xref: /freebsd/sys/dev/mpt/mpt.c (revision 641a6cfb86023499caafe26a4d821a0b885cf00b)
1 /*-
2  * Generic routines for LSI Fusion adapters.
3  * FreeBSD Version.
4  *
5  * Copyright (c) 2000, 2001 by Greg Ansley
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice immediately at the beginning of the file, without modification,
12  *    this list of conditions, and the following disclaimer.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 /*-
29  * Copyright (c) 2002, 2006 by Matthew Jacob
30  * All rights reserved.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions are
34  * met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
38  *    substantially similar to the "NO WARRANTY" disclaimer below
39  *    ("Disclaimer") and any redistribution must be conditioned upon including
40  *    a substantially similar Disclaimer requirement for further binary
41  *    redistribution.
42  * 3. Neither the names of the above listed copyright holders nor the names
43  *    of any contributors may be used to endorse or promote products derived
44  *    from this software without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
47  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
50  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
56  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
57  *
58  * Support from Chris Ellsworth in order to make SAS adapters work
59  * is gratefully acknowledged.
60  *
61  *
62  * Support from LSI-Logic has also gone a great deal toward making this a
63  * workable subsystem and is gratefully acknowledged.
64  */
65 /*-
66  * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
67  * Copyright (c) 2005, WHEEL Sp. z o.o.
68  * Copyright (c) 2004, 2005 Justin T. Gibbs
69  * All rights reserved.
70  *
71  * Redistribution and use in source and binary forms, with or without
72  * modification, are permitted provided that the following conditions are
73  * met:
74  * 1. Redistributions of source code must retain the above copyright
75  *    notice, this list of conditions and the following disclaimer.
76  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
77  *    substantially similar to the "NO WARRANTY" disclaimer below
78  *    ("Disclaimer") and any redistribution must be conditioned upon including
79  *    a substantially similar Disclaimer requirement for further binary
80  *    redistribution.
81  * 3. Neither the names of the above listed copyright holders nor the names
82  *    of any contributors may be used to endorse or promote products derived
83  *    from this software without specific prior written permission.
84  *
85  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
86  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
89  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
90  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
91  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
92  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
93  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
94  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
95  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
96  */
97 
98 #include <sys/cdefs.h>
99 __FBSDID("$FreeBSD$");
100 
101 #include <dev/mpt/mpt.h>
102 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
103 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
104 
105 #include <dev/mpt/mpilib/mpi.h>
106 #include <dev/mpt/mpilib/mpi_ioc.h>
107 #include <dev/mpt/mpilib/mpi_fc.h>
108 #include <dev/mpt/mpilib/mpi_targ.h>
109 
110 #include <sys/sysctl.h>
111 
112 #define MPT_MAX_TRYS 3
113 #define MPT_MAX_WAIT 300000
114 
115 static int maxwait_ack = 0;
116 static int maxwait_int = 0;
117 static int maxwait_state = 0;
118 
119 static TAILQ_HEAD(, mpt_softc)	mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
120 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
121 
122 static mpt_reply_handler_t mpt_default_reply_handler;
123 static mpt_reply_handler_t mpt_config_reply_handler;
124 static mpt_reply_handler_t mpt_handshake_reply_handler;
125 static mpt_reply_handler_t mpt_event_reply_handler;
126 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
127 			       MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
128 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
129 static int mpt_soft_reset(struct mpt_softc *mpt);
130 static void mpt_hard_reset(struct mpt_softc *mpt);
131 static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
132 static void mpt_dma_buf_free(struct mpt_softc *mpt);
133 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
134 static int mpt_enable_ioc(struct mpt_softc *mpt, int);
135 
136 /************************* Personality Module Support *************************/
137 /*
138  * We include one extra entry that is guaranteed to be NULL
139  * to simplify our itterator.
140  */
141 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
142 static __inline struct mpt_personality*
143 	mpt_pers_find(struct mpt_softc *, u_int);
144 static __inline struct mpt_personality*
145 	mpt_pers_find_reverse(struct mpt_softc *, u_int);
146 
147 static __inline struct mpt_personality *
148 mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
149 {
150 	KASSERT(start_at <= MPT_MAX_PERSONALITIES,
151 		("mpt_pers_find: starting position out of range"));
152 
153 	while (start_at < MPT_MAX_PERSONALITIES
154 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
155 		start_at++;
156 	}
157 	return (mpt_personalities[start_at]);
158 }
159 
160 /*
161  * Used infrequently, so no need to optimize like a forward
162  * traversal where we use the MAX+1 is guaranteed to be NULL
163  * trick.
164  */
165 static __inline struct mpt_personality *
166 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
167 {
168 	while (start_at < MPT_MAX_PERSONALITIES
169 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
170 		start_at--;
171 	}
172 	if (start_at < MPT_MAX_PERSONALITIES)
173 		return (mpt_personalities[start_at]);
174 	return (NULL);
175 }
176 
177 #define MPT_PERS_FOREACH(mpt, pers)				\
178 	for (pers = mpt_pers_find(mpt, /*start_at*/0);		\
179 	     pers != NULL;					\
180 	     pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
181 
182 #define MPT_PERS_FOREACH_REVERSE(mpt, pers)				\
183 	for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
184 	     pers != NULL;						\
185 	     pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
186 
187 static mpt_load_handler_t      mpt_stdload;
188 static mpt_probe_handler_t     mpt_stdprobe;
189 static mpt_attach_handler_t    mpt_stdattach;
190 static mpt_enable_handler_t    mpt_stdenable;
191 static mpt_ready_handler_t     mpt_stdready;
192 static mpt_event_handler_t     mpt_stdevent;
193 static mpt_reset_handler_t     mpt_stdreset;
194 static mpt_shutdown_handler_t  mpt_stdshutdown;
195 static mpt_detach_handler_t    mpt_stddetach;
196 static mpt_unload_handler_t    mpt_stdunload;
197 static struct mpt_personality mpt_default_personality =
198 {
199 	.load		= mpt_stdload,
200 	.probe		= mpt_stdprobe,
201 	.attach		= mpt_stdattach,
202 	.enable		= mpt_stdenable,
203 	.ready		= mpt_stdready,
204 	.event		= mpt_stdevent,
205 	.reset		= mpt_stdreset,
206 	.shutdown	= mpt_stdshutdown,
207 	.detach		= mpt_stddetach,
208 	.unload		= mpt_stdunload
209 };
210 
211 static mpt_load_handler_t      mpt_core_load;
212 static mpt_attach_handler_t    mpt_core_attach;
213 static mpt_enable_handler_t    mpt_core_enable;
214 static mpt_reset_handler_t     mpt_core_ioc_reset;
215 static mpt_event_handler_t     mpt_core_event;
216 static mpt_shutdown_handler_t  mpt_core_shutdown;
217 static mpt_shutdown_handler_t  mpt_core_detach;
218 static mpt_unload_handler_t    mpt_core_unload;
219 static struct mpt_personality mpt_core_personality =
220 {
221 	.name		= "mpt_core",
222 	.load		= mpt_core_load,
223 //	.attach		= mpt_core_attach,
224 //	.enable		= mpt_core_enable,
225 	.event		= mpt_core_event,
226 	.reset		= mpt_core_ioc_reset,
227 	.shutdown	= mpt_core_shutdown,
228 	.detach		= mpt_core_detach,
229 	.unload		= mpt_core_unload,
230 };
231 
232 /*
233  * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
234  * ordering information.  We want the core to always register FIRST.
235  * other modules are set to SI_ORDER_SECOND.
236  */
237 static moduledata_t mpt_core_mod = {
238 	"mpt_core", mpt_modevent, &mpt_core_personality
239 };
240 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
241 MODULE_VERSION(mpt_core, 1);
242 
243 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
244 
245 int
246 mpt_modevent(module_t mod, int type, void *data)
247 {
248 	struct mpt_personality *pers;
249 	int error;
250 
251 	pers = (struct mpt_personality *)data;
252 
253 	error = 0;
254 	switch (type) {
255 	case MOD_LOAD:
256 	{
257 		mpt_load_handler_t **def_handler;
258 		mpt_load_handler_t **pers_handler;
259 		int i;
260 
261 		for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
262 			if (mpt_personalities[i] == NULL)
263 				break;
264 		}
265 		if (i >= MPT_MAX_PERSONALITIES) {
266 			error = ENOMEM;
267 			break;
268 		}
269 		pers->id = i;
270 		mpt_personalities[i] = pers;
271 
272 		/* Install standard/noop handlers for any NULL entries. */
273 		def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
274 		pers_handler = MPT_PERS_FIRST_HANDLER(pers);
275 		while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
276 			if (*pers_handler == NULL)
277 				*pers_handler = *def_handler;
278 			pers_handler++;
279 			def_handler++;
280 		}
281 
282 		error = (pers->load(pers));
283 		if (error != 0)
284 			mpt_personalities[i] = NULL;
285 		break;
286 	}
287 	case MOD_SHUTDOWN:
288 		break;
289 #if __FreeBSD_version >= 500000
290 	case MOD_QUIESCE:
291 		break;
292 #endif
293 	case MOD_UNLOAD:
294 		error = pers->unload(pers);
295 		mpt_personalities[pers->id] = NULL;
296 		break;
297 	default:
298 		error = EINVAL;
299 		break;
300 	}
301 	return (error);
302 }
303 
304 static int
305 mpt_stdload(struct mpt_personality *pers)
306 {
307 
308 	/* Load is always successful. */
309 	return (0);
310 }
311 
312 static int
313 mpt_stdprobe(struct mpt_softc *mpt)
314 {
315 
316 	/* Probe is always successful. */
317 	return (0);
318 }
319 
320 static int
321 mpt_stdattach(struct mpt_softc *mpt)
322 {
323 
324 	/* Attach is always successful. */
325 	return (0);
326 }
327 
328 static int
329 mpt_stdenable(struct mpt_softc *mpt)
330 {
331 
332 	/* Enable is always successful. */
333 	return (0);
334 }
335 
336 static void
337 mpt_stdready(struct mpt_softc *mpt)
338 {
339 
340 }
341 
342 static int
343 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
344 {
345 
346 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
347 	/* Event was not for us. */
348 	return (0);
349 }
350 
351 static void
352 mpt_stdreset(struct mpt_softc *mpt, int type)
353 {
354 
355 }
356 
357 static void
358 mpt_stdshutdown(struct mpt_softc *mpt)
359 {
360 
361 }
362 
363 static void
364 mpt_stddetach(struct mpt_softc *mpt)
365 {
366 
367 }
368 
369 static int
370 mpt_stdunload(struct mpt_personality *pers)
371 {
372 
373 	/* Unload is always successful. */
374 	return (0);
375 }
376 
377 /*
378  * Post driver attachment, we may want to perform some global actions.
379  * Here is the hook to do so.
380  */
381 
382 static void
383 mpt_postattach(void *unused)
384 {
385 	struct mpt_softc *mpt;
386 	struct mpt_personality *pers;
387 
388 	TAILQ_FOREACH(mpt, &mpt_tailq, links) {
389 		MPT_PERS_FOREACH(mpt, pers)
390 			pers->ready(mpt);
391 	}
392 }
393 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
394 
395 /******************************* Bus DMA Support ******************************/
396 void
397 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
398 {
399 	struct mpt_map_info *map_info;
400 
401 	map_info = (struct mpt_map_info *)arg;
402 	map_info->error = error;
403 	map_info->phys = segs->ds_addr;
404 }
405 
406 /**************************** Reply/Event Handling ****************************/
407 int
408 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
409 		     mpt_handler_t handler, uint32_t *phandler_id)
410 {
411 
412 	switch (type) {
413 	case MPT_HANDLER_REPLY:
414 	{
415 		u_int cbi;
416 		u_int free_cbi;
417 
418 		if (phandler_id == NULL)
419 			return (EINVAL);
420 
421 		free_cbi = MPT_HANDLER_ID_NONE;
422 		for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
423 			/*
424 			 * If the same handler is registered multiple
425 			 * times, don't error out.  Just return the
426 			 * index of the original registration.
