xref: /freebsd/sys/dev/mpt/mpt.c (revision 66c14b21d3ab0b18376563ba643ddb49b4fd33dd)
1 /*-
2  * Generic routines for LSI Fusion adapters.
3  * FreeBSD Version.
4  *
5  * Copyright (c) 2000, 2001 by Greg Ansley
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice immediately at the beginning of the file, without modification,
12  *    this list of conditions, and the following disclaimer.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 /*-
29  * Copyright (c) 2002, 2006 by Matthew Jacob
30  * All rights reserved.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions are
34  * met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
38  *    substantially similar to the "NO WARRANTY" disclaimer below
39  *    ("Disclaimer") and any redistribution must be conditioned upon including
40  *    a substantially similar Disclaimer requirement for further binary
41  *    redistribution.
42  * 3. Neither the names of the above listed copyright holders nor the names
43  *    of any contributors may be used to endorse or promote products derived
44  *    from this software without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
47  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
50  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
56  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
57  *
58  * Support from Chris Ellsworth in order to make SAS adapters work
59  * is gratefully acknowledged.
60  */
61 /*-
62  * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
63  * Copyright (c) 2005, WHEEL Sp. z o.o.
64  * Copyright (c) 2004, 2005 Justin T. Gibbs
65  * All rights reserved.
66  *
67  * Redistribution and use in source and binary forms, with or without
68  * modification, are permitted provided that the following conditions are
69  * met:
70  * 1. Redistributions of source code must retain the above copyright
71  *    notice, this list of conditions and the following disclaimer.
72  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
73  *    substantially similar to the "NO WARRANTY" disclaimer below
74  *    ("Disclaimer") and any redistribution must be conditioned upon including
75  *    a substantially similar Disclaimer requirement for further binary
76  *    redistribution.
77  * 3. Neither the names of the above listed copyright holders nor the names
78  *    of any contributors may be used to endorse or promote products derived
79  *    from this software without specific prior written permission.
80  *
81  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
82  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
83  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
84  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
85  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
86  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
87  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
88  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
89  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
90  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
91  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
92  */
93 
94 #include <sys/cdefs.h>
95 __FBSDID("$FreeBSD$");
96 
97 #include <dev/mpt/mpt.h>
98 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
99 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
100 
101 #include <dev/mpt/mpilib/mpi.h>
102 #include <dev/mpt/mpilib/mpi_ioc.h>
103 #include <dev/mpt/mpilib/mpi_fc.h>
104 #include <dev/mpt/mpilib/mpi_targ.h>
105 
106 #include <sys/sysctl.h>
107 
108 #define MPT_MAX_TRYS 3
109 #define MPT_MAX_WAIT 300000
110 
111 static int maxwait_ack = 0;
112 static int maxwait_int = 0;
113 static int maxwait_state = 0;
114 
115 TAILQ_HEAD(, mpt_softc)	mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
116 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
117 
118 static mpt_reply_handler_t mpt_default_reply_handler;
119 static mpt_reply_handler_t mpt_config_reply_handler;
120 static mpt_reply_handler_t mpt_handshake_reply_handler;
121 static mpt_reply_handler_t mpt_event_reply_handler;
122 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
123 			       MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
124 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
125 static int mpt_soft_reset(struct mpt_softc *mpt);
126 static void mpt_hard_reset(struct mpt_softc *mpt);
127 static int mpt_configure_ioc(struct mpt_softc *mpt);
128 static int mpt_enable_ioc(struct mpt_softc *mpt, int);
129 
130 /************************* Personality Module Support *************************/
131 /*
132  * We include one extra entry that is guaranteed to be NULL
133  * to simplify our itterator.
134  */
135 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
136 static __inline struct mpt_personality*
137 	mpt_pers_find(struct mpt_softc *, u_int);
138 static __inline struct mpt_personality*
139 	mpt_pers_find_reverse(struct mpt_softc *, u_int);
140 
141 static __inline struct mpt_personality *
142 mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
143 {
144 	KASSERT(start_at <= MPT_MAX_PERSONALITIES,
145 		("mpt_pers_find: starting position out of range\n"));
146 
147 	while (start_at < MPT_MAX_PERSONALITIES
148 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
149 		start_at++;
150 	}
151 	return (mpt_personalities[start_at]);
152 }
153 
154 /*
155  * Used infrequently, so no need to optimize like a forward
156  * traversal where we use the MAX+1 is guaranteed to be NULL
157  * trick.
158  */
159 static __inline struct mpt_personality *
160 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
161 {
162 	while (start_at < MPT_MAX_PERSONALITIES
163 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
164 		start_at--;
165 	}
166 	if (start_at < MPT_MAX_PERSONALITIES)
167 		return (mpt_personalities[start_at]);
168 	return (NULL);
169 }
170 
171 #define MPT_PERS_FOREACH(mpt, pers)				\
172 	for (pers = mpt_pers_find(mpt, /*start_at*/0);		\
173 	     pers != NULL;					\
174 	     pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
175 
176 #define MPT_PERS_FOREACH_REVERSE(mpt, pers)				\
177 	for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
178 	     pers != NULL;						\
179 	     pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
180 
181 static mpt_load_handler_t      mpt_stdload;
182 static mpt_probe_handler_t     mpt_stdprobe;
183 static mpt_attach_handler_t    mpt_stdattach;
184 static mpt_enable_handler_t    mpt_stdenable;
185 static mpt_event_handler_t     mpt_stdevent;
186 static mpt_reset_handler_t     mpt_stdreset;
187 static mpt_shutdown_handler_t  mpt_stdshutdown;
188 static mpt_detach_handler_t    mpt_stddetach;
189 static mpt_unload_handler_t    mpt_stdunload;
190 static struct mpt_personality mpt_default_personality =
191 {
192 	.load		= mpt_stdload,
193 	.probe		= mpt_stdprobe,
194 	.attach		= mpt_stdattach,
195 	.enable		= mpt_stdenable,
196 	.event		= mpt_stdevent,
197 	.reset		= mpt_stdreset,
198 	.shutdown	= mpt_stdshutdown,
199 	.detach		= mpt_stddetach,
200 	.unload		= mpt_stdunload
201 };
202 
203 static mpt_load_handler_t      mpt_core_load;
204 static mpt_attach_handler_t    mpt_core_attach;
205 static mpt_enable_handler_t    mpt_core_enable;
206 static mpt_reset_handler_t     mpt_core_ioc_reset;
207 static mpt_event_handler_t     mpt_core_event;
208 static mpt_shutdown_handler_t  mpt_core_shutdown;
209 static mpt_shutdown_handler_t  mpt_core_detach;
210 static mpt_unload_handler_t    mpt_core_unload;
211 static struct mpt_personality mpt_core_personality =
212 {
213 	.name		= "mpt_core",
214 	.load		= mpt_core_load,
215 	.attach		= mpt_core_attach,
216 	.enable		= mpt_core_enable,
217 	.event		= mpt_core_event,
218 	.reset		= mpt_core_ioc_reset,
219 	.shutdown	= mpt_core_shutdown,
220 	.detach		= mpt_core_detach,
221 	.unload		= mpt_core_unload,
222 };
223 
224 /*
225  * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
226  * ordering information.  We want the core to always register FIRST.
227  * other modules are set to SI_ORDER_SECOND.
228  */
229 static moduledata_t mpt_core_mod = {
230 	"mpt_core", mpt_modevent, &mpt_core_personality
231 };
232 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
233 MODULE_VERSION(mpt_core, 1);
234 
235 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
236 
237 
238 int
239 mpt_modevent(module_t mod, int type, void *data)
240 {
241 	struct mpt_personality *pers;
242 	int error;
243 
244 	pers = (struct mpt_personality *)data;
245 
246 	error = 0;
247 	switch (type) {
248 	case MOD_LOAD:
249 	{
250 		mpt_load_handler_t **def_handler;
251 		mpt_load_handler_t **pers_handler;
252 		int i;
253 
254 		for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
255 			if (mpt_personalities[i] == NULL)
256 				break;
257 		}
258 		if (i >= MPT_MAX_PERSONALITIES) {
259 			error = ENOMEM;
260 			break;
261 		}
262 		pers->id = i;
263 		mpt_personalities[i] = pers;
264 
265 		/* Install standard/noop handlers for any NULL entries. */
266 		def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
267 		pers_handler = MPT_PERS_FIRST_HANDLER(pers);
268 		while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
269 			if (*pers_handler == NULL)
270 				*pers_handler = *def_handler;
271 			pers_handler++;
272 			def_handler++;
273 		}
274 
275 		error = (pers->load(pers));
276 		if (error != 0)
277 			mpt_personalities[i] = NULL;
278 		break;
279 	}
280 	case MOD_SHUTDOWN:
281 		break;
282 #if __FreeBSD_version >= 500000
283 	case MOD_QUIESCE:
284 		break;
285 #endif
286 	case MOD_UNLOAD:
287 		error = pers->unload(pers);
288 		mpt_personalities[pers->id] = NULL;
289 		break;
290 	default:
291 		error = EINVAL;
292 		break;
293 	}
294 	return (error);
295 }
296 
297 int
298 mpt_stdload(struct mpt_personality *pers)
299 {
300 	/* Load is always successfull. */
301 	return (0);
302 }
303 
304 int
305 mpt_stdprobe(struct mpt_softc *mpt)
306 {
307 	/* Probe is always successfull. */
308 	return (0);
309 }
310 
311 int
312 mpt_stdattach(struct mpt_softc *mpt)
313 {
314 	/* Attach is always successfull. */
315 	return (0);
316 }
317 
318 int
319 mpt_stdenable(struct mpt_softc *mpt)
320 {
321 	/* Enable is always successfull. */
322 	return (0);
323 }
324 
325 int
326 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
327 {
328 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
329 	/* Event was not for us. */
330 	return (0);
331 }
332 
333 void
334 mpt_stdreset(struct mpt_softc *mpt, int type)
335 {
336 }
337 
338 void
339 mpt_stdshutdown(struct mpt_softc *mpt)
340 {
341 }
342 
343 void
344 mpt_stddetach(struct mpt_softc *mpt)
345 {
346 }
347 
348 int
349 mpt_stdunload(struct mpt_personality *pers)
350 {
351 	/* Unload is always successfull. */
352 	return (0);
353 }
354 
355 /******************************* Bus DMA Support ******************************/
356 void
357 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
358 {
359 	struct mpt_map_info *map_info;
360 
361 	map_info = (struct mpt_map_info *)arg;
362 	map_info->error = error;
363 	map_info->phys = segs->ds_addr;
364 }
365 
366 /**************************** Reply/Event Handling ****************************/
367 int
368 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
369 		     mpt_handler_t handler, uint32_t *phandler_id)
370 {
371 
372 	switch (type) {
373 	case MPT_HANDLER_REPLY:
374 	{
375 		u_int cbi;
376 		u_int free_cbi;
377 
378 		if (phandler_id == NULL)
379 			return (EINVAL);
380 
381 		free_cbi = MPT_HANDLER_ID_NONE;
382 		for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
383 			/*
384 			 * If the same handler is registered multiple
385 			 * times, don't error out.  Just return the
386 			 * index of the original registration.
