1 /*- 2 * Generic routines for LSI Fusion adapters. 3 * FreeBSD Version. 4 * 5 * Copyright (c) 2000, 2001 by Greg Ansley 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice immediately at the beginning of the file, without modification, 12 * this list of conditions, and the following disclaimer. 13 * 2. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 /*- 29 * Copyright (c) 2002, 2006 by Matthew Jacob 30 * All rights reserved. 31 * 32 * Redistribution and use in source and binary forms, with or without 33 * modification, are permitted provided that the following conditions are 34 * met: 35 * 1. Redistributions of source code must retain the above copyright 36 * notice, this list of conditions and the following disclaimer. 37 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 38 * substantially similar to the "NO WARRANTY" disclaimer below 39 * ("Disclaimer") and any redistribution must be conditioned upon including 40 * a substantially similar Disclaimer requirement for further binary 41 * redistribution. 42 * 3. Neither the names of the above listed copyright holders nor the names 43 * of any contributors may be used to endorse or promote products derived 44 * from this software without specific prior written permission. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 47 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 50 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 56 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 57 * 58 * Support from Chris Ellsworth in order to make SAS adapters work 59 * is gratefully acknowledged. 60 */ 61 /*- 62 * Copyright (c) 2004, Avid Technology, Inc. and its contributors. 63 * Copyright (c) 2005, WHEEL Sp. z o.o. 64 * Copyright (c) 2004, 2005 Justin T. Gibbs 65 * All rights reserved. 66 * 67 * Redistribution and use in source and binary forms, with or without 68 * modification, are permitted provided that the following conditions are 69 * met: 70 * 1. Redistributions of source code must retain the above copyright 71 * notice, this list of conditions and the following disclaimer. 72 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 73 * substantially similar to the "NO WARRANTY" disclaimer below 74 * ("Disclaimer") and any redistribution must be conditioned upon including 75 * a substantially similar Disclaimer requirement for further binary 76 * redistribution. 77 * 3. Neither the names of the above listed copyright holders nor the names 78 * of any contributors may be used to endorse or promote products derived 79 * from this software without specific prior written permission. 80 * 81 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 82 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 83 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 84 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 85 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 86 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 87 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 88 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 89 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 90 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 91 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 92 */ 93 94 #include <sys/cdefs.h> 95 __FBSDID("$FreeBSD$"); 96 97 #include <dev/mpt/mpt.h> 98 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */ 99 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */ 100 101 #include <dev/mpt/mpilib/mpi.h> 102 #include <dev/mpt/mpilib/mpi_ioc.h> 103 #include <dev/mpt/mpilib/mpi_fc.h> 104 #include <dev/mpt/mpilib/mpi_targ.h> 105 106 #include <sys/sysctl.h> 107 108 #define MPT_MAX_TRYS 3 109 #define MPT_MAX_WAIT 300000 110 111 static int maxwait_ack = 0; 112 static int maxwait_int = 0; 113 static int maxwait_state = 0; 114 115 TAILQ_HEAD(, mpt_softc) mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq); 116 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS]; 117 118 static mpt_reply_handler_t mpt_default_reply_handler; 119 static mpt_reply_handler_t mpt_config_reply_handler; 120 static mpt_reply_handler_t mpt_handshake_reply_handler; 121 static mpt_reply_handler_t mpt_event_reply_handler; 122 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 123 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context); 124 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff); 125 static int mpt_soft_reset(struct mpt_softc *mpt); 126 static void mpt_hard_reset(struct mpt_softc *mpt); 127 static int mpt_configure_ioc(struct mpt_softc *mpt); 128 static int mpt_enable_ioc(struct mpt_softc *mpt, int); 129 130 /************************* Personality Module Support *************************/ 131 /* 132 * We include one extra entry that is guaranteed to be NULL 133 * to simplify our itterator. 134 */ 135 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1]; 136 static __inline struct mpt_personality* 137 mpt_pers_find(struct mpt_softc *, u_int); 138 static __inline struct mpt_personality* 139 mpt_pers_find_reverse(struct mpt_softc *, u_int); 140 141 static __inline struct mpt_personality * 142 mpt_pers_find(struct mpt_softc *mpt, u_int start_at) 143 { 144 KASSERT(start_at <= MPT_MAX_PERSONALITIES, 145 ("mpt_pers_find: starting position out of range\n")); 146 147 while (start_at < MPT_MAX_PERSONALITIES 148 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 149 start_at++; 150 } 151 return (mpt_personalities[start_at]); 152 } 153 154 /* 155 * Used infrequently, so no need to optimize like a forward 156 * traversal where we use the MAX+1 is guaranteed to be NULL 157 * trick. 158 */ 159 static __inline struct mpt_personality * 160 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at) 161 { 162 while (start_at < MPT_MAX_PERSONALITIES 163 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 164 start_at--; 165 } 166 if (start_at < MPT_MAX_PERSONALITIES) 167 return (mpt_personalities[start_at]); 168 return (NULL); 169 } 170 171 #define MPT_PERS_FOREACH(mpt, pers) \ 172 for (pers = mpt_pers_find(mpt, /*start_at*/0); \ 173 pers != NULL; \ 174 pers = mpt_pers_find(mpt, /*start_at*/pers->id+1)) 175 176 #define MPT_PERS_FOREACH_REVERSE(mpt, pers) \ 177 for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\ 178 pers != NULL; \ 179 pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1)) 180 181 static mpt_load_handler_t mpt_stdload; 182 static mpt_probe_handler_t mpt_stdprobe; 183 static mpt_attach_handler_t mpt_stdattach; 184 static mpt_enable_handler_t mpt_stdenable; 185 static mpt_event_handler_t mpt_stdevent; 186 static mpt_reset_handler_t mpt_stdreset; 187 static mpt_shutdown_handler_t mpt_stdshutdown; 188 static mpt_detach_handler_t mpt_stddetach; 189 static mpt_unload_handler_t mpt_stdunload; 190 static struct mpt_personality mpt_default_personality = 191 { 192 .load = mpt_stdload, 193 .probe = mpt_stdprobe, 194 .attach = mpt_stdattach, 195 .enable = mpt_stdenable, 196 .event = mpt_stdevent, 197 .reset = mpt_stdreset, 198 .shutdown = mpt_stdshutdown, 199 .detach = mpt_stddetach, 200 .unload = mpt_stdunload 201 }; 202 203 static mpt_load_handler_t mpt_core_load; 204 static mpt_attach_handler_t mpt_core_attach; 205 static mpt_enable_handler_t mpt_core_enable; 206 static mpt_reset_handler_t mpt_core_ioc_reset; 207 static mpt_event_handler_t mpt_core_event; 208 static mpt_shutdown_handler_t mpt_core_shutdown; 209 static mpt_shutdown_handler_t mpt_core_detach; 210 static mpt_unload_handler_t mpt_core_unload; 211 static struct mpt_personality mpt_core_personality = 212 { 213 .name = "mpt_core", 214 .load = mpt_core_load, 215 .attach = mpt_core_attach, 216 .enable = mpt_core_enable, 217 .event = mpt_core_event, 218 .reset = mpt_core_ioc_reset, 219 .shutdown = mpt_core_shutdown, 220 .detach = mpt_core_detach, 221 .unload = mpt_core_unload, 222 }; 223 224 /* 225 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need 226 * ordering information. We want the core to always register FIRST. 227 * other modules are set to SI_ORDER_SECOND. 228 */ 229 static moduledata_t mpt_core_mod = { 230 "mpt_core", mpt_modevent, &mpt_core_personality 231 }; 232 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 233 MODULE_VERSION(mpt_core, 1); 234 235 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id)) 236 237 238 int 239 mpt_modevent(module_t mod, int type, void *data) 240 { 241 struct mpt_personality *pers; 242 int error; 243 244 pers = (struct mpt_personality *)data; 245 246 error = 0; 247 switch (type) { 248 case MOD_LOAD: 249 { 250 mpt_load_handler_t **def_handler; 251 mpt_load_handler_t **pers_handler; 252 int i; 253 254 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 255 if (mpt_personalities[i] == NULL) 256 break; 257 } 258 if (i >= MPT_MAX_PERSONALITIES) { 259 error = ENOMEM; 260 break; 261 } 262 pers->id = i; 263 mpt_personalities[i] = pers; 264 265 /* Install standard/noop handlers for any NULL entries. */ 266 def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality); 267 pers_handler = MPT_PERS_FIRST_HANDLER(pers); 268 while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) { 269 if (*pers_handler == NULL) 270 *pers_handler = *def_handler; 271 pers_handler++; 272 def_handler++; 273 } 274 275 error = (pers->load(pers)); 276 if (error != 0) 277 mpt_personalities[i] = NULL; 278 break; 279 } 280 case MOD_SHUTDOWN: 281 break; 282 #if __FreeBSD_version >= 500000 283 case MOD_QUIESCE: 284 break; 285 #endif 286 case