1 /*- 2 * Generic routines for LSI Fusion adapters. 3 * FreeBSD Version. 4 * 5 * Copyright (c) 2000, 2001 by Greg Ansley 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice immediately at the beginning of the file, without modification, 12 * this list of conditions, and the following disclaimer. 13 * 2. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 /*- 29 * Copyright (c) 2002, 2006 by Matthew Jacob 30 * All rights reserved. 31 * 32 * Redistribution and use in source and binary forms, with or without 33 * modification, are permitted provided that the following conditions are 34 * met: 35 * 1. Redistributions of source code must retain the above copyright 36 * notice, this list of conditions and the following disclaimer. 37 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 38 * substantially similar to the "NO WARRANTY" disclaimer below 39 * ("Disclaimer") and any redistribution must be conditioned upon including 40 * a substantially similar Disclaimer requirement for further binary 41 * redistribution. 42 * 3. Neither the names of the above listed copyright holders nor the names 43 * of any contributors may be used to endorse or promote products derived 44 * from this software without specific prior written permission. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 47 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 50 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 56 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 57 * 58 * Support from Chris Ellsworth in order to make SAS adapters work 59 * is gratefully acknowledged. 60 * 61 * 62 * Support from LSI-Logic has also gone a great deal toward making this a 63 * workable subsystem and is gratefully acknowledged. 64 */ 65 /*- 66 * Copyright (c) 2004, Avid Technology, Inc. and its contributors. 67 * Copyright (c) 2005, WHEEL Sp. z o.o. 68 * Copyright (c) 2004, 2005 Justin T. Gibbs 69 * All rights reserved. 70 * 71 * Redistribution and use in source and binary forms, with or without 72 * modification, are permitted provided that the following conditions are 73 * met: 74 * 1. Redistributions of source code must retain the above copyright 75 * notice, this list of conditions and the following disclaimer. 76 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 77 * substantially similar to the "NO WARRANTY" disclaimer below 78 * ("Disclaimer") and any redistribution must be conditioned upon including 79 * a substantially similar Disclaimer requirement for further binary 80 * redistribution. 81 * 3. Neither the names of the above listed copyright holders nor the names 82 * of any contributors may be used to endorse or promote products derived 83 * from this software without specific prior written permission. 84 * 85 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 86 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 88 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 89 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 90 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 91 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 92 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 93 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 94 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 95 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 96 */ 97 98 #include <sys/cdefs.h> 99 __FBSDID("$FreeBSD$"); 100 101 #include <dev/mpt/mpt.h> 102 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */ 103 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */ 104 105 #include <dev/mpt/mpilib/mpi.h> 106 #include <dev/mpt/mpilib/mpi_ioc.h> 107 #include <dev/mpt/mpilib/mpi_fc.h> 108 #include <dev/mpt/mpilib/mpi_targ.h> 109 110 #include <sys/sysctl.h> 111 112 #define MPT_MAX_TRYS 3 113 #define MPT_MAX_WAIT 300000 114 115 static int maxwait_ack = 0; 116 static int maxwait_int = 0; 117 static int maxwait_state = 0; 118 119 static TAILQ_HEAD(, mpt_softc) mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq); 120 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS]; 121 122 static mpt_reply_handler_t mpt_default_reply_handler; 123 static mpt_reply_handler_t mpt_config_reply_handler; 124 static mpt_reply_handler_t mpt_handshake_reply_handler; 125 static mpt_reply_handler_t mpt_event_reply_handler; 126 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 127 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context); 128 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff); 129 static int mpt_soft_reset(struct mpt_softc *mpt); 130 static void mpt_hard_reset(struct mpt_softc *mpt); 131 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int); 132 static int mpt_enable_ioc(struct mpt_softc *mpt, int); 133 134 /************************* Personality Module Support *************************/ 135 /* 136 * We include one extra entry that is guaranteed to be NULL 137 * to simplify our itterator. 138 */ 139 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1]; 140 static __inline struct mpt_personality* 141 mpt_pers_find(struct mpt_softc *, u_int); 142 static __inline struct mpt_personality* 143 mpt_pers_find_reverse(struct mpt_softc *, u_int); 144 145 static __inline struct mpt_personality * 146 mpt_pers_find(struct mpt_softc *mpt, u_int start_at) 147 { 148 KASSERT(start_at <= MPT_MAX_PERSONALITIES, 149 ("mpt_pers_find: starting position out of range\n")); 150 151 while (start_at < MPT_MAX_PERSONALITIES 152 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 153 start_at++; 154 } 155 return (mpt_personalities[start_at]); 156 } 157 158 /* 159 * Used infrequently, so no need to optimize like a forward 160 * traversal where we use the MAX+1 is guaranteed to be NULL 161 * trick. 162 */ 163 static __inline struct mpt_personality * 164 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at) 165 { 166 while (start_at < MPT_MAX_PERSONALITIES 167 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 168 start_at--; 169 } 170 if (start_at < MPT_MAX_PERSONALITIES) 171 return (mpt_personalities[start_at]); 172 return (NULL); 173 } 174 175 #define MPT_PERS_FOREACH(mpt, pers) \ 176 for (pers = mpt_pers_find(mpt, /*start_at*/0); \ 177 pers != NULL; \ 178 pers = mpt_pers_find(mpt, /*start_at*/pers->id+1)) 179 180 #define MPT_PERS_FOREACH_REVERSE(mpt, pers) \ 181 for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\ 182 pers != NULL; \ 183 pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1)) 184 185 static mpt_load_handler_t mpt_stdload; 186 static mpt_probe_handler_t mpt_stdprobe; 187 static mpt_attach_handler_t mpt_stdattach; 188 static mpt_enable_handler_t mpt_stdenable; 189 static mpt_ready_handler_t mpt_stdready; 190 static mpt_event_handler_t mpt_stdevent; 191 static mpt_reset_handler_t mpt_stdreset; 192 static mpt_shutdown_handler_t mpt_stdshutdown; 193 static mpt_detach_handler_t mpt_stddetach; 194 static mpt_unload_handler_t mpt_stdunload; 195 static struct mpt_personality mpt_default_personality = 196 { 197 .load = mpt_stdload, 198 .probe = mpt_stdprobe, 199 .attach = mpt_stdattach, 200 .enable = mpt_stdenable, 201 .ready = mpt_stdready, 202 .event = mpt_stdevent, 203 .reset = mpt_stdreset, 204 .shutdown = mpt_stdshutdown, 205 .detach = mpt_stddetach, 206 .unload = mpt_stdunload 207 }; 208 209 static mpt_load_handler_t mpt_core_load; 210 static mpt_attach_handler_t mpt_core_attach; 211 static mpt_enable_handler_t mpt_core_enable; 212 static mpt_reset_handler_t mpt_core_ioc_reset; 213 static mpt_event_handler_t mpt_core_event; 214 static mpt_shutdown_handler_t mpt_core_shutdown; 215 static mpt_shutdown_handler_t mpt_core_detach; 216 static mpt_unload_handler_t mpt_core_unload; 217 static struct mpt_personality mpt_core_personality = 218 { 219 .name = "mpt_core", 220 .load = mpt_core_load, 221 .attach = mpt_core_attach, 222 .enable = mpt_core_enable, 223 .event = mpt_core_event, 224 .reset = mpt_core_ioc_reset, 225 .shutdown = mpt_core_shutdown, 226 .detach = mpt_core_detach, 227 .unload = mpt_core_unload, 228 }; 229 230 /* 231 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need 232 * ordering information. We want the core to always register FIRST. 233 * other modules are set to SI_ORDER_SECOND. 234 */ 235 static moduledata_t mpt_core_mod = { 236 "mpt_core", mpt_modevent, &mpt_core_personality 237 }; 238 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 239 MODULE_VERSION(mpt_core, 1); 240 241 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id)) 242 243 int 244 mpt_modevent(module_t mod, int type, void *data) 245 { 246 struct mpt_personality *pers; 247 int error; 248 249 pers = (struct mpt_personality *)data; 250 251 error = 0; 252 switch (type) { 253 case MOD_LOAD: 254 { 255 mpt_load_handler_t **def_handler; 256 mpt_load_handler_t **pers_handler; 257 int i; 258 259 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 260 if (mpt_personalities[i] == NULL) 261 break; 262 } 263 if (i >= MPT_MAX_PERSONALITIES) { 264 error = ENOMEM; 265 break; 266 } 267 pers->id = i; 268 mpt_personalities[i] = pers; 269 270 /* Install standard/noop handlers for any NULL entries. */ 271 def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality); 272 pers_handler = MPT_PERS_FIRST_HANDLER(pers); 273 while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) { 274 if (*pers_handler == NULL) 275 *pers_handler = *def_handler; 276 pers_handler++; 277 def_handler++; 278 } 279 280 error = (pers->load(pers)); 281 if (error != 0) 282 mpt_personalities[i] = NULL; 283 break; 284 } 285 case MOD_SHUTDOWN: 286 break; 287 #if __FreeBSD_version >= 500000 288 case MOD_QUIESCE: 289 break; 290 #endif 291 case MOD_UNLOAD: 292 error = pers->unload(pers); 293 mpt_personalities[pers->id] = NULL; 294 break; 295 default: 296 error = EINVAL; 297 break; 298 } 299 return (error); 300 } 301 302 int 303 mpt_stdload(struct mpt_personality *pers) 304 { 305 /* Load is always successfull. */ 306 return (0); 307 } 308 309 int 310 mpt_stdprobe(struct mpt_softc *mpt) 311 { 312 /* Probe is always successfull. */ 313 return (0); 314 } 315 316 int 317 mpt_stdattach(struct mpt_softc *mpt) 318 { 319 /* Attach is always successfull. */ 320 return (0); 321 } 322 323 int 324 mpt_stdenable(struct mpt_softc *mpt) 325 { 326 /* Enable is always successfull. */ 327 return (0); 328 } 329 330 void 331 mpt_stdready(struct mpt_softc *mpt) 332 { 333 } 334 335 336 int 337 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg) 338 { 339 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF); 340 /* Event was not for us. */ 341 return (0); 342 } 343 344 void 345 mpt_stdreset(struct mpt_softc *mpt, int type) 346 { 347 } 348 349 void 350 mpt_stdshutdown(struct mpt_softc *mpt) 351 { 352 } 353 354 void 355 mpt_stddetach(struct mpt_softc *mpt) 356 { 357 } 358 359 int 360 mpt_stdunload(struct mpt_personality *pers) 361 { 362 /* Unload is always successfull. */ 363 return (0); 364 } 365 366 /* 367 * Post driver attachment, we may want to perform some global actions. 