387 			 */
388 			if (mpt_reply_handlers[cbi] == handler.reply_handler) {
389 				*phandler_id = MPT_CBI_TO_HID(cbi);
390 				return (0);
391 			}
392 
393 			/*
394 			 * Fill from the front in the hope that
395 			 * all registered handlers consume only a
396 			 * single cache line.
397 			 *
398 			 * We don't break on the first empty slot so
399 			 * that the full table is checked to see if
400 			 * this handler was previously registered.
401 			 */
402 			if (free_cbi == MPT_HANDLER_ID_NONE &&
403 			    (mpt_reply_handlers[cbi]
404 			  == mpt_default_reply_handler))
405 				free_cbi = cbi;
406 		}
407 		if (free_cbi == MPT_HANDLER_ID_NONE) {
408 			return (ENOMEM);
409 		}
410 		mpt_reply_handlers[free_cbi] = handler.reply_handler;
411 		*phandler_id = MPT_CBI_TO_HID(free_cbi);
412 		break;
413 	}
414 	default:
415 		mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
416 		return (EINVAL);
417 	}
418 	return (0);
419 }
420 
421 int
422 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
423 		       mpt_handler_t handler, uint32_t handler_id)
424 {
425 
426 	switch (type) {
427 	case MPT_HANDLER_REPLY:
428 	{
429 		u_int cbi;
430 
431 		cbi = MPT_CBI(handler_id);
432 		if (cbi >= MPT_NUM_REPLY_HANDLERS
433 		 || mpt_reply_handlers[cbi] != handler.reply_handler)
434 			return (ENOENT);
435 		mpt_reply_handlers[cbi] = mpt_default_reply_handler;
436 		break;
437 	}
438 	default:
439 		mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
440 		return (EINVAL);
441 	}
442 	return (0);
443 }
444 
445 static int
446 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
447 	uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
448 {
449 	mpt_prt(mpt,
450 	    "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
451 	    req, req->serno, reply_desc, reply_frame);
452 
453 	if (reply_frame != NULL)
454 		mpt_dump_reply_frame(mpt, reply_frame);
455 
456 	mpt_prt(mpt, "Reply Frame Ignored\n");
457 
458 	return (/*free_reply*/TRUE);
459 }
460 
461 static int
462 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
463  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
464 {
465 	if (req != NULL) {
466 
467 		if (reply_frame != NULL) {
468 			MSG_CONFIG *cfgp;
469 			MSG_CONFIG_REPLY *reply;
470 
471 			cfgp = (MSG_CONFIG *)req->req_vbuf;
472 			reply = (MSG_CONFIG_REPLY *)reply_frame;
473 			req->IOCStatus = le16toh(reply_frame->IOCStatus);
474 			bcopy(&reply->Header, &cfgp->Header,
475 			      sizeof(cfgp->Header));
476 		}
477 		req->state &= ~REQ_STATE_QUEUED;
478 		req->state |= REQ_STATE_DONE;
479 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
480 		if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
481 			wakeup(req);
482 		}
483 	}
484 
485 	return (TRUE);
486 }
487 
488 static int
489 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
490  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
491 {
492 	/* Nothing to be done. */
493 	return (TRUE);
494 }
495 
496 static int
497 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
498     uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
499 {
500 	int free_reply;
501 
502 	KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
503 	KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
504 
505 	free_reply = TRUE;
506 	switch (reply_frame->Function) {
507 	case MPI_FUNCTION_EVENT_NOTIFICATION:
508 	{
509 		MSG_EVENT_NOTIFY_REPLY *msg;
510 		struct mpt_personality *pers;
511 		u_int handled;
512 
513 		handled = 0;
514 		msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
515 		MPT_PERS_FOREACH(mpt, pers)
516 			handled += pers->event(mpt, req, msg);
517 
518 		if (handled == 0 && mpt->mpt_pers_mask == 0) {
519 			mpt_lprt(mpt, MPT_PRT_INFO,
520 				"No Handlers For Any Event Notify Frames. "
521 				"Event %#x (ACK %sequired).\n",
522 				msg->Event, msg->AckRequired? "r" : "not r");
523 		} else if (handled == 0) {
524 			mpt_lprt(mpt, MPT_PRT_WARN,
525 				"Unhandled Event Notify Frame. Event %#x "
526 				"(ACK %sequired).\n",
527 				msg->Event, msg->AckRequired? "r" : "not r");
528 		}
529 
530 		if (msg->AckRequired) {
531 			request_t *ack_req;
532 			uint32_t context;
533 
534 			context = htole32(req->index|MPT_REPLY_HANDLER_EVENTS);
535 			ack_req = mpt_get_request(mpt, FALSE);
536 			if (ack_req == NULL) {
537 				struct mpt_evtf_record *evtf;
538 
539 				evtf = (struct mpt_evtf_record *)reply_frame;
540 				evtf->context = context;
541 				LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
542 				free_reply = FALSE;
543 				break;
544 			}
545 			mpt_send_event_ack(mpt, ack_req, msg, context);
546 			/*
547 			 * Don't check for CONTINUATION_REPLY here
548 			 */
549 			return (free_reply);
550 		}
551 		break;
552 	}
553 	case MPI_FUNCTION_PORT_ENABLE:
554 		mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
555 		break;
556 	case MPI_FUNCTION_EVENT_ACK:
557 		break;
558 	default:
559 		mpt_prt(mpt, "unknown event function: %x\n",
560 			reply_frame->Function);
561 		break;
562 	}
563 
564 	/*
565 	 * I'm not sure that this continuation stuff works as it should.
566 	 *
567 	 * I've had FC async events occur that free the frame up because
568 	 * the continuation bit isn't set, and then additional async events
569 	 * then occur using the same context. As you might imagine, this
570 	 * leads to Very Bad Thing.
571 	 *
572 	 *  Let's just be safe for now and not free them up until we figure
573 	 * out what's actually happening here.
574 	 */
575 #if	0
576 	if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
577 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
578 		mpt_free_request(mpt, req);
579 		mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
580 		    reply_frame->Function, req, req->serno);
581 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
582 			MSG_EVENT_NOTIFY_REPLY *msg =
583 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
584 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
585 			    msg->Event, msg->AckRequired);
586 		}
587 	} else {
588 		mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
589 		    reply_frame->Function, req, req->serno);
590 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
591 			MSG_EVENT_NOTIFY_REPLY *msg =
592 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
593 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
594 			    msg->Event, msg->AckRequired);
595 		}
596 		mpt_prtc(mpt, "\n");
597 	}
598 #endif
599 	return (free_reply);
600 }
601 
602 /*
603  * Process an asynchronous event from the IOC.
604  */
605 static int
606 mpt_core_event(struct mpt_softc *mpt, request_t *req,
607 	       MSG_EVENT_NOTIFY_REPLY *msg)
608 {
609 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
610                  msg->Event & 0xFF);
611 	switch(msg->Event & 0xFF) {
612 	case MPI_EVENT_NONE:
613 		break;
614 	case MPI_EVENT_LOG_DATA:
615 	{
616 		int i;
617 
618 		/* Some error occured that LSI wants logged */
619 		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
620 			msg->IOCLogInfo);
621 		mpt_prt(mpt, "\tEvtLogData: Event Data:");
622 		for (i = 0; i < msg->EventDataLength; i++)
623 			mpt_prtc(mpt, "  %08x", msg->Data[i]);
624 		mpt_prtc(mpt, "\n");
625 		break;
626 	}
627 	case MPI_EVENT_EVENT_CHANGE:
628 		/*
629 		 * This is just an acknowledgement
630 		 * of our mpt_send_event_request.
631 		 */
632 		break;
633 	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
634 		break;
635 	default:
636 		return (0);
637 		break;
638 	}
639 	return (1);
640 }
641 
642 static void
643 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
644 		   MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
645 {
646 	MSG_EVENT_ACK *ackp;
647 
648 	ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
649 	memset(ackp, 0, sizeof (*ackp));
650 	ackp->Function = MPI_FUNCTION_EVENT_ACK;
651 	ackp->Event = msg->Event;
652 	ackp->EventContext = msg->EventContext;
653 	ackp->MsgContext = context;
654 	mpt_check_doorbell(mpt);
655 	mpt_send_cmd(mpt, ack_req);
656 }
657 
658 /***************************** Interrupt Handling *****************************/
659 void
660 mpt_intr(void *arg)
661 {
662 	struct mpt_softc *mpt;
663 	uint32_t reply_desc;
664 	int ntrips = 0;
665 
666 	mpt = (struct mpt_softc *)arg;
667 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
668 	while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
669 		request_t	  *req;
670 		MSG_DEFAULT_REPLY *reply_frame;
671 		uint32_t	   reply_baddr;
672 		uint32_t           ctxt_idx;
673 		u_int		   cb_index;
674 		u_int		   req_index;
675 		int		   free_rf;
676 
677 		req = NULL;
678 		reply_frame = NULL;
679 		reply_baddr = 0;
680 		if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
681 			u_int offset;
682 			/*
683 			 * Insure that the reply frame is coherent.
