xref: /freebsd/sys/dev/mpt/mpt.c (revision 2e1417489338b971e5fd599ff48b5f65df9e8d3b)
1 /*-
2  * Generic routines for LSI Fusion adapters.
3  * FreeBSD Version.
4  *
5  * Copyright (c) 2000, 2001 by Greg Ansley
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice immediately at the beginning of the file, without modification,
12  *    this list of conditions, and the following disclaimer.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 /*-
29  * Copyright (c) 2002, 2006 by Matthew Jacob
30  * All rights reserved.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions are
34  * met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
38  *    substantially similar to the "NO WARRANTY" disclaimer below
39  *    ("Disclaimer") and any redistribution must be conditioned upon including
40  *    a substantially similar Disclaimer requirement for further binary
41  *    redistribution.
42  * 3. Neither the names of the above listed copyright holders nor the names
43  *    of any contributors may be used to endorse or promote products derived
44  *    from this software without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
47  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
50  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
56  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
57  *
58  * Support from Chris Ellsworth in order to make SAS adapters work
59  * is gratefully acknowledged.
60  *
61  *
62  * Support from LSI-Logic has also gone a great deal toward making this a
63  * workable subsystem and is gratefully acknowledged.
64  */
65 /*-
66  * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
67  * Copyright (c) 2005, WHEEL Sp. z o.o.
68  * Copyright (c) 2004, 2005 Justin T. Gibbs
69  * All rights reserved.
70  *
71  * Redistribution and use in source and binary forms, with or without
72  * modification, are permitted provided that the following conditions are
73  * met:
74  * 1. Redistributions of source code must retain the above copyright
75  *    notice, this list of conditions and the following disclaimer.
76  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
77  *    substantially similar to the "NO WARRANTY" disclaimer below
78  *    ("Disclaimer") and any redistribution must be conditioned upon including
79  *    a substantially similar Disclaimer requirement for further binary
80  *    redistribution.
81  * 3. Neither the names of the above listed copyright holders nor the names
82  *    of any contributors may be used to endorse or promote products derived
83  *    from this software without specific prior written permission.
84  *
85  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
86  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
89  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
90  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
91  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
92  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
93  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
94  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
95  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
96  */
97 
98 #include <sys/cdefs.h>
99 __FBSDID("$FreeBSD$");
100 
101 #include <dev/mpt/mpt.h>
102 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
103 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
104 
105 #include <dev/mpt/mpilib/mpi.h>
106 #include <dev/mpt/mpilib/mpi_ioc.h>
107 #include <dev/mpt/mpilib/mpi_fc.h>
108 #include <dev/mpt/mpilib/mpi_targ.h>
109 
110 #include <sys/sysctl.h>
111 
112 #define MPT_MAX_TRYS 3
113 #define MPT_MAX_WAIT 300000
114 
115 static int maxwait_ack = 0;
116 static int maxwait_int = 0;
117 static int maxwait_state = 0;
118 
119 static TAILQ_HEAD(, mpt_softc)	mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
120 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
121 
122 static mpt_reply_handler_t mpt_default_reply_handler;
123 static mpt_reply_handler_t mpt_config_reply_handler;
124 static mpt_reply_handler_t mpt_handshake_reply_handler;
125 static mpt_reply_handler_t mpt_event_reply_handler;
126 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
127 			       MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
128 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
129 static int mpt_soft_reset(struct mpt_softc *mpt);
130 static void mpt_hard_reset(struct mpt_softc *mpt);
131 static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
132 static void mpt_dma_buf_free(struct mpt_softc *mpt);
133 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
134 static int mpt_enable_ioc(struct mpt_softc *mpt, int);
135 
136 /************************* Personality Module Support *************************/
137 /*
138  * We include one extra entry that is guaranteed to be NULL
139  * to simplify our itterator.
140  */
141 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
142 static __inline struct mpt_personality*
143 	mpt_pers_find(struct mpt_softc *, u_int);
144 static __inline struct mpt_personality*
145 	mpt_pers_find_reverse(struct mpt_softc *, u_int);
146 
147 static __inline struct mpt_personality *
148 mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
149 {
150 	KASSERT(start_at <= MPT_MAX_PERSONALITIES,
151 		("mpt_pers_find: starting position out of range\n"));
152 
153 	while (start_at < MPT_MAX_PERSONALITIES
154 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
155 		start_at++;
156 	}
157 	return (mpt_personalities[start_at]);
158 }
159 
160 /*
161  * Used infrequently, so no need to optimize like a forward
162  * traversal where we use the MAX+1 is guaranteed to be NULL
163  * trick.
164  */
165 static __inline struct mpt_personality *
166 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
167 {
168 	while (start_at < MPT_MAX_PERSONALITIES
169 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
170 		start_at--;
171 	}
172 	if (start_at < MPT_MAX_PERSONALITIES)
173 		return (mpt_personalities[start_at]);
174 	return (NULL);
175 }
176 
177 #define MPT_PERS_FOREACH(mpt, pers)				\
178 	for (pers = mpt_pers_find(mpt, /*start_at*/0);		\
179 	     pers != NULL;					\
180 	     pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
181 
182 #define MPT_PERS_FOREACH_REVERSE(mpt, pers)				\
183 	for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
184 	     pers != NULL;						\
185 	     pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
186 
187 static mpt_load_handler_t      mpt_stdload;
188 static mpt_probe_handler_t     mpt_stdprobe;
189 static mpt_attach_handler_t    mpt_stdattach;
190 static mpt_enable_handler_t    mpt_stdenable;
191 static mpt_ready_handler_t     mpt_stdready;
192 static mpt_event_handler_t     mpt_stdevent;
193 static mpt_reset_handler_t     mpt_stdreset;
194 static mpt_shutdown_handler_t  mpt_stdshutdown;
195 static mpt_detach_handler_t    mpt_stddetach;
196 static mpt_unload_handler_t    mpt_stdunload;
197 static struct mpt_personality mpt_default_personality =
198 {
199 	.load		= mpt_stdload,
200 	.probe		= mpt_stdprobe,
201 	.attach		= mpt_stdattach,
202 	.enable		= mpt_stdenable,
203 	.ready		= mpt_stdready,
204 	.event		= mpt_stdevent,
205 	.reset		= mpt_stdreset,
206 	.shutdown	= mpt_stdshutdown,
207 	.detach		= mpt_stddetach,
208 	.unload		= mpt_stdunload
209 };
210 
211 static mpt_load_handler_t      mpt_core_load;
212 static mpt_attach_handler_t    mpt_core_attach;
213 static mpt_enable_handler_t    mpt_core_enable;
214 static mpt_reset_handler_t     mpt_core_ioc_reset;
215 static mpt_event_handler_t     mpt_core_event;
216 static mpt_shutdown_handler_t  mpt_core_shutdown;
217 static mpt_shutdown_handler_t  mpt_core_detach;
218 static mpt_unload_handler_t    mpt_core_unload;
219 static struct mpt_personality mpt_core_personality =
220 {
221 	.name		= "mpt_core",
222 	.load		= mpt_core_load,
223 //	.attach		= mpt_core_attach,
224 //	.enable		= mpt_core_enable,
225 	.event		= mpt_core_event,
226 	.reset		= mpt_core_ioc_reset,
227 	.shutdown	= mpt_core_shutdown,
228 	.detach		= mpt_core_detach,
229 	.unload		= mpt_core_unload,
230 };
231 
232 /*
233  * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
234  * ordering information.  We want the core to always register FIRST.
235  * other modules are set to SI_ORDER_SECOND.
236  */
237 static moduledata_t mpt_core_mod = {
238 	"mpt_core", mpt_modevent, &mpt_core_personality
239 };
240 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
241 MODULE_VERSION(mpt_core, 1);
242 
243 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
244 
245 int
246 mpt_modevent(module_t mod, int type, void *data)
247 {
248 	struct mpt_personality *pers;
249 	int error;
250 
251 	pers = (struct mpt_personality *)data;
252 
253 	error = 0;
254 	switch (type) {
255 	case MOD_LOAD:
256 	{
257 		mpt_load_handler_t **def_handler;
258 		mpt_load_handler_t **pers_handler;
259 		int i;
260 
261 		for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
262 			if (mpt_personalities[i] == NULL)
263 				break;
264 		}
265 		if (i >= MPT_MAX_PERSONALITIES) {
266 			error = ENOMEM;
267 			break;
268 		}
269 		pers->id = i;
270 		mpt_personalities[i] = pers;
271 
272 		/* Install standard/noop handlers for any NULL entries. */
273 		def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
274 		pers_handler = MPT_PERS_FIRST_HANDLER(pers);
275 		while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
276 			if (*pers_handler == NULL)
277 				*pers_handler = *def_handler;
278 			pers_handler++;
279 			def_handler++;
280 		}
281 
282 		error = (pers->load(pers));
283 		if (error != 0)
284 			mpt_personalities[i] = NULL;
285 		break;
286 	}
287 	case MOD_SHUTDOWN:
288 		break;
289 #if __FreeBSD_version >= 500000
290 	case MOD_QUIESCE:
291 		break;
292 #endif
293 	case MOD_UNLOAD:
294 		error = pers->unload(pers);
295 		mpt_personalities[pers->id] = NULL;
296 		break;
297 	default:
298 		error = EINVAL;
299 		break;
300 	}
301 	return (error);
302 }
303 
304 static int
305 mpt_stdload(struct mpt_personality *pers)
306 {
307 
308 	/* Load is always successful. */
309 	return (0);
310 }
311 
312 static int
313 mpt_stdprobe(struct mpt_softc *mpt)
314 {
315 
316 	/* Probe is always successful. */
317 	return (0);
318 }
319 
320 static int
321 mpt_stdattach(struct mpt_softc *mpt)
322 {
323 
324 	/* Attach is always successful. */
325 	return (0);
326 }
327 
328 static int
329 mpt_stdenable(struct mpt_softc *mpt)
330 {
331 
332 	/* Enable is always successful. */
333 	return (0);
334 }
335 
336 static void
337 mpt_stdready(struct mpt_softc *mpt)
338 {
339 
340 }
341 
342 static int
343 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
344 {
345 
346 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
347 	/* Event was not for us. */
348 	return (0);
349 }
350 
351 static void
352 mpt_stdreset(struct mpt_softc *mpt, int type)
353 {
354 
355 }
356 
357 static void
358 mpt_stdshutdown(struct mpt_softc *mpt)
359 {
360 
361 }
362 
363 static void
364 mpt_stddetach(struct mpt_softc *mpt)
365 {
366 
367 }
368 
369 static int
370 mpt_stdunload(struct mpt_personality *pers)
371 {
372 
373 	/* Unload is always successful. */
374 	return (0);
375 }
376 
377 /*
378  * Post driver attachment, we may want to perform some global actions.
379  * Here is the hook to do so.
380  */
381 
382 static void
383 mpt_postattach(void *unused)
384 {
385 	struct mpt_softc *mpt;
386 	struct mpt_personality *pers;
387 
388 	TAILQ_FOREACH(mpt, &mpt_tailq, links) {
389 		MPT_PERS_FOREACH(mpt, pers)
390 			pers->ready(mpt);
391 	}
392 }
393 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
394 
395 /******************************* Bus DMA Support ******************************/
396 void
397 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
398 {
399 	struct mpt_map_info *map_info;
400 
401 	map_info = (struct mpt_map_info *)arg;
402 	map_info->error = error;
403 	map_info->phys = segs->ds_addr;
404 }
405 
406 /**************************** Reply/Event Handling ****************************/
407 int
408 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
409 		     mpt_handler_t handler, uint32_t *phandler_id)
410 {
411 
412 	switch (type) {
413 	case MPT_HANDLER_REPLY:
414 	{
415 		u_int cbi;
416 		u_int free_cbi;
417 
418 		if (phandler_id == NULL)
419 			return (EINVAL);
420 
421 		free_cbi = MPT_HANDLER_ID_NONE;
422 		for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
423 			/*
424 			 * If the same handler is registered multiple
425 			 * times, don't error out.  Just return the
426 			 * index of the original registration.
