1993 	len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
1994 	mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1995 	if (mpt->raid_disks == NULL) {
1996 		mpt_prt(mpt, "Could not allocate RAID disk data\n");
1997 		mpt_raid_free_mem(mpt);
1998 		return (ENOMEM);
1999 	}
2000 	mpt->raid_max_disks =  mpt->ioc_page2->MaxPhysDisks;
2001 
2002 	/*
2003 	 * Load page 3.
2004 	 */
2005 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2006 	    3, 0, &hdr, FALSE, 5000);
2007 	if (rv) {
2008 		mpt_raid_free_mem(mpt);
2009 		return (EIO);
2010 	}
2011 
2012 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2013 	    hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2014 
2015 	len = hdr.PageLength * sizeof(uint32_t);
2016 	mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2017 	if (mpt->ioc_page3 == NULL) {
2018 		mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2019 		mpt_raid_free_mem(mpt);
2020 		return (ENOMEM);
2021 	}
2022 	memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2023 	rv = mpt_read_cur_cfg_page(mpt, 0,
2024 	    &mpt->ioc_page3->Header, len, FALSE, 5000);
2025 	if (rv) {
2026 		mpt_raid_free_mem(mpt);
2027 		return (EIO);
2028 	}
2029 	mpt2host_config_page_ioc3(mpt->ioc_page3);
2030 	mpt_raid_wakeup(mpt);
2031 	return (0);
2032 }
2033 
2034 /*
2035  * Enable IOC port
2036  */
2037 static int
2038 mpt_send_port_enable(struct mpt_softc *mpt, int port)
2039 {
2040 	request_t	*req;
2041 	MSG_PORT_ENABLE *enable_req;
2042 	int		 error;
2043 
2044 	req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2045 	if (req == NULL)
2046 		return (-1);
2047 
2048 	enable_req = req->req_vbuf;
2049 	memset(enable_req, 0,  MPT_RQSL(mpt));
2050 
2051 	enable_req->Function   = MPI_FUNCTION_PORT_ENABLE;
2052 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2053 	enable_req->PortNumber = port;
2054 
2055 	mpt_check_doorbell(mpt);
2056 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2057 
2058 	mpt_send_cmd(mpt, req);
2059 	error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2060 	    FALSE, (mpt->is_sas || mpt->is_fc)? 30000 : 3000);
2061 	if (error != 0) {
2062 		mpt_prt(mpt, "port %d enable timed out\n", port);
2063 		return (-1);
2064 	}
2065 	mpt_free_request(mpt, req);
2066 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2067 	return (0);
2068 }
2069 
2070 /*
2071  * Enable/Disable asynchronous event reporting.
2072  */
2073 static int
2074 mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2075 {
2076 	request_t *req;
2077 	MSG_EVENT_NOTIFY *enable_req;
2078 
2079 	req = mpt_get_request(mpt, FALSE);
2080 	if (req == NULL) {
2081 		return (ENOMEM);
2082 	}
2083 	enable_req = req->req_vbuf;
2084 	memset(enable_req, 0, sizeof *enable_req);
2085 
2086 	enable_req->Function   = MPI_FUNCTION_EVENT_NOTIFICATION;
2087 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2088 	enable_req->Switch     = onoff;
2089 
2090 	mpt_check_doorbell(mpt);
2091 	mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2092 	    onoff ? "en" : "dis");
2093 	/*
2094 	 * Send the command off, but don't wait for it.
2095 	 */
2096 	mpt_send_cmd(mpt, req);
2097 	return (0);
2098 }
2099 
2100 /*
2101  * Un-mask the interrupts on the chip.
2102  */
2103 void
2104 mpt_enable_ints(struct mpt_softc *mpt)
2105 {
2106 	/* Unmask every thing except door bell int */
2107 	mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2108 }
2109 
2110 /*
2111  * Mask the interrupts on the chip.