368 * Here is the hook to do so. 369 */ 370 371 static void 372 mpt_postattach(void *unused) 373 { 374 struct mpt_softc *mpt; 375 struct mpt_personality *pers; 376 377 TAILQ_FOREACH(mpt, &mpt_tailq, links) { 378 MPT_PERS_FOREACH(mpt, pers) 379 pers->ready(mpt); 380 } 381 } 382 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL); 383 384 385 /******************************* Bus DMA Support ******************************/ 386 void 387 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error) 388 { 389 struct mpt_map_info *map_info; 390 391 map_info = (struct mpt_map_info *)arg; 392 map_info->error = error; 393 map_info->phys = segs->ds_addr; 394 } 395 396 /**************************** Reply/Event Handling ****************************/ 397 int 398 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type, 399 mpt_handler_t handler, uint32_t *phandler_id) 400 { 401 402 switch (type) { 403 case MPT_HANDLER_REPLY: 404 { 405 u_int cbi; 406 u_int free_cbi; 407 408 if (phandler_id == NULL) 409 return (EINVAL); 410 411 free_cbi = MPT_HANDLER_ID_NONE; 412 for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) { 413 /* 414 * If the same handler is registered multiple 415 * times, don't error out. Just return the 416 * index of the original registration. 417 */ 418 if (mpt_reply_handlers[cbi] == handler.reply_handler) { 419 *phandler_id = MPT_CBI_TO_HID(cbi); 420 return (0); 421 } 422 423 /* 424 * Fill from the front in the hope that 425 * all registered handlers consume only a 426 * single cache line. 427 * 428 * We don't break on the first empty slot so 429 * that the full table is checked to see if 430 * this handler was previously registered. 431 */ 432 if (free_cbi == MPT_HANDLER_ID_NONE && 433 (mpt_reply_handlers[cbi] 434 == mpt_default_reply_handler)) 435 free_cbi = cbi; 436 } 437 if (free_cbi == MPT_HANDLER_ID_NONE) { 438 return (ENOMEM); 439 } 440 mpt_reply_handlers[free_cbi] = handler.reply_handler; 441 *phandler_id = MPT_CBI_TO_HID(free_cbi); 442 break; 443 } 444 default: 445 mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type); 446 return (EINVAL); 447 } 448 return (0); 449 } 450 451 int 452 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type, 453 mpt_handler_t handler, uint32_t handler_id) 454 { 455 456 switch (type) { 457 case MPT_HANDLER_REPLY: 458 { 459 u_int cbi; 460 461 cbi = MPT_CBI(handler_id); 462 if (cbi >= MPT_NUM_REPLY_HANDLERS 463 || mpt_reply_handlers[cbi] != handler.reply_handler) 464 return (ENOENT); 465 mpt_reply_handlers[cbi] = mpt_default_reply_handler; 466 break; 467 } 468 default: 469 mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type); 470 return (EINVAL); 471 } 472 return (0); 473 } 474 475 static int 476 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req, 477 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 478 { 479 mpt_prt(mpt, 480 "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n", 481 req, req->serno, reply_desc, reply_frame); 482 483 if (reply_frame != NULL) 484 mpt_dump_reply_frame(mpt, reply_frame); 485 486 mpt_prt(mpt, "Reply Frame Ignored\n"); 487 488 return (/*free_reply*/TRUE); 489 } 490 491 static int 492 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req, 493 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 494 { 495 if (req != NULL) { 496 497 if (reply_frame != NULL) { 498 MSG_CONFIG *cfgp; 499 MSG_CONFIG_REPLY *reply; 500 501 cfgp = (MSG_CONFIG *)req->req_vbuf; 502 reply = (MSG_CONFIG_REPLY *)reply_frame; 503 req->IOCStatus = le16toh(reply_frame->IOCStatus); 504 bcopy(&reply->Header, &cfgp->Header, 505 sizeof(cfgp->Header)); 506 } 507 req->state &= ~REQ_STATE_QUEUED; 508 req->state |= REQ_STATE_DONE; 509 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 510 if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) { 511 wakeup(req); 512 } else if ((req->state & REQ_STATE_TIMEDOUT) != 0) { 513 /* 514 * Whew- we can free this request (late completion) 515 */ 516 mpt_free_request(mpt, req); 517 } 518 } 519 520 return (TRUE); 521 } 522 523 static int 524 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req, 525 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 526 { 527 /* Nothing to be done. */ 528 return (TRUE); 529 } 530 531 static int 532 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req, 533 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 534 { 535 int free_reply; 536 537 KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler")); 538 KASSERT(req != NULL, ("null request in mpt_event_reply_handler")); 539 540 free_reply = TRUE; 541 switch (reply_frame->Function) { 542 case MPI_FUNCTION_EVENT_NOTIFICATION: 543 { 544 MSG_EVENT_NOTIFY_REPLY *msg; 545 struct mpt_personality *pers; 546 u_int handled; 547 548 handled = 0; 549 msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 550 msg->EventDataLength = le16toh(msg->EventDataLength); 551 msg->IOCStatus = le16toh(msg->IOCStatus); 552 msg->IOCLogInfo = le32toh(msg->IOCLogInfo); 553 msg->Event = le32toh(msg->Event); 554 MPT_PERS_FOREACH(mpt, pers) 555 handled += pers->event(mpt, req, msg); 556 557 if (handled == 0 && mpt->mpt_pers_mask == 0) { 558 mpt_lprt(mpt, MPT_PRT_INFO, 559 "No Handlers For Any Event Notify Frames. " 560 "Event %#x (ACK %sequired).\n", 561 msg->Event, msg->AckRequired? "r" : "not r"); 562 } else if (handled == 0) { 563 mpt_lprt(mpt, MPT_PRT_WARN, 564 "Unhandled Event Notify Frame. Event %#x " 565 "(ACK %sequired).\n", 566 msg->Event, msg->AckRequired? "r" : "not r"); 567 } 568 569 if (msg->AckRequired) { 570 request_t *ack_req; 571 uint32_t context; 572 573 context = req->index | MPT_REPLY_HANDLER_EVENTS; 574 ack_req = mpt_get_request(mpt, FALSE); 575 if (ack_req == NULL) { 576 struct mpt_evtf_record *evtf; 577 578 evtf = (struct mpt_evtf_record *)reply_frame; 579 evtf->context = context; 580 LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links); 581 free_reply = FALSE; 582 break; 583 } 584 mpt_send_event_ack(mpt, ack_req, msg, context); 585 /* 586 * Don't check for CONTINUATION_REPLY here 587 */ 588 return (free_reply); 589 } 590 break; 591 } 592 case MPI_FUNCTION_PORT_ENABLE: 593 mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n"); 594 break; 595 case MPI_FUNCTION_EVENT_ACK: 596 break; 597 default: 598 mpt_prt(mpt, "unknown event function: %x\n", 599 reply_frame->Function); 600 break; 601 } 602 603 /* 604 * I'm not sure that this continuation stuff works as it should. 605 * 606 * I've had FC async events occur that free the frame up because 607 * the continuation bit isn't set, and then additional async events 608 * then occur using the same context. As you might imagine, this 609 * leads to Very Bad Thing. 610 * 611 * Let's just be safe for now and not free them up until we figure 612 * out what's actually happening here. 613 */ 614 #if 0 615 if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) { 616 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 617 mpt_free_request(mpt, req); 618 mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation", 619 reply_frame->Function, req, req->serno); 620 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 621 MSG_EVENT_NOTIFY_REPLY *msg = 622 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 623 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 624 msg->Event, msg->AckRequired); 625 } 626 } else { 627 mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation", 628 reply_frame->Function, req, req->serno); 629 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 630 MSG_EVENT_NOTIFY_REPLY *msg = 631 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 632 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 633 msg->Event, msg->AckRequired); 634 } 635 mpt_prtc(mpt, "\n"); 636 } 637 #endif 638 return (free_reply); 639 } 640 641 /* 642 * Process an asynchronous event from the IOC. 643 */ 644 static int 645 mpt_core_event(struct mpt_softc *mpt, request_t *req, 646 MSG_EVENT_NOTIFY_REPLY *msg) 647 { 648 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n", 649 msg->Event & 0xFF); 650 switch(msg->Event & 0xFF) { 651 case MPI_EVENT_NONE: 652 break; 653 case MPI_EVENT_LOG_DATA: 654 { 655 int i; 656 657 /* Some error occured that LSI wants logged */ 658 mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n", 659 msg->IOCLogInfo); 660 mpt_prt(mpt, "\tEvtLogData: Event Data:"); 661 for (i = 0; i < msg->EventDataLength; i++) 662 mpt_prtc(mpt, " %08x", msg->Data[i]); 663 mpt_prtc(mpt, "\n"); 664 break; 665 } 666 case MPI_EVENT_EVENT_CHANGE: 667 /* 668 * This is just an acknowledgement 669 * of our mpt_send_event_request. 670 */ 671 break; 672 case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE: 673 break; 674 default: 675 return (0); 676 break; 677 } 678 return (1); 679 } 680 681 static void 682 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 683 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context) 684 { 685 MSG_EVENT_ACK *ackp; 686 687 ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf; 688 memset(ackp, 0, sizeof (*ackp)); 689 ackp->Function = MPI_FUNCTION_EVENT_ACK; 690 ackp->Event = htole32(msg->Event); 691 ackp->EventContext = htole32(msg->EventContext); 692 ackp->MsgContext = htole32(context); 693 mpt_check_doorbell(mpt); 694 mpt_send_cmd(mpt, ack_req); 695 } 696 697 /***************************** Interrupt Handling *****************************/ 698 void 699 mpt_intr(void *arg) 700 { 701 struct mpt_softc *mpt; 702 uint32_t reply_desc; 703 int ntrips = 0; 704 705 mpt = (struct mpt_softc *)arg; 706 mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n"); 707 while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) { 708 request_t *req; 709 MSG_DEFAULT_REPLY *reply_frame; 710 uint32_t reply_baddr; 711 uint32_t ctxt_idx; 712 u_int cb_index; 713 u_int req_index; 714 int free_rf; 715 716 req = NULL; 717 reply_frame = NULL; 718 reply_baddr = 0; 719 if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) { 720 u_int offset; 721 /* 722 * Insure that the reply frame is coherent. 