427 			 */
428 			if (mpt_reply_handlers[cbi] == handler.reply_handler) {
429 				*phandler_id = MPT_CBI_TO_HID(cbi);
430 				return (0);
431 			}
432 
433 			/*
434 			 * Fill from the front in the hope that
435 			 * all registered handlers consume only a
436 			 * single cache line.
437 			 *
438 			 * We don't break on the first empty slot so
439 			 * that the full table is checked to see if
440 			 * this handler was previously registered.
441 			 */
442 			if (free_cbi == MPT_HANDLER_ID_NONE &&
443 			    (mpt_reply_handlers[cbi]
444 			  == mpt_default_reply_handler))
445 				free_cbi = cbi;
446 		}
447 		if (free_cbi == MPT_HANDLER_ID_NONE) {
448 			return (ENOMEM);
449 		}
450 		mpt_reply_handlers[free_cbi] = handler.reply_handler;
451 		*phandler_id = MPT_CBI_TO_HID(free_cbi);
452 		break;
453 	}
454 	default:
455 		mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
456 		return (EINVAL);
457 	}
458 	return (0);
459 }
460 
461 int
462 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
463 		       mpt_handler_t handler, uint32_t handler_id)
464 {
465 
466 	switch (type) {
467 	case MPT_HANDLER_REPLY:
468 	{
469 		u_int cbi;
470 
471 		cbi = MPT_CBI(handler_id);
472 		if (cbi >= MPT_NUM_REPLY_HANDLERS
473 		 || mpt_reply_handlers[cbi] != handler.reply_handler)
474 			return (ENOENT);
475 		mpt_reply_handlers[cbi] = mpt_default_reply_handler;
476 		break;
477 	}
478 	default:
479 		mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
480 		return (EINVAL);
481 	}
482 	return (0);
483 }
484 
485 static int
486 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
487 	uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
488 {
489 
490 	mpt_prt(mpt,
491 	    "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
492 	    req, req->serno, reply_desc, reply_frame);
493 
494 	if (reply_frame != NULL)
495 		mpt_dump_reply_frame(mpt, reply_frame);
496 
497 	mpt_prt(mpt, "Reply Frame Ignored\n");
498 
499 	return (/*free_reply*/TRUE);
500 }
501 
502 static int
503 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
504  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
505 {
506 
507 	if (req != NULL) {
508 		if (reply_frame != NULL) {
509 			MSG_CONFIG *cfgp;
510 			MSG_CONFIG_REPLY *reply;
511 
512 			cfgp = (MSG_CONFIG *)req->req_vbuf;
513 			reply = (MSG_CONFIG_REPLY *)reply_frame;
514 			req->IOCStatus = le16toh(reply_frame->IOCStatus);
515 			bcopy(&reply->Header, &cfgp->Header,
516 			      sizeof(cfgp->Header));
517 			cfgp->ExtPageLength = reply->ExtPageLength;
518 			cfgp->ExtPageType = reply->ExtPageType;
519 		}
520 		req->state &= ~REQ_STATE_QUEUED;
521 		req->state |= REQ_STATE_DONE;
522 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
523 		if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
524 			wakeup(req);
525 		} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
526 			/*
527 			 * Whew- we can free this request (late completion)
528 			 */
529 			mpt_free_request(mpt, req);
530 		}
531 	}
532 
533 	return (TRUE);
534 }
535 
536 static int
537 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
538  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
539 {
540 
541 	/* Nothing to be done. */
542 	return (TRUE);
543 }
544 
545 static int
546 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
547     uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
548 {
549 	int free_reply;
550 
551 	KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
552 	KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
553 
554 	free_reply = TRUE;
555 	switch (reply_frame->Function) {
556 	case MPI_FUNCTION_EVENT_NOTIFICATION:
557 	{
558 		MSG_EVENT_NOTIFY_REPLY *msg;
559 		struct mpt_personality *pers;
560 		u_int handled;
561 
562 		handled = 0;
563 		msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
564 		msg->EventDataLength = le16toh(msg->EventDataLength);
565 		msg->IOCStatus = le16toh(msg->IOCStatus);
566 		msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
567 		msg->Event = le32toh(msg->Event);
568 		MPT_PERS_FOREACH(mpt, pers)
569 			handled += pers->event(mpt, req, msg);
570 
571 		if (handled == 0 && mpt->mpt_pers_mask == 0) {
572 			mpt_lprt(mpt, MPT_PRT_INFO,
573 				"No Handlers For Any Event Notify Frames. "
574 				"Event %#x (ACK %sequired).\n",
575 				msg->Event, msg->AckRequired? "r" : "not r");
576 		} else if (handled == 0) {
577 			mpt_lprt(mpt,
578 				msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
579 				"Unhandled Event Notify Frame. Event %#x "
580 				"(ACK %sequired).\n",
581 				msg->Event, msg->AckRequired? "r" : "not r");
582 		}
583 
584 		if (msg->AckRequired) {
585 			request_t *ack_req;
586 			uint32_t context;
587 
588 			context = req->index | MPT_REPLY_HANDLER_EVENTS;
589 			ack_req = mpt_get_request(mpt, FALSE);
590 			if (ack_req == NULL) {
591 				struct mpt_evtf_record *evtf;
592 
593 				evtf = (struct mpt_evtf_record *)reply_frame;
594 				evtf->context = context;
595 				LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
596 				free_reply = FALSE;
597 				break;
598 			}
599 			mpt_send_event_ack(mpt, ack_req, msg, context);
600 			/*
601 			 * Don't check for CONTINUATION_REPLY here
602 			 */
603 			return (free_reply);
604 		}
605 		break;
606 	}
607 	case MPI_FUNCTION_PORT_ENABLE:
608 		mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
609 		break;
610 	case MPI_FUNCTION_EVENT_ACK:
611 		break;
612 	default:
613 		mpt_prt(mpt, "unknown event function: %x\n",
614 			reply_frame->Function);
615 		break;
616 	}
617 
618 	/*
619 	 * I'm not sure that this continuation stuff works as it should.
620 	 *
621 	 * I've had FC async events occur that free the frame up because
622 	 * the continuation bit isn't set, and then additional async events
623 	 * then occur using the same context. As you might imagine, this
624 	 * leads to Very Bad Thing.
625 	 *
626 	 *  Let's just be safe for now and not free them up until we figure
627 	 * out what's actually happening here.
628 	 */
629 #if	0
630 	if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
631 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
632 		mpt_free_request(mpt, req);
633 		mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
634 		    reply_frame->Function, req, req->serno);
635 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
636 			MSG_EVENT_NOTIFY_REPLY *msg =
637 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
638 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
639 			    msg->Event, msg->AckRequired);
640 		}
641 	} else {
642 		mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
643 		    reply_frame->Function, req, req->serno);
644 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
645 			MSG_EVENT_NOTIFY_REPLY *msg =
646 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
647 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
648 			    msg->Event, msg->AckRequired);
649 		}
650 		mpt_prtc(mpt, "\n");
651 	}
652 #endif
653 	return (free_reply);
654 }
655 
656 /*
657  * Process an asynchronous event from the IOC.
658  */
659 static int
660 mpt_core_event(struct mpt_softc *mpt, request_t *req,
661 	       MSG_EVENT_NOTIFY_REPLY *msg)
662 {
663 
664 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
665                  msg->Event & 0xFF);
666 	switch(msg->Event & 0xFF) {
667 	case MPI_EVENT_NONE:
668 		break;
669 	case MPI_EVENT_LOG_DATA:
670 	{
671 		int i;
672 
673 		/* Some error occurred that LSI wants logged */
674 		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
675 			msg->IOCLogInfo);
676 		mpt_prt(mpt, "\tEvtLogData: Event Data:");
677 		for (i = 0; i < msg->EventDataLength; i++)
678 			mpt_prtc(mpt, "  %08x", msg->Data[i]);
679 		mpt_prtc(mpt, "\n");
680 		break;
681 	}
682 	case MPI_EVENT_EVENT_CHANGE:
683 		/*
684 		 * This is just an acknowledgement
685 		 * of our mpt_send_event_request.
686 		 */
687 		break;
688 	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
689 		break;
690 	default:
691 		return (0);
692 		break;
693 	}
694 	return (1);
695 }
696 
697 static void
698 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
699 		   MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
700 {
701 	MSG_EVENT_ACK *ackp;
702 
703 	ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
704 	memset(ackp, 0, sizeof (*ackp));
705 	ackp->Function = MPI_FUNCTION_EVENT_ACK;
706 	ackp->Event = htole32(msg->Event);
707 	ackp->EventContext = htole32(msg->EventContext);
708 	ackp->MsgContext = htole32(context);
709 	mpt_check_doorbell(mpt);
710 	mpt_send_cmd(mpt, ack_req);
711 }
712 
713 /***************************** Interrupt Handling *****************************/
714 void
715 mpt_intr(void *arg)
716 {
717 	struct mpt_softc *mpt;
718 	uint32_t reply_desc;
719 	int ntrips = 0;
720 
721 	mpt = (struct mpt_softc *)arg;
722 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
723 	MPT_LOCK_ASSERT(mpt);
724 
725 	while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
726 		request_t	  *req;
727 		MSG_DEFAULT_REPLY *reply_frame;
728 		uint32_t	   reply_baddr;
729 		uint32_t           ctxt_idx;
730 		u_int		   cb_index;
731 		u_int		   req_index;
732 		u_int		   offset;
733 		int		   free_rf;
734 
735 		req = NULL;
736 		reply_frame = NULL;
737 		reply_baddr = 0;
738 		offset = 0;
739 		if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
740 			/*
741 			 * Ensure that the reply frame is coherent.
742 			 */
743 			reply_baddr = MPT_REPLY_BADDR(reply_desc);
744 			offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
745 			bus_dmamap_sync_range(mpt->reply_dmat,
746 			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
747 			    BUS_DMASYNC_POSTREAD);
748 			reply_frame = MPT_REPLY_OTOV(mpt, offset);
749 			ctxt_idx = le32toh(reply_frame->MsgContext);
750 		} else {
751 			uint32_t type;
752 
753 			type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
754 			ctxt_idx = reply_desc;
755 			mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
756 				    reply_desc);
757 
758 			switch (type) {
759 			case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
760 				ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
761 				break;
762 			case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
763 				ctxt_idx = GET_IO_INDEX(reply_desc);
764 				if (mpt->tgt_cmd_ptrs == NULL) {
765 					mpt_prt(mpt,
766 					    "mpt_intr: no target cmd ptrs\n");
767 					reply_desc = MPT_REPLY_EMPTY;
768 					break;
769 				}
770 				if (ctxt_idx >= mpt->tgt_cmds_allocated) {
771 					mpt_prt(mpt,
772 					    "mpt_intr: bad tgt cmd ctxt %u\n",
773 					    ctxt_idx);
774 					reply_desc = MPT_REPLY_EMPTY;
775 					ntrips = 1000;
776 					break;
777 				}
778 				req = mpt->tgt_cmd_ptrs[ctxt_idx];
779 				if (req == NULL) {
780 					mpt_prt(mpt, "no request backpointer "
781 					    "at index %u", ctxt_idx);
782 					reply_desc = MPT_REPLY_EMPTY;
783 					ntrips = 1000;
784 					break;
785 				}
786 				/*
787 				 * Reformulate ctxt_idx to be just as if
788 				 * it were another type of context reply
789 				 * so the code below will find the request
790 				 * via indexing into the pool.