2112  */
2113 void
2114 mpt_disable_ints(struct mpt_softc *mpt)
2115 {
2116 	/* Mask all interrupts */
2117 	mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2118 	    MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2119 }
2120 
2121 static void
2122 mpt_sysctl_attach(struct mpt_softc *mpt)
2123 {
2124 #if __FreeBSD_version >= 500000
2125 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
2126 	struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
2127 
2128 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2129 		       "debug", CTLFLAG_RW, &mpt->verbose, 0,
2130 		       "Debugging/Verbose level");
2131 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2132 		       "role", CTLFLAG_RD, &mpt->role, 0,
2133 		       "HBA role");
2134 #ifdef	MPT_TEST_MULTIPATH
2135 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2136 		       "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2137 		       "Next Target to Fail");
2138 #endif
2139 #endif
2140 }
2141 
2142 int
2143 mpt_attach(struct mpt_softc *mpt)
2144 {
2145 	struct mpt_personality *pers;
2146 	int i;
2147 	int error;
2148 
2149 	mpt_core_attach(mpt);
2150 	mpt_core_enable(mpt);
2151 
2152 	TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2153 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2154 		pers = mpt_personalities[i];
2155 		if (pers == NULL) {
2156 			continue;
2157 		}
2158 		if (pers->probe(mpt) == 0) {
2159 			error = pers->attach(mpt);
2160 			if (error != 0) {
2161 				mpt_detach(mpt);
2162 				return (error);
2163 			}
2164 			mpt->mpt_pers_mask |= (0x1 << pers->id);
2165 			pers->use_count++;
2166 		}
2167 	}
2168 
2169 	/*
2170 	 * Now that we've attached everything, do the enable function
2171 	 * for all of the personalities. This allows the personalities
2172 	 * to do setups that are appropriate for them prior to enabling
2173 	 * any ports.
2174 	 */
2175 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2176 		pers = mpt_personalities[i];
2177 		if (pers != NULL  && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2178 			error = pers->enable(mpt);
2179 			if (error != 0) {
2180 				mpt_prt(mpt, "personality %s attached but would"
2181 				    " not enable (%d)\n", pers->name, error);
2182 				mpt_detach(mpt);
2183 				return (error);
2184 			}
2185 		}
2186 	}
2187 	return (0);
2188 }
2189 
2190 int
2191 mpt_shutdown(struct mpt_softc *mpt)
2192 {
2193 	struct mpt_personality *pers;
2194 
2195 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2196 		pers->shutdown(mpt);
2197 	}
2198 	return (0);
2199 }
2200 
2201 int
2202 mpt_detach(struct mpt_softc *mpt)
2203 {
2204 	struct mpt_personality *pers;
2205 
2206 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2207 		pers->detach(mpt);
2208 		mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2209 		pers->use_count--;
2210 	}
2211 	TAILQ_REMOVE(&mpt_tailq, mpt, links);
2212 	return (0);
2213 }
2214 
2215 int
2216 mpt_core_load(struct mpt_personality *pers)
2217 {
2218 	int i;
2219 
2220 	/*
2221 	 * Setup core handlers and insert the default handler
2222 	 * into all "empty slots".
2223 	 */
2224 	for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2225 		mpt_reply_handlers[i] = mpt_default_reply_handler;
2226 	}
2227 
2228 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2229 	    mpt_event_reply_handler;
2230 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2231 	    mpt_config_reply_handler;
2232 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2233 	    mpt_handshake_reply_handler;
2234 	return (0);
2235 }
2236 
2237 /*
2238  * Initialize per-instance driver data and perform
2239  * initial controller configuration.
2240  */
2241 int
2242 mpt_core_attach(struct mpt_softc *mpt)
2243 {
2244         int val, error;
2245 
2246 	LIST_INIT(&mpt->ack_frames);
2247 	/* Put all request buffers on the free list */
2248 	TAILQ_INIT(&mpt->request_pending_list);
2249 	TAILQ_INIT(&mpt->request_free_list);
2250 	TAILQ_INIT(&mpt->request_timeout_list);
2251 	for (val = 0; val < MPT_MAX_LUNS; val++) {
2252 		STAILQ_INIT(&mpt->trt[val].atios);
2253 		STAILQ_INIT(&mpt->trt[val].inots);
2254 	}
2255 	STAILQ_INIT(&mpt->trt_wildcard.atios);
2256 	STAILQ_INIT(&mpt->trt_wildcard.inots);
2257 #ifdef	MPT_TEST_MULTIPATH
2258 	mpt->failure_id = -1;
2259 #endif
2260 	mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2261 	mpt_sysctl_attach(mpt);
2262 	mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2263 	    mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2264 
2265 	MPT_LOCK(mpt);
2266 	error = mpt_configure_ioc(mpt, 0, 0);
2267 	MPT_UNLOCK(mpt);
2268 
2269 	return (error);
2270 }
2271 
2272 int
2273 mpt_core_enable(struct mpt_softc *mpt)
2274 {
2275 	/*
2276 	 * We enter with the IOC enabled, but async events
2277 	 * not enabled, ports not enabled and interrupts
2278 	 * not enabled.