684 			 */
685 			reply_baddr = MPT_REPLY_BADDR(reply_desc);
686 			offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
687 			bus_dmamap_sync_range(mpt->reply_dmat,
688 			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
689 			    BUS_DMASYNC_POSTREAD);
690 			reply_frame = MPT_REPLY_OTOV(mpt, offset);
691 			ctxt_idx = le32toh(reply_frame->MsgContext);
692 		} else {
693 			uint32_t type;
694 
695 			type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
696 			ctxt_idx = reply_desc;
697 			mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
698 				    reply_desc);
699 
700 			switch (type) {
701 			case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
702 				ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
703 				break;
704 			case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
705 				ctxt_idx = GET_IO_INDEX(reply_desc);
706 				if (mpt->tgt_cmd_ptrs == NULL) {
707 					mpt_prt(mpt,
708 					    "mpt_intr: no target cmd ptrs\n");
709 					reply_desc = MPT_REPLY_EMPTY;
710 					break;
711 				}
712 				if (ctxt_idx >= mpt->tgt_cmds_allocated) {
713 					mpt_prt(mpt,
714 					    "mpt_intr: bad tgt cmd ctxt %u\n",
715 					    ctxt_idx);
716 					reply_desc = MPT_REPLY_EMPTY;
717 					ntrips = 1000;
718 					break;
719 				}
720 				req = mpt->tgt_cmd_ptrs[ctxt_idx];
721 				if (req == NULL) {
722 					mpt_prt(mpt, "no request backpointer "
723 					    "at index %u", ctxt_idx);
724 					reply_desc = MPT_REPLY_EMPTY;
725 					ntrips = 1000;
726 					break;
727 				}
728 				/*
729 				 * Reformulate ctxt_idx to be just as if
730 				 * it were another type of context reply
731 				 * so the code below will find the request
732 				 * via indexing into the pool.
733 				 */
734 				ctxt_idx =
735 				    req->index | mpt->scsi_tgt_handler_id;
736 				req = NULL;
737 				break;
738 			case MPI_CONTEXT_REPLY_TYPE_LAN:
739 				mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
740 				    reply_desc);
741 				reply_desc = MPT_REPLY_EMPTY;
742 				break;
743 			default:
744 				mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
745 				reply_desc = MPT_REPLY_EMPTY;
746 				break;
747 			}
748 			if (reply_desc == MPT_REPLY_EMPTY) {
749 				if (ntrips++ > 1000) {
750 					break;
751 				}
752 				continue;
753 			}
754 		}
755 
756 		cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
757 		req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
758 		if (req_index < MPT_MAX_REQUESTS(mpt)) {
759 			req = &mpt->request_pool[req_index];
760 		} else {
761 			mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
762 			    " 0x%x)\n", req_index, reply_desc);
763 		}
764 
765 		free_rf = mpt_reply_handlers[cb_index](mpt, req,
766 		    reply_desc, reply_frame);
767 
768 		if (reply_frame != NULL && free_rf) {
769 			mpt_free_reply(mpt, reply_baddr);
770 		}
771 
772 		/*
773 		 * If we got ourselves disabled, don't get stuck in a loop
774 		 */
775 		if (mpt->disabled) {
776 			mpt_disable_ints(mpt);
777 			break;
778 		}
779 		if (ntrips++ > 1000) {
780 			break;
781 		}
782 	}
783 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
784 }
785 
786 /******************************* Error Recovery *******************************/
787 void
788 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
789 			    u_int iocstatus)
790 {
791 	MSG_DEFAULT_REPLY  ioc_status_frame;
792 	request_t	  *req;
793 
794 	memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
795 	ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
796 	ioc_status_frame.IOCStatus = iocstatus;
797 	while((req = TAILQ_FIRST(chain)) != NULL) {
798 		MSG_REQUEST_HEADER *msg_hdr;
799 		u_int		    cb_index;
800 
801 		TAILQ_REMOVE(chain, req, links);
802 		msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
803 		ioc_status_frame.Function = msg_hdr->Function;
804 		ioc_status_frame.MsgContext = msg_hdr->MsgContext;
805 		cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
806 		mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
807 		    &ioc_status_frame);
808 	}
809 }
810 
811 /********************************* Diagnostics ********************************/
812 /*
813  * Perform a diagnostic dump of a reply frame.
814  */
815 void
816 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
817 {
818 	mpt_prt(mpt, "Address Reply:\n");
819 	mpt_print_reply(reply_frame);
820 }
821 
822 /******************************* Doorbell Access ******************************/
823 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
824 static __inline  uint32_t mpt_rd_intr(struct mpt_softc *mpt);
825 
826 static __inline uint32_t
827 mpt_rd_db(struct mpt_softc *mpt)
828 {
829 	return mpt_read(mpt, MPT_OFFSET_DOORBELL);
830 }
831 
832 static __inline uint32_t
833 mpt_rd_intr(struct mpt_softc *mpt)
834 {
835 	return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
836 }
837 
838 /* Busy wait for a door bell to be read by IOC */
839 static int
840 mpt_wait_db_ack(struct mpt_softc *mpt)
841 {
842 	int i;
843 	for (i=0; i < MPT_MAX_WAIT; i++) {
844 		if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
845 			maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
846 			return (MPT_OK);
847 		}
848 		DELAY(200);
849 	}
850 	return (MPT_FAIL);
851 }
852 
853 /* Busy wait for a door bell interrupt */
854 static int
855 mpt_wait_db_int(struct mpt_softc *mpt)
856 {
857 	int i;
858 	for (i=0; i < MPT_MAX_WAIT; i++) {
859 		if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
860 			maxwait_int = i > maxwait_int ? i : maxwait_int;
861 			return MPT_OK;
862 		}
863 		DELAY(100);
864 	}
865 	return (MPT_FAIL);
866 }
867 
868 /* Wait for IOC to transition to a give state */
869 void
870 mpt_check_doorbell(struct mpt_softc *mpt)
871 {
872 	uint32_t db = mpt_rd_db(mpt);
873 	if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
874 		mpt_prt(mpt, "Device not running\n");
875 		mpt_print_db(db);
876 	}
877 }
878 
879 /* Wait for IOC to transition to a give state */
880 static int
881 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
882 {
883 	int i;
884 
885 	for (i = 0; i < MPT_MAX_WAIT; i++) {
886 		uint32_t db = mpt_rd_db(mpt);
887 		if (MPT_STATE(db) == state) {
888 			maxwait_state = i > maxwait_state ? i : maxwait_state;
889 			return (MPT_OK);
890 		}
891 		DELAY(100);
892 	}
893 	return (MPT_FAIL);
894 }
895 
896 
897 /************************* Intialization/Configuration ************************/
898 static int mpt_download_fw(struct mpt_softc *mpt);
899 
900 /* Issue the reset COMMAND to the IOC */
901 static int
902 mpt_soft_reset(struct mpt_softc *mpt)
903 {
904 	mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
905 
906 	/* Have to use hard reset if we are not in Running state */
907 	if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
908 		mpt_prt(mpt, "soft reset failed: device not running\n");
909 		return (MPT_FAIL);
910 	}
911 
912 	/* If door bell is in use we don't have a chance of getting
913 	 * a word in since the IOC probably crashed in message
914 	 * processing. So don't waste our time.
915 	 */
916 	if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
917 		mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
918 		return (MPT_FAIL);
919 	}
920 
921 	/* Send the reset request to the IOC */
922 	mpt_write(mpt, MPT_OFFSET_DOORBELL,
923 	    MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
924 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
925 		mpt_prt(mpt, "soft reset failed: ack timeout\n");
926 		return (MPT_FAIL);
927 	}
928 
929 	/* Wait for the IOC to reload and come out of reset state */
930 	if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
931 		mpt_prt(mpt, "soft reset failed: device did not restart\n");
932 		return (MPT_FAIL);
933 	}
934 
935 	return MPT_OK;
936 }
937 
938 static int
939 mpt_enable_diag_mode(struct mpt_softc *mpt)
940 {
941 	int try;
942 
943 	try = 20;
944 	while (--try) {
945 
946 		if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
947 			break;
948 
949 		/* Enable diagnostic registers */
950 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
951 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
952 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
953 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
954 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
955 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
956 
957 		DELAY(100000);
958 	}
959 	if (try == 0)
960 		return (EIO);
961 	return (0);
962 }
963 
964 static void
965 mpt_disable_diag_mode(struct mpt_softc *mpt)
966 {
967 	mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
968 }
969 
970 /* This is a magic diagnostic reset that resets all the ARM
971  * processors in the chip.
972  */
973 static void
974 mpt_hard_reset(struct mpt_softc *mpt)
975 {
976 	int error;
977 	int wait;
978 	uint32_t diagreg;
979 
980 	mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
981 
982 	error = mpt_enable_diag_mode(mpt);
983 	if (error) {
984 		mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
985 		mpt_prt(mpt, "Trying to reset anyway.\n");
986 	}
987 
988 	diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
989 
990 	/*
991 	 * This appears to be a workaround required for some
992 	 * firmware or hardware revs.
993 	 */
994 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
995 	DELAY(1000);
996 
997 	/* Diag. port is now active so we can now hit the reset bit */
998 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
999 
1000         /*
1001          * Ensure that the reset has finished.  We delay 1ms
1002          * prior to reading the register to make sure the chip
1003          * has sufficiently completed its reset to handle register
1004          * accesses.
1005          */
1006 	wait = 5000;
1007 	do {
1008 		DELAY(1000);
1009 		diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1010 	} while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1011 
1012 	if (wait == 0) {
1013 		mpt_prt(mpt, "WARNING - Failed hard reset! "
1014 			"Trying to initialize anyway.\n");
1015 	}
1016 
1017 	/*
1018 	 * If we have firmware to download, it must be loaded before
1019 	 * the controller will become operational.  Do so now.
1020 	 */
1021 	if (mpt->fw_image != NULL) {
1022 
1023 		error = mpt_download_fw(mpt);
1024 
1025 		if (error) {
1026 			mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1027 			mpt_prt(mpt, "Trying to initialize anyway.\n");
1028 		}
1029 	}
1030 
1031 	/*
1032 	 * Reseting the controller should have disabled write
1033 	 * access to the diagnostic registers, but disable
1034 	 * manually to be sure.