723 */ 724 reply_baddr = MPT_REPLY_BADDR(reply_desc); 725 offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF); 726 bus_dmamap_sync_range(mpt->reply_dmat, 727 mpt->reply_dmap, offset, MPT_REPLY_SIZE, 728 BUS_DMASYNC_POSTREAD); 729 reply_frame = MPT_REPLY_OTOV(mpt, offset); 730 ctxt_idx = le32toh(reply_frame->MsgContext); 731 } else { 732 uint32_t type; 733 734 type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc); 735 ctxt_idx = reply_desc; 736 mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n", 737 reply_desc); 738 739 switch (type) { 740 case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT: 741 ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK; 742 break; 743 case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET: 744 ctxt_idx = GET_IO_INDEX(reply_desc); 745 if (mpt->tgt_cmd_ptrs == NULL) { 746 mpt_prt(mpt, 747 "mpt_intr: no target cmd ptrs\n"); 748 reply_desc = MPT_REPLY_EMPTY; 749 break; 750 } 751 if (ctxt_idx >= mpt->tgt_cmds_allocated) { 752 mpt_prt(mpt, 753 "mpt_intr: bad tgt cmd ctxt %u\n", 754 ctxt_idx); 755 reply_desc = MPT_REPLY_EMPTY; 756 ntrips = 1000; 757 break; 758 } 759 req = mpt->tgt_cmd_ptrs[ctxt_idx]; 760 if (req == NULL) { 761 mpt_prt(mpt, "no request backpointer " 762 "at index %u", ctxt_idx); 763 reply_desc = MPT_REPLY_EMPTY; 764 ntrips = 1000; 765 break; 766 } 767 /* 768 * Reformulate ctxt_idx to be just as if 769 * it were another type of context reply 770 * so the code below will find the request 771 * via indexing into the pool. 772 */ 773 ctxt_idx = 774 req->index | mpt->scsi_tgt_handler_id; 775 req = NULL; 776 break; 777 case MPI_CONTEXT_REPLY_TYPE_LAN: 778 mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n", 779 reply_desc); 780 reply_desc = MPT_REPLY_EMPTY; 781 break; 782 default: 783 mpt_prt(mpt, "Context Reply 0x%08x?\n", type); 784 reply_desc = MPT_REPLY_EMPTY; 785 break; 786 } 787 if (reply_desc == MPT_REPLY_EMPTY) { 788 if (ntrips++ > 1000) { 789 break; 790 } 791 continue; 792 } 793 } 794 795 cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx); 796 req_index = MPT_CONTEXT_TO_REQI(ctxt_idx); 797 if (req_index < MPT_MAX_REQUESTS(mpt)) { 798 req = &mpt->request_pool[req_index]; 799 } else { 800 mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc ==" 801 " 0x%x)\n", req_index, reply_desc); 802 } 803 804 free_rf = mpt_reply_handlers[cb_index](mpt, req, 805 reply_desc, reply_frame); 806 807 if (reply_frame != NULL && free_rf) { 808 mpt_free_reply(mpt, reply_baddr); 809 } 810 811 /* 812 * If we got ourselves disabled, don't get stuck in a loop 813 */ 814 if (mpt->disabled) { 815 mpt_disable_ints(mpt); 816 break; 817 } 818 if (ntrips++ > 1000) { 819 break; 820 } 821 } 822 mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n"); 823 } 824 825 /******************************* Error Recovery *******************************/ 826 void 827 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain, 828 u_int iocstatus) 829 { 830 MSG_DEFAULT_REPLY ioc_status_frame; 831 request_t *req; 832 833 memset(&ioc_status_frame, 0, sizeof(ioc_status_frame)); 834 ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4); 835 ioc_status_frame.IOCStatus = iocstatus; 836 while((req = TAILQ_FIRST(chain)) != NULL) { 837 MSG_REQUEST_HEADER *msg_hdr; 838 u_int cb_index; 839 840 TAILQ_REMOVE(chain, req, links); 841 msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf; 842 ioc_status_frame.Function = msg_hdr->Function; 843 ioc_status_frame.MsgContext = msg_hdr->MsgContext; 844 cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext)); 845 mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext, 846 &ioc_status_frame); 847 } 848 } 849 850 /********************************* Diagnostics ********************************/ 851 /* 852 * Perform a diagnostic dump of a reply frame. 853 */ 854 void 855 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame) 856 { 857 mpt_prt(mpt, "Address Reply:\n"); 858 mpt_print_reply(reply_frame); 859 } 860 861 /******************************* Doorbell Access ******************************/ 862 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt); 863 static __inline uint32_t mpt_rd_intr(struct mpt_softc *mpt); 864 865 static __inline uint32_t 866 mpt_rd_db(struct mpt_softc *mpt) 867 { 868 return mpt_read(mpt, MPT_OFFSET_DOORBELL); 869 } 870 871 static __inline uint32_t 872 mpt_rd_intr(struct mpt_softc *mpt) 873 { 874 return mpt_read(mpt, MPT_OFFSET_INTR_STATUS); 875 } 876 877 /* Busy wait for a door bell to be read by IOC */ 878 static int 879 mpt_wait_db_ack(struct mpt_softc *mpt) 880 { 881 int i; 882 for (i=0; i < MPT_MAX_WAIT; i++) { 883 if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) { 884 maxwait_ack = i > maxwait_ack ? i : maxwait_ack; 885 return (MPT_OK); 886 } 887 DELAY(200); 888 } 889 return (MPT_FAIL); 890 } 891 892 /* Busy wait for a door bell interrupt */ 893 static int 894 mpt_wait_db_int(struct mpt_softc *mpt) 895 { 896 int i; 897 for (i = 0; i < MPT_MAX_WAIT; i++) { 898 if (MPT_DB_INTR(mpt_rd_intr(mpt))) { 899 maxwait_int = i > maxwait_int ? i : maxwait_int; 900 return MPT_OK; 901 } 902 DELAY(100); 903 } 904 return (MPT_FAIL); 905 } 906 907 /* Wait for IOC to transition to a give state */ 908 void 909 mpt_check_doorbell(struct mpt_softc *mpt) 910 { 911 uint32_t db = mpt_rd_db(mpt); 912 if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) { 913 mpt_prt(mpt, "Device not running\n"); 914 mpt_print_db(db); 915 } 916 } 917 918 /* Wait for IOC to transition to a give state */ 919 static int 920 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state) 921 { 922 int i; 923 924 for (i = 0; i < MPT_MAX_WAIT; i++) { 925 uint32_t db = mpt_rd_db(mpt); 926 if (MPT_STATE(db) == state) { 927 maxwait_state = i > maxwait_state ? i : maxwait_state; 928 return (MPT_OK); 929 } 930 DELAY(100); 931 } 932 return (MPT_FAIL); 933 } 934 935 936 /************************* Intialization/Configuration ************************/ 937 static int mpt_download_fw(struct mpt_softc *mpt); 938 939 /* Issue the reset COMMAND to the IOC */ 940 static int 941 mpt_soft_reset(struct mpt_softc *mpt) 942 { 943 mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n"); 944 945 /* Have to use hard reset if we are not in Running state */ 946 if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) { 947 mpt_prt(mpt, "soft reset failed: device not running\n"); 948 return (MPT_FAIL); 949 } 950 951 /* If door bell is in use we don't have a chance of getting 952 * a word in since the IOC probably crashed in message 953 * processing. So don't waste our time. 954 */ 955 if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) { 956 mpt_prt(mpt, "soft reset failed: doorbell wedged\n"); 957 return (MPT_FAIL); 958 } 959 960 /* Send the reset request to the IOC */ 961 mpt_write(mpt, MPT_OFFSET_DOORBELL, 962 MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT); 963 if (mpt_wait_db_ack(mpt) != MPT_OK) { 964 mpt_prt(mpt, "soft reset failed: ack timeout\n"); 965 return (MPT_FAIL); 966 } 967 968 /* Wait for the IOC to reload and come out of reset state */ 969 if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) { 970 mpt_prt(mpt, "soft reset failed: device did not restart\n"); 971 return (MPT_FAIL); 972 } 973 974 return MPT_OK; 975 } 976 977 static int 978 mpt_enable_diag_mode(struct mpt_softc *mpt) 979 { 980 int try; 981 982 try = 20; 983 while (--try) { 984 985 if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0) 986 break; 987 988 /* Enable diagnostic registers */ 989 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF); 990 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE); 991 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE); 992 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE); 993 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE); 994 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE); 995 996 DELAY(100000); 997 } 998 if (try == 0) 999 return (EIO); 1000 return (0); 1001 } 1002 1003 static void 1004 mpt_disable_diag_mode(struct mpt_softc *mpt) 1005 { 1006 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF); 1007 } 1008 1009 /* This is a magic diagnostic reset that resets all the ARM 1010 * processors in the chip. 1011 */ 1012 static void 1013 mpt_hard_reset(struct mpt_softc *mpt) 1014 { 1015 int error; 1016 int wait; 1017 uint32_t diagreg; 1018 1019 mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n"); 1020 1021 error = mpt_enable_diag_mode(mpt); 1022 if (error) { 1023 mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n"); 1024 mpt_prt(mpt, "Trying to reset anyway.\n"); 1025 } 1026 1027 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1028 1029 /* 1030 * This appears to be a workaround required for some 1031 * firmware or hardware revs. 1032 */ 1033 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM); 1034 DELAY(1000); 1035 1036 /* Diag. port is now active so we can now hit the reset bit */ 1037 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER); 1038 1039 /* 1040 * Ensure that the reset has finished. We delay 1ms 1041 * prior to reading the register to make sure the chip 1042 * has sufficiently completed its reset to handle register 1043 * accesses. 1044 */ 1045 wait = 5000; 1046 do { 1047 DELAY(1000); 1048 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1049 } while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0); 1050 1051 if (wait == 0) { 1052 mpt_prt(mpt, "WARNING - Failed hard reset! " 1053 "Trying to initialize anyway.