2279 	 */
2280 	MPT_LOCK(mpt);
2281 
2282 	/*
2283 	 * Enable asynchronous event reporting- all personalities
2284 	 * have attached so that they should be able to now field
2285 	 * async events.
2286 	 */
2287 	mpt_send_event_request(mpt, 1);
2288 
2289 	/*
2290 	 * Catch any pending interrupts
2291 	 *
2292 	 * This seems to be crucial- otherwise
2293 	 * the portenable below times out.
2294 	 */
2295 	mpt_intr(mpt);
2296 
2297 	/*
2298 	 * Enable Interrupts
2299 	 */
2300 	mpt_enable_ints(mpt);
2301 
2302 	/*
2303 	 * Catch any pending interrupts
2304 	 *
2305 	 * This seems to be crucial- otherwise
2306 	 * the portenable below times out.
2307 	 */
2308 	mpt_intr(mpt);
2309 
2310 	/*
2311 	 * Enable the port.
2312 	 */
2313 	if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2314 		mpt_prt(mpt, "failed to enable port 0\n");
2315 		MPT_UNLOCK(mpt);
2316 		return (ENXIO);
2317 	}
2318 	MPT_UNLOCK(mpt);
2319 	return (0);
2320 }
2321 
2322 void
2323 mpt_core_shutdown(struct mpt_softc *mpt)
2324 {
2325 	mpt_disable_ints(mpt);
2326 }
2327 
2328 void
2329 mpt_core_detach(struct mpt_softc *mpt)
2330 {
2331 	int val;
2332 
2333 	/*
2334 	 * XXX: FREE MEMORY
2335 	 */
2336 	mpt_disable_ints(mpt);
2337 
2338 	/* Make sure no request has pending timeouts. */
2339 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2340 		request_t *req = &mpt->request_pool[val];
2341 		mpt_callout_drain(mpt, &req->callout);
2342 	}
2343 
2344 	mpt_dma_buf_free(mpt);
2345 }
2346 
2347 int
2348 mpt_core_unload(struct mpt_personality *pers)
2349 {
2350 	/* Unload is always successfull. */
2351 	return (0);
2352 }
2353 
2354 #define FW_UPLOAD_REQ_SIZE				\
2355 	(sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION)	\
2356        + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2357 
2358 static int
2359 mpt_upload_fw(struct mpt_softc *mpt)
2360 {
2361 	uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2362 	MSG_FW_UPLOAD_REPLY fw_reply;
2363 	MSG_FW_UPLOAD *fw_req;
2364 	FW_UPLOAD_TCSGE *tsge;
2365 	SGE_SIMPLE32 *sge;
2366 	uint32_t flags;
2367 	int error;
2368 
2369 	memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2370 	fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2371 	fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2372 	fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2373 	fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2374 	tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2375 	tsge->DetailsLength = 12;
2376 	tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2377 	tsge->ImageSize = htole32(mpt->fw_image_size);
2378 	sge = (SGE_SIMPLE32 *)(tsge + 1);
2379 	flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2380 	      | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2381 	      | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2382 	flags <<= MPI_SGE_FLAGS_SHIFT;
2383 	sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2384 	sge->Address = htole32(mpt->fw_phys);
2385 	error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2386 	if (error)
2387 		return(error);
2388 	error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2389 	return (error);
2390 }
2391 
2392 static void
2393 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2394 	       uint32_t *data, bus_size_t len)
2395 {
2396 	uint32_t *data_end;
2397 
2398 	data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2399 	if (mpt->is_sas) {
2400 		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2401 	}
2402 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2403 	while (data != data_end) {
2404 		mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2405 		data++;
2406 	}
2407 	if (mpt->is_sas) {
2408 		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2409 	}
2410 }
2411 
2412 static int
2413 mpt_download_fw(struct mpt_softc *mpt)
2414 {
2415 	MpiFwHeader_t *fw_hdr;
2416 	int error;
2417 	uint32_t ext_offset;
2418 	uint32_t data;
2419 
2420 	mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2421 		mpt->fw_image_size);
2422 
2423 	error = mpt_enable_diag_mode(mpt);
2424 	if (error != 0) {
2425 		mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2426 		return (EIO);
2427 	}
2428 
2429 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2430 		  MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2431 
2432 	fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2433 	mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2434 		       fw_hdr->ImageSize);
2435 
2436 	ext_offset = fw_hdr->NextImageHeaderOffset;
2437 	while (ext_offset != 0) {
2438 		MpiExtImageHeader_t *ext;
2439 
2440 		ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2441 		ext_offset = ext->NextImageHeaderOffset;
2442 
2443 		mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2444 			       ext->ImageSize);
2445 	}
2446 
2447 	if (mpt->is_sas) {
2448 		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2449 	}
2450 	/* Setup the address to jump to on reset. */
2451 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2452 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2453 
2454 	/*
2455 	 * The controller sets the "flash bad" status after attempting
2456 	 * to auto-boot from flash.  Clear the status so that the controller
2457 	 * will continue the boot process with our newly installed firmware.