1035 	 */
1036 	mpt_disable_diag_mode(mpt);
1037 }
1038 
1039 static void
1040 mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1041 {
1042 	/*
1043 	 * Complete all pending requests with a status
1044 	 * appropriate for an IOC reset.
1045 	 */
1046 	mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1047 				   MPI_IOCSTATUS_INVALID_STATE);
1048 }
1049 
1050 
1051 /*
1052  * Reset the IOC when needed. Try software command first then if needed
1053  * poke at the magic diagnostic reset. Note that a hard reset resets
1054  * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1055  * fouls up the PCI configuration registers.
1056  */
1057 int
1058 mpt_reset(struct mpt_softc *mpt, int reinit)
1059 {
1060 	struct	mpt_personality *pers;
1061 	int	ret;
1062 	int	retry_cnt = 0;
1063 
1064 	/*
1065 	 * Try a soft reset. If that fails, get out the big hammer.
1066 	 */
1067  again:
1068 	if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1069 		int	cnt;
1070 		for (cnt = 0; cnt < 5; cnt++) {
1071 			/* Failed; do a hard reset */
1072 			mpt_hard_reset(mpt);
1073 
1074 			/*
1075 			 * Wait for the IOC to reload
1076 			 * and come out of reset state
1077 			 */
1078 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1079 			if (ret == MPT_OK) {
1080 				break;
1081 			}
1082 			/*
1083 			 * Okay- try to check again...
1084 			 */
1085 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1086 			if (ret == MPT_OK) {
1087 				break;
1088 			}
1089 			mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1090 			    retry_cnt, cnt);
1091 		}
1092 	}
1093 
1094 	if (retry_cnt == 0) {
1095 		/*
1096 		 * Invoke reset handlers.  We bump the reset count so
1097 		 * that mpt_wait_req() understands that regardless of
1098 		 * the specified wait condition, it should stop its wait.
1099 		 */
1100 		mpt->reset_cnt++;
1101 		MPT_PERS_FOREACH(mpt, pers)
1102 			pers->reset(mpt, ret);
1103 	}
1104 
1105 	if (reinit) {
1106 		ret = mpt_enable_ioc(mpt, 1);
1107 		if (ret == MPT_OK) {
1108 			mpt_enable_ints(mpt);
1109 		}
1110 	}
1111 	if (ret != MPT_OK && retry_cnt++ < 2) {
1112 		goto again;
1113 	}
1114 	return ret;
1115 }
1116 
1117 /* Return a command buffer to the free queue */
1118 void
1119 mpt_free_request(struct mpt_softc *mpt, request_t *req)
1120 {
1121 	request_t *nxt;
1122 	struct mpt_evtf_record *record;
1123 	uint32_t reply_baddr;
1124 
1125 	if (req == NULL || req != &mpt->request_pool[req->index]) {
1126 		panic("mpt_free_request bad req ptr\n");
1127 		return;
1128 	}
1129 	if ((nxt = req->chain) != NULL) {
1130 		req->chain = NULL;
1131 		mpt_free_request(mpt, nxt);	/* NB: recursion */
1132 	}
1133 	KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1134 	KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1135 	KASSERT(MPT_OWNED(mpt), ("mpt_free_request: mpt not locked\n"));
1136 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1137 	    ("mpt_free_request: req %p:%u func %x already on freelist",
1138 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1139 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1140 	    ("mpt_free_request: req %p:%u func %x on pending list",
1141 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1142 #ifdef	INVARIANTS
1143 	mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1144 #endif
1145 
1146 	req->ccb = NULL;
1147 	if (LIST_EMPTY(&mpt->ack_frames)) {
1148 		/*
1149 		 * Insert free ones at the tail
1150 		 */
1151 		req->serno = 0;
1152 		req->state = REQ_STATE_FREE;
1153 #ifdef	INVARIANTS
1154 		memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1155 #endif
1156 		TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1157 		if (mpt->getreqwaiter != 0) {
1158 			mpt->getreqwaiter = 0;
1159 			wakeup(&mpt->request_free_list);
1160 		}
1161 		return;
1162 	}
1163 
1164 	/*
1165 	 * Process an ack frame deferred due to resource shortage.
1166 	 */
1167 	record = LIST_FIRST(&mpt->ack_frames);
1168 	LIST_REMOVE(record, links);
1169 	req->state = REQ_STATE_ALLOCATED;
1170 	mpt_assign_serno(mpt, req);
1171 	mpt_send_event_ack(mpt, req, &record->reply, record->context);
1172 	reply_baddr = (uint32_t)((uint8_t *)record - mpt->reply)
1173 		    + (mpt->reply_phys & 0xFFFFFFFF);
1174 	mpt_free_reply(mpt, reply_baddr);
1175 }
1176 
1177 /* Get a command buffer from the free queue */
1178 request_t *
1179 mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1180 {
1181 	request_t *req;
1182 
1183 retry:
1184 	KASSERT(MPT_OWNED(mpt), ("mpt_get_request: mpt not locked\n"));
1185 	req = TAILQ_FIRST(&mpt->request_free_list);
1186 	if (req != NULL) {
1187 		KASSERT(req == &mpt->request_pool[req->index],
1188 		    ("mpt_get_request: corrupted request free list\n"));
1189 		KASSERT(req->state == REQ_STATE_FREE,
1190 		    ("req %p:%u not free on free list %x index %d function %x",
1191 		    req, req->serno, req->state, req->index,
1192 		    ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1193 		TAILQ_REMOVE(&mpt->request_free_list, req, links);
1194 		req->state = REQ_STATE_ALLOCATED;
1195 		req->chain = NULL;
1196 		mpt_assign_serno(mpt, req);
1197 	} else if (sleep_ok != 0) {
1198 		mpt->getreqwaiter = 1;
1199 		mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
1200 		goto retry;
1201 	}
1202 	return (req);
1203 }
1204 
1205 /* Pass the command to the IOC */
1206 void
1207 mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1208 {
1209 	uint32_t *pReq;
1210 
1211 	pReq = req->req_vbuf;
1212 	if (mpt->verbose > MPT_PRT_TRACE) {
1213 		int offset;
1214 #if __FreeBSD_version >= 500000
1215 		mpt_prt(mpt, "Send Request %d (%jx):",
1216 		    req->index, (uintmax_t) req->req_pbuf);
1217 #else
1218 		mpt_prt(mpt, "Send Request %d (%llx):",
1219 		    req->index, (unsigned long long) req->req_pbuf);
1220 #endif
1221 		for (offset = 0; offset < mpt->request_frame_size; offset++) {
1222 			if ((offset & 0x7) == 0) {
1223 				mpt_prtc(mpt, "\n");
1224 				mpt_prt(mpt, " ");
1225 			}
1226 			mpt_prtc(mpt, " %08x", pReq[offset]);
1227 		}
1228 		mpt_prtc(mpt, "\n");
1229 	}
1230 	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1231 	    BUS_DMASYNC_PREWRITE);
1232 	req->state |= REQ_STATE_QUEUED;
1233 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1234 	    ("req %p:%u func %x on freelist list in mpt_send_cmd",
1235 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1236 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1237 	    ("req %p:%u func %x already on pending list in mpt_send_cmd",
1238 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1239 	TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1240 	mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1241 }
1242 
1243 /*
1244  * Wait for a request to complete.
1245  *
1246  * Inputs:
1247  *	mpt		softc of controller executing request
1248  *	req		request to wait for
1249  *	sleep_ok	nonzero implies may sleep in this context
1250  *	time_ms		timeout in ms.  0 implies no timeout.
1251  *
1252  * Return Values:
1253  *	0		Request completed
1254  *	non-0		Timeout fired before request completion.
1255  */
1256 int
1257 mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1258 	     mpt_req_state_t state, mpt_req_state_t mask,
1259 	     int sleep_ok, int time_ms)
1260 {
1261 	int   error;
1262 	int   timeout;
1263 	u_int saved_cnt;
1264 
1265 	/*
1266 	 * timeout is in ms.  0 indicates infinite wait.
1267 	 * Convert to ticks or 500us units depending on
1268 	 * our sleep mode.
1269 	 */
1270 	if (sleep_ok != 0) {
1271 		timeout = (time_ms * hz) / 1000;
1272 	} else {
1273 		timeout = time_ms * 2;
1274 	}
1275 	req->state |= REQ_STATE_NEED_WAKEUP;
1276 	mask &= ~REQ_STATE_NEED_WAKEUP;
1277 	saved_cnt = mpt->reset_cnt;
1278 	while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1279 		if (sleep_ok != 0) {
1280 			error = mpt_sleep(mpt, req, PUSER, "mptreq", timeout);
1281 			if (error == EWOULDBLOCK) {
1282 				timeout = 0;
1283 				break;
1284 			}
1285 		} else {
1286 			if (time_ms != 0 && --timeout == 0) {
1287 				break;
1288 			}
1289 			DELAY(500);
1290 			mpt_intr(mpt);
1291 		}
1292 	}
1293 	req->state &= ~REQ_STATE_NEED_WAKEUP;
1294 	if (mpt->reset_cnt != saved_cnt) {
1295 		return (EIO);
1296 	}
1297 	if (time_ms && timeout <= 0) {
1298 		MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1299 		mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1300 		return (ETIMEDOUT);
1301 	}
1302 	return (0);
1303 }
1304 
1305 /*
1306  * Send a command to the IOC via the handshake register.
1307  *
1308  * Only done at initialization time and for certain unusual
1309  * commands such as device/bus reset as specified by LSI.
1310  */
1311 int
1312 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1313 {
1314 	int i;
1315 	uint32_t data, *data32;
1316 
1317 	/* Check condition of the IOC */
1318 	data = mpt_rd_db(mpt);
1319 	if ((MPT_STATE(data) != MPT_DB_STATE_READY
1320 	  && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1321 	  && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1322 	 || MPT_DB_IS_IN_USE(data)) {
1323 		mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1324 		mpt_print_db(data);
1325 		return (EBUSY);
1326 	}
1327 
1328 	/* We move things in 32 bit chunks */
1329 	len = (len + 3) >> 2;
1330 	data32 = cmd;
1331 
1332 	/* Clear any left over pending doorbell interupts */
1333 	if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1334 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1335 
1336 	/*
1337 	 * Tell the handshake reg. we are going to send a command
1338          * and how long it is going to be.