\n"); 1054 } 1055 1056 /* 1057 * If we have firmware to download, it must be loaded before 1058 * the controller will become operational. Do so now. 1059 */ 1060 if (mpt->fw_image != NULL) { 1061 1062 error = mpt_download_fw(mpt); 1063 1064 if (error) { 1065 mpt_prt(mpt, "WARNING - Firmware Download Failed!\n"); 1066 mpt_prt(mpt, "Trying to initialize anyway.\n"); 1067 } 1068 } 1069 1070 /* 1071 * Reseting the controller should have disabled write 1072 * access to the diagnostic registers, but disable 1073 * manually to be sure. 1074 */ 1075 mpt_disable_diag_mode(mpt); 1076 } 1077 1078 static void 1079 mpt_core_ioc_reset(struct mpt_softc *mpt, int type) 1080 { 1081 /* 1082 * Complete all pending requests with a status 1083 * appropriate for an IOC reset. 1084 */ 1085 mpt_complete_request_chain(mpt, &mpt->request_pending_list, 1086 MPI_IOCSTATUS_INVALID_STATE); 1087 } 1088 1089 1090 /* 1091 * Reset the IOC when needed. Try software command first then if needed 1092 * poke at the magic diagnostic reset. Note that a hard reset resets 1093 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as 1094 * fouls up the PCI configuration registers. 1095 */ 1096 int 1097 mpt_reset(struct mpt_softc *mpt, int reinit) 1098 { 1099 struct mpt_personality *pers; 1100 int ret; 1101 int retry_cnt = 0; 1102 1103 /* 1104 * Try a soft reset. If that fails, get out the big hammer. 1105 */ 1106 again: 1107 if ((ret = mpt_soft_reset(mpt)) != MPT_OK) { 1108 int cnt; 1109 for (cnt = 0; cnt < 5; cnt++) { 1110 /* Failed; do a hard reset */ 1111 mpt_hard_reset(mpt); 1112 1113 /* 1114 * Wait for the IOC to reload 1115 * and come out of reset state 1116 */ 1117 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1118 if (ret == MPT_OK) { 1119 break; 1120 } 1121 /* 1122 * Okay- try to check again... 1123 */ 1124 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1125 if (ret == MPT_OK) { 1126 break; 1127 } 1128 mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n", 1129 retry_cnt, cnt); 1130 } 1131 } 1132 1133 if (retry_cnt == 0) { 1134 /* 1135 * Invoke reset handlers. We bump the reset count so 1136 * that mpt_wait_req() understands that regardless of 1137 * the specified wait condition, it should stop its wait. 1138 */ 1139 mpt->reset_cnt++; 1140 MPT_PERS_FOREACH(mpt, pers) 1141 pers->reset(mpt, ret); 1142 } 1143 1144 if (reinit) { 1145 ret = mpt_enable_ioc(mpt, 1); 1146 if (ret == MPT_OK) { 1147 mpt_enable_ints(mpt); 1148 } 1149 } 1150 if (ret != MPT_OK && retry_cnt++ < 2) { 1151 goto again; 1152 } 1153 return ret; 1154 } 1155 1156 /* Return a command buffer to the free queue */ 1157 void 1158 mpt_free_request(struct mpt_softc *mpt, request_t *req) 1159 { 1160 request_t *nxt; 1161 struct mpt_evtf_record *record; 1162 uint32_t reply_baddr; 1163 1164 if (req == NULL || req != &mpt->request_pool[req->index]) { 1165 panic("mpt_free_request bad req ptr\n"); 1166 return; 1167 } 1168 if ((nxt = req->chain) != NULL) { 1169 req->chain = NULL; 1170 mpt_free_request(mpt, nxt); /* NB: recursion */ 1171 } 1172 KASSERT(req->state != REQ_STATE_FREE, ("freeing free request")); 1173 KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request")); 1174 KASSERT(MPT_OWNED(mpt), ("mpt_free_request: mpt not locked\n")); 1175 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 1176 ("mpt_free_request: req %p:%u func %x already on freelist", 1177 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1178 KASSERT(mpt_req_on_pending_list(mpt, req) == 0, 1179 ("mpt_free_request: req %p:%u func %x on pending list", 1180 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1181 #ifdef INVARIANTS 1182 mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__); 1183 #endif 1184 1185 req->ccb = NULL; 1186 if (LIST_EMPTY(&mpt->ack_frames)) { 1187 /* 1188 * Insert free ones at the tail 1189 */ 1190 req->serno = 0; 1191 req->state = REQ_STATE_FREE; 1192 #ifdef INVARIANTS 1193 memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER)); 1194 #endif 1195 TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links); 1196 if (mpt->getreqwaiter != 0) { 1197 mpt->getreqwaiter = 0; 1198 wakeup(&mpt->request_free_list); 1199 } 1200 return; 1201 } 1202 1203 /* 1204 * Process an ack frame deferred due to resource shortage. 1205 */ 1206 record = LIST_FIRST(&mpt->ack_frames); 1207 LIST_REMOVE(record, links); 1208 req->state = REQ_STATE_ALLOCATED; 1209 mpt_assign_serno(mpt, req); 1210 mpt_send_event_ack(mpt, req, &record->reply, record->context); 1211 reply_baddr = (uint32_t)((uint8_t *)record - mpt->reply) 1212 + (mpt->reply_phys & 0xFFFFFFFF); 1213 mpt_free_reply(mpt, reply_baddr); 1214 } 1215 1216 /* Get a command buffer from the free queue */ 1217 request_t * 1218 mpt_get_request(struct mpt_softc *mpt, int sleep_ok) 1219 { 1220 request_t *req; 1221 1222 retry: 1223 KASSERT(MPT_OWNED(mpt), ("mpt_get_request: mpt not locked\n")); 1224 req = TAILQ_FIRST(&mpt->request_free_list); 1225 if (req != NULL) { 1226 KASSERT(req == &mpt->request_pool[req->index], 1227 ("mpt_get_request: corrupted request free list\n")); 1228 KASSERT(req->state == REQ_STATE_FREE, 1229 ("req %p:%u not free on free list %x index %d function %x", 1230 req, req->serno, req->state, req->index, 1231 ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1232 TAILQ_REMOVE(&mpt->request_free_list, req, links); 1233 req->state = REQ_STATE_ALLOCATED; 1234 req->chain = NULL; 1235 mpt_assign_serno(mpt, req); 1236 } else if (sleep_ok != 0) { 1237 mpt->getreqwaiter = 1; 1238 mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0); 1239 goto retry; 1240 } 1241 return (req); 1242 } 1243 1244 /* Pass the command to the IOC */ 1245 void 1246 mpt_send_cmd(struct mpt_softc *mpt, request_t *req) 1247 { 1248 if (mpt->verbose > MPT_PRT_DEBUG2) { 1249 mpt_dump_request(mpt, req); 1250 } 1251 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 1252 BUS_DMASYNC_PREWRITE); 1253 req->state |= REQ_STATE_QUEUED; 1254 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 1255 ("req %p:%u func %x on freelist list in mpt_send_cmd", 1256 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1257 KASSERT(mpt_req_on_pending_list(mpt, req) == 0, 1258 ("req %p:%u func %x already on pending list in mpt_send_cmd", 1259 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1260 TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links); 1261 mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf); 1262 } 1263 1264 /* 1265 * Wait for a request to complete. 1266 * 1267 * Inputs: 1268 * mpt softc of controller executing request 1269 * req request to wait for 1270 * sleep_ok nonzero implies may sleep in this context 1271 * time_ms timeout in ms. 0 implies no timeout. 1272 * 1273 * Return Values: 1274 * 0 Request completed 1275 * non-0 Timeout fired before request completion. 1276 */ 1277 int 1278 mpt_wait_req(struct mpt_softc *mpt, request_t *req, 1279 mpt_req_state_t state, mpt_req_state_t mask, 1280 int sleep_ok, int time_ms) 1281 { 1282 int error; 1283 int timeout; 1284 u_int saved_cnt; 1285 1286 /* 1287 * timeout is in ms. 0 indicates infinite wait. 1288 * Convert to ticks or 500us units depending on 1289 * our sleep mode. 1290 */ 1291 if (sleep_ok != 0) { 1292 timeout = (time_ms * hz) / 1000; 1293 } else { 1294 timeout = time_ms * 2; 1295 } 1296 req->state |= REQ_STATE_NEED_WAKEUP; 1297 mask &= ~REQ_STATE_NEED_WAKEUP; 1298 saved_cnt = mpt->reset_cnt; 1299 while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) { 1300 if (sleep_ok != 0) { 1301 error = mpt_sleep(mpt, req, PUSER, "mptreq", timeout); 1302 if (error == EWOULDBLOCK) { 1303 timeout = 0; 1304 break; 1305 } 1306 } else { 1307 if (time_ms != 0 && --timeout == 0) { 1308 break; 1309 } 1310 DELAY(500); 1311 mpt_intr(mpt); 1312 } 1313 } 1314 req->state &= ~REQ_STATE_NEED_WAKEUP; 1315 if (mpt->reset_cnt != saved_cnt) { 1316 return (EIO); 1317 } 1318 if (time_ms && timeout <= 0) { 1319 MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf; 1320 req->state |= REQ_STATE_TIMEDOUT; 1321 mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function); 1322 return (ETIMEDOUT); 1323 } 1324 return (0); 1325 } 1326 1327 /* 1328 * Send a command to the IOC via the handshake register. 1329 * 1330 * Only done at initialization time and for certain unusual 1331 * commands such as device/bus reset as specified by LSI. 1332 */ 1333 int 1334 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd) 1335 { 1336 int i; 1337 uint32_t data, *data32; 1338 1339 /* Check condition of the IOC */ 1340 data = mpt_rd_db(mpt); 1341 if ((MPT_STATE(data) != MPT_DB_STATE_READY 1342 && MPT_STATE(data) != MPT_DB_STATE_RUNNING 1343 && MPT_STATE(data) != MPT_DB_STATE_FAULT) 1344 || MPT_DB_IS_IN_USE(data)) { 1345 mpt_prt(mpt, "handshake aborted - invalid doorbell state\n"); 1346 mpt_print_db(data); 1347 return (EBUSY); 1348 } 1349 1350 /* We move things in 32 bit chunks */ 1351 len = (len + 3) >> 2; 1352 data32 = cmd; 1353 1354 /* Clear any left over pending doorbell interupts */ 1355 if (MPT_DB_INTR(mpt_rd_intr(mpt))) 1356 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1357 1358 /* 1359 * Tell the handshake reg. we are going to send a command 1360 * and how long it is going to be. 1361 */ 1362 data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) | 1363 (len << MPI_DOORBELL_ADD_DWORDS_SHIFT); 1364 mpt_write(mpt, MPT_OFFSET_DOORBELL, data); 1365 1366 /* Wait for the chip to notice */ 1367 if (mpt_wait_db_int(mpt) != MPT_OK) { 1368 mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n"); 1369 return (ETIMEDOUT); 1370 } 1371 1372 /* Clear the interrupt */ 1373 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1374 1375 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1376 mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n"); 1377 return (ETIMEDOUT); 1378 } 1379 1380 /* Send the command */ 1381 for (i = 0; i < len; i++) { 1382 mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++)); 1383 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1384 mpt_prt(mpt, 1385 "mpt_send_handshake_cmd: timeout @ index %d\n", i); 1386 return (ETIMEDOUT); 1387 } 1388 } 1389 return MPT_OK; 1390 } 1391 1392 /* Get the response from the handshake register */ 1393 int 1394 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply) 1395 { 1396 int left, reply_left; 1397 u_int16_t *data16; 1398 uint32_t data; 1399 MSG_DEFAULT_REPLY *hdr; 1400 1401 /* We move things out in 16 bit chunks */ 1402 reply_len >>= 1; 1403 data16 = (u_int16_t *)reply; 1404 1405 hdr = (MSG_DEFAULT_REPLY *)reply; 1406 1407 /* Get first word */ 1408 if (mpt_wait_db_int(mpt) != MPT_OK) { 1409 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n"); 1410 return ETIMEDOUT; 1411 } 1412 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1413 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1414 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1415 1416 /* Get Second Word */ 1417 if (mpt_wait_db_int(mpt) != MPT_OK) { 1418 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n"); 1419 return ETIMEDOUT; 1420 } 1421 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1422 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1423 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1424 1425 /* 1426 * With the second word, we can now look at the length. 