2458 	 */
2459 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2460 	data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2461 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2462 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2463 
2464 	if (mpt->is_sas) {
2465 		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2466 	}
2467 
2468 	/*
2469 	 * Re-enable the processor and clear the boot halt flag.
2470 	 */
2471 	data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2472 	data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2473 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2474 
2475 	mpt_disable_diag_mode(mpt);
2476 	return (0);
2477 }
2478 
2479 static int
2480 mpt_dma_buf_alloc(struct mpt_softc *mpt)
2481 {
2482 	struct mpt_map_info mi;
2483 	uint8_t *vptr;
2484 	uint32_t pptr, end;
2485 	int i, error;
2486 
2487 	/* Create a child tag for data buffers */
2488 	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2489 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2490 	    NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2491 	    mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2492 	    &mpt->buffer_dmat) != 0) {
2493 		mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2494 		return (1);
2495 	}
2496 
2497 	/* Create a child tag for request buffers */
2498 	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2499 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2500 	    NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2501 	    &mpt->request_dmat) != 0) {
2502 		mpt_prt(mpt, "cannot create a dma tag for requests\n");
2503 		return (1);
2504 	}
2505 
2506 	/* Allocate some DMA accessable memory for requests */
2507 	if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2508 	    BUS_DMA_NOWAIT, &mpt->request_dmap) != 0) {
2509 		mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2510 		    MPT_REQ_MEM_SIZE(mpt));
2511 		return (1);
2512 	}
2513 
2514 	mi.mpt = mpt;
2515 	mi.error = 0;
2516 
2517 	/* Load and lock it into "bus space" */
2518 	bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2519 	    MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2520 
2521 	if (mi.error) {
2522 		mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2523 		    mi.error);
2524 		return (1);
2525 	}
2526 	mpt->request_phys = mi.phys;
2527 
2528 	/*
2529 	 * Now create per-request dma maps
2530 	 */
2531 	i = 0;
2532 	pptr =  mpt->request_phys;
2533 	vptr =  mpt->request;
2534 	end = pptr + MPT_REQ_MEM_SIZE(mpt);
2535 	while(pptr < end) {
2536 		request_t *req = &mpt->request_pool[i];
2537 		req->index = i++;
2538 
2539 		/* Store location of Request Data */
2540 		req->req_pbuf = pptr;
2541 		req->req_vbuf = vptr;
2542 
2543 		pptr += MPT_REQUEST_AREA;
2544 		vptr += MPT_REQUEST_AREA;
2545 
2546 		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2547 		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2548 
2549 		error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2550 		if (error) {
2551 			mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2552 			    error);
2553 			return (1);
2554 		}
2555 	}
2556 
2557 	return (0);
2558 }
2559 
2560 static void
2561 mpt_dma_buf_free(struct mpt_softc *mpt)
2562 {
2563 	int i;
2564 	if (mpt->request_dmat == 0) {
2565 		mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2566 		return;
2567 	}
2568 	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2569 		bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2570 	}
2571 	bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2572 	bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2573 	bus_dma_tag_destroy(mpt->request_dmat);
2574 	mpt->request_dmat = 0;
2575 	bus_dma_tag_destroy(mpt->buffer_dmat);
2576 }
2577 
2578 /*
2579  * Allocate/Initialize data structures for the controller.  Called
2580  * once at instance startup.
2581  */
2582 static int
2583 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2584 {
2585 	PTR_MSG_PORT_FACTS_REPLY pfp;
2586 	int error, port, val;
2587 	size_t len;
2588 
2589 	if (tn == MPT_MAX_TRYS) {
2590 		return (-1);
2591 	}
2592 
2593 	/*
2594 	 * No need to reset if the IOC is already in the READY state.