427 			 */
428 			if (mpt_reply_handlers[cbi] == handler.reply_handler) {
429 				*phandler_id = MPT_CBI_TO_HID(cbi);
430 				return (0);
431 			}
432 
433 			/*
434 			 * Fill from the front in the hope that
435 			 * all registered handlers consume only a
436 			 * single cache line.
437 			 *
438 			 * We don't break on the first empty slot so
439 			 * that the full table is checked to see if
440 			 * this handler was previously registered.
441 			 */
442 			if (free_cbi == MPT_HANDLER_ID_NONE &&
443 			    (mpt_reply_handlers[cbi]
444 			  == mpt_default_reply_handler))
445 				free_cbi = cbi;
446 		}
447 		if (free_cbi == MPT_HANDLER_ID_NONE) {
448 			return (ENOMEM);
449 		}
450 		mpt_reply_handlers[free_cbi] = handler.reply_handler;
451 		*phandler_id = MPT_CBI_TO_HID(free_cbi);
452 		break;
453 	}
454 	default:
455 		mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
456 		return (EINVAL);
457 	}
458 	return (0);
459 }
460 
461 int
462 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
463 		       mpt_handler_t handler, uint32_t handler_id)
464 {
465 
466 	switch (type) {
467 	case MPT_HANDLER_REPLY:
468 	{
469 		u_int cbi;
470 
471 		cbi = MPT_CBI(handler_id);
472 		if (cbi >= MPT_NUM_REPLY_HANDLERS
473 		 || mpt_reply_handlers[cbi] != handler.reply_handler)
474 			return (ENOENT);
475 		mpt_reply_handlers[cbi] = mpt_default_reply_handler;
476 		break;
477 	}
478 	default:
479 		mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
480 		return (EINVAL);
481 	}
482 	return (0);
483 }
484 
485 static int
486 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
487 	uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
488 {
489 
490 	mpt_prt(mpt,
491 	    "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
492 	    req, req->serno, reply_desc, reply_frame);
493 
494 	if (reply_frame != NULL)
495 		mpt_dump_reply_frame(mpt, reply_frame);
496 
497 	mpt_prt(mpt, "Reply Frame Ignored\n");
498 
499 	return (/*free_reply*/TRUE);
500 }
501 
502 static int
503 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
504  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
505 {
506 
507 	if (req != NULL) {
508 		if (reply_frame != NULL) {
509 			MSG_CONFIG *cfgp;
510 			MSG_CONFIG_REPLY *reply;
511 
512 			cfgp = (MSG_CONFIG *)req->req_vbuf;
513 			reply = (MSG_CONFIG_REPLY *)reply_frame;
514 			req->IOCStatus = le16toh(reply_frame->IOCStatus);
515 			bcopy(&reply->Header, &cfgp->Header,
516 			      sizeof(cfgp->Header));
517 			cfgp->ExtPageLength = reply->ExtPageLength;
518 			cfgp->ExtPageType = reply->ExtPageType;
519 		}
520 		req->state &= ~REQ_STATE_QUEUED;
521 		req->state |= REQ_STATE_DONE;
522 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
523 		if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
524 			wakeup(req);
525 		} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
526 			/*
527 			 * Whew- we can free this request (late completion)
528 			 */
529 			mpt_free_request(mpt, req);
530 		}
531 	}
532 
533 	return (TRUE);
534 }
535 
536 static int
537 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
538  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
539 {
540 
541 	/* Nothing to be done. */
542 	return (TRUE);
543 }
544 
545 static int
546 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
547     uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
548 {
549 	int free_reply;
550 
551 	KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
552 	KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
553 
554 	free_reply = TRUE;
555 	switch (reply_frame->Function) {
556 	case MPI_FUNCTION_EVENT_NOTIFICATION:
557 	{
558 		MSG_EVENT_NOTIFY_REPLY *msg;
559 		struct mpt_personality *pers;
560 		u_int handled;
561 
562 		handled = 0;
563 		msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
564 		msg->EventDataLength = le16toh(msg->EventDataLength);
565 		msg->IOCStatus = le16toh(msg->IOCStatus);
566 		msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
567 		msg->Event = le32toh(msg->Event);
568 		MPT_PERS_FOREACH(mpt, pers)
569 			handled += pers->event(mpt, req, msg);
570 
571 		if (handled == 0 && mpt->mpt_pers_mask == 0) {
572 			mpt_lprt(mpt, MPT_PRT_INFO,
573 				"No Handlers For Any Event Notify Frames. "
574 				"Event %#x (ACK %sequired).\n",
575 				msg->Event, msg->AckRequired? "r" : "not r");
576 		} else if (handled == 0) {
577 			mpt_lprt(mpt,
578 				msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
579 				"Unhandled Event Notify Frame. Event %#x "
580 				"(ACK %sequired).\n",
581 				msg->Event, msg->AckRequired? "r" : "not r");
582 		}
583 
584 		if (msg->AckRequired) {
585 			request_t *ack_req;
586 			uint32_t context;
587 
588 			context = req->index | MPT_REPLY_HANDLER_EVENTS;
589 			ack_req = mpt_get_request(mpt, FALSE);
590 			if (ack_req == NULL) {
591 				struct mpt_evtf_record *evtf;
592 
593 				evtf = (struct mpt_evtf_record *)reply_frame;
594 				evtf->context = context;
595 				LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
596 				free_reply = FALSE;
597 				break;
598 			}
599 			mpt_send_event_ack(mpt, ack_req, msg, context);
600 			/*
601 			 * Don't check for CONTINUATION_REPLY here
602 			 */
603 			return (free_reply);
604 		}
605 		break;
606 	}
607 	case MPI_FUNCTION_PORT_ENABLE:
608 		mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
609 		break;
610 	case MPI_FUNCTION_EVENT_ACK:
611 		break;
612 	default:
613 		mpt_prt(mpt, "unknown event function: %x\n",
614 			reply_frame->Function);
615 		break;
616 	}
617 
618 	/*
619 	 * I'm not sure that this continuation stuff works as it should.
620 	 *
621 	 * I've had FC async events occur that free the frame up because
622 	 * the continuation bit isn't set, and then additional async events
623 	 * then occur using the same context. As you might imagine, this
624 	 * leads to Very Bad Thing.
625 	 *
626 	 *  Let's just be safe for now and not free them up until we figure
627 	 * out what's actually happening here.
628 	 */
629 #if	0
630 	if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
631 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
632 		mpt_free_request(mpt, req);
633 		mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
634 		    reply_frame->Function, req, req->serno);
635 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
636 			MSG_EVENT_NOTIFY_REPLY *msg =
637 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
638 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
639 			    msg->Event, msg->AckRequired);
640 		}
641 	} else {
642 		mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
643 		    reply_frame->Function, req, req->serno);
644 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
645 			MSG_EVENT_NOTIFY_REPLY *msg =
646 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
647 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
648 			    msg->Event, msg->AckRequired);
649 		}
650 		mpt_prtc(mpt, "\n");
651 	}
652 #endif
653 	return (free_reply);
654 }
655 
656 /*
657  * Process an asynchronous event from the IOC.
658  */
659 static int
660 mpt_core_event(struct mpt_softc *mpt, request_t *req,
661 	       MSG_EVENT_NOTIFY_REPLY *msg)
662 {
663 
664 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
665                  msg->Event & 0xFF);
666 	switch(msg->Event & 0xFF) {
667 	case MPI_EVENT_NONE:
668 		break;
669 	case MPI_EVENT_LOG_DATA:
670 	{
671 		int i;
672 
673 		/* Some error occurred that LSI wants logged */
674 		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
675 			msg->IOCLogInfo);
676 		mpt_prt(mpt, "\tEvtLogData: Event Data:");
677 		for (i = 0; i < msg->EventDataLength; i++)
678 			mpt_prtc(mpt, "  %08x", msg->Data[i]);
679 		mpt_prtc(mpt, "\n");
680 		break;
681 	}
682 	case MPI_EVENT_EVENT_CHANGE:
683 		/*
684 		 * This is just an acknowledgement
685 		 * of our mpt_send_event_request.
686 		 */
687 		break;
688 	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
689 		break;
690 	default:
691 		return (0);
692 		break;
693 	}
694 	return (1);
695 }
696 
697 static void
698 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
699 		   MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
700 {
701 	MSG_EVENT_ACK *ackp;
702 
703 	ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
704 	memset(ackp, 0, sizeof (*ackp));
705 	ackp->Function = MPI_FUNCTION_EVENT_ACK;
706 	ackp->Event = htole32(msg->Event);
707 	ackp->EventContext = htole32(msg->EventContext);
708 	ackp->MsgContext = htole32(context);
709 	mpt_check_doorbell(mpt);
710 	mpt_send_cmd(mpt, ack_req);
711 }
712 
713 /***************************** Interrupt Handling *****************************/
714 void
715 mpt_intr(void *arg)
716 {
717 	struct mpt_softc *mpt;
718 	uint32_t reply_desc;
719 	int ntrips = 0;
720 
721 	mpt = (struct mpt_softc *)arg;
722 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
723 	MPT_LOCK_ASSERT(mpt);
724 
725 	while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
726 		request_t	  *req;
727 		MSG_DEFAULT_REPLY *reply_frame;
728 		uint32_t	   reply_baddr;
729 		uint32_t           ctxt_idx;
730 		u_int		   cb_index;
731 		u_int		   req_index;
732 		u_int		   offset;
733 		int		   free_rf;
734 
735 		req = NULL;
736 		reply_frame = NULL;
737 		reply_baddr = 0;
738 		offset = 0;
739 		if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
740 			/*
741 			 * Ensure that the reply frame is coherent.
742 			 */
743 			reply_baddr = MPT_REPLY_BADDR(reply_desc);
744 			offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
745 			bus_dmamap_sync_range(mpt->reply_dmat,
746 			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
747 			    BUS_DMASYNC_POSTREAD);
748 			reply_frame = MPT_REPLY_OTOV(mpt, offset);
749 			ctxt_idx = le32toh(reply_frame->MsgContext);
750 		} else {
751 			uint32_t type;
752 
753 			type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
754 			ctxt_idx = reply_desc;
755 			mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
756 				    reply_desc);
757 
758 			switch (type) {
759 			case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
760 				ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
761 				break;
762 			case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
763 				ctxt_idx = GET_IO_INDEX(reply_desc);
764 				if (mpt->tgt_cmd_ptrs == NULL) {
765 					mpt_prt(mpt,
766 					    "mpt_intr: no target cmd ptrs\n");
767 					reply_desc = MPT_REPLY_EMPTY;
768 					break;
769 				}
770 				if (ctxt_idx >= mpt->tgt_cmds_allocated) {
771 					mpt_prt(mpt,
772 					    "mpt_intr: bad tgt cmd ctxt %u\n",
773 					    ctxt_idx);
774 					reply_desc = MPT_REPLY_EMPTY;
775 					ntrips = 1000;
776 					break;
777 				}
778 				req = mpt->tgt_cmd_ptrs[ctxt_idx];
779 				if (req == NULL) {
780 					mpt_prt(mpt, "no request backpointer "
781 					    "at index %u", ctxt_idx);
782 					reply_desc = MPT_REPLY_EMPTY;
783 					ntrips = 1000;
784 					break;
785 				}
786 				/*
787 				 * Reformulate ctxt_idx to be just as if
788 				 * it were another type of context reply
789 				 * so the code below will find the request
790 				 * via indexing into the pool.