1339 	 */
1340 	data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1341 	    (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1342 	mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1343 
1344 	/* Wait for the chip to notice */
1345 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1346 		mpt_prt(mpt, "mpt_send_handshake_cmd timeout1\n");
1347 		return (ETIMEDOUT);
1348 	}
1349 
1350 	/* Clear the interrupt */
1351 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1352 
1353 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
1354 		mpt_prt(mpt, "mpt_send_handshake_cmd timeout2\n");
1355 		return (ETIMEDOUT);
1356 	}
1357 
1358 	/* Send the command */
1359 	for (i = 0; i < len; i++) {
1360 		mpt_write(mpt, MPT_OFFSET_DOORBELL, *data32++);
1361 		if (mpt_wait_db_ack(mpt) != MPT_OK) {
1362 			mpt_prt(mpt,
1363 				"mpt_send_handshake_cmd timeout! index = %d\n",
1364 				i);
1365 			return (ETIMEDOUT);
1366 		}
1367 	}
1368 	return MPT_OK;
1369 }
1370 
1371 /* Get the response from the handshake register */
1372 int
1373 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1374 {
1375 	int left, reply_left;
1376 	u_int16_t *data16;
1377 	MSG_DEFAULT_REPLY *hdr;
1378 
1379 	/* We move things out in 16 bit chunks */
1380 	reply_len >>= 1;
1381 	data16 = (u_int16_t *)reply;
1382 
1383 	hdr = (MSG_DEFAULT_REPLY *)reply;
1384 
1385 	/* Get first word */
1386 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1387 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1388 		return ETIMEDOUT;
1389 	}
1390 	*data16++ = mpt_read(mpt, MPT_OFFSET_DOORBELL) & MPT_DB_DATA_MASK;
1391 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1392 
1393 	/* Get Second Word */
1394 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1395 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1396 		return ETIMEDOUT;
1397 	}
1398 	*data16++ = mpt_read(mpt, MPT_OFFSET_DOORBELL) & MPT_DB_DATA_MASK;
1399 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1400 
1401 	/*
1402 	 * With the second word, we can now look at the length.
1403 	 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1404 	 */
1405 	if ((reply_len >> 1) != hdr->MsgLength &&
1406 	    (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1407 #if __FreeBSD_version >= 500000
1408 		mpt_prt(mpt, "reply length does not match message length: "
1409 			"got %x; expected %zx for function %x\n",
1410 			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1411 #else
1412 		mpt_prt(mpt, "reply length does not match message length: "
1413 			"got %x; expected %x for function %x\n",
1414 			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1415 #endif
1416 	}
1417 
1418 	/* Get rest of the reply; but don't overflow the provided buffer */
1419 	left = (hdr->MsgLength << 1) - 2;
1420 	reply_left =  reply_len - 2;
1421 	while (left--) {
1422 		u_int16_t datum;
1423 
1424 		if (mpt_wait_db_int(mpt) != MPT_OK) {
1425 			mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1426 			return ETIMEDOUT;
1427 		}
1428 		datum = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1429 
1430 		if (reply_left-- > 0)
1431 			*data16++ = datum & MPT_DB_DATA_MASK;
1432 
1433 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1434 	}
1435 
1436 	/* One more wait & clear at the end */
1437 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1438 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1439 		return ETIMEDOUT;
1440 	}
1441 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1442 
1443 	if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1444 		if (mpt->verbose >= MPT_PRT_TRACE)
1445 			mpt_print_reply(hdr);
1446 		return (MPT_FAIL | hdr->IOCStatus);
1447 	}
1448 
1449 	return (0);
1450 }
1451 
1452 static int
1453 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1454 {
1455 	MSG_IOC_FACTS f_req;
1456 	int error;
1457 
1458 	memset(&f_req, 0, sizeof f_req);
1459 	f_req.Function = MPI_FUNCTION_IOC_FACTS;
1460 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1461 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1462 	if (error)
1463 		return(error);
1464 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1465 	return (error);
1466 }
1467 
1468 static int
1469 mpt_get_portfacts(struct mpt_softc *mpt, MSG_PORT_FACTS_REPLY *freplp)
1470 {
1471 	MSG_PORT_FACTS f_req;
1472 	int error;
1473 
1474 	/* XXX: Only getting PORT FACTS for Port 0 */
1475 	memset(&f_req, 0, sizeof f_req);
1476 	f_req.Function = MPI_FUNCTION_PORT_FACTS;
1477 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1478 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1479 	if (error)
1480 		return(error);
1481 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1482 	return (error);
1483 }
1484 
1485 /*
1486  * Send the initialization request. This is where we specify how many
1487  * SCSI busses and how many devices per bus we wish to emulate.
1488  * This is also the command that specifies the max size of the reply
1489  * frames from the IOC that we will be allocating.
1490  */
1491 static int
1492 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1493 {
1494 	int error = 0;
1495 	MSG_IOC_INIT init;
1496 	MSG_IOC_INIT_REPLY reply;
1497 
1498 	memset(&init, 0, sizeof init);
1499 	init.WhoInit = who;
1500 	init.Function = MPI_FUNCTION_IOC_INIT;
1501 	if (mpt->is_fc) {
1502 		init.MaxDevices = 255;
1503 	} else if (mpt->is_sas) {
1504 		init.MaxDevices = mpt->mpt_max_devices;
1505 	} else {
1506 		init.MaxDevices = 16;
1507 	}
1508 	init.MaxBuses = 1;
1509 
1510 	init.MsgVersion = htole16(MPI_VERSION);
1511 	init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1512 	init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1513 	init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1514 
1515 	if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1516 		return(error);
1517 	}
1518 
1519 	error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1520 	return (error);
1521 }
1522 
1523 
1524 /*
1525  * Utiltity routine to read configuration headers and pages
1526  */
1527 int
1528 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, u_int Action,
1529 		  u_int PageVersion, u_int PageLength, u_int PageNumber,
1530 		  u_int PageType, uint32_t PageAddress, bus_addr_t addr,
1531 		  bus_size_t len, int sleep_ok, int timeout_ms)
1532 {
1533 	MSG_CONFIG *cfgp;
1534 	SGE_SIMPLE32 *se;
1535 
1536 	cfgp = req->req_vbuf;
1537 	memset(cfgp, 0, sizeof *cfgp);
1538 	cfgp->Action = Action;
1539 	cfgp->Function = MPI_FUNCTION_CONFIG;
1540 	cfgp->Header.PageVersion = PageVersion;
1541 	cfgp->Header.PageLength = PageLength;
1542 	cfgp->Header.PageNumber = PageNumber;
1543 	cfgp->Header.PageType = PageType;
1544 	cfgp->PageAddress = PageAddress;
1545 	se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1546 	se->Address = addr;
1547 	MPI_pSGE_SET_LENGTH(se, len);
1548 	MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1549 	    MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1550 	    MPI_SGE_FLAGS_END_OF_LIST |
1551 	    ((Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1552 	  || Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1553 	   ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1554 	cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1555 
1556 	mpt_check_doorbell(mpt);
1557 	mpt_send_cmd(mpt, req);
1558 	return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1559 			     sleep_ok, timeout_ms));
1560 }
1561 
1562 
1563 int
1564 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1565 		    uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1566 		    int sleep_ok, int timeout_ms)
1567 {
1568 	request_t  *req;
1569 	MSG_CONFIG *cfgp;
1570 	int	    error;
1571 
1572 	req = mpt_get_request(mpt, sleep_ok);
1573 	if (req == NULL) {
1574 		mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1575 		return (ENOMEM);
1576 	}
1577 
1578 	error = mpt_issue_cfg_req(mpt, req, MPI_CONFIG_ACTION_PAGE_HEADER,
1579 				  /*PageVersion*/0, /*PageLength*/0, PageNumber,
1580 				  PageType, PageAddress, /*addr*/0, /*len*/0,
1581 				  sleep_ok, timeout_ms);
1582 	if (error != 0) {
1583 		mpt_free_request(mpt, req);
1584 		mpt_prt(mpt, "read_cfg_header timed out\n");
1585 		return (ETIMEDOUT);
1586 	}
1587 
1588         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1589 	case MPI_IOCSTATUS_SUCCESS:
1590 		cfgp = req->req_vbuf;
1591 		bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1592 		error = 0;
1593 		break;
1594 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1595 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1596 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1597 		    PageType, PageNumber, PageAddress);
1598 		error = EINVAL;
1599 		break;
1600 	default:
1601 		mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1602 			req->IOCStatus);
1603 		error = EIO;
1604 		break;
1605 	}
1606 	mpt_free_request(mpt, req);
1607 	return (error);
1608 }
1609 
1610 int
1611 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1612 		  CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1613 		  int timeout_ms)
1614 {
1615 	request_t    *req;
1616 	int	      error;
1617 
1618 	req = mpt_get_request(mpt, sleep_ok);
1619 	if (req == NULL) {
1620 		mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1621 		return (-1);
1622 	}
1623 
1624 	error = mpt_issue_cfg_req(mpt, req, Action, hdr->PageVersion,
1625 				  hdr->PageLength, hdr->PageNumber,
1626 				  hdr->PageType & MPI_CONFIG_PAGETYPE_MASK,
1627 				  PageAddress, req->req_pbuf + MPT_RQSL(mpt),
1628 				  len, sleep_ok, timeout_ms);
1629 	if (error != 0) {
1630 		mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1631 		return (-1);
1632 	}
1633 
1634 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1635 		mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1636 			req->IOCStatus);
1637 		mpt_free_request(mpt, req);
1638 		return (-1);
1639 	}
1640 	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1641 	    BUS_DMASYNC_POSTREAD);
1642 	memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1643 	mpt_free_request(mpt, req);
1644 	return (0);
1645 }
1646 
1647 int
1648 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1649 		   CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1650 		   int timeout_ms)
1651 {
1652 	request_t    *req;
1653 	u_int	      hdr_attr;
1654 	int	      error;
1655 
1656 	hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1657 	if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1658 	    hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1659 		mpt_prt(mpt, "page type 0x%x not changeable\n",
1660 			hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1661 		return (-1);
1662 	}
1663 	hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK,
1664 
1665 	req = mpt_get_request(mpt, sleep_ok);
1666 	if (req == NULL)
1667 		return (-1);
1668 
1669 	memcpy(((caddr_t)req->req_vbuf)+MPT_RQSL(mpt), hdr, len);
1670 	/* Restore stripped out attributes */
1671 	hdr->PageType |= hdr_attr;
1672 
1673 	error = mpt_issue_cfg_req(mpt, req, Action, hdr->PageVersion,
1674 				  hdr->PageLength, hdr->PageNumber,
1675 				  hdr->PageType & MPI_CONFIG_PAGETYPE_MASK,
1676 				  PageAddress, req->req_pbuf + MPT_RQSL(mpt),
1677 				  len, sleep_ok, timeout_ms);
1678 	if (error != 0) {
1679 		mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1680 		return (-1);
1681 	}
1682 
1683         if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1684 		mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1685 			req->IOCStatus);
1686 		mpt_free_request(mpt, req);
1687 		return (-1);
1688 	}
1689 	mpt_free_request(mpt, req);
1690 	return (0);
1691 }
1692 
1693 /*
1694  * Read IOC configuration information
1695  */
1696 static int
1697 mpt_read_config_info_ioc(struct mpt_softc *mpt)
1698 {
1699 	CONFIG_PAGE_HEADER hdr;
1700 	struct mpt_raid_volume *mpt_raid;
1701 	int rv;
1702 	int i;
1703 	size_t len;
1704 
1705 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1706 				 /*PageNumber*/2, /*PageAddress*/0, &hdr,
1707 				 /*sleep_ok*/FALSE, /*timeout_ms*/5000);
1708 	/*
1709 	 * If it's an invalid page, so what? Not a supported function....