MOD_UNLOAD: 287 error = pers->unload(pers); 288 mpt_personalities[pers->id] = NULL; 289 break; 290 default: 291 error = EINVAL; 292 break; 293 } 294 return (error); 295 } 296 297 int 298 mpt_stdload(struct mpt_personality *pers) 299 { 300 /* Load is always successfull. */ 301 return (0); 302 } 303 304 int 305 mpt_stdprobe(struct mpt_softc *mpt) 306 { 307 /* Probe is always successfull. */ 308 return (0); 309 } 310 311 int 312 mpt_stdattach(struct mpt_softc *mpt) 313 { 314 /* Attach is always successfull. */ 315 return (0); 316 } 317 318 int 319 mpt_stdenable(struct mpt_softc *mpt) 320 { 321 /* Enable is always successfull. */ 322 return (0); 323 } 324 325 int 326 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg) 327 { 328 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF); 329 /* Event was not for us. */ 330 return (0); 331 } 332 333 void 334 mpt_stdreset(struct mpt_softc *mpt, int type) 335 { 336 } 337 338 void 339 mpt_stdshutdown(struct mpt_softc *mpt) 340 { 341 } 342 343 void 344 mpt_stddetach(struct mpt_softc *mpt) 345 { 346 } 347 348 int 349 mpt_stdunload(struct mpt_personality *pers) 350 { 351 /* Unload is always successfull. */ 352 return (0); 353 } 354 355 /******************************* Bus DMA Support ******************************/ 356 void 357 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error) 358 { 359 struct mpt_map_info *map_info; 360 361 map_info = (struct mpt_map_info *)arg; 362 map_info->error = error; 363 map_info->phys = segs->ds_addr; 364 } 365 366 /**************************** Reply/Event Handling ****************************/ 367 int 368 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type, 369 mpt_handler_t handler, uint32_t *phandler_id) 370 { 371 372 switch (type) { 373 case MPT_HANDLER_REPLY: 374 { 375 u_int cbi; 376 u_int free_cbi; 377 378 if (phandler_id == NULL) 379 return (EINVAL); 380 381 free_cbi = MPT_HANDLER_ID_NONE; 382 for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) { 383 /* 384 * If the same handler is registered multiple 385 * times, don't error out. Just return the 386 * index of the original registration. 387 */ 388 if (mpt_reply_handlers[cbi] == handler.reply_handler) { 389 *phandler_id = MPT_CBI_TO_HID(cbi); 390 return (0); 391 } 392 393 /* 394 * Fill from the front in the hope that 395 * all registered handlers consume only a 396 * single cache line. 397 * 398 * We don't break on the first empty slot so 399 * that the full table is checked to see if 400 * this handler was previously registered. 401 */ 402 if (free_cbi == MPT_HANDLER_ID_NONE && 403 (mpt_reply_handlers[cbi] 404 == mpt_default_reply_handler)) 405 free_cbi = cbi; 406 } 407 if (free_cbi == MPT_HANDLER_ID_NONE) { 408 return (ENOMEM); 409 } 410 mpt_reply_handlers[free_cbi] = handler.reply_handler; 411 *phandler_id = MPT_CBI_TO_HID(free_cbi); 412 break; 413 } 414 default: 415 mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type); 416 return (EINVAL); 417 } 418 return (0); 419 } 420 421 int 422 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type, 423 mpt_handler_t handler, uint32_t handler_id) 424 { 425 426 switch (type) { 427 case MPT_HANDLER_REPLY: 428 { 429 u_int cbi; 430 431 cbi = MPT_CBI(handler_id); 432 if (cbi >= MPT_NUM_REPLY_HANDLERS 433 || mpt_reply_handlers[cbi] != handler.reply_handler) 434 return (ENOENT); 435 mpt_reply_handlers[cbi] = mpt_default_reply_handler; 436 break; 437 } 438 default: 439 mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type); 440 return (EINVAL); 441 } 442 return (0); 443 } 444 445 static int 446 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req, 447 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 448 { 449 mpt_prt(mpt, 450 "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n", 451 req, req->serno, reply_desc, reply_frame); 452 453 if (reply_frame != NULL) 454 mpt_dump_reply_frame(mpt, reply_frame); 455 456 mpt_prt(mpt, "Reply Frame Ignored\n"); 457 458 return (/*free_reply*/TRUE); 459 } 460 461 static int 462 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req, 463 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 464 { 465 if (req != NULL) { 466 467 if (reply_frame != NULL) { 468 MSG_CONFIG *cfgp; 469 MSG_CONFIG_REPLY *reply; 470 471 cfgp = (MSG_CONFIG *)req->req_vbuf; 472 reply = (MSG_CONFIG_REPLY *)reply_frame; 473 req->IOCStatus = le16toh(reply_frame->IOCStatus); 474 bcopy(&reply->Header, &cfgp->Header, 475 sizeof(cfgp->Header)); 476 } 477 req->state &= ~REQ_STATE_QUEUED; 478 req->state |= REQ_STATE_DONE; 479 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 480 if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) { 481 wakeup(req); 482 } 483 } 484 485 return (TRUE); 486 } 487 488 static int 489 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req, 490 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 491 { 492 /* Nothing to be done. */ 493 return (TRUE); 494 } 495 496 static int 497 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req, 498 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 499 { 500 int free_reply; 501 502 KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler")); 503 KASSERT(req != NULL, ("null request in mpt_event_reply_handler")); 504 505 free_reply = TRUE; 506 switch (reply_frame->Function) { 507 case MPI_FUNCTION_EVENT_NOTIFICATION: 508 { 509 MSG_EVENT_NOTIFY_REPLY *msg; 510 struct mpt_personality *pers; 511 u_int handled; 512 513 handled = 0; 514 msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 515 MPT_PERS_FOREACH(mpt, pers) 516 handled += pers->event(mpt, req, msg); 517 518 if (handled == 0 && mpt->mpt_pers_mask == 0) { 519 mpt_lprt(mpt, MPT_PRT_INFO, 520 "No Handlers For Any Event Notify Frames. " 521 "Event %#x (ACK %sequired).\n", 522 msg->Event, msg->AckRequired? "r" : "not r"); 523 } else if (handled == 0) { 524 mpt_lprt(mpt, MPT_PRT_WARN, 525 "Unhandled Event Notify Frame. Event %#x " 526 "(ACK %sequired).\n", 527 msg->Event, msg->AckRequired? "r" : "not r"); 528 } 529 530 if (msg->AckRequired) { 531 request_t *ack_req; 532 uint32_t context; 533 534 context = htole32(req->index|MPT_REPLY_HANDLER_EVENTS); 535 ack_req = mpt_get_request(mpt, FALSE); 536 if (ack_req == NULL) { 537 struct mpt_evtf_record *evtf; 538 539 evtf = (struct mpt_evtf_record *)reply_frame; 540 evtf->context = context; 541 LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links); 542 free_reply = FALSE; 543 break; 544 } 545 mpt_send_event_ack(mpt, ack_req, msg, context); 546 /* 547 * Don't check for CONTINUATION_REPLY here 548 */ 549 return (free_reply); 550 } 551 break; 552 } 553 case MPI_FUNCTION_PORT_ENABLE: 554 mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n"); 555 break; 556 case MPI_FUNCTION_EVENT_ACK: 557 break; 558 default: 559 mpt_prt(mpt, "unknown event function: %x\n", 560 reply_frame->Function); 561 break; 562 } 563 564 /* 565 * I'm not sure that this continuation stuff works as it should. 566 * 567 * I've had FC async events occur that free the frame up because 568 * the continuation bit isn't set, and then additional async events 569 * then occur using the same context. As you might imagine, this 570 * leads to Very Bad Thing. 571 * 572 * Let's just be safe for now and not free them up until we figure 573 * out what's actually happening here. 574 */ 575 #if 0 576 if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) { 577 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 578 mpt_free_request(mpt, req); 579 mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation", 580 reply_frame->Function, req, req->serno); 581 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 582 MSG_EVENT_NOTIFY_REPLY *msg = 583 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 584 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 585 msg->Event, msg->AckRequired); 586 } 587 } else { 588 mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation", 589 reply_frame->Function, req, req->serno); 590 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 591 MSG_EVENT_NOTIFY_REPLY *msg = 592 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 593 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 594 msg->Event, msg->AckRequired); 595 } 596 mpt_prtc(mpt, "\n"); 597 } 598 #endif 599 return (free_reply); 600 } 601 602 /* 603 * Process an asynchronous event from the IOC. 604 */ 605 static int 606 mpt_core_event(struct mpt_softc *mpt, request_t *req, 607 MSG_EVENT_NOTIFY_REPLY *msg) 608 { 609 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n", 610 msg->Event & 0xFF); 611 switch(msg->Event & 0xFF) { 612 case MPI_EVENT_NONE: 613 break; 614 case MPI_EVENT_LOG_DATA: 615 { 616 int i; 617 618 /* Some error occured that LSI wants logged */ 619 mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n", 620 msg->IOCLogInfo); 621 mpt_prt(mpt, "\tEvtLogData: Event Data:"); 622 for (i = 0; i < msg->EventDataLength; i++) 623 mpt_prtc(mpt, " %08x", msg->Data[i]); 624 mpt_prtc(mpt, "\n"); 625 break; 626 } 627 case MPI_EVENT_EVENT_CHANGE: 628 /* 629 * This is just an acknowledgement 630 * of our mpt_send_event_request. 