2595 	 *
2596 	 * Force reset if initialization failed previously.
2597 	 * Note that a hard_reset of the second channel of a '929
2598 	 * will stop operation of the first channel.  Hopefully, if the
2599 	 * first channel is ok, the second will not require a hard
2600 	 * reset.
2601 	 */
2602 	if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2603 		if (mpt_reset(mpt, FALSE) != MPT_OK) {
2604 			return (mpt_configure_ioc(mpt, tn++, 1));
2605 		}
2606 		needreset = 0;
2607 	}
2608 
2609 	if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2610 		mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2611 		return (mpt_configure_ioc(mpt, tn++, 1));
2612 	}
2613 	mpt2host_iocfacts_reply(&mpt->ioc_facts);
2614 
2615 	mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2616 	    mpt->ioc_facts.MsgVersion >> 8,
2617 	    mpt->ioc_facts.MsgVersion & 0xFF,
2618 	    mpt->ioc_facts.HeaderVersion >> 8,
2619 	    mpt->ioc_facts.HeaderVersion & 0xFF);
2620 
2621 	/*
2622 	 * Now that we know request frame size, we can calculate
2623 	 * the actual (reasonable) segment limit for read/write I/O.
2624 	 *
2625 	 * This limit is constrained by:
2626 	 *
2627 	 *  + The size of each area we allocate per command (and how
2628 	 *    many chain segments we can fit into it).
2629 	 *  + The total number of areas we've set up.
2630 	 *  + The actual chain depth the card will allow.
2631 	 *
2632 	 * The first area's segment count is limited by the I/O request
2633 	 * at the head of it. We cannot allocate realistically more
2634 	 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2635 	 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2636 	 *
2637 	 */
2638 	/* total number of request areas we (can) allocate */
2639 	mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2640 
2641 	/* converted to the number of chain areas possible */
2642 	mpt->max_seg_cnt *= MPT_NRFM(mpt);
2643 
2644 	/* limited by the number of chain areas the card will support */
2645 	if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2646 		mpt_lprt(mpt, MPT_PRT_INFO,
2647 		    "chain depth limited to %u (from %u)\n",
2648 		    mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2649 		mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2650 	}
2651 
2652 	/* converted to the number of simple sges in chain segments. */
2653 	mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2654 
2655 	/*
2656 	 * Use this as the basis for reporting the maximum I/O size to CAM.
2657 	 */
2658 	mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1);
2659 
2660 	error = mpt_dma_buf_alloc(mpt);
2661 	if (error != 0) {
2662 		mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2663 		return (EIO);
2664 	}
2665 
2666 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2667 		request_t *req = &mpt->request_pool[val];
2668 		req->state = REQ_STATE_ALLOCATED;
2669 		mpt_callout_init(mpt, &req->callout);
2670 		mpt_free_request(mpt, req);
2671 	}
2672 
2673 	mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2674 		 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2675 		 mpt->max_cam_seg_cnt);
2676 
2677 	mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2678 	    mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2679 	mpt_lprt(mpt, MPT_PRT_INFO,
2680 	    "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2681 	    "Request Frame Size %u bytes Max Chain Depth %u\n",
2682 	    mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2683 	    mpt->ioc_facts.RequestFrameSize << 2,
2684 	    mpt->ioc_facts.MaxChainDepth);
2685 	mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2686 	    "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2687 	    mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2688 
2689 	len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2690 	mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2691 	if (mpt->port_facts == NULL) {
2692 		mpt_prt(mpt, "unable to allocate memory for port facts\n");
2693 		return (ENOMEM);
2694 	}
2695 
2696 
2697 	if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2698 	    (mpt->fw_uploaded == 0)) {
2699 		struct mpt_map_info mi;
2700 
2701 		/*
2702 		 * In some configurations, the IOC's firmware is
2703 		 * stored in a shared piece of system NVRAM that
2704 		 * is only accessable via the BIOS.  In this
2705 		 * case, the firmware keeps a copy of firmware in
2706 		 * RAM until the OS driver retrieves it.  Once
2707 		 * retrieved, we are responsible for re-downloading
2708 		 * the firmware after any hard-reset.