1710 	 */
1711 	if (rv == EINVAL)
1712 		return (0);
1713 	if (rv)
1714 		return (rv);
1715 
1716 #if __FreeBSD_version >= 500000
1717 	mpt_lprt(mpt, MPT_PRT_DEBUG,  "IOC Page 2 Header: ver %x, len %zx, "
1718 		 "num %x, type %x\n", hdr.PageVersion,
1719 		 hdr.PageLength * sizeof(uint32_t),
1720 		 hdr.PageNumber, hdr.PageType);
1721 #else
1722 	mpt_lprt(mpt, MPT_PRT_DEBUG,  "IOC Page 2 Header: ver %x, len %z, "
1723 		 "num %x, type %x\n", hdr.PageVersion,
1724 		 hdr.PageLength * sizeof(uint32_t),
1725 		 hdr.PageNumber, hdr.PageType);
1726 #endif
1727 
1728 	len = hdr.PageLength * sizeof(uint32_t);
1729 	mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1730 	if (mpt->ioc_page2 == NULL)
1731 		return (ENOMEM);
1732 	memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1733 	rv = mpt_read_cur_cfg_page(mpt, /*PageAddress*/0,
1734 				   &mpt->ioc_page2->Header, len,
1735 				   /*sleep_ok*/FALSE, /*timeout_ms*/5000);
1736 	if (rv) {
1737 		mpt_prt(mpt, "failed to read IOC Page 2\n");
1738 	} else if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1739 		uint32_t mask;
1740 
1741 		mpt_prt(mpt, "Capabilities: (");
1742 		for (mask = 1; mask != 0; mask <<= 1) {
1743 			if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0)
1744 				continue;
1745 
1746 			switch (mask) {
1747 			case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1748 				mpt_prtc(mpt, " RAID-0");
1749 				break;
1750 			case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1751 				mpt_prtc(mpt, " RAID-1E");
1752 				break;
1753 			case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1754 				mpt_prtc(mpt, " RAID-1");
1755 				break;
1756 			case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1757 				mpt_prtc(mpt, " SES");
1758 				break;
1759 			case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1760 				mpt_prtc(mpt, " SAFTE");
1761 				break;
1762 			case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1763 				mpt_prtc(mpt, " Multi-Channel-Arrays");
1764 			default:
1765 				break;
1766 			}
1767 		}
1768 		mpt_prtc(mpt, " )\n");
1769 		if ((mpt->ioc_page2->CapabilitiesFlags
1770 		   & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1771 		    | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1772 		    | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1773 			mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1774 				mpt->ioc_page2->NumActiveVolumes,
1775 				mpt->ioc_page2->NumActiveVolumes != 1
1776 			      ? "s " : " ",
1777 				mpt->ioc_page2->MaxVolumes);
1778 			mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1779 				mpt->ioc_page2->NumActivePhysDisks,
1780 				mpt->ioc_page2->NumActivePhysDisks != 1
1781 			      ? "s " : " ",
1782 				mpt->ioc_page2->MaxPhysDisks);
1783 		}
1784 	}
1785 
1786 	len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1787 	mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT);
1788 	if (mpt->raid_volumes == NULL) {
1789 		mpt_prt(mpt, "Could not allocate RAID volume data\n");
1790 	} else {
1791 		memset(mpt->raid_volumes, 0, len);
1792 	}
1793 
1794 	/*
1795 	 * Copy critical data out of ioc_page2 so that we can
1796 	 * safely refresh the page without windows of unreliable
1797 	 * data.
1798 	 */
1799 	mpt->raid_max_volumes =  mpt->ioc_page2->MaxVolumes;
1800 
1801 	len = sizeof(*mpt->raid_volumes->config_page)
1802 	    + (sizeof(RAID_VOL0_PHYS_DISK)*(mpt->ioc_page2->MaxPhysDisks - 1));
1803 	for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
1804 		mpt_raid = &mpt->raid_volumes[i];
1805 		mpt_raid->config_page = malloc(len, M_DEVBUF, M_NOWAIT);
1806 		if (mpt_raid->config_page == NULL) {
1807 			mpt_prt(mpt, "Could not allocate RAID page data\n");
1808 			break;
1809 		}
1810 		memset(mpt_raid->config_page, 0, len);
1811 	}
1812 	mpt->raid_page0_len = len;
1813 
1814 	len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
1815 	mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT);
1816 	if (mpt->raid_disks == NULL) {
1817 		mpt_prt(mpt, "Could not allocate RAID disk data\n");
1818 	} else {
1819 		memset(mpt->raid_disks, 0, len);
1820 	}
1821 
1822 	mpt->raid_max_disks =  mpt->ioc_page2->MaxPhysDisks;
1823 
1824 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1825 				 /*PageNumber*/3, /*PageAddress*/0, &hdr,
1826 				 /*sleep_ok*/FALSE, /*timeout_ms*/5000);
1827 	if (rv)
1828 		return (EIO);
1829 
1830 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
1831 		 hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
1832 
1833 	if (mpt->ioc_page3 != NULL)
1834 		free(mpt->ioc_page3, M_DEVBUF);
1835 	len = hdr.PageLength * sizeof(uint32_t);
1836 	mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1837 	if (mpt->ioc_page3 == NULL)
1838 		return (-1);
1839 	memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
1840 	rv = mpt_read_cur_cfg_page(mpt, /*PageAddress*/0,
1841 				   &mpt->ioc_page3->Header, len,
1842 				   /*sleep_ok*/FALSE, /*timeout_ms*/5000);
1843 	if (rv) {
1844 		mpt_prt(mpt, "failed to read IOC Page 3\n");
1845 	}
1846 
1847 	mpt_raid_wakeup(mpt);
1848 
1849 	return (0);
1850 }
1851 
1852 /*
1853  * Enable IOC port
1854  */
1855 static int
1856 mpt_send_port_enable(struct mpt_softc *mpt, int port)
1857 {
1858 	request_t	*req;
1859 	MSG_PORT_ENABLE *enable_req;
1860 	int		 error;
1861 
1862 	req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
1863 	if (req == NULL)
1864 		return (-1);
1865 
1866 	enable_req = req->req_vbuf;
1867 	memset(enable_req, 0,  MPT_RQSL(mpt));
1868 
1869 	enable_req->Function   = MPI_FUNCTION_PORT_ENABLE;
1870 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1871 	enable_req->PortNumber = port;
1872 
1873 	mpt_check_doorbell(mpt);
1874 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
1875 
1876 	mpt_send_cmd(mpt, req);
1877 	error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1878 	    FALSE, (mpt->is_sas || mpt->is_fc)? 30000 : 3000);
1879 	if (error != 0) {
1880 		mpt_prt(mpt, "port %d enable timed out\n", port);
1881 		return (-1);
1882 	}
1883 	mpt_free_request(mpt, req);
1884 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
1885 	return (0);
1886 }
1887 
1888 /*
1889  * Enable/Disable asynchronous event reporting.
1890  */
1891 static int
1892 mpt_send_event_request(struct mpt_softc *mpt, int onoff)
1893 {
1894 	request_t *req;
1895 	MSG_EVENT_NOTIFY *enable_req;
1896 
1897 	req = mpt_get_request(mpt, FALSE);
1898 	if (req == NULL) {
1899 		return (ENOMEM);
1900 	}
1901 	enable_req = req->req_vbuf;
1902 	memset(enable_req, 0, sizeof *enable_req);
1903 
1904 	enable_req->Function   = MPI_FUNCTION_EVENT_NOTIFICATION;
1905 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
1906 	enable_req->Switch     = onoff;
1907 
1908 	mpt_check_doorbell(mpt);
1909 	mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
1910 	    onoff ? "en" : "dis");
1911 	/*
1912 	 * Send the command off, but don't wait for it.
1913 	 */
1914 	mpt_send_cmd(mpt, req);
1915 	return (0);
1916 }
1917 
1918 /*
1919  * Un-mask the interupts on the chip.
1920  */
1921 void
1922 mpt_enable_ints(struct mpt_softc *mpt)
1923 {
1924 	/* Unmask every thing except door bell int */
1925 	mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
1926 }
1927 
1928 /*
1929  * Mask the interupts on the chip.