631 */ 632 break; 633 case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE: 634 break; 635 default: 636 return (0); 637 break; 638 } 639 return (1); 640 } 641 642 static void 643 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 644 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context) 645 { 646 MSG_EVENT_ACK *ackp; 647 648 ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf; 649 memset(ackp, 0, sizeof (*ackp)); 650 ackp->Function = MPI_FUNCTION_EVENT_ACK; 651 ackp->Event = msg->Event; 652 ackp->EventContext = msg->EventContext; 653 ackp->MsgContext = context; 654 mpt_check_doorbell(mpt); 655 mpt_send_cmd(mpt, ack_req); 656 } 657 658 /***************************** Interrupt Handling *****************************/ 659 void 660 mpt_intr(void *arg) 661 { 662 struct mpt_softc *mpt; 663 uint32_t reply_desc; 664 uint32_t last_reply_desc = MPT_REPLY_EMPTY; 665 int ntrips = 0; 666 667 mpt = (struct mpt_softc *)arg; 668 while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) { 669 request_t *req; 670 MSG_DEFAULT_REPLY *reply_frame; 671 uint32_t reply_baddr; 672 uint32_t ctxt_idx; 673 u_int cb_index; 674 u_int req_index; 675 int free_rf; 676 677 if (reply_desc == last_reply_desc) { 678 mpt_prt(mpt, "debounce reply_desc 0x%x\n", reply_desc); 679 if (ntrips++ == 1000) { 680 break; 681 } 682 continue; 683 } 684 last_reply_desc = reply_desc; 685 686 req = NULL; 687 reply_frame = NULL; 688 reply_baddr = 0; 689 if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) { 690 u_int offset; 691 /* 692 * Insure that the reply frame is coherent. 693 */ 694 reply_baddr = MPT_REPLY_BADDR(reply_desc); 695 offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF); 696 bus_dmamap_sync_range(mpt->reply_dmat, 697 mpt->reply_dmap, offset, MPT_REPLY_SIZE, 698 BUS_DMASYNC_POSTREAD); 699 reply_frame = MPT_REPLY_OTOV(mpt, offset); 700 ctxt_idx = le32toh(reply_frame->MsgContext); 701 } else { 702 uint32_t type; 703 704 type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc); 705 ctxt_idx = reply_desc; 706 mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n", 707 reply_desc); 708 709 switch (type) { 710 case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT: 711 ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK; 712 break; 713 case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET: 714 ctxt_idx = GET_IO_INDEX(reply_desc); 715 if (mpt->tgt_cmd_ptrs == NULL) { 716 mpt_prt(mpt, 717 "mpt_intr: no target cmd ptrs\n"); 718 reply_desc = MPT_REPLY_EMPTY; 719 break; 720 } 721 if (ctxt_idx >= mpt->tgt_cmds_allocated) { 722 mpt_prt(mpt, 723 "mpt_intr: bad tgt cmd ctxt %u\n", 724 ctxt_idx); 725 reply_desc = MPT_REPLY_EMPTY; 726 ntrips = 1000; 727 break; 728 } 729 req = mpt->tgt_cmd_ptrs[ctxt_idx]; 730 if (req == NULL) { 731 mpt_prt(mpt, "no request backpointer " 732 "at index %u", ctxt_idx); 733 reply_desc = MPT_REPLY_EMPTY; 734 ntrips = 1000; 735 break; 736 } 737 /* 738 * Reformulate ctxt_idx to be just as if 739 * it were another type of context reply 740 * so the code below will find the request 741 * via indexing into the pool. 742 */ 743 ctxt_idx = 744 req->index | mpt->scsi_tgt_handler_id; 745 req = NULL; 746 break; 747 case MPI_CONTEXT_REPLY_TYPE_LAN: 748 mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n", 749 reply_desc); 750 reply_desc = MPT_REPLY_EMPTY; 751 break; 752 default: 753 mpt_prt(mpt, "Context Reply 0x%08x?\n", type); 754 reply_desc = MPT_REPLY_EMPTY; 755 break; 756 } 757 if (reply_desc == MPT_REPLY_EMPTY) { 758 if (ntrips++ > 1000) { 759 break; 760 } 761 continue; 762 } 763 } 764 765 cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx); 766 req_index = MPT_CONTEXT_TO_REQI(ctxt_idx); 767 if (req_index < MPT_MAX_REQUESTS(mpt)) { 768 req = &mpt->request_pool[req_index]; 769 } else { 770 mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc ==" 771 " 0x%x)\n", req_index, reply_desc); 772 } 773 774 free_rf = mpt_reply_handlers[cb_index](mpt, req, 775 reply_desc, reply_frame); 776 777 if (reply_frame != NULL && free_rf) { 778 mpt_free_reply(mpt, reply_baddr); 779 } 780 781 /* 782 * If we got ourselves disabled, don't get stuck in a loop 783 */ 784 if (mpt->disabled) { 785 mpt_disable_ints(mpt); 786 break; 787 } 788 if (ntrips++ > 1000) { 789 break; 790 } 791 } 792 } 793 794 /******************************* Error Recovery *******************************/ 795 void 796 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain, 797 u_int iocstatus) 798 { 799 MSG_DEFAULT_REPLY ioc_status_frame; 800 request_t *req; 801 802 memset(&ioc_status_frame, 0, sizeof(ioc_status_frame)); 803 ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4); 804 ioc_status_frame.IOCStatus = iocstatus; 805 while((req = TAILQ_FIRST(chain)) != NULL) { 806 MSG_REQUEST_HEADER *msg_hdr; 807 u_int cb_index; 808 809 TAILQ_REMOVE(chain, req, links); 810 msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf; 811 ioc_status_frame.Function = msg_hdr->Function; 812 ioc_status_frame.MsgContext = msg_hdr->MsgContext; 813 cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext)); 814 mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext, 815 &ioc_status_frame); 816 } 817 } 818 819 /********************************* Diagnostics ********************************/ 820 /* 821 * Perform a diagnostic dump of a reply frame. 822 */ 823 void 824 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame) 825 { 826 mpt_prt(mpt, "Address Reply:\n"); 827 mpt_print_reply(reply_frame); 828 } 829 830 /******************************* Doorbell Access ******************************/ 831 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt); 832 static __inline uint32_t mpt_rd_intr(struct mpt_softc *mpt); 833 834 static __inline uint32_t 835 mpt_rd_db(struct mpt_softc *mpt) 836 { 837 return mpt_read(mpt, MPT_OFFSET_DOORBELL); 838 } 839 840 static __inline uint32_t 841 mpt_rd_intr(struct mpt_softc *mpt) 842 { 843 return mpt_read(mpt, MPT_OFFSET_INTR_STATUS); 844 } 845 846 /* Busy wait for a door bell to be read by IOC */ 847 static int 848 mpt_wait_db_ack(struct mpt_softc *mpt) 849 { 850 int i; 851 for (i=0; i < MPT_MAX_WAIT; i++) { 852 if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) { 853 maxwait_ack = i > maxwait_ack ? i : maxwait_ack; 854 return (MPT_OK); 855 } 856 DELAY(200); 857 } 858 return (MPT_FAIL); 859 } 860 861 /* Busy wait for a door bell interrupt */ 862 static int 863 mpt_wait_db_int(struct mpt_softc *mpt) 864 { 865 int i; 866 for (i=0; i < MPT_MAX_WAIT; i++) { 867 if (MPT_DB_INTR(mpt_rd_intr(mpt))) { 868 maxwait_int = i > maxwait_int ? i : maxwait_int; 869 return MPT_OK; 870 } 871 DELAY(100); 872 } 873 return (MPT_FAIL); 874 } 875 876 /* Wait for IOC to transition to a give state */ 877 void 878 mpt_check_doorbell(struct mpt_softc *mpt) 879 { 880 uint32_t db = mpt_rd_db(mpt); 881 if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) { 882 mpt_prt(mpt, "Device not running\n"); 883 mpt_print_db(db); 884 } 885 } 886 887 /* Wait for IOC to transition to a give state */ 888 static int 889 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state) 890 { 891 int i; 892 893 for (i = 0; i < MPT_MAX_WAIT; i++) { 894 uint32_t db = mpt_rd_db(mpt); 895 if (MPT_STATE(db) == state) { 896 maxwait_state = i > maxwait_state ? i : maxwait_state; 897 return (MPT_OK); 898 } 899 DELAY(100); 900 } 901 return (MPT_FAIL); 902 } 903 904 905 /************************* Intialization/Configuration ************************/ 906 static int mpt_download_fw(struct mpt_softc *mpt); 907 908 /* Issue the reset COMMAND to the IOC */ 909 static int 910 mpt_soft_reset(struct mpt_softc *mpt) 911 { 912 mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n"); 913 914 /* Have to use hard reset if we are not in Running state */ 915 if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) { 916 mpt_prt(mpt, "soft reset failed: device not running\n"); 917 return (MPT_FAIL); 918 } 919 920 /* If door bell is in use we don't have a chance of getting 921 * a word in since the IOC probably crashed in message 922 * processing. So don't waste our time. 923 */ 924 if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) { 925 mpt_prt(mpt, "soft reset failed: doorbell wedged\n"); 926 return (MPT_FAIL); 927 } 928 929 /* Send the reset request to the IOC */ 930 mpt_write(mpt, MPT_OFFSET_DOORBELL, 931 MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT); 932 if (mpt_wait_db_ack(mpt) != MPT_OK) { 933 mpt_prt(mpt, "soft reset failed: ack timeout\n"); 934 return (MPT_FAIL); 935 } 936 937 /* Wait for the IOC to reload and come out of reset state */ 938 if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) { 939 mpt_prt(mpt, "soft reset failed: device did not restart\n"); 940 return (MPT_FAIL); 941 } 942 943 return MPT_OK; 944 } 945 946 static int 947 mpt_enable_diag_mode(struct mpt_softc *mpt) 948 { 949 int try; 950 951 try = 20; 952 while (--try) { 953 954 if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0) 955 break; 956 957 /* Enable diagnostic registers */ 958 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF); 959 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE); 960 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE); 961 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE); 962 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE); 963 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE); 964 965 DELAY(100000); 966 } 967 if (try == 0) 968 return (EIO); 969 return (0); 970 } 971 972 static void 973 mpt_disable_diag_mode(struct mpt_softc *mpt) 974 { 975 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF); 976 } 977 978 /* This is a magic diagnostic reset that resets all the ARM 979 * processors in the chip. 980 */ 981 static void 982 mpt_hard_reset(struct mpt_softc *mpt) 983 { 984 int error; 985 int wait; 986 uint32_t diagreg; 987 988 mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n"); 989 990 error = mpt_enable_diag_mode(mpt); 991 if (error) { 992 mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n"); 993 mpt_prt(mpt, "Trying to reset anyway.