1427 * Warn about a reply that's too short (except for IOC FACTS REPLY) 1428 */ 1429 if ((reply_len >> 1) != hdr->MsgLength && 1430 (hdr->Function != MPI_FUNCTION_IOC_FACTS)){ 1431 #if __FreeBSD_version >= 500000 1432 mpt_prt(mpt, "reply length does not match message length: " 1433 "got %x; expected %zx for function %x\n", 1434 hdr->MsgLength << 2, reply_len << 1, hdr->Function); 1435 #else 1436 mpt_prt(mpt, "reply length does not match message length: " 1437 "got %x; expected %x for function %x\n", 1438 hdr->MsgLength << 2, reply_len << 1, hdr->Function); 1439 #endif 1440 } 1441 1442 /* Get rest of the reply; but don't overflow the provided buffer */ 1443 left = (hdr->MsgLength << 1) - 2; 1444 reply_left = reply_len - 2; 1445 while (left--) { 1446 u_int16_t datum; 1447 1448 if (mpt_wait_db_int(mpt) != MPT_OK) { 1449 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n"); 1450 return ETIMEDOUT; 1451 } 1452 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1453 datum = le16toh(data & MPT_DB_DATA_MASK); 1454 1455 if (reply_left-- > 0) 1456 *data16++ = datum; 1457 1458 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1459 } 1460 1461 /* One more wait & clear at the end */ 1462 if (mpt_wait_db_int(mpt) != MPT_OK) { 1463 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n"); 1464 return ETIMEDOUT; 1465 } 1466 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1467 1468 if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1469 if (mpt->verbose >= MPT_PRT_TRACE) 1470 mpt_print_reply(hdr); 1471 return (MPT_FAIL | hdr->IOCStatus); 1472 } 1473 1474 return (0); 1475 } 1476 1477 static int 1478 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp) 1479 { 1480 MSG_IOC_FACTS f_req; 1481 int error; 1482 1483 memset(&f_req, 0, sizeof f_req); 1484 f_req.Function = MPI_FUNCTION_IOC_FACTS; 1485 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1486 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1487 if (error) { 1488 return(error); 1489 } 1490 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1491 return (error); 1492 } 1493 1494 static int 1495 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp) 1496 { 1497 MSG_PORT_FACTS f_req; 1498 int error; 1499 1500 memset(&f_req, 0, sizeof f_req); 1501 f_req.Function = MPI_FUNCTION_PORT_FACTS; 1502 f_req.PortNumber = port; 1503 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1504 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1505 if (error) { 1506 return(error); 1507 } 1508 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1509 return (error); 1510 } 1511 1512 /* 1513 * Send the initialization request. This is where we specify how many 1514 * SCSI busses and how many devices per bus we wish to emulate. 1515 * This is also the command that specifies the max size of the reply 1516 * frames from the IOC that we will be allocating. 1517 */ 1518 static int 1519 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who) 1520 { 1521 int error = 0; 1522 MSG_IOC_INIT init; 1523 MSG_IOC_INIT_REPLY reply; 1524 1525 memset(&init, 0, sizeof init); 1526 init.WhoInit = who; 1527 init.Function = MPI_FUNCTION_IOC_INIT; 1528 init.MaxDevices = 0; /* at least 256 devices per bus */ 1529 init.MaxBuses = 16; /* at least 16 busses */ 1530 1531 init.MsgVersion = htole16(MPI_VERSION); 1532 init.HeaderVersion = htole16(MPI_HEADER_VERSION); 1533 init.ReplyFrameSize = htole16(MPT_REPLY_SIZE); 1534 init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1535 1536 if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) { 1537 return(error); 1538 } 1539 1540 error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply); 1541 return (error); 1542 } 1543 1544 1545 /* 1546 * Utiltity routine to read configuration headers and pages 1547 */ 1548 int 1549 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, u_int Action, 1550 u_int PageVersion, u_int PageLength, u_int PageNumber, 1551 u_int PageType, uint32_t PageAddress, bus_addr_t addr, 1552 bus_size_t len, int sleep_ok, int timeout_ms) 1553 { 1554 MSG_CONFIG *cfgp; 1555 SGE_SIMPLE32 *se; 1556 1557 cfgp = req->req_vbuf; 1558 memset(cfgp, 0, sizeof *cfgp); 1559 cfgp->Action = Action; 1560 cfgp->Function = MPI_FUNCTION_CONFIG; 1561 cfgp->Header.PageVersion = PageVersion; 1562 cfgp->Header.PageLength = PageLength; 1563 cfgp->Header.PageNumber = PageNumber; 1564 cfgp->Header.PageType = PageType; 1565 cfgp->PageAddress = htole32(PageAddress); 1566 se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE; 1567 se->Address = htole32(addr); 1568 MPI_pSGE_SET_LENGTH(se, len); 1569 MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT | 1570 MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | 1571 MPI_SGE_FLAGS_END_OF_LIST | 1572 ((Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT 1573 || Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM) 1574 ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST))); 1575 se->FlagsLength = htole32(se->FlagsLength); 1576 cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 1577 1578 mpt_check_doorbell(mpt); 1579 mpt_send_cmd(mpt, req); 1580 return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 1581 sleep_ok, timeout_ms)); 1582 } 1583 1584 1585 int 1586 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber, 1587 uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt, 1588 int sleep_ok, int timeout_ms) 1589 { 1590 request_t *req; 1591 MSG_CONFIG *cfgp; 1592 int error; 1593 1594 req = mpt_get_request(mpt, sleep_ok); 1595 if (req == NULL) { 1596 mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n"); 1597 return (ENOMEM); 1598 } 1599 1600 error = mpt_issue_cfg_req(mpt, req, MPI_CONFIG_ACTION_PAGE_HEADER, 1601 /*PageVersion*/0, /*PageLength*/0, PageNumber, 1602 PageType, PageAddress, /*addr*/0, /*len*/0, 1603 sleep_ok, timeout_ms); 1604 if (error != 0) { 1605 /* 1606 * Leave the request. Without resetting the chip, it's 1607 * still owned by it and we'll just get into trouble 1608 * freeing it now. Mark it as abandoned so that if it 1609 * shows up later it can be freed. 1610 */ 1611 mpt_prt(mpt, "read_cfg_header timed out\n"); 1612 return (ETIMEDOUT); 1613 } 1614 1615 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { 1616 case MPI_IOCSTATUS_SUCCESS: 1617 cfgp = req->req_vbuf; 1618 bcopy(&cfgp->Header, rslt, sizeof(*rslt)); 1619 error = 0; 1620 break; 1621 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: 1622 mpt_lprt(mpt, MPT_PRT_DEBUG, 1623 "Invalid Page Type %d Number %d Addr 0x%0x\n", 1624 PageType, PageNumber, PageAddress); 1625 error = EINVAL; 1626 break; 1627 default: 1628 mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n", 1629 req->IOCStatus); 1630 error = EIO; 1631 break; 1632 } 1633 mpt_free_request(mpt, req); 1634 return (error); 1635 } 1636 1637 int 1638 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1639 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1640 int timeout_ms) 1641 { 1642 request_t *req; 1643 int error; 1644 1645 req = mpt_get_request(mpt, sleep_ok); 1646 if (req == NULL) { 1647 mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n"); 1648 return (-1); 1649 } 1650 1651 error = mpt_issue_cfg_req(mpt, req, Action, hdr->PageVersion, 1652 hdr->PageLength, hdr->PageNumber, 1653 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK, 1654 PageAddress, req->req_pbuf + MPT_RQSL(mpt), 1655 len, sleep_ok, timeout_ms); 1656 if (error != 0) { 1657 mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action); 1658 return (-1); 1659 } 1660 1661 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1662 mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n", 1663 req->IOCStatus); 1664 mpt_free_request(mpt, req); 1665 return (-1); 1666 } 1667 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 1668 BUS_DMASYNC_POSTREAD); 1669 memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); 1670 mpt_free_request(mpt, req); 1671 return (0); 1672 } 1673 1674 int 1675 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1676 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1677 int timeout_ms) 1678 { 1679 request_t *req; 1680 u_int hdr_attr; 1681 int error; 1682 1683 hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK; 1684 if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE && 1685 hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) { 1686 mpt_prt(mpt, "page type 0x%x not changeable\n", 1687 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK); 1688 return (-1); 1689 } 1690 1691 #if 0 1692 /* 1693 * We shouldn't mask off other bits here. 1694 */ 1695 hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK; 1696 #endif 1697 1698 req = mpt_get_request(mpt, sleep_ok); 1699 if (req == NULL) 1700 return (-1); 1701 1702 memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len); 1703 1704 /* 1705 * There isn't any point in restoring stripped out attributes 1706 * if you then mask them going down to issue the request. 