2709 		 */
2710 		mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2711 		error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2712 		    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2713 		    mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2714 		    &mpt->fw_dmat);
2715 		if (error != 0) {
2716 			mpt_prt(mpt, "cannot create firmwarew dma tag\n");
2717 			return (ENOMEM);
2718 		}
2719 		error = bus_dmamem_alloc(mpt->fw_dmat,
2720 		    (void **)&mpt->fw_image, BUS_DMA_NOWAIT, &mpt->fw_dmap);
2721 		if (error != 0) {
2722 			mpt_prt(mpt, "cannot allocate firmware memory\n");
2723 			bus_dma_tag_destroy(mpt->fw_dmat);
2724 			return (ENOMEM);
2725 		}
2726 		mi.mpt = mpt;
2727 		mi.error = 0;
2728 		bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2729 		    mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2730 		mpt->fw_phys = mi.phys;
2731 
2732 		error = mpt_upload_fw(mpt);
2733 		if (error != 0) {
2734 			mpt_prt(mpt, "firmware upload failed.\n");
2735 			bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2736 			bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2737 			    mpt->fw_dmap);
2738 			bus_dma_tag_destroy(mpt->fw_dmat);
2739 			mpt->fw_image = NULL;
2740 			return (EIO);
2741 		}
2742 		mpt->fw_uploaded = 1;
2743 	}
2744 
2745 	for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2746 		pfp = &mpt->port_facts[port];
2747 		error = mpt_get_portfacts(mpt, 0, pfp);
2748 		if (error != MPT_OK) {
2749 			mpt_prt(mpt,
2750 			    "mpt_get_portfacts on port %d failed\n", port);
2751 			free(mpt->port_facts, M_DEVBUF);
2752 			mpt->port_facts = NULL;
2753 			return (mpt_configure_ioc(mpt, tn++, 1));
2754 		}
2755 		mpt2host_portfacts_reply(pfp);
2756 
2757 		if (port > 0) {
2758 			error = MPT_PRT_INFO;
2759 		} else {
2760 			error = MPT_PRT_DEBUG;
2761 		}
2762 		mpt_lprt(mpt, error,
2763 		    "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2764 		    port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2765 		    pfp->MaxDevices);
2766 
2767 	}
2768 
2769 	/*
2770 	 * XXX: Not yet supporting more than port 0
2771 	 */
2772 	pfp = &mpt->port_facts[0];
2773 	if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2774 		mpt->is_fc = 1;
2775 		mpt->is_sas = 0;
2776 		mpt->is_spi = 0;
2777 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2778 		mpt->is_fc = 0;
2779 		mpt->is_sas = 1;
2780 		mpt->is_spi = 0;
2781 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2782 		mpt->is_fc = 0;
2783 		mpt->is_sas = 0;
2784 		mpt->is_spi = 1;
2785 		if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2786 			mpt->mpt_ini_id = pfp->PortSCSIID;
2787 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2788 		mpt_prt(mpt, "iSCSI not supported yet\n");
2789 		return (ENXIO);
2790 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2791 		mpt_prt(mpt, "Inactive Port\n");
2792 		return (ENXIO);
2793 	} else {
2794 		mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2795 		return (ENXIO);
2796 	}
2797 
2798 	/*
2799 	 * Set our role with what this port supports.
2800 	 *
2801 	 * Note this might be changed later in different modules
2802 	 * if this is different from what is wanted.
2803 	 */
2804 	mpt->role = MPT_ROLE_NONE;
2805 	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2806 		mpt->role |= MPT_ROLE_INITIATOR;
2807 	}
2808 	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2809 		mpt->role |= MPT_ROLE_TARGET;
2810 	}
2811 
2812 	/*
2813 	 * Enable the IOC
2814 	 */
2815 	if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2816 		mpt_prt(mpt, "unable to initialize IOC\n");
2817 		return (ENXIO);
2818 	}
2819 
2820 	/*
2821 	 * Read IOC configuration information.
2822 	 *
2823 	 * We need this to determine whether or not we have certain
2824 	 * settings for Integrated Mirroring (e.g.).
2825 	 */
2826 	mpt_read_config_info_ioc(mpt);
2827 
2828 	return (0);
2829 }
2830 
2831 static int
2832 mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2833 {
2834 	uint32_t pptr;
2835 	int val;
2836 
2837 	if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2838 		mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2839 		return (EIO);
2840 	}
2841 
2842 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2843 
2844 	if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2845 		mpt_prt(mpt, "IOC failed to go to run state\n");
2846 		return (ENXIO);
2847 	}
2848 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2849 
2850 	/*
2851 	 * Give it reply buffers
2852 	 *
2853 	 * Do *not* exceed global credits.
