1 /*- 2 * Generic routines for LSI Fusion adapters. 3 * FreeBSD Version. 4 * 5 * Copyright (c) 2000, 2001 by Greg Ansley 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice immediately at the beginning of the file, without modification, 12 * this list of conditions, and the following disclaimer. 13 * 2. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 /*- 29 * Copyright (c) 2002, 2006 by Matthew Jacob 30 * All rights reserved. 31 * 32 * Redistribution and use in source and binary forms, with or without 33 * modification, are permitted provided that the following conditions are 34 * met: 35 * 1. Redistributions of source code must retain the above copyright 36 * notice, this list of conditions and the following disclaimer. 37 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 38 * substantially similar to the "NO WARRANTY" disclaimer below 39 * ("Disclaimer") and any redistribution must be conditioned upon including 40 * a substantially similar Disclaimer requirement for further binary 41 * redistribution. 42 * 3. Neither the names of the above listed copyright holders nor the names 43 * of any contributors may be used to endorse or promote products derived 44 * from this software without specific prior written permission. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 47 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 50 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 56 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 57 * 58 * Support from Chris Ellsworth in order to make SAS adapters work 59 * is gratefully acknowledged. 60 * 61 * 62 * Support from LSI-Logic has also gone a great deal toward making this a 63 * workable subsystem and is gratefully acknowledged. 64 */ 65 /*- 66 * Copyright (c) 2004, Avid Technology, Inc. and its contributors. 67 * Copyright (c) 2005, WHEEL Sp. z o.o. 68 * Copyright (c) 2004, 2005 Justin T. Gibbs 69 * All rights reserved. 70 * 71 * Redistribution and use in source and binary forms, with or without 72 * modification, are permitted provided that the following conditions are 73 * met: 74 * 1. Redistributions of source code must retain the above copyright 75 * notice, this list of conditions and the following disclaimer. 76 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 77 * substantially similar to the "NO WARRANTY" disclaimer below 78 * ("Disclaimer") and any redistribution must be conditioned upon including 79 * a substantially similar Disclaimer requirement for further binary 80 * redistribution. 81 * 3. Neither the names of the above listed copyright holders nor the names 82 * of any contributors may be used to endorse or promote products derived 83 * from this software without specific prior written permission. 84 * 85 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 86 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 88 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 89 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 90 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 91 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 92 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 93 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 94 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 95 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 96 */ 97 98 #include <sys/cdefs.h> 99 __FBSDID("$FreeBSD$"); 100 101 #include <dev/mpt/mpt.h> 102 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */ 103 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */ 104 105 #include <dev/mpt/mpilib/mpi.h> 106 #include <dev/mpt/mpilib/mpi_ioc.h> 107 #include <dev/mpt/mpilib/mpi_fc.h> 108 #include <dev/mpt/mpilib/mpi_targ.h> 109 110 #include <sys/sysctl.h> 111 112 #define MPT_MAX_TRYS 3 113 #define MPT_MAX_WAIT 300000 114 115 static int maxwait_ack = 0; 116 static int maxwait_int = 0; 117 static int maxwait_state = 0; 118 119 static TAILQ_HEAD(, mpt_softc) mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq); 120 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS]; 121 122 static mpt_reply_handler_t mpt_default_reply_handler; 123 static mpt_reply_handler_t mpt_config_reply_handler; 124 static mpt_reply_handler_t mpt_handshake_reply_handler; 125 static mpt_reply_handler_t mpt_event_reply_handler; 126 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 127 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context); 128 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff); 129 static int mpt_soft_reset(struct mpt_softc *mpt); 130 static void mpt_hard_reset(struct mpt_softc *mpt); 131 static int mpt_dma_buf_alloc(struct mpt_softc *mpt); 132 static void mpt_dma_buf_free(struct mpt_softc *mpt); 133 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int); 134 static int mpt_enable_ioc(struct mpt_softc *mpt, int); 135 136 /************************* Personality Module Support *************************/ 137 /* 138 * We include one extra entry that is guaranteed to be NULL 139 * to simplify our itterator. 140 */ 141 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1]; 142 static __inline struct mpt_personality* 143 mpt_pers_find(struct mpt_softc *, u_int); 144 static __inline struct mpt_personality* 145 mpt_pers_find_reverse(struct mpt_softc *, u_int); 146 147 static __inline struct mpt_personality * 148 mpt_pers_find(struct mpt_softc *mpt, u_int start_at) 149 { 150 KASSERT(start_at <= MPT_MAX_PERSONALITIES, 151 ("mpt_pers_find: starting position out of range")); 152 153 while (start_at < MPT_MAX_PERSONALITIES 154 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 155 start_at++; 156 } 157 return (mpt_personalities[start_at]); 158 } 159 160 /* 161 * Used infrequently, so no need to optimize like a forward 162 * traversal where we use the MAX+1 is guaranteed to be NULL 163 * trick. 164 */ 165 static __inline struct mpt_personality * 166 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at) 167 { 168 while (start_at < MPT_MAX_PERSONALITIES 169 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 170 start_at--; 171 } 172 if (start_at < MPT_MAX_PERSONALITIES) 173 return (mpt_personalities[start_at]); 174 return (NULL); 175 } 176 177 #define MPT_PERS_FOREACH(mpt, pers) \ 178 for (pers = mpt_pers_find(mpt, /*start_at*/0); \ 179 pers != NULL; \ 180 pers = mpt_pers_find(mpt, /*start_at*/pers->id+1)) 181 182 #define MPT_PERS_FOREACH_REVERSE(mpt, pers) \ 183 for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\ 184 pers != NULL; \ 185 pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1)) 186 187 static mpt_load_handler_t mpt_stdload; 188 static mpt_probe_handler_t mpt_stdprobe; 189 static mpt_attach_handler_t mpt_stdattach; 190 static mpt_enable_handler_t mpt_stdenable; 191 static mpt_ready_handler_t mpt_stdready; 192 static mpt_event_handler_t mpt_stdevent; 193 static mpt_reset_handler_t mpt_stdreset; 194 static mpt_shutdown_handler_t mpt_stdshutdown; 195 static mpt_detach_handler_t mpt_stddetach; 196 static mpt_unload_handler_t mpt_stdunload; 197 static struct mpt_personality mpt_default_personality = 198 { 199 .load = mpt_stdload, 200 .probe = mpt_stdprobe, 201 .attach = mpt_stdattach, 202 .enable = mpt_stdenable, 203 .ready = mpt_stdready, 204 .event = mpt_stdevent, 205 .reset = mpt_stdreset, 206 .shutdown = mpt_stdshutdown, 207 .detach = mpt_stddetach, 208 .unload = mpt_stdunload 209 }; 210 211 static mpt_load_handler_t mpt_core_load; 212 static mpt_attach_handler_t mpt_core_attach; 213 static mpt_enable_handler_t mpt_core_enable; 214 static mpt_reset_handler_t mpt_core_ioc_reset; 215 static mpt_event_handler_t mpt_core_event; 216 static mpt_shutdown_handler_t mpt_core_shutdown; 217 static mpt_shutdown_handler_t mpt_core_detach; 218 static mpt_unload_handler_t mpt_core_unload; 219 static struct mpt_personality mpt_core_personality = 220 { 221 .name = "mpt_core", 222 .load = mpt_core_load, 223 // .attach = mpt_core_attach, 224 // .enable = mpt_core_enable, 225 .event = mpt_core_event, 226 .reset = mpt_core_ioc_reset, 227 .shutdown = mpt_core_shutdown, 228 .detach = mpt_core_detach, 229 .unload = mpt_core_unload, 230 }; 231 232 /* 233 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need 234 * ordering information. We want the core to always register FIRST. 235 * other modules are set to SI_ORDER_SECOND. 236 */ 237 static moduledata_t mpt_core_mod = { 238 "mpt_core", mpt_modevent, &mpt_core_personality 239 }; 240 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 241 MODULE_VERSION(mpt_core, 1); 242 243 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id)) 244 245 int 246 mpt_modevent(module_t mod, int type, void *data) 247 { 248 struct mpt_personality *pers; 249 int error; 250 251 pers = (struct mpt_personality *)data; 252 253 error = 0; 254 switch (type) { 255 case MOD_LOAD: 256 { 257 mpt_load_handler_t **def_handler; 258 mpt_load_handler_t **pers_handler; 259 int i; 260 261 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 262 if (mpt_personalities[i] == NULL) 263 break; 264 } 265 if (i >= MPT_MAX_PERSONALITIES) { 266 error = ENOMEM; 267 break; 268 } 269 pers->id = i; 270 mpt_personalities[i] = pers; 271 272 /* Install standard/noop handlers for any NULL entries. */ 273 def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality); 274 pers_handler = MPT_PERS_FIRST_HANDLER(pers); 275 while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) { 276 if (*pers_handler == NULL) 277 *pers_handler = *def_handler; 278 pers_handler++; 279 def_handler++; 280 } 281 282 error = (pers->load(pers)); 283 if (error != 0) 284 mpt_personalities[i] = NULL; 285 break; 286 } 287 case MOD_SHUTDOWN: 288 break; 289 #if __FreeBSD_version >= 500000 290 case MOD_QUIESCE: 291 break; 292 #endif 293 case MOD_UNLOAD: 294 error = pers->unload(pers); 295 mpt_personalities[pers->id] = NULL; 296 break; 297 default: 298 error = EINVAL; 299 break; 300 } 301 return (error); 302 } 303 304 static int 305 mpt_stdload(struct mpt_personality *pers) 306 { 307 308 /* Load is always successful. */ 309 return (0); 310 } 311 312 static int 313 mpt_stdprobe(struct mpt_softc *mpt) 314 { 315 316 /* Probe is always successful. */ 317 return (0); 318 } 319 320 static int 321 mpt_stdattach(struct mpt_softc *mpt) 322 { 323 324 /* Attach is always successful. */ 325 return (0); 326 } 327 328 static int 329 mpt_stdenable(struct mpt_softc *mpt) 330 { 331 332 /* Enable is always successful. */ 333 return (0); 334 } 335 336 static void 337 mpt_stdready(struct mpt_softc *mpt) 338 { 339 340 } 341 342 static int 343 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg) 344 { 345 346 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF); 347 /* Event was not for us. */ 348 return (0); 349 } 350 351 static void 352 mpt_stdreset(struct mpt_softc *mpt, int type) 353 { 354 355 } 356 357 static void 358 mpt_stdshutdown(struct mpt_softc *mpt) 359 { 360 361 } 362 363 static void 364 mpt_stddetach(struct mpt_softc *mpt) 365 { 366 367 } 368 369 static int 370 mpt_stdunload(struct mpt_personality *pers) 371 { 372 373 /* Unload is always successful. */ 374 return (0); 375 } 376 377 /* 378 * Post driver attachment, we may want to perform some global actions. 