791 				 */
792 				ctxt_idx =
793 				    req->index | mpt->scsi_tgt_handler_id;
794 				req = NULL;
795 				break;
796 			case MPI_CONTEXT_REPLY_TYPE_LAN:
797 				mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
798 				    reply_desc);
799 				reply_desc = MPT_REPLY_EMPTY;
800 				break;
801 			default:
802 				mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
803 				reply_desc = MPT_REPLY_EMPTY;
804 				break;
805 			}
806 			if (reply_desc == MPT_REPLY_EMPTY) {
807 				if (ntrips++ > 1000) {
808 					break;
809 				}
810 				continue;
811 			}
812 		}
813 
814 		cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
815 		req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
816 		if (req_index < MPT_MAX_REQUESTS(mpt)) {
817 			req = &mpt->request_pool[req_index];
818 		} else {
819 			mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
820 			    " 0x%x)\n", req_index, reply_desc);
821 		}
822 
823 		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
824 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
825 		free_rf = mpt_reply_handlers[cb_index](mpt, req,
826 		    reply_desc, reply_frame);
827 
828 		if (reply_frame != NULL && free_rf) {
829 			bus_dmamap_sync_range(mpt->reply_dmat,
830 			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
831 			    BUS_DMASYNC_PREREAD);
832 			mpt_free_reply(mpt, reply_baddr);
833 		}
834 
835 		/*
836 		 * If we got ourselves disabled, don't get stuck in a loop
837 		 */
838 		if (mpt->disabled) {
839 			mpt_disable_ints(mpt);
840 			break;
841 		}
842 		if (ntrips++ > 1000) {
843 			break;
844 		}
845 	}
846 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
847 }
848 
849 /******************************* Error Recovery *******************************/
850 void
851 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
852 			    u_int iocstatus)
853 {
854 	MSG_DEFAULT_REPLY  ioc_status_frame;
855 	request_t	  *req;
856 
857 	memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
858 	ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
859 	ioc_status_frame.IOCStatus = iocstatus;
860 	while((req = TAILQ_FIRST(chain)) != NULL) {
861 		MSG_REQUEST_HEADER *msg_hdr;
862 		u_int		    cb_index;
863 
864 		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
865 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
866 		msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
867 		ioc_status_frame.Function = msg_hdr->Function;
868 		ioc_status_frame.MsgContext = msg_hdr->MsgContext;
869 		cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
870 		mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
871 		    &ioc_status_frame);
872 		if (mpt_req_on_pending_list(mpt, req) != 0)
873 			TAILQ_REMOVE(chain, req, links);
874 	}
875 }
876 
877 /********************************* Diagnostics ********************************/
878 /*
879  * Perform a diagnostic dump of a reply frame.
880  */
881 void
882 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
883 {
884 
885 	mpt_prt(mpt, "Address Reply:\n");
886 	mpt_print_reply(reply_frame);
887 }
888 
889 /******************************* Doorbell Access ******************************/
890 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
891 static __inline  uint32_t mpt_rd_intr(struct mpt_softc *mpt);
892 
893 static __inline uint32_t
894 mpt_rd_db(struct mpt_softc *mpt)
895 {
896 
897 	return mpt_read(mpt, MPT_OFFSET_DOORBELL);
898 }
899 
900 static __inline uint32_t
901 mpt_rd_intr(struct mpt_softc *mpt)
902 {
903 
904 	return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
905 }
906 
907 /* Busy wait for a door bell to be read by IOC */
908 static int
909 mpt_wait_db_ack(struct mpt_softc *mpt)
910 {
911 	int i;
912 
913 	for (i=0; i < MPT_MAX_WAIT; i++) {
914 		if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
915 			maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
916 			return (MPT_OK);
917 		}
918 		DELAY(200);
919 	}
920 	return (MPT_FAIL);
921 }
922 
923 /* Busy wait for a door bell interrupt */
924 static int
925 mpt_wait_db_int(struct mpt_softc *mpt)
926 {
927 	int i;
928 
929 	for (i = 0; i < MPT_MAX_WAIT; i++) {
930 		if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
931 			maxwait_int = i > maxwait_int ? i : maxwait_int;
932 			return MPT_OK;
933 		}
934 		DELAY(100);
935 	}
936 	return (MPT_FAIL);
937 }
938 
939 /* Wait for IOC to transition to a give state */
940 void
941 mpt_check_doorbell(struct mpt_softc *mpt)
942 {
943 	uint32_t db = mpt_rd_db(mpt);
944 
945 	if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
946 		mpt_prt(mpt, "Device not running\n");
947 		mpt_print_db(db);
948 	}
949 }
950 
951 /* Wait for IOC to transition to a give state */
952 static int
953 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
954 {
955 	int i;
956 
957 	for (i = 0; i < MPT_MAX_WAIT; i++) {
958 		uint32_t db = mpt_rd_db(mpt);
959 		if (MPT_STATE(db) == state) {
960 			maxwait_state = i > maxwait_state ? i : maxwait_state;
961 			return (MPT_OK);
962 		}
963 		DELAY(100);
964 	}
965 	return (MPT_FAIL);
966 }
967 
968 
969 /************************* Intialization/Configuration ************************/
970 static int mpt_download_fw(struct mpt_softc *mpt);
971 
972 /* Issue the reset COMMAND to the IOC */
973 static int
974 mpt_soft_reset(struct mpt_softc *mpt)
975 {
976 
977 	mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
978 
979 	/* Have to use hard reset if we are not in Running state */
980 	if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
981 		mpt_prt(mpt, "soft reset failed: device not running\n");
982 		return (MPT_FAIL);
983 	}
984 
985 	/* If door bell is in use we don't have a chance of getting
986 	 * a word in since the IOC probably crashed in message
987 	 * processing. So don't waste our time.
988 	 */
989 	if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
990 		mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
991 		return (MPT_FAIL);
992 	}
993 
994 	/* Send the reset request to the IOC */
995 	mpt_write(mpt, MPT_OFFSET_DOORBELL,
996 	    MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
997 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
998 		mpt_prt(mpt, "soft reset failed: ack timeout\n");
999 		return (MPT_FAIL);
1000 	}
1001 
1002 	/* Wait for the IOC to reload and come out of reset state */
1003 	if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
1004 		mpt_prt(mpt, "soft reset failed: device did not restart\n");
1005 		return (MPT_FAIL);
1006 	}
1007 
1008 	return MPT_OK;
1009 }
1010 
1011 static int
1012 mpt_enable_diag_mode(struct mpt_softc *mpt)
1013 {
1014 	int try;
1015 
1016 	try = 20;
1017 	while (--try) {
1018 
1019 		if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1020 			break;
1021 
1022 		/* Enable diagnostic registers */
1023 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1024 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1025 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1026 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1027 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1028 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1029 
1030 		DELAY(100000);
1031 	}
1032 	if (try == 0)
1033 		return (EIO);
1034 	return (0);
1035 }
1036 
1037 static void
1038 mpt_disable_diag_mode(struct mpt_softc *mpt)
1039 {
1040 
1041 	mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1042 }
1043 
1044 /* This is a magic diagnostic reset that resets all the ARM
1045  * processors in the chip.
1046  */
1047 static void
1048 mpt_hard_reset(struct mpt_softc *mpt)
1049 {
1050 	int error;
1051 	int wait;
1052 	uint32_t diagreg;
1053 
1054 	mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1055 
1056 	error = mpt_enable_diag_mode(mpt);
1057 	if (error) {
1058 		mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1059 		mpt_prt(mpt, "Trying to reset anyway.\n");
1060 	}
1061 
1062 	diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1063 
1064 	/*
1065 	 * This appears to be a workaround required for some
1066 	 * firmware or hardware revs.
1067 	 */
1068 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1069 	DELAY(1000);
1070 
1071 	/* Diag. port is now active so we can now hit the reset bit */
1072 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1073 
1074         /*
1075          * Ensure that the reset has finished.  We delay 1ms
1076          * prior to reading the register to make sure the chip
1077          * has sufficiently completed its reset to handle register
1078          * accesses.
1079          */
1080 	wait = 5000;
1081 	do {
1082 		DELAY(1000);
1083 		diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1084 	} while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1085 
1086 	if (wait == 0) {
1087 		mpt_prt(mpt, "WARNING - Failed hard reset! "
1088 			"Trying to initialize anyway.\n");
1089 	}
1090 
1091 	/*
1092 	 * If we have firmware to download, it must be loaded before
1093 	 * the controller will become operational.  Do so now.
1094 	 */
1095 	if (mpt->fw_image != NULL) {
1096 
1097 		error = mpt_download_fw(mpt);
1098 
1099 		if (error) {
1100 			mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1101 			mpt_prt(mpt, "Trying to initialize anyway.\n");
1102 		}
1103 	}
1104 
1105 	/*
1106 	 * Reseting the controller should have disabled write
1107 	 * access to the diagnostic registers, but disable
1108 	 * manually to be sure.
1109 	 */
1110 	mpt_disable_diag_mode(mpt);
1111 }
1112 
1113 static void
1114 mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1115 {
1116 
1117 	/*
1118 	 * Complete all pending requests with a status
1119 	 * appropriate for an IOC reset.
1120 	 */
1121 	mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1122 				   MPI_IOCSTATUS_INVALID_STATE);
1123 }
1124 
1125 /*
1126  * Reset the IOC when needed. Try software command first then if needed
1127  * poke at the magic diagnostic reset. Note that a hard reset resets
1128  * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1129  * fouls up the PCI configuration registers.
1130  */
1131 int
1132 mpt_reset(struct mpt_softc *mpt, int reinit)
1133 {
1134 	struct	mpt_personality *pers;
1135 	int	ret;
1136 	int	retry_cnt = 0;
1137 
1138 	/*
1139 	 * Try a soft reset. If that fails, get out the big hammer.
1140 	 */
1141  again:
1142 	if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1143 		int	cnt;
1144 		for (cnt = 0; cnt < 5; cnt++) {
1145 			/* Failed; do a hard reset */
1146 			mpt_hard_reset(mpt);
1147 
1148 			/*
1149 			 * Wait for the IOC to reload
1150 			 * and come out of reset state
1151 			 */
1152 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1153 			if (ret == MPT_OK) {
1154 				break;
1155 			}
1156 			/*
1157 			 * Okay- try to check again...
1158 			 */
1159 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1160 			if (ret == MPT_OK) {
1161 				break;
1162 			}
1163 			mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1164 			    retry_cnt, cnt);
1165 		}
1166 	}
1167 
1168 	if (retry_cnt == 0) {
1169 		/*
1170 		 * Invoke reset handlers.  We bump the reset count so
1171 		 * that mpt_wait_req() understands that regardless of
1172 		 * the specified wait condition, it should stop its wait.
1173 		 */
1174 		mpt->reset_cnt++;
1175 		MPT_PERS_FOREACH(mpt, pers)
1176 			pers->reset(mpt, ret);
1177 	}
1178 
1179 	if (reinit) {
1180 		ret = mpt_enable_ioc(mpt, 1);
1181 		if (ret == MPT_OK) {
1182 			mpt_enable_ints(mpt);
1183 		}
1184 	}
1185 	if (ret != MPT_OK && retry_cnt++ < 2) {
1186 		goto again;
1187 	}
1188 	return ret;
1189 }
1190 
1191 /* Return a command buffer to the free queue */
1192 void
1193 mpt_free_request(struct mpt_softc *mpt, request_t *req)
1194 {
1195 	request_t *nxt;
1196 	struct mpt_evtf_record *record;
1197 	uint32_t offset, reply_baddr;
1198 
1199 	if (req == NULL || req != &mpt->request_pool[req->index]) {
1200 		panic("mpt_free_request bad req ptr\n");
1201 		return;
1202 	}
1203 	if ((nxt = req->chain) != NULL) {
1204 		req->chain = NULL;
1205 		mpt_free_request(mpt, nxt);	/* NB: recursion */
1206 	}
1207 	KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1208 	KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1209 	MPT_LOCK_ASSERT(mpt);
1210 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1211 	    ("mpt_free_request: req %p:%u func %x already on freelist",
1212 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1213 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1214 	    ("mpt_free_request: req %p:%u func %x on pending list",
1215 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1216 #ifdef	INVARIANTS
1217 	mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1218 #endif
1219 
1220 	req->ccb = NULL;
1221 	if (LIST_EMPTY(&mpt->ack_frames)) {
1222 		/*
1223 		 * Insert free ones at the tail
1224 		 */
1225 		req->serno = 0;
1226 		req->state = REQ_STATE_FREE;
1227 #ifdef	INVARIANTS
1228 		memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1229 #endif
1230 		TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1231 		if (mpt->getreqwaiter != 0) {
1232 			mpt->getreqwaiter = 0;
1233 			wakeup(&mpt->request_free_list);
1234 		}
1235 		return;
1236 	}
1237 
1238 	/*
1239 	 * Process an ack frame deferred due to resource shortage.
