1 /*- 2 * Generic routines for LSI Fusion adapters. 3 * FreeBSD Version. 4 * 5 * Copyright (c) 2000, 2001 by Greg Ansley 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice immediately at the beginning of the file, without modification, 12 * this list of conditions, and the following disclaimer. 13 * 2. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 /*- 29 * Copyright (c) 2002, 2006 by Matthew Jacob 30 * All rights reserved. 31 * 32 * Redistribution and use in source and binary forms, with or without 33 * modification, are permitted provided that the following conditions are 34 * met: 35 * 1. Redistributions of source code must retain the above copyright 36 * notice, this list of conditions and the following disclaimer. 37 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 38 * substantially similar to the "NO WARRANTY" disclaimer below 39 * ("Disclaimer") and any redistribution must be conditioned upon including 40 * a substantially similar Disclaimer requirement for further binary 41 * redistribution. 42 * 3. Neither the names of the above listed copyright holders nor the names 43 * of any contributors may be used to endorse or promote products derived 44 * from this software without specific prior written permission. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 47 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 50 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 56 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 57 * 58 * Support from Chris Ellsworth in order to make SAS adapters work 59 * is gratefully acknowledged. 60 * 61 * 62 * Support from LSI-Logic has also gone a great deal toward making this a 63 * workable subsystem and is gratefully acknowledged. 64 */ 65 /*- 66 * Copyright (c) 2004, Avid Technology, Inc. and its contributors. 67 * Copyright (c) 2005, WHEEL Sp. z o.o. 68 * Copyright (c) 2004, 2005 Justin T. Gibbs 69 * All rights reserved. 70 * 71 * Redistribution and use in source and binary forms, with or without 72 * modification, are permitted provided that the following conditions are 73 * met: 74 * 1. Redistributions of source code must retain the above copyright 75 * notice, this list of conditions and the following disclaimer. 76 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 77 * substantially similar to the "NO WARRANTY" disclaimer below 78 * ("Disclaimer") and any redistribution must be conditioned upon including 79 * a substantially similar Disclaimer requirement for further binary 80 * redistribution. 81 * 3. Neither the names of the above listed copyright holders nor the names 82 * of any contributors may be used to endorse or promote products derived 83 * from this software without specific prior written permission. 84 * 85 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 86 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 88 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 89 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 90 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 91 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 92 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 93 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 94 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 95 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 96 */ 97 98 #include <sys/cdefs.h> 99 __FBSDID("$FreeBSD$"); 100 101 #include <dev/mpt/mpt.h> 102 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */ 103 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */ 104 105 #include <dev/mpt/mpilib/mpi.h> 106 #include <dev/mpt/mpilib/mpi_ioc.h> 107 #include <dev/mpt/mpilib/mpi_fc.h> 108 #include <dev/mpt/mpilib/mpi_targ.h> 109 110 #include <sys/sysctl.h> 111 112 #define MPT_MAX_TRYS 3 113 #define MPT_MAX_WAIT 300000 114 115 static int maxwait_ack = 0; 116 static int maxwait_int = 0; 117 static int maxwait_state = 0; 118 119 static TAILQ_HEAD(, mpt_softc) mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq); 120 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS]; 121 122 static mpt_reply_handler_t mpt_default_reply_handler; 123 static mpt_reply_handler_t mpt_config_reply_handler; 124 static mpt_reply_handler_t mpt_handshake_reply_handler; 125 static mpt_reply_handler_t mpt_event_reply_handler; 126 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 127 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context); 128 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff); 129 static int mpt_soft_reset(struct mpt_softc *mpt); 130 static void mpt_hard_reset(struct mpt_softc *mpt); 131 static int mpt_dma_buf_alloc(struct mpt_softc *mpt); 132 static void mpt_dma_buf_free(struct mpt_softc *mpt); 133 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int); 134 static int mpt_enable_ioc(struct mpt_softc *mpt, int); 135 136 /************************* Personality Module Support *************************/ 137 /* 138 * We include one extra entry that is guaranteed to be NULL 139 * to simplify our itterator. 140 */ 141 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1]; 142 static __inline struct mpt_personality* 143 mpt_pers_find(struct mpt_softc *, u_int); 144 static __inline struct mpt_personality* 145 mpt_pers_find_reverse(struct mpt_softc *, u_int); 146 147 static __inline struct mpt_personality * 148 mpt_pers_find(struct mpt_softc *mpt, u_int start_at) 149 { 150 KASSERT(start_at <= MPT_MAX_PERSONALITIES, 151 ("mpt_pers_find: starting position out of range\n")); 152 153 while (start_at < MPT_MAX_PERSONALITIES 154 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 155 start_at++; 156 } 157 return (mpt_personalities[start_at]); 158 } 159 160 /* 161 * Used infrequently, so no need to optimize like a forward 162 * traversal where we use the MAX+1 is guaranteed to be NULL 163 * trick. 164 */ 165 static __inline struct mpt_personality * 166 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at) 167 { 168 while (start_at < MPT_MAX_PERSONALITIES 169 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 170 start_at--; 171 } 172 if (start_at < MPT_MAX_PERSONALITIES) 173 return (mpt_personalities[start_at]); 174 return (NULL); 175 } 176 177 #define MPT_PERS_FOREACH(mpt, pers) \ 178 for (pers = mpt_pers_find(mpt, /*start_at*/0); \ 179 pers != NULL; \ 180 pers = mpt_pers_find(mpt, /*start_at*/pers->id+1)) 181 182 #define MPT_PERS_FOREACH_REVERSE(mpt, pers) \ 183 for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\ 184 pers != NULL; \ 185 pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1)) 186 187 static mpt_load_handler_t mpt_stdload; 188 static mpt_probe_handler_t mpt_stdprobe; 189 static mpt_attach_handler_t mpt_stdattach; 190 static mpt_enable_handler_t mpt_stdenable; 191 static mpt_ready_handler_t mpt_stdready; 192 static mpt_event_handler_t mpt_stdevent; 193 static mpt_reset_handler_t mpt_stdreset; 194 static mpt_shutdown_handler_t mpt_stdshutdown; 195 static mpt_detach_handler_t mpt_stddetach; 196 static mpt_unload_handler_t mpt_stdunload; 197 static struct mpt_personality mpt_default_personality = 198 { 199 .load = mpt_stdload, 200 .probe = mpt_stdprobe, 201 .attach = mpt_stdattach, 202 .enable = mpt_stdenable, 203 .ready = mpt_stdready, 204 .event = mpt_stdevent, 205 .reset = mpt_stdreset, 206 .shutdown = mpt_stdshutdown, 207 .detach = mpt_stddetach, 208 .unload = mpt_stdunload 209 }; 210 211 static mpt_load_handler_t mpt_core_load; 212 static mpt_attach_handler_t mpt_core_attach; 213 static mpt_enable_handler_t mpt_core_enable; 214 static mpt_reset_handler_t mpt_core_ioc_reset; 215 static mpt_event_handler_t mpt_core_event; 216 static mpt_shutdown_handler_t mpt_core_shutdown; 217 static mpt_shutdown_handler_t mpt_core_detach; 218 static mpt_unload_handler_t mpt_core_unload; 219 static struct mpt_personality mpt_core_personality = 220 { 221 .name = "mpt_core", 222 .load = mpt_core_load, 223 // .attach = mpt_core_attach, 224 // .enable = mpt_core_enable, 225 .event = mpt_core_event, 226 .reset = mpt_core_ioc_reset, 227 .shutdown = mpt_core_shutdown, 228 .detach = mpt_core_detach, 229 .unload = mpt_core_unload, 230 }; 231 232 /* 233 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need 234 * ordering information. We want the core to always register FIRST. 235 * other modules are set to SI_ORDER_SECOND. 