379 * Here is the hook to do so. 380 */ 381 382 static void 383 mpt_postattach(void *unused) 384 { 385 struct mpt_softc *mpt; 386 struct mpt_personality *pers; 387 388 TAILQ_FOREACH(mpt, &mpt_tailq, links) { 389 MPT_PERS_FOREACH(mpt, pers) 390 pers->ready(mpt); 391 } 392 } 393 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL); 394 395 /******************************* Bus DMA Support ******************************/ 396 void 397 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error) 398 { 399 struct mpt_map_info *map_info; 400 401 map_info = (struct mpt_map_info *)arg; 402 map_info->error = error; 403 map_info->phys = segs->ds_addr; 404 } 405 406 /**************************** Reply/Event Handling ****************************/ 407 int 408 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type, 409 mpt_handler_t handler, uint32_t *phandler_id) 410 { 411 412 switch (type) { 413 case MPT_HANDLER_REPLY: 414 { 415 u_int cbi; 416 u_int free_cbi; 417 418 if (phandler_id == NULL) 419 return (EINVAL); 420 421 free_cbi = MPT_HANDLER_ID_NONE; 422 for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) { 423 /* 424 * If the same handler is registered multiple 425 * times, don't error out. Just return the 426 * index of the original registration. 427 */ 428 if (mpt_reply_handlers[cbi] == handler.reply_handler) { 429 *phandler_id = MPT_CBI_TO_HID(cbi); 430 return (0); 431 } 432 433 /* 434 * Fill from the front in the hope that 435 * all registered handlers consume only a 436 * single cache line. 437 * 438 * We don't break on the first empty slot so 439 * that the full table is checked to see if 440 * this handler was previously registered. 441 */ 442 if (free_cbi == MPT_HANDLER_ID_NONE && 443 (mpt_reply_handlers[cbi] 444 == mpt_default_reply_handler)) 445 free_cbi = cbi; 446 } 447 if (free_cbi == MPT_HANDLER_ID_NONE) { 448 return (ENOMEM); 449 } 450 mpt_reply_handlers[free_cbi] = handler.reply_handler; 451 *phandler_id = MPT_CBI_TO_HID(free_cbi); 452 break; 453 } 454 default: 455 mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type); 456 return (EINVAL); 457 } 458 return (0); 459 } 460 461 int 462 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type, 463 mpt_handler_t handler, uint32_t handler_id) 464 { 465 466 switch (type) { 467 case MPT_HANDLER_REPLY: 468 { 469 u_int cbi; 470 471 cbi = MPT_CBI(handler_id); 472 if (cbi >= MPT_NUM_REPLY_HANDLERS 473 || mpt_reply_handlers[cbi] != handler.reply_handler) 474 return (ENOENT); 475 mpt_reply_handlers[cbi] = mpt_default_reply_handler; 476 break; 477 } 478 default: 479 mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type); 480 return (EINVAL); 481 } 482 return (0); 483 } 484 485 static int 486 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req, 487 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 488 { 489 490 mpt_prt(mpt, 491 "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n", 492 req, req->serno, reply_desc, reply_frame); 493 494 if (reply_frame != NULL) 495 mpt_dump_reply_frame(mpt, reply_frame); 496 497 mpt_prt(mpt, "Reply Frame Ignored\n"); 498 499 return (/*free_reply*/TRUE); 500 } 501 502 static int 503 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req, 504 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 505 { 506 507 if (req != NULL) { 508 if (reply_frame != NULL) { 509 MSG_CONFIG *cfgp; 510 MSG_CONFIG_REPLY *reply; 511 512 cfgp = (MSG_CONFIG *)req->req_vbuf; 513 reply = (MSG_CONFIG_REPLY *)reply_frame; 514 req->IOCStatus = le16toh(reply_frame->IOCStatus); 515 bcopy(&reply->Header, &cfgp->Header, 516 sizeof(cfgp->Header)); 517 cfgp->ExtPageLength = reply->ExtPageLength; 518 cfgp->ExtPageType = reply->ExtPageType; 519 } 520 req->state &= ~REQ_STATE_QUEUED; 521 req->state |= REQ_STATE_DONE; 522 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 523 if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) { 524 wakeup(req); 525 } else if ((req->state & REQ_STATE_TIMEDOUT) != 0) { 526 /* 527 * Whew- we can free this request (late completion) 528 */ 529 mpt_free_request(mpt, req); 530 } 531 } 532 533 return (TRUE); 534 } 535 536 static int 537 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req, 538 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 539 { 540 541 /* Nothing to be done. */ 542 return (TRUE); 543 } 544 545 static int 546 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req, 547 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 548 { 549 int free_reply; 550 551 KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler")); 552 KASSERT(req != NULL, ("null request in mpt_event_reply_handler")); 553 554 free_reply = TRUE; 555 switch (reply_frame->Function) { 556 case MPI_FUNCTION_EVENT_NOTIFICATION: 557 { 558 MSG_EVENT_NOTIFY_REPLY *msg; 559 struct mpt_personality *pers; 560 u_int handled; 561 562 handled = 0; 563 msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 564 msg->EventDataLength = le16toh(msg->EventDataLength); 565 msg->IOCStatus = le16toh(msg->IOCStatus); 566 msg->IOCLogInfo = le32toh(msg->IOCLogInfo); 567 msg->Event = le32toh(msg->Event); 568 MPT_PERS_FOREACH(mpt, pers) 569 handled += pers->event(mpt, req, msg); 570 571 if (handled == 0 && mpt->mpt_pers_mask == 0) { 572 mpt_lprt(mpt, MPT_PRT_INFO, 573 "No Handlers For Any Event Notify Frames. " 574 "Event %#x (ACK %sequired).\n", 575 msg->Event, msg->AckRequired? "r" : "not r"); 576 } else if (handled == 0) { 577 mpt_lprt(mpt, 578 msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO, 579 "Unhandled Event Notify Frame. Event %#x " 580 "(ACK %sequired).\n", 581 msg->Event, msg->AckRequired? "r" : "not r"); 582 } 583 584 if (msg->AckRequired) { 585 request_t *ack_req; 586 uint32_t context; 587 588 context = req->index | MPT_REPLY_HANDLER_EVENTS; 589 ack_req = mpt_get_request(mpt, FALSE); 590 if (ack_req == NULL) { 591 struct mpt_evtf_record *evtf; 592 593 evtf = (struct mpt_evtf_record *)reply_frame; 594 evtf->context = context; 595 LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links); 596 free_reply = FALSE; 597 break; 598 } 599 mpt_send_event_ack(mpt, ack_req, msg, context); 600 /* 601 * Don't check for CONTINUATION_REPLY here 602 */ 603 return (free_reply); 604 } 605 break; 606 } 607 case MPI_FUNCTION_PORT_ENABLE: 608 mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n"); 609 break; 610 case MPI_FUNCTION_EVENT_ACK: 611 break; 612 default: 613 mpt_prt(mpt, "unknown event function: %x\n", 614 reply_frame->Function); 615 break; 616 } 617 618 /* 619 * I'm not sure that this continuation stuff works as it should. 620 * 621 * I've had FC async events occur that free the frame up because 622 * the continuation bit isn't set, and then additional async events 623 * then occur using the same context. As you might imagine, this 624 * leads to Very Bad Thing. 625 * 626 * Let's just be safe for now and not free them up until we figure 627 * out what's actually happening here. 628 */ 629 #if 0 630 if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) { 631 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 632 mpt_free_request(mpt, req); 633 mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation", 634 reply_frame->Function, req, req->serno); 635 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 636 MSG_EVENT_NOTIFY_REPLY *msg = 637 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 638 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 639 msg->Event, msg->AckRequired); 640 } 641 } else { 642 mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation", 643 reply_frame->Function, req, req->serno); 644 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 645 MSG_EVENT_NOTIFY_REPLY *msg = 646 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 647 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 648 msg->Event, msg->AckRequired); 649 } 650 mpt_prtc(mpt, "\n"); 651 } 652 #endif 653 return (free_reply); 654 } 655 656 /* 657 * Process an asynchronous event from the IOC. 658 */ 659 static int 660 mpt_core_event(struct mpt_softc *mpt, request_t *req, 661 MSG_EVENT_NOTIFY_REPLY *msg) 662 { 663 664 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n", 665 msg->Event & 0xFF); 666 switch(msg->Event & 0xFF) { 667 case MPI_EVENT_NONE: 668 break; 669 case MPI_EVENT_LOG_DATA: 670 { 671 int i; 672 673 /* Some error occurred that LSI wants logged */ 674 mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n", 675 msg->IOCLogInfo); 676 mpt_prt(mpt, "\tEvtLogData: Event Data:"); 677 for (i = 0; i < msg->EventDataLength; i++) 678 mpt_prtc(mpt, " %08x", msg->Data[i]); 679 mpt_prtc(mpt, "\n"); 680 break; 681 } 682 case MPI_EVENT_EVENT_CHANGE: 683 /* 684 * This is just an acknowledgement 685 * of our mpt_send_event_request. 686 */ 687 break; 688 case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE: 689 break; 690 default: 691 return (0); 692 break; 693 } 694 return (1); 695 } 696 697 static void 698 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 699 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context) 700 { 701 MSG_EVENT_ACK *ackp; 702 703 ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf; 704 memset(ackp, 0, sizeof (*ackp)); 705 ackp->Function = MPI_FUNCTION_EVENT_ACK; 706 ackp->Event = htole32(msg->Event); 707 ackp->EventContext = htole32(msg->EventContext); 708 ackp->MsgContext = htole32(context); 709 mpt_check_doorbell(mpt); 710 mpt_send_cmd(mpt, ack_req); 711 } 712 713 /***************************** Interrupt Handling *****************************/ 714 void 715 mpt_intr(void *arg) 716 { 717 struct mpt_softc *mpt; 718 uint32_t reply_desc; 719 int ntrips = 0; 720 721 mpt = (struct mpt_softc *)arg; 722 mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n"); 723 MPT_LOCK_ASSERT(mpt); 724 725 while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) { 726 request_t *req; 727 MSG_DEFAULT_REPLY *reply_frame; 728 uint32_t reply_baddr; 729 uint32_t ctxt_idx; 730 u_int cb_index; 731 u_int req_index; 732 u_int offset; 733 int free_rf; 734 735 req = NULL; 736 reply_frame = NULL; 737 reply_baddr = 0; 738 offset = 0; 739 if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) { 740 /* 741 * Ensure that the reply frame is coherent. 742 */ 743 reply_baddr = MPT_REPLY_BADDR(reply_desc); 744 offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF); 745 bus_dmamap_sync_range(mpt->reply_dmat, 746 mpt->reply_dmap, offset, MPT_REPLY_SIZE, 747 BUS_DMASYNC_POSTREAD); 748 reply_frame = MPT_REPLY_OTOV(mpt, offset); 749 ctxt_idx = le32toh(reply_frame->MsgContext); 750 } else { 751 uint32_t type; 752 753 type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc); 754 ctxt_idx = reply_desc; 755 mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n", 756 reply_desc); 757 758 switch (type) { 759 case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT: 760 ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK; 761 break; 762 case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET: 763 ctxt_idx = GET_IO_INDEX(reply_desc); 764 if (mpt->tgt_cmd_ptrs == NULL) { 765 mpt_prt(mpt, 766 "mpt_intr: no target cmd ptrs\n"); 767 reply_desc = MPT_REPLY_EMPTY; 768 break; 769 } 770 if (ctxt_idx >= mpt->tgt_cmds_allocated) { 771 mpt_prt(mpt, 772 "mpt_intr: bad tgt cmd ctxt %u\n", 773 ctxt_idx); 774 reply_desc = MPT_REPLY_EMPTY; 775 ntrips = 1000; 776 break; 777 } 778 req = mpt->tgt_cmd_ptrs[ctxt_idx]; 779 if (req == NULL) { 780 mpt_prt(mpt, "no request backpointer " 781 "at index %u", ctxt_idx); 782 reply_desc = MPT_REPLY_EMPTY; 783 ntrips = 1000; 784 break; 785 } 786 /* 787 * Reformulate ctxt_idx to be just as if 788 * it were another type of context reply 789 * so the code below will find the request 790 * via indexing into the pool. 791 */ 792 ctxt_idx = 793 req->index | mpt->scsi_tgt_handler_id; 794 req = NULL; 795 break; 796 case MPI_CONTEXT_REPLY_TYPE_LAN: 797 mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n", 798 reply_desc); 799 reply_desc = MPT_REPLY_EMPTY; 800 break; 801 default: 802 mpt_prt(mpt, "Context Reply 0x%08x?