1240 	 */
1241 	record = LIST_FIRST(&mpt->ack_frames);
1242 	LIST_REMOVE(record, links);
1243 	req->state = REQ_STATE_ALLOCATED;
1244 	mpt_assign_serno(mpt, req);
1245 	mpt_send_event_ack(mpt, req, &record->reply, record->context);
1246 	offset = (uint32_t)((uint8_t *)record - mpt->reply);
1247 	reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1248 	bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1249 	    MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1250 	mpt_free_reply(mpt, reply_baddr);
1251 }
1252 
1253 /* Get a command buffer from the free queue */
1254 request_t *
1255 mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1256 {
1257 	request_t *req;
1258 
1259 retry:
1260 	MPT_LOCK_ASSERT(mpt);
1261 	req = TAILQ_FIRST(&mpt->request_free_list);
1262 	if (req != NULL) {
1263 		KASSERT(req == &mpt->request_pool[req->index],
1264 		    ("mpt_get_request: corrupted request free list\n"));
1265 		KASSERT(req->state == REQ_STATE_FREE,
1266 		    ("req %p:%u not free on free list %x index %d function %x",
1267 		    req, req->serno, req->state, req->index,
1268 		    ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1269 		TAILQ_REMOVE(&mpt->request_free_list, req, links);
1270 		req->state = REQ_STATE_ALLOCATED;
1271 		req->chain = NULL;
1272 		mpt_assign_serno(mpt, req);
1273 	} else if (sleep_ok != 0) {
1274 		mpt->getreqwaiter = 1;
1275 		mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
1276 		goto retry;
1277 	}
1278 	return (req);
1279 }
1280 
1281 /* Pass the command to the IOC */
1282 void
1283 mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1284 {
1285 
1286 	if (mpt->verbose > MPT_PRT_DEBUG2) {
1287 		mpt_dump_request(mpt, req);
1288 	}
1289 	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1290 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1291 	req->state |= REQ_STATE_QUEUED;
1292 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1293 	    ("req %p:%u func %x on freelist list in mpt_send_cmd",
1294 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1295 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1296 	    ("req %p:%u func %x already on pending list in mpt_send_cmd",
1297 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1298 	TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1299 	mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1300 }
1301 
1302 /*
1303  * Wait for a request to complete.
1304  *
1305  * Inputs:
1306  *	mpt		softc of controller executing request
1307  *	req		request to wait for
1308  *	sleep_ok	nonzero implies may sleep in this context
1309  *	time_ms		timeout in ms.  0 implies no timeout.
1310  *
1311  * Return Values:
1312  *	0		Request completed
1313  *	non-0		Timeout fired before request completion.
1314  */
1315 int
1316 mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1317 	     mpt_req_state_t state, mpt_req_state_t mask,
1318 	     int sleep_ok, int time_ms)
1319 {
1320 	int   error;
1321 	int   timeout;
1322 	u_int saved_cnt;
1323 
1324 	/*
1325 	 * timeout is in ms.  0 indicates infinite wait.
1326 	 * Convert to ticks or 500us units depending on
1327 	 * our sleep mode.
1328 	 */
1329 	if (sleep_ok != 0) {
1330 		timeout = (time_ms * hz) / 1000;
1331 	} else {
1332 		timeout = time_ms * 2;
1333 	}
1334 	req->state |= REQ_STATE_NEED_WAKEUP;
1335 	mask &= ~REQ_STATE_NEED_WAKEUP;
1336 	saved_cnt = mpt->reset_cnt;
1337 	while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1338 		if (sleep_ok != 0) {
1339 			error = mpt_sleep(mpt, req, PUSER, "mptreq", timeout);
1340 			if (error == EWOULDBLOCK) {
1341 				timeout = 0;
1342 				break;
1343 			}
1344 		} else {
1345 			if (time_ms != 0 && --timeout == 0) {
1346 				break;
1347 			}
1348 			DELAY(500);
1349 			mpt_intr(mpt);
1350 		}
1351 	}
1352 	req->state &= ~REQ_STATE_NEED_WAKEUP;
1353 	if (mpt->reset_cnt != saved_cnt) {
1354 		return (EIO);
1355 	}
1356 	if (time_ms && timeout <= 0) {
1357 		MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1358 		req->state |= REQ_STATE_TIMEDOUT;
1359 		mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1360 		return (ETIMEDOUT);
1361 	}
1362 	return (0);
1363 }
1364 
1365 /*
1366  * Send a command to the IOC via the handshake register.
1367  *
1368  * Only done at initialization time and for certain unusual
1369  * commands such as device/bus reset as specified by LSI.
1370  */
1371 int
1372 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1373 {
1374 	int i;
1375 	uint32_t data, *data32;
1376 
1377 	/* Check condition of the IOC */
1378 	data = mpt_rd_db(mpt);
1379 	if ((MPT_STATE(data) != MPT_DB_STATE_READY
1380 	  && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1381 	  && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1382 	 || MPT_DB_IS_IN_USE(data)) {
1383 		mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1384 		mpt_print_db(data);
1385 		return (EBUSY);
1386 	}
1387 
1388 	/* We move things in 32 bit chunks */
1389 	len = (len + 3) >> 2;
1390 	data32 = cmd;
1391 
1392 	/* Clear any left over pending doorbell interrupts */
1393 	if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1394 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1395 
1396 	/*
1397 	 * Tell the handshake reg. we are going to send a command
1398          * and how long it is going to be.
1399 	 */
1400 	data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1401 	    (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1402 	mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1403 
1404 	/* Wait for the chip to notice */
1405 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1406 		mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1407 		return (ETIMEDOUT);
1408 	}
1409 
1410 	/* Clear the interrupt */
1411 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1412 
1413 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
1414 		mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1415 		return (ETIMEDOUT);
1416 	}
1417 
1418 	/* Send the command */
1419 	for (i = 0; i < len; i++) {
1420 		mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++));
1421 		if (mpt_wait_db_ack(mpt) != MPT_OK) {
1422 			mpt_prt(mpt,
1423 			    "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1424 			return (ETIMEDOUT);
1425 		}
1426 	}
1427 	return MPT_OK;
1428 }
1429 
1430 /* Get the response from the handshake register */
1431 int
1432 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1433 {
1434 	int left, reply_left;
1435 	u_int16_t *data16;
1436 	uint32_t data;
1437 	MSG_DEFAULT_REPLY *hdr;
1438 
1439 	/* We move things out in 16 bit chunks */
1440 	reply_len >>= 1;
1441 	data16 = (u_int16_t *)reply;
1442 
1443 	hdr = (MSG_DEFAULT_REPLY *)reply;
1444 
1445 	/* Get first word */
1446 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1447 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1448 		return ETIMEDOUT;
1449 	}
1450 	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1451 	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1452 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1453 
1454 	/* Get Second Word */
1455 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1456 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1457 		return ETIMEDOUT;
1458 	}
1459 	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1460 	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1461 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1462 
1463 	/*
1464 	 * With the second word, we can now look at the length.
1465 	 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1466 	 */
1467 	if ((reply_len >> 1) != hdr->MsgLength &&
1468 	    (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1469 #if __FreeBSD_version >= 500000
1470 		mpt_prt(mpt, "reply length does not match message length: "
1471 			"got %x; expected %zx for function %x\n",
1472 			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1473 #else
1474 		mpt_prt(mpt, "reply length does not match message length: "
1475 			"got %x; expected %x for function %x\n",
1476 			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1477 #endif
1478 	}
1479 
1480 	/* Get rest of the reply; but don't overflow the provided buffer */
1481 	left = (hdr->MsgLength << 1) - 2;
1482 	reply_left =  reply_len - 2;
1483 	while (left--) {
1484 		u_int16_t datum;
1485 
1486 		if (mpt_wait_db_int(mpt) != MPT_OK) {
1487 			mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1488 			return ETIMEDOUT;
1489 		}
1490 		data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1491 		datum = le16toh(data & MPT_DB_DATA_MASK);
1492 
1493 		if (reply_left-- > 0)
1494 			*data16++ = datum;
1495 
1496 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1497 	}
1498 
1499 	/* One more wait & clear at the end */
1500 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1501 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1502 		return ETIMEDOUT;
1503 	}
1504 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1505 
1506 	if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1507 		if (mpt->verbose >= MPT_PRT_TRACE)
1508 			mpt_print_reply(hdr);
1509 		return (MPT_FAIL | hdr->IOCStatus);
1510 	}
1511 
1512 	return (0);
1513 }
1514 
1515 static int
1516 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1517 {
1518 	MSG_IOC_FACTS f_req;
1519 	int error;
1520 
1521 	memset(&f_req, 0, sizeof f_req);
1522 	f_req.Function = MPI_FUNCTION_IOC_FACTS;
1523 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1524 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1525 	if (error) {
1526 		return(error);
1527 	}
1528 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1529 	return (error);
1530 }
1531 
1532 static int
1533 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1534 {
1535 	MSG_PORT_FACTS f_req;
1536 	int error;
1537 
1538 	memset(&f_req, 0, sizeof f_req);
1539 	f_req.Function = MPI_FUNCTION_PORT_FACTS;
1540 	f_req.PortNumber = port;
1541 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1542 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1543 	if (error) {
1544 		return(error);
1545 	}
1546 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1547 	return (error);
1548 }
1549 
1550 /*
1551  * Send the initialization request. This is where we specify how many
1552  * SCSI busses and how many devices per bus we wish to emulate.
1553  * This is also the command that specifies the max size of the reply
1554  * frames from the IOC that we will be allocating.