\n"); 994 } 995 996 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 997 998 /* 999 * This appears to be a workaround required for some 1000 * firmware or hardware revs. 1001 */ 1002 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM); 1003 DELAY(1000); 1004 1005 /* Diag. port is now active so we can now hit the reset bit */ 1006 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER); 1007 1008 /* 1009 * Ensure that the reset has finished. We delay 1ms 1010 * prior to reading the register to make sure the chip 1011 * has sufficiently completed its reset to handle register 1012 * accesses. 1013 */ 1014 wait = 5000; 1015 do { 1016 DELAY(1000); 1017 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1018 } while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0); 1019 1020 if (wait == 0) { 1021 mpt_prt(mpt, "WARNING - Failed hard reset! " 1022 "Trying to initialize anyway.\n"); 1023 } 1024 1025 /* 1026 * If we have firmware to download, it must be loaded before 1027 * the controller will become operational. Do so now. 1028 */ 1029 if (mpt->fw_image != NULL) { 1030 1031 error = mpt_download_fw(mpt); 1032 1033 if (error) { 1034 mpt_prt(mpt, "WARNING - Firmware Download Failed!\n"); 1035 mpt_prt(mpt, "Trying to initialize anyway.\n"); 1036 } 1037 } 1038 1039 /* 1040 * Reseting the controller should have disabled write 1041 * access to the diagnostic registers, but disable 1042 * manually to be sure. 1043 */ 1044 mpt_disable_diag_mode(mpt); 1045 } 1046 1047 static void 1048 mpt_core_ioc_reset(struct mpt_softc *mpt, int type) 1049 { 1050 /* 1051 * Complete all pending requests with a status 1052 * appropriate for an IOC reset. 1053 */ 1054 mpt_complete_request_chain(mpt, &mpt->request_pending_list, 1055 MPI_IOCSTATUS_INVALID_STATE); 1056 } 1057 1058 1059 /* 1060 * Reset the IOC when needed. Try software command first then if needed 1061 * poke at the magic diagnostic reset. Note that a hard reset resets 1062 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as 1063 * fouls up the PCI configuration registers. 1064 */ 1065 int 1066 mpt_reset(struct mpt_softc *mpt, int reinit) 1067 { 1068 struct mpt_personality *pers; 1069 int ret; 1070 int retry_cnt = 0; 1071 1072 /* 1073 * Try a soft reset. If that fails, get out the big hammer. 1074 */ 1075 again: 1076 if ((ret = mpt_soft_reset(mpt)) != MPT_OK) { 1077 int cnt; 1078 for (cnt = 0; cnt < 5; cnt++) { 1079 /* Failed; do a hard reset */ 1080 mpt_hard_reset(mpt); 1081 1082 /* 1083 * Wait for the IOC to reload 1084 * and come out of reset state 1085 */ 1086 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1087 if (ret == MPT_OK) { 1088 break; 1089 } 1090 /* 1091 * Okay- try to check again... 1092 */ 1093 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1094 if (ret == MPT_OK) { 1095 break; 1096 } 1097 mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n", 1098 retry_cnt, cnt); 1099 } 1100 } 1101 1102 if (retry_cnt == 0) { 1103 /* 1104 * Invoke reset handlers. We bump the reset count so 1105 * that mpt_wait_req() understands that regardless of 1106 * the specified wait condition, it should stop its wait. 1107 */ 1108 mpt->reset_cnt++; 1109 MPT_PERS_FOREACH(mpt, pers) 1110 pers->reset(mpt, ret); 1111 } 1112 1113 if (reinit) { 1114 ret = mpt_enable_ioc(mpt, 1); 1115 if (ret == MPT_OK) { 1116 mpt_enable_ints(mpt); 1117 } 1118 } 1119 if (ret != MPT_OK && retry_cnt++ < 2) { 1120 goto again; 1121 } 1122 return ret; 1123 } 1124 1125 /* Return a command buffer to the free queue */ 1126 void 1127 mpt_free_request(struct mpt_softc *mpt, request_t *req) 1128 { 1129 request_t *nxt; 1130 struct mpt_evtf_record *record; 1131 uint32_t reply_baddr; 1132 1133 if (req == NULL || req != &mpt->request_pool[req->index]) { 1134 panic("mpt_free_request bad req ptr\n"); 1135 return; 1136 } 1137 if ((nxt = req->chain) != NULL) { 1138 req->chain = NULL; 1139 mpt_free_request(mpt, nxt); /* NB: recursion */ 1140 } 1141 1142 KASSERT(req->state != REQ_STATE_FREE, ("freeing free request")); 1143 KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request")); 1144 1145 req->ccb = NULL; 1146 1147 if (LIST_EMPTY(&mpt->ack_frames)) { 1148 /* 1149 * Insert free ones at the tail 1150 */ 1151 req->serno = 0; 1152 req->state = REQ_STATE_FREE; 1153 TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links); 1154 if (mpt->getreqwaiter != 0) { 1155 mpt->getreqwaiter = 0; 1156 wakeup(&mpt->request_free_list); 1157 } 1158 return; 1159 } 1160 1161 /* 1162 * Process an ack frame deferred due to resource shortage. 1163 */ 1164 record = LIST_FIRST(&mpt->ack_frames); 1165 LIST_REMOVE(record, links); 1166 req->state = REQ_STATE_ALLOCATED; 1167 if ((req->serno = mpt->sequence++) == 0) { 1168 req->serno = mpt->sequence++; 1169 } 1170 mpt_send_event_ack(mpt, req, &record->reply, record->context); 1171 reply_baddr = (uint32_t)((uint8_t *)record - mpt->reply) 1172 + (mpt->reply_phys & 0xFFFFFFFF); 1173 mpt_free_reply(mpt, reply_baddr); 1174 } 1175 1176 /* Get a command buffer from the free queue */ 1177 request_t * 1178 mpt_get_request(struct mpt_softc *mpt, int sleep_ok) 1179 { 1180 request_t *req; 1181 1182 retry: 1183 req = TAILQ_FIRST(&mpt->request_free_list); 1184 if (req != NULL) { 1185 KASSERT(req == &mpt->request_pool[req->index], 1186 ("mpt_get_request: corrupted request free list\n")); 1187 KASSERT(req->state == REQ_STATE_FREE, 1188 ("req not free on free list %x", req->state)); 1189 TAILQ_REMOVE(&mpt->request_free_list, req, links); 1190 req->state = REQ_STATE_ALLOCATED; 1191 req->chain = NULL; 1192 if ((req->serno = mpt->sequence++) == 0) { 1193 req->serno = mpt->sequence++; 1194 } 1195 } else if (sleep_ok != 0) { 1196 mpt->getreqwaiter = 1; 1197 mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0); 1198 goto retry; 1199 } 1200 return (req); 1201 } 1202 1203 /* Pass the command to the IOC */ 1204 void 1205 mpt_send_cmd(struct mpt_softc *mpt, request_t *req) 1206 { 1207 uint32_t *pReq; 1208 1209 pReq = req->req_vbuf; 1210 if (mpt->verbose > MPT_PRT_TRACE) { 1211 int offset; 1212 #if __FreeBSD_version >= 500000 1213 mpt_prt(mpt, "Send Request %d (%jx):", 1214 req->index, (uintmax_t) req->req_pbuf); 1215 #else 1216 mpt_prt(mpt, "Send Request %d (%llx):", 1217 req->index, (unsigned long long) req->req_pbuf); 1218 #endif 1219 for (offset = 0; offset < mpt->request_frame_size; offset++) { 1220 if ((offset & 0x7) == 0) { 1221 mpt_prtc(mpt, "\n"); 1222 mpt_prt(mpt, " "); 1223 } 1224 mpt_prtc(mpt, " %08x", pReq[offset]); 1225 } 1226 mpt_prtc(mpt, "\n"); 1227 } 1228 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 1229 BUS_DMASYNC_PREWRITE); 1230 req->state |= REQ_STATE_QUEUED; 1231 TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links); 1232 mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf); 1233 } 1234 1235 /* 1236 * Wait for a request to complete. 1237 * 1238 * Inputs: 1239 * mpt softc of controller executing request 1240 * req request to wait for 1241 * sleep_ok nonzero implies may sleep in this context 1242 * time_ms timeout in ms. 0 implies no timeout. 1243 * 1244 * Return Values: 1245 * 0 Request completed 1246 * non-0 Timeout fired before request completion. 1247 */ 1248 int 1249 mpt_wait_req(struct mpt_softc *mpt, request_t *req, 1250 mpt_req_state_t state, mpt_req_state_t mask, 1251 int sleep_ok, int time_ms) 1252 { 1253 int error; 1254 int timeout; 1255 u_int saved_cnt; 1256 1257 /* 1258 * timeout is in ms. 0 indicates infinite wait. 1259 * Convert to ticks or 500us units depending on 1260 * our sleep mode. 1261 */ 1262 if (sleep_ok != 0) { 1263 timeout = (time_ms * hz) / 1000; 1264 } else { 1265 timeout = time_ms * 2; 1266 } 1267 req->state |= REQ_STATE_NEED_WAKEUP; 1268 mask &= ~REQ_STATE_NEED_WAKEUP; 1269 saved_cnt = mpt->reset_cnt; 1270 while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) { 1271 if (sleep_ok != 0) { 1272 error = mpt_sleep(mpt, req, PUSER, "mptreq", timeout); 1273 if (error == EWOULDBLOCK) { 1274 timeout = 0; 1275 break; 1276 } 1277 } else { 1278 if (time_ms != 0 && --timeout == 0) { 1279 break; 1280 } 1281 DELAY(500); 1282 mpt_intr(mpt); 1283 } 1284 } 1285 req->state &= ~REQ_STATE_NEED_WAKEUP; 1286 if (mpt->reset_cnt != saved_cnt) { 1287 return (EIO); 1288 } 1289 if (time_ms && timeout <= 0) { 1290 MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf; 1291 mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function); 1292 return (ETIMEDOUT); 1293 } 1294 return (0); 1295 } 1296 1297 /* 1298 * Send a command to the IOC via the handshake register. 