\n", type); 803 reply_desc = MPT_REPLY_EMPTY; 804 break; 805 } 806 if (reply_desc == MPT_REPLY_EMPTY) { 807 if (ntrips++ > 1000) { 808 break; 809 } 810 continue; 811 } 812 } 813 814 cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx); 815 req_index = MPT_CONTEXT_TO_REQI(ctxt_idx); 816 if (req_index < MPT_MAX_REQUESTS(mpt)) { 817 req = &mpt->request_pool[req_index]; 818 } else { 819 mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc ==" 820 " 0x%x)\n", req_index, reply_desc); 821 } 822 823 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 824 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 825 free_rf = mpt_reply_handlers[cb_index](mpt, req, 826 reply_desc, reply_frame); 827 828 if (reply_frame != NULL && free_rf) { 829 bus_dmamap_sync_range(mpt->reply_dmat, 830 mpt->reply_dmap, offset, MPT_REPLY_SIZE, 831 BUS_DMASYNC_PREREAD); 832 mpt_free_reply(mpt, reply_baddr); 833 } 834 835 /* 836 * If we got ourselves disabled, don't get stuck in a loop 837 */ 838 if (mpt->disabled) { 839 mpt_disable_ints(mpt); 840 break; 841 } 842 if (ntrips++ > 1000) { 843 break; 844 } 845 } 846 mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n"); 847 } 848 849 /******************************* Error Recovery *******************************/ 850 void 851 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain, 852 u_int iocstatus) 853 { 854 MSG_DEFAULT_REPLY ioc_status_frame; 855 request_t *req; 856 857 memset(&ioc_status_frame, 0, sizeof(ioc_status_frame)); 858 ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4); 859 ioc_status_frame.IOCStatus = iocstatus; 860 while((req = TAILQ_FIRST(chain)) != NULL) { 861 MSG_REQUEST_HEADER *msg_hdr; 862 u_int cb_index; 863 864 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 865 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 866 msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf; 867 ioc_status_frame.Function = msg_hdr->Function; 868 ioc_status_frame.MsgContext = msg_hdr->MsgContext; 869 cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext)); 870 mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext, 871 &ioc_status_frame); 872 if (mpt_req_on_pending_list(mpt, req) != 0) 873 TAILQ_REMOVE(chain, req, links); 874 } 875 } 876 877 /********************************* Diagnostics ********************************/ 878 /* 879 * Perform a diagnostic dump of a reply frame. 880 */ 881 void 882 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame) 883 { 884 885 mpt_prt(mpt, "Address Reply:\n"); 886 mpt_print_reply(reply_frame); 887 } 888 889 /******************************* Doorbell Access ******************************/ 890 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt); 891 static __inline uint32_t mpt_rd_intr(struct mpt_softc *mpt); 892 893 static __inline uint32_t 894 mpt_rd_db(struct mpt_softc *mpt) 895 { 896 897 return mpt_read(mpt, MPT_OFFSET_DOORBELL); 898 } 899 900 static __inline uint32_t 901 mpt_rd_intr(struct mpt_softc *mpt) 902 { 903 904 return mpt_read(mpt, MPT_OFFSET_INTR_STATUS); 905 } 906 907 /* Busy wait for a door bell to be read by IOC */ 908 static int 909 mpt_wait_db_ack(struct mpt_softc *mpt) 910 { 911 int i; 912 913 for (i=0; i < MPT_MAX_WAIT; i++) { 914 if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) { 915 maxwait_ack = i > maxwait_ack ? i : maxwait_ack; 916 return (MPT_OK); 917 } 918 DELAY(200); 919 } 920 return (MPT_FAIL); 921 } 922 923 /* Busy wait for a door bell interrupt */ 924 static int 925 mpt_wait_db_int(struct mpt_softc *mpt) 926 { 927 int i; 928 929 for (i = 0; i < MPT_MAX_WAIT; i++) { 930 if (MPT_DB_INTR(mpt_rd_intr(mpt))) { 931 maxwait_int = i > maxwait_int ? i : maxwait_int; 932 return MPT_OK; 933 } 934 DELAY(100); 935 } 936 return (MPT_FAIL); 937 } 938 939 /* Wait for IOC to transition to a give state */ 940 void 941 mpt_check_doorbell(struct mpt_softc *mpt) 942 { 943 uint32_t db = mpt_rd_db(mpt); 944 945 if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) { 946 mpt_prt(mpt, "Device not running\n"); 947 mpt_print_db(db); 948 } 949 } 950 951 /* Wait for IOC to transition to a give state */ 952 static int 953 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state) 954 { 955 int i; 956 957 for (i = 0; i < MPT_MAX_WAIT; i++) { 958 uint32_t db = mpt_rd_db(mpt); 959 if (MPT_STATE(db) == state) { 960 maxwait_state = i > maxwait_state ? i : maxwait_state; 961 return (MPT_OK); 962 } 963 DELAY(100); 964 } 965 return (MPT_FAIL); 966 } 967 968 969 /************************* Intialization/Configuration ************************/ 970 static int mpt_download_fw(struct mpt_softc *mpt); 971 972 /* Issue the reset COMMAND to the IOC */ 973 static int 974 mpt_soft_reset(struct mpt_softc *mpt) 975 { 976 977 mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n"); 978 979 /* Have to use hard reset if we are not in Running state */ 980 if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) { 981 mpt_prt(mpt, "soft reset failed: device not running\n"); 982 return (MPT_FAIL); 983 } 984 985 /* If door bell is in use we don't have a chance of getting 986 * a word in since the IOC probably crashed in message 987 * processing. So don't waste our time. 988 */ 989 if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) { 990 mpt_prt(mpt, "soft reset failed: doorbell wedged\n"); 991 return (MPT_FAIL); 992 } 993 994 /* Send the reset request to the IOC */ 995 mpt_write(mpt, MPT_OFFSET_DOORBELL, 996 MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT); 997 if (mpt_wait_db_ack(mpt) != MPT_OK) { 998 mpt_prt(mpt, "soft reset failed: ack timeout\n"); 999 return (MPT_FAIL); 1000 } 1001 1002 /* Wait for the IOC to reload and come out of reset state */ 1003 if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) { 1004 mpt_prt(mpt, "soft reset failed: device did not restart\n"); 1005 return (MPT_FAIL); 1006 } 1007 1008 return MPT_OK; 1009 } 1010 1011 static int 1012 mpt_enable_diag_mode(struct mpt_softc *mpt) 1013 { 1014 int try; 1015 1016 try = 20; 1017 while (--try) { 1018 1019 if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0) 1020 break; 1021 1022 /* Enable diagnostic registers */ 1023 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF); 1024 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE); 1025 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE); 1026 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE); 1027 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE); 1028 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE); 1029 1030 DELAY(100000); 1031 } 1032 if (try == 0) 1033 return (EIO); 1034 return (0); 1035 } 1036 1037 static void 1038 mpt_disable_diag_mode(struct mpt_softc *mpt) 1039 { 1040 1041 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF); 1042 } 1043 1044 /* This is a magic diagnostic reset that resets all the ARM 1045 * processors in the chip. 1046 */ 1047 static void 1048 mpt_hard_reset(struct mpt_softc *mpt) 1049 { 1050 int error; 1051 int wait; 1052 uint32_t diagreg; 1053 1054 mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n"); 1055 1056 if (mpt->is_1078) { 1057 mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07); 1058 DELAY(1000); 1059 return; 1060 } 1061 1062 error = mpt_enable_diag_mode(mpt); 1063 if (error) { 1064 mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n"); 1065 mpt_prt(mpt, "Trying to reset anyway.\n"); 1066 } 1067 1068 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1069 1070 /* 1071 * This appears to be a workaround required for some 1072 * firmware or hardware revs. 1073 */ 1074 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM); 1075 DELAY(1000); 1076 1077 /* Diag. port is now active so we can now hit the reset bit */ 1078 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER); 1079 1080 /* 1081 * Ensure that the reset has finished. We delay 1ms 1082 * prior to reading the register to make sure the chip 1083 * has sufficiently completed its reset to handle register 1084 * accesses. 1085 */ 1086 wait = 5000; 1087 do { 1088 DELAY(1000); 1089 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1090 } while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0); 1091 1092 if (wait == 0) { 1093 mpt_prt(mpt, "WARNING - Failed hard reset! " 1094 "Trying to initialize anyway.\n"); 1095 } 1096 1097 /* 1098 * If we have firmware to download, it must be loaded before 1099 * the controller will become operational. Do so now. 1100 */ 1101 if (mpt->fw_image != NULL) { 1102 1103 error = mpt_download_fw(mpt); 1104 1105 if (error) { 1106 mpt_prt(mpt, "WARNING - Firmware Download Failed!\n"); 1107 mpt_prt(mpt, "Trying to initialize anyway.\n"); 1108 } 1109 } 1110 1111 /* 1112 * Reseting the controller should have disabled write 1113 * access to the diagnostic registers, but disable 1114 * manually to be sure. 1115 */ 1116 mpt_disable_diag_mode(mpt); 1117 } 1118 1119 static void 1120 mpt_core_ioc_reset(struct mpt_softc *mpt, int type) 1121 { 1122 1123 /* 1124 * Complete all pending requests with a status 1125 * appropriate for an IOC reset. 1126 */ 1127 mpt_complete_request_chain(mpt, &mpt->request_pending_list, 1128 MPI_IOCSTATUS_INVALID_STATE); 1129 } 1130 1131 /* 1132 * Reset the IOC when needed. Try software command first then if needed 1133 * poke at the magic diagnostic reset. Note that a hard reset resets 1134 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as 1135 * fouls up the PCI configuration registers. 1136 */ 1137 int 1138 mpt_reset(struct mpt_softc *mpt, int reinit) 1139 { 1140 struct mpt_personality *pers; 1141 int ret; 1142 int retry_cnt = 0; 1143 1144 /* 1145 * Try a soft reset. If that fails, get out the big hammer. 1146 */ 1147 again: 1148 if ((ret = mpt_soft_reset(mpt)) != MPT_OK) { 1149 int cnt; 1150 for (cnt = 0; cnt < 5; cnt++) { 1151 /* Failed; do a hard reset */ 1152 mpt_hard_reset(mpt); 1153 1154 /* 1155 * Wait for the IOC to reload 1156 * and come out of reset state 1157 */ 1158 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1159 if (ret == MPT_OK) { 1160 break; 1161 } 1162 /* 1163 * Okay- try to check again... 1164 */ 1165 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1166 if (ret == MPT_OK) { 1167 break; 1168 } 1169 mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n", 1170 retry_cnt, cnt); 1171 } 1172 } 1173 1174 if (retry_cnt == 0) { 1175 /* 1176 * Invoke reset handlers. We bump the reset count so 1177 * that mpt_wait_req() understands that regardless of 1178 * the specified wait condition, it should stop its wait. 1179 */ 1180 mpt->reset_cnt++; 1181 MPT_PERS_FOREACH(mpt, pers) 1182 pers->reset(mpt, ret); 1183 } 1184 1185 if (reinit) { 1186 ret = mpt_enable_ioc(mpt, 1); 1187 if (ret == MPT_OK) { 1188 mpt_enable_ints(mpt); 1189 } 1190 } 1191 if (ret != MPT_OK && retry_cnt++ < 2) { 1192 goto again; 1193 } 1194 return ret; 1195 } 1196 1197 /* Return a command buffer to the free queue */ 1198 void 1199 mpt_free_request(struct mpt_softc *mpt, request_t *req) 1200 { 1201 request_t *nxt; 1202 struct mpt_evtf_record *record; 1203 uint32_t offset, reply_baddr; 1204 1205 if (req == NULL || req != &mpt->request_pool[req->index]) { 1206 panic("mpt_free_request: bad req ptr"); 1207 } 1208 if ((nxt = req->chain) != NULL) { 1209 req->chain = NULL; 1210 mpt_free_request(mpt, nxt); /* NB: recursion */ 1211 } 1212 KASSERT(req->state != REQ_STATE_FREE, ("freeing free request")); 1213 KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request")); 1214 MPT_LOCK_ASSERT(mpt); 1215 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 1216 ("mpt_free_request: req %p:%u func %x already on freelist", 1217 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1218 KASSERT(mpt_req_on_pending_list(mpt, req) == 0, 1219 ("mpt_free_request: req %p:%u func %x on pending list", 1220 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1221 #ifdef INVARIANTS 1222 mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__); 1223 #endif 1224 1225 req->ccb = NULL; 1226 if (LIST_EMPTY(&mpt->ack_frames)) { 1227 /* 1228 * Insert free ones at the tail 1229 */ 1230 req->serno = 0; 1231 req->state = REQ_STATE_FREE; 1232 #ifdef INVARIANTS 1233 memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER)); 1234 #endif 1235 TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links); 1236 if (mpt->getreqwaiter != 0) { 1237 mpt->getreqwaiter = 0; 1238 wakeup(&mpt->request_free_list); 1239 } 1240 return; 1241 } 1242 1243 /* 1244 * Process an ack frame deferred due to resource shortage. 