1930  */
1931 void
1932 mpt_disable_ints(struct mpt_softc *mpt)
1933 {
1934 	/* Mask all interrupts */
1935 	mpt_write(mpt, MPT_OFFSET_INTR_MASK,
1936 	    MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
1937 }
1938 
1939 static void
1940 mpt_sysctl_attach(struct mpt_softc *mpt)
1941 {
1942 #if __FreeBSD_version >= 500000
1943 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
1944 	struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
1945 
1946 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1947 		       "debug", CTLFLAG_RW, &mpt->verbose, 0,
1948 		       "Debugging/Verbose level");
1949 #endif
1950 }
1951 
1952 int
1953 mpt_attach(struct mpt_softc *mpt)
1954 {
1955 	struct mpt_personality *pers;
1956 	int i;
1957 	int error;
1958 
1959 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
1960 		pers = mpt_personalities[i];
1961 		if (pers == NULL) {
1962 			continue;
1963 		}
1964 		if (pers->probe(mpt) == 0) {
1965 			error = pers->attach(mpt);
1966 			if (error != 0) {
1967 				mpt_detach(mpt);
1968 				return (error);
1969 			}
1970 			mpt->mpt_pers_mask |= (0x1 << pers->id);
1971 			pers->use_count++;
1972 		}
1973 	}
1974 
1975 	/*
1976 	 * Now that we've attached everything, do the enable function
1977 	 * for all of the personalities. This allows the personalities
1978 	 * to do setups that are appropriate for them prior to enabling
1979 	 * any ports.
1980 	 */
1981 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
1982 		pers = mpt_personalities[i];
1983 		if (pers != NULL  && MPT_PERS_ATTACHED(pers, mpt) != 0) {
1984 			error = pers->enable(mpt);
1985 			if (error != 0) {
1986 				mpt_prt(mpt, "personality %s attached but would"
1987 				    " not enable (%d)\n", pers->name, error);
1988 				mpt_detach(mpt);
1989 				return (error);
1990 			}
1991 		}
1992 	}
1993 	return (0);
1994 }
1995 
1996 int
1997 mpt_shutdown(struct mpt_softc *mpt)
1998 {
1999 	struct mpt_personality *pers;
2000 
2001 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2002 		pers->shutdown(mpt);
2003 	}
2004 	return (0);
2005 }
2006 
2007 int
2008 mpt_detach(struct mpt_softc *mpt)
2009 {
2010 	struct mpt_personality *pers;
2011 
2012 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2013 		pers->detach(mpt);
2014 		mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2015 		pers->use_count--;
2016 	}
2017 
2018 	return (0);
2019 }
2020 
2021 int
2022 mpt_core_load(struct mpt_personality *pers)
2023 {
2024 	int i;
2025 
2026 	/*
2027 	 * Setup core handlers and insert the default handler
2028 	 * into all "empty slots".
2029 	 */
2030 	for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2031 		mpt_reply_handlers[i] = mpt_default_reply_handler;
2032 	}
2033 
2034 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2035 	    mpt_event_reply_handler;
2036 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2037 	    mpt_config_reply_handler;
2038 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2039 	    mpt_handshake_reply_handler;
2040 	return (0);
2041 }
2042 
2043 /*
2044  * Initialize per-instance driver data and perform
2045  * initial controller configuration.
2046  */
2047 int
2048 mpt_core_attach(struct mpt_softc *mpt)
2049 {
2050         int val;
2051 	int error;
2052 
2053 
2054 	LIST_INIT(&mpt->ack_frames);
2055 
2056 	/* Put all request buffers on the free list */
2057 	TAILQ_INIT(&mpt->request_pending_list);
2058 	TAILQ_INIT(&mpt->request_free_list);
2059 	TAILQ_INIT(&mpt->request_timeout_list);
2060 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2061 		request_t *req = &mpt->request_pool[val];
2062 		req->state = REQ_STATE_ALLOCATED;
2063 		mpt_free_request(mpt, req);
2064 	}
2065 
2066 	for (val = 0; val < MPT_MAX_LUNS; val++) {
2067 		STAILQ_INIT(&mpt->trt[val].atios);
2068 		STAILQ_INIT(&mpt->trt[val].inots);
2069 	}
2070 	STAILQ_INIT(&mpt->trt_wildcard.atios);
2071 	STAILQ_INIT(&mpt->trt_wildcard.inots);
2072 
2073 	mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2074 
2075 	mpt_sysctl_attach(mpt);
2076 
2077 	mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2078 	    mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2079 
2080 	error = mpt_configure_ioc(mpt);
2081 
2082 	return (error);
2083 }
2084 
2085 int
2086 mpt_core_enable(struct mpt_softc *mpt)
2087 {
2088 	/*
2089 	 * We enter with the IOC enabled, but async events
2090 	 * not enabled, ports not enabled and interrupts
2091 	 * not enabled.
2092 	 */
2093 
2094 	/*
2095 	 * Enable asynchronous event reporting- all personalities
2096 	 * have attached so that they should be able to now field
2097 	 * async events.
2098 	 */
2099 	mpt_send_event_request(mpt, 1);
2100 
2101 	/*
2102 	 * Catch any pending interrupts
2103 	 *
2104 	 * This seems to be crucial- otherwise
2105 	 * the portenable below times out.
2106 	 */
2107 	mpt_intr(mpt);
2108 
2109 	/*
2110 	 * Enable Interrupts
2111 	 */
2112 	mpt_enable_ints(mpt);
2113 
2114 	/*
2115 	 * Catch any pending interrupts
2116 	 *
2117 	 * This seems to be crucial- otherwise
2118 	 * the portenable below times out.
2119 	 */
2120 	mpt_intr(mpt);
2121 
2122 	/*
2123 	 * Enable the port.
2124 	 */
2125 	if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2126 		mpt_prt(mpt, "failed to enable port 0\n");
2127 		return (ENXIO);
2128 	}
2129 	return (0);
2130 }
2131 
2132 void
2133 mpt_core_shutdown(struct mpt_softc *mpt)
2134 {
2135 	mpt_disable_ints(mpt);
2136 }
2137 
2138 void
2139 mpt_core_detach(struct mpt_softc *mpt)
2140 {
2141 	mpt_disable_ints(mpt);
2142 }
2143 
2144 int
2145 mpt_core_unload(struct mpt_personality *pers)
2146 {
2147 	/* Unload is always successfull. */
2148 	return (0);
2149 }
2150 
2151 #define FW_UPLOAD_REQ_SIZE				\
2152 	(sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION)	\
2153        + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2154 
2155 static int
2156 mpt_upload_fw(struct mpt_softc *mpt)
2157 {
2158 	uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2159 	MSG_FW_UPLOAD_REPLY fw_reply;
2160 	MSG_FW_UPLOAD *fw_req;
2161 	FW_UPLOAD_TCSGE *tsge;
2162 	SGE_SIMPLE32 *sge;
2163 	uint32_t flags;
2164 	int error;
2165 
2166 	memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2167 	fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2168 	fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2169 	fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2170 	fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2171 	tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2172 	tsge->DetailsLength = 12;
2173 	tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2174 	tsge->ImageSize = htole32(mpt->fw_image_size);
2175 	sge = (SGE_SIMPLE32 *)(tsge + 1);
2176 	flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2177 	      | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2178 	      | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2179 	flags <<= MPI_SGE_FLAGS_SHIFT;
2180 	sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2181 	sge->Address = htole32(mpt->fw_phys);
2182 	error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2183 	if (error)
2184 		return(error);
2185 	error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2186 	return (error);
2187 }
2188 
2189 static void
2190 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2191 	       uint32_t *data, bus_size_t len)
2192 {
2193 	uint32_t *data_end;
2194 
2195 	data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2196 	pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2197 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2198 	while (data != data_end) {
2199 		mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2200 		data++;
2201 	}
2202 	pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2203 }
2204 
2205 static int
2206 mpt_download_fw(struct mpt_softc *mpt)
2207 {
2208 	MpiFwHeader_t *fw_hdr;
2209 	int error;
2210 	uint32_t ext_offset;
2211 	uint32_t data;
2212 
2213 	mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2214 		mpt->fw_image_size);
2215 
2216 	error = mpt_enable_diag_mode(mpt);
2217 	if (error != 0) {
2218 		mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2219 		return (EIO);
2220 	}
2221 
2222 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2223 		  MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2224 
2225 	fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2226 	mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2227 		       fw_hdr->ImageSize);
2228 
2229 	ext_offset = fw_hdr->NextImageHeaderOffset;
2230 	while (ext_offset != 0) {
2231 		MpiExtImageHeader_t *ext;
2232 
2233 		ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2234 		ext_offset = ext->NextImageHeaderOffset;
2235 
2236 		mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2237 			       ext->ImageSize);
2238 	}
2239 
2240 	pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2241 	/* Setup the address to jump to on reset. */
2242 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2243 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2244 
2245 	/*
2246 	 * The controller sets the "flash bad" status after attempting
2247 	 * to auto-boot from flash.  Clear the status so that the controller
2248 	 * will continue the boot process with our newly installed firmware.
2249 	 */
2250 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2251 	data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2252 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2253 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2254 
2255 	pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2256 
2257 	/*
2258 	 * Re-enable the processor and clear the boot halt flag.
2259 	 */
2260 	data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2261 	data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2262 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2263 
2264 	mpt_disable_diag_mode(mpt);
2265 	return (0);
2266 }
2267 
2268 /*
2269  * Allocate/Initialize data structures for the controller.  Called
2270  * once at instance startup.
2271  */
2272 static int
2273 mpt_configure_ioc(struct mpt_softc *mpt)
2274 {
2275         MSG_PORT_FACTS_REPLY pfp;
2276         MSG_IOC_FACTS_REPLY facts;
2277 	int try;
2278 	int needreset;
2279 	uint32_t max_chain_depth;
2280 
2281 	needreset = 0;
2282 	for (try = 0; try < MPT_MAX_TRYS; try++) {
2283 
2284 		/*
2285 		 * No need to reset if the IOC is already in the READY state.
2286 		 *
2287 		 * Force reset if initialization failed previously.
2288 		 * Note that a hard_reset of the second channel of a '929
2289 		 * will stop operation of the first channel.  Hopefully, if the
2290 		 * first channel is ok, the second will not require a hard
2291 		 * reset.