236 */ 237 static moduledata_t mpt_core_mod = { 238 "mpt_core", mpt_modevent, &mpt_core_personality 239 }; 240 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 241 MODULE_VERSION(mpt_core, 1); 242 243 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id)) 244 245 int 246 mpt_modevent(module_t mod, int type, void *data) 247 { 248 struct mpt_personality *pers; 249 int error; 250 251 pers = (struct mpt_personality *)data; 252 253 error = 0; 254 switch (type) { 255 case MOD_LOAD: 256 { 257 mpt_load_handler_t **def_handler; 258 mpt_load_handler_t **pers_handler; 259 int i; 260 261 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 262 if (mpt_personalities[i] == NULL) 263 break; 264 } 265 if (i >= MPT_MAX_PERSONALITIES) { 266 error = ENOMEM; 267 break; 268 } 269 pers->id = i; 270 mpt_personalities[i] = pers; 271 272 /* Install standard/noop handlers for any NULL entries. */ 273 def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality); 274 pers_handler = MPT_PERS_FIRST_HANDLER(pers); 275 while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) { 276 if (*pers_handler == NULL) 277 *pers_handler = *def_handler; 278 pers_handler++; 279 def_handler++; 280 } 281 282 error = (pers->load(pers)); 283 if (error != 0) 284 mpt_personalities[i] = NULL; 285 break; 286 } 287 case MOD_SHUTDOWN: 288 break; 289 #if __FreeBSD_version >= 500000 290 case MOD_QUIESCE: 291 break; 292 #endif 293 case MOD_UNLOAD: 294 error = pers->unload(pers); 295 mpt_personalities[pers->id] = NULL; 296 break; 297 default: 298 error = EINVAL; 299 break; 300 } 301 return (error); 302 } 303 304 int 305 mpt_stdload(struct mpt_personality *pers) 306 { 307 /* Load is always successfull. */ 308 return (0); 309 } 310 311 int 312 mpt_stdprobe(struct mpt_softc *mpt) 313 { 314 /* Probe is always successfull. */ 315 return (0); 316 } 317 318 int 319 mpt_stdattach(struct mpt_softc *mpt) 320 { 321 /* Attach is always successfull. */ 322 return (0); 323 } 324 325 int 326 mpt_stdenable(struct mpt_softc *mpt) 327 { 328 /* Enable is always successfull. */ 329 return (0); 330 } 331 332 void 333 mpt_stdready(struct mpt_softc *mpt) 334 { 335 } 336 337 338 int 339 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg) 340 { 341 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF); 342 /* Event was not for us. */ 343 return (0); 344 } 345 346 void 347 mpt_stdreset(struct mpt_softc *mpt, int type) 348 { 349 } 350 351 void 352 mpt_stdshutdown(struct mpt_softc *mpt) 353 { 354 } 355 356 void 357 mpt_stddetach(struct mpt_softc *mpt) 358 { 359 } 360 361 int 362 mpt_stdunload(struct mpt_personality *pers) 363 { 364 /* Unload is always successfull. */ 365 return (0); 366 } 367 368 /* 369 * Post driver attachment, we may want to perform some global actions. 370 * Here is the hook to do so. 371 */ 372 373 static void 374 mpt_postattach(void *unused) 375 { 376 struct mpt_softc *mpt; 377 struct mpt_personality *pers; 378 379 TAILQ_FOREACH(mpt, &mpt_tailq, links) { 380 MPT_PERS_FOREACH(mpt, pers) 381 pers->ready(mpt); 382 } 383 } 384 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL); 385 386 387 /******************************* Bus DMA Support ******************************/ 388 void 389 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error) 390 { 391 struct mpt_map_info *map_info; 392 393 map_info = (struct mpt_map_info *)arg; 394 map_info->error = error; 395 map_info->phys = segs->ds_addr; 396 } 397 398 /**************************** Reply/Event Handling ****************************/ 399 int 400 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type, 401 mpt_handler_t handler, uint32_t *phandler_id) 402 { 403 404 switch (type) { 405 case MPT_HANDLER_REPLY: 406 { 407 u_int cbi; 408 u_int free_cbi; 409 410 if (phandler_id == NULL) 411 return (EINVAL); 412 413 free_cbi = MPT_HANDLER_ID_NONE; 414 for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) { 415 /* 416 * If the same handler is registered multiple 417 * times, don't error out. Just return the 418 * index of the original registration. 419 */ 420 if (mpt_reply_handlers[cbi] == handler.reply_handler) { 421 *phandler_id = MPT_CBI_TO_HID(cbi); 422 return (0); 423 } 424 425 /* 426 * Fill from the front in the hope that 427 * all registered handlers consume only a 428 * single cache line. 429 * 430 * We don't break on the first empty slot so 431 * that the full table is checked to see if 432 * this handler was previously registered. 433 */ 434 if (free_cbi == MPT_HANDLER_ID_NONE && 435 (mpt_reply_handlers[cbi] 436 == mpt_default_reply_handler)) 437 free_cbi = cbi; 438 } 439 if (free_cbi == MPT_HANDLER_ID_NONE) { 440 return (ENOMEM); 441 } 442 mpt_reply_handlers[free_cbi] = handler.reply_handler; 443 *phandler_id = MPT_CBI_TO_HID(free_cbi); 444 break; 445 } 446 default: 447 mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type); 448 return (EINVAL); 449 } 450 return (0); 451 } 452 453 int 454 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type, 455 mpt_handler_t handler, uint32_t handler_id) 456 { 457 458 switch (type) { 459 case MPT_HANDLER_REPLY: 460 { 461 u_int cbi; 462 463 cbi = MPT_CBI(handler_id); 464 if (cbi >= MPT_NUM_REPLY_HANDLERS 465 || mpt_reply_handlers[cbi] != handler.reply_handler) 466 return (ENOENT); 467 mpt_reply_handlers[cbi] = mpt_default_reply_handler; 468 break; 469 } 470 default: 471 mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type); 472 return (EINVAL); 473 } 474 return (0); 475 } 476 477 static int 478 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req, 479 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 480 { 481 mpt_prt(mpt, 482 "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n", 483 req, req->serno, reply_desc, reply_frame); 484 485 if (reply_frame != NULL) 486 mpt_dump_reply_frame(mpt, reply_frame); 487 488 mpt_prt(mpt, "Reply Frame Ignored\n"); 489 490 return (/*free_reply*/TRUE); 491 } 492 493 static int 494 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req, 495 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 496 { 497 if (req != NULL) { 498 499 if (reply_frame != NULL) { 500 MSG_CONFIG *cfgp; 501 MSG_CONFIG_REPLY *reply; 502 503 cfgp = (MSG_CONFIG *)req->req_vbuf; 504 reply = (MSG_CONFIG_REPLY *)reply_frame; 505 req->IOCStatus = le16toh(reply_frame->IOCStatus); 506 bcopy(&reply->Header, &cfgp->Header, 507 sizeof(cfgp->Header)); 508 cfgp->ExtPageLength = reply->ExtPageLength; 509 cfgp->ExtPageType = reply->ExtPageType; 510 } 511 req->state &= ~REQ_STATE_QUEUED; 512 req->state |= REQ_STATE_DONE; 513 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 514 if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) { 515 wakeup(req); 516 } else if ((req->state & REQ_STATE_TIMEDOUT) != 0) { 517 /* 518 * Whew- we can free this request (late completion) 519 */ 520 mpt_free_request(mpt, req); 521 } 522 } 523 524 return (TRUE); 525 } 526 527 static int 528 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req, 529 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 530 { 531 /* Nothing to be done. */ 532 return (TRUE); 533 } 534 535 static int 536 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req, 537 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 538 { 539 int free_reply; 540 541 KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler")); 542 KASSERT(req != NULL, ("null request in mpt_event_reply_handler")); 543 544 free_reply = TRUE; 545 switch (reply_frame->Function) { 546 case MPI_FUNCTION_EVENT_NOTIFICATION: 547 { 548 MSG_EVENT_NOTIFY_REPLY *msg; 549 struct mpt_personality *pers; 550 u_int handled; 551 552 handled = 0; 553 msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 554 msg->EventDataLength = le16toh(msg->EventDataLength); 555 msg->IOCStatus = le16toh(msg->IOCStatus); 556 msg->IOCLogInfo = le32toh(msg->IOCLogInfo); 557 msg->Event = le32toh(msg->Event); 558 MPT_PERS_FOREACH(mpt, pers) 559 handled += pers->event(mpt, req, msg); 560 561 if (handled == 0 && mpt->mpt_pers_mask == 0) { 562 mpt_lprt(mpt, MPT_PRT_INFO, 563 "No Handlers For Any Event Notify Frames. " 564 "Event %#x (ACK %sequired).\n", 565 msg->Event, msg->AckRequired? "r" : "not r"); 566 } else if (handled == 0) { 567 mpt_lprt(mpt, 568 msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO, 569 "Unhandled Event Notify Frame. Event %#x " 570 "(ACK %sequired).\n", 571 msg->Event, msg->AckRequired? "r" : "not r"); 572 } 573 574 if (msg->AckRequired) { 575 request_t *ack_req; 576 uint32_t context; 577 578 context = req->index | MPT_REPLY_HANDLER_EVENTS; 579 ack_req = mpt_get_request(mpt, FALSE); 580 if (ack_req == NULL) { 581 struct mpt_evtf_record *evtf; 582 583 evtf = (struct mpt_evtf_record *)reply_frame; 584 evtf->context = context; 585 LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links); 586 free_reply = FALSE; 587 break; 588 } 589 mpt_send_event_ack(mpt, ack_req, msg, context); 590 /* 591 * Don't check for CONTINUATION_REPLY here 592 */ 593 return (free_reply); 594 } 595 break; 596 } 597 case MPI_FUNCTION_PORT_ENABLE: 598 mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n"); 599 break; 600 case MPI_FUNCTION_EVENT_ACK: 601 break; 602 default: 603 mpt_prt(mpt, "unknown event function: %x\n", 604 reply_frame->Function); 605 break; 606 } 607 608 /* 609 * I'm not sure that this continuation stuff works as it should. 610 * 611 * I've had FC async events occur that free the frame up because 612 * the continuation bit isn't set, and then additional async events 613 * then occur using the same context. As you might imagine, this 614 * leads to Very Bad Thing. 