1555  */
1556 static int
1557 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1558 {
1559 	int error = 0;
1560 	MSG_IOC_INIT init;
1561 	MSG_IOC_INIT_REPLY reply;
1562 
1563 	memset(&init, 0, sizeof init);
1564 	init.WhoInit = who;
1565 	init.Function = MPI_FUNCTION_IOC_INIT;
1566 	init.MaxDevices = 0;	/* at least 256 devices per bus */
1567 	init.MaxBuses = 16;	/* at least 16 busses */
1568 
1569 	init.MsgVersion = htole16(MPI_VERSION);
1570 	init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1571 	init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1572 	init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1573 
1574 	if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1575 		return(error);
1576 	}
1577 
1578 	error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1579 	return (error);
1580 }
1581 
1582 
1583 /*
1584  * Utiltity routine to read configuration headers and pages
1585  */
1586 int
1587 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1588 		  bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1589 {
1590 	MSG_CONFIG *cfgp;
1591 	SGE_SIMPLE32 *se;
1592 
1593 	cfgp = req->req_vbuf;
1594 	memset(cfgp, 0, sizeof *cfgp);
1595 	cfgp->Action = params->Action;
1596 	cfgp->Function = MPI_FUNCTION_CONFIG;
1597 	cfgp->Header.PageVersion = params->PageVersion;
1598 	cfgp->Header.PageNumber = params->PageNumber;
1599 	cfgp->PageAddress = htole32(params->PageAddress);
1600 	if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1601 	    MPI_CONFIG_PAGETYPE_EXTENDED) {
1602 		cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1603 		cfgp->Header.PageLength = 0;
1604 		cfgp->ExtPageLength = htole16(params->ExtPageLength);
1605 		cfgp->ExtPageType = params->ExtPageType;
1606 	} else {
1607 		cfgp->Header.PageType = params->PageType;
1608 		cfgp->Header.PageLength = params->PageLength;
1609 	}
1610 	se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1611 	se->Address = htole32(addr);
1612 	MPI_pSGE_SET_LENGTH(se, len);
1613 	MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1614 	    MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1615 	    MPI_SGE_FLAGS_END_OF_LIST |
1616 	    ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1617 	  || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1618 	   ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1619 	se->FlagsLength = htole32(se->FlagsLength);
1620 	cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1621 
1622 	mpt_check_doorbell(mpt);
1623 	mpt_send_cmd(mpt, req);
1624 	return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1625 			     sleep_ok, timeout_ms));
1626 }
1627 
1628 int
1629 mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1630 		       uint32_t PageAddress, int ExtPageType,
1631 		       CONFIG_EXTENDED_PAGE_HEADER *rslt,
1632 		       int sleep_ok, int timeout_ms)
1633 {
1634 	request_t  *req;
1635 	cfgparms_t params;
1636 	MSG_CONFIG_REPLY *cfgp;
1637 	int	    error;
1638 
1639 	req = mpt_get_request(mpt, sleep_ok);
1640 	if (req == NULL) {
1641 		mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1642 		return (ENOMEM);
1643 	}
1644 
1645 	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1646 	params.PageVersion = PageVersion;
1647 	params.PageLength = 0;
1648 	params.PageNumber = PageNumber;
1649 	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1650 	params.PageAddress = PageAddress;
1651 	params.ExtPageType = ExtPageType;
1652 	params.ExtPageLength = 0;
1653 	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1654 				  sleep_ok, timeout_ms);
1655 	if (error != 0) {
1656 		/*
1657 		 * Leave the request. Without resetting the chip, it's
1658 		 * still owned by it and we'll just get into trouble
1659 		 * freeing it now. Mark it as abandoned so that if it
1660 		 * shows up later it can be freed.
1661 		 */
1662 		mpt_prt(mpt, "read_extcfg_header timed out\n");
1663 		return (ETIMEDOUT);
1664 	}
1665 
1666         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1667 	case MPI_IOCSTATUS_SUCCESS:
1668 		cfgp = req->req_vbuf;
1669 		rslt->PageVersion = cfgp->Header.PageVersion;
1670 		rslt->PageNumber = cfgp->Header.PageNumber;
1671 		rslt->PageType = cfgp->Header.PageType;
1672 		rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1673 		rslt->ExtPageType = cfgp->ExtPageType;
1674 		error = 0;
1675 		break;
1676 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1677 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1678 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1679 		    MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1680 		error = EINVAL;
1681 		break;
1682 	default:
1683 		mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1684 			req->IOCStatus);
1685 		error = EIO;
1686 		break;
1687 	}
1688 	mpt_free_request(mpt, req);
1689 	return (error);
1690 }
1691 
1692 int
1693 mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1694 		     CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1695 		     int sleep_ok, int timeout_ms)
1696 {
1697 	request_t    *req;
1698 	cfgparms_t    params;
1699 	int	      error;
1700 
1701 	req = mpt_get_request(mpt, sleep_ok);
1702 	if (req == NULL) {
1703 		mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1704 		return (-1);
1705 	}
1706 
1707 	params.Action = Action;
1708 	params.PageVersion = hdr->PageVersion;
1709 	params.PageLength = 0;
1710 	params.PageNumber = hdr->PageNumber;
1711 	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1712 	params.PageAddress = PageAddress;
1713 	params.ExtPageType = hdr->ExtPageType;
1714 	params.ExtPageLength = hdr->ExtPageLength;
1715 	error = mpt_issue_cfg_req(mpt, req, &params,
1716 				  req->req_pbuf + MPT_RQSL(mpt),
1717 				  len, sleep_ok, timeout_ms);
1718 	if (error != 0) {
1719 		mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1720 		return (-1);
1721 	}
1722 
1723 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1724 		mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1725 			req->IOCStatus);
1726 		mpt_free_request(mpt, req);
1727 		return (-1);
1728 	}
1729 	memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1730 	mpt_free_request(mpt, req);
1731 	return (0);
1732 }
1733 
1734 int
1735 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1736 		    uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1737 		    int sleep_ok, int timeout_ms)
1738 {
1739 	request_t  *req;
1740 	cfgparms_t params;
1741 	MSG_CONFIG *cfgp;
1742 	int	    error;
1743 
1744 	req = mpt_get_request(mpt, sleep_ok);
1745 	if (req == NULL) {
1746 		mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1747 		return (ENOMEM);
1748 	}
1749 
1750 	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1751 	params.PageVersion = 0;
1752 	params.PageLength = 0;
1753 	params.PageNumber = PageNumber;
1754 	params.PageType = PageType;
1755 	params.PageAddress = PageAddress;
1756 	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1757 				  sleep_ok, timeout_ms);
1758 	if (error != 0) {
1759 		/*
1760 		 * Leave the request. Without resetting the chip, it's
1761 		 * still owned by it and we'll just get into trouble
1762 		 * freeing it now. Mark it as abandoned so that if it
1763 		 * shows up later it can be freed.
1764 		 */
1765 		mpt_prt(mpt, "read_cfg_header timed out\n");
1766 		return (ETIMEDOUT);
1767 	}
1768 
1769         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1770 	case MPI_IOCSTATUS_SUCCESS:
1771 		cfgp = req->req_vbuf;
1772 		bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1773 		error = 0;
1774 		break;
1775 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1776 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1777 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1778 		    PageType, PageNumber, PageAddress);
1779 		error = EINVAL;
1780 		break;
1781 	default:
1782 		mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1783 			req->IOCStatus);
1784 		error = EIO;
1785 		break;
1786 	}
1787 	mpt_free_request(mpt, req);
1788 	return (error);
1789 }
1790 
1791 int
1792 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1793 		  CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1794 		  int timeout_ms)
1795 {
1796 	request_t    *req;
1797 	cfgparms_t    params;
1798 	int	      error;
1799 
1800 	req = mpt_get_request(mpt, sleep_ok);
1801 	if (req == NULL) {
1802 		mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1803 		return (-1);
1804 	}
1805 
1806 	params.Action = Action;
1807 	params.PageVersion = hdr->PageVersion;
1808 	params.PageLength = hdr->PageLength;
1809 	params.PageNumber = hdr->PageNumber;
1810 	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1811 	params.PageAddress = PageAddress;
1812 	error = mpt_issue_cfg_req(mpt, req, &params,
1813 				  req->req_pbuf + MPT_RQSL(mpt),
1814 				  len, sleep_ok, timeout_ms);
1815 	if (error != 0) {
1816 		mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1817 		return (-1);
1818 	}
1819 
1820 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1821 		mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1822 			req->IOCStatus);
1823 		mpt_free_request(mpt, req);
1824 		return (-1);
1825 	}
1826 	memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1827 	mpt_free_request(mpt, req);
1828 	return (0);
1829 }
1830 
1831 int
1832 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1833 		   CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1834 		   int timeout_ms)
1835 {
1836 	request_t    *req;
1837 	cfgparms_t    params;
1838 	u_int	      hdr_attr;
1839 	int	      error;
1840 
1841 	hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1842 	if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1843 	    hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1844 		mpt_prt(mpt, "page type 0x%x not changeable\n",
1845 			hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1846 		return (-1);
1847 	}
1848 
1849 #if	0
1850 	/*
1851 	 * We shouldn't mask off other bits here.
1852 	 */
1853 	hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1854 #endif
1855 
1856 	req = mpt_get_request(mpt, sleep_ok);
1857 	if (req == NULL)
1858 		return (-1);
1859 
1860 	memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1861 
1862 	/*
1863 	 * There isn't any point in restoring stripped out attributes
1864 	 * if you then mask them going down to issue the request.
1865 	 */
1866 
1867 	params.Action = Action;
1868 	params.PageVersion = hdr->PageVersion;
1869 	params.PageLength = hdr->PageLength;
1870 	params.PageNumber = hdr->PageNumber;
1871 	params.PageAddress = PageAddress;
1872 #if	0
1873 	/* Restore stripped out attributes */
1874 	hdr->PageType |= hdr_attr;
1875 	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1876 #else
1877 	params.PageType = hdr->PageType;
1878 #endif
1879 	error = mpt_issue_cfg_req(mpt, req, &params,
1880 				  req->req_pbuf + MPT_RQSL(mpt),
1881 				  len, sleep_ok, timeout_ms);
1882 	if (error != 0) {
1883 		mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1884 		return (-1);
1885 	}
1886 
1887         if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1888 		mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1889 			req->IOCStatus);
1890 		mpt_free_request(mpt, req);
1891 		return (-1);
1892 	}
1893 	mpt_free_request(mpt, req);
1894 	return (0);
1895 }
1896 
1897 /*
1898  * Read IOC configuration information
1899  */
1900 static int
1901 mpt_read_config_info_ioc(struct mpt_softc *mpt)
1902 {
1903 	CONFIG_PAGE_HEADER hdr;
1904 	struct mpt_raid_volume *mpt_raid;
1905 	int rv;
1906 	int i;
1907 	size_t len;
1908 
1909 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1910 		2, 0, &hdr, FALSE, 5000);
1911 	/*
1912 	 * If it's an invalid page, so what? Not a supported function....
1913 	 */
1914 	if (rv == EINVAL) {
1915 		return (0);
1916 	}
1917 	if (rv) {
1918 		return (rv);
1919 	}
1920 
1921 	mpt_lprt(mpt, MPT_PRT_DEBUG,
1922 	    "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1923 	    hdr.PageVersion, hdr.PageLength << 2,
1924 	    hdr.PageNumber, hdr.PageType);
1925 
1926 	len = hdr.PageLength * sizeof(uint32_t);
1927 	mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1928 	if (mpt->ioc_page2 == NULL) {
1929 		mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1930 		mpt_raid_free_mem(mpt);
1931 		return (ENOMEM);
1932 	}
1933 	memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1934 	rv = mpt_read_cur_cfg_page(mpt, 0,
1935 	    &mpt->ioc_page2->Header, len, FALSE, 5000);
1936 	if (rv) {
1937 		mpt_prt(mpt, "failed to read IOC Page 2\n");
1938 		mpt_raid_free_mem(mpt);
1939 		return (EIO);
1940 	}
1941 	mpt2host_config_page_ioc2(mpt->ioc_page2);
1942 
1943 	if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1944 		uint32_t mask;
1945 
1946 		mpt_prt(mpt, "Capabilities: (");
1947 		for (mask = 1; mask != 0; mask <<= 1) {
1948 			if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1949 				continue;
1950 			}
1951 			switch (mask) {
1952 			case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1953 				mpt_prtc(mpt, " RAID-0");
1954 				break;
1955 			case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1956 				mpt_prtc(mpt, " RAID-1E");
1957 				break;
1958 			case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1959 				mpt_prtc(mpt, " RAID-1");
1960 				break;
1961 			case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1962 				mpt_prtc(mpt, " SES");
1963 				break;
1964 			case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1965 				mpt_prtc(mpt, " SAFTE");
1966 				break;
1967 			case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1968 				mpt_prtc(mpt, " Multi-Channel-Arrays");
1969 			default:
1970 				break;
1971 			}
1972 		}
1973 		mpt_prtc(mpt, " )\n");
1974 		if ((mpt->ioc_page2->CapabilitiesFlags
1975 		   & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1976 		    | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1977 		    | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1978 			mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1979 				mpt->ioc_page2->NumActiveVolumes,
1980 				mpt->ioc_page2->NumActiveVolumes != 1
1981 			      ? "s " : " ",
1982 				mpt->ioc_page2->MaxVolumes);
1983 			mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1984 				mpt->ioc_page2->NumActivePhysDisks,
1985 				mpt->ioc_page2->NumActivePhysDisks != 1
1986 			      ? "s " : " ",
1987 				mpt->ioc_page2->MaxPhysDisks);
1988 		}
1989 	}
1990 
1991 	len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1992 	mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1993 	if (mpt->raid_volumes == NULL) {
1994 		mpt_prt(mpt, "Could not allocate RAID volume data\n");
1995 		mpt_raid_free_mem(mpt);
1996 		return (ENOMEM);
1997 	}
1998 
1999 	/*
2000 	 * Copy critical data out of ioc_page2 so that we can
2001 	 * safely refresh the page without windows of unreliable
2002 	 * data.