1245 */ 1246 record = LIST_FIRST(&mpt->ack_frames); 1247 LIST_REMOVE(record, links); 1248 req->state = REQ_STATE_ALLOCATED; 1249 mpt_assign_serno(mpt, req); 1250 mpt_send_event_ack(mpt, req, &record->reply, record->context); 1251 offset = (uint32_t)((uint8_t *)record - mpt->reply); 1252 reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF); 1253 bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset, 1254 MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD); 1255 mpt_free_reply(mpt, reply_baddr); 1256 } 1257 1258 /* Get a command buffer from the free queue */ 1259 request_t * 1260 mpt_get_request(struct mpt_softc *mpt, int sleep_ok) 1261 { 1262 request_t *req; 1263 1264 retry: 1265 MPT_LOCK_ASSERT(mpt); 1266 req = TAILQ_FIRST(&mpt->request_free_list); 1267 if (req != NULL) { 1268 KASSERT(req == &mpt->request_pool[req->index], 1269 ("mpt_get_request: corrupted request free list")); 1270 KASSERT(req->state == REQ_STATE_FREE, 1271 ("req %p:%u not free on free list %x index %d function %x", 1272 req, req->serno, req->state, req->index, 1273 ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1274 TAILQ_REMOVE(&mpt->request_free_list, req, links); 1275 req->state = REQ_STATE_ALLOCATED; 1276 req->chain = NULL; 1277 mpt_assign_serno(mpt, req); 1278 } else if (sleep_ok != 0) { 1279 mpt->getreqwaiter = 1; 1280 mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0); 1281 goto retry; 1282 } 1283 return (req); 1284 } 1285 1286 /* Pass the command to the IOC */ 1287 void 1288 mpt_send_cmd(struct mpt_softc *mpt, request_t *req) 1289 { 1290 1291 if (mpt->verbose > MPT_PRT_DEBUG2) { 1292 mpt_dump_request(mpt, req); 1293 } 1294 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 1295 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1296 req->state |= REQ_STATE_QUEUED; 1297 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 1298 ("req %p:%u func %x on freelist list in mpt_send_cmd", 1299 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1300 KASSERT(mpt_req_on_pending_list(mpt, req) == 0, 1301 ("req %p:%u func %x already on pending list in mpt_send_cmd", 1302 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1303 TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links); 1304 mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf); 1305 } 1306 1307 /* 1308 * Wait for a request to complete. 1309 * 1310 * Inputs: 1311 * mpt softc of controller executing request 1312 * req request to wait for 1313 * sleep_ok nonzero implies may sleep in this context 1314 * time_ms timeout in ms. 0 implies no timeout. 1315 * 1316 * Return Values: 1317 * 0 Request completed 1318 * non-0 Timeout fired before request completion. 1319 */ 1320 int 1321 mpt_wait_req(struct mpt_softc *mpt, request_t *req, 1322 mpt_req_state_t state, mpt_req_state_t mask, 1323 int sleep_ok, int time_ms) 1324 { 1325 int error; 1326 int timeout; 1327 u_int saved_cnt; 1328 1329 /* 1330 * timeout is in ms. 0 indicates infinite wait. 1331 * Convert to ticks or 500us units depending on 1332 * our sleep mode. 1333 */ 1334 if (sleep_ok != 0) { 1335 timeout = (time_ms * hz) / 1000; 1336 } else { 1337 timeout = time_ms * 2; 1338 } 1339 req->state |= REQ_STATE_NEED_WAKEUP; 1340 mask &= ~REQ_STATE_NEED_WAKEUP; 1341 saved_cnt = mpt->reset_cnt; 1342 while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) { 1343 if (sleep_ok != 0) { 1344 error = mpt_sleep(mpt, req, PUSER, "mptreq", timeout); 1345 if (error == EWOULDBLOCK) { 1346 timeout = 0; 1347 break; 1348 } 1349 } else { 1350 if (time_ms != 0 && --timeout == 0) { 1351 break; 1352 } 1353 DELAY(500); 1354 mpt_intr(mpt); 1355 } 1356 } 1357 req->state &= ~REQ_STATE_NEED_WAKEUP; 1358 if (mpt->reset_cnt != saved_cnt) { 1359 return (EIO); 1360 } 1361 if (time_ms && timeout <= 0) { 1362 MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf; 1363 req->state |= REQ_STATE_TIMEDOUT; 1364 mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function); 1365 return (ETIMEDOUT); 1366 } 1367 return (0); 1368 } 1369 1370 /* 1371 * Send a command to the IOC via the handshake register. 1372 * 1373 * Only done at initialization time and for certain unusual 1374 * commands such as device/bus reset as specified by LSI. 1375 */ 1376 int 1377 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd) 1378 { 1379 int i; 1380 uint32_t data, *data32; 1381 1382 /* Check condition of the IOC */ 1383 data = mpt_rd_db(mpt); 1384 if ((MPT_STATE(data) != MPT_DB_STATE_READY 1385 && MPT_STATE(data) != MPT_DB_STATE_RUNNING 1386 && MPT_STATE(data) != MPT_DB_STATE_FAULT) 1387 || MPT_DB_IS_IN_USE(data)) { 1388 mpt_prt(mpt, "handshake aborted - invalid doorbell state\n"); 1389 mpt_print_db(data); 1390 return (EBUSY); 1391 } 1392 1393 /* We move things in 32 bit chunks */ 1394 len = (len + 3) >> 2; 1395 data32 = cmd; 1396 1397 /* Clear any left over pending doorbell interrupts */ 1398 if (MPT_DB_INTR(mpt_rd_intr(mpt))) 1399 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1400 1401 /* 1402 * Tell the handshake reg. we are going to send a command 1403 * and how long it is going to be. 1404 */ 1405 data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) | 1406 (len << MPI_DOORBELL_ADD_DWORDS_SHIFT); 1407 mpt_write(mpt, MPT_OFFSET_DOORBELL, data); 1408 1409 /* Wait for the chip to notice */ 1410 if (mpt_wait_db_int(mpt) != MPT_OK) { 1411 mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n"); 1412 return (ETIMEDOUT); 1413 } 1414 1415 /* Clear the interrupt */ 1416 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1417 1418 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1419 mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n"); 1420 return (ETIMEDOUT); 1421 } 1422 1423 /* Send the command */ 1424 for (i = 0; i < len; i++) { 1425 mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++)); 1426 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1427 mpt_prt(mpt, 1428 "mpt_send_handshake_cmd: timeout @ index %d\n", i); 1429 return (ETIMEDOUT); 1430 } 1431 } 1432 return MPT_OK; 1433 } 1434 1435 /* Get the response from the handshake register */ 1436 int 1437 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply) 1438 { 1439 int left, reply_left; 1440 u_int16_t *data16; 1441 uint32_t data; 1442 MSG_DEFAULT_REPLY *hdr; 1443 1444 /* We move things out in 16 bit chunks */ 1445 reply_len >>= 1; 1446 data16 = (u_int16_t *)reply; 1447 1448 hdr = (MSG_DEFAULT_REPLY *)reply; 1449 1450 /* Get first word */ 1451 if (mpt_wait_db_int(mpt) != MPT_OK) { 1452 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n"); 1453 return ETIMEDOUT; 1454 } 1455 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1456 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1457 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1458 1459 /* Get Second Word */ 1460 if (mpt_wait_db_int(mpt) != MPT_OK) { 1461 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n"); 1462 return ETIMEDOUT; 1463 } 1464 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1465 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1466 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1467 1468 /* 1469 * With the second word, we can now look at the length. 1470 * Warn about a reply that's too short (except for IOC FACTS REPLY) 1471 */ 1472 if ((reply_len >> 1) != hdr->MsgLength && 1473 (hdr->Function != MPI_FUNCTION_IOC_FACTS)){ 1474 #if __FreeBSD_version >= 500000 1475 mpt_prt(mpt, "reply length does not match message length: " 1476 "got %x; expected %zx for function %x\n", 1477 hdr->MsgLength << 2, reply_len << 1, hdr->Function); 1478 #else 1479 mpt_prt(mpt, "reply length does not match message length: " 1480 "got %x; expected %x for function %x\n", 1481 hdr->MsgLength << 2, reply_len << 1, hdr->Function); 1482 #endif 1483 } 1484 1485 /* Get rest of the reply; but don't overflow the provided buffer */ 1486 left = (hdr->MsgLength << 1) - 2; 1487 reply_left = reply_len - 2; 1488 while (left--) { 1489 u_int16_t datum; 1490 1491 if (mpt_wait_db_int(mpt) != MPT_OK) { 1492 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n"); 1493 return ETIMEDOUT; 1494 } 1495 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1496 datum = le16toh(data & MPT_DB_DATA_MASK); 1497 1498 if (reply_left-- > 0) 1499 *data16++ = datum; 1500 1501 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1502 } 1503 1504 /* One more wait & clear at the end */ 1505 if (mpt_wait_db_int(mpt) != MPT_OK) { 1506 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n"); 1507 return ETIMEDOUT; 1508 } 1509 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1510 1511 if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1512 if (mpt->verbose >= MPT_PRT_TRACE) 1513 mpt_print_reply(hdr); 1514 return (MPT_FAIL | hdr->IOCStatus); 1515 } 1516 1517 return (0); 1518 } 1519 1520 static int 1521 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp) 1522 { 1523 MSG_IOC_FACTS f_req; 1524 int error; 1525 1526 memset(&f_req, 0, sizeof f_req); 1527 f_req.Function = MPI_FUNCTION_IOC_FACTS; 1528 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1529 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1530 if (error) { 1531 return(error); 1532 } 1533 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1534 return (error); 1535 } 1536 1537 static int 1538 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp) 1539 { 1540 MSG_PORT_FACTS f_req; 1541 int error; 1542 1543 memset(&f_req, 0, sizeof f_req); 1544 f_req.Function = MPI_FUNCTION_PORT_FACTS; 1545 f_req.PortNumber = port; 1546 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1547 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1548 if (error) { 1549 return(error); 1550 } 1551 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1552 return (error); 1553 } 1554 1555 /* 1556 * Send the initialization request. This is where we specify how many 1557 * SCSI busses and how many devices per bus we wish to emulate. 1558 * This is also the command that specifies the max size of the reply 1559 * frames from the IOC that we will be allocating. 