791 				 */
792 				ctxt_idx =
793 				    req->index | mpt->scsi_tgt_handler_id;
794 				req = NULL;
795 				break;
796 			case MPI_CONTEXT_REPLY_TYPE_LAN:
797 				mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
798 				    reply_desc);
799 				reply_desc = MPT_REPLY_EMPTY;
800 				break;
801 			default:
802 				mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
803 				reply_desc = MPT_REPLY_EMPTY;
804 				break;
805 			}
806 			if (reply_desc == MPT_REPLY_EMPTY) {
807 				if (ntrips++ > 1000) {
808 					break;
809 				}
810 				continue;
811 			}
812 		}
813 
814 		cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
815 		req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
816 		if (req_index < MPT_MAX_REQUESTS(mpt)) {
817 			req = &mpt->request_pool[req_index];
818 		} else {
819 			mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
820 			    " 0x%x)\n", req_index, reply_desc);
821 		}
822 
823 		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
824 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
825 		free_rf = mpt_reply_handlers[cb_index](mpt, req,
826 		    reply_desc, reply_frame);
827 
828 		if (reply_frame != NULL && free_rf) {
829 			bus_dmamap_sync_range(mpt->reply_dmat,
830 			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
831 			    BUS_DMASYNC_PREREAD);
832 			mpt_free_reply(mpt, reply_baddr);
833 		}
834 
835 		/*
836 		 * If we got ourselves disabled, don't get stuck in a loop
837 		 */
838 		if (mpt->disabled) {
839 			mpt_disable_ints(mpt);
840 			break;
841 		}
842 		if (ntrips++ > 1000) {
843 			break;
844 		}
845 	}
846 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
847 }
848 
849 /******************************* Error Recovery *******************************/
850 void
851 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
852 			    u_int iocstatus)
853 {
854 	MSG_DEFAULT_REPLY  ioc_status_frame;
855 	request_t	  *req;
856 
857 	memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
858 	ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
859 	ioc_status_frame.IOCStatus = iocstatus;
860 	while((req = TAILQ_FIRST(chain)) != NULL) {
861 		MSG_REQUEST_HEADER *msg_hdr;
862 		u_int		    cb_index;
863 
864 		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
865 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
866 		msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
867 		ioc_status_frame.Function = msg_hdr->Function;
868 		ioc_status_frame.MsgContext = msg_hdr->MsgContext;
869 		cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
870 		mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
871 		    &ioc_status_frame);
872 		if (mpt_req_on_pending_list(mpt, req) != 0)
873 			TAILQ_REMOVE(chain, req, links);
874 	}
875 }
876 
877 /********************************* Diagnostics ********************************/
878 /*
879  * Perform a diagnostic dump of a reply frame.
880  */
881 void
882 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
883 {
884 
885 	mpt_prt(mpt, "Address Reply:\n");
886 	mpt_print_reply(reply_frame);
887 }
888 
889 /******************************* Doorbell Access ******************************/
890 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
891 static __inline  uint32_t mpt_rd_intr(struct mpt_softc *mpt);
892 
893 static __inline uint32_t
894 mpt_rd_db(struct mpt_softc *mpt)
895 {
896 
897 	return mpt_read(mpt, MPT_OFFSET_DOORBELL);
898 }
899 
900 static __inline uint32_t
901 mpt_rd_intr(struct mpt_softc *mpt)
902 {
903 
904 	return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
905 }
906 
907 /* Busy wait for a door bell to be read by IOC */
908 static int
909 mpt_wait_db_ack(struct mpt_softc *mpt)
910 {
911 	int i;
912 
913 	for (i=0; i < MPT_MAX_WAIT; i++) {
914 		if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
915 			maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
916 			return (MPT_OK);
917 		}
918 		DELAY(200);
919 	}
920 	return (MPT_FAIL);
921 }
922 
923 /* Busy wait for a door bell interrupt */
924 static int
925 mpt_wait_db_int(struct mpt_softc *mpt)
926 {
927 	int i;
928 
929 	for (i = 0; i < MPT_MAX_WAIT; i++) {
930 		if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
931 			maxwait_int = i > maxwait_int ? i : maxwait_int;
932 			return MPT_OK;
933 		}
934 		DELAY(100);
935 	}
936 	return (MPT_FAIL);
937 }
938 
939 /* Wait for IOC to transition to a give state */
940 void
941 mpt_check_doorbell(struct mpt_softc *mpt)
942 {
943 	uint32_t db = mpt_rd_db(mpt);
944 
945 	if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
946 		mpt_prt(mpt, "Device not running\n");
947 		mpt_print_db(db);
948 	}
949 }
950 
951 /* Wait for IOC to transition to a give state */
952 static int
953 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
954 {
955 	int i;
956 
957 	for (i = 0; i < MPT_MAX_WAIT; i++) {
958 		uint32_t db = mpt_rd_db(mpt);
959 		if (MPT_STATE(db) == state) {
960 			maxwait_state = i > maxwait_state ? i : maxwait_state;
961 			return (MPT_OK);
962 		}
963 		DELAY(100);
964 	}
965 	return (MPT_FAIL);
966 }
967 
968 
969 /************************* Intialization/Configuration ************************/
970 static int mpt_download_fw(struct mpt_softc *mpt);
971 
972 /* Issue the reset COMMAND to the IOC */
973 static int
974 mpt_soft_reset(struct mpt_softc *mpt)
975 {
976 
977 	mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
978 
979 	/* Have to use hard reset if we are not in Running state */
980 	if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
981 		mpt_prt(mpt, "soft reset failed: device not running\n");
982 		return (MPT_FAIL);
983 	}
984 
985 	/* If door bell is in use we don't have a chance of getting
986 	 * a word in since the IOC probably crashed in message
987 	 * processing. So don't waste our time.
988 	 */
989 	if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
990 		mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
991 		return (MPT_FAIL);
992 	}
993 
994 	/* Send the reset request to the IOC */
995 	mpt_write(mpt, MPT_OFFSET_DOORBELL,
996 	    MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
997 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
998 		mpt_prt(mpt, "soft reset failed: ack timeout\n");
999 		return (MPT_FAIL);
1000 	}
1001 
1002 	/* Wait for the IOC to reload and come out of reset state */
1003 	if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
1004 		mpt_prt(mpt, "soft reset failed: device did not restart\n");
1005 		return (MPT_FAIL);
1006 	}
1007 
1008 	return MPT_OK;
1009 }
1010 
1011 static int
1012 mpt_enable_diag_mode(struct mpt_softc *mpt)
1013 {
1014 	int try;
1015 
1016 	try = 20;
1017 	while (--try) {
1018 
1019 		if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1020 			break;
1021 
1022 		/* Enable diagnostic registers */
1023 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1024 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1025 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1026 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1027 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1028 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1029 
1030 		DELAY(100000);
1031 	}
1032 	if (try == 0)
1033 		return (EIO);
1034 	return (0);
1035 }
1036 
1037 static void
1038 mpt_disable_diag_mode(struct mpt_softc *mpt)
1039 {
1040 
1041 	mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1042 }
1043 
1044 /* This is a magic diagnostic reset that resets all the ARM
1045  * processors in the chip.
1046  */
1047 static void
1048 mpt_hard_reset(struct mpt_softc *mpt)
1049 {
1050 	int error;
1051 	int wait;
1052 	uint32_t diagreg;
1053 
1054 	mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1055 
1056 	if (mpt->is_1078) {
1057 		mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07);
1058 		DELAY(1000);
1059 		return;
1060 	}
1061 
1062 	error = mpt_enable_diag_mode(mpt);
1063 	if (error) {
1064 		mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1065 		mpt_prt(mpt, "Trying to reset anyway.\n");
1066 	}
1067 
1068 	diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1069 
1070 	/*
1071 	 * This appears to be a workaround required for some
1072 	 * firmware or hardware revs.
1073 	 */
1074 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1075 	DELAY(1000);
1076 
1077 	/* Diag. port is now active so we can now hit the reset bit */
1078 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1079 
1080         /*
1081          * Ensure that the reset has finished.  We delay 1ms
1082          * prior to reading the register to make sure the chip
1083          * has sufficiently completed its reset to handle register
1084          * accesses.
1085          */
1086 	wait = 5000;
1087 	do {
1088 		DELAY(1000);
1089 		diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1090 	} while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1091 
1092 	if (wait == 0) {
1093 		mpt_prt(mpt, "WARNING - Failed hard reset! "
1094 			"Trying to initialize anyway.\n");
1095 	}
1096 
1097 	/*
1098 	 * If we have firmware to download, it must be loaded before
1099 	 * the controller will become operational.  Do so now.
1100 	 */
1101 	if (mpt->fw_image != NULL) {
1102 
1103 		error = mpt_download_fw(mpt);
1104 
1105 		if (error) {
1106 			mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1107 			mpt_prt(mpt, "Trying to initialize anyway.\n");
1108 		}
1109 	}
1110 
1111 	/*
1112 	 * Reseting the controller should have disabled write
1113 	 * access to the diagnostic registers, but disable
1114 	 * manually to be sure.
1115 	 */
1116 	mpt_disable_diag_mode(mpt);
1117 }
1118 
1119 static void
1120 mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1121 {
1122 
1123 	/*
1124 	 * Complete all pending requests with a status
1125 	 * appropriate for an IOC reset.
1126 	 */
1127 	mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1128 				   MPI_IOCSTATUS_INVALID_STATE);
1129 }
1130 
1131 /*
1132  * Reset the IOC when needed. Try software command first then if needed
1133  * poke at the magic diagnostic reset. Note that a hard reset resets
1134  * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1135  * fouls up the PCI configuration registers.
1136  */
1137 int
1138 mpt_reset(struct mpt_softc *mpt, int reinit)
1139 {
1140 	struct	mpt_personality *pers;
1141 	int	ret;
1142 	int	retry_cnt = 0;
1143 
1144 	/*
1145 	 * Try a soft reset. If that fails, get out the big hammer.
1146 	 */
1147  again:
1148 	if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1149 		int	cnt;
1150 		for (cnt = 0; cnt < 5; cnt++) {
1151 			/* Failed; do a hard reset */
1152 			mpt_hard_reset(mpt);
1153 
1154 			/*
1155 			 * Wait for the IOC to reload
1156 			 * and come out of reset state
1157 			 */
1158 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1159 			if (ret == MPT_OK) {
1160 				break;
1161 			}
1162 			/*
1163 			 * Okay- try to check again...
1164 			 */
1165 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1166 			if (ret == MPT_OK) {
1167 				break;
1168 			}
1169 			mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1170 			    retry_cnt, cnt);
1171 		}
1172 	}
1173 
1174 	if (retry_cnt == 0) {
1175 		/*
1176 		 * Invoke reset handlers.  We bump the reset count so
1177 		 * that mpt_wait_req() understands that regardless of
1178 		 * the specified wait condition, it should stop its wait.
1179 		 */
1180 		mpt->reset_cnt++;
1181 		MPT_PERS_FOREACH(mpt, pers)
1182 			pers->reset(mpt, ret);
1183 	}
1184 
1185 	if (reinit) {
1186 		ret = mpt_enable_ioc(mpt, 1);
1187 		if (ret == MPT_OK) {
1188 			mpt_enable_ints(mpt);
1189 		}
1190 	}
1191 	if (ret != MPT_OK && retry_cnt++ < 2) {
1192 		goto again;
1193 	}
1194 	return ret;
1195 }
1196 
1197 /* Return a command buffer to the free queue */
1198 void
1199 mpt_free_request(struct mpt_softc *mpt, request_t *req)
1200 {
1201 	request_t *nxt;
1202 	struct mpt_evtf_record *record;
1203 	uint32_t offset, reply_baddr;
1204 
1205 	if (req == NULL || req != &mpt->request_pool[req->index]) {
1206 		panic("mpt_free_request: bad req ptr");
1207 	}
1208 	if ((nxt = req->chain) != NULL) {
1209 		req->chain = NULL;
1210 		mpt_free_request(mpt, nxt);	/* NB: recursion */
1211 	}
1212 	KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1213 	KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1214 	MPT_LOCK_ASSERT(mpt);
1215 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1216 	    ("mpt_free_request: req %p:%u func %x already on freelist",
1217 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1218 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1219 	    ("mpt_free_request: req %p:%u func %x on pending list",
1220 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1221 #ifdef	INVARIANTS
1222 	mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1223 #endif
1224 
1225 	req->ccb = NULL;
1226 	if (LIST_EMPTY(&mpt->ack_frames)) {
1227 		/*
1228 		 * Insert free ones at the tail
1229 		 */
1230 		req->serno = 0;
1231 		req->state = REQ_STATE_FREE;
1232 #ifdef	INVARIANTS
1233 		memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1234 #endif
1235 		TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1236 		if (mpt->getreqwaiter != 0) {
1237 			mpt->getreqwaiter = 0;
1238 			wakeup(&mpt->request_free_list);
1239 		}
1240 		return;
1241 	}
1242 
1243 	/*
1244 	 * Process an ack frame deferred due to resource shortage.