615 * 616 * Let's just be safe for now and not free them up until we figure 617 * out what's actually happening here. 618 */ 619 #if 0 620 if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) { 621 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 622 mpt_free_request(mpt, req); 623 mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation", 624 reply_frame->Function, req, req->serno); 625 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 626 MSG_EVENT_NOTIFY_REPLY *msg = 627 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 628 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 629 msg->Event, msg->AckRequired); 630 } 631 } else { 632 mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation", 633 reply_frame->Function, req, req->serno); 634 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 635 MSG_EVENT_NOTIFY_REPLY *msg = 636 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 637 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 638 msg->Event, msg->AckRequired); 639 } 640 mpt_prtc(mpt, "\n"); 641 } 642 #endif 643 return (free_reply); 644 } 645 646 /* 647 * Process an asynchronous event from the IOC. 648 */ 649 static int 650 mpt_core_event(struct mpt_softc *mpt, request_t *req, 651 MSG_EVENT_NOTIFY_REPLY *msg) 652 { 653 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n", 654 msg->Event & 0xFF); 655 switch(msg->Event & 0xFF) { 656 case MPI_EVENT_NONE: 657 break; 658 case MPI_EVENT_LOG_DATA: 659 { 660 int i; 661 662 /* Some error occured that LSI wants logged */ 663 mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n", 664 msg->IOCLogInfo); 665 mpt_prt(mpt, "\tEvtLogData: Event Data:"); 666 for (i = 0; i < msg->EventDataLength; i++) 667 mpt_prtc(mpt, " %08x", msg->Data[i]); 668 mpt_prtc(mpt, "\n"); 669 break; 670 } 671 case MPI_EVENT_EVENT_CHANGE: 672 /* 673 * This is just an acknowledgement 674 * of our mpt_send_event_request. 675 */ 676 break; 677 case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE: 678 break; 679 default: 680 return (0); 681 break; 682 } 683 return (1); 684 } 685 686 static void 687 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 688 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context) 689 { 690 MSG_EVENT_ACK *ackp; 691 692 ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf; 693 memset(ackp, 0, sizeof (*ackp)); 694 ackp->Function = MPI_FUNCTION_EVENT_ACK; 695 ackp->Event = htole32(msg->Event); 696 ackp->EventContext = htole32(msg->EventContext); 697 ackp->MsgContext = htole32(context); 698 mpt_check_doorbell(mpt); 699 mpt_send_cmd(mpt, ack_req); 700 } 701 702 /***************************** Interrupt Handling *****************************/ 703 void 704 mpt_intr(void *arg) 705 { 706 struct mpt_softc *mpt; 707 uint32_t reply_desc; 708 int ntrips = 0; 709 710 mpt = (struct mpt_softc *)arg; 711 mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n"); 712 MPT_LOCK_ASSERT(mpt); 713 714 while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) { 715 request_t *req; 716 MSG_DEFAULT_REPLY *reply_frame; 717 uint32_t reply_baddr; 718 uint32_t ctxt_idx; 719 u_int cb_index; 720 u_int req_index; 721 int free_rf; 722 723 req = NULL; 724 reply_frame = NULL; 725 reply_baddr = 0; 726 if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) { 727 u_int offset; 728 /* 729 * Insure that the reply frame is coherent. 730 */ 731 reply_baddr = MPT_REPLY_BADDR(reply_desc); 732 offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF); 733 bus_dmamap_sync_range(mpt->reply_dmat, 734 mpt->reply_dmap, offset, MPT_REPLY_SIZE, 735 BUS_DMASYNC_POSTREAD); 736 reply_frame = MPT_REPLY_OTOV(mpt, offset); 737 ctxt_idx = le32toh(reply_frame->MsgContext); 738 } else { 739 uint32_t type; 740 741 type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc); 742 ctxt_idx = reply_desc; 743 mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n", 744 reply_desc); 745 746 switch (type) { 747 case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT: 748 ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK; 749 break; 750 case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET: 751 ctxt_idx = GET_IO_INDEX(reply_desc); 752 if (mpt->tgt_cmd_ptrs == NULL) { 753 mpt_prt(mpt, 754 "mpt_intr: no target cmd ptrs\n"); 755 reply_desc = MPT_REPLY_EMPTY; 756 break; 757 } 758 if (ctxt_idx >= mpt->tgt_cmds_allocated) { 759 mpt_prt(mpt, 760 "mpt_intr: bad tgt cmd ctxt %u\n", 761 ctxt_idx); 762 reply_desc = MPT_REPLY_EMPTY; 763 ntrips = 1000; 764 break; 765 } 766 req = mpt->tgt_cmd_ptrs[ctxt_idx]; 767 if (req == NULL) { 768 mpt_prt(mpt, "no request backpointer " 769 "at index %u", ctxt_idx); 770 reply_desc = MPT_REPLY_EMPTY; 771 ntrips = 1000; 772 break; 773 } 774 /* 775 * Reformulate ctxt_idx to be just as if 776 * it were another type of context reply 777 * so the code below will find the request 778 * via indexing into the pool. 779 */ 780 ctxt_idx = 781 req->index | mpt->scsi_tgt_handler_id; 782 req = NULL; 783 break; 784 case MPI_CONTEXT_REPLY_TYPE_LAN: 785 mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n", 786 reply_desc); 787 reply_desc = MPT_REPLY_EMPTY; 788 break; 789 default: 790 mpt_prt(mpt, "Context Reply 0x%08x?\n", type); 791 reply_desc = MPT_REPLY_EMPTY; 792 break; 793 } 794 if (reply_desc == MPT_REPLY_EMPTY) { 795 if (ntrips++ > 1000) { 796 break; 797 } 798 continue; 799 } 800 } 801 802 cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx); 803 req_index = MPT_CONTEXT_TO_REQI(ctxt_idx); 804 if (req_index < MPT_MAX_REQUESTS(mpt)) { 805 req = &mpt->request_pool[req_index]; 806 } else { 807 mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc ==" 808 " 0x%x)\n", req_index, reply_desc); 809 } 810 811 free_rf = mpt_reply_handlers[cb_index](mpt, req, 812 reply_desc, reply_frame); 813 814 if (reply_frame != NULL && free_rf) { 815 mpt_free_reply(mpt, reply_baddr); 816 } 817 818 /* 819 * If we got ourselves disabled, don't get stuck in a loop 820 */ 821 if (mpt->disabled) { 822 mpt_disable_ints(mpt); 823 break; 824 } 825 if (ntrips++ > 1000) { 826 break; 827 } 828 } 829 mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n"); 830 } 831 832 /******************************* Error Recovery *******************************/ 833 void 834 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain, 835 u_int iocstatus) 836 { 837 MSG_DEFAULT_REPLY ioc_status_frame; 838 request_t *req; 839 840 memset(&ioc_status_frame, 0, sizeof(ioc_status_frame)); 841 ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4); 842 ioc_status_frame.IOCStatus = iocstatus; 843 while((req = TAILQ_FIRST(chain)) != NULL) { 844 MSG_REQUEST_HEADER *msg_hdr; 845 u_int cb_index; 846 847 msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf; 848 ioc_status_frame.Function = msg_hdr->Function; 849 ioc_status_frame.MsgContext = msg_hdr->MsgContext; 850 cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext)); 851 mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext, 852 &ioc_status_frame); 853 if (mpt_req_on_pending_list(mpt, req) != 0) 854 TAILQ_REMOVE(chain, req, links); 855 } 856 } 857 858 /********************************* Diagnostics ********************************/ 859 /* 860 * Perform a diagnostic dump of a reply frame. 861 */ 862 void 863 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame) 864 { 865 mpt_prt(mpt, "Address Reply:\n"); 866 mpt_print_reply(reply_frame); 867 } 868 869 /******************************* Doorbell Access ******************************/ 870 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt); 871 static __inline uint32_t mpt_rd_intr(struct mpt_softc *mpt); 872 873 static __inline uint32_t 874 mpt_rd_db(struct mpt_softc *mpt) 875 { 876 return mpt_read(mpt, MPT_OFFSET_DOORBELL); 877 } 878 879 static __inline uint32_t 880 mpt_rd_intr(struct mpt_softc *mpt) 881 { 882 return mpt_read(mpt, MPT_OFFSET_INTR_STATUS); 883 } 884 885 /* Busy wait for a door bell to be read by IOC */ 886 static int 887 mpt_wait_db_ack(struct mpt_softc *mpt) 888 { 889 int i; 890 for (i=0; i < MPT_MAX_WAIT; i++) { 891 if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) { 892 maxwait_ack = i > maxwait_ack ? i : maxwait_ack; 893 return (MPT_OK); 894 } 895 DELAY(200); 896 } 897 return (MPT_FAIL); 898 } 899 900 /* Busy wait for a door bell interrupt */ 901 static int 902 mpt_wait_db_int(struct mpt_softc *mpt) 903 { 904 int i; 905 for (i = 0; i < MPT_MAX_WAIT; i++) { 906 if (MPT_DB_INTR(mpt_rd_intr(mpt))) { 907 maxwait_int = i > maxwait_int ? i : maxwait_int; 908 return MPT_OK; 909 } 910 DELAY(100); 911 } 912 return (MPT_FAIL); 913 } 914 915 /* Wait for IOC to transition to a give state */ 916 void 917 mpt_check_doorbell(struct mpt_softc *mpt) 918 { 919 uint32_t db = mpt_rd_db(mpt); 920 if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) { 921 mpt_prt(mpt, "Device not running\n"); 922 mpt_print_db(db); 923 } 924 } 925 926 /* Wait for IOC to transition to a give state */ 927 static int 928 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state) 929 { 930 int i; 931 932 for (i = 0; i < MPT_MAX_WAIT; i++) { 933 uint32_t db = mpt_rd_db(mpt); 934 if (MPT_STATE(db) == state) { 935 maxwait_state = i > maxwait_state ? i : maxwait_state; 936 return (MPT_OK); 937 } 938 DELAY(100); 939 } 940 return (MPT_FAIL); 941 } 942 943 944 /************************* Intialization/Configuration ************************/ 945 static int mpt_download_fw(struct mpt_softc *mpt); 946 947 /* Issue the reset COMMAND