2003 	 */
2004 	mpt->raid_max_volumes =  mpt->ioc_page2->MaxVolumes;
2005 
2006 	len = sizeof(*mpt->raid_volumes->config_page) +
2007 	    (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
2008 	for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
2009 		mpt_raid = &mpt->raid_volumes[i];
2010 		mpt_raid->config_page =
2011 		    malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2012 		if (mpt_raid->config_page == NULL) {
2013 			mpt_prt(mpt, "Could not allocate RAID page data\n");
2014 			mpt_raid_free_mem(mpt);
2015 			return (ENOMEM);
2016 		}
2017 	}
2018 	mpt->raid_page0_len = len;
2019 
2020 	len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
2021 	mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2022 	if (mpt->raid_disks == NULL) {
2023 		mpt_prt(mpt, "Could not allocate RAID disk data\n");
2024 		mpt_raid_free_mem(mpt);
2025 		return (ENOMEM);
2026 	}
2027 	mpt->raid_max_disks =  mpt->ioc_page2->MaxPhysDisks;
2028 
2029 	/*
2030 	 * Load page 3.
2031 	 */
2032 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2033 	    3, 0, &hdr, FALSE, 5000);
2034 	if (rv) {
2035 		mpt_raid_free_mem(mpt);
2036 		return (EIO);
2037 	}
2038 
2039 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2040 	    hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2041 
2042 	len = hdr.PageLength * sizeof(uint32_t);
2043 	mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2044 	if (mpt->ioc_page3 == NULL) {
2045 		mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2046 		mpt_raid_free_mem(mpt);
2047 		return (ENOMEM);
2048 	}
2049 	memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2050 	rv = mpt_read_cur_cfg_page(mpt, 0,
2051 	    &mpt->ioc_page3->Header, len, FALSE, 5000);
2052 	if (rv) {
2053 		mpt_raid_free_mem(mpt);
2054 		return (EIO);
2055 	}
2056 	mpt2host_config_page_ioc3(mpt->ioc_page3);
2057 	mpt_raid_wakeup(mpt);
2058 	return (0);
2059 }
2060 
2061 /*
2062  * Enable IOC port
2063  */
2064 static int
2065 mpt_send_port_enable(struct mpt_softc *mpt, int port)
2066 {
2067 	request_t	*req;
2068 	MSG_PORT_ENABLE *enable_req;
2069 	int		 error;
2070 
2071 	req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2072 	if (req == NULL)
2073 		return (-1);
2074 
2075 	enable_req = req->req_vbuf;
2076 	memset(enable_req, 0,  MPT_RQSL(mpt));
2077 
2078 	enable_req->Function   = MPI_FUNCTION_PORT_ENABLE;
2079 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2080 	enable_req->PortNumber = port;
2081 
2082 	mpt_check_doorbell(mpt);
2083 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2084 
2085 	mpt_send_cmd(mpt, req);
2086 	error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2087 	    FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000);
2088 	if (error != 0) {
2089 		mpt_prt(mpt, "port %d enable timed out\n", port);
2090 		return (-1);
2091 	}
2092 	mpt_free_request(mpt, req);
2093 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2094 	return (0);
2095 }
2096 
2097 /*
2098  * Enable/Disable asynchronous event reporting.
2099  */
2100 static int
2101 mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2102 {
2103 	request_t *req;
2104 	MSG_EVENT_NOTIFY *enable_req;
2105 
2106 	req = mpt_get_request(mpt, FALSE);
2107 	if (req == NULL) {
2108 		return (ENOMEM);
2109 	}
2110 	enable_req = req->req_vbuf;
2111 	memset(enable_req, 0, sizeof *enable_req);
2112 
2113 	enable_req->Function   = MPI_FUNCTION_EVENT_NOTIFICATION;
2114 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2115 	enable_req->Switch     = onoff;
2116 
2117 	mpt_check_doorbell(mpt);
2118 	mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2119 	    onoff ? "en" : "dis");
2120 	/*
2121 	 * Send the command off, but don't wait for it.
2122 	 */
2123 	mpt_send_cmd(mpt, req);
2124 	return (0);
2125 }
2126 
2127 /*
2128  * Un-mask the interrupts on the chip.
2129  */
2130 void
2131 mpt_enable_ints(struct mpt_softc *mpt)
2132 {
2133 
2134 	/* Unmask every thing except door bell int */
2135 	mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2136 }
2137 
2138 /*
2139  * Mask the interrupts on the chip.
2140  */
2141 void
2142 mpt_disable_ints(struct mpt_softc *mpt)
2143 {
2144 
2145 	/* Mask all interrupts */
2146 	mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2147 	    MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2148 }
2149 
2150 static void
2151 mpt_sysctl_attach(struct mpt_softc *mpt)
2152 {
2153 #if __FreeBSD_version >= 500000
2154 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
2155 	struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
2156 
2157 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2158 		       "debug", CTLFLAG_RW, &mpt->verbose, 0,
2159 		       "Debugging/Verbose level");
2160 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2161 		       "role", CTLFLAG_RD, &mpt->role, 0,
2162 		       "HBA role");
2163 #ifdef	MPT_TEST_MULTIPATH
2164 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2165 		       "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2166 		       "Next Target to Fail");
2167 #endif
2168 #endif
2169 }
2170 
2171 int
2172 mpt_attach(struct mpt_softc *mpt)
2173 {
2174 	struct mpt_personality *pers;
2175 	int i;
2176 	int error;
2177 
2178 	mpt_core_attach(mpt);
2179 	mpt_core_enable(mpt);
2180 
2181 	TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2182 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2183 		pers = mpt_personalities[i];
2184 		if (pers == NULL) {
2185 			continue;
2186 		}
2187 		if (pers->probe(mpt) == 0) {
2188 			error = pers->attach(mpt);
2189 			if (error != 0) {
2190 				mpt_detach(mpt);
2191 				return (error);
2192 			}
2193 			mpt->mpt_pers_mask |= (0x1 << pers->id);
2194 			pers->use_count++;
2195 		}
2196 	}
2197 
2198 	/*
2199 	 * Now that we've attached everything, do the enable function
2200 	 * for all of the personalities. This allows the personalities
2201 	 * to do setups that are appropriate for them prior to enabling
2202 	 * any ports.
2203 	 */
2204 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2205 		pers = mpt_personalities[i];
2206 		if (pers != NULL  && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2207 			error = pers->enable(mpt);
2208 			if (error != 0) {
2209 				mpt_prt(mpt, "personality %s attached but would"
2210 				    " not enable (%d)\n", pers->name, error);
2211 				mpt_detach(mpt);
2212 				return (error);
2213 			}
2214 		}
2215 	}
2216 	return (0);
2217 }
2218 
2219 int
2220 mpt_shutdown(struct mpt_softc *mpt)
2221 {
2222 	struct mpt_personality *pers;
2223 
2224 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2225 		pers->shutdown(mpt);
2226 	}
2227 	return (0);
2228 }
2229 
2230 int
2231 mpt_detach(struct mpt_softc *mpt)
2232 {
2233 	struct mpt_personality *pers;
2234 
2235 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2236 		pers->detach(mpt);
2237 		mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2238 		pers->use_count--;
2239 	}
2240 	TAILQ_REMOVE(&mpt_tailq, mpt, links);
2241 	return (0);
2242 }
2243 
2244 static int
2245 mpt_core_load(struct mpt_personality *pers)
2246 {
2247 	int i;
2248 
2249 	/*
2250 	 * Setup core handlers and insert the default handler
2251 	 * into all "empty slots".
2252 	 */
2253 	for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2254 		mpt_reply_handlers[i] = mpt_default_reply_handler;
2255 	}
2256 
2257 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2258 	    mpt_event_reply_handler;
2259 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2260 	    mpt_config_reply_handler;
2261 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2262 	    mpt_handshake_reply_handler;
2263 	return (0);
2264 }
2265 
2266 /*
2267  * Initialize per-instance driver data and perform
2268  * initial controller configuration.
2269  */
2270 static int
2271 mpt_core_attach(struct mpt_softc *mpt)
2272 {
2273         int val, error;
2274 
2275 	LIST_INIT(&mpt->ack_frames);
2276 	/* Put all request buffers on the free list */
2277 	TAILQ_INIT(&mpt->request_pending_list);
2278 	TAILQ_INIT(&mpt->request_free_list);
2279 	TAILQ_INIT(&mpt->request_timeout_list);
2280 	for (val = 0; val < MPT_MAX_LUNS; val++) {
2281 		STAILQ_INIT(&mpt->trt[val].atios);
2282 		STAILQ_INIT(&mpt->trt[val].inots);
2283 	}
2284 	STAILQ_INIT(&mpt->trt_wildcard.atios);
2285 	STAILQ_INIT(&mpt->trt_wildcard.inots);
2286 #ifdef	MPT_TEST_MULTIPATH
2287 	mpt->failure_id = -1;
2288 #endif
2289 	mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2290 	mpt_sysctl_attach(mpt);
2291 	mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2292 	    mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2293 
2294 	MPT_LOCK(mpt);
2295 	error = mpt_configure_ioc(mpt, 0, 0);
2296 	MPT_UNLOCK(mpt);
2297 
2298 	return (error);
2299 }
2300 
2301 static int
2302 mpt_core_enable(struct mpt_softc *mpt)
2303 {
2304 
2305 	/*
2306 	 * We enter with the IOC enabled, but async events
2307 	 * not enabled, ports not enabled and interrupts
2308 	 * not enabled.
2309 	 */
2310 	MPT_LOCK(mpt);
2311 
2312 	/*
2313 	 * Enable asynchronous event reporting- all personalities
2314 	 * have attached so that they should be able to now field
2315 	 * async events.
2316 	 */
2317 	mpt_send_event_request(mpt, 1);
2318 
2319 	/*
2320 	 * Catch any pending interrupts
2321 	 *
2322 	 * This seems to be crucial- otherwise
2323 	 * the portenable below times out.
2324 	 */
2325 	mpt_intr(mpt);
2326 
2327 	/*
2328 	 * Enable Interrupts
2329 	 */
2330 	mpt_enable_ints(mpt);
2331 
2332 	/*
2333 	 * Catch any pending interrupts
2334 	 *
2335 	 * This seems to be crucial- otherwise
2336 	 * the portenable below times out.
2337 	 */
2338 	mpt_intr(mpt);
2339 
2340 	/*
2341 	 * Enable the port.