2854 	 */
2855 	for (val = 0, pptr = mpt->reply_phys;
2856 	    (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2857 	     pptr += MPT_REPLY_SIZE) {
2858 		mpt_free_reply(mpt, pptr);
2859 		if (++val == mpt->ioc_facts.GlobalCredits - 1)
2860 			break;
2861 	}
2862 
2863 
2864 	/*
2865 	 * Enable the port if asked. This is only done if we're resetting
2866 	 * the IOC after initial startup.
2867 	 */
2868 	if (portenable) {
2869 		/*
2870 		 * Enable asynchronous event reporting
2871 		 */
2872 		mpt_send_event_request(mpt, 1);
2873 
2874 		if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2875 			mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2876 			return (ENXIO);
2877 		}
2878 	}
2879 	return (MPT_OK);
2880 }
2881 
2882 /*
2883  * Endian Conversion Functions- only used on Big Endian machines
2884  */
2885 #if	_BYTE_ORDER == _BIG_ENDIAN
2886 void
2887 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2888 {
2889 
2890 	MPT_2_HOST32(sge, FlagsLength);
2891 	MPT_2_HOST32(sge, u.Address64.Low);
2892 	MPT_2_HOST32(sge, u.Address64.High);
2893 }
2894 
2895 void
2896 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2897 {
2898 
2899 	MPT_2_HOST16(rp, MsgVersion);
2900 	MPT_2_HOST16(rp, HeaderVersion);
2901 	MPT_2_HOST32(rp, MsgContext);
2902 	MPT_2_HOST16(rp, IOCExceptions);
2903 	MPT_2_HOST16(rp, IOCStatus);
2904 	MPT_2_HOST32(rp, IOCLogInfo);
2905 	MPT_2_HOST16(rp, ReplyQueueDepth);
2906 	MPT_2_HOST16(rp, RequestFrameSize);
2907 	MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2908 	MPT_2_HOST16(rp, ProductID);
2909 	MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2910 	MPT_2_HOST16(rp, GlobalCredits);
2911 	MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2912 	MPT_2_HOST16(rp, CurReplyFrameSize);
2913 	MPT_2_HOST32(rp, FWImageSize);
2914 	MPT_2_HOST32(rp, IOCCapabilities);
2915 	MPT_2_HOST32(rp, FWVersion.Word);
2916 	MPT_2_HOST16(rp, HighPriorityQueueDepth);
2917 	MPT_2_HOST16(rp, Reserved2);
2918 	mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2919 	MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2920 }
2921 
2922 void
2923 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2924 {
2925 
2926 	MPT_2_HOST16(pfp, Reserved);
2927 	MPT_2_HOST16(pfp, Reserved1);
2928 	MPT_2_HOST32(pfp, MsgContext);
2929 	MPT_2_HOST16(pfp, Reserved2);
2930 	MPT_2_HOST16(pfp, IOCStatus);
2931 	MPT_2_HOST32(pfp, IOCLogInfo);
2932 	MPT_2_HOST16(pfp, MaxDevices);
2933 	MPT_2_HOST16(pfp, PortSCSIID);
2934 	MPT_2_HOST16(pfp, ProtocolFlags);
2935 	MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2936 	MPT_2_HOST16(pfp, MaxPersistentIDs);
2937 	MPT_2_HOST16(pfp, MaxLanBuckets);
2938 	MPT_2_HOST16(pfp, Reserved4);
2939 	MPT_2_HOST32(pfp, Reserved5);
2940 }
2941 
2942 void
2943 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2944 {
2945 	int i;
2946 
2947 	MPT_2_HOST32(ioc2, CapabilitiesFlags);
2948 	for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
2949 		MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
2950 	}
2951 }
2952 
2953 void
2954 mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
2955 {
2956 
2957 	MPT_2_HOST16(ioc3, Reserved2);
2958 }
2959 
2960 void
2961 mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
2962 {
2963 
2964 	MPT_2_HOST32(sp0, Capabilities);
2965 	MPT_2_HOST32(sp0, PhysicalInterface);
2966 }
2967 
2968 void
2969 mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
2970 {
2971 
2972 	MPT_2_HOST32(sp1, Configuration);
2973 	MPT_2_HOST32(sp1, OnBusTimerValue);
2974 	MPT_2_HOST16(sp1, IDConfig);
2975 }
2976 
2977 void
2978 host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
2979 {
2980 
2981 	HOST_2_MPT32(sp1, Configuration);