to the IOC */ 948 static int 949 mpt_soft_reset(struct mpt_softc *mpt) 950 { 951 mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n"); 952 953 /* Have to use hard reset if we are not in Running state */ 954 if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) { 955 mpt_prt(mpt, "soft reset failed: device not running\n"); 956 return (MPT_FAIL); 957 } 958 959 /* If door bell is in use we don't have a chance of getting 960 * a word in since the IOC probably crashed in message 961 * processing. So don't waste our time. 962 */ 963 if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) { 964 mpt_prt(mpt, "soft reset failed: doorbell wedged\n"); 965 return (MPT_FAIL); 966 } 967 968 /* Send the reset request to the IOC */ 969 mpt_write(mpt, MPT_OFFSET_DOORBELL, 970 MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT); 971 if (mpt_wait_db_ack(mpt) != MPT_OK) { 972 mpt_prt(mpt, "soft reset failed: ack timeout\n"); 973 return (MPT_FAIL); 974 } 975 976 /* Wait for the IOC to reload and come out of reset state */ 977 if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) { 978 mpt_prt(mpt, "soft reset failed: device did not restart\n"); 979 return (MPT_FAIL); 980 } 981 982 return MPT_OK; 983 } 984 985 static int 986 mpt_enable_diag_mode(struct mpt_softc *mpt) 987 { 988 int try; 989 990 try = 20; 991 while (--try) { 992 993 if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0) 994 break; 995 996 /* Enable diagnostic registers */ 997 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF); 998 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE); 999 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE); 1000 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE); 1001 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE); 1002 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE); 1003 1004 DELAY(100000); 1005 } 1006 if (try == 0) 1007 return (EIO); 1008 return (0); 1009 } 1010 1011 static void 1012 mpt_disable_diag_mode(struct mpt_softc *mpt) 1013 { 1014 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF); 1015 } 1016 1017 /* This is a magic diagnostic reset that resets all the ARM 1018 * processors in the chip. 1019 */ 1020 static void 1021 mpt_hard_reset(struct mpt_softc *mpt) 1022 { 1023 int error; 1024 int wait; 1025 uint32_t diagreg; 1026 1027 mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n"); 1028 1029 error = mpt_enable_diag_mode(mpt); 1030 if (error) { 1031 mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n"); 1032 mpt_prt(mpt, "Trying to reset anyway.\n"); 1033 } 1034 1035 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1036 1037 /* 1038 * This appears to be a workaround required for some 1039 * firmware or hardware revs. 1040 */ 1041 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM); 1042 DELAY(1000); 1043 1044 /* Diag. port is now active so we can now hit the reset bit */ 1045 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER); 1046 1047 /* 1048 * Ensure that the reset has finished. We delay 1ms 1049 * prior to reading the register to make sure the chip 1050 * has sufficiently completed its reset to handle register 1051 * accesses. 1052 */ 1053 wait = 5000; 1054 do { 1055 DELAY(1000); 1056 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1057 } while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0); 1058 1059 if (wait == 0) { 1060 mpt_prt(mpt, "WARNING - Failed hard reset! " 1061 "Trying to initialize anyway.\n"); 1062 } 1063 1064 /* 1065 * If we have firmware to download, it must be loaded before 1066 * the controller will become operational. Do so now. 1067 */ 1068 if (mpt->fw_image != NULL) { 1069 1070 error = mpt_download_fw(mpt); 1071 1072 if (error) { 1073 mpt_prt(mpt, "WARNING - Firmware Download Failed!\n"); 1074 mpt_prt(mpt, "Trying to initialize anyway.\n"); 1075 } 1076 } 1077 1078 /* 1079 * Reseting the controller should have disabled write 1080 * access to the diagnostic registers, but disable 1081 * manually to be sure. 1082 */ 1083 mpt_disable_diag_mode(mpt); 1084 } 1085 1086 static void 1087 mpt_core_ioc_reset(struct mpt_softc *mpt, int type) 1088 { 1089 /* 1090 * Complete all pending requests with a status 1091 * appropriate for an IOC reset. 1092 */ 1093 mpt_complete_request_chain(mpt, &mpt->request_pending_list, 1094 MPI_IOCSTATUS_INVALID_STATE); 1095 } 1096 1097 1098 /* 1099 * Reset the IOC when needed. Try software command first then if needed 1100 * poke at the magic diagnostic reset. Note that a hard reset resets 1101 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as 1102 * fouls up the PCI configuration registers. 1103 */ 1104 int 1105 mpt_reset(struct mpt_softc *mpt, int reinit) 1106 { 1107 struct mpt_personality *pers; 1108 int ret; 1109 int retry_cnt = 0; 1110 1111 /* 1112 * Try a soft reset. If that fails, get out the big hammer. 1113 */ 1114 again: 1115 if ((ret = mpt_soft_reset(mpt)) != MPT_OK) { 1116 int cnt; 1117 for (cnt = 0; cnt < 5; cnt++) { 1118 /* Failed; do a hard reset */ 1119 mpt_hard_reset(mpt); 1120 1121 /* 1122 * Wait for the IOC to reload 1123 * and come out of reset state 1124 */ 1125 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1126 if (ret == MPT_OK) { 1127 break; 1128 } 1129 /* 1130 * Okay- try to check again... 1131 */ 1132 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1133 if (ret == MPT_OK) { 1134 break; 1135 } 1136 mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n", 1137 retry_cnt, cnt); 1138 } 1139 } 1140 1141 if (retry_cnt == 0) { 1142 /* 1143 * Invoke reset handlers. We bump the reset count so 1144 * that mpt_wait_req() understands that regardless of 1145 * the specified wait condition, it should stop its wait. 1146 */ 1147 mpt->reset_cnt++; 1148 MPT_PERS_FOREACH(mpt, pers) 1149 pers->reset(mpt, ret); 1150 } 1151 1152 if (reinit) { 1153 ret = mpt_enable_ioc(mpt, 1); 1154 if (ret == MPT_OK) { 1155 mpt_enable_ints(mpt); 1156 } 1157 } 1158 if (ret != MPT_OK && retry_cnt++ < 2) { 1159 goto again; 1160 } 1161 return ret; 1162 } 1163 1164 /* Return a command buffer to the free queue */ 1165 void 1166 mpt_free_request(struct mpt_softc *mpt, request_t *req) 1167 { 1168 request_t *nxt; 1169 struct mpt_evtf_record *record; 1170 uint32_t reply_baddr; 1171 1172 if (req == NULL || req != &mpt->request_pool[req->index]) { 1173 panic("mpt_free_request bad req ptr\n"); 1174 return; 1175 } 1176 if ((nxt = req->chain) != NULL) { 1177 req->chain = NULL; 1178 mpt_free_request(mpt, nxt); /* NB: recursion */ 1179 } 1180 KASSERT(req->state != REQ_STATE_FREE, ("freeing free request")); 1181 KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request")); 1182 MPT_LOCK_ASSERT(mpt); 1183 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 1184 ("mpt_free_request: req %p:%u func %x already on freelist", 1185 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1186 KASSERT(mpt_req_on_pending_list(mpt, req) == 0, 1187 ("mpt_free_request: req %p:%u func %x on pending list", 1188 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1189 #ifdef INVARIANTS 1190 mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__); 1191 #endif 1192 1193 req->ccb = NULL; 1194 if (LIST_EMPTY(&mpt->ack_frames)) { 1195 /* 1196 * Insert free ones at the tail 1197 */ 1198 req->serno = 0; 1199 req->state = REQ_STATE_FREE; 1200 #ifdef INVARIANTS 1201 memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER)); 1202 #endif 1203 TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links); 1204 if (mpt->getreqwaiter != 0) { 1205 mpt->getreqwaiter = 0; 1206 wakeup(&mpt->request_free_list); 1207 } 1208 return; 1209 } 1210 1211 /* 1212 * Process an ack frame deferred due to resource shortage. 1213 */ 1214 record = LIST_FIRST(&mpt->ack_frames); 1215 LIST_REMOVE(record, links); 1216 req->state = REQ_STATE_ALLOCATED; 1217 mpt_assign_serno(mpt, req); 1218 mpt_send_event_ack(mpt, req, &record->reply, record->context); 1219 reply_baddr = (uint32_t)((uint8_t *)record - mpt->reply) 1220 + (mpt->reply_phys & 0xFFFFFFFF); 1221 mpt_free_reply(mpt, reply_baddr); 1222 } 1223 1224 /* Get a command buffer from the free queue */ 1225 request_t * 1226 mpt_get_request(struct mpt_softc *mpt, int sleep_ok) 1227 { 1228 request_t *req; 1229 1230 retry: 1231 MPT_LOCK_ASSERT(mpt); 1232 req = TAILQ_FIRST(&mpt->request_free_list); 1233 if (req != NULL) { 1234 KASSERT(req == &mpt->request_pool[req->index], 1235 ("mpt_get_request: corrupted request free list\n")); 1236 KASSERT(req->state == REQ_STATE_FREE, 1237 ("req %p:%u not free on free list %x index %d function %x", 1238 req, req->serno, req->state, req->index, 1239 ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1240 TAILQ_REMOVE(&mpt->request_free_list, req, links); 1241 req->state = REQ_STATE_ALLOCATED; 1242 req->chain = NULL; 1243 mpt_assign_serno(mpt, req); 1244 } else if (sleep_ok != 0) { 1245 mpt->getreqwaiter = 1; 1246 mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0); 1247 goto retry; 1248 } 1249 return (req); 1250 } 1251 1252 /* Pass the command to the IOC */ 1253 void 1254 mpt_send_cmd(struct mpt_softc *mpt, request_t *req) 1255 { 1256 if (mpt->verbose > MPT_PRT_DEBUG2) { 1257 mpt_dump_request(mpt, req); 1258 } 1259 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 1260 BUS_DMASYNC_PREWRITE); 1261 req->state |= REQ_STATE_QUEUED; 1262 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 1263 ("req %p:%u func %x on freelist list in mpt_send_cmd", 1264 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1265 KASSERT(mpt_req_on_pending_list(mpt, req) == 0, 1266 ("req %p:%u func %x already on pending list in mpt_send_cmd", 1267 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1268 TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links); 1269 mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf); 1270 } 1271 1272 /* 1273 * Wait for a request to complete. 