1245 	 */
1246 	record = LIST_FIRST(&mpt->ack_frames);
1247 	LIST_REMOVE(record, links);
1248 	req->state = REQ_STATE_ALLOCATED;
1249 	mpt_assign_serno(mpt, req);
1250 	mpt_send_event_ack(mpt, req, &record->reply, record->context);
1251 	offset = (uint32_t)((uint8_t *)record - mpt->reply);
1252 	reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1253 	bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1254 	    MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1255 	mpt_free_reply(mpt, reply_baddr);
1256 }
1257 
1258 /* Get a command buffer from the free queue */
1259 request_t *
1260 mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1261 {
1262 	request_t *req;
1263 
1264 retry:
1265 	MPT_LOCK_ASSERT(mpt);
1266 	req = TAILQ_FIRST(&mpt->request_free_list);
1267 	if (req != NULL) {
1268 		KASSERT(req == &mpt->request_pool[req->index],
1269 		    ("mpt_get_request: corrupted request free list"));
1270 		KASSERT(req->state == REQ_STATE_FREE,
1271 		    ("req %p:%u not free on free list %x index %d function %x",
1272 		    req, req->serno, req->state, req->index,
1273 		    ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1274 		TAILQ_REMOVE(&mpt->request_free_list, req, links);
1275 		req->state = REQ_STATE_ALLOCATED;
1276 		req->chain = NULL;
1277 		mpt_assign_serno(mpt, req);
1278 	} else if (sleep_ok != 0) {
1279 		mpt->getreqwaiter = 1;
1280 		mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
1281 		goto retry;
1282 	}
1283 	return (req);
1284 }
1285 
1286 /* Pass the command to the IOC */
1287 void
1288 mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1289 {
1290 
1291 	if (mpt->verbose > MPT_PRT_DEBUG2) {
1292 		mpt_dump_request(mpt, req);
1293 	}
1294 	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1295 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1296 	req->state |= REQ_STATE_QUEUED;
1297 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1298 	    ("req %p:%u func %x on freelist list in mpt_send_cmd",
1299 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1300 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1301 	    ("req %p:%u func %x already on pending list in mpt_send_cmd",
1302 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1303 	TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1304 	mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1305 }
1306 
1307 /*
1308  * Wait for a request to complete.
1309  *
1310  * Inputs:
1311  *	mpt		softc of controller executing request
1312  *	req		request to wait for
1313  *	sleep_ok	nonzero implies may sleep in this context
1314  *	time_ms		timeout in ms.  0 implies no timeout.
1315  *
1316  * Return Values:
1317  *	0		Request completed
1318  *	non-0		Timeout fired before request completion.
1319  */
1320 int
1321 mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1322 	     mpt_req_state_t state, mpt_req_state_t mask,
1323 	     int sleep_ok, int time_ms)
1324 {
1325 	int   error;
1326 	int   timeout;
1327 	u_int saved_cnt;
1328 
1329 	/*
1330 	 * timeout is in ms.  0 indicates infinite wait.
1331 	 * Convert to ticks or 500us units depending on
1332 	 * our sleep mode.
1333 	 */
1334 	if (sleep_ok != 0) {
1335 		timeout = (time_ms * hz) / 1000;
1336 	} else {
1337 		timeout = time_ms * 2;
1338 	}
1339 	req->state |= REQ_STATE_NEED_WAKEUP;
1340 	mask &= ~REQ_STATE_NEED_WAKEUP;
1341 	saved_cnt = mpt->reset_cnt;
1342 	while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1343 		if (sleep_ok != 0) {
1344 			error = mpt_sleep(mpt, req, PUSER, "mptreq", timeout);
1345 			if (error == EWOULDBLOCK) {
1346 				timeout = 0;
1347 				break;
1348 			}
1349 		} else {
1350 			if (time_ms != 0 && --timeout == 0) {
1351 				break;
1352 			}
1353 			DELAY(500);
1354 			mpt_intr(mpt);
1355 		}
1356 	}
1357 	req->state &= ~REQ_STATE_NEED_WAKEUP;
1358 	if (mpt->reset_cnt != saved_cnt) {
1359 		return (EIO);
1360 	}
1361 	if (time_ms && timeout <= 0) {
1362 		MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1363 		req->state |= REQ_STATE_TIMEDOUT;
1364 		mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1365 		return (ETIMEDOUT);
1366 	}
1367 	return (0);
1368 }
1369 
1370 /*
1371  * Send a command to the IOC via the handshake register.
1372  *
1373  * Only done at initialization time and for certain unusual
1374  * commands such as device/bus reset as specified by LSI.
1375  */
1376 int
1377 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1378 {
1379 	int i;
1380 	uint32_t data, *data32;
1381 
1382 	/* Check condition of the IOC */
1383 	data = mpt_rd_db(mpt);
1384 	if ((MPT_STATE(data) != MPT_DB_STATE_READY
1385 	  && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1386 	  && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1387 	 || MPT_DB_IS_IN_USE(data)) {
1388 		mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1389 		mpt_print_db(data);
1390 		return (EBUSY);
1391 	}
1392 
1393 	/* We move things in 32 bit chunks */
1394 	len = (len + 3) >> 2;
1395 	data32 = cmd;
1396 
1397 	/* Clear any left over pending doorbell interrupts */
1398 	if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1399 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1400 
1401 	/*
1402 	 * Tell the handshake reg. we are going to send a command
1403          * and how long it is going to be.
1404 	 */
1405 	data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1406 	    (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1407 	mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1408 
1409 	/* Wait for the chip to notice */
1410 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1411 		mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1412 		return (ETIMEDOUT);
1413 	}
1414 
1415 	/* Clear the interrupt */
1416 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1417 
1418 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
1419 		mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1420 		return (ETIMEDOUT);
1421 	}
1422 
1423 	/* Send the command */
1424 	for (i = 0; i < len; i++) {
1425 		mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++));
1426 		if (mpt_wait_db_ack(mpt) != MPT_OK) {
1427 			mpt_prt(mpt,
1428 			    "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1429 			return (ETIMEDOUT);
1430 		}
1431 	}
1432 	return MPT_OK;
1433 }
1434 
1435 /* Get the response from the handshake register */
1436 int
1437 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1438 {
1439 	int left, reply_left;
1440 	u_int16_t *data16;
1441 	uint32_t data;
1442 	MSG_DEFAULT_REPLY *hdr;
1443 
1444 	/* We move things out in 16 bit chunks */
1445 	reply_len >>= 1;
1446 	data16 = (u_int16_t *)reply;
1447 
1448 	hdr = (MSG_DEFAULT_REPLY *)reply;
1449 
1450 	/* Get first word */
1451 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1452 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1453 		return ETIMEDOUT;
1454 	}
1455 	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1456 	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1457 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1458 
1459 	/* Get Second Word */
1460 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1461 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1462 		return ETIMEDOUT;
1463 	}
1464 	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1465 	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1466 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1467 
1468 	/*
1469 	 * With the second word, we can now look at the length.
1470 	 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1471 	 */
1472 	if ((reply_len >> 1) != hdr->MsgLength &&
1473 	    (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1474 #if __FreeBSD_version >= 500000
1475 		mpt_prt(mpt, "reply length does not match message length: "
1476 			"got %x; expected %zx for function %x\n",
1477 			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1478 #else
1479 		mpt_prt(mpt, "reply length does not match message length: "
1480 			"got %x; expected %x for function %x\n",
1481 			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1482 #endif
1483 	}
1484 
1485 	/* Get rest of the reply; but don't overflow the provided buffer */
1486 	left = (hdr->MsgLength << 1) - 2;
1487 	reply_left =  reply_len - 2;
1488 	while (left--) {
1489 		u_int16_t datum;
1490 
1491 		if (mpt_wait_db_int(mpt) != MPT_OK) {
1492 			mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1493 			return ETIMEDOUT;
1494 		}
1495 		data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1496 		datum = le16toh(data & MPT_DB_DATA_MASK);
1497 
1498 		if (reply_left-- > 0)
1499 			*data16++ = datum;
1500 
1501 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1502 	}
1503 
1504 	/* One more wait & clear at the end */
1505 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1506 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1507 		return ETIMEDOUT;
1508 	}
1509 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1510 
1511 	if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1512 		if (mpt->verbose >= MPT_PRT_TRACE)
1513 			mpt_print_reply(hdr);
1514 		return (MPT_FAIL | hdr->IOCStatus);
1515 	}
1516 
1517 	return (0);
1518 }
1519 
1520 static int
1521 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1522 {
1523 	MSG_IOC_FACTS f_req;
1524 	int error;
1525 
1526 	memset(&f_req, 0, sizeof f_req);
1527 	f_req.Function = MPI_FUNCTION_IOC_FACTS;
1528 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1529 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1530 	if (error) {
1531 		return(error);
1532 	}
1533 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1534 	return (error);
1535 }
1536 
1537 static int
1538 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1539 {
1540 	MSG_PORT_FACTS f_req;
1541 	int error;
1542 
1543 	memset(&f_req, 0, sizeof f_req);
1544 	f_req.Function = MPI_FUNCTION_PORT_FACTS;
1545 	f_req.PortNumber = port;
1546 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1547 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1548 	if (error) {
1549 		return(error);
1550 	}
1551 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1552 	return (error);
1553 }
1554 
1555 /*
1556  * Send the initialization request. This is where we specify how many
1557  * SCSI busses and how many devices per bus we wish to emulate.
1558  * This is also the command that specifies the max size of the reply
1559  * frames from the IOC that we will be allocating.