2982 	HOST_2_MPT32(sp1, OnBusTimerValue);
2983 	HOST_2_MPT16(sp1, IDConfig);
2984 }
2985 
2986 void
2987 mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
2988 {
2989 	int i;
2990 
2991 	MPT_2_HOST32(sp2, PortFlags);
2992 	MPT_2_HOST32(sp2, PortSettings);
2993 	for (i = 0; i < sizeof(sp2->DeviceSettings) /
2994 	    sizeof(*sp2->DeviceSettings); i++) {
2995 		MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
2996 	}
2997 }
2998 
2999 void
3000 mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3001 {
3002 
3003 	MPT_2_HOST32(sd0, NegotiatedParameters);
3004 	MPT_2_HOST32(sd0, Information);
3005 }
3006 
3007 void
3008 mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3009 {
3010 
3011 	MPT_2_HOST32(sd1, RequestedParameters);
3012 	MPT_2_HOST32(sd1, Reserved);
3013 	MPT_2_HOST32(sd1, Configuration);
3014 }
3015 
3016 void
3017 host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3018 {
3019 
3020 	HOST_2_MPT32(sd1, RequestedParameters);
3021 	HOST_2_MPT32(sd1, Reserved);
3022 	HOST_2_MPT32(sd1, Configuration);
3023 }
3024 
3025 void
3026 mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3027 {
3028 
3029 	MPT_2_HOST32(fp0, Flags);
3030 	MPT_2_HOST32(fp0, PortIdentifier);
3031 	MPT_2_HOST32(fp0, WWNN.Low);
3032 	MPT_2_HOST32(fp0, WWNN.High);
3033 	MPT_2_HOST32(fp0, WWPN.Low);
3034 	MPT_2_HOST32(fp0, WWPN.High);
3035 	MPT_2_HOST32(fp0, SupportedServiceClass);
3036 	MPT_2_HOST32(fp0, SupportedSpeeds);
3037 	MPT_2_HOST32(fp0, CurrentSpeed);
3038 	MPT_2_HOST32(fp0, MaxFrameSize);
3039 	MPT_2_HOST32(fp0, FabricWWNN.Low);
3040 	MPT_2_HOST32(fp0, FabricWWNN.High);
3041 	MPT_2_HOST32(fp0, FabricWWPN.Low);
3042 	MPT_2_HOST32(fp0, FabricWWPN.High);
3043 	MPT_2_HOST32(fp0, DiscoveredPortsCount);
3044 	MPT_2_HOST32(fp0, MaxInitiators);
3045 }
3046 
3047 void
3048 mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3049 {
3050 
3051 	MPT_2_HOST32(fp1, Flags);
3052 	MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3053 	MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3054 	MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3055 	MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3056 }
3057 
3058 void
3059 host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3060 {
3061 
3062 	HOST_2_MPT32(fp1, Flags);
3063 	HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3064 	HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3065 	HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3066 	HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3067 }
3068 
3069 void
3070 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3071 {
3072 	int i;
3073 
3074 	MPT_2_HOST16(volp, VolumeStatus.Reserved);
3075 	MPT_2_HOST16(volp, VolumeSettings.Settings);
3076 	MPT_2_HOST32(volp, MaxLBA);
3077 	MPT_2_HOST32(volp, MaxLBAHigh);
3078 	MPT_2_HOST32(volp, StripeSize);
3079 	MPT_2_HOST32(volp, Reserved2);
3080 	MPT_2_HOST32(volp, Reserved3);
3081 	for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3082 		MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3083 	}
3084 }
3085 
3086 void
3087 mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3088 {
3089 
3090 	MPT_2_HOST32(rpd0, Reserved1);
3091 	MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3092 	MPT_2_HOST32(rpd0, MaxLBA);
3093 	MPT_2_HOST16(rpd0, ErrorData.Reserved);
3094 	MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3095 	MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3096 }
3097 
3098 void
3099 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3100 {
3101 
3102 	MPT_2_HOST16(vi, TotalBlocks.High);
3103 	MPT_2_HOST16(vi, TotalBlocks.Low);
3104 	MPT_2_HOST16(vi, BlocksRemaining.High);
3105 	MPT_2_HOST16(vi, BlocksRemaining.Low);
3106 }
3107 #endif
3108