1560 */ 1561 static int 1562 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who) 1563 { 1564 int error = 0; 1565 MSG_IOC_INIT init; 1566 MSG_IOC_INIT_REPLY reply; 1567 1568 memset(&init, 0, sizeof init); 1569 init.WhoInit = who; 1570 init.Function = MPI_FUNCTION_IOC_INIT; 1571 init.MaxDevices = 0; /* at least 256 devices per bus */ 1572 init.MaxBuses = 16; /* at least 16 busses */ 1573 1574 init.MsgVersion = htole16(MPI_VERSION); 1575 init.HeaderVersion = htole16(MPI_HEADER_VERSION); 1576 init.ReplyFrameSize = htole16(MPT_REPLY_SIZE); 1577 init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1578 1579 if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) { 1580 return(error); 1581 } 1582 1583 error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply); 1584 return (error); 1585 } 1586 1587 1588 /* 1589 * Utiltity routine to read configuration headers and pages 1590 */ 1591 int 1592 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params, 1593 bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms) 1594 { 1595 MSG_CONFIG *cfgp; 1596 SGE_SIMPLE32 *se; 1597 1598 cfgp = req->req_vbuf; 1599 memset(cfgp, 0, sizeof *cfgp); 1600 cfgp->Action = params->Action; 1601 cfgp->Function = MPI_FUNCTION_CONFIG; 1602 cfgp->Header.PageVersion = params->PageVersion; 1603 cfgp->Header.PageNumber = params->PageNumber; 1604 cfgp->PageAddress = htole32(params->PageAddress); 1605 if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) == 1606 MPI_CONFIG_PAGETYPE_EXTENDED) { 1607 cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1608 cfgp->Header.PageLength = 0; 1609 cfgp->ExtPageLength = htole16(params->ExtPageLength); 1610 cfgp->ExtPageType = params->ExtPageType; 1611 } else { 1612 cfgp->Header.PageType = params->PageType; 1613 cfgp->Header.PageLength = params->PageLength; 1614 } 1615 se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE; 1616 se->Address = htole32(addr); 1617 MPI_pSGE_SET_LENGTH(se, len); 1618 MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT | 1619 MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | 1620 MPI_SGE_FLAGS_END_OF_LIST | 1621 ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT 1622 || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM) 1623 ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST))); 1624 se->FlagsLength = htole32(se->FlagsLength); 1625 cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 1626 1627 mpt_check_doorbell(mpt); 1628 mpt_send_cmd(mpt, req); 1629 return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 1630 sleep_ok, timeout_ms)); 1631 } 1632 1633 int 1634 mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber, 1635 uint32_t PageAddress, int ExtPageType, 1636 CONFIG_EXTENDED_PAGE_HEADER *rslt, 1637 int sleep_ok, int timeout_ms) 1638 { 1639 request_t *req; 1640 cfgparms_t params; 1641 MSG_CONFIG_REPLY *cfgp; 1642 int error; 1643 1644 req = mpt_get_request(mpt, sleep_ok); 1645 if (req == NULL) { 1646 mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n"); 1647 return (ENOMEM); 1648 } 1649 1650 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER; 1651 params.PageVersion = PageVersion; 1652 params.PageLength = 0; 1653 params.PageNumber = PageNumber; 1654 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1655 params.PageAddress = PageAddress; 1656 params.ExtPageType = ExtPageType; 1657 params.ExtPageLength = 0; 1658 error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0, 1659 sleep_ok, timeout_ms); 1660 if (error != 0) { 1661 /* 1662 * Leave the request. Without resetting the chip, it's 1663 * still owned by it and we'll just get into trouble 1664 * freeing it now. Mark it as abandoned so that if it 1665 * shows up later it can be freed. 1666 */ 1667 mpt_prt(mpt, "read_extcfg_header timed out\n"); 1668 return (ETIMEDOUT); 1669 } 1670 1671 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { 1672 case MPI_IOCSTATUS_SUCCESS: 1673 cfgp = req->req_vbuf; 1674 rslt->PageVersion = cfgp->Header.PageVersion; 1675 rslt->PageNumber = cfgp->Header.PageNumber; 1676 rslt->PageType = cfgp->Header.PageType; 1677 rslt->ExtPageLength = le16toh(cfgp->ExtPageLength); 1678 rslt->ExtPageType = cfgp->ExtPageType; 1679 error = 0; 1680 break; 1681 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: 1682 mpt_lprt(mpt, MPT_PRT_DEBUG, 1683 "Invalid Page Type %d Number %d Addr 0x%0x\n", 1684 MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress); 1685 error = EINVAL; 1686 break; 1687 default: 1688 mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n", 1689 req->IOCStatus); 1690 error = EIO; 1691 break; 1692 } 1693 mpt_free_request(mpt, req); 1694 return (error); 1695 } 1696 1697 int 1698 mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1699 CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len, 1700 int sleep_ok, int timeout_ms) 1701 { 1702 request_t *req; 1703 cfgparms_t params; 1704 int error; 1705 1706 req = mpt_get_request(mpt, sleep_ok); 1707 if (req == NULL) { 1708 mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n"); 1709 return (-1); 1710 } 1711 1712 params.Action = Action; 1713 params.PageVersion = hdr->PageVersion; 1714 params.PageLength = 0; 1715 params.PageNumber = hdr->PageNumber; 1716 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1717 params.PageAddress = PageAddress; 1718 params.ExtPageType = hdr->ExtPageType; 1719 params.ExtPageLength = hdr->ExtPageLength; 1720 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1721 req->req_pbuf + MPT_RQSL(mpt), 1722 len, sleep_ok, timeout_ms); 1723 if (error != 0) { 1724 mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action); 1725 return (-1); 1726 } 1727 1728 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1729 mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n", 1730 req->IOCStatus); 1731 mpt_free_request(mpt, req); 1732 return (-1); 1733 } 1734 memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); 1735 mpt_free_request(mpt, req); 1736 return (0); 1737 } 1738 1739 int 1740 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber, 1741 uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt, 1742 int sleep_ok, int timeout_ms) 1743 { 1744 request_t *req; 1745 cfgparms_t params; 1746 MSG_CONFIG *cfgp; 1747 int error; 1748 1749 req = mpt_get_request(mpt, sleep_ok); 1750 if (req == NULL) { 1751 mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n"); 1752 return (ENOMEM); 1753 } 1754 1755 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER; 1756 params.PageVersion = 0; 1757 params.PageLength = 0; 1758 params.PageNumber = PageNumber; 1759 params.PageType = PageType; 1760 params.PageAddress = PageAddress; 1761 error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0, 1762 sleep_ok, timeout_ms); 1763 if (error != 0) { 1764 /* 1765 * Leave the request. Without resetting the chip, it's 1766 * still owned by it and we'll just get into trouble 1767 * freeing it now. Mark it as abandoned so that if it 1768 * shows up later it can be freed. 1769 */ 1770 mpt_prt(mpt, "read_cfg_header timed out\n"); 1771 return (ETIMEDOUT); 1772 } 1773 1774 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { 1775 case MPI_IOCSTATUS_SUCCESS: 1776 cfgp = req->req_vbuf; 1777 bcopy(&cfgp->Header, rslt, sizeof(*rslt)); 1778 error = 0; 1779 break; 1780 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: 1781 mpt_lprt(mpt, MPT_PRT_DEBUG, 1782 "Invalid Page Type %d Number %d Addr 0x%0x\n", 1783 PageType, PageNumber, PageAddress); 1784 error = EINVAL; 1785 break; 1786 default: 1787 mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n", 1788 req->IOCStatus); 1789 error = EIO; 1790 break; 1791 } 1792 mpt_free_request(mpt, req); 1793 return (error); 1794 } 1795 1796 int 1797 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1798 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1799 int timeout_ms) 1800 { 1801 request_t *req; 1802 cfgparms_t params; 1803 int error; 1804 1805 req = mpt_get_request(mpt, sleep_ok); 1806 if (req == NULL) { 1807 mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n"); 1808 return (-1); 1809 } 1810 1811 params.Action = Action; 1812 params.PageVersion = hdr->PageVersion; 1813 params.PageLength = hdr->PageLength; 1814 params.PageNumber = hdr->PageNumber; 1815 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK; 1816 params.PageAddress = PageAddress; 1817 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1818 req->req_pbuf + MPT_RQSL(mpt), 1819 len, sleep_ok, timeout_ms); 1820 if (error != 0) { 1821 mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action); 1822 return (-1); 1823 } 1824 1825 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1826 mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n", 1827 req->IOCStatus); 1828 mpt_free_request(mpt, req); 1829 return (-1); 1830 } 1831 memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); 1832 mpt_free_request(mpt, req); 1833 return (0); 1834 } 1835 1836 int 1837 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1838 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1839 int timeout_ms) 1840 { 1841 request_t *req; 1842 cfgparms_t params; 1843 u_int hdr_attr; 1844 int error; 1845 1846 hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK; 1847 if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE && 1848 hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) { 1849 mpt_prt(mpt, "page type 0x%x not changeable\n", 1850 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK); 1851 return (-1); 1852 } 1853 1854 #if 0 1855 /* 1856 * We shouldn't mask off other bits here. 1857 */ 1858 hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK; 1859 #endif 1860 1861 req = mpt_get_request(mpt, sleep_ok); 1862 if (req == NULL) 1863 return (-1); 1864 1865 memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len); 1866 1867 /* 1868 * There isn't any point in restoring stripped out attributes 1869 * if you then mask them going down to issue the request. 1870 */ 1871 1872 params.Action = Action; 1873 params.PageVersion = hdr->PageVersion; 1874 params.PageLength = hdr->PageLength; 1875 params.PageNumber = hdr->PageNumber; 1876 params.PageAddress = PageAddress; 1877 #if 0 1878 /* Restore stripped out attributes */ 1879 hdr->PageType |= hdr_attr; 1880 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK; 1881 #else 1882 params.PageType = hdr->PageType; 1883 #endif 1884 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1885 req->req_pbuf + MPT_RQSL(mpt), 1886 len, sleep_ok, timeout_ms); 1887 if (error != 0) { 1888 mpt_prt(mpt, "mpt_write_cfg_page timed out\n"); 1889 return (-1); 1890 } 1891 1892 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1893 mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n", 1894 req->IOCStatus); 1895 mpt_free_request(mpt, req); 1896 return (-1); 1897 } 1898 mpt_free_request(mpt, req); 1899 return (0); 1900 } 1901 1902 /* 1903 * Read IOC configuration information 1904 */ 1905 static int 1906 mpt_read_config_info_ioc(struct mpt_softc *mpt) 1907 { 1908 CONFIG_PAGE_HEADER hdr; 1909 struct mpt_raid_volume *mpt_raid; 1910 int rv; 1911 int i; 1912 size_t len; 1913 1914 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 1915 2, 0, &hdr, FALSE, 5000); 1916 /* 1917 * If it's an invalid page, so what? Not a supported function.... 1918 */ 1919 if (rv == EINVAL) { 1920 return (0); 1921 } 1922 if (rv) { 1923 return (rv); 1924 } 1925 1926 mpt_lprt(mpt, MPT_PRT_DEBUG, 1927 "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n", 1928 hdr.PageVersion, hdr.PageLength << 2, 1929 hdr.PageNumber, hdr.PageType); 1930 1931 len = hdr.PageLength * sizeof(uint32_t); 1932 mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1933 if (mpt->ioc_page2 == NULL) { 1934 mpt_prt(mpt, "unable to allocate memory for IOC page 2\n"); 1935 mpt_raid_free_mem(mpt); 1936 return (ENOMEM); 1937 } 1938 memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr)); 1939 rv = mpt_read_cur_cfg_page(mpt, 0, 1940 &mpt->ioc_page2->Header, len, FALSE, 5000); 1941 if (rv) { 1942 mpt_prt(mpt, "failed to read IOC Page 2\n"); 1943 mpt_raid_free_mem(mpt); 1944 return (EIO); 1945 } 1946 mpt2host_config_page_ioc2(mpt->ioc_page2); 1947 1948 if (mpt->ioc_page2->CapabilitiesFlags != 0) { 1949 uint32_t mask; 1950 1951 mpt_prt(mpt, "Capabilities: ("); 1952 for (mask = 1; mask != 0; mask <<= 1) { 1953 if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) { 1954 continue; 1955 } 1956 switch (mask) { 1957 case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT: 1958 mpt_prtc(mpt, " RAID-0"); 1959 break; 1960 case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT: 1961 mpt_prtc(mpt, " RAID-1E"); 1962 break; 1963 case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT: 1964 mpt_prtc(mpt, " RAID-1"); 1965 break; 1966 case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT: 1967 mpt_prtc(mpt, " SES"); 1968 break; 1969 case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT: 1970 mpt_prtc(mpt, " SAFTE"); 1971 break; 1972 case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT: 1973 mpt_prtc(mpt, " Multi-Channel-Arrays"); 1974 default: 1975 break; 1976 } 1977 } 1978 mpt_prtc(mpt, " )\n"); 1979 if ((mpt->ioc_page2->CapabilitiesFlags 1980 & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT 1981 | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT 1982 | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) { 1983 mpt_prt(mpt, "%d Active Volume%s(%d Max)\n", 1984 mpt->ioc_page2->NumActiveVolumes, 1985 mpt->ioc_page2->NumActiveVolumes != 1 1986 ? "s " : " ", 1987 mpt->ioc_page2->MaxVolumes); 1988 mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n", 1989 mpt->ioc_page2->NumActivePhysDisks, 1990 mpt->ioc_page2->NumActivePhysDisks != 1 1991 ? "s " : " ", 1992 mpt->ioc_page2->MaxPhysDisks); 1993 } 1994 } 1995 1996 len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume); 1997 mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1998 if (mpt->raid_volumes == NULL) { 1999 mpt_prt(mpt, "Could not allocate RAID volume data\n"); 2000 mpt_raid_free_mem(mpt); 2001 return (ENOMEM); 2002 } 2003 2004 /* 2005 * Copy critical data out of ioc_page2 so that we can 2006 * safely refresh the page without windows of unreliable 2007 * data. 2008 */ 2009 mpt->raid_max_volumes = mpt->ioc_page2->MaxVolumes; 2010 2011 len = sizeof(*mpt->raid_volumes->config_page) + 2012 (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1)); 2013 for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) { 2014 mpt_raid = &mpt->raid_volumes[i]; 2015 mpt_raid->config_page = 2016 malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2017 if (mpt_raid->config_page == NULL) { 2018 mpt_prt(mpt, "Could not allocate RAID page data\n"); 2019 mpt_raid_free_mem(mpt); 2020 return (ENOMEM); 2021 } 2022 } 2023 mpt->raid_page0_len = len; 2024 2025 len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk); 2026 mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2027 if (mpt->raid_disks == NULL) { 2028 mpt_prt(mpt, "Could not allocate RAID disk data\n"); 2029 mpt_raid_free_mem(mpt); 2030 return (ENOMEM); 2031 } 2032 mpt->raid_max_disks = mpt->ioc_page2->MaxPhysDisks; 2033 2034 /* 2035 * Load page 3. 2036 */ 2037 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 2038 3, 0, &hdr, FALSE, 5000); 2039 if (rv) { 2040 mpt_raid_free_mem(mpt); 2041 return (EIO); 2042 } 2043 2044 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n", 2045 hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType); 2046 2047 len = hdr.PageLength * sizeof(uint32_t); 2048 mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2049 if (mpt->ioc_page3 == NULL) { 2050 mpt_prt(mpt, "unable to allocate memory for IOC page 3\n"); 2051 mpt_raid_free_mem(mpt); 2052 return (ENOMEM); 2053 } 2054 memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr)); 2055 rv = mpt_read_cur_cfg_page(mpt, 0, 2056 &mpt->ioc_page3->Header, len, FALSE, 5000); 2057 if (rv) { 2058 mpt_raid_free_mem(mpt); 2059 return (EIO); 2060 } 2061 mpt2host_config_page_ioc3(mpt->ioc_page3); 2062 mpt_raid_wakeup(mpt); 2063 return (0); 2064 } 2065 2066 /* 2067 * Enable IOC port 2068 */ 2069 static int 2070 mpt_send_port_enable(struct mpt_softc *mpt, int port) 2071 { 2072 request_t *req; 2073 MSG_PORT_ENABLE *enable_req; 2074 int error; 2075 2076 req = mpt_get_request(mpt, /*sleep_ok*/FALSE); 2077 if (req == NULL) 2078 return (-1); 2079 2080 enable_req = req->req_vbuf; 2081 memset(enable_req, 0, MPT_RQSL(mpt)); 2082 2083 enable_req->Function = MPI_FUNCTION_PORT_ENABLE; 2084 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 2085 enable_req->PortNumber = port; 2086 2087 mpt_check_doorbell(mpt); 2088 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port); 2089 2090 mpt_send_cmd(mpt, req); 2091 error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 2092 FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000); 2093 if (error != 0) { 2094 mpt_prt(mpt, "port %d enable timed out\n", port); 2095 return (-1); 2096 } 2097 mpt_free_request(mpt, req); 2098 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port); 2099 return (0); 2100 } 2101 2102 /* 2103 * Enable/Disable asynchronous event reporting. 2104 */ 2105 static int 2106 mpt_send_event_request(struct mpt_softc *mpt, int onoff) 2107 { 2108 request_t *req; 2109 MSG_EVENT_NOTIFY *enable_req; 2110 2111 req = mpt_get_request(mpt, FALSE); 2112 if (req == NULL) { 2113 return (ENOMEM); 2114 } 2115 enable_req = req->req_vbuf; 2116 memset(enable_req, 0, sizeof *enable_req); 2117 2118 enable_req->Function = MPI_FUNCTION_EVENT_NOTIFICATION; 2119 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS); 2120 enable_req->Switch = onoff; 2121 2122 mpt_check_doorbell(mpt); 2123 mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n", 2124 onoff ? "en" : "dis"); 2125 /* 2126 * Send the command off, but don't wait for it. 2127 */ 2128 mpt_send_cmd(mpt, req); 2129 return (0); 2130 } 2131 2132 /* 2133 * Un-mask the interrupts on the chip. 2134 */ 2135 void 2136 mpt_enable_ints(struct mpt_softc *mpt) 2137 { 2138 2139 /* Unmask every thing except door bell int */ 2140 mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK); 2141 } 2142 2143 /* 2144 * Mask the interrupts on the chip. 2145 */ 2146 void 2147 mpt_disable_ints(struct mpt_softc *mpt) 2148 { 2149 2150 /* Mask all interrupts */ 2151 mpt_write(mpt, MPT_OFFSET_INTR_MASK, 2152 MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK); 2153 } 2154 2155 static void 2156 mpt_sysctl_attach(struct mpt_softc *mpt) 2157 { 2158 #if __FreeBSD_version >= 500000 2159 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev); 2160 struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev); 2161 2162 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2163 "debug", CTLFLAG_RW, &mpt->verbose, 0, 2164 "Debugging/Verbose level"); 2165 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2166 "role", CTLFLAG_RD, &mpt->role, 0, 2167 "HBA role"); 2168 #ifdef MPT_TEST_MULTIPATH 2169 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2170 "failure_id", CTLFLAG_RW, &mpt->failure_id, -1, 2171 "Next Target to Fail"); 2172 #endif 2173 #endif 2174 } 2175 2176 int 2177 mpt_attach(struct mpt_softc *mpt) 2178 { 2179 struct mpt_personality *pers; 2180 int i; 2181 int error; 2182 2183 mpt_core_attach(mpt); 2184 mpt_core_enable(mpt); 2185 2186 TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links); 2187 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 2188 pers = mpt_personalities[i]; 2189 if (pers == NULL) { 2190 continue; 2191 } 2192 if (pers->probe(mpt) == 0) { 2193 error = pers->attach(mpt); 2194 if (error != 0) { 2195 mpt_detach(mpt); 2196 return (error); 2197 } 2198 mpt->mpt_pers_mask |= (0x1 << pers->id); 2199 pers->use_count++; 2200 } 2201 } 2202 2203 /* 2204 * Now that we've attached everything, do the enable function 2205 * for all of the personalities. This allows the personalities 2206 * to do setups that are appropriate for them prior to enabling 2207 * any ports. 2208 */ 2209 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 2210 pers = mpt_personalities[i]; 2211 if (pers != NULL && MPT_PERS_ATTACHED(pers, mpt) != 0) { 2212 error = pers->enable(mpt); 2213 if (error != 0) { 2214 mpt_prt(mpt, "personality %s attached but would" 2215 " not enable (%d)\n", pers->name, error); 2216 mpt_detach(mpt); 2217 return (error); 2218 } 2219 } 2220 } 2221 return (0); 2222 } 2223 2224 int 2225 mpt_shutdown(struct mpt_softc *mpt) 2226 { 2227 struct mpt_personality *pers; 2228 2229 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2230 pers->shutdown(mpt); 2231 } 2232 return (0); 2233 } 2234 2235 int 2236 mpt_detach(struct mpt_softc *mpt) 2237 { 2238 struct mpt_personality *pers; 2239 2240 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2241 pers->detach(mpt); 2242 mpt->mpt_pers_mask &= ~(0x1 << pers->id); 2243 pers->use_count--; 2244 } 2245 TAILQ_REMOVE(&mpt_tailq, mpt, links); 2246 return (0); 2247 } 2248 2249 static int 2250 mpt_core_load(struct mpt_personality *pers) 2251 { 2252 int i; 2253 2254 /* 2255 * Setup core handlers and insert the default handler 2256 * into all "empty slots". 2257 */ 2258 for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) { 2259 mpt_reply_handlers[i] = mpt_default_reply_handler; 2260 } 2261 2262 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] = 2263 mpt_event_reply_handler; 2264 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] = 2265 mpt_config_reply_handler; 2266 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] = 2267 mpt_handshake_reply_handler; 2268 return (0); 2269 } 2270 2271 /* 2272 * Initialize per-instance driver data and perform 2273 * initial controller configuration. 2274 */ 2275 static int 2276 mpt_core_attach(struct mpt_softc *mpt) 2277 { 2278 int val, error; 2279 2280 LIST_INIT(&mpt->ack_frames); 2281 /* Put all request buffers on the free list */ 2282 TAILQ_INIT(&mpt->request_pending_list); 2283 TAILQ_INIT(&mpt->request_free_list); 2284 TAILQ_INIT(&mpt->request_timeout_list); 2285 for (val = 0; val < MPT_MAX_LUNS; val++) { 2286 STAILQ_INIT(&mpt->trt[val].atios); 2287 STAILQ_INIT(&mpt->trt[val].inots); 2288 } 2289 STAILQ_INIT(&mpt->trt_wildcard.atios); 2290 STAILQ_INIT(&mpt->trt_wildcard.inots); 2291 #ifdef MPT_TEST_MULTIPATH 2292 mpt->failure_id = -1; 2293 #endif 2294 mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE; 2295 mpt_sysctl_attach(mpt); 2296 mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n", 2297 mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL))); 2298 2299 MPT_LOCK(mpt); 2300 error = mpt_configure_ioc(mpt, 0, 0); 2301 MPT_UNLOCK(mpt); 2302 2303 return (error); 2304 } 2305 2306 static int 2307 mpt_core_enable(struct mpt_softc *mpt) 2308 { 2309 2310 /* 2311 * We enter with the IOC enabled, but async events 2312 * not enabled, ports not enabled and interrupts 2313 * not enabled. 2314 */ 2315 MPT_LOCK(mpt); 2316 2317 /* 2318 * Enable asynchronous event reporting- all personalities 2319 * have attached so that they should be able to now field 2320 * async events. 2321 */ 2322 mpt_send_event_request(mpt, 1); 2323 2324 /* 2325 * Catch any pending interrupts 2326 * 2327 * This seems to be crucial- otherwise 2328 * the portenable below times out. 2329 */ 2330 mpt_intr(mpt); 2331 2332 /* 2333 * Enable Interrupts 2334 */ 2335 mpt_enable_ints(mpt); 2336 2337 /* 2338 * Catch any pending interrupts 2339 * 2340 * This seems to be crucial- otherwise 2341 * the portenable below times out. 2342 */ 2343 mpt_intr(mpt); 2344 2345 /* 2346 * Enable the port. 2347 */ 2348 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2349 mpt_prt(mpt, "failed to enable port 0\n"); 2350 MPT_UNLOCK(mpt); 2351 return (ENXIO); 2352 } 2353 MPT_UNLOCK(mpt); 2354 return (0); 2355 } 2356 2357 static void 2358 mpt_core_shutdown(struct mpt_softc *mpt) 2359 { 2360 2361 mpt_disable_ints(mpt); 2362 } 2363 2364 static void 2365 mpt_core_detach(struct mpt_softc *mpt) 2366 { 2367 int val; 2368 2369 /* 2370 * XXX: FREE MEMORY 2371 */ 2372 mpt_disable_ints(mpt); 2373 2374 /* Make sure no request has pending timeouts. */ 2375 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { 2376 request_t *req = &mpt->request_pool[val]; 2377 mpt_callout_drain(mpt, &req->callout); 2378 } 2379 2380 mpt_dma_buf_free(mpt); 2381 } 2382 2383 static int 2384 mpt_core_unload(struct mpt_personality *pers) 2385 { 2386 2387 /* Unload is always successful. */ 2388 return (0); 2389 } 2390 2391 #define FW_UPLOAD_REQ_SIZE \ 2392 (sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION) \ 2393 + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32)) 2394 2395 static int 2396 mpt_upload_fw(struct mpt_softc *mpt) 2397 { 2398 uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE]; 2399 MSG_FW_UPLOAD_REPLY fw_reply; 2400 MSG_FW_UPLOAD *fw_req; 2401 FW_UPLOAD_TCSGE *tsge; 2402 SGE_SIMPLE32 *sge; 2403 uint32_t flags; 2404 int error; 2405 2406 memset(&fw_req_buf, 0, sizeof(fw_req_buf)); 2407 fw_req = (MSG_FW_UPLOAD *)fw_req_buf; 2408 fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM; 