1707 */ 1708 1709 #if 0 1710 /* Restore stripped out attributes */ 1711 hdr->PageType |= hdr_attr; 1712 1713 error = mpt_issue_cfg_req(mpt, req, Action, hdr->PageVersion, 1714 hdr->PageLength, hdr->PageNumber, 1715 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK, 1716 PageAddress, req->req_pbuf + MPT_RQSL(mpt), 1717 len, sleep_ok, timeout_ms); 1718 #else 1719 error = mpt_issue_cfg_req(mpt, req, Action, hdr->PageVersion, 1720 hdr->PageLength, hdr->PageNumber, 1721 hdr->PageType, PageAddress, 1722 req->req_pbuf + MPT_RQSL(mpt), 1723 len, sleep_ok, timeout_ms); 1724 #endif 1725 if (error != 0) { 1726 mpt_prt(mpt, "mpt_write_cfg_page timed out\n"); 1727 return (-1); 1728 } 1729 1730 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1731 mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n", 1732 req->IOCStatus); 1733 mpt_free_request(mpt, req); 1734 return (-1); 1735 } 1736 mpt_free_request(mpt, req); 1737 return (0); 1738 } 1739 1740 /* 1741 * Read IOC configuration information 1742 */ 1743 static int 1744 mpt_read_config_info_ioc(struct mpt_softc *mpt) 1745 { 1746 CONFIG_PAGE_HEADER hdr; 1747 struct mpt_raid_volume *mpt_raid; 1748 int rv; 1749 int i; 1750 size_t len; 1751 1752 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 1753 2, 0, &hdr, FALSE, 5000); 1754 /* 1755 * If it's an invalid page, so what? Not a supported function.... 1756 */ 1757 if (rv == EINVAL) { 1758 return (0); 1759 } 1760 if (rv) { 1761 return (rv); 1762 } 1763 1764 mpt_lprt(mpt, MPT_PRT_DEBUG, 1765 "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n", 1766 hdr.PageVersion, hdr.PageLength << 2, 1767 hdr.PageNumber, hdr.PageType); 1768 1769 len = hdr.PageLength * sizeof(uint32_t); 1770 mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1771 if (mpt->ioc_page2 == NULL) { 1772 mpt_prt(mpt, "unable to allocate memory for IOC page 2\n"); 1773 mpt_raid_free_mem(mpt); 1774 return (ENOMEM); 1775 } 1776 memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr)); 1777 rv = mpt_read_cur_cfg_page(mpt, 0, 1778 &mpt->ioc_page2->Header, len, FALSE, 5000); 1779 if (rv) { 1780 mpt_prt(mpt, "failed to read IOC Page 2\n"); 1781 mpt_raid_free_mem(mpt); 1782 return (EIO); 1783 } 1784 mpt2host_config_page_ioc2(mpt->ioc_page2); 1785 1786 if (mpt->ioc_page2->CapabilitiesFlags != 0) { 1787 uint32_t mask; 1788 1789 mpt_prt(mpt, "Capabilities: ("); 1790 for (mask = 1; mask != 0; mask <<= 1) { 1791 if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) { 1792 continue; 1793 } 1794 switch (mask) { 1795 case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT: 1796 mpt_prtc(mpt, " RAID-0"); 1797 break; 1798 case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT: 1799 mpt_prtc(mpt, " RAID-1E"); 1800 break; 1801 case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT: 1802 mpt_prtc(mpt, " RAID-1"); 1803 break; 1804 case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT: 1805 mpt_prtc(mpt, " SES"); 1806 break; 1807 case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT: 1808 mpt_prtc(mpt, " SAFTE"); 1809 break; 1810 case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT: 1811 mpt_prtc(mpt, " Multi-Channel-Arrays"); 1812 default: 1813 break; 1814 } 1815 } 1816 mpt_prtc(mpt, " )\n"); 1817 if ((mpt->ioc_page2->CapabilitiesFlags 1818 & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT 1819 | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT 1820 | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) { 1821 mpt_prt(mpt, "%d Active Volume%s(%d Max)\n", 1822 mpt->ioc_page2->NumActiveVolumes, 1823 mpt->ioc_page2->NumActiveVolumes != 1 1824 ? "s " : " ", 1825 mpt->ioc_page2->MaxVolumes); 1826 mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n", 1827 mpt->ioc_page2->NumActivePhysDisks, 1828 mpt->ioc_page2->NumActivePhysDisks != 1 1829 ? "s " : " ", 1830 mpt->ioc_page2->MaxPhysDisks); 1831 } 1832 } 1833 1834 len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume); 1835 mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1836 if (mpt->raid_volumes == NULL) { 1837 mpt_prt(mpt, "Could not allocate RAID volume data\n"); 1838 mpt_raid_free_mem(mpt); 1839 return (ENOMEM); 1840 } 1841 1842 /* 1843 * Copy critical data out of ioc_page2 so that we can 1844 * safely refresh the page without windows of unreliable 1845 * data. 1846 */ 1847 mpt->raid_max_volumes = mpt->ioc_page2->MaxVolumes; 1848 1849 len = sizeof(*mpt->raid_volumes->config_page) + 1850 (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1)); 1851 for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) { 1852 mpt_raid = &mpt->raid_volumes[i]; 1853 mpt_raid->config_page = 1854 malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1855 if (mpt_raid->config_page == NULL) { 1856 mpt_prt(mpt, "Could not allocate RAID page data\n"); 1857 mpt_raid_free_mem(mpt); 1858 return (ENOMEM); 1859 } 1860 } 1861 mpt->raid_page0_len = len; 1862 1863 len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk); 1864 mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1865 if (mpt->raid_disks == NULL) { 1866 mpt_prt(mpt, "Could not allocate RAID disk data\n"); 1867 mpt_raid_free_mem(mpt); 1868 return (ENOMEM); 1869 } 1870 mpt->raid_max_disks = mpt->ioc_page2->MaxPhysDisks; 1871 1872 /* 1873 * Load page 3. 1874 */ 1875 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 1876 3, 0, &hdr, FALSE, 5000); 1877 if (rv) { 1878 mpt_raid_free_mem(mpt); 1879 return (EIO); 1880 } 1881 1882 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n", 1883 hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType); 1884 1885 len = hdr.PageLength * sizeof(uint32_t); 1886 mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1887 if (mpt->ioc_page3 == NULL) { 1888 mpt_prt(mpt, "unable to allocate memory for IOC page 3\n"); 1889 mpt_raid_free_mem(mpt); 1890 return (ENOMEM); 1891 } 1892 memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr)); 1893 rv = mpt_read_cur_cfg_page(mpt, 0, 1894 &mpt->ioc_page3->Header, len, FALSE, 5000); 1895 if (rv) { 1896 mpt_raid_free_mem(mpt); 1897 return (EIO); 1898 } 1899 mpt_raid_wakeup(mpt); 1900 return (0); 1901 } 1902 1903 /* 1904 * Enable IOC port 1905 */ 1906 static int 1907 mpt_send_port_enable(struct mpt_softc *mpt, int port) 1908 { 1909 request_t *req; 1910 MSG_PORT_ENABLE *enable_req; 1911 int error; 1912 1913 req = mpt_get_request(mpt, /*sleep_ok*/FALSE); 1914 if (req == NULL) 1915 return (-1); 1916 1917 enable_req = req->req_vbuf; 1918 memset(enable_req, 0, MPT_RQSL(mpt)); 1919 1920 enable_req->Function = MPI_FUNCTION_PORT_ENABLE; 1921 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 1922 enable_req->PortNumber = port; 1923 1924 mpt_check_doorbell(mpt); 1925 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port); 1926 1927 mpt_send_cmd(mpt, req); 1928 error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 1929 FALSE, (mpt->is_sas || mpt->is_fc)? 30000 : 3000); 1930 if (error != 0) { 1931 mpt_prt(mpt, "port %d enable timed out\n", port); 1932 return (-1); 1933 } 1934 mpt_free_request(mpt, req); 1935 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port); 1936 return (0); 1937 } 1938 1939 /* 1940 * Enable/Disable asynchronous event reporting. 1941 */ 1942 static int 1943 mpt_send_event_request(struct mpt_softc *mpt, int onoff) 1944 { 1945 request_t *req; 1946 MSG_EVENT_NOTIFY *enable_req; 1947 1948 req = mpt_get_request(mpt, FALSE); 1949 if (req == NULL) { 1950 return (ENOMEM); 1951 } 1952 enable_req = req->req_vbuf; 1953 memset(enable_req, 0, sizeof *enable_req); 1954 1955 enable_req->Function = MPI_FUNCTION_EVENT_NOTIFICATION; 1956 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS); 1957 enable_req->Switch = onoff; 1958 1959 mpt_check_doorbell(mpt); 1960 mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n", 1961 onoff ? "en" : "dis"); 1962 /* 1963 * Send the command off, but don't wait for it. 1964 */ 1965 mpt_send_cmd(mpt, req); 1966 return (0); 1967 } 1968 1969 /* 1970 * Un-mask the interupts on the chip. 1971 */ 1972 void 1973 mpt_enable_ints(struct mpt_softc *mpt) 1974 { 1975 /* Unmask every thing except door bell int */ 1976 mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK); 1977 } 1978 1979 /* 1980 * Mask the interupts on the chip. 1981 */ 1982 void 1983 mpt_disable_ints(struct mpt_softc *mpt) 1984 { 1985 /* Mask all interrupts */ 1986 mpt_write(mpt, MPT_OFFSET_INTR_MASK, 1987 MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK); 1988 } 1989 1990 static void 1991 mpt_sysctl_attach(struct mpt_softc *mpt) 1992 { 1993 #if __FreeBSD_version >= 500000 1994 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev); 1995 struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev); 1996 1997 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 1998 "debug", CTLFLAG_RW, &mpt->verbose, 0, 1999 "Debugging/Verbose level"); 2000 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2001 "role", CTLFLAG_RD, &mpt->role, 0, 2002 "HBA role"); 2003 #ifdef MPT_TEST_MULTIPATH 2004 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2005 "failure_id", CTLFLAG_RW, &mpt->failure_id, -1, 2006 "Next Target to Fail"); 2007 #endif 2008 #endif 2009 } 2010 2011 int 2012 mpt_attach(struct mpt_softc *mpt) 2013 { 2014 struct mpt_personality *pers; 2015 int i; 2016 int error; 2017 2018 TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links); 2019 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 2020 pers = mpt_personalities[i]; 2021 if (pers == NULL) { 2022 continue; 2023 } 2024 if (pers->probe(mpt) == 0) { 2025 error = pers->attach(mpt); 2026 if (error != 0) { 2027 mpt_detach(mpt); 2028 return (error); 2029 } 2030 mpt->mpt_pers_mask |= (0x1 << pers->id); 2031 pers->use_count++; 2032 } 2033 } 2034 2035 /* 2036 * Now that we've attached everything, do the enable function 2037 * for all of the personalities. This allows the personalities 2038 * to do setups that are appropriate for them prior to enabling 2039 * any ports. 