1560  */
1561 static int
1562 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1563 {
1564 	int error = 0;
1565 	MSG_IOC_INIT init;
1566 	MSG_IOC_INIT_REPLY reply;
1567 
1568 	memset(&init, 0, sizeof init);
1569 	init.WhoInit = who;
1570 	init.Function = MPI_FUNCTION_IOC_INIT;
1571 	init.MaxDevices = 0;	/* at least 256 devices per bus */
1572 	init.MaxBuses = 16;	/* at least 16 busses */
1573 
1574 	init.MsgVersion = htole16(MPI_VERSION);
1575 	init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1576 	init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1577 	init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1578 
1579 	if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1580 		return(error);
1581 	}
1582 
1583 	error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1584 	return (error);
1585 }
1586 
1587 
1588 /*
1589  * Utiltity routine to read configuration headers and pages
1590  */
1591 int
1592 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1593 		  bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1594 {
1595 	MSG_CONFIG *cfgp;
1596 	SGE_SIMPLE32 *se;
1597 
1598 	cfgp = req->req_vbuf;
1599 	memset(cfgp, 0, sizeof *cfgp);
1600 	cfgp->Action = params->Action;
1601 	cfgp->Function = MPI_FUNCTION_CONFIG;
1602 	cfgp->Header.PageVersion = params->PageVersion;
1603 	cfgp->Header.PageNumber = params->PageNumber;
1604 	cfgp->PageAddress = htole32(params->PageAddress);
1605 	if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1606 	    MPI_CONFIG_PAGETYPE_EXTENDED) {
1607 		cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1608 		cfgp->Header.PageLength = 0;
1609 		cfgp->ExtPageLength = htole16(params->ExtPageLength);
1610 		cfgp->ExtPageType = params->ExtPageType;
1611 	} else {
1612 		cfgp->Header.PageType = params->PageType;
1613 		cfgp->Header.PageLength = params->PageLength;
1614 	}
1615 	se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1616 	se->Address = htole32(addr);
1617 	MPI_pSGE_SET_LENGTH(se, len);
1618 	MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1619 	    MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1620 	    MPI_SGE_FLAGS_END_OF_LIST |
1621 	    ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1622 	  || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1623 	   ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1624 	se->FlagsLength = htole32(se->FlagsLength);
1625 	cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1626 
1627 	mpt_check_doorbell(mpt);
1628 	mpt_send_cmd(mpt, req);
1629 	return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1630 			     sleep_ok, timeout_ms));
1631 }
1632 
1633 int
1634 mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1635 		       uint32_t PageAddress, int ExtPageType,
1636 		       CONFIG_EXTENDED_PAGE_HEADER *rslt,
1637 		       int sleep_ok, int timeout_ms)
1638 {
1639 	request_t  *req;
1640 	cfgparms_t params;
1641 	MSG_CONFIG_REPLY *cfgp;
1642 	int	    error;
1643 
1644 	req = mpt_get_request(mpt, sleep_ok);
1645 	if (req == NULL) {
1646 		mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1647 		return (ENOMEM);
1648 	}
1649 
1650 	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1651 	params.PageVersion = PageVersion;
1652 	params.PageLength = 0;
1653 	params.PageNumber = PageNumber;
1654 	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1655 	params.PageAddress = PageAddress;
1656 	params.ExtPageType = ExtPageType;
1657 	params.ExtPageLength = 0;
1658 	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1659 				  sleep_ok, timeout_ms);
1660 	if (error != 0) {
1661 		/*
1662 		 * Leave the request. Without resetting the chip, it's
1663 		 * still owned by it and we'll just get into trouble
1664 		 * freeing it now. Mark it as abandoned so that if it
1665 		 * shows up later it can be freed.
1666 		 */
1667 		mpt_prt(mpt, "read_extcfg_header timed out\n");
1668 		return (ETIMEDOUT);
1669 	}
1670 
1671         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1672 	case MPI_IOCSTATUS_SUCCESS:
1673 		cfgp = req->req_vbuf;
1674 		rslt->PageVersion = cfgp->Header.PageVersion;
1675 		rslt->PageNumber = cfgp->Header.PageNumber;
1676 		rslt->PageType = cfgp->Header.PageType;
1677 		rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1678 		rslt->ExtPageType = cfgp->ExtPageType;
1679 		error = 0;
1680 		break;
1681 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1682 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1683 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1684 		    MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1685 		error = EINVAL;
1686 		break;
1687 	default:
1688 		mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1689 			req->IOCStatus);
1690 		error = EIO;
1691 		break;
1692 	}
1693 	mpt_free_request(mpt, req);
1694 	return (error);
1695 }
1696 
1697 int
1698 mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1699 		     CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1700 		     int sleep_ok, int timeout_ms)
1701 {
1702 	request_t    *req;
1703 	cfgparms_t    params;
1704 	int	      error;
1705 
1706 	req = mpt_get_request(mpt, sleep_ok);
1707 	if (req == NULL) {
1708 		mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1709 		return (-1);
1710 	}
1711 
1712 	params.Action = Action;
1713 	params.PageVersion = hdr->PageVersion;
1714 	params.PageLength = 0;
1715 	params.PageNumber = hdr->PageNumber;
1716 	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1717 	params.PageAddress = PageAddress;
1718 	params.ExtPageType = hdr->ExtPageType;
1719 	params.ExtPageLength = hdr->ExtPageLength;
1720 	error = mpt_issue_cfg_req(mpt, req, &params,
1721 				  req->req_pbuf + MPT_RQSL(mpt),
1722 				  len, sleep_ok, timeout_ms);
1723 	if (error != 0) {
1724 		mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1725 		return (-1);
1726 	}
1727 
1728 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1729 		mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1730 			req->IOCStatus);
1731 		mpt_free_request(mpt, req);
1732 		return (-1);
1733 	}
1734 	memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1735 	mpt_free_request(mpt, req);
1736 	return (0);
1737 }
1738 
1739 int
1740 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1741 		    uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1742 		    int sleep_ok, int timeout_ms)
1743 {
1744 	request_t  *req;
1745 	cfgparms_t params;
1746 	MSG_CONFIG *cfgp;
1747 	int	    error;
1748 
1749 	req = mpt_get_request(mpt, sleep_ok);
1750 	if (req == NULL) {
1751 		mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1752 		return (ENOMEM);
1753 	}
1754 
1755 	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1756 	params.PageVersion = 0;
1757 	params.PageLength = 0;
1758 	params.PageNumber = PageNumber;
1759 	params.PageType = PageType;
1760 	params.PageAddress = PageAddress;
1761 	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1762 				  sleep_ok, timeout_ms);
1763 	if (error != 0) {
1764 		/*
1765 		 * Leave the request. Without resetting the chip, it's
1766 		 * still owned by it and we'll just get into trouble
1767 		 * freeing it now. Mark it as abandoned so that if it
1768 		 * shows up later it can be freed.
1769 		 */
1770 		mpt_prt(mpt, "read_cfg_header timed out\n");
1771 		return (ETIMEDOUT);
1772 	}
1773 
1774         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1775 	case MPI_IOCSTATUS_SUCCESS:
1776 		cfgp = req->req_vbuf;
1777 		bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1778 		error = 0;
1779 		break;
1780 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1781 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1782 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1783 		    PageType, PageNumber, PageAddress);
1784 		error = EINVAL;
1785 		break;
1786 	default:
1787 		mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1788 			req->IOCStatus);
1789 		error = EIO;
1790 		break;
1791 	}
1792 	mpt_free_request(mpt, req);
1793 	return (error);
1794 }
1795 
1796 int
1797 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1798 		  CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1799 		  int timeout_ms)
1800 {
1801 	request_t    *req;
1802 	cfgparms_t    params;
1803 	int	      error;
1804 
1805 	req = mpt_get_request(mpt, sleep_ok);
1806 	if (req == NULL) {
1807 		mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1808 		return (-1);
1809 	}
1810 
1811 	params.Action = Action;
1812 	params.PageVersion = hdr->PageVersion;
1813 	params.PageLength = hdr->PageLength;
1814 	params.PageNumber = hdr->PageNumber;
1815 	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1816 	params.PageAddress = PageAddress;
1817 	error = mpt_issue_cfg_req(mpt, req, &params,
1818 				  req->req_pbuf + MPT_RQSL(mpt),
1819 				  len, sleep_ok, timeout_ms);
1820 	if (error != 0) {
1821 		mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1822 		return (-1);
1823 	}
1824 
1825 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1826 		mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1827 			req->IOCStatus);
1828 		mpt_free_request(mpt, req);
1829 		return (-1);
1830 	}
1831 	memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1832 	mpt_free_request(mpt, req);
1833 	return (0);
1834 }
1835 
1836 int
1837 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1838 		   CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1839 		   int timeout_ms)
1840 {
1841 	request_t    *req;
1842 	cfgparms_t    params;
1843 	u_int	      hdr_attr;
1844 	int	      error;
1845 
1846 	hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1847 	if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1848 	    hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1849 		mpt_prt(mpt, "page type 0x%x not changeable\n",
1850 			hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1851 		return (-1);
1852 	}
1853 
1854 #if	0
1855 	/*
1856 	 * We shouldn't mask off other bits here.
1857 	 */
1858 	hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1859 #endif
1860 
1861 	req = mpt_get_request(mpt, sleep_ok);
1862 	if (req == NULL)
1863 		return (-1);
1864 
1865 	memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1866 
1867 	/*
1868 	 * There isn't any point in restoring stripped out attributes
1869 	 * if you then mask them going down to issue the request.
1870 	 */
1871 
1872 	params.Action = Action;
1873 	params.PageVersion = hdr->PageVersion;
1874 	params.PageLength = hdr->PageLength;
1875 	params.PageNumber = hdr->PageNumber;
1876 	params.PageAddress = PageAddress;
1877 #if	0
1878 	/* Restore stripped out attributes */
1879 	hdr->PageType |= hdr_attr;
1880 	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1881 #else
1882 	params.PageType = hdr->PageType;
1883 #endif
1884 	error = mpt_issue_cfg_req(mpt, req, &params,
1885 				  req->req_pbuf + MPT_RQSL(mpt),
1886 				  len, sleep_ok, timeout_ms);
1887 	if (error != 0) {
1888 		mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1889 		return (-1);
1890 	}
1891 
1892         if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1893 		mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1894 			req->IOCStatus);
1895 		mpt_free_request(mpt, req);
1896 		return (-1);
1897 	}
1898 	mpt_free_request(mpt, req);
1899 	return (0);
1900 }
1901 
1902 /*
1903  * Read IOC configuration information
1904  */
1905 static int
1906 mpt_read_config_info_ioc(struct mpt_softc *mpt)
1907 {
1908 	CONFIG_PAGE_HEADER hdr;
1909 	struct mpt_raid_volume *mpt_raid;
1910 	int rv;
1911 	int i;
1912 	size_t len;
1913 
1914 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1915 		2, 0, &hdr, FALSE, 5000);
1916 	/*
1917 	 * If it's an invalid page, so what? Not a supported function....
1918 	 */
1919 	if (rv == EINVAL) {
1920 		return (0);
1921 	}
1922 	if (rv) {
1923 		return (rv);
1924 	}
1925 
1926 	mpt_lprt(mpt, MPT_PRT_DEBUG,
1927 	    "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1928 	    hdr.PageVersion, hdr.PageLength << 2,
1929 	    hdr.PageNumber, hdr.PageType);
1930 
1931 	len = hdr.PageLength * sizeof(uint32_t);
1932 	mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1933 	if (mpt->ioc_page2 == NULL) {
1934 		mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1935 		mpt_raid_free_mem(mpt);
1936 		return (ENOMEM);
1937 	}
1938 	memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1939 	rv = mpt_read_cur_cfg_page(mpt, 0,
1940 	    &mpt->ioc_page2->Header, len, FALSE, 5000);
1941 	if (rv) {
1942 		mpt_prt(mpt, "failed to read IOC Page 2\n");
1943 		mpt_raid_free_mem(mpt);
1944 		return (EIO);
1945 	}
1946 	mpt2host_config_page_ioc2(mpt->ioc_page2);
1947 
1948 	if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1949 		uint32_t mask;
1950 
1951 		mpt_prt(mpt, "Capabilities: (");
1952 		for (mask = 1; mask != 0; mask <<= 1) {
1953 			if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1954 				continue;
1955 			}
1956 			switch (mask) {
1957 			case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1958 				mpt_prtc(mpt, " RAID-0");
1959 				break;
1960 			case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1961 				mpt_prtc(mpt, " RAID-1E");
1962 				break;
1963 			case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1964 				mpt_prtc(mpt, " RAID-1");
1965 				break;
1966 			case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1967 				mpt_prtc(mpt, " SES");
1968 				break;
1969 			case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1970 				mpt_prtc(mpt, " SAFTE");
1971 				break;
1972 			case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1973 				mpt_prtc(mpt, " Multi-Channel-Arrays");
1974 			default:
1975 				break;
1976 			}
1977 		}
1978 		mpt_prtc(mpt, " )\n");
1979 		if ((mpt->ioc_page2->CapabilitiesFlags
1980 		   & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1981 		    | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1982 		    | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1983 			mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1984 				mpt->ioc_page2->NumActiveVolumes,
1985 				mpt->ioc_page2->NumActiveVolumes != 1
1986 			      ? "s " : " ",
1987 				mpt->ioc_page2->MaxVolumes);
1988 			mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1989 				mpt->ioc_page2->NumActivePhysDisks,
1990 				mpt->ioc_page2->NumActivePhysDisks != 1
1991 			      ? "s " : " ",
1992 				mpt->ioc_page2->MaxPhysDisks);
1993 		}
1994 	}
1995 
1996 	len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1997 	mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1998 	if (mpt->raid_volumes == NULL) {
1999 		mpt_prt(mpt, "Could not allocate RAID volume data\n");
2000 		mpt_raid_free_mem(mpt);
2001 		return (ENOMEM);
2002 	}
2003 
2004 	/*
2005 	 * Copy critical data out of ioc_page2 so that we can
2006 	 * safely refresh the page without windows of unreliable
2007 	 * data.