2409 fw_req->Function = MPI_FUNCTION_FW_UPLOAD; 2410 fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 2411 tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL; 2412 tsge->DetailsLength = 12; 2413 tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT; 2414 tsge->ImageSize = htole32(mpt->fw_image_size); 2415 sge = (SGE_SIMPLE32 *)(tsge + 1); 2416 flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER 2417 | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT 2418 | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST); 2419 flags <<= MPI_SGE_FLAGS_SHIFT; 2420 sge->FlagsLength = htole32(flags | mpt->fw_image_size); 2421 sge->Address = htole32(mpt->fw_phys); 2422 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD); 2423 error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf); 2424 if (error) 2425 return(error); 2426 error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply); 2427 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD); 2428 return (error); 2429 } 2430 2431 static void 2432 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr, 2433 uint32_t *data, bus_size_t len) 2434 { 2435 uint32_t *data_end; 2436 2437 data_end = data + (roundup2(len, sizeof(uint32_t)) / 4); 2438 if (mpt->is_sas) { 2439 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2440 } 2441 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr); 2442 while (data != data_end) { 2443 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data); 2444 data++; 2445 } 2446 if (mpt->is_sas) { 2447 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2448 } 2449 } 2450 2451 static int 2452 mpt_download_fw(struct mpt_softc *mpt) 2453 { 2454 MpiFwHeader_t *fw_hdr; 2455 int error; 2456 uint32_t ext_offset; 2457 uint32_t data; 2458 2459 if (mpt->pci_pio_reg == NULL) { 2460 mpt_prt(mpt, "No PIO resource!\n"); 2461 return (ENXIO); 2462 } 2463 2464 mpt_prt(mpt, "Downloading Firmware - Image Size %d\n", 2465 mpt->fw_image_size); 2466 2467 error = mpt_enable_diag_mode(mpt); 2468 if (error != 0) { 2469 mpt_prt(mpt, "Could not enter diagnostic mode!\n"); 2470 return (EIO); 2471 } 2472 2473 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, 2474 MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM); 2475 2476 fw_hdr = (MpiFwHeader_t *)mpt->fw_image; 2477 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE); 2478 mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr, 2479 fw_hdr->ImageSize); 2480 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE); 2481 2482 ext_offset = fw_hdr->NextImageHeaderOffset; 2483 while (ext_offset != 0) { 2484 MpiExtImageHeader_t *ext; 2485 2486 ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset); 2487 ext_offset = ext->NextImageHeaderOffset; 2488 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, 2489 BUS_DMASYNC_PREWRITE); 2490 mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext, 2491 ext->ImageSize); 2492 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, 2493 BUS_DMASYNC_POSTWRITE); 2494 } 2495 2496 if (mpt->is_sas) { 2497 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2498 } 2499 /* Setup the address to jump to on reset. */ 2500 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr); 2501 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue); 2502 2503 /* 2504 * The controller sets the "flash bad" status after attempting 2505 * to auto-boot from flash. Clear the status so that the controller 2506 * will continue the boot process with our newly installed firmware. 2507 */ 2508 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2509 data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL; 2510 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2511 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data); 2512 2513 if (mpt->is_sas) { 2514 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2515 } 2516 2517 /* 2518 * Re-enable the processor and clear the boot halt flag. 2519 */ 2520 data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 2521 data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM); 2522 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data); 2523 2524 mpt_disable_diag_mode(mpt); 2525 return (0); 2526 } 2527 2528 static int 2529 mpt_dma_buf_alloc(struct mpt_softc *mpt) 2530 { 2531 struct mpt_map_info mi; 2532 uint8_t *vptr; 2533 uint32_t pptr, end; 2534 int i, error; 2535 2536 /* Create a child tag for data buffers */ 2537 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 2538 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 2539 NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE, 2540 mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0, 2541 &mpt->buffer_dmat) != 0) { 2542 mpt_prt(mpt, "cannot create a dma tag for data buffers\n"); 2543 return (1); 2544 } 2545 2546 /* Create a child tag for request buffers */ 2547 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0, 2548 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 2549 NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0, 2550 &mpt->request_dmat) != 0) { 2551 mpt_prt(mpt, "cannot create a dma tag for requests\n"); 2552 return (1); 2553 } 2554 2555 /* Allocate some DMA accessible memory for requests */ 2556 if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request, 2557 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) { 2558 mpt_prt(mpt, "cannot allocate %d bytes of request memory\n", 2559 MPT_REQ_MEM_SIZE(mpt)); 2560 return (1); 2561 } 2562 2563 mi.mpt = mpt; 2564 mi.error = 0; 2565 2566 /* Load and lock it into "bus space" */ 2567 bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request, 2568 MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0); 2569 2570 if (mi.error) { 2571 mpt_prt(mpt, "error %d loading dma map for DMA request queue\n", 2572 mi.error); 2573 return (1); 2574 } 2575 mpt->request_phys = mi.phys; 2576 2577 /* 2578 * Now create per-request dma maps 2579 */ 2580 i = 0; 2581 pptr = mpt->request_phys; 2582 vptr = mpt->request; 2583 end = pptr + MPT_REQ_MEM_SIZE(mpt); 2584 while(pptr < end) { 2585 request_t *req = &mpt->request_pool[i]; 2586 req->index = i++; 2587 2588 /* Store location of Request Data */ 2589 req->req_pbuf = pptr; 2590 req->req_vbuf = vptr; 2591 2592 pptr += MPT_REQUEST_AREA; 2593 vptr += MPT_REQUEST_AREA; 2594 2595 req->sense_pbuf = (pptr - MPT_SENSE_SIZE); 2596 req->sense_vbuf = (vptr - MPT_SENSE_SIZE); 2597 2598 error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap); 2599 if (error) { 2600 mpt_prt(mpt, "error %d creating per-cmd DMA maps\n", 2601 error); 2602 return (1); 2603 } 2604 } 2605 2606 return (0); 2607 } 2608 2609 static void 2610 mpt_dma_buf_free(struct mpt_softc *mpt) 2611 { 2612 int i; 2613 2614 if (mpt->request_dmat == 0) { 2615 mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n"); 2616 return; 2617 } 2618 for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) { 2619 bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap); 2620 } 2621 bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap); 2622 bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap); 2623 bus_dma_tag_destroy(mpt->request_dmat); 2624 mpt->request_dmat = 0; 2625 bus_dma_tag_destroy(mpt->buffer_dmat); 2626 } 2627 2628 /* 2629 * Allocate/Initialize data structures for the controller. Called 2630 * once at instance startup. 2631 */ 2632 static int 2633 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset) 2634 { 2635 PTR_MSG_PORT_FACTS_REPLY pfp; 2636 int error, port, val; 2637 size_t len; 2638 2639 if (tn == MPT_MAX_TRYS) { 2640 return (-1); 2641 } 2642 2643 /* 2644 * No need to reset if the IOC is already in the READY state. 2645 * 2646 * Force reset if initialization failed previously. 2647 * Note that a hard_reset of the second channel of a '929 2648 * will stop operation of the first channel. Hopefully, if the 2649 * first channel is ok, the second will not require a hard 2650 * reset. 2651 */ 2652 if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) { 2653 if (mpt_reset(mpt, FALSE) != MPT_OK) { 2654 return (mpt_configure_ioc(mpt, tn++, 1)); 2655 } 2656 needreset = 0; 2657 } 2658 2659 if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) { 2660 mpt_prt(mpt, "mpt_get_iocfacts failed\n"); 2661 return (mpt_configure_ioc(mpt, tn++, 1)); 2662 } 2663 mpt2host_iocfacts_reply(&mpt->ioc_facts); 2664 2665 mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n", 2666 mpt->ioc_facts.MsgVersion >> 8, 2667 mpt->ioc_facts.MsgVersion & 0xFF, 2668 mpt->ioc_facts.HeaderVersion >> 8, 2669 mpt->ioc_facts.HeaderVersion & 0xFF); 2670 2671 /* 2672 * Now that we know request frame size, we can calculate 2673 * the actual (reasonable) segment limit for read/write I/O. 2674 * 2675 * This limit is constrained by: 2676 * 2677 * + The size of each area we allocate per command (and how 2678 * many chain segments we can fit into it). 2679 * + The total number of areas we've set up. 2680 * + The actual chain depth the card will allow. 2681 * 2682 * The first area's segment count is limited by the I/O request 2683 * at the head of it. We cannot allocate realistically more 2684 * than MPT_MAX_REQUESTS areas. Therefore, to account for both 2685 * conditions, we'll just start out with MPT_MAX_REQUESTS-2. 2686 * 2687 */ 2688 /* total number of request areas we (can) allocate */ 2689 mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2; 2690 2691 /* converted to the number of chain areas possible */ 2692 mpt->max_seg_cnt *= MPT_NRFM(mpt); 2693 2694 /* limited by the number of chain areas the card will support */ 2695 if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) { 2696 mpt_lprt(mpt, MPT_PRT_INFO, 2697 "chain depth limited to %u (from %u)\n", 2698 mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt); 2699 mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth; 2700 } 2701 2702 /* converted to the number of simple sges in chain segments. */ 2703 mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1); 2704 2705 /* 2706 * Use this as the basis for reporting the maximum I/O size to CAM. 2707 */ 2708 mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1); 2709 2710 error = mpt_dma_buf_alloc(mpt); 2711 if (error != 0) { 2712 mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n"); 2713 return (EIO); 2714 } 2715 2716 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { 2717 request_t *req = &mpt->request_pool[val]; 2718 req->state = REQ_STATE_ALLOCATED; 2719 mpt_callout_init(mpt, &req->callout); 2720 mpt_free_request(mpt, req); 2721 } 2722 2723 mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum " 2724 "CAM Segment Count: %u\n", mpt->max_seg_cnt, 2725 mpt->max_cam_seg_cnt); 2726 2727 mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n", 2728 mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber); 2729 mpt_lprt(mpt, MPT_PRT_INFO, 2730 "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes " 2731 "Request Frame Size %u bytes Max Chain Depth %u\n", 2732 mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize, 2733 mpt->ioc_facts.RequestFrameSize << 2, 2734 mpt->ioc_facts.MaxChainDepth); 2735 mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, " 2736 "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts, 2737 mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags); 2738 2739 len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY); 2740 mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2741 if (mpt->port_facts == NULL) { 2742 mpt_prt(mpt, "unable to allocate memory for port facts\n"); 2743 return (ENOMEM); 2744 } 2745 2746 2747 if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) && 2748 (mpt->fw_uploaded == 0)) { 2749 struct mpt_map_info mi; 2750 2751 /* 2752 * In some configurations, the IOC's firmware is 2753 * stored in a shared piece of system NVRAM that 2754 * is only accessible via the BIOS. In this 2755 * case, the firmware keeps a copy of firmware in 2756 * RAM until the OS driver retrieves it. Once 2757 * retrieved, we are responsible for re-downloading 2758 * the firmware after any hard-reset. 