1299 * 1300 * Only done at initialization time and for certain unusual 1301 * commands such as device/bus reset as specified by LSI. 1302 */ 1303 int 1304 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd) 1305 { 1306 int i; 1307 uint32_t data, *data32; 1308 1309 /* Check condition of the IOC */ 1310 data = mpt_rd_db(mpt); 1311 if ((MPT_STATE(data) != MPT_DB_STATE_READY 1312 && MPT_STATE(data) != MPT_DB_STATE_RUNNING 1313 && MPT_STATE(data) != MPT_DB_STATE_FAULT) 1314 || MPT_DB_IS_IN_USE(data)) { 1315 mpt_prt(mpt, "handshake aborted - invalid doorbell state\n"); 1316 mpt_print_db(data); 1317 return (EBUSY); 1318 } 1319 1320 /* We move things in 32 bit chunks */ 1321 len = (len + 3) >> 2; 1322 data32 = cmd; 1323 1324 /* Clear any left over pending doorbell interupts */ 1325 if (MPT_DB_INTR(mpt_rd_intr(mpt))) 1326 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1327 1328 /* 1329 * Tell the handshake reg. we are going to send a command 1330 * and how long it is going to be. 1331 */ 1332 data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) | 1333 (len << MPI_DOORBELL_ADD_DWORDS_SHIFT); 1334 mpt_write(mpt, MPT_OFFSET_DOORBELL, data); 1335 1336 /* Wait for the chip to notice */ 1337 if (mpt_wait_db_int(mpt) != MPT_OK) { 1338 mpt_prt(mpt, "mpt_send_handshake_cmd timeout1\n"); 1339 return (ETIMEDOUT); 1340 } 1341 1342 /* Clear the interrupt */ 1343 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1344 1345 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1346 mpt_prt(mpt, "mpt_send_handshake_cmd timeout2\n"); 1347 return (ETIMEDOUT); 1348 } 1349 1350 /* Send the command */ 1351 for (i = 0; i < len; i++) { 1352 mpt_write(mpt, MPT_OFFSET_DOORBELL, *data32++); 1353 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1354 mpt_prt(mpt, 1355 "mpt_send_handshake_cmd timeout! index = %d\n", 1356 i); 1357 return (ETIMEDOUT); 1358 } 1359 } 1360 return MPT_OK; 1361 } 1362 1363 /* Get the response from the handshake register */ 1364 int 1365 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply) 1366 { 1367 int left, reply_left; 1368 u_int16_t *data16; 1369 MSG_DEFAULT_REPLY *hdr; 1370 1371 /* We move things out in 16 bit chunks */ 1372 reply_len >>= 1; 1373 data16 = (u_int16_t *)reply; 1374 1375 hdr = (MSG_DEFAULT_REPLY *)reply; 1376 1377 /* Get first word */ 1378 if (mpt_wait_db_int(mpt) != MPT_OK) { 1379 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n"); 1380 return ETIMEDOUT; 1381 } 1382 *data16++ = mpt_read(mpt, MPT_OFFSET_DOORBELL) & MPT_DB_DATA_MASK; 1383 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1384 1385 /* Get Second Word */ 1386 if (mpt_wait_db_int(mpt) != MPT_OK) { 1387 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n"); 1388 return ETIMEDOUT; 1389 } 1390 *data16++ = mpt_read(mpt, MPT_OFFSET_DOORBELL) & MPT_DB_DATA_MASK; 1391 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1392 1393 /* 1394 * With the second word, we can now look at the length. 1395 * Warn about a reply that's too short (except for IOC FACTS REPLY) 1396 */ 1397 if ((reply_len >> 1) != hdr->MsgLength && 1398 (hdr->Function != MPI_FUNCTION_IOC_FACTS)){ 1399 #if __FreeBSD_version >= 500000 1400 mpt_prt(mpt, "reply length does not match message length: " 1401 "got %x; expected %zx for function %x\n", 1402 hdr->MsgLength << 2, reply_len << 1, hdr->Function); 1403 #else 1404 mpt_prt(mpt, "reply length does not match message length: " 1405 "got %x; expected %x for function %x\n", 1406 hdr->MsgLength << 2, reply_len << 1, hdr->Function); 1407 #endif 1408 } 1409 1410 /* Get rest of the reply; but don't overflow the provided buffer */ 1411 left = (hdr->MsgLength << 1) - 2; 1412 reply_left = reply_len - 2; 1413 while (left--) { 1414 u_int16_t datum; 1415 1416 if (mpt_wait_db_int(mpt) != MPT_OK) { 1417 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n"); 1418 return ETIMEDOUT; 1419 } 1420 datum = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1421 1422 if (reply_left-- > 0) 1423 *data16++ = datum & MPT_DB_DATA_MASK; 1424 1425 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1426 } 1427 1428 /* One more wait & clear at the end */ 1429 if (mpt_wait_db_int(mpt) != MPT_OK) { 1430 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n"); 1431 return ETIMEDOUT; 1432 } 1433 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1434 1435 if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1436 if (mpt->verbose >= MPT_PRT_TRACE) 1437 mpt_print_reply(hdr); 1438 return (MPT_FAIL | hdr->IOCStatus); 1439 } 1440 1441 return (0); 1442 } 1443 1444 static int 1445 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp) 1446 { 1447 MSG_IOC_FACTS f_req; 1448 int error; 1449 1450 memset(&f_req, 0, sizeof f_req); 1451 f_req.Function = MPI_FUNCTION_IOC_FACTS; 1452 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1453 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1454 if (error) 1455 return(error); 1456 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1457 return (error); 1458 } 1459 1460 static int 1461 mpt_get_portfacts(struct mpt_softc *mpt, MSG_PORT_FACTS_REPLY *freplp) 1462 { 1463 MSG_PORT_FACTS f_req; 1464 int error; 1465 1466 /* XXX: Only getting PORT FACTS for Port 0 */ 1467 memset(&f_req, 0, sizeof f_req); 1468 f_req.Function = MPI_FUNCTION_PORT_FACTS; 1469 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1470 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1471 if (error) 1472 return(error); 1473 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1474 return (error); 1475 } 1476 1477 /* 1478 * Send the initialization request. This is where we specify how many 1479 * SCSI busses and how many devices per bus we wish to emulate. 1480 * This is also the command that specifies the max size of the reply 1481 * frames from the IOC that we will be allocating. 1482 */ 1483 static int 1484 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who) 1485 { 1486 int error = 0; 1487 MSG_IOC_INIT init; 1488 MSG_IOC_INIT_REPLY reply; 1489 1490 memset(&init, 0, sizeof init); 1491 init.WhoInit = who; 1492 init.Function = MPI_FUNCTION_IOC_INIT; 1493 if (mpt->is_fc) { 1494 init.MaxDevices = 255; 1495 } else if (mpt->is_sas) { 1496 init.MaxDevices = mpt->mpt_max_devices; 1497 } else { 1498 init.MaxDevices = 16; 1499 } 1500 init.MaxBuses = 1; 1501 1502 init.MsgVersion = htole16(MPI_VERSION); 1503 init.HeaderVersion = htole16(MPI_HEADER_VERSION); 1504 init.ReplyFrameSize = htole16(MPT_REPLY_SIZE); 1505 init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1506 1507 if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) { 1508 return(error); 1509 } 1510 1511 error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply); 1512 return (error); 1513 } 1514 1515 1516 /* 1517 * Utiltity routine to read configuration headers and pages 1518 */ 1519 int 1520 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, u_int Action, 1521 u_int PageVersion, u_int PageLength, u_int PageNumber, 1522 u_int PageType, uint32_t PageAddress, bus_addr_t addr, 1523 bus_size_t len, int sleep_ok, int timeout_ms) 1524 { 1525 MSG_CONFIG *cfgp; 1526 SGE_SIMPLE32 *se; 1527 1528 cfgp = req->req_vbuf; 1529 memset(cfgp, 0, sizeof *cfgp); 1530 cfgp->Action = Action; 1531 cfgp->Function = MPI_FUNCTION_CONFIG; 1532 cfgp->Header.PageVersion = PageVersion; 1533 cfgp->Header.PageLength = PageLength; 1534 cfgp->Header.PageNumber = PageNumber; 1535 cfgp->Header.PageType = PageType; 1536 cfgp->PageAddress = PageAddress; 1537 se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE; 1538 se->Address = addr; 1539 MPI_pSGE_SET_LENGTH(se, len); 1540 MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT | 1541 MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | 1542 MPI_SGE_FLAGS_END_OF_LIST | 1543 ((Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT 1544 || Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM) 1545 ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST))); 1546 cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 1547 1548 mpt_check_doorbell(mpt); 1549 mpt_send_cmd(mpt, req); 1550 return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 1551 sleep_ok, timeout_ms)); 1552 } 1553 1554 1555 int 1556 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber, 1557 uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt, 1558 int sleep_ok, int timeout_ms) 1559 { 1560 request_t *req; 1561 MSG_CONFIG *cfgp; 1562 int error; 1563 1564 req = mpt_get_request(mpt, sleep_ok); 1565 if (req == NULL) { 1566 mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n"); 1567 return (ENOMEM); 1568 } 1569 1570 error = mpt_issue_cfg_req(mpt, req, MPI_CONFIG_ACTION_PAGE_HEADER, 1571 /*PageVersion*/0, /*PageLength*/0, PageNumber, 1572 PageType, PageAddress, /*addr*/0, /*len*/0, 1573 sleep_ok, timeout_ms); 1574 if (error != 0) { 1575 mpt_free_request(mpt, req); 1576 mpt_prt(mpt, "read_cfg_header timed out\n"); 1577 return (ETIMEDOUT); 1578 } 1579 1580 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { 1581 case MPI_IOCSTATUS_SUCCESS: 1582 cfgp = req->req_vbuf; 1583 bcopy(&cfgp->Header, rslt, sizeof(*rslt)); 1584 error = 0; 1585 break; 1586 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: 1587 mpt_lprt(mpt, MPT_PRT_DEBUG, 1588 "Invalid Page Type %d Number %d Addr 0x%0x\n", 1589 PageType, PageNumber, PageAddress); 1590 error = EINVAL; 1591 break; 1592 default: 1593 mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n", 1594 req->IOCStatus); 1595 error = EIO; 1596 break; 1597 } 1598 mpt_free_request(mpt, req); 1599 return (error); 1600 } 1601 1602 int 1603 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1604 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1605 int timeout_ms) 1606 { 1607 request_t *req; 1608 int error; 1609 1610 req = mpt_get_request(mpt, sleep_ok); 1611 if (req == NULL) { 1612 mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n"); 1613 return (-1); 1614 } 1615 1616 error = mpt_issue_cfg_req(mpt, req, Action, hdr->PageVersion, 1617 hdr->PageLength, hdr->PageNumber, 1618 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK, 1619 PageAddress, req->req_pbuf + MPT_RQSL(mpt), 1620 len, sleep_ok, timeout_ms); 1621 if (error != 0) { 1622 mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action); 1623 return (-1); 1624 } 1625 1626 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1627 mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n", 1628 req->IOCStatus); 1629 mpt_free_request(mpt, req); 1630 return (-1); 1631 } 1632 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 1633 BUS_DMASYNC_POSTREAD); 1634 memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); 1635 mpt_free_request(mpt, req); 1636 return (0); 1637 } 1638 1639 int 1640 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1641 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1642 int timeout_ms) 1643 { 1644 request_t *req; 1645 u_int hdr_attr; 1646 int error; 1647 1648 hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK; 1649 if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE && 1650 hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) { 1651 mpt_prt(mpt, "page type 0x%x not changeable\n", 1652 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK); 1653 return (-1); 1654 } 1655 hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK, 1656 1657 req = mpt_get_request(mpt, sleep_ok); 1658 if (req == NULL) 1659 return (-1); 1660 1661 memcpy(((caddr_t)req->req_vbuf)+MPT_RQSL(mpt), hdr, len); 1662 /* Restore stripped out attributes */ 1663 hdr->PageType |= hdr_attr; 1664 1665 error = mpt_issue_cfg_req(mpt, req, Action, hdr->PageVersion, 1666 hdr->PageLength, hdr->PageNumber, 1667 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK, 1668 PageAddress, req->req_pbuf + MPT_RQSL(mpt), 1669 len, sleep_ok, timeout_ms); 1670 if (error != 0) { 1671 mpt_prt(mpt, "mpt_write_cfg_page timed out\n"); 1672 return (-1); 1673 } 1674 1675 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1676 mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n", 1677 req->IOCStatus); 1678 mpt_free_request(mpt, req); 1679 return (-1); 1680 } 1681 mpt_free_request(mpt, req); 1682 return (0); 1683 } 1684 1685 /* 1686 * Read IOC configuration information 1687 */ 1688 static int 1689 mpt_read_config_info_ioc(struct mpt_softc *mpt) 1690 { 1691 CONFIG_PAGE_HEADER hdr; 1692 struct mpt_raid_volume *mpt_raid; 1693 int rv; 1694 int i; 1695 size_t len; 1696 1697 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 1698 /*PageNumber*/2, /*PageAddress*/0, &hdr, 1699 /*sleep_ok*/FALSE, /*timeout_ms*/5000); 1700 /* 1701 * If it's an invalid page, so what? Not a supported function.... 1702 */ 1703 if (rv == EINVAL) 1704 return (0); 1705 if (rv) 1706 return (rv); 1707 1708 #if __FreeBSD_version >= 500000 1709 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 2 Header: ver %x, len %zx, " 1710 "num %x, type %x\n", hdr.PageVersion, 1711 hdr.PageLength * sizeof(uint32_t), 1712 hdr.PageNumber, hdr.PageType); 1713 #else 1714 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 2 Header: ver %x, len %z, " 1715 "num %x, type %x\n", hdr.PageVersion, 1716 hdr.PageLength * sizeof(uint32_t), 1717 hdr.PageNumber, hdr.PageType); 1718 #endif 1719 1720 len = hdr.PageLength * sizeof(uint32_t); 1721 mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1722 if (mpt->ioc_page2 == NULL) 1723 return (ENOMEM); 1724 memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr)); 1725 rv = mpt_read_cur_cfg_page(mpt, /*PageAddress*/0, 1726 &mpt->ioc_page2->Header, len, 1727 /*sleep_ok*/FALSE, /*timeout_ms*/5000); 1728 if (rv) { 1729 mpt_prt(mpt, "failed to read IOC Page 2\n"); 1730 } else if (mpt->ioc_page2->CapabilitiesFlags != 0) { 1731 uint32_t mask; 1732 1733 mpt_prt(mpt, "Capabilities: ("); 1734 for (mask = 1; mask != 0; mask <<= 1) { 1735 if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) 1736 continue; 1737 1738 switch (mask) { 1739 case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT: 1740 mpt_prtc(mpt, " RAID-0"); 1741 break; 1742 case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT: 1743 mpt_prtc(mpt, " RAID-1E"); 1744 break; 1745 case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT: 1746 mpt_prtc(mpt, " RAID-1"); 1747 break; 1748 case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT: 1749 mpt_prtc(mpt, " SES"); 1750 break; 1751 case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT: 1752 mpt_prtc(mpt, " SAFTE"); 1753 break; 1754 case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT: 1755 mpt_prtc(mpt, " Multi-Channel-Arrays"); 1756 default: 1757 break; 1758 } 1759 } 1760 mpt_prtc(mpt, " )\n"); 1761 if ((mpt->ioc_page2->CapabilitiesFlags 1762 & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT 1763 | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT 1764 | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) { 1765 mpt_prt(mpt, "%d Active Volume%s(%d Max)\n", 1766 mpt->ioc_page2->NumActiveVolumes, 1767 mpt->ioc_page2->NumActiveVolumes != 1 1768 ? "s " : " ", 1769 mpt->ioc_page2->MaxVolumes); 1770 mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n", 1771 mpt->ioc_page2->NumActivePhysDisks, 1772 mpt->ioc_page2->NumActivePhysDisks != 1 1773 ? "s " : " ", 1774 mpt->ioc_page2->MaxPhysDisks); 1775 } 1776 } 1777 1778 len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume); 1779 mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT); 1780 if (mpt->raid_volumes == NULL) { 1781 mpt_prt(mpt, "Could not allocate RAID volume data\n"); 1782 } else { 1783 memset(mpt->raid_volumes, 0, len); 1784 } 1785 1786 /* 1787 * Copy critical data out of ioc_page2 so that we can 1788 * safely refresh the page without windows of unreliable 1789 * data. 1790 */ 1791 mpt->raid_max_volumes = mpt->ioc_page2->MaxVolumes; 1792 1793 len = sizeof(*mpt->raid_volumes->config_page) 1794 + (sizeof(RAID_VOL0_PHYS_DISK)*(mpt->ioc_page2->MaxPhysDisks - 1)); 1795 for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) { 1796 mpt_raid = &mpt->raid_volumes[i]; 1797 mpt_raid->config_page = malloc(len, M_DEVBUF, M_NOWAIT); 1798 if (mpt_raid->config_page == NULL) { 1799 mpt_prt(mpt, "Could not allocate RAID page data\n"); 1800 break; 1801 } 1802 memset(mpt_raid->config_page, 0, len); 1803 } 1804 mpt->raid_page0_len = len; 1805 1806 len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk); 1807 mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT); 1808 if (mpt->raid_disks == NULL) { 1809 mpt_prt(mpt, "Could not allocate RAID disk data\n"); 1810 } else { 1811 memset(mpt->raid_disks, 0, len); 1812 } 1813 1814 mpt->raid_max_disks = mpt->ioc_page2->MaxPhysDisks; 1815 1816 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 1817 /*PageNumber*/3, /*PageAddress*/0, &hdr, 1818 /*sleep_ok*/FALSE, /*timeout_ms*/5000); 1819 if (rv) 1820 return (EIO); 1821 1822 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n", 1823 hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType); 1824 1825 if (mpt->ioc_page3 != NULL) 1826 free(mpt->ioc_page3, M_DEVBUF); 1827 len = hdr.PageLength * sizeof(uint32_t); 1828 mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1829 if (mpt->ioc_page3 == NULL) 1830 return (-1); 1831 memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr)); 1832 rv = mpt_read_cur_cfg_page(mpt, /*PageAddress*/0, 1833 &mpt->ioc_page3->Header, len, 1834 /*sleep_ok*/FALSE, /*timeout_ms*/5000); 1835 if (rv) { 1836 mpt_prt(mpt, "failed to read IOC Page 3\n"); 1837 } 1838 1839 mpt_raid_wakeup(mpt); 1840 1841 return (0); 1842 } 1843 1844 /* 1845 * Enable IOC port 1846 */ 1847 static int 1848 mpt_send_port_enable(struct mpt_softc *mpt, int port) 1849 { 1850 request_t *req; 1851 MSG_PORT_ENABLE *enable_req; 1852 int error; 1853 1854 req = mpt_get_request(mpt, /*sleep_ok*/FALSE); 1855 if (req == NULL) 1856 return (-1); 1857 1858 enable_req = req->req_vbuf; 1859 memset(enable_req, 0, MPT_RQSL(mpt)); 1860 1861 enable_req->Function = MPI_FUNCTION_PORT_ENABLE; 1862 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 1863 enable_req->PortNumber = port; 1864 1865 mpt_check_doorbell(mpt); 1866 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port); 1867 1868 mpt_send_cmd(mpt, req); 1869 error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 1870 /*sleep_ok*/FALSE, 1871 /*time_ms*/(mpt->is_sas || mpt->is_fc)? 30000 : 3000); 1872 if (error != 0) { 1873 mpt_prt(mpt, "port %d enable timed out\n", port); 1874 return (-1); 1875 } 1876 mpt_free_request(mpt, req); 1877 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port); 1878 return (0); 1879 } 1880 1881 /* 1882 * Enable/Disable asynchronous event reporting. 