2292 		 */
2293 		if (needreset || MPT_STATE(mpt_rd_db(mpt)) !=
2294 		    MPT_DB_STATE_READY) {
2295 			if (mpt_reset(mpt, FALSE) != MPT_OK) {
2296 				continue;
2297 			}
2298 		}
2299 		needreset = 0;
2300 
2301 		if (mpt_get_iocfacts(mpt, &facts) != MPT_OK) {
2302 			mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2303 			needreset = 1;
2304 			continue;
2305 		}
2306 
2307 		mpt->mpt_global_credits = le16toh(facts.GlobalCredits);
2308 		mpt->request_frame_size = le16toh(facts.RequestFrameSize);
2309 		mpt->ioc_facts_flags = facts.Flags;
2310 		mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2311 			    le16toh(facts.MsgVersion) >> 8,
2312 			    le16toh(facts.MsgVersion) & 0xFF,
2313 			    le16toh(facts.HeaderVersion) >> 8,
2314 			    le16toh(facts.HeaderVersion) & 0xFF);
2315 
2316 		/*
2317 		 * Now that we know request frame size, we can calculate
2318 		 * the actual (reasonable) segment limit for read/write I/O.
2319 		 *
2320 		 * This limit is constrained by:
2321 		 *
2322 		 *  + The size of each area we allocate per command (and how
2323                  *    many chain segments we can fit into it).
2324                  *  + The total number of areas we've set up.
2325 		 *  + The actual chain depth the card will allow.
2326 		 *
2327 		 * The first area's segment count is limited by the I/O request
2328 		 * at the head of it. We cannot allocate realistically more
2329 		 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2330 		 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2331 		 *
2332 		 */
2333 		max_chain_depth = facts.MaxChainDepth;
2334 
2335 		/* total number of request areas we (can) allocate */
2336 		mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2337 
2338 		/* converted to the number of chain areas possible */
2339 		mpt->max_seg_cnt *= MPT_NRFM(mpt);
2340 
2341 		/* limited by the number of chain areas the card will support */
2342 		if (mpt->max_seg_cnt > max_chain_depth) {
2343 			mpt_lprt(mpt, MPT_PRT_DEBUG,
2344 			    "chain depth limited to %u (from %u)\n",
2345 			    max_chain_depth, mpt->max_seg_cnt);
2346 			mpt->max_seg_cnt = max_chain_depth;
2347 		}
2348 
2349 		/* converted to the number of simple sges in chain segments. */
2350 		mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2351 
2352 		mpt_lprt(mpt, MPT_PRT_DEBUG,
2353 		    "Maximum Segment Count: %u\n", mpt->max_seg_cnt);
2354 		mpt_lprt(mpt, MPT_PRT_DEBUG,
2355 			 "MsgLength=%u IOCNumber = %d\n",
2356 			 facts.MsgLength, facts.IOCNumber);
2357 		mpt_lprt(mpt, MPT_PRT_DEBUG,
2358 			 "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2359 			 "Request Frame Size %u bytes Max Chain Depth %u\n",
2360                          mpt->mpt_global_credits, facts.BlockSize,
2361                          mpt->request_frame_size << 2, max_chain_depth);
2362 		mpt_lprt(mpt, MPT_PRT_DEBUG,
2363 			 "IOCFACTS: Num Ports %d, FWImageSize %d, "
2364 			 "Flags=%#x\n", facts.NumberOfPorts,
2365 			 le32toh(facts.FWImageSize), facts.Flags);
2366 
2367 
2368 		if ((facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) != 0) {
2369 			struct mpt_map_info mi;
2370 			int error;
2371 
2372 			/*
2373 			 * In some configurations, the IOC's firmware is
2374 			 * stored in a shared piece of system NVRAM that
2375 			 * is only accessable via the BIOS.  In this
2376 			 * case, the firmware keeps a copy of firmware in
2377 			 * RAM until the OS driver retrieves it.  Once
2378 			 * retrieved, we are responsible for re-downloading
2379 			 * the firmware after any hard-reset.
2380 			 */
2381 			mpt->fw_image_size = le32toh(facts.FWImageSize);
2382 			error = mpt_dma_tag_create(mpt, mpt->parent_dmat,
2383 			    /*alignment*/1, /*boundary*/0,
2384 			    /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
2385 			    /*highaddr*/BUS_SPACE_MAXADDR, /*filter*/NULL,
2386 			    /*filterarg*/NULL, mpt->fw_image_size,
2387 			    /*nsegments*/1, /*maxsegsz*/mpt->fw_image_size,
2388 			    /*flags*/0, &mpt->fw_dmat);
2389 			if (error != 0) {
2390 				mpt_prt(mpt, "cannot create fw dma tag\n");
2391 				return (ENOMEM);
2392 			}
2393 			error = bus_dmamem_alloc(mpt->fw_dmat,
2394 			    (void **)&mpt->fw_image, BUS_DMA_NOWAIT,
2395 			    &mpt->fw_dmap);
2396 			if (error != 0) {
2397 				mpt_prt(mpt, "cannot allocate fw mem.\n");
2398 				bus_dma_tag_destroy(mpt->fw_dmat);
2399 				return (ENOMEM);
2400 			}
2401 			mi.mpt = mpt;
2402 			mi.error = 0;
2403 			bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2404 			    mpt->fw_image, mpt->fw_image_size, mpt_map_rquest,
2405 			    &mi, 0);
2406 			mpt->fw_phys = mi.phys;
2407 
2408 			error = mpt_upload_fw(mpt);
2409 			if (error != 0) {
2410 				mpt_prt(mpt, "fw upload failed.\n");
2411 				bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2412 				bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2413 				    mpt->fw_dmap);
2414 				bus_dma_tag_destroy(mpt->fw_dmat);
2415 				mpt->fw_image = NULL;
2416 				return (EIO);
2417 			}
2418 		}
2419 
2420 		if (mpt_get_portfacts(mpt, &pfp) != MPT_OK) {
2421 			mpt_prt(mpt, "mpt_get_portfacts failed\n");
2422 			needreset = 1;
2423 			continue;
2424 		}
2425 
2426 		mpt_lprt(mpt, MPT_PRT_DEBUG,
2427 			 "PORTFACTS: Type %x PFlags %x IID %d MaxDev %d\n",
2428 			 pfp.PortType, pfp.ProtocolFlags, pfp.PortSCSIID,
2429 			 pfp.MaxDevices);
2430 
2431 		mpt->mpt_port_type = pfp.PortType;
2432 		mpt->mpt_proto_flags = pfp.ProtocolFlags;
2433 		if (pfp.PortType != MPI_PORTFACTS_PORTTYPE_SCSI &&
2434 		    pfp.PortType != MPI_PORTFACTS_PORTTYPE_SAS &&
2435 		    pfp.PortType != MPI_PORTFACTS_PORTTYPE_FC) {
2436 			mpt_prt(mpt, "Unsupported Port Type (%x)\n",
2437 			    pfp.PortType);
2438 			return (ENXIO);
2439 		}
2440 		mpt->mpt_max_tgtcmds = le16toh(pfp.MaxPostedCmdBuffers);
2441 
2442 		if (pfp.PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2443 			mpt->is_fc = 1;
2444 			mpt->is_sas = 0;
2445 		} else if (pfp.PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2446 			mpt->is_fc = 0;
2447 			mpt->is_sas = 1;
2448 		} else {
2449 			mpt->is_fc = 0;
2450 			mpt->is_sas = 0;
2451 		}
2452 		mpt->mpt_ini_id = pfp.PortSCSIID;
2453 		mpt->mpt_max_devices = pfp.MaxDevices;
2454 
2455 		/*
2456 		 * Set our expected role with what this port supports.
2457 		 */
2458 
2459 		mpt->role = MPT_ROLE_NONE;
2460 		if (pfp.ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2461 			mpt->role |= MPT_ROLE_INITIATOR;
2462 		}
2463 		if (pfp.ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2464 			mpt->role |= MPT_ROLE_TARGET;
2465 		}
2466 		if (mpt->role == MPT_ROLE_NONE) {
2467 			mpt_prt(mpt, "port does not support either target or "
2468 			    "initiator role\n");
2469 			return (ENXIO);
2470 		}
2471 
2472 		if (mpt_enable_ioc(mpt, 0) != MPT_OK) {
2473 			mpt_prt(mpt, "unable to initialize IOC\n");
2474 			return (ENXIO);
2475 		}
2476 
2477 		/*
2478 		 * Read IOC configuration information.
2479 		 */
2480 		mpt_read_config_info_ioc(mpt);
2481 
2482 		/* Everything worked */
2483 		break;
2484 	}
2485 
2486 	if (try >= MPT_MAX_TRYS) {
2487 		mpt_prt(mpt, "failed to initialize IOC");
2488 		return (EIO);
2489 	}
2490 
2491 	return (0);
2492 }
2493 
2494 static int
2495 mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2496 {
2497 	uint32_t pptr;
2498 	int val;
2499 
2500 	if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2501 		mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2502 		return (EIO);
2503 	}
2504 
2505 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2506 
2507 	if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2508 		mpt_prt(mpt, "IOC failed to go to run state\n");
2509 		return (ENXIO);
2510 	}
2511 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2512 
2513 	/*
2514 	 * Give it reply buffers
2515 	 *
2516 	 * Do *not* exceed global credits.
2517 	 */
2518 	for (val = 0, pptr = mpt->reply_phys;
2519 	    (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2520 	     pptr += MPT_REPLY_SIZE) {
2521 		mpt_free_reply(mpt, pptr);
2522 		if (++val == mpt->mpt_global_credits - 1)
2523 			break;
2524 	}
2525 
2526 
2527 	/*
2528 	 * Enable the port if asked. This is only done if we're resetting
2529 	 * the IOC after initial startup.
2530 	 */
2531 	if (portenable) {
2532 		/*
2533 		 * Enable asynchronous event reporting
2534 		 */
2535 		mpt_send_event_request(mpt, 1);
2536 
2537 		if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2538 			mpt_prt(mpt, "failed to enable port 0\n");
2539 			return (ENXIO);
2540 		}
2541 	}
2542 	return (MPT_OK);
2543 }
2544