2008 	 */
2009 	mpt->raid_max_volumes =  mpt->ioc_page2->MaxVolumes;
2010 
2011 	len = sizeof(*mpt->raid_volumes->config_page) +
2012 	    (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
2013 	for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
2014 		mpt_raid = &mpt->raid_volumes[i];
2015 		mpt_raid->config_page =
2016 		    malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2017 		if (mpt_raid->config_page == NULL) {
2018 			mpt_prt(mpt, "Could not allocate RAID page data\n");
2019 			mpt_raid_free_mem(mpt);
2020 			return (ENOMEM);
2021 		}
2022 	}
2023 	mpt->raid_page0_len = len;
2024 
2025 	len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
2026 	mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2027 	if (mpt->raid_disks == NULL) {
2028 		mpt_prt(mpt, "Could not allocate RAID disk data\n");
2029 		mpt_raid_free_mem(mpt);
2030 		return (ENOMEM);
2031 	}
2032 	mpt->raid_max_disks =  mpt->ioc_page2->MaxPhysDisks;
2033 
2034 	/*
2035 	 * Load page 3.
2036 	 */
2037 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2038 	    3, 0, &hdr, FALSE, 5000);
2039 	if (rv) {
2040 		mpt_raid_free_mem(mpt);
2041 		return (EIO);
2042 	}
2043 
2044 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2045 	    hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2046 
2047 	len = hdr.PageLength * sizeof(uint32_t);
2048 	mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2049 	if (mpt->ioc_page3 == NULL) {
2050 		mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2051 		mpt_raid_free_mem(mpt);
2052 		return (ENOMEM);
2053 	}
2054 	memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2055 	rv = mpt_read_cur_cfg_page(mpt, 0,
2056 	    &mpt->ioc_page3->Header, len, FALSE, 5000);
2057 	if (rv) {
2058 		mpt_raid_free_mem(mpt);
2059 		return (EIO);
2060 	}
2061 	mpt2host_config_page_ioc3(mpt->ioc_page3);
2062 	mpt_raid_wakeup(mpt);
2063 	return (0);
2064 }
2065 
2066 /*
2067  * Enable IOC port
2068  */
2069 static int
2070 mpt_send_port_enable(struct mpt_softc *mpt, int port)
2071 {
2072 	request_t	*req;
2073 	MSG_PORT_ENABLE *enable_req;
2074 	int		 error;
2075 
2076 	req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2077 	if (req == NULL)
2078 		return (-1);
2079 
2080 	enable_req = req->req_vbuf;
2081 	memset(enable_req, 0,  MPT_RQSL(mpt));
2082 
2083 	enable_req->Function   = MPI_FUNCTION_PORT_ENABLE;
2084 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2085 	enable_req->PortNumber = port;
2086 
2087 	mpt_check_doorbell(mpt);
2088 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2089 
2090 	mpt_send_cmd(mpt, req);
2091 	error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2092 	    FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000);
2093 	if (error != 0) {
2094 		mpt_prt(mpt, "port %d enable timed out\n", port);
2095 		return (-1);
2096 	}
2097 	mpt_free_request(mpt, req);
2098 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2099 	return (0);
2100 }
2101 
2102 /*
2103  * Enable/Disable asynchronous event reporting.
2104  */
2105 static int
2106 mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2107 {
2108 	request_t *req;
2109 	MSG_EVENT_NOTIFY *enable_req;
2110 
2111 	req = mpt_get_request(mpt, FALSE);
2112 	if (req == NULL) {
2113 		return (ENOMEM);
2114 	}
2115 	enable_req = req->req_vbuf;
2116 	memset(enable_req, 0, sizeof *enable_req);
2117 
2118 	enable_req->Function   = MPI_FUNCTION_EVENT_NOTIFICATION;
2119 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2120 	enable_req->Switch     = onoff;
2121 
2122 	mpt_check_doorbell(mpt);
2123 	mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2124 	    onoff ? "en" : "dis");
2125 	/*
2126 	 * Send the command off, but don't wait for it.
2127 	 */
2128 	mpt_send_cmd(mpt, req);
2129 	return (0);
2130 }
2131 
2132 /*
2133  * Un-mask the interrupts on the chip.
2134  */
2135 void
2136 mpt_enable_ints(struct mpt_softc *mpt)
2137 {
2138 
2139 	/* Unmask every thing except door bell int */
2140 	mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2141 }
2142 
2143 /*
2144  * Mask the interrupts on the chip.
2145  */
2146 void
2147 mpt_disable_ints(struct mpt_softc *mpt)
2148 {
2149 
2150 	/* Mask all interrupts */
2151 	mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2152 	    MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2153 }
2154 
2155 static void
2156 mpt_sysctl_attach(struct mpt_softc *mpt)
2157 {
2158 #if __FreeBSD_version >= 500000
2159 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
2160 	struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
2161 
2162 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2163 		       "debug", CTLFLAG_RW, &mpt->verbose, 0,
2164 		       "Debugging/Verbose level");
2165 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2166 		       "role", CTLFLAG_RD, &mpt->role, 0,
2167 		       "HBA role");
2168 #ifdef	MPT_TEST_MULTIPATH
2169 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2170 		       "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2171 		       "Next Target to Fail");
2172 #endif
2173 #endif
2174 }
2175 
2176 int
2177 mpt_attach(struct mpt_softc *mpt)
2178 {
2179 	struct mpt_personality *pers;
2180 	int i;
2181 	int error;
2182 
2183 	mpt_core_attach(mpt);
2184 	mpt_core_enable(mpt);
2185 
2186 	TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2187 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2188 		pers = mpt_personalities[i];
2189 		if (pers == NULL) {
2190 			continue;
2191 		}
2192 		if (pers->probe(mpt) == 0) {
2193 			error = pers->attach(mpt);
2194 			if (error != 0) {
2195 				mpt_detach(mpt);
2196 				return (error);
2197 			}
2198 			mpt->mpt_pers_mask |= (0x1 << pers->id);
2199 			pers->use_count++;
2200 		}
2201 	}
2202 
2203 	/*
2204 	 * Now that we've attached everything, do the enable function
2205 	 * for all of the personalities. This allows the personalities
2206 	 * to do setups that are appropriate for them prior to enabling
2207 	 * any ports.
2208 	 */
2209 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2210 		pers = mpt_personalities[i];
2211 		if (pers != NULL  && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2212 			error = pers->enable(mpt);
2213 			if (error != 0) {
2214 				mpt_prt(mpt, "personality %s attached but would"
2215 				    " not enable (%d)\n", pers->name, error);
2216 				mpt_detach(mpt);
2217 				return (error);
2218 			}
2219 		}
2220 	}
2221 	return (0);
2222 }
2223 
2224 int
2225 mpt_shutdown(struct mpt_softc *mpt)
2226 {
2227 	struct mpt_personality *pers;
2228 
2229 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2230 		pers->shutdown(mpt);
2231 	}
2232 	return (0);
2233 }
2234 
2235 int
2236 mpt_detach(struct mpt_softc *mpt)
2237 {
2238 	struct mpt_personality *pers;
2239 
2240 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2241 		pers->detach(mpt);
2242 		mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2243 		pers->use_count--;
2244 	}
2245 	TAILQ_REMOVE(&mpt_tailq, mpt, links);
2246 	return (0);
2247 }
2248 
2249 static int
2250 mpt_core_load(struct mpt_personality *pers)
2251 {
2252 	int i;
2253 
2254 	/*
2255 	 * Setup core handlers and insert the default handler
2256 	 * into all "empty slots".
2257 	 */
2258 	for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2259 		mpt_reply_handlers[i] = mpt_default_reply_handler;
2260 	}
2261 
2262 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2263 	    mpt_event_reply_handler;
2264 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2265 	    mpt_config_reply_handler;
2266 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2267 	    mpt_handshake_reply_handler;
2268 	return (0);
2269 }
2270 
2271 /*
2272  * Initialize per-instance driver data and perform
2273  * initial controller configuration.
2274  */
2275 static int
2276 mpt_core_attach(struct mpt_softc *mpt)
2277 {
2278         int val, error;
2279 
2280 	LIST_INIT(&mpt->ack_frames);
2281 	/* Put all request buffers on the free list */
2282 	TAILQ_INIT(&mpt->request_pending_list);
2283 	TAILQ_INIT(&mpt->request_free_list);
2284 	TAILQ_INIT(&mpt->request_timeout_list);
2285 	for (val = 0; val < MPT_MAX_LUNS; val++) {
2286 		STAILQ_INIT(&mpt->trt[val].atios);
2287 		STAILQ_INIT(&mpt->trt[val].inots);
2288 	}
2289 	STAILQ_INIT(&mpt->trt_wildcard.atios);
2290 	STAILQ_INIT(&mpt->trt_wildcard.inots);
2291 #ifdef	MPT_TEST_MULTIPATH
2292 	mpt->failure_id = -1;
2293 #endif
2294 	mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2295 	mpt_sysctl_attach(mpt);
2296 	mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2297 	    mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2298 
2299 	MPT_LOCK(mpt);
2300 	error = mpt_configure_ioc(mpt, 0, 0);
2301 	MPT_UNLOCK(mpt);
2302 
2303 	return (error);
2304 }
2305 
2306 static int
2307 mpt_core_enable(struct mpt_softc *mpt)
2308 {
2309 
2310 	/*
2311 	 * We enter with the IOC enabled, but async events
2312 	 * not enabled, ports not enabled and interrupts
2313 	 * not enabled.
2314 	 */
2315 	MPT_LOCK(mpt);
2316 
2317 	/*
2318 	 * Enable asynchronous event reporting- all personalities
2319 	 * have attached so that they should be able to now field
2320 	 * async events.
2321 	 */
2322 	mpt_send_event_request(mpt, 1);
2323 
2324 	/*
2325 	 * Catch any pending interrupts
2326 	 *
2327 	 * This seems to be crucial- otherwise
2328 	 * the portenable below times out.
2329 	 */
2330 	mpt_intr(mpt);
2331 
2332 	/*
2333 	 * Enable Interrupts
2334 	 */
2335 	mpt_enable_ints(mpt);
2336 
2337 	/*
2338 	 * Catch any pending interrupts
2339 	 *
2340 	 * This seems to be crucial- otherwise
2341 	 * the portenable below times out.
2342 	 */
2343 	mpt_intr(mpt);
2344 
2345 	/*
2346 	 * Enable the port.