1883 */ 1884 static int 1885 mpt_send_event_request(struct mpt_softc *mpt, int onoff) 1886 { 1887 request_t *req; 1888 MSG_EVENT_NOTIFY *enable_req; 1889 1890 req = mpt_get_request(mpt, FALSE); 1891 if (req == NULL) { 1892 return (ENOMEM); 1893 } 1894 enable_req = req->req_vbuf; 1895 memset(enable_req, 0, sizeof *enable_req); 1896 1897 enable_req->Function = MPI_FUNCTION_EVENT_NOTIFICATION; 1898 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS); 1899 enable_req->Switch = onoff; 1900 1901 mpt_check_doorbell(mpt); 1902 mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n", 1903 onoff ? "en" : "dis"); 1904 /* 1905 * Send the command off, but don't wait for it. 1906 */ 1907 mpt_send_cmd(mpt, req); 1908 return (0); 1909 } 1910 1911 /* 1912 * Un-mask the interupts on the chip. 1913 */ 1914 void 1915 mpt_enable_ints(struct mpt_softc *mpt) 1916 { 1917 /* Unmask every thing except door bell int */ 1918 mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK); 1919 } 1920 1921 /* 1922 * Mask the interupts on the chip. 1923 */ 1924 void 1925 mpt_disable_ints(struct mpt_softc *mpt) 1926 { 1927 /* Mask all interrupts */ 1928 mpt_write(mpt, MPT_OFFSET_INTR_MASK, 1929 MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK); 1930 } 1931 1932 static void 1933 mpt_sysctl_attach(struct mpt_softc *mpt) 1934 { 1935 #if __FreeBSD_version >= 500000 1936 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev); 1937 struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev); 1938 1939 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 1940 "debug", CTLFLAG_RW, &mpt->verbose, 0, 1941 "Debugging/Verbose level"); 1942 #endif 1943 } 1944 1945 int 1946 mpt_attach(struct mpt_softc *mpt) 1947 { 1948 struct mpt_personality *pers; 1949 int i; 1950 int error; 1951 1952 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 1953 pers = mpt_personalities[i]; 1954 if (pers == NULL) { 1955 continue; 1956 } 1957 if (pers->probe(mpt) == 0) { 1958 error = pers->attach(mpt); 1959 if (error != 0) { 1960 mpt_detach(mpt); 1961 return (error); 1962 } 1963 mpt->mpt_pers_mask |= (0x1 << pers->id); 1964 pers->use_count++; 1965 } 1966 } 1967 1968 /* 1969 * Now that we've attached everything, do the enable function 1970 * for all of the personalities. This allows the personalities 1971 * to do setups that are appropriate for them prior to enabling 1972 * any ports. 1973 */ 1974 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 1975 pers = mpt_personalities[i]; 1976 if (pers != NULL && MPT_PERS_ATTACHED(pers, mpt) != 0) { 1977 error = pers->enable(mpt); 1978 if (error != 0) { 1979 mpt_prt(mpt, "personality %s attached but would" 1980 " not enable (%d)\n", pers->name, error); 1981 mpt_detach(mpt); 1982 return (error); 1983 } 1984 } 1985 } 1986 return (0); 1987 } 1988 1989 int 1990 mpt_shutdown(struct mpt_softc *mpt) 1991 { 1992 struct mpt_personality *pers; 1993 1994 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 1995 pers->shutdown(mpt); 1996 } 1997 return (0); 1998 } 1999 2000 int 2001 mpt_detach(struct mpt_softc *mpt) 2002 { 2003 struct mpt_personality *pers; 2004 2005 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2006 pers->detach(mpt); 2007 mpt->mpt_pers_mask &= ~(0x1 << pers->id); 2008 pers->use_count--; 2009 } 2010 2011 return (0); 2012 } 2013 2014 int 2015 mpt_core_load(struct mpt_personality *pers) 2016 { 2017 int i; 2018 2019 /* 2020 * Setup core handlers and insert the default handler 2021 * into all "empty slots". 2022 */ 2023 for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) { 2024 mpt_reply_handlers[i] = mpt_default_reply_handler; 2025 } 2026 2027 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] = 2028 mpt_event_reply_handler; 2029 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] = 2030 mpt_config_reply_handler; 2031 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] = 2032 mpt_handshake_reply_handler; 2033 return (0); 2034 } 2035 2036 /* 2037 * Initialize per-instance driver data and perform 2038 * initial controller configuration. 2039 */ 2040 int 2041 mpt_core_attach(struct mpt_softc *mpt) 2042 { 2043 int val; 2044 int error; 2045 2046 2047 LIST_INIT(&mpt->ack_frames); 2048 2049 /* Put all request buffers on the free list */ 2050 TAILQ_INIT(&mpt->request_pending_list); 2051 TAILQ_INIT(&mpt->request_free_list); 2052 TAILQ_INIT(&mpt->request_timeout_list); 2053 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { 2054 request_t *req = &mpt->request_pool[val]; 2055 req->state = REQ_STATE_ALLOCATED; 2056 mpt_free_request(mpt, req); 2057 } 2058 2059 for (val = 0; val < MPT_MAX_LUNS; val++) { 2060 STAILQ_INIT(&mpt->trt[val].atios); 2061 STAILQ_INIT(&mpt->trt[val].inots); 2062 } 2063 STAILQ_INIT(&mpt->trt_wildcard.atios); 2064 STAILQ_INIT(&mpt->trt_wildcard.inots); 2065 2066 mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE; 2067 2068 mpt_sysctl_attach(mpt); 2069 2070 mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n", 2071 mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL))); 2072 2073 error = mpt_configure_ioc(mpt); 2074 2075 return (error); 2076 } 2077 2078 int 2079 mpt_core_enable(struct mpt_softc *mpt) 2080 { 2081 /* 2082 * We enter with the IOC enabled, but async events 2083 * not enabled, ports not enabled and interrupts 2084 * not enabled. 2085 */ 2086 2087 /* 2088 * Enable asynchronous event reporting- all personalities 2089 * have attached so that they should be able to now field 2090 * async events. 2091 */ 2092 mpt_send_event_request(mpt, 1); 2093 2094 /* 2095 * Catch any pending interrupts 2096 * 2097 * This seems to be crucial- otherwise 2098 * the portenable below times out. 2099 */ 2100 mpt_intr(mpt); 2101 2102 /* 2103 * Enable Interrupts 2104 */ 2105 mpt_enable_ints(mpt); 2106 2107 /* 2108 * Catch any pending interrupts 2109 * 2110 * This seems to be crucial- otherwise 2111 * the portenable below times out. 2112 */ 2113 mpt_intr(mpt); 2114 2115 /* 2116 * Enable the port- but only if we are not MPT_ROLE_NONE. 2117 */ 2118 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2119 mpt_prt(mpt, "failed to enable port 0\n"); 2120 return (ENXIO); 2121 } 2122 return (0); 2123 } 2124 2125 void 2126 mpt_core_shutdown(struct mpt_softc *mpt) 2127 { 2128 mpt_disable_ints(mpt); 2129 } 2130 2131 void 2132 mpt_core_detach(struct mpt_softc *mpt) 2133 { 2134 mpt_disable_ints(mpt); 2135 } 2136 2137 int 2138 mpt_core_unload(struct mpt_personality *pers) 2139 { 2140 /* Unload is always successfull. */ 2141 return (0); 2142 } 2143 2144 #define FW_UPLOAD_REQ_SIZE \ 2145 (sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION) \ 2146 + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32)) 2147 2148 static int 2149 mpt_upload_fw(struct mpt_softc *mpt) 2150 { 2151 uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE]; 2152 MSG_FW_UPLOAD_REPLY fw_reply; 2153 MSG_FW_UPLOAD *fw_req; 2154 FW_UPLOAD_TCSGE *tsge; 2155 SGE_SIMPLE32 *sge; 2156 uint32_t flags; 2157 int error; 2158 2159 memset(&fw_req_buf, 0, sizeof(fw_req_buf)); 2160 fw_req = (MSG_FW_UPLOAD *)fw_req_buf; 2161 fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM; 2162 fw_req->Function = MPI_FUNCTION_FW_UPLOAD; 2163 fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 2164 tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL; 2165 tsge->DetailsLength = 12; 2166 tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT; 2167 tsge->ImageSize = htole32(mpt->fw_image_size); 2168 sge = (SGE_SIMPLE32 *)(tsge + 1); 2169 flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER 2170 | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT 2171 | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST); 2172 flags <<= MPI_SGE_FLAGS_SHIFT; 2173 sge->FlagsLength = htole32(flags | mpt->fw_image_size); 2174 sge->Address = htole32(mpt->fw_phys); 2175 error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf); 2176 if (error) 2177 return(error); 2178 error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply); 2179 return (error); 2180 } 2181 2182 static void 2183 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr, 2184 uint32_t *data, bus_size_t len) 2185 { 2186 uint32_t *data_end; 2187 2188 data_end = data + (roundup2(len, sizeof(uint32_t)) / 4); 2189 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2190 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr); 2191 while (data != data_end) { 2192 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data); 2193 data++; 2194 } 2195 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2196 } 2197 2198 static int 2199 mpt_download_fw(struct mpt_softc *mpt) 2200 { 2201 MpiFwHeader_t *fw_hdr; 2202 int error; 2203 uint32_t ext_offset; 2204 uint32_t data; 2205 2206 mpt_prt(mpt, "Downloading Firmware - Image Size %d\n", 2207 mpt->fw_image_size); 2208 2209 error = mpt_enable_diag_mode(mpt); 2210 if (error != 0) { 2211 mpt_prt(mpt, "Could not enter diagnostic mode!\n"); 2212 return (EIO); 2213 } 2214 2215 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, 2216 MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM); 2217 2218 fw_hdr = (MpiFwHeader_t *)mpt->fw_image; 2219 mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr, 2220 fw_hdr->ImageSize); 2221 2222 ext_offset = fw_hdr->NextImageHeaderOffset; 2223 while (ext_offset != 0) { 2224 MpiExtImageHeader_t *ext; 2225 2226 ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset); 2227 ext_offset = ext->NextImageHeaderOffset; 2228 2229 mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext, 2230 ext->ImageSize); 2231 } 2232 2233 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2234 /* Setup the address to jump to on reset. */ 2235 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr); 2236 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue); 2237 2238 /* 2239 * The controller sets the "flash bad" status after attempting 2240 * to auto-boot from flash. Clear the status so that the controller 2241 * will continue the boot process with our newly installed firmware. 2242 */ 2243 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2244 data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL; 2245 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2246 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data); 2247 2248 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2249 2250 /* 2251 * Re-enable the processor and clear the boot halt flag. 2252 */ 2253 data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 2254 data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM); 2255 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data); 2256 2257 mpt_disable_diag_mode(mpt); 2258 return (0); 2259 } 2260 2261 /* 2262 * Allocate/Initialize data structures for the controller. Called 2263 * once at instance startup. 