1274 * 1275 * Inputs: 1276 * mpt softc of controller executing request 1277 * req request to wait for 1278 * sleep_ok nonzero implies may sleep in this context 1279 * time_ms timeout in ms. 0 implies no timeout. 1280 * 1281 * Return Values: 1282 * 0 Request completed 1283 * non-0 Timeout fired before request completion. 1284 */ 1285 int 1286 mpt_wait_req(struct mpt_softc *mpt, request_t *req, 1287 mpt_req_state_t state, mpt_req_state_t mask, 1288 int sleep_ok, int time_ms) 1289 { 1290 int error; 1291 int timeout; 1292 u_int saved_cnt; 1293 1294 /* 1295 * timeout is in ms. 0 indicates infinite wait. 1296 * Convert to ticks or 500us units depending on 1297 * our sleep mode. 1298 */ 1299 if (sleep_ok != 0) { 1300 timeout = (time_ms * hz) / 1000; 1301 } else { 1302 timeout = time_ms * 2; 1303 } 1304 req->state |= REQ_STATE_NEED_WAKEUP; 1305 mask &= ~REQ_STATE_NEED_WAKEUP; 1306 saved_cnt = mpt->reset_cnt; 1307 while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) { 1308 if (sleep_ok != 0) { 1309 error = mpt_sleep(mpt, req, PUSER, "mptreq", timeout); 1310 if (error == EWOULDBLOCK) { 1311 timeout = 0; 1312 break; 1313 } 1314 } else { 1315 if (time_ms != 0 && --timeout == 0) { 1316 break; 1317 } 1318 DELAY(500); 1319 mpt_intr(mpt); 1320 } 1321 } 1322 req->state &= ~REQ_STATE_NEED_WAKEUP; 1323 if (mpt->reset_cnt != saved_cnt) { 1324 return (EIO); 1325 } 1326 if (time_ms && timeout <= 0) { 1327 MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf; 1328 req->state |= REQ_STATE_TIMEDOUT; 1329 mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function); 1330 return (ETIMEDOUT); 1331 } 1332 return (0); 1333 } 1334 1335 /* 1336 * Send a command to the IOC via the handshake register. 1337 * 1338 * Only done at initialization time and for certain unusual 1339 * commands such as device/bus reset as specified by LSI. 1340 */ 1341 int 1342 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd) 1343 { 1344 int i; 1345 uint32_t data, *data32; 1346 1347 /* Check condition of the IOC */ 1348 data = mpt_rd_db(mpt); 1349 if ((MPT_STATE(data) != MPT_DB_STATE_READY 1350 && MPT_STATE(data) != MPT_DB_STATE_RUNNING 1351 && MPT_STATE(data) != MPT_DB_STATE_FAULT) 1352 || MPT_DB_IS_IN_USE(data)) { 1353 mpt_prt(mpt, "handshake aborted - invalid doorbell state\n"); 1354 mpt_print_db(data); 1355 return (EBUSY); 1356 } 1357 1358 /* We move things in 32 bit chunks */ 1359 len = (len + 3) >> 2; 1360 data32 = cmd; 1361 1362 /* Clear any left over pending doorbell interrupts */ 1363 if (MPT_DB_INTR(mpt_rd_intr(mpt))) 1364 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1365 1366 /* 1367 * Tell the handshake reg. we are going to send a command 1368 * and how long it is going to be. 1369 */ 1370 data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) | 1371 (len << MPI_DOORBELL_ADD_DWORDS_SHIFT); 1372 mpt_write(mpt, MPT_OFFSET_DOORBELL, data); 1373 1374 /* Wait for the chip to notice */ 1375 if (mpt_wait_db_int(mpt) != MPT_OK) { 1376 mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n"); 1377 return (ETIMEDOUT); 1378 } 1379 1380 /* Clear the interrupt */ 1381 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1382 1383 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1384 mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n"); 1385 return (ETIMEDOUT); 1386 } 1387 1388 /* Send the command */ 1389 for (i = 0; i < len; i++) { 1390 mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++)); 1391 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1392 mpt_prt(mpt, 1393 "mpt_send_handshake_cmd: timeout @ index %d\n", i); 1394 return (ETIMEDOUT); 1395 } 1396 } 1397 return MPT_OK; 1398 } 1399 1400 /* Get the response from the handshake register */ 1401 int 1402 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply) 1403 { 1404 int left, reply_left; 1405 u_int16_t *data16; 1406 uint32_t data; 1407 MSG_DEFAULT_REPLY *hdr; 1408 1409 /* We move things out in 16 bit chunks */ 1410 reply_len >>= 1; 1411 data16 = (u_int16_t *)reply; 1412 1413 hdr = (MSG_DEFAULT_REPLY *)reply; 1414 1415 /* Get first word */ 1416 if (mpt_wait_db_int(mpt) != MPT_OK) { 1417 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n"); 1418 return ETIMEDOUT; 1419 } 1420 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1421 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1422 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1423 1424 /* Get Second Word */ 1425 if (mpt_wait_db_int(mpt) != MPT_OK) { 1426 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n"); 1427 return ETIMEDOUT; 1428 } 1429 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1430 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1431 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1432 1433 /* 1434 * With the second word, we can now look at the length. 1435 * Warn about a reply that's too short (except for IOC FACTS REPLY) 1436 */ 1437 if ((reply_len >> 1) != hdr->MsgLength && 1438 (hdr->Function != MPI_FUNCTION_IOC_FACTS)){ 1439 #if __FreeBSD_version >= 500000 1440 mpt_prt(mpt, "reply length does not match message length: " 1441 "got %x; expected %zx for function %x\n", 1442 hdr->MsgLength << 2, reply_len << 1, hdr->Function); 1443 #else 1444 mpt_prt(mpt, "reply length does not match message length: " 1445 "got %x; expected %x for function %x\n", 1446 hdr->MsgLength << 2, reply_len << 1, hdr->Function); 1447 #endif 1448 } 1449 1450 /* Get rest of the reply; but don't overflow the provided buffer */ 1451 left = (hdr->MsgLength << 1) - 2; 1452 reply_left = reply_len - 2; 1453 while (left--) { 1454 u_int16_t datum; 1455 1456 if (mpt_wait_db_int(mpt) != MPT_OK) { 1457 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n"); 1458 return ETIMEDOUT; 1459 } 1460 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1461 datum = le16toh(data & MPT_DB_DATA_MASK); 1462 1463 if (reply_left-- > 0) 1464 *data16++ = datum; 1465 1466 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1467 } 1468 1469 /* One more wait & clear at the end */ 1470 if (mpt_wait_db_int(mpt) != MPT_OK) { 1471 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n"); 1472 return ETIMEDOUT; 1473 } 1474 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1475 1476 if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1477 if (mpt->verbose >= MPT_PRT_TRACE) 1478 mpt_print_reply(hdr); 1479 return (MPT_FAIL | hdr->IOCStatus); 1480 } 1481 1482 return (0); 1483 } 1484 1485 static int 1486 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp) 1487 { 1488 MSG_IOC_FACTS f_req; 1489 int error; 1490 1491 memset(&f_req, 0, sizeof f_req); 1492 f_req.Function = MPI_FUNCTION_IOC_FACTS; 1493 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1494 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1495 if (error) { 1496 return(error); 1497 } 1498 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1499 return (error); 1500 } 1501 1502 static int 1503 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp) 1504 { 1505 MSG_PORT_FACTS f_req; 1506 int error; 1507 1508 memset(&f_req, 0, sizeof f_req); 1509 f_req.Function = MPI_FUNCTION_PORT_FACTS; 1510 f_req.PortNumber = port; 1511 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1512 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1513 if (error) { 1514 return(error); 1515 } 1516 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1517 return (error); 1518 } 1519 1520 /* 1521 * Send the initialization request. This is where we specify how many 1522 * SCSI busses and how many devices per bus we wish to emulate. 1523 * This is also the command that specifies the max size of the reply 1524 * frames from the IOC that we will be allocating. 