2347 	 */
2348 	if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2349 		mpt_prt(mpt, "failed to enable port 0\n");
2350 		MPT_UNLOCK(mpt);
2351 		return (ENXIO);
2352 	}
2353 	MPT_UNLOCK(mpt);
2354 	return (0);
2355 }
2356 
2357 static void
2358 mpt_core_shutdown(struct mpt_softc *mpt)
2359 {
2360 
2361 	mpt_disable_ints(mpt);
2362 }
2363 
2364 static void
2365 mpt_core_detach(struct mpt_softc *mpt)
2366 {
2367 	int val;
2368 
2369 	/*
2370 	 * XXX: FREE MEMORY
2371 	 */
2372 	mpt_disable_ints(mpt);
2373 
2374 	/* Make sure no request has pending timeouts. */
2375 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2376 		request_t *req = &mpt->request_pool[val];
2377 		mpt_callout_drain(mpt, &req->callout);
2378 	}
2379 
2380 	mpt_dma_buf_free(mpt);
2381 }
2382 
2383 static int
2384 mpt_core_unload(struct mpt_personality *pers)
2385 {
2386 
2387 	/* Unload is always successful. */
2388 	return (0);
2389 }
2390 
2391 #define FW_UPLOAD_REQ_SIZE				\
2392 	(sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION)	\
2393        + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2394 
2395 static int
2396 mpt_upload_fw(struct mpt_softc *mpt)
2397 {
2398 	uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2399 	MSG_FW_UPLOAD_REPLY fw_reply;
2400 	MSG_FW_UPLOAD *fw_req;
2401 	FW_UPLOAD_TCSGE *tsge;
2402 	SGE_SIMPLE32 *sge;
2403 	uint32_t flags;
2404 	int error;
2405 
2406 	memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2407 	fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2408 	fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2409 	fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2410 	fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2411 	tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2412 	tsge->DetailsLength = 12;
2413 	tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2414 	tsge->ImageSize = htole32(mpt->fw_image_size);
2415 	sge = (SGE_SIMPLE32 *)(tsge + 1);
2416 	flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2417 	      | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2418 	      | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2419 	flags <<= MPI_SGE_FLAGS_SHIFT;
2420 	sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2421 	sge->Address = htole32(mpt->fw_phys);
2422 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2423 	error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2424 	if (error)
2425 		return(error);
2426 	error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2427 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2428 	return (error);
2429 }
2430 
2431 static void
2432 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2433 	       uint32_t *data, bus_size_t len)
2434 {
2435 	uint32_t *data_end;
2436 
2437 	data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2438 	if (mpt->is_sas) {
2439 		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2440 	}
2441 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2442 	while (data != data_end) {
2443 		mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2444 		data++;
2445 	}
2446 	if (mpt->is_sas) {
2447 		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2448 	}
2449 }
2450 
2451 static int
2452 mpt_download_fw(struct mpt_softc *mpt)
2453 {
2454 	MpiFwHeader_t *fw_hdr;
2455 	int error;
2456 	uint32_t ext_offset;
2457 	uint32_t data;
2458 
2459 	if (mpt->pci_pio_reg == NULL) {
2460 		mpt_prt(mpt, "No PIO resource!\n");
2461 		return (ENXIO);
2462 	}
2463 
2464 	mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2465 		mpt->fw_image_size);
2466 
2467 	error = mpt_enable_diag_mode(mpt);
2468 	if (error != 0) {
2469 		mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2470 		return (EIO);
2471 	}
2472 
2473 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2474 		  MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2475 
2476 	fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2477 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2478 	mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2479 		       fw_hdr->ImageSize);
2480 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2481 
2482 	ext_offset = fw_hdr->NextImageHeaderOffset;
2483 	while (ext_offset != 0) {
2484 		MpiExtImageHeader_t *ext;
2485 
2486 		ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2487 		ext_offset = ext->NextImageHeaderOffset;
2488 		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2489 		    BUS_DMASYNC_PREWRITE);
2490 		mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2491 			       ext->ImageSize);
2492 		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2493 		    BUS_DMASYNC_POSTWRITE);
2494 	}
2495 
2496 	if (mpt->is_sas) {
2497 		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2498 	}
2499 	/* Setup the address to jump to on reset. */
2500 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2501 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2502 
2503 	/*
2504 	 * The controller sets the "flash bad" status after attempting
2505 	 * to auto-boot from flash.  Clear the status so that the controller
2506 	 * will continue the boot process with our newly installed firmware.
2507 	 */
2508 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2509 	data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2510 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2511 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2512 
2513 	if (mpt->is_sas) {
2514 		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2515 	}
2516 
2517 	/*
2518 	 * Re-enable the processor and clear the boot halt flag.
2519 	 */
2520 	data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2521 	data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2522 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2523 
2524 	mpt_disable_diag_mode(mpt);
2525 	return (0);
2526 }
2527 
2528 static int
2529 mpt_dma_buf_alloc(struct mpt_softc *mpt)
2530 {
2531 	struct mpt_map_info mi;
2532 	uint8_t *vptr;
2533 	uint32_t pptr, end;
2534 	int i, error;
2535 
2536 	/* Create a child tag for data buffers */
2537 	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2538 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2539 	    NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2540 	    mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2541 	    &mpt->buffer_dmat) != 0) {
2542 		mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2543 		return (1);
2544 	}
2545 
2546 	/* Create a child tag for request buffers */
2547 	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2548 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2549 	    NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2550 	    &mpt->request_dmat) != 0) {
2551 		mpt_prt(mpt, "cannot create a dma tag for requests\n");
2552 		return (1);
2553 	}
2554 
2555 	/* Allocate some DMA accessible memory for requests */
2556 	if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2557 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2558 		mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2559 		    MPT_REQ_MEM_SIZE(mpt));
2560 		return (1);
2561 	}
2562 
2563 	mi.mpt = mpt;
2564 	mi.error = 0;
2565 
2566 	/* Load and lock it into "bus space" */
2567 	bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2568 	    MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2569 
2570 	if (mi.error) {
2571 		mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2572 		    mi.error);
2573 		return (1);
2574 	}
2575 	mpt->request_phys = mi.phys;
2576 
2577 	/*
2578 	 * Now create per-request dma maps
2579 	 */
2580 	i = 0;
2581 	pptr =  mpt->request_phys;
2582 	vptr =  mpt->request;
2583 	end = pptr + MPT_REQ_MEM_SIZE(mpt);
2584 	while(pptr < end) {
2585 		request_t *req = &mpt->request_pool[i];
2586 		req->index = i++;
2587 
2588 		/* Store location of Request Data */
2589 		req->req_pbuf = pptr;
2590 		req->req_vbuf = vptr;
2591 
2592 		pptr += MPT_REQUEST_AREA;
2593 		vptr += MPT_REQUEST_AREA;
2594 
2595 		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2596 		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2597 
2598 		error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2599 		if (error) {
2600 			mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2601 			    error);
2602 			return (1);
2603 		}
2604 	}
2605 
2606 	return (0);
2607 }
2608 
2609 static void
2610 mpt_dma_buf_free(struct mpt_softc *mpt)
2611 {
2612 	int i;
2613 
2614 	if (mpt->request_dmat == 0) {
2615 		mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2616 		return;
2617 	}
2618 	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2619 		bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2620 	}
2621 	bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2622 	bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2623 	bus_dma_tag_destroy(mpt->request_dmat);
2624 	mpt->request_dmat = 0;
2625 	bus_dma_tag_destroy(mpt->buffer_dmat);
2626 }
2627 
2628 /*
2629  * Allocate/Initialize data structures for the controller.  Called
2630  * once at instance startup.
2631  */
2632 static int
2633 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2634 {
2635 	PTR_MSG_PORT_FACTS_REPLY pfp;
2636 	int error, port, val;
2637 	size_t len;
2638 
2639 	if (tn == MPT_MAX_TRYS) {
2640 		return (-1);
2641 	}
2642 
2643 	/*
2644 	 * No need to reset if the IOC is already in the READY state.
2645 	 *
2646 	 * Force reset if initialization failed previously.
2647 	 * Note that a hard_reset of the second channel of a '929
2648 	 * will stop operation of the first channel.  Hopefully, if the
2649 	 * first channel is ok, the second will not require a hard
2650 	 * reset.
2651 	 */
2652 	if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2653 		if (mpt_reset(mpt, FALSE) != MPT_OK) {
2654 			return (mpt_configure_ioc(mpt, tn++, 1));
2655 		}
2656 		needreset = 0;
2657 	}
2658 
2659 	if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2660 		mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2661 		return (mpt_configure_ioc(mpt, tn++, 1));
2662 	}
2663 	mpt2host_iocfacts_reply(&mpt->ioc_facts);
2664 
2665 	mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2666 	    mpt->ioc_facts.MsgVersion >> 8,
2667 	    mpt->ioc_facts.MsgVersion & 0xFF,
2668 	    mpt->ioc_facts.HeaderVersion >> 8,
2669 	    mpt->ioc_facts.HeaderVersion & 0xFF);
2670 
2671 	/*
2672 	 * Now that we know request frame size, we can calculate
2673 	 * the actual (reasonable) segment limit for read/write I/O.
2674 	 *
2675 	 * This limit is constrained by:
2676 	 *
2677 	 *  + The size of each area we allocate per command (and how
2678 	 *    many chain segments we can fit into it).
2679 	 *  + The total number of areas we've set up.
2680 	 *  + The actual chain depth the card will allow.
2681 	 *
2682 	 * The first area's segment count is limited by the I/O request
2683 	 * at the head of it. We cannot allocate realistically more
2684 	 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2685 	 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2686 	 *
2687 	 */
2688 	/* total number of request areas we (can) allocate */
2689 	mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2690 
2691 	/* converted to the number of chain areas possible */
2692 	mpt->max_seg_cnt *= MPT_NRFM(mpt);
2693 
2694 	/* limited by the number of chain areas the card will support */
2695 	if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2696 		mpt_lprt(mpt, MPT_PRT_INFO,
2697 		    "chain depth limited to %u (from %u)\n",
2698 		    mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2699 		mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2700 	}
2701 
2702 	/* converted to the number of simple sges in chain segments. */
2703 	mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2704 
2705 	/*
2706 	 * Use this as the basis for reporting the maximum I/O size to CAM.
2707 	 */
2708 	mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1);
2709 
2710 	error = mpt_dma_buf_alloc(mpt);
2711 	if (error != 0) {
2712 		mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2713 		return (EIO);
2714 	}
2715 
2716 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2717 		request_t *req = &mpt->request_pool[val];
2718 		req->state = REQ_STATE_ALLOCATED;
2719 		mpt_callout_init(mpt, &req->callout);
2720 		mpt_free_request(mpt, req);
2721 	}
2722 
2723 	mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2724 		 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2725 		 mpt->max_cam_seg_cnt);
2726 
2727 	mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2728 	    mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2729 	mpt_lprt(mpt, MPT_PRT_INFO,
2730 	    "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2731 	    "Request Frame Size %u bytes Max Chain Depth %u\n",
2732 	    mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2733 	    mpt->ioc_facts.RequestFrameSize << 2,
2734 	    mpt->ioc_facts.MaxChainDepth);
2735 	mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2736 	    "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2737 	    mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2738 
2739 	len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2740 	mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2741 	if (mpt->port_facts == NULL) {
2742 		mpt_prt(mpt, "unable to allocate memory for port facts\n");
2743 		return (ENOMEM);
2744 	}
2745 
2746 
2747 	if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2748 	    (mpt->fw_uploaded == 0)) {
2749 		struct mpt_map_info mi;
2750 
2751 		/*
2752 		 * In some configurations, the IOC's firmware is
2753 		 * stored in a shared piece of system NVRAM that
2754 		 * is only accessible via the BIOS.  In this
2755 		 * case, the firmware keeps a copy of firmware in
2756 		 * RAM until the OS driver retrieves it.  Once
2757 		 * retrieved, we are responsible for re-downloading
2758 		 * the firmware after any hard-reset.