2040 */ 2041 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 2042 pers = mpt_personalities[i]; 2043 if (pers != NULL && MPT_PERS_ATTACHED(pers, mpt) != 0) { 2044 error = pers->enable(mpt); 2045 if (error != 0) { 2046 mpt_prt(mpt, "personality %s attached but would" 2047 " not enable (%d)\n", pers->name, error); 2048 mpt_detach(mpt); 2049 return (error); 2050 } 2051 } 2052 } 2053 return (0); 2054 } 2055 2056 int 2057 mpt_shutdown(struct mpt_softc *mpt) 2058 { 2059 struct mpt_personality *pers; 2060 2061 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2062 pers->shutdown(mpt); 2063 } 2064 return (0); 2065 } 2066 2067 int 2068 mpt_detach(struct mpt_softc *mpt) 2069 { 2070 struct mpt_personality *pers; 2071 2072 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2073 pers->detach(mpt); 2074 mpt->mpt_pers_mask &= ~(0x1 << pers->id); 2075 pers->use_count--; 2076 } 2077 TAILQ_REMOVE(&mpt_tailq, mpt, links); 2078 return (0); 2079 } 2080 2081 int 2082 mpt_core_load(struct mpt_personality *pers) 2083 { 2084 int i; 2085 2086 /* 2087 * Setup core handlers and insert the default handler 2088 * into all "empty slots". 2089 */ 2090 for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) { 2091 mpt_reply_handlers[i] = mpt_default_reply_handler; 2092 } 2093 2094 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] = 2095 mpt_event_reply_handler; 2096 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] = 2097 mpt_config_reply_handler; 2098 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] = 2099 mpt_handshake_reply_handler; 2100 return (0); 2101 } 2102 2103 /* 2104 * Initialize per-instance driver data and perform 2105 * initial controller configuration. 2106 */ 2107 int 2108 mpt_core_attach(struct mpt_softc *mpt) 2109 { 2110 int val; 2111 2112 LIST_INIT(&mpt->ack_frames); 2113 /* Put all request buffers on the free list */ 2114 TAILQ_INIT(&mpt->request_pending_list); 2115 TAILQ_INIT(&mpt->request_free_list); 2116 TAILQ_INIT(&mpt->request_timeout_list); 2117 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { 2118 request_t *req = &mpt->request_pool[val]; 2119 req->state = REQ_STATE_ALLOCATED; 2120 mpt_free_request(mpt, req); 2121 } 2122 for (val = 0; val < MPT_MAX_LUNS; val++) { 2123 STAILQ_INIT(&mpt->trt[val].atios); 2124 STAILQ_INIT(&mpt->trt[val].inots); 2125 } 2126 STAILQ_INIT(&mpt->trt_wildcard.atios); 2127 STAILQ_INIT(&mpt->trt_wildcard.inots); 2128 #ifdef MPT_TEST_MULTIPATH 2129 mpt->failure_id = -1; 2130 #endif 2131 mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE; 2132 mpt_sysctl_attach(mpt); 2133 mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n", 2134 mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL))); 2135 return (mpt_configure_ioc(mpt, 0, 0)); 2136 } 2137 2138 int 2139 mpt_core_enable(struct mpt_softc *mpt) 2140 { 2141 /* 2142 * We enter with the IOC enabled, but async events 2143 * not enabled, ports not enabled and interrupts 2144 * not enabled. 2145 */ 2146 2147 /* 2148 * Enable asynchronous event reporting- all personalities 2149 * have attached so that they should be able to now field 2150 * async events. 2151 */ 2152 mpt_send_event_request(mpt, 1); 2153 2154 /* 2155 * Catch any pending interrupts 2156 * 2157 * This seems to be crucial- otherwise 2158 * the portenable below times out. 2159 */ 2160 mpt_intr(mpt); 2161 2162 /* 2163 * Enable Interrupts 2164 */ 2165 mpt_enable_ints(mpt); 2166 2167 /* 2168 * Catch any pending interrupts 2169 * 2170 * This seems to be crucial- otherwise 2171 * the portenable below times out. 2172 */ 2173 mpt_intr(mpt); 2174 2175 /* 2176 * Enable the port. 2177 */ 2178 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2179 mpt_prt(mpt, "failed to enable port 0\n"); 2180 return (ENXIO); 2181 } 2182 return (0); 2183 } 2184 2185 void 2186 mpt_core_shutdown(struct mpt_softc *mpt) 2187 { 2188 mpt_disable_ints(mpt); 2189 } 2190 2191 void 2192 mpt_core_detach(struct mpt_softc *mpt) 2193 { 2194 /* 2195 * XXX: FREE MEMORY 2196 */ 2197 mpt_disable_ints(mpt); 2198 } 2199 2200 int 2201 mpt_core_unload(struct mpt_personality *pers) 2202 { 2203 /* Unload is always successfull. */ 2204 return (0); 2205 } 2206 2207 #define FW_UPLOAD_REQ_SIZE \ 2208 (sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION) \ 2209 + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32)) 2210 2211 static int 2212 mpt_upload_fw(struct mpt_softc *mpt) 2213 { 2214 uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE]; 2215 MSG_FW_UPLOAD_REPLY fw_reply; 2216 MSG_FW_UPLOAD *fw_req; 2217 FW_UPLOAD_TCSGE *tsge; 2218 SGE_SIMPLE32 *sge; 2219 uint32_t flags; 2220 int error; 2221 2222 memset(&fw_req_buf, 0, sizeof(fw_req_buf)); 2223 fw_req = (MSG_FW_UPLOAD *)fw_req_buf; 2224 fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM; 2225 fw_req->Function = MPI_FUNCTION_FW_UPLOAD; 2226 fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 2227 tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL; 2228 tsge->DetailsLength = 12; 2229 tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT; 2230 tsge->ImageSize = htole32(mpt->fw_image_size); 2231 sge = (SGE_SIMPLE32 *)(tsge + 1); 2232 flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER 2233 | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT 2234 | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST); 2235 flags <<= MPI_SGE_FLAGS_SHIFT; 2236 sge->FlagsLength = htole32(flags | mpt->fw_image_size); 2237 sge->Address = htole32(mpt->fw_phys); 2238 error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf); 2239 if (error) 2240 return(error); 2241 error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply); 2242 return (error); 2243 } 2244 2245 static void 2246 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr, 2247 uint32_t *data, bus_size_t len) 2248 { 2249 uint32_t *data_end; 2250 2251 data_end = data + (roundup2(len, sizeof(uint32_t)) / 4); 2252 if (mpt->is_sas) { 2253 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2254 } 2255 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr); 2256 while (data != data_end) { 2257 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data); 2258 data++; 2259 } 2260 if (mpt->is_sas) { 2261 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2262 } 2263 } 2264 2265 static int 2266 mpt_download_fw(struct mpt_softc *mpt) 2267 { 2268 MpiFwHeader_t *fw_hdr; 2269 int error; 2270 uint32_t ext_offset; 2271 uint32_t data; 2272 2273 mpt_prt(mpt, "Downloading Firmware - Image Size %d\n", 2274 mpt->fw_image_size); 2275 2276 error = mpt_enable_diag_mode(mpt); 2277 if (error != 0) { 2278 mpt_prt(mpt, "Could not enter diagnostic mode!\n"); 2279 return (EIO); 2280 } 2281 2282 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, 2283 MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM); 2284 2285 fw_hdr = (MpiFwHeader_t *)mpt->fw_image; 2286 mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr, 2287 fw_hdr->ImageSize); 2288 2289 ext_offset = fw_hdr->NextImageHeaderOffset; 2290 while (ext_offset != 0) { 2291 MpiExtImageHeader_t *ext; 2292 2293 ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset); 2294 ext_offset = ext->NextImageHeaderOffset; 2295 2296 mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext, 2297 ext->ImageSize); 2298 } 2299 2300 if (mpt->is_sas) { 2301 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2302 } 2303 /* Setup the address to jump to on reset. */ 2304 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr); 2305 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue); 2306 2307 /* 2308 * The controller sets the "flash bad" status after attempting 2309 * to auto-boot from flash. Clear the status so that the controller 2310 * will continue the boot process with our newly installed firmware. 2311 */ 2312 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2313 data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL; 2314 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2315 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data); 2316 2317 if (mpt->is_sas) { 2318 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2319 } 2320 2321 /* 2322 * Re-enable the processor and clear the boot halt flag. 2323 */ 2324 data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 2325 data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM); 2326 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data); 2327 2328 mpt_disable_diag_mode(mpt); 2329 return (0); 2330 } 2331 2332 /* 2333 * Allocate/Initialize data structures for the controller. Called 2334 * once at instance startup. 2335 */ 2336 static int 2337 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset) 2338 { 2339 PTR_MSG_PORT_FACTS_REPLY pfp; 2340 int error, port; 2341 size_t len; 2342 2343 if (tn == MPT_MAX_TRYS) { 2344 return (-1); 2345 } 2346 2347 /* 2348 * No need to reset if the IOC is already in the READY state. 2349 * 2350 * Force reset if initialization failed previously. 2351 * Note that a hard_reset of the second channel of a '929 2352 * will stop operation of the first channel. Hopefully, if the 2353 * first channel is ok, the second will not require a hard 2354 * reset. 2355 */ 2356 if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) { 2357 if (mpt_reset(mpt, FALSE) != MPT_OK) { 2358 return (mpt_configure_ioc(mpt, tn++, 1)); 2359 } 2360 needreset = 0; 2361 } 2362 2363 if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) { 2364 mpt_prt(mpt, "mpt_get_iocfacts failed\n"); 2365 return (mpt_configure_ioc(mpt, tn++, 1)); 2366 } 2367 mpt2host_iocfacts_reply(&mpt->ioc_facts); 2368 2369 mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n", 2370 mpt->ioc_facts.MsgVersion >> 8, 2371 mpt->ioc_facts.MsgVersion & 0xFF, 2372 mpt->ioc_facts.HeaderVersion >> 8, 2373 mpt->ioc_facts.HeaderVersion & 0xFF); 2374 2375 /* 2376 * Now that we know request frame size, we can calculate 2377 * the actual (reasonable) segment limit for read/write I/O. 2378 * 2379 * This limit is constrained by: 2380 * 2381 * + The size of each area we allocate per command (and how 2382 * many chain segments we can fit into it). 2383 * + The total number of areas we've set up. 2384 * + The actual chain depth the card will allow. 2385 * 2386 * The first area's segment count is limited by the I/O request 2387 * at the head of it. We cannot allocate realistically more 2388 * than MPT_MAX_REQUESTS areas. Therefore, to account for both 2389 * conditions, we'll just start out with MPT_MAX_REQUESTS-2. 