1525 */ 1526 static int 1527 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who) 1528 { 1529 int error = 0; 1530 MSG_IOC_INIT init; 1531 MSG_IOC_INIT_REPLY reply; 1532 1533 memset(&init, 0, sizeof init); 1534 init.WhoInit = who; 1535 init.Function = MPI_FUNCTION_IOC_INIT; 1536 init.MaxDevices = 0; /* at least 256 devices per bus */ 1537 init.MaxBuses = 16; /* at least 16 busses */ 1538 1539 init.MsgVersion = htole16(MPI_VERSION); 1540 init.HeaderVersion = htole16(MPI_HEADER_VERSION); 1541 init.ReplyFrameSize = htole16(MPT_REPLY_SIZE); 1542 init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1543 1544 if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) { 1545 return(error); 1546 } 1547 1548 error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply); 1549 return (error); 1550 } 1551 1552 1553 /* 1554 * Utiltity routine to read configuration headers and pages 1555 */ 1556 int 1557 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params, 1558 bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms) 1559 { 1560 MSG_CONFIG *cfgp; 1561 SGE_SIMPLE32 *se; 1562 1563 cfgp = req->req_vbuf; 1564 memset(cfgp, 0, sizeof *cfgp); 1565 cfgp->Action = params->Action; 1566 cfgp->Function = MPI_FUNCTION_CONFIG; 1567 cfgp->Header.PageVersion = params->PageVersion; 1568 cfgp->Header.PageNumber = params->PageNumber; 1569 cfgp->PageAddress = htole32(params->PageAddress); 1570 if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) == 1571 MPI_CONFIG_PAGETYPE_EXTENDED) { 1572 cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1573 cfgp->Header.PageLength = 0; 1574 cfgp->ExtPageLength = htole16(params->ExtPageLength); 1575 cfgp->ExtPageType = params->ExtPageType; 1576 } else { 1577 cfgp->Header.PageType = params->PageType; 1578 cfgp->Header.PageLength = params->PageLength; 1579 } 1580 se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE; 1581 se->Address = htole32(addr); 1582 MPI_pSGE_SET_LENGTH(se, len); 1583 MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT | 1584 MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | 1585 MPI_SGE_FLAGS_END_OF_LIST | 1586 ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT 1587 || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM) 1588 ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST))); 1589 se->FlagsLength = htole32(se->FlagsLength); 1590 cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 1591 1592 mpt_check_doorbell(mpt); 1593 mpt_send_cmd(mpt, req); 1594 return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 1595 sleep_ok, timeout_ms)); 1596 } 1597 1598 int 1599 mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber, 1600 uint32_t PageAddress, int ExtPageType, 1601 CONFIG_EXTENDED_PAGE_HEADER *rslt, 1602 int sleep_ok, int timeout_ms) 1603 { 1604 request_t *req; 1605 cfgparms_t params; 1606 MSG_CONFIG_REPLY *cfgp; 1607 int error; 1608 1609 req = mpt_get_request(mpt, sleep_ok); 1610 if (req == NULL) { 1611 mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n"); 1612 return (ENOMEM); 1613 } 1614 1615 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER; 1616 params.PageVersion = PageVersion; 1617 params.PageLength = 0; 1618 params.PageNumber = PageNumber; 1619 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1620 params.PageAddress = PageAddress; 1621 params.ExtPageType = ExtPageType; 1622 params.ExtPageLength = 0; 1623 error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0, 1624 sleep_ok, timeout_ms); 1625 if (error != 0) { 1626 /* 1627 * Leave the request. Without resetting the chip, it's 1628 * still owned by it and we'll just get into trouble 1629 * freeing it now. Mark it as abandoned so that if it 1630 * shows up later it can be freed. 1631 */ 1632 mpt_prt(mpt, "read_extcfg_header timed out\n"); 1633 return (ETIMEDOUT); 1634 } 1635 1636 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { 1637 case MPI_IOCSTATUS_SUCCESS: 1638 cfgp = req->req_vbuf; 1639 rslt->PageVersion = cfgp->Header.PageVersion; 1640 rslt->PageNumber = cfgp->Header.PageNumber; 1641 rslt->PageType = cfgp->Header.PageType; 1642 rslt->ExtPageLength = le16toh(cfgp->ExtPageLength); 1643 rslt->ExtPageType = cfgp->ExtPageType; 1644 error = 0; 1645 break; 1646 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: 1647 mpt_lprt(mpt, MPT_PRT_DEBUG, 1648 "Invalid Page Type %d Number %d Addr 0x%0x\n", 1649 MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress); 1650 error = EINVAL; 1651 break; 1652 default: 1653 mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n", 1654 req->IOCStatus); 1655 error = EIO; 1656 break; 1657 } 1658 mpt_free_request(mpt, req); 1659 return (error); 1660 } 1661 1662 int 1663 mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1664 CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len, 1665 int sleep_ok, int timeout_ms) 1666 { 1667 request_t *req; 1668 cfgparms_t params; 1669 int error; 1670 1671 req = mpt_get_request(mpt, sleep_ok); 1672 if (req == NULL) { 1673 mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n"); 1674 return (-1); 1675 } 1676 1677 params.Action = Action; 1678 params.PageVersion = hdr->PageVersion; 1679 params.PageLength = 0; 1680 params.PageNumber = hdr->PageNumber; 1681 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1682 params.PageAddress = PageAddress; 1683 params.ExtPageType = hdr->ExtPageType; 1684 params.ExtPageLength = hdr->ExtPageLength; 1685 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1686 req->req_pbuf + MPT_RQSL(mpt), 1687 len, sleep_ok, timeout_ms); 1688 if (error != 0) { 1689 mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action); 1690 return (-1); 1691 } 1692 1693 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1694 mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n", 1695 req->IOCStatus); 1696 mpt_free_request(mpt, req); 1697 return (-1); 1698 } 1699 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 1700 BUS_DMASYNC_POSTREAD); 1701 memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); 1702 mpt_free_request(mpt, req); 1703 return (0); 1704 } 1705 1706 int 1707 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber, 1708 uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt, 1709 int sleep_ok, int timeout_ms) 1710 { 1711 request_t *req; 1712 cfgparms_t params; 1713 MSG_CONFIG *cfgp; 1714 int error; 1715 1716 req = mpt_get_request(mpt, sleep_ok); 1717 if (req == NULL) { 1718 mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n"); 1719 return (ENOMEM); 1720 } 1721 1722 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER; 1723 params.PageVersion = 0; 1724 params.PageLength = 0; 1725 params.PageNumber = PageNumber; 1726 params.PageType = PageType; 1727 params.PageAddress = PageAddress; 1728 error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0, 1729 sleep_ok, timeout_ms); 1730 if (error != 0) { 1731 /* 1732 * Leave the request. Without resetting the chip, it's 1733 * still owned by it and we'll just get into trouble 1734 * freeing it now. Mark it as abandoned so that if it 1735 * shows up later it can be freed. 1736 */ 1737 mpt_prt(mpt, "read_cfg_header timed out\n"); 1738 return (ETIMEDOUT); 1739 } 1740 1741 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { 1742 case MPI_IOCSTATUS_SUCCESS: 1743 cfgp = req->req_vbuf; 1744 bcopy(&cfgp->Header, rslt, sizeof(*rslt)); 1745 error = 0; 1746 break; 1747 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: 1748 mpt_lprt(mpt, MPT_PRT_DEBUG, 1749 "Invalid Page Type %d Number %d Addr 0x%0x\n", 1750 PageType, PageNumber, PageAddress); 1751 error = EINVAL; 1752 break; 1753 default: 1754 mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n", 1755 req->IOCStatus); 1756 error = EIO; 1757 break; 1758 } 1759 mpt_free_request(mpt, req); 1760 return (error); 1761 } 1762 1763 int 1764 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1765 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1766 int timeout_ms) 1767 { 1768 request_t *req; 1769 cfgparms_t params; 1770 int error; 1771 1772 req = mpt_get_request(mpt, sleep_ok); 1773 if (req == NULL) { 1774 mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n"); 1775 return (-1); 1776 } 1777 1778 params.Action = Action; 1779 params.PageVersion = hdr->PageVersion; 1780 params.PageLength = hdr->PageLength; 1781 params.PageNumber = hdr->PageNumber; 1782 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK; 1783 params.PageAddress = PageAddress; 1784 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1785 req->req_pbuf + MPT_RQSL(mpt), 1786 len, sleep_ok, timeout_ms); 1787 if (error != 0) { 1788 mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action); 1789 return (-1); 1790 } 1791 1792 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1793 mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n", 1794 req->IOCStatus); 1795 mpt_free_request(mpt, req); 1796 return (-1); 1797 } 1798 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 1799 BUS_DMASYNC_POSTREAD); 1800 memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); 1801 mpt_free_request(mpt, req); 1802 return (0); 1803 } 1804 1805 int 1806 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1807 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1808 int timeout_ms) 1809 { 1810 request_t *req; 1811 cfgparms_t params; 1812 u_int hdr_attr; 1813 int error; 1814 1815 hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK; 1816 if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE && 1817 hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) { 1818 mpt_prt(mpt, "page type 0x%x not changeable\n", 1819 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK); 1820 return (-1); 1821 } 1822 1823 #if 0 1824 /* 1825 * We shouldn't mask off other bits here. 1826 */ 1827 hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK; 1828 #endif 1829 1830 req = mpt_get_request(mpt, sleep_ok); 1831 if (req == NULL) 1832 return (-1); 1833 1834 memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len); 1835 1836 /* 1837 * There isn't any point in restoring stripped out attributes 1838 * if you then mask them going down to issue the request. 