2342 	 */
2343 	if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2344 		mpt_prt(mpt, "failed to enable port 0\n");
2345 		MPT_UNLOCK(mpt);
2346 		return (ENXIO);
2347 	}
2348 	MPT_UNLOCK(mpt);
2349 	return (0);
2350 }
2351 
2352 static void
2353 mpt_core_shutdown(struct mpt_softc *mpt)
2354 {
2355 
2356 	mpt_disable_ints(mpt);
2357 }
2358 
2359 static void
2360 mpt_core_detach(struct mpt_softc *mpt)
2361 {
2362 	int val;
2363 
2364 	/*
2365 	 * XXX: FREE MEMORY
2366 	 */
2367 	mpt_disable_ints(mpt);
2368 
2369 	/* Make sure no request has pending timeouts. */
2370 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2371 		request_t *req = &mpt->request_pool[val];
2372 		mpt_callout_drain(mpt, &req->callout);
2373 	}
2374 
2375 	mpt_dma_buf_free(mpt);
2376 }
2377 
2378 static int
2379 mpt_core_unload(struct mpt_personality *pers)
2380 {
2381 
2382 	/* Unload is always successful. */
2383 	return (0);
2384 }
2385 
2386 #define FW_UPLOAD_REQ_SIZE				\
2387 	(sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION)	\
2388        + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2389 
2390 static int
2391 mpt_upload_fw(struct mpt_softc *mpt)
2392 {
2393 	uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2394 	MSG_FW_UPLOAD_REPLY fw_reply;
2395 	MSG_FW_UPLOAD *fw_req;
2396 	FW_UPLOAD_TCSGE *tsge;
2397 	SGE_SIMPLE32 *sge;
2398 	uint32_t flags;
2399 	int error;
2400 
2401 	memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2402 	fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2403 	fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2404 	fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2405 	fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2406 	tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2407 	tsge->DetailsLength = 12;
2408 	tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2409 	tsge->ImageSize = htole32(mpt->fw_image_size);
2410 	sge = (SGE_SIMPLE32 *)(tsge + 1);
2411 	flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2412 	      | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2413 	      | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2414 	flags <<= MPI_SGE_FLAGS_SHIFT;
2415 	sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2416 	sge->Address = htole32(mpt->fw_phys);
2417 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2418 	error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2419 	if (error)
2420 		return(error);
2421 	error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2422 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2423 	return (error);
2424 }
2425 
2426 static void
2427 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2428 	       uint32_t *data, bus_size_t len)
2429 {
2430 	uint32_t *data_end;
2431 
2432 	data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2433 	if (mpt->is_sas) {
2434 		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2435 	}
2436 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2437 	while (data != data_end) {
2438 		mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2439 		data++;
2440 	}
2441 	if (mpt->is_sas) {
2442 		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2443 	}
2444 }
2445 
2446 static int
2447 mpt_download_fw(struct mpt_softc *mpt)
2448 {
2449 	MpiFwHeader_t *fw_hdr;
2450 	int error;
2451 	uint32_t ext_offset;
2452 	uint32_t data;
2453 
2454 	mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2455 		mpt->fw_image_size);
2456 
2457 	error = mpt_enable_diag_mode(mpt);
2458 	if (error != 0) {
2459 		mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2460 		return (EIO);
2461 	}
2462 
2463 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2464 		  MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2465 
2466 	fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2467 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2468 	mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2469 		       fw_hdr->ImageSize);
2470 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2471 
2472 	ext_offset = fw_hdr->NextImageHeaderOffset;
2473 	while (ext_offset != 0) {
2474 		MpiExtImageHeader_t *ext;
2475 
2476 		ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2477 		ext_offset = ext->NextImageHeaderOffset;
2478 		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2479 		    BUS_DMASYNC_PREWRITE);
2480 		mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2481 			       ext->ImageSize);
2482 		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2483 		    BUS_DMASYNC_POSTWRITE);
2484 	}
2485 
2486 	if (mpt->is_sas) {
2487 		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2488 	}
2489 	/* Setup the address to jump to on reset. */
2490 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2491 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2492 
2493 	/*
2494 	 * The controller sets the "flash bad" status after attempting
2495 	 * to auto-boot from flash.  Clear the status so that the controller
2496 	 * will continue the boot process with our newly installed firmware.
2497 	 */
2498 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2499 	data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2500 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2501 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2502 
2503 	if (mpt->is_sas) {
2504 		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2505 	}
2506 
2507 	/*
2508 	 * Re-enable the processor and clear the boot halt flag.
2509 	 */
2510 	data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2511 	data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2512 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2513 
2514 	mpt_disable_diag_mode(mpt);
2515 	return (0);
2516 }
2517 
2518 static int
2519 mpt_dma_buf_alloc(struct mpt_softc *mpt)
2520 {
2521 	struct mpt_map_info mi;
2522 	uint8_t *vptr;
2523 	uint32_t pptr, end;
2524 	int i, error;
2525 
2526 	/* Create a child tag for data buffers */
2527 	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2528 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2529 	    NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2530 	    mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2531 	    &mpt->buffer_dmat) != 0) {
2532 		mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2533 		return (1);
2534 	}
2535 
2536 	/* Create a child tag for request buffers */
2537 	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2538 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2539 	    NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2540 	    &mpt->request_dmat) != 0) {
2541 		mpt_prt(mpt, "cannot create a dma tag for requests\n");
2542 		return (1);
2543 	}
2544 
2545 	/* Allocate some DMA accessible memory for requests */
2546 	if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2547 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2548 		mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2549 		    MPT_REQ_MEM_SIZE(mpt));
2550 		return (1);
2551 	}
2552 
2553 	mi.mpt = mpt;
2554 	mi.error = 0;
2555 
2556 	/* Load and lock it into "bus space" */
2557 	bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2558 	    MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2559 
2560 	if (mi.error) {
2561 		mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2562 		    mi.error);
2563 		return (1);
2564 	}
2565 	mpt->request_phys = mi.phys;
2566 
2567 	/*
2568 	 * Now create per-request dma maps
2569 	 */
2570 	i = 0;
2571 	pptr =  mpt->request_phys;
2572 	vptr =  mpt->request;
2573 	end = pptr + MPT_REQ_MEM_SIZE(mpt);
2574 	while(pptr < end) {
2575 		request_t *req = &mpt->request_pool[i];
2576 		req->index = i++;
2577 
2578 		/* Store location of Request Data */
2579 		req->req_pbuf = pptr;
2580 		req->req_vbuf = vptr;
2581 
2582 		pptr += MPT_REQUEST_AREA;
2583 		vptr += MPT_REQUEST_AREA;
2584 
2585 		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2586 		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2587 
2588 		error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2589 		if (error) {
2590 			mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2591 			    error);
2592 			return (1);
2593 		}
2594 	}
2595 
2596 	return (0);
2597 }
2598 
2599 static void
2600 mpt_dma_buf_free(struct mpt_softc *mpt)
2601 {
2602 	int i;
2603 
2604 	if (mpt->request_dmat == 0) {
2605 		mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2606 		return;
2607 	}
2608 	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2609 		bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2610 	}
2611 	bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2612 	bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2613 	bus_dma_tag_destroy(mpt->request_dmat);
2614 	mpt->request_dmat = 0;
2615 	bus_dma_tag_destroy(mpt->buffer_dmat);
2616 }
2617 
2618 /*
2619  * Allocate/Initialize data structures for the controller.  Called
2620  * once at instance startup.
2621  */
2622 static int
2623 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2624 {
2625 	PTR_MSG_PORT_FACTS_REPLY pfp;
2626 	int error, port, val;
2627 	size_t len;
2628 
2629 	if (tn == MPT_MAX_TRYS) {
2630 		return (-1);
2631 	}
2632 
2633 	/*
2634 	 * No need to reset if the IOC is already in the READY state.
2635 	 *
2636 	 * Force reset if initialization failed previously.
2637 	 * Note that a hard_reset of the second channel of a '929
2638 	 * will stop operation of the first channel.  Hopefully, if the
2639 	 * first channel is ok, the second will not require a hard
2640 	 * reset.
2641 	 */
2642 	if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2643 		if (mpt_reset(mpt, FALSE) != MPT_OK) {
2644 			return (mpt_configure_ioc(mpt, tn++, 1));
2645 		}
2646 		needreset = 0;
2647 	}
2648 
2649 	if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2650 		mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2651 		return (mpt_configure_ioc(mpt, tn++, 1));
2652 	}
2653 	mpt2host_iocfacts_reply(&mpt->ioc_facts);
2654 
2655 	mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2656 	    mpt->ioc_facts.MsgVersion >> 8,
2657 	    mpt->ioc_facts.MsgVersion & 0xFF,
2658 	    mpt->ioc_facts.HeaderVersion >> 8,
2659 	    mpt->ioc_facts.HeaderVersion & 0xFF);
2660 
2661 	/*
2662 	 * Now that we know request frame size, we can calculate
2663 	 * the actual (reasonable) segment limit for read/write I/O.
2664 	 *
2665 	 * This limit is constrained by:
2666 	 *
2667 	 *  + The size of each area we allocate per command (and how
2668 	 *    many chain segments we can fit into it).
2669 	 *  + The total number of areas we've set up.
2670 	 *  + The actual chain depth the card will allow.
2671 	 *
2672 	 * The first area's segment count is limited by the I/O request
2673 	 * at the head of it. We cannot allocate realistically more
2674 	 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2675 	 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2676 	 *
2677 	 */
2678 	/* total number of request areas we (can) allocate */
2679 	mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2680 
2681 	/* converted to the number of chain areas possible */
2682 	mpt->max_seg_cnt *= MPT_NRFM(mpt);
2683 
2684 	/* limited by the number of chain areas the card will support */
2685 	if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2686 		mpt_lprt(mpt, MPT_PRT_INFO,
2687 		    "chain depth limited to %u (from %u)\n",
2688 		    mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2689 		mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2690 	}
2691 
2692 	/* converted to the number of simple sges in chain segments. */
2693 	mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2694 
2695 	/*
2696 	 * Use this as the basis for reporting the maximum I/O size to CAM.
2697 	 */
2698 	mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1);
2699 
2700 	error = mpt_dma_buf_alloc(mpt);
2701 	if (error != 0) {
2702 		mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2703 		return (EIO);
2704 	}
2705 
2706 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2707 		request_t *req = &mpt->request_pool[val];
2708 		req->state = REQ_STATE_ALLOCATED;
2709 		mpt_callout_init(mpt, &req->callout);
2710 		mpt_free_request(mpt, req);
2711 	}
2712 
2713 	mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2714 		 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2715 		 mpt->max_cam_seg_cnt);
2716 
2717 	mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2718 	    mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2719 	mpt_lprt(mpt, MPT_PRT_INFO,
2720 	    "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2721 	    "Request Frame Size %u bytes Max Chain Depth %u\n",
2722 	    mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2723 	    mpt->ioc_facts.RequestFrameSize << 2,
2724 	    mpt->ioc_facts.MaxChainDepth);
2725 	mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2726 	    "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2727 	    mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2728 
2729 	len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2730 	mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2731 	if (mpt->port_facts == NULL) {
2732 		mpt_prt(mpt, "unable to allocate memory for port facts\n");
2733 		return (ENOMEM);
2734 	}
2735 
2736 
2737 	if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2738 	    (mpt->fw_uploaded == 0)) {
2739 		struct mpt_map_info mi;
2740 
2741 		/*
2742 		 * In some configurations, the IOC's firmware is
2743 		 * stored in a shared piece of system NVRAM that
2744 		 * is only accessible via the BIOS.  In this
2745 		 * case, the firmware keeps a copy of firmware in
2746 		 * RAM until the OS driver retrieves it.  Once
2747 		 * retrieved, we are responsible for re-downloading
2748 		 * the firmware after any hard-reset.