2390 * 2391 */ 2392 /* total number of request areas we (can) allocate */ 2393 mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2; 2394 2395 /* converted to the number of chain areas possible */ 2396 mpt->max_seg_cnt *= MPT_NRFM(mpt); 2397 2398 /* limited by the number of chain areas the card will support */ 2399 if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) { 2400 mpt_lprt(mpt, MPT_PRT_DEBUG, 2401 "chain depth limited to %u (from %u)\n", 2402 mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt); 2403 mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth; 2404 } 2405 2406 /* converted to the number of simple sges in chain segments. */ 2407 mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1); 2408 2409 mpt_lprt(mpt, MPT_PRT_DEBUG, "Maximum Segment Count: %u\n", 2410 mpt->max_seg_cnt); 2411 mpt_lprt(mpt, MPT_PRT_DEBUG, "MsgLength=%u IOCNumber = %d\n", 2412 mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber); 2413 mpt_lprt(mpt, MPT_PRT_DEBUG, 2414 "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes " 2415 "Request Frame Size %u bytes Max Chain Depth %u\n", 2416 mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize, 2417 mpt->ioc_facts.RequestFrameSize << 2, 2418 mpt->ioc_facts.MaxChainDepth); 2419 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOCFACTS: Num Ports %d, FWImageSize %d, " 2420 "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts, 2421 mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags); 2422 2423 len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY); 2424 mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2425 if (mpt->port_facts == NULL) { 2426 mpt_prt(mpt, "unable to allocate memory for port facts\n"); 2427 return (ENOMEM); 2428 } 2429 2430 2431 if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) && 2432 (mpt->fw_uploaded == 0)) { 2433 struct mpt_map_info mi; 2434 2435 /* 2436 * In some configurations, the IOC's firmware is 2437 * stored in a shared piece of system NVRAM that 2438 * is only accessable via the BIOS. In this 2439 * case, the firmware keeps a copy of firmware in 2440 * RAM until the OS driver retrieves it. Once 2441 * retrieved, we are responsible for re-downloading 2442 * the firmware after any hard-reset. 2443 */ 2444 mpt->fw_image_size = mpt->ioc_facts.FWImageSize; 2445 error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0, 2446 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 2447 mpt->fw_image_size, 1, mpt->fw_image_size, 0, 2448 &mpt->fw_dmat); 2449 if (error != 0) { 2450 mpt_prt(mpt, "cannot create firmwarew dma tag\n"); 2451 return (ENOMEM); 2452 } 2453 error = bus_dmamem_alloc(mpt->fw_dmat, 2454 (void **)&mpt->fw_image, BUS_DMA_NOWAIT, &mpt->fw_dmap); 2455 if (error != 0) { 2456 mpt_prt(mpt, "cannot allocate firmware memory\n"); 2457 bus_dma_tag_destroy(mpt->fw_dmat); 2458 return (ENOMEM); 2459 } 2460 mi.mpt = mpt; 2461 mi.error = 0; 2462 bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap, 2463 mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0); 2464 mpt->fw_phys = mi.phys; 2465 2466 error = mpt_upload_fw(mpt); 2467 if (error != 0) { 2468 mpt_prt(mpt, "firmware upload failed.\n"); 2469 bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap); 2470 bus_dmamem_free(mpt->fw_dmat, mpt->fw_image, 2471 mpt->fw_dmap); 2472 bus_dma_tag_destroy(mpt->fw_dmat); 2473 mpt->fw_image = NULL; 2474 return (EIO); 2475 } 2476 mpt->fw_uploaded = 1; 2477 } 2478 2479 for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) { 2480 pfp = &mpt->port_facts[port]; 2481 error = mpt_get_portfacts(mpt, 0, pfp); 2482 if (error != MPT_OK) { 2483 mpt_prt(mpt, 2484 "mpt_get_portfacts on port %d failed\n", port); 2485 free(mpt->port_facts, M_DEVBUF); 2486 mpt->port_facts = NULL; 2487 return (mpt_configure_ioc(mpt, tn++, 1)); 2488 } 2489 mpt2host_portfacts_reply(pfp); 2490 2491 if (port > 0) { 2492 error = MPT_PRT_INFO; 2493 } else { 2494 error = MPT_PRT_DEBUG; 2495 } 2496 mpt_lprt(mpt, error, 2497 "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n", 2498 port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID, 2499 pfp->MaxDevices); 2500 2501 } 2502 2503 /* 2504 * XXX: Not yet supporting more than port 0 2505 */ 2506 pfp = &mpt->port_facts[0]; 2507 if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) { 2508 mpt->is_fc = 1; 2509 mpt->is_sas = 0; 2510 mpt->is_spi = 0; 2511 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) { 2512 mpt->is_fc = 0; 2513 mpt->is_sas = 1; 2514 mpt->is_spi = 0; 2515 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) { 2516 mpt->is_fc = 0; 2517 mpt->is_sas = 0; 2518 mpt->is_spi = 1; 2519 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) { 2520 mpt_prt(mpt, "iSCSI not supported yet\n"); 2521 return (ENXIO); 2522 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) { 2523 mpt_prt(mpt, "Inactive Port\n"); 2524 return (ENXIO); 2525 } else { 2526 mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType); 2527 return (ENXIO); 2528 } 2529 2530 /* 2531 * Set our role with what this port supports. 2532 * 2533 * Note this might be changed later in different modules 2534 * if this is different from what is wanted. 2535 */ 2536 mpt->role = MPT_ROLE_NONE; 2537 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) { 2538 mpt->role |= MPT_ROLE_INITIATOR; 2539 } 2540 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) { 2541 mpt->role |= MPT_ROLE_TARGET; 2542 } 2543 2544 /* 2545 * Enable the IOC 2546 */ 2547 if (mpt_enable_ioc(mpt, 0) != MPT_OK) { 2548 mpt_prt(mpt, "unable to initialize IOC\n"); 2549 return (ENXIO); 2550 } 2551 2552 /* 2553 * Read IOC configuration information. 2554 * 2555 * We need this to determine whether or not we have certain 2556 * settings for Integrated Mirroring (e.g.). 2557 */ 2558 mpt_read_config_info_ioc(mpt); 2559 2560 return (0); 2561 } 2562 2563 static int 2564 mpt_enable_ioc(struct mpt_softc *mpt, int portenable) 2565 { 2566 uint32_t pptr; 2567 int val; 2568 2569 if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) { 2570 mpt_prt(mpt, "mpt_send_ioc_init failed\n"); 2571 return (EIO); 2572 } 2573 2574 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n"); 2575 2576 if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) { 2577 mpt_prt(mpt, "IOC failed to go to run state\n"); 2578 return (ENXIO); 2579 } 2580 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n"); 2581 2582 /* 2583 * Give it reply buffers 2584 * 2585 * Do *not* exceed global credits. 2586 */ 2587 for (val = 0, pptr = mpt->reply_phys; 2588 (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE); 2589 pptr += MPT_REPLY_SIZE) { 2590 mpt_free_reply(mpt, pptr); 2591 if (++val == mpt->ioc_facts.GlobalCredits - 1) 2592 break; 2593 } 2594 2595 2596 /* 2597 * Enable the port if asked. This is only done if we're resetting 2598 * the IOC after initial startup. 2599 */ 2600 if (portenable) { 2601 /* 2602 * Enable asynchronous event reporting 2603 */ 2604 mpt_send_event_request(mpt, 1); 2605 2606 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2607 mpt_prt(mpt, "failed to enable port 0\n"); 2608 return (ENXIO); 2609 } 2610 } 2611 return (MPT_OK); 2612 } 2613 2614 /* 2615 * Endian Conversion Functions- only used on Big Endian machines 2616 */ 2617 #if _BYTE_ORDER == _BIG_ENDIAN 2618 void 2619 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge) 2620 { 2621 MPT_2_HOST32(sge, FlagsLength); 2622 MPT_2_HOST32(sge, u.Address64.Low); 2623 MPT_2_HOST32(sge, u.Address64.High); 2624 } 2625 2626 void 2627 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp) 2628 { 2629 MPT_2_HOST16(rp, MsgVersion); 2630 MPT_2_HOST16(rp, HeaderVersion); 2631 MPT_2_HOST32(rp, MsgContext); 2632 MPT_2_HOST16(rp, IOCExceptions); 2633 MPT_2_HOST16(rp, IOCStatus); 2634 MPT_2_HOST32(rp, IOCLogInfo); 2635 MPT_2_HOST16(rp, ReplyQueueDepth); 2636 MPT_2_HOST16(rp, RequestFrameSize); 2637 MPT_2_HOST16(rp, Reserved_0101_FWVersion); 2638 MPT_2_HOST16(rp, ProductID); 2639 MPT_2_HOST32(rp, CurrentHostMfaHighAddr); 2640 MPT_2_HOST16(rp, GlobalCredits); 2641 MPT_2_HOST32(rp, CurrentSenseBufferHighAddr); 2642 MPT_2_HOST16(rp, CurReplyFrameSize); 2643 MPT_2_HOST32(rp, FWImageSize); 2644 MPT_2_HOST32(rp, IOCCapabilities); 2645 MPT_2_HOST32(rp, FWVersion.Word); 2646 MPT_2_HOST16(rp, HighPriorityQueueDepth); 2647 MPT_2_HOST16(rp, Reserved2); 2648 mpt2host_sge_simple_union(&rp->HostPageBufferSGE); 2649 MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr); 2650 } 2651 2652 void 2653 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp) 2654 { 2655 MPT_2_HOST16(pfp, Reserved); 2656 MPT_2_HOST16(pfp, Reserved1); 2657 MPT_2_HOST32(pfp, MsgContext); 2658 MPT_2_HOST16(pfp, Reserved2); 2659 MPT_2_HOST16(pfp, IOCStatus); 2660 MPT_2_HOST32(pfp, IOCLogInfo); 2661 MPT_2_HOST16(pfp, MaxDevices); 2662 MPT_2_HOST16(pfp, PortSCSIID); 2663 MPT_2_HOST16(pfp, ProtocolFlags); 2664 MPT_2_HOST16(pfp, MaxPostedCmdBuffers); 2665 MPT_2_HOST16(pfp, MaxPersistentIDs); 2666 MPT_2_HOST16(pfp, MaxLanBuckets); 2667 MPT_2_HOST16(pfp, Reserved4); 2668 MPT_2_HOST32(pfp, Reserved5); 2669 } 2670 void 2671 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2) 2672 { 2673 int i; 2674 ioc2->CapabilitiesFlags = htole32(ioc2->CapabilitiesFlags); 2675 for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) { 2676 MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3); 2677 } 2678 } 2679 2680 void 2681 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp) 2682 { 2683 int i; 2684 MPT_2_HOST16(volp, VolumeStatus.Reserved); 2685 MPT_2_HOST16(volp, VolumeSettings.Settings); 2686 MPT_2_HOST32(volp, MaxLBA); 2687 MPT_2_HOST32(volp, Reserved1); 2688 MPT_2_HOST32(volp, StripeSize); 2689 MPT_2_HOST32(volp, Reserved2); 2690 MPT_2_HOST32(volp, Reserved3); 2691 for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) { 2692 MPT_2_HOST16(volp, PhysDisk[i].Reserved); 2693 } 2694 } 2695 2696 void 2697 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi) 2698 { 2699 MPT_2_HOST16(vi, TotalBlocks.High); 2700 MPT_2_HOST16(vi, TotalBlocks.Low); 2701 MPT_2_HOST16(vi, BlocksRemaining.High); 2702 MPT_2_HOST16(vi, BlocksRemaining.Low); 2703 } 2704 #endif 2705