2264 */ 2265 static int 2266 mpt_configure_ioc(struct mpt_softc *mpt) 2267 { 2268 MSG_PORT_FACTS_REPLY pfp; 2269 MSG_IOC_FACTS_REPLY facts; 2270 int try; 2271 int needreset; 2272 uint32_t max_chain_depth; 2273 2274 needreset = 0; 2275 for (try = 0; try < MPT_MAX_TRYS; try++) { 2276 2277 /* 2278 * No need to reset if the IOC is already in the READY state. 2279 * 2280 * Force reset if initialization failed previously. 2281 * Note that a hard_reset of the second channel of a '929 2282 * will stop operation of the first channel. Hopefully, if the 2283 * first channel is ok, the second will not require a hard 2284 * reset. 2285 */ 2286 if (needreset || MPT_STATE(mpt_rd_db(mpt)) != 2287 MPT_DB_STATE_READY) { 2288 if (mpt_reset(mpt, FALSE) != MPT_OK) { 2289 continue; 2290 } 2291 } 2292 needreset = 0; 2293 2294 if (mpt_get_iocfacts(mpt, &facts) != MPT_OK) { 2295 mpt_prt(mpt, "mpt_get_iocfacts failed\n"); 2296 needreset = 1; 2297 continue; 2298 } 2299 2300 mpt->mpt_global_credits = le16toh(facts.GlobalCredits); 2301 mpt->request_frame_size = le16toh(facts.RequestFrameSize); 2302 mpt->ioc_facts_flags = facts.Flags; 2303 mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n", 2304 le16toh(facts.MsgVersion) >> 8, 2305 le16toh(facts.MsgVersion) & 0xFF, 2306 le16toh(facts.HeaderVersion) >> 8, 2307 le16toh(facts.HeaderVersion) & 0xFF); 2308 2309 /* 2310 * Now that we know request frame size, we can calculate 2311 * the actual (reasonable) segment limit for read/write I/O. 2312 * 2313 * This limit is constrained by: 2314 * 2315 * + The size of each area we allocate per command (and how 2316 * many chain segments we can fit into it). 2317 * + The total number of areas we've set up. 2318 * + The actual chain depth the card will allow. 2319 * 2320 * The first area's segment count is limited by the I/O request 2321 * at the head of it. We cannot allocate realistically more 2322 * than MPT_MAX_REQUESTS areas. Therefore, to account for both 2323 * conditions, we'll just start out with MPT_MAX_REQUESTS-2. 2324 * 2325 */ 2326 max_chain_depth = facts.MaxChainDepth; 2327 2328 /* total number of request areas we (can) allocate */ 2329 mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2; 2330 2331 /* converted to the number of chain areas possible */ 2332 mpt->max_seg_cnt *= MPT_NRFM(mpt); 2333 2334 /* limited by the number of chain areas the card will support */ 2335 if (mpt->max_seg_cnt > max_chain_depth) { 2336 mpt_lprt(mpt, MPT_PRT_DEBUG, 2337 "chain depth limited to %u (from %u)\n", 2338 max_chain_depth, mpt->max_seg_cnt); 2339 mpt->max_seg_cnt = max_chain_depth; 2340 } 2341 2342 /* converted to the number of simple sges in chain segments. */ 2343 mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1); 2344 2345 mpt_lprt(mpt, MPT_PRT_DEBUG, 2346 "Maximum Segment Count: %u\n", mpt->max_seg_cnt); 2347 mpt_lprt(mpt, MPT_PRT_DEBUG, 2348 "MsgLength=%u IOCNumber = %d\n", 2349 facts.MsgLength, facts.IOCNumber); 2350 mpt_lprt(mpt, MPT_PRT_DEBUG, 2351 "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes " 2352 "Request Frame Size %u bytes Max Chain Depth %u\n", 2353 mpt->mpt_global_credits, facts.BlockSize, 2354 mpt->request_frame_size << 2, max_chain_depth); 2355 mpt_lprt(mpt, MPT_PRT_DEBUG, 2356 "IOCFACTS: Num Ports %d, FWImageSize %d, " 2357 "Flags=%#x\n", facts.NumberOfPorts, 2358 le32toh(facts.FWImageSize), facts.Flags); 2359 2360 2361 if ((facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) != 0) { 2362 struct mpt_map_info mi; 2363 int error; 2364 2365 /* 2366 * In some configurations, the IOC's firmware is 2367 * stored in a shared piece of system NVRAM that 2368 * is only accessable via the BIOS. In this 2369 * case, the firmware keeps a copy of firmware in 2370 * RAM until the OS driver retrieves it. Once 2371 * retrieved, we are responsible for re-downloading 2372 * the firmware after any hard-reset. 2373 */ 2374 mpt->fw_image_size = le32toh(facts.FWImageSize); 2375 error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 2376 /*alignment*/1, /*boundary*/0, 2377 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, 2378 /*highaddr*/BUS_SPACE_MAXADDR, /*filter*/NULL, 2379 /*filterarg*/NULL, mpt->fw_image_size, 2380 /*nsegments*/1, /*maxsegsz*/mpt->fw_image_size, 2381 /*flags*/0, &mpt->fw_dmat); 2382 if (error != 0) { 2383 mpt_prt(mpt, "cannot create fw dma tag\n"); 2384 return (ENOMEM); 2385 } 2386 error = bus_dmamem_alloc(mpt->fw_dmat, 2387 (void **)&mpt->fw_image, BUS_DMA_NOWAIT, 2388 &mpt->fw_dmap); 2389 if (error != 0) { 2390 mpt_prt(mpt, "cannot allocate fw mem.\n"); 2391 bus_dma_tag_destroy(mpt->fw_dmat); 2392 return (ENOMEM); 2393 } 2394 mi.mpt = mpt; 2395 mi.error = 0; 2396 bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap, 2397 mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, 2398 &mi, 0); 2399 mpt->fw_phys = mi.phys; 2400 2401 error = mpt_upload_fw(mpt); 2402 if (error != 0) { 2403 mpt_prt(mpt, "fw upload failed.\n"); 2404 bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap); 2405 bus_dmamem_free(mpt->fw_dmat, mpt->fw_image, 2406 mpt->fw_dmap); 2407 bus_dma_tag_destroy(mpt->fw_dmat); 2408 mpt->fw_image = NULL; 2409 return (EIO); 2410 } 2411 } 2412 2413 if (mpt_get_portfacts(mpt, &pfp) != MPT_OK) { 2414 mpt_prt(mpt, "mpt_get_portfacts failed\n"); 2415 needreset = 1; 2416 continue; 2417 } 2418 2419 mpt_lprt(mpt, MPT_PRT_DEBUG, 2420 "PORTFACTS: Type %x PFlags %x IID %d MaxDev %d\n", 2421 pfp.PortType, pfp.ProtocolFlags, pfp.PortSCSIID, 2422 pfp.MaxDevices); 2423 2424 mpt->mpt_port_type = pfp.PortType; 2425 mpt->mpt_proto_flags = pfp.ProtocolFlags; 2426 if (pfp.PortType != MPI_PORTFACTS_PORTTYPE_SCSI && 2427 pfp.PortType != MPI_PORTFACTS_PORTTYPE_SAS && 2428 pfp.PortType != MPI_PORTFACTS_PORTTYPE_FC) { 2429 mpt_prt(mpt, "Unsupported Port Type (%x)\n", 2430 pfp.PortType); 2431 return (ENXIO); 2432 } 2433 mpt->mpt_max_tgtcmds = le16toh(pfp.MaxPostedCmdBuffers); 2434 2435 if (pfp.PortType == MPI_PORTFACTS_PORTTYPE_FC) { 2436 mpt->is_fc = 1; 2437 mpt->is_sas = 0; 2438 } else if (pfp.PortType == MPI_PORTFACTS_PORTTYPE_SAS) { 2439 mpt->is_fc = 0; 2440 mpt->is_sas = 1; 2441 } else { 2442 mpt->is_fc = 0; 2443 mpt->is_sas = 0; 2444 } 2445 mpt->mpt_ini_id = pfp.PortSCSIID; 2446 mpt->mpt_max_devices = pfp.MaxDevices; 2447 2448 /* 2449 * Match our expected role with what this port supports. 2450 * 2451 * We only do this to meet expectations. That is, if the 2452 * user has specified they want initiator role, and we 2453 * don't support it, that's an error we return back upstream. 2454 */ 2455 2456 mpt->cap = MPT_ROLE_NONE; 2457 if (pfp.ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) { 2458 mpt->cap |= MPT_ROLE_INITIATOR; 2459 } 2460 if (pfp.ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) { 2461 mpt->cap |= MPT_ROLE_TARGET; 2462 } 2463 if (mpt->cap == MPT_ROLE_NONE) { 2464 mpt_prt(mpt, "port does not support either target or " 2465 "initiator role\n"); 2466 return (ENXIO); 2467 } 2468 2469 if ((mpt->role & MPT_ROLE_INITIATOR) && 2470 (mpt->cap & MPT_ROLE_INITIATOR) == 0) { 2471 mpt_prt(mpt, "port does not support initiator role\n"); 2472 return (ENXIO); 2473 } 2474 2475 if ((mpt->role & MPT_ROLE_TARGET) && 2476 (mpt->cap & MPT_ROLE_TARGET) == 0) { 2477 mpt_prt(mpt, "port does not support target role\n"); 2478 return (ENXIO); 2479 } 2480 2481 if (mpt_enable_ioc(mpt, 0) != MPT_OK) { 2482 mpt_prt(mpt, "unable to initialize IOC\n"); 2483 return (ENXIO); 2484 } 2485 2486 /* 2487 * Read IOC configuration information. 2488 */ 2489 mpt_read_config_info_ioc(mpt); 2490 2491 /* Everything worked */ 2492 break; 2493 } 2494 2495 if (try >= MPT_MAX_TRYS) { 2496 mpt_prt(mpt, "failed to initialize IOC"); 2497 return (EIO); 2498 } 2499 2500 return (0); 2501 } 2502 2503 static int 2504 mpt_enable_ioc(struct mpt_softc *mpt, int portenable) 2505 { 2506 uint32_t pptr; 2507 int val; 2508 2509 if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) { 2510 mpt_prt(mpt, "mpt_send_ioc_init failed\n"); 2511 return (EIO); 2512 } 2513 2514 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n"); 2515 2516 if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) { 2517 mpt_prt(mpt, "IOC failed to go to run state\n"); 2518 return (ENXIO); 2519 } 2520 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n"); 2521 2522 /* 2523 * Give it reply buffers 2524 * 2525 * Do *not* exceed global credits. 2526 */ 2527 for (val = 0, pptr = mpt->reply_phys; 2528 (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE); 2529 pptr += MPT_REPLY_SIZE) { 2530 mpt_free_reply(mpt, pptr); 2531 if (++val == mpt->mpt_global_credits - 1) 2532 break; 2533 } 2534 2535 2536 /* 2537 * Enable the port if asked. This is only done if we're resetting 2538 * the IOC after initial startup. 2539 */ 2540 if (portenable) { 2541 /* 2542 * Enable asynchronous event reporting 2543 */ 2544 mpt_send_event_request(mpt, 1); 2545 2546 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2547 mpt_prt(mpt, "failed to enable port 0\n"); 2548 return (ENXIO); 2549 } 2550 } 2551 return (MPT_OK); 2552 } 2553