2759 		 */
2760 		mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2761 		error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2762 		    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2763 		    mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2764 		    &mpt->fw_dmat);
2765 		if (error != 0) {
2766 			mpt_prt(mpt, "cannot create firmware dma tag\n");
2767 			return (ENOMEM);
2768 		}
2769 		error = bus_dmamem_alloc(mpt->fw_dmat,
2770 		    (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2771 		    BUS_DMA_COHERENT, &mpt->fw_dmap);
2772 		if (error != 0) {
2773 			mpt_prt(mpt, "cannot allocate firmware memory\n");
2774 			bus_dma_tag_destroy(mpt->fw_dmat);
2775 			return (ENOMEM);
2776 		}
2777 		mi.mpt = mpt;
2778 		mi.error = 0;
2779 		bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2780 		    mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2781 		mpt->fw_phys = mi.phys;
2782 
2783 		error = mpt_upload_fw(mpt);
2784 		if (error != 0) {
2785 			mpt_prt(mpt, "firmware upload failed.\n");
2786 			bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2787 			bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2788 			    mpt->fw_dmap);
2789 			bus_dma_tag_destroy(mpt->fw_dmat);
2790 			mpt->fw_image = NULL;
2791 			return (EIO);
2792 		}
2793 		mpt->fw_uploaded = 1;
2794 	}
2795 
2796 	for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2797 		pfp = &mpt->port_facts[port];
2798 		error = mpt_get_portfacts(mpt, 0, pfp);
2799 		if (error != MPT_OK) {
2800 			mpt_prt(mpt,
2801 			    "mpt_get_portfacts on port %d failed\n", port);
2802 			free(mpt->port_facts, M_DEVBUF);
2803 			mpt->port_facts = NULL;
2804 			return (mpt_configure_ioc(mpt, tn++, 1));
2805 		}
2806 		mpt2host_portfacts_reply(pfp);
2807 
2808 		if (port > 0) {
2809 			error = MPT_PRT_INFO;
2810 		} else {
2811 			error = MPT_PRT_DEBUG;
2812 		}
2813 		mpt_lprt(mpt, error,
2814 		    "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2815 		    port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2816 		    pfp->MaxDevices);
2817 
2818 	}
2819 
2820 	/*
2821 	 * XXX: Not yet supporting more than port 0
2822 	 */
2823 	pfp = &mpt->port_facts[0];
2824 	if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2825 		mpt->is_fc = 1;
2826 		mpt->is_sas = 0;
2827 		mpt->is_spi = 0;
2828 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2829 		mpt->is_fc = 0;
2830 		mpt->is_sas = 1;
2831 		mpt->is_spi = 0;
2832 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2833 		mpt->is_fc = 0;
2834 		mpt->is_sas = 0;
2835 		mpt->is_spi = 1;
2836 		if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2837 			mpt->mpt_ini_id = pfp->PortSCSIID;
2838 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2839 		mpt_prt(mpt, "iSCSI not supported yet\n");
2840 		return (ENXIO);
2841 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2842 		mpt_prt(mpt, "Inactive Port\n");
2843 		return (ENXIO);
2844 	} else {
2845 		mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2846 		return (ENXIO);
2847 	}
2848 
2849 	/*
2850 	 * Set our role with what this port supports.
2851 	 *
2852 	 * Note this might be changed later in different modules
2853 	 * if this is different from what is wanted.
2854 	 */
2855 	mpt->role = MPT_ROLE_NONE;
2856 	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2857 		mpt->role |= MPT_ROLE_INITIATOR;
2858 	}
2859 	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2860 		mpt->role |= MPT_ROLE_TARGET;
2861 	}
2862 
2863 	/*
2864 	 * Enable the IOC
2865 	 */
2866 	if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2867 		mpt_prt(mpt, "unable to initialize IOC\n");
2868 		return (ENXIO);
2869 	}
2870 
2871 	/*
2872 	 * Read IOC configuration information.
2873 	 *
2874 	 * We need this to determine whether or not we have certain
2875 	 * settings for Integrated Mirroring (e.g.).
2876 	 */
2877 	mpt_read_config_info_ioc(mpt);
2878 
2879 	return (0);
2880 }
2881 
2882 static int
2883 mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2884 {
2885 	uint32_t pptr;
2886 	int val;
2887 
2888 	if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2889 		mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2890 		return (EIO);
2891 	}
2892 
2893 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2894 
2895 	if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2896 		mpt_prt(mpt, "IOC failed to go to run state\n");
2897 		return (ENXIO);
2898 	}
2899 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2900 
2901 	/*
2902 	 * Give it reply buffers
2903 	 *
2904 	 * Do *not* exceed global credits.
2905 	 */
2906 	for (val = 0, pptr = mpt->reply_phys;
2907 	    (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2908 	     pptr += MPT_REPLY_SIZE) {
2909 		mpt_free_reply(mpt, pptr);
2910 		if (++val == mpt->ioc_facts.GlobalCredits - 1)
2911 			break;
2912 	}
2913 
2914 
2915 	/*
2916 	 * Enable the port if asked. This is only done if we're resetting
2917 	 * the IOC after initial startup.
2918 	 */
2919 	if (portenable) {
2920 		/*
2921 		 * Enable asynchronous event reporting
2922 		 */
2923 		mpt_send_event_request(mpt, 1);
2924 
2925 		if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2926 			mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2927 			return (ENXIO);
2928 		}
2929 	}
2930 	return (MPT_OK);
2931 }
2932 
2933 /*
2934  * Endian Conversion Functions- only used on Big Endian machines
2935  */
2936 #if	_BYTE_ORDER == _BIG_ENDIAN
2937 void
2938 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2939 {
2940 
2941 	MPT_2_HOST32(sge, FlagsLength);
2942 	MPT_2_HOST32(sge, u.Address64.Low);
2943 	MPT_2_HOST32(sge, u.Address64.High);
2944 }
2945 
2946 void
2947 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2948 {
2949 
2950 	MPT_2_HOST16(rp, MsgVersion);
2951 	MPT_2_HOST16(rp, HeaderVersion);
2952 	MPT_2_HOST32(rp, MsgContext);
2953 	MPT_2_HOST16(rp, IOCExceptions);
2954 	MPT_2_HOST16(rp, IOCStatus);
2955 	MPT_2_HOST32(rp, IOCLogInfo);
2956 	MPT_2_HOST16(rp, ReplyQueueDepth);
2957 	MPT_2_HOST16(rp, RequestFrameSize);
2958 	MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2959 	MPT_2_HOST16(rp, ProductID);
2960 	MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2961 	MPT_2_HOST16(rp, GlobalCredits);
2962 	MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2963 	MPT_2_HOST16(rp, CurReplyFrameSize);
2964 	MPT_2_HOST32(rp, FWImageSize);
2965 	MPT_2_HOST32(rp, IOCCapabilities);
2966 	MPT_2_HOST32(rp, FWVersion.Word);
2967 	MPT_2_HOST16(rp, HighPriorityQueueDepth);
2968 	MPT_2_HOST16(rp, Reserved2);
2969 	mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2970 	MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2971 }
2972 
2973 void
2974 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2975 {
2976 
2977 	MPT_2_HOST16(pfp, Reserved);
2978 	MPT_2_HOST16(pfp, Reserved1);
2979 	MPT_2_HOST32(pfp, MsgContext);
2980 	MPT_2_HOST16(pfp, Reserved2);
2981 	MPT_2_HOST16(pfp, IOCStatus);
2982 	MPT_2_HOST32(pfp, IOCLogInfo);
2983 	MPT_2_HOST16(pfp, MaxDevices);
2984 	MPT_2_HOST16(pfp, PortSCSIID);
2985 	MPT_2_HOST16(pfp, ProtocolFlags);
2986 	MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2987 	MPT_2_HOST16(pfp, MaxPersistentIDs);
2988 	MPT_2_HOST16(pfp, MaxLanBuckets);
2989 	MPT_2_HOST16(pfp, Reserved4);
2990 	MPT_2_HOST32(pfp, Reserved5);
2991 }
2992 
2993 void
2994 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2995 {
2996 	int i;
2997 
2998 	MPT_2_HOST32(ioc2, CapabilitiesFlags);
2999 	for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
3000 		MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
3001 	}
3002 }
3003 
3004 void
3005 mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
3006 {
3007 
3008 	MPT_2_HOST16(ioc3, Reserved2);
3009 }
3010 
3011 void
3012 mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
3013 {
3014 
3015 	MPT_2_HOST32(sp0, Capabilities);
3016 	MPT_2_HOST32(sp0, PhysicalInterface);
3017 }
3018 
3019 void
3020 mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3021 {
3022 
3023 	MPT_2_HOST32(sp1, Configuration);
3024 	MPT_2_HOST32(sp1, OnBusTimerValue);
3025 	MPT_2_HOST16(sp1, IDConfig);
3026 }
3027 
3028 void
3029 host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3030 {
3031 
3032 	HOST_2_MPT32(sp1, Configuration);
3033 	HOST_2_MPT32(sp1, OnBusTimerValue);
3034 	HOST_2_MPT16(sp1, IDConfig);
3035 }
3036 
3037 void
3038 mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3039 {
3040 	int i;
3041 
3042 	MPT_2_HOST32(sp2, PortFlags);
3043 	MPT_2_HOST32(sp2, PortSettings);
3044 	for (i = 0; i < sizeof(sp2->DeviceSettings) /
3045 	    sizeof(*sp2->DeviceSettings); i++) {
3046 		MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3047 	}
3048 }
3049 
3050 void
3051 mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3052 {
3053 
3054 	MPT_2_HOST32(sd0, NegotiatedParameters);
3055 	MPT_2_HOST32(sd0, Information);
3056 }
3057 
3058 void
3059 mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3060 {
3061 
3062 	MPT_2_HOST32(sd1, RequestedParameters);
3063 	MPT_2_HOST32(sd1, Reserved);
3064 	MPT_2_HOST32(sd1, Configuration);
3065 }
3066 
3067 void
3068 host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3069 {
3070 
3071 	HOST_2_MPT32(sd1, RequestedParameters);
3072 	HOST_2_MPT32(sd1, Reserved);
3073 	HOST_2_MPT32(sd1, Configuration);
3074 }
3075 
3076 void
3077 mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3078 {
3079 
3080 	MPT_2_HOST32(fp0, Flags);
3081 	MPT_2_HOST32(fp0, PortIdentifier);
3082 	MPT_2_HOST32(fp0, WWNN.Low);
3083 	MPT_2_HOST32(fp0, WWNN.High);
3084 	MPT_2_HOST32(fp0, WWPN.Low);
3085 	MPT_2_HOST32(fp0, WWPN.High);
3086 	MPT_2_HOST32(fp0, SupportedServiceClass);
3087 	MPT_2_HOST32(fp0, SupportedSpeeds);
3088 	MPT_2_HOST32(fp0, CurrentSpeed);
3089 	MPT_2_HOST32(fp0, MaxFrameSize);
3090 	MPT_2_HOST32(fp0, FabricWWNN.Low);
3091 	MPT_2_HOST32(fp0, FabricWWNN.High);
3092 	MPT_2_HOST32(fp0, FabricWWPN.Low);
3093 	MPT_2_HOST32(fp0, FabricWWPN.High);
3094 	MPT_2_HOST32(fp0, DiscoveredPortsCount);
3095 	MPT_2_HOST32(fp0, MaxInitiators);
3096 }
3097 
3098 void
3099 mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3100 {
3101 
3102 	MPT_2_HOST32(fp1, Flags);
3103 	MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3104 	MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3105 	MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3106 	MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3107 }
3108 
3109 void
3110 host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3111 {
3112 
3113 	HOST_2_MPT32(fp1, Flags);
3114 	HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3115 	HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3116 	HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3117 	HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3118 }
3119 
3120 void
3121 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3122 {
3123 	int i;
3124 
3125 	MPT_2_HOST16(volp, VolumeStatus.Reserved);
3126 	MPT_2_HOST16(volp, VolumeSettings.Settings);
3127 	MPT_2_HOST32(volp, MaxLBA);
3128 	MPT_2_HOST32(volp, MaxLBAHigh);
3129 	MPT_2_HOST32(volp, StripeSize);
3130 	MPT_2_HOST32(volp, Reserved2);
3131 	MPT_2_HOST32(volp, Reserved3);
3132 	for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3133 		MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3134 	}
3135 }
3136 
3137 void
3138 mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3139 {
3140 
3141 	MPT_2_HOST32(rpd0, Reserved1);
3142 	MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3143 	MPT_2_HOST32(rpd0, MaxLBA);
3144 	MPT_2_HOST16(rpd0, ErrorData.Reserved);
3145 	MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3146 	MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3147 }
3148 
3149 void
3150 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3151 {
3152 
3153 	MPT_2_HOST16(vi, TotalBlocks.High);
3154 	MPT_2_HOST16(vi, TotalBlocks.Low);
3155 	MPT_2_HOST16(vi, BlocksRemaining.High);
3156 	MPT_2_HOST16(vi, BlocksRemaining.Low);
3157 }
3158 #endif
3159