2749 		 */
2750 		mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2751 		error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2752 		    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2753 		    mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2754 		    &mpt->fw_dmat);
2755 		if (error != 0) {
2756 			mpt_prt(mpt, "cannot create firmware dma tag\n");
2757 			return (ENOMEM);
2758 		}
2759 		error = bus_dmamem_alloc(mpt->fw_dmat,
2760 		    (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2761 		    BUS_DMA_COHERENT, &mpt->fw_dmap);
2762 		if (error != 0) {
2763 			mpt_prt(mpt, "cannot allocate firmware memory\n");
2764 			bus_dma_tag_destroy(mpt->fw_dmat);
2765 			return (ENOMEM);
2766 		}
2767 		mi.mpt = mpt;
2768 		mi.error = 0;
2769 		bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2770 		    mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2771 		mpt->fw_phys = mi.phys;
2772 
2773 		error = mpt_upload_fw(mpt);
2774 		if (error != 0) {
2775 			mpt_prt(mpt, "firmware upload failed.\n");
2776 			bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2777 			bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2778 			    mpt->fw_dmap);
2779 			bus_dma_tag_destroy(mpt->fw_dmat);
2780 			mpt->fw_image = NULL;
2781 			return (EIO);
2782 		}
2783 		mpt->fw_uploaded = 1;
2784 	}
2785 
2786 	for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2787 		pfp = &mpt->port_facts[port];
2788 		error = mpt_get_portfacts(mpt, 0, pfp);
2789 		if (error != MPT_OK) {
2790 			mpt_prt(mpt,
2791 			    "mpt_get_portfacts on port %d failed\n", port);
2792 			free(mpt->port_facts, M_DEVBUF);
2793 			mpt->port_facts = NULL;
2794 			return (mpt_configure_ioc(mpt, tn++, 1));
2795 		}
2796 		mpt2host_portfacts_reply(pfp);
2797 
2798 		if (port > 0) {
2799 			error = MPT_PRT_INFO;
2800 		} else {
2801 			error = MPT_PRT_DEBUG;
2802 		}
2803 		mpt_lprt(mpt, error,
2804 		    "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2805 		    port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2806 		    pfp->MaxDevices);
2807 
2808 	}
2809 
2810 	/*
2811 	 * XXX: Not yet supporting more than port 0
2812 	 */
2813 	pfp = &mpt->port_facts[0];
2814 	if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2815 		mpt->is_fc = 1;
2816 		mpt->is_sas = 0;
2817 		mpt->is_spi = 0;
2818 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2819 		mpt->is_fc = 0;
2820 		mpt->is_sas = 1;
2821 		mpt->is_spi = 0;
2822 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2823 		mpt->is_fc = 0;
2824 		mpt->is_sas = 0;
2825 		mpt->is_spi = 1;
2826 		if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2827 			mpt->mpt_ini_id = pfp->PortSCSIID;
2828 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2829 		mpt_prt(mpt, "iSCSI not supported yet\n");
2830 		return (ENXIO);
2831 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2832 		mpt_prt(mpt, "Inactive Port\n");
2833 		return (ENXIO);
2834 	} else {
2835 		mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2836 		return (ENXIO);
2837 	}
2838 
2839 	/*
2840 	 * Set our role with what this port supports.
2841 	 *
2842 	 * Note this might be changed later in different modules
2843 	 * if this is different from what is wanted.
2844 	 */
2845 	mpt->role = MPT_ROLE_NONE;
2846 	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2847 		mpt->role |= MPT_ROLE_INITIATOR;
2848 	}
2849 	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2850 		mpt->role |= MPT_ROLE_TARGET;
2851 	}
2852 
2853 	/*
2854 	 * Enable the IOC
2855 	 */
2856 	if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2857 		mpt_prt(mpt, "unable to initialize IOC\n");
2858 		return (ENXIO);
2859 	}
2860 
2861 	/*
2862 	 * Read IOC configuration information.
2863 	 *
2864 	 * We need this to determine whether or not we have certain
2865 	 * settings for Integrated Mirroring (e.g.).
2866 	 */
2867 	mpt_read_config_info_ioc(mpt);
2868 
2869 	return (0);
2870 }
2871 
2872 static int
2873 mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2874 {
2875 	uint32_t pptr;
2876 	int val;
2877 
2878 	if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2879 		mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2880 		return (EIO);
2881 	}
2882 
2883 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2884 
2885 	if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2886 		mpt_prt(mpt, "IOC failed to go to run state\n");
2887 		return (ENXIO);
2888 	}
2889 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2890 
2891 	/*
2892 	 * Give it reply buffers
2893 	 *
2894 	 * Do *not* exceed global credits.
2895 	 */
2896 	for (val = 0, pptr = mpt->reply_phys;
2897 	    (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2898 	     pptr += MPT_REPLY_SIZE) {
2899 		mpt_free_reply(mpt, pptr);
2900 		if (++val == mpt->ioc_facts.GlobalCredits - 1)
2901 			break;
2902 	}
2903 
2904 
2905 	/*
2906 	 * Enable the port if asked. This is only done if we're resetting
2907 	 * the IOC after initial startup.
2908 	 */
2909 	if (portenable) {
2910 		/*
2911 		 * Enable asynchronous event reporting
2912 		 */
2913 		mpt_send_event_request(mpt, 1);
2914 
2915 		if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2916 			mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2917 			return (ENXIO);
2918 		}
2919 	}
2920 	return (MPT_OK);
2921 }
2922 
2923 /*
2924  * Endian Conversion Functions- only used on Big Endian machines
2925  */
2926 #if	_BYTE_ORDER == _BIG_ENDIAN
2927 void
2928 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2929 {
2930 
2931 	MPT_2_HOST32(sge, FlagsLength);
2932 	MPT_2_HOST32(sge, u.Address64.Low);
2933 	MPT_2_HOST32(sge, u.Address64.High);
2934 }
2935 
2936 void
2937 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2938 {
2939 
2940 	MPT_2_HOST16(rp, MsgVersion);
2941 	MPT_2_HOST16(rp, HeaderVersion);
2942 	MPT_2_HOST32(rp, MsgContext);
2943 	MPT_2_HOST16(rp, IOCExceptions);
2944 	MPT_2_HOST16(rp, IOCStatus);
2945 	MPT_2_HOST32(rp, IOCLogInfo);
2946 	MPT_2_HOST16(rp, ReplyQueueDepth);
2947 	MPT_2_HOST16(rp, RequestFrameSize);
2948 	MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2949 	MPT_2_HOST16(rp, ProductID);
2950 	MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2951 	MPT_2_HOST16(rp, GlobalCredits);
2952 	MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2953 	MPT_2_HOST16(rp, CurReplyFrameSize);
2954 	MPT_2_HOST32(rp, FWImageSize);
2955 	MPT_2_HOST32(rp, IOCCapabilities);
2956 	MPT_2_HOST32(rp, FWVersion.Word);
2957 	MPT_2_HOST16(rp, HighPriorityQueueDepth);
2958 	MPT_2_HOST16(rp, Reserved2);
2959 	mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2960 	MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2961 }
2962 
2963 void
2964 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2965 {
2966 
2967 	MPT_2_HOST16(pfp, Reserved);
2968 	MPT_2_HOST16(pfp, Reserved1);
2969 	MPT_2_HOST32(pfp, MsgContext);
2970 	MPT_2_HOST16(pfp, Reserved2);
2971 	MPT_2_HOST16(pfp, IOCStatus);
2972 	MPT_2_HOST32(pfp, IOCLogInfo);
2973 	MPT_2_HOST16(pfp, MaxDevices);
2974 	MPT_2_HOST16(pfp, PortSCSIID);
2975 	MPT_2_HOST16(pfp, ProtocolFlags);
2976 	MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2977 	MPT_2_HOST16(pfp, MaxPersistentIDs);
2978 	MPT_2_HOST16(pfp, MaxLanBuckets);
2979 	MPT_2_HOST16(pfp, Reserved4);
2980 	MPT_2_HOST32(pfp, Reserved5);
2981 }
2982 
2983 void
2984 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2985 {
2986 	int i;
2987 
2988 	MPT_2_HOST32(ioc2, CapabilitiesFlags);
2989 	for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
2990 		MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
2991 	}
2992 }
2993 
2994 void
2995 mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
2996 {
2997 
2998 	MPT_2_HOST16(ioc3, Reserved2);
2999 }
3000 
3001 void
3002 mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
3003 {
3004 
3005 	MPT_2_HOST32(sp0, Capabilities);
3006 	MPT_2_HOST32(sp0, PhysicalInterface);
3007 }
3008 
3009 void
3010 mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3011 {
3012 
3013 	MPT_2_HOST32(sp1, Configuration);
3014 	MPT_2_HOST32(sp1, OnBusTimerValue);
3015 	MPT_2_HOST16(sp1, IDConfig);
3016 }
3017 
3018 void
3019 host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3020 {
3021 
3022 	HOST_2_MPT32(sp1, Configuration);
3023 	HOST_2_MPT32(sp1, OnBusTimerValue);
3024 	HOST_2_MPT16(sp1, IDConfig);
3025 }
3026 
3027 void
3028 mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3029 {
3030 	int i;
3031 
3032 	MPT_2_HOST32(sp2, PortFlags);
3033 	MPT_2_HOST32(sp2, PortSettings);
3034 	for (i = 0; i < sizeof(sp2->DeviceSettings) /
3035 	    sizeof(*sp2->DeviceSettings); i++) {
3036 		MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3037 	}
3038 }
3039 
3040 void
3041 mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3042 {
3043 
3044 	MPT_2_HOST32(sd0, NegotiatedParameters);
3045 	MPT_2_HOST32(sd0, Information);
3046 }
3047 
3048 void
3049 mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3050 {
3051 
3052 	MPT_2_HOST32(sd1, RequestedParameters);
3053 	MPT_2_HOST32(sd1, Reserved);
3054 	MPT_2_HOST32(sd1, Configuration);
3055 }
3056 
3057 void
3058 host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3059 {
3060 
3061 	HOST_2_MPT32(sd1, RequestedParameters);
3062 	HOST_2_MPT32(sd1, Reserved);
3063 	HOST_2_MPT32(sd1, Configuration);
3064 }
3065 
3066 void
3067 mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3068 {
3069 
3070 	MPT_2_HOST32(fp0, Flags);
3071 	MPT_2_HOST32(fp0, PortIdentifier);
3072 	MPT_2_HOST32(fp0, WWNN.Low);
3073 	MPT_2_HOST32(fp0, WWNN.High);
3074 	MPT_2_HOST32(fp0, WWPN.Low);
3075 	MPT_2_HOST32(fp0, WWPN.High);
3076 	MPT_2_HOST32(fp0, SupportedServiceClass);
3077 	MPT_2_HOST32(fp0, SupportedSpeeds);
3078 	MPT_2_HOST32(fp0, CurrentSpeed);
3079 	MPT_2_HOST32(fp0, MaxFrameSize);
3080 	MPT_2_HOST32(fp0, FabricWWNN.Low);
3081 	MPT_2_HOST32(fp0, FabricWWNN.High);
3082 	MPT_2_HOST32(fp0, FabricWWPN.Low);
3083 	MPT_2_HOST32(fp0, FabricWWPN.High);
3084 	MPT_2_HOST32(fp0, DiscoveredPortsCount);
3085 	MPT_2_HOST32(fp0, MaxInitiators);
3086 }
3087 
3088 void
3089 mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3090 {
3091 
3092 	MPT_2_HOST32(fp1, Flags);
3093 	MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3094 	MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3095 	MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3096 	MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3097 }
3098 
3099 void
3100 host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3101 {
3102 
3103 	HOST_2_MPT32(fp1, Flags);
3104 	HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3105 	HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3106 	HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3107 	HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3108 }
3109 
3110 void
3111 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3112 {
3113 	int i;
3114 
3115 	MPT_2_HOST16(volp, VolumeStatus.Reserved);
3116 	MPT_2_HOST16(volp, VolumeSettings.Settings);
3117 	MPT_2_HOST32(volp, MaxLBA);
3118 	MPT_2_HOST32(volp, MaxLBAHigh);
3119 	MPT_2_HOST32(volp, StripeSize);
3120 	MPT_2_HOST32(volp, Reserved2);
3121 	MPT_2_HOST32(volp, Reserved3);
3122 	for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3123 		MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3124 	}
3125 }
3126 
3127 void
3128 mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3129 {
3130 
3131 	MPT_2_HOST32(rpd0, Reserved1);
3132 	MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3133 	MPT_2_HOST32(rpd0, MaxLBA);
3134 	MPT_2_HOST16(rpd0, ErrorData.Reserved);
3135 	MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3136 	MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3137 }
3138 
3139 void
3140 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3141 {
3142 
3143 	MPT_2_HOST16(vi, TotalBlocks.High);
3144 	MPT_2_HOST16(vi, TotalBlocks.Low);
3145 	MPT_2_HOST16(vi, BlocksRemaining.High);
3146 	MPT_2_HOST16(vi, BlocksRemaining.Low);
3147 }
3148 #endif
3149