2759 */ 2760 mpt->fw_image_size = mpt->ioc_facts.FWImageSize; 2761 error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0, 2762 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 2763 mpt->fw_image_size, 1, mpt->fw_image_size, 0, 2764 &mpt->fw_dmat); 2765 if (error != 0) { 2766 mpt_prt(mpt, "cannot create firmware dma tag\n"); 2767 return (ENOMEM); 2768 } 2769 error = bus_dmamem_alloc(mpt->fw_dmat, 2770 (void **)&mpt->fw_image, BUS_DMA_NOWAIT | 2771 BUS_DMA_COHERENT, &mpt->fw_dmap); 2772 if (error != 0) { 2773 mpt_prt(mpt, "cannot allocate firmware memory\n"); 2774 bus_dma_tag_destroy(mpt->fw_dmat); 2775 return (ENOMEM); 2776 } 2777 mi.mpt = mpt; 2778 mi.error = 0; 2779 bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap, 2780 mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0); 2781 mpt->fw_phys = mi.phys; 2782 2783 error = mpt_upload_fw(mpt); 2784 if (error != 0) { 2785 mpt_prt(mpt, "firmware upload failed.\n"); 2786 bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap); 2787 bus_dmamem_free(mpt->fw_dmat, mpt->fw_image, 2788 mpt->fw_dmap); 2789 bus_dma_tag_destroy(mpt->fw_dmat); 2790 mpt->fw_image = NULL; 2791 return (EIO); 2792 } 2793 mpt->fw_uploaded = 1; 2794 } 2795 2796 for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) { 2797 pfp = &mpt->port_facts[port]; 2798 error = mpt_get_portfacts(mpt, 0, pfp); 2799 if (error != MPT_OK) { 2800 mpt_prt(mpt, 2801 "mpt_get_portfacts on port %d failed\n", port); 2802 free(mpt->port_facts, M_DEVBUF); 2803 mpt->port_facts = NULL; 2804 return (mpt_configure_ioc(mpt, tn++, 1)); 2805 } 2806 mpt2host_portfacts_reply(pfp); 2807 2808 if (port > 0) { 2809 error = MPT_PRT_INFO; 2810 } else { 2811 error = MPT_PRT_DEBUG; 2812 } 2813 mpt_lprt(mpt, error, 2814 "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n", 2815 port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID, 2816 pfp->MaxDevices); 2817 2818 } 2819 2820 /* 2821 * XXX: Not yet supporting more than port 0 2822 */ 2823 pfp = &mpt->port_facts[0]; 2824 if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) { 2825 mpt->is_fc = 1; 2826 mpt->is_sas = 0; 2827 mpt->is_spi = 0; 2828 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) { 2829 mpt->is_fc = 0; 2830 mpt->is_sas = 1; 2831 mpt->is_spi = 0; 2832 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) { 2833 mpt->is_fc = 0; 2834 mpt->is_sas = 0; 2835 mpt->is_spi = 1; 2836 if (mpt->mpt_ini_id == MPT_INI_ID_NONE) 2837 mpt->mpt_ini_id = pfp->PortSCSIID; 2838 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) { 2839 mpt_prt(mpt, "iSCSI not supported yet\n"); 2840 return (ENXIO); 2841 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) { 2842 mpt_prt(mpt, "Inactive Port\n"); 2843 return (ENXIO); 2844 } else { 2845 mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType); 2846 return (ENXIO); 2847 } 2848 2849 /* 2850 * Set our role with what this port supports. 2851 * 2852 * Note this might be changed later in different modules 2853 * if this is different from what is wanted. 2854 */ 2855 mpt->role = MPT_ROLE_NONE; 2856 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) { 2857 mpt->role |= MPT_ROLE_INITIATOR; 2858 } 2859 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) { 2860 mpt->role |= MPT_ROLE_TARGET; 2861 } 2862 2863 /* 2864 * Enable the IOC 2865 */ 2866 if (mpt_enable_ioc(mpt, 1) != MPT_OK) { 2867 mpt_prt(mpt, "unable to initialize IOC\n"); 2868 return (ENXIO); 2869 } 2870 2871 /* 2872 * Read IOC configuration information. 2873 * 2874 * We need this to determine whether or not we have certain 2875 * settings for Integrated Mirroring (e.g.). 2876 */ 2877 mpt_read_config_info_ioc(mpt); 2878 2879 return (0); 2880 } 2881 2882 static int 2883 mpt_enable_ioc(struct mpt_softc *mpt, int portenable) 2884 { 2885 uint32_t pptr; 2886 int val; 2887 2888 if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) { 2889 mpt_prt(mpt, "mpt_send_ioc_init failed\n"); 2890 return (EIO); 2891 } 2892 2893 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n"); 2894 2895 if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) { 2896 mpt_prt(mpt, "IOC failed to go to run state\n"); 2897 return (ENXIO); 2898 } 2899 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n"); 2900 2901 /* 2902 * Give it reply buffers 2903 * 2904 * Do *not* exceed global credits. 2905 */ 2906 for (val = 0, pptr = mpt->reply_phys; 2907 (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE); 2908 pptr += MPT_REPLY_SIZE) { 2909 mpt_free_reply(mpt, pptr); 2910 if (++val == mpt->ioc_facts.GlobalCredits - 1) 2911 break; 2912 } 2913 2914 2915 /* 2916 * Enable the port if asked. This is only done if we're resetting 2917 * the IOC after initial startup. 2918 */ 2919 if (portenable) { 2920 /* 2921 * Enable asynchronous event reporting 2922 */ 2923 mpt_send_event_request(mpt, 1); 2924 2925 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2926 mpt_prt(mpt, "%s: failed to enable port 0\n", __func__); 2927 return (ENXIO); 2928 } 2929 } 2930 return (MPT_OK); 2931 } 2932 2933 /* 2934 * Endian Conversion Functions- only used on Big Endian machines 2935 */ 2936 #if _BYTE_ORDER == _BIG_ENDIAN 2937 void 2938 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge) 2939 { 2940 2941 MPT_2_HOST32(sge, FlagsLength); 2942 MPT_2_HOST32(sge, u.Address64.Low); 2943 MPT_2_HOST32(sge, u.Address64.High); 2944 } 2945 2946 void 2947 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp) 2948 { 2949 2950 MPT_2_HOST16(rp, MsgVersion); 2951 MPT_2_HOST16(rp, HeaderVersion); 2952 MPT_2_HOST32(rp, MsgContext); 2953 MPT_2_HOST16(rp, IOCExceptions); 2954 MPT_2_HOST16(rp, IOCStatus); 2955 MPT_2_HOST32(rp, IOCLogInfo); 2956 MPT_2_HOST16(rp, ReplyQueueDepth); 2957 MPT_2_HOST16(rp, RequestFrameSize); 2958 MPT_2_HOST16(rp, Reserved_0101_FWVersion); 2959 MPT_2_HOST16(rp, ProductID); 2960 MPT_2_HOST32(rp, CurrentHostMfaHighAddr); 2961 MPT_2_HOST16(rp, GlobalCredits); 2962 MPT_2_HOST32(rp, CurrentSenseBufferHighAddr); 2963 MPT_2_HOST16(rp, CurReplyFrameSize); 2964 MPT_2_HOST32(rp, FWImageSize); 2965 MPT_2_HOST32(rp, IOCCapabilities); 2966 MPT_2_HOST32(rp, FWVersion.Word); 2967 MPT_2_HOST16(rp, HighPriorityQueueDepth); 2968 MPT_2_HOST16(rp, Reserved2); 2969 mpt2host_sge_simple_union(&rp->HostPageBufferSGE); 2970 MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr); 2971 } 2972 2973 void 2974 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp) 2975 { 2976 2977 MPT_2_HOST16(pfp, Reserved); 2978 MPT_2_HOST16(pfp, Reserved1); 2979 MPT_2_HOST32(pfp, MsgContext); 2980 MPT_2_HOST16(pfp, Reserved2); 2981 MPT_2_HOST16(pfp, IOCStatus); 2982 MPT_2_HOST32(pfp, IOCLogInfo); 2983 MPT_2_HOST16(pfp, MaxDevices); 2984 MPT_2_HOST16(pfp, PortSCSIID); 2985 MPT_2_HOST16(pfp, ProtocolFlags); 2986 MPT_2_HOST16(pfp, MaxPostedCmdBuffers); 2987 MPT_2_HOST16(pfp, MaxPersistentIDs); 2988 MPT_2_HOST16(pfp, MaxLanBuckets); 2989 MPT_2_HOST16(pfp, Reserved4); 2990 MPT_2_HOST32(pfp, Reserved5); 2991 } 2992 2993 void 2994 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2) 2995 { 2996 int i; 2997 2998 MPT_2_HOST32(ioc2, CapabilitiesFlags); 2999 for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) { 3000 MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3); 3001 } 3002 } 3003 3004 void 3005 mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3) 3006 { 3007 3008 MPT_2_HOST16(ioc3, Reserved2); 3009 } 3010 3011 void 3012 mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0) 3013 { 3014 3015 MPT_2_HOST32(sp0, Capabilities); 3016 MPT_2_HOST32(sp0, PhysicalInterface); 3017 } 3018 3019 void 3020 mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1) 3021 { 3022 3023 MPT_2_HOST32(sp1, Configuration); 3024 MPT_2_HOST32(sp1, OnBusTimerValue); 3025 MPT_2_HOST16(sp1, IDConfig); 3026 } 3027 3028 void 3029 host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1) 3030 { 3031 3032 HOST_2_MPT32(sp1, Configuration); 3033 HOST_2_MPT32(sp1, OnBusTimerValue); 3034 HOST_2_MPT16(sp1, IDConfig); 3035 } 3036 3037 void 3038 mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2) 3039 { 3040 int i; 3041 3042 MPT_2_HOST32(sp2, PortFlags); 3043 MPT_2_HOST32(sp2, PortSettings); 3044 for (i = 0; i < sizeof(sp2->DeviceSettings) / 3045 sizeof(*sp2->DeviceSettings); i++) { 3046 MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags); 3047 } 3048 } 3049 3050 void 3051 mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0) 3052 { 3053 3054 MPT_2_HOST32(sd0, NegotiatedParameters); 3055 MPT_2_HOST32(sd0, Information); 3056 } 3057 3058 void 3059 mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1) 3060 { 3061 3062 MPT_2_HOST32(sd1, RequestedParameters); 3063 MPT_2_HOST32(sd1, Reserved); 3064 MPT_2_HOST32(sd1, Configuration); 3065 } 3066 3067 void 3068 host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1) 3069 { 3070 3071 HOST_2_MPT32(sd1, RequestedParameters); 3072 HOST_2_MPT32(sd1, Reserved); 3073 HOST_2_MPT32(sd1, Configuration); 3074 } 3075 3076 void 3077 mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0) 3078 { 3079 3080 MPT_2_HOST32(fp0, Flags); 3081 MPT_2_HOST32(fp0, PortIdentifier); 3082 MPT_2_HOST32(fp0, WWNN.Low); 3083 MPT_2_HOST32(fp0, WWNN.High); 3084 MPT_2_HOST32(fp0, WWPN.Low); 3085 MPT_2_HOST32(fp0, WWPN.High); 3086 MPT_2_HOST32(fp0, SupportedServiceClass); 3087 MPT_2_HOST32(fp0, SupportedSpeeds); 3088 MPT_2_HOST32(fp0, CurrentSpeed); 3089 MPT_2_HOST32(fp0, MaxFrameSize); 3090 MPT_2_HOST32(fp0, FabricWWNN.Low); 3091 MPT_2_HOST32(fp0, FabricWWNN.High); 3092 MPT_2_HOST32(fp0, FabricWWPN.Low); 3093 MPT_2_HOST32(fp0, FabricWWPN.High); 3094 MPT_2_HOST32(fp0, DiscoveredPortsCount); 3095 MPT_2_HOST32(fp0, MaxInitiators); 3096 } 3097 3098 void 3099 mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1) 3100 { 3101 3102 MPT_2_HOST32(fp1, Flags); 3103 MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low); 3104 MPT_2_HOST32(fp1, NoSEEPROMWWNN.High); 3105 MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low); 3106 MPT_2_HOST32(fp1, NoSEEPROMWWPN.High); 3107 } 3108 3109 void 3110 host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1) 3111 { 3112 3113 HOST_2_MPT32(fp1, Flags); 3114 HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low); 3115 HOST_2_MPT32(fp1, NoSEEPROMWWNN.High); 3116 HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low); 3117 HOST_2_MPT32(fp1, NoSEEPROMWWPN.High); 3118 } 3119 3120 void 3121 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp) 3122 { 3123 int i; 3124 3125 MPT_2_HOST16(volp, VolumeStatus.Reserved); 3126 MPT_2_HOST16(volp, VolumeSettings.Settings); 3127 MPT_2_HOST32(volp, MaxLBA); 3128 MPT_2_HOST32(volp, MaxLBAHigh); 3129 MPT_2_HOST32(volp, StripeSize); 3130 MPT_2_HOST32(volp, Reserved2); 3131 MPT_2_HOST32(volp, Reserved3); 3132 for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) { 3133 MPT_2_HOST16(volp, PhysDisk[i].Reserved); 3134 } 3135 } 3136 3137 void 3138 mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0) 3139 { 3140 3141 MPT_2_HOST32(rpd0, Reserved1); 3142 MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved); 3143 MPT_2_HOST32(rpd0, MaxLBA); 3144 MPT_2_HOST16(rpd0, ErrorData.Reserved); 3145 MPT_2_HOST16(rpd0, ErrorData.ErrorCount); 3146 MPT_2_HOST16(rpd0, ErrorData.SmartCount); 3147 } 3148 3149 void 3150 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi) 3151 { 3152 3153 MPT_2_HOST16(vi, TotalBlocks.High); 3154 MPT_2_HOST16(vi, TotalBlocks.Low); 3155 MPT_2_HOST16(vi, BlocksRemaining.High); 3156 MPT_2_HOST16(vi, BlocksRemaining.Low); 3157 } 3158 #endif 3159