1839 */ 1840 1841 params.Action = Action; 1842 params.PageVersion = hdr->PageVersion; 1843 params.PageLength = hdr->PageLength; 1844 params.PageNumber = hdr->PageNumber; 1845 params.PageAddress = PageAddress; 1846 #if 0 1847 /* Restore stripped out attributes */ 1848 hdr->PageType |= hdr_attr; 1849 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK; 1850 #else 1851 params.PageType = hdr->PageType; 1852 #endif 1853 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1854 req->req_pbuf + MPT_RQSL(mpt), 1855 len, sleep_ok, timeout_ms); 1856 if (error != 0) { 1857 mpt_prt(mpt, "mpt_write_cfg_page timed out\n"); 1858 return (-1); 1859 } 1860 1861 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1862 mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n", 1863 req->IOCStatus); 1864 mpt_free_request(mpt, req); 1865 return (-1); 1866 } 1867 mpt_free_request(mpt, req); 1868 return (0); 1869 } 1870 1871 /* 1872 * Read IOC configuration information 1873 */ 1874 static int 1875 mpt_read_config_info_ioc(struct mpt_softc *mpt) 1876 { 1877 CONFIG_PAGE_HEADER hdr; 1878 struct mpt_raid_volume *mpt_raid; 1879 int rv; 1880 int i; 1881 size_t len; 1882 1883 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 1884 2, 0, &hdr, FALSE, 5000); 1885 /* 1886 * If it's an invalid page, so what? Not a supported function.... 1887 */ 1888 if (rv == EINVAL) { 1889 return (0); 1890 } 1891 if (rv) { 1892 return (rv); 1893 } 1894 1895 mpt_lprt(mpt, MPT_PRT_DEBUG, 1896 "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n", 1897 hdr.PageVersion, hdr.PageLength << 2, 1898 hdr.PageNumber, hdr.PageType); 1899 1900 len = hdr.PageLength * sizeof(uint32_t); 1901 mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1902 if (mpt->ioc_page2 == NULL) { 1903 mpt_prt(mpt, "unable to allocate memory for IOC page 2\n"); 1904 mpt_raid_free_mem(mpt); 1905 return (ENOMEM); 1906 } 1907 memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr)); 1908 rv = mpt_read_cur_cfg_page(mpt, 0, 1909 &mpt->ioc_page2->Header, len, FALSE, 5000); 1910 if (rv) { 1911 mpt_prt(mpt, "failed to read IOC Page 2\n"); 1912 mpt_raid_free_mem(mpt); 1913 return (EIO); 1914 } 1915 mpt2host_config_page_ioc2(mpt->ioc_page2); 1916 1917 if (mpt->ioc_page2->CapabilitiesFlags != 0) { 1918 uint32_t mask; 1919 1920 mpt_prt(mpt, "Capabilities: ("); 1921 for (mask = 1; mask != 0; mask <<= 1) { 1922 if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) { 1923 continue; 1924 } 1925 switch (mask) { 1926 case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT: 1927 mpt_prtc(mpt, " RAID-0"); 1928 break; 1929 case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT: 1930 mpt_prtc(mpt, " RAID-1E"); 1931 break; 1932 case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT: 1933 mpt_prtc(mpt, " RAID-1"); 1934 break; 1935 case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT: 1936 mpt_prtc(mpt, " SES"); 1937 break; 1938 case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT: 1939 mpt_prtc(mpt, " SAFTE"); 1940 break; 1941 case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT: 1942 mpt_prtc(mpt, " Multi-Channel-Arrays"); 1943 default: 1944 break; 1945 } 1946 } 1947 mpt_prtc(mpt, " )\n"); 1948 if ((mpt->ioc_page2->CapabilitiesFlags 1949 & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT 1950 | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT 1951 | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) { 1952 mpt_prt(mpt, "%d Active Volume%s(%d Max)\n", 1953 mpt->ioc_page2->NumActiveVolumes, 1954 mpt->ioc_page2->NumActiveVolumes != 1 1955 ? "s " : " ", 1956 mpt->ioc_page2->MaxVolumes); 1957 mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n", 1958 mpt->ioc_page2->NumActivePhysDisks, 1959 mpt->ioc_page2->NumActivePhysDisks != 1 1960 ? "s " : " ", 1961 mpt->ioc_page2->MaxPhysDisks); 1962 } 1963 } 1964 1965 len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume); 1966 mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1967 if (mpt->raid_volumes == NULL) { 1968 mpt_prt(mpt, "Could not allocate RAID volume data\n"); 1969 mpt_raid_free_mem(mpt); 1970 return (ENOMEM); 1971 } 1972 1973 /* 1974 * Copy critical data out of ioc_page2 so that we can 1975 * safely refresh the page without windows of unreliable 1976 * data. 1977 */ 1978 mpt->raid_max_volumes = mpt->ioc_page2->MaxVolumes; 1979 1980 len = sizeof(*mpt->raid_volumes->config_page) + 1981 (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1)); 1982 for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) { 1983 mpt_raid = &mpt->raid_volumes[i]; 1984 mpt_raid->config_page = 1985 malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1986 if (mpt_raid->config_page == NULL) { 1987 mpt_prt(mpt, "Could not allocate RAID page data\n"); 1988 mpt_raid_free_mem(mpt); 1989 return (ENOMEM); 1990 } 1991 } 1992 mpt->raid_page0_len = len; 1993 1994 len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk); 1995 mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1996 if (mpt->raid_disks == NULL) { 1997 mpt_prt(mpt, "Could not allocate RAID disk data\n"); 1998 mpt_raid_free_mem(mpt); 1999 return (ENOMEM); 2000 } 2001 mpt->raid_max_disks = mpt->ioc_page2->MaxPhysDisks; 2002 2003 /* 2004 * Load page 3. 2005 */ 2006 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 2007 3, 0, &hdr, FALSE, 5000); 2008 if (rv) { 2009 mpt_raid_free_mem(mpt); 2010 return (EIO); 2011 } 2012 2013 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n", 2014 hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType); 2015 2016 len = hdr.PageLength * sizeof(uint32_t); 2017 mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2018 if (mpt->ioc_page3 == NULL) { 2019 mpt_prt(mpt, "unable to allocate memory for IOC page 3\n"); 2020 mpt_raid_free_mem(mpt); 2021 return (ENOMEM); 2022 } 2023 memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr)); 2024 rv = mpt_read_cur_cfg_page(mpt, 0, 2025 &mpt->ioc_page3->Header, len, FALSE, 5000); 2026 if (rv) { 2027 mpt_raid_free_mem(mpt); 2028 return (EIO); 2029 } 2030 mpt2host_config_page_ioc3(mpt->ioc_page3); 2031 mpt_raid_wakeup(mpt); 2032 return (0); 2033 } 2034 2035 /* 2036 * Enable IOC port 2037 */ 2038 static int 2039 mpt_send_port_enable(struct mpt_softc *mpt, int port) 2040 { 2041 request_t *req; 2042 MSG_PORT_ENABLE *enable_req; 2043 int error; 2044 2045 req = mpt_get_request(mpt, /*sleep_ok*/FALSE); 2046 if (req == NULL) 2047 return (-1); 2048 2049 enable_req = req->req_vbuf; 2050 memset(enable_req, 0, MPT_RQSL(mpt)); 2051 2052 enable_req->Function = MPI_FUNCTION_PORT_ENABLE; 2053 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 2054 enable_req->PortNumber = port; 2055 2056 mpt_check_doorbell(mpt); 2057 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port); 2058 2059 mpt_send_cmd(mpt, req); 2060 error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 2061 FALSE, (mpt->is_sas || mpt->is_fc)? 30000 : 3000); 2062 if (error != 0) { 2063 mpt_prt(mpt, "port %d enable timed out\n", port); 2064 return (-1); 2065 } 2066 mpt_free_request(mpt, req); 2067 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port); 2068 return (0); 2069 } 2070 2071 /* 2072 * Enable/Disable asynchronous event reporting. 2073 */ 2074 static int 2075 mpt_send_event_request(struct mpt_softc *mpt, int onoff) 2076 { 2077 request_t *req; 2078 MSG_EVENT_NOTIFY *enable_req; 2079 2080 req = mpt_get_request(mpt, FALSE); 2081 if (req == NULL) { 2082 return (ENOMEM); 2083 } 2084 enable_req = req->req_vbuf; 2085 memset(enable_req, 0, sizeof *enable_req); 2086 2087 enable_req->Function = MPI_FUNCTION_EVENT_NOTIFICATION; 2088 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS); 2089 enable_req->Switch = onoff; 2090 2091 mpt_check_doorbell(mpt); 2092 mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n", 2093 onoff ? "en" : "dis"); 2094 /* 2095 * Send the command off, but don't wait for it. 2096 */ 2097 mpt_send_cmd(mpt, req); 2098 return (0); 2099 } 2100 2101 /* 2102 * Un-mask the interrupts on the chip. 2103 */ 2104 void 2105 mpt_enable_ints(struct mpt_softc *mpt) 2106 { 2107 /* Unmask every thing except door bell int */ 2108 mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK); 2109 } 2110 2111 /* 2112 * Mask the interrupts on the chip. 2113 */ 2114 void 2115 mpt_disable_ints(struct mpt_softc *mpt) 2116 { 2117 /* Mask all interrupts */ 2118 mpt_write(mpt, MPT_OFFSET_INTR_MASK, 2119 MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK); 2120 } 2121 2122 static void 2123 mpt_sysctl_attach(struct mpt_softc *mpt) 2124 { 2125 #if __FreeBSD_version >= 500000 2126 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev); 2127 struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev); 2128 2129 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2130 "debug", CTLFLAG_RW, &mpt->verbose, 0, 2131 "Debugging/Verbose level"); 2132 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2133 "role", CTLFLAG_RD, &mpt->role, 0, 2134 "HBA role"); 2135 #ifdef MPT_TEST_MULTIPATH 2136 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2137 "failure_id", CTLFLAG_RW, &mpt->failure_id, -1, 2138 "Next Target to Fail"); 2139 #endif 2140 #endif 2141 } 2142 2143 int 2144 mpt_attach(struct mpt_softc *mpt) 2145 { 2146 struct mpt_personality *pers; 2147 int i; 2148 int error; 2149 2150 mpt_core_attach(mpt); 2151 mpt_core_enable(mpt); 2152 2153 TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links); 2154 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 2155 pers = mpt_personalities[i]; 2156 if (pers == NULL) { 2157 continue; 2158 } 2159 if (pers->probe(mpt) == 0) { 2160 error = pers->attach(mpt); 2161 if (error != 0) { 2162 mpt_detach(mpt); 2163 return (error); 2164 } 2165 mpt->mpt_pers_mask |= (0x1 << pers->id); 2166 pers->use_count++; 2167 } 2168 } 2169 2170 /* 2171 * Now that we've attached everything, do the enable function 2172 * for all of the personalities. This allows the personalities 2173 * to do setups that are appropriate for them prior to enabling 2174 * any ports. 2175 */ 2176 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 2177 pers = mpt_personalities[i]; 2178 if (pers != NULL && MPT_PERS_ATTACHED(pers, mpt) != 0) { 2179 error = pers->enable(mpt); 2180 if (error != 0) { 2181 mpt_prt(mpt, "personality %s attached but would" 2182 " not enable (%d)\n", pers->name, error); 2183 mpt_detach(mpt); 2184 return (error); 2185 } 2186 } 2187 } 2188 return (0); 2189 } 2190 2191 int 2192 mpt_shutdown(struct mpt_softc *mpt) 2193 { 2194 struct mpt_personality *pers; 2195 2196 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2197 pers->shutdown(mpt); 2198 } 2199 return (0); 2200 } 2201 2202 int 2203 mpt_detach(struct mpt_softc *mpt) 2204 { 2205 struct mpt_personality *pers; 2206 2207 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2208 pers->detach(mpt); 2209 mpt->mpt_pers_mask &= ~(0x1 << pers->id); 2210 pers->use_count--; 2211 } 2212 TAILQ_REMOVE(&mpt_tailq, mpt, links); 2213 return (0); 2214 } 2215 2216 int 2217 mpt_core_load(struct mpt_personality *pers) 2218 { 2219 int i; 2220 2221 /* 2222 * Setup core handlers and insert the default handler 2223 * into all "empty slots". 2224 */ 2225 for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) { 2226 mpt_reply_handlers[i] = mpt_default_reply_handler; 2227 } 2228 2229 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] = 2230 mpt_event_reply_handler; 2231 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] = 2232 mpt_config_reply_handler; 2233 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] = 2234 mpt_handshake_reply_handler; 2235 return (0); 2236 } 2237 2238 /* 2239 * Initialize per-instance driver data and perform 2240 * initial controller configuration. 2241 */ 2242 int 2243 mpt_core_attach(struct mpt_softc *mpt) 2244 { 2245 int val, error; 2246 2247 LIST_INIT(&mpt->ack_frames); 2248 /* Put all request buffers on the free list */ 2249 TAILQ_INIT(&mpt->request_pending_list); 2250 TAILQ_INIT(&mpt->request_free_list); 2251 TAILQ_INIT(&mpt->request_timeout_list); 2252 for (val = 0; val < MPT_MAX_LUNS; val++) { 2253 STAILQ_INIT(&mpt->trt[val].atios); 2254 STAILQ_INIT(&mpt->trt[val].inots); 2255 } 2256 STAILQ_INIT(&mpt->trt_wildcard.atios); 2257 STAILQ_INIT(&mpt->trt_wildcard.inots); 2258 #ifdef MPT_TEST_MULTIPATH 2259 mpt->failure_id = -1; 2260 #endif 2261 mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE; 2262 mpt_sysctl_attach(mpt); 2263 mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n", 2264 mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL))); 2265 2266 MPT_LOCK(mpt); 2267 error = mpt_configure_ioc(mpt, 0, 0); 2268 MPT_UNLOCK(mpt); 2269 2270 return (error); 2271 } 2272 2273 int 2274 mpt_core_enable(struct mpt_softc *mpt) 2275 { 2276 /* 2277 * We enter with the IOC enabled, but async events 2278 * not enabled, ports not enabled and interrupts 2279 * not enabled. 2280 */ 2281 MPT_LOCK(mpt); 2282 2283 /* 2284 * Enable asynchronous event reporting- all personalities 2285 * have attached so that they should be able to now field 2286 * async events. 2287 */ 2288 mpt_send_event_request(mpt, 1); 2289 2290 /* 2291 * Catch any pending interrupts 2292 * 2293 * This seems to be crucial- otherwise 2294 * the portenable below times out. 2295 */ 2296 mpt_intr(mpt); 2297 2298 /* 2299 * Enable Interrupts 2300 */ 2301 mpt_enable_ints(mpt); 2302 2303 /* 2304 * Catch any pending interrupts 2305 * 2306 * This seems to be crucial- otherwise 2307 * the portenable below times out. 2308 */ 2309 mpt_intr(mpt); 2310 2311 /* 2312 * Enable the port. 2313 */ 2314 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2315 mpt_prt(mpt, "failed to enable port 0\n"); 2316 MPT_UNLOCK(mpt); 2317 return (ENXIO); 2318 } 2319 MPT_UNLOCK(mpt); 2320 return (0); 2321 } 2322 2323 void 2324 mpt_core_shutdown(struct mpt_softc *mpt) 2325 { 2326 mpt_disable_ints(mpt); 2327 } 2328 2329 void 2330 mpt_core_detach(struct mpt_softc *mpt) 2331 { 2332 int val; 2333 2334 /* 2335 * XXX: FREE MEMORY 2336 */ 2337 mpt_disable_ints(mpt); 2338 2339 /* Make sure no request has pending timeouts. */ 2340 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { 2341 request_t *req = &mpt->request_pool[val]; 2342 mpt_callout_drain(mpt, &req->callout); 2343 } 2344 2345 mpt_dma_buf_free(mpt); 2346 } 2347 2348 int 2349 mpt_core_unload(struct mpt_personality *pers) 2350 { 2351 /* Unload is always successfull. */ 2352 return (0); 2353 } 2354 2355 #define FW_UPLOAD_REQ_SIZE \ 2356 (sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION) \ 2357 + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32)) 2358 2359 static int 2360 mpt_upload_fw(struct mpt_softc *mpt) 2361 { 2362 uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE]; 2363 MSG_FW_UPLOAD_REPLY fw_reply; 2364 MSG_FW_UPLOAD *fw_req; 2365 FW_UPLOAD_TCSGE *tsge; 2366 SGE_SIMPLE32 *sge; 2367 uint32_t flags; 2368 int error; 2369 2370 memset(&fw_req_buf, 0, sizeof(fw_req_buf)); 2371 fw_req = (MSG_FW_UPLOAD *)fw_req_buf; 2372 fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM; 2373 fw_req->Function = MPI_FUNCTION_FW_UPLOAD; 2374 fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 2375 tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL; 2376 tsge->DetailsLength = 12; 2377 tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT; 2378 tsge->ImageSize = htole32(mpt->fw_image_size); 2379 sge = (SGE_SIMPLE32 *)(tsge + 1); 2380 flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER 2381 | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT 2382 | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST); 2383 flags <<= MPI_SGE_FLAGS_SHIFT; 2384 sge->FlagsLength = htole32(flags | mpt->fw_image_size); 2385 sge->Address = htole32(mpt->fw_phys); 2386 error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf); 2387 if (error) 2388 return(error); 2389 error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply); 2390 return (error); 2391 } 2392 2393 static void 2394 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr, 2395 uint32_t *data, bus_size_t len) 2396 { 2397 uint32_t *data_end; 2398 2399 data_end = data + (roundup2(len, sizeof(uint32_t)) / 4); 2400 if (mpt->is_sas) { 2401 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2402 } 2403 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr); 2404 while (data != data_end) { 2405 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data); 2406 data++; 2407 } 2408 if (mpt->is_sas) { 2409 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2410 } 2411 } 2412 2413 static int 2414 mpt_download_fw(struct mpt_softc *mpt) 2415 { 2416 MpiFwHeader_t *fw_hdr; 2417 int error; 2418 uint32_t ext_offset; 2419 uint32_t data; 2420 2421 mpt_prt(mpt, "Downloading Firmware - Image Size %d\n", 2422 mpt->fw_image_size); 2423 2424 error = mpt_enable_diag_mode(mpt); 2425 if (error != 0) { 2426 mpt_prt(mpt, "Could not enter diagnostic mode!\n"); 2427 return (EIO); 2428 } 2429 2430 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, 2431 MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM); 2432 2433 fw_hdr = (MpiFwHeader_t *)mpt->fw_image; 2434 mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr, 2435 fw_hdr->ImageSize); 2436 2437 ext_offset = fw_hdr->NextImageHeaderOffset; 2438 while (ext_offset != 0) { 2439 MpiExtImageHeader_t *ext; 2440 2441 ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset); 2442 ext_offset = ext->NextImageHeaderOffset; 2443 2444 mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext, 2445 ext->ImageSize); 2446 } 2447 2448 if (mpt->is_sas) { 2449 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2450 } 2451 /* Setup the address to jump to on reset. */ 2452 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr); 2453 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue); 2454 2455 /* 2456 * The controller sets the "flash bad" status after attempting 2457 * to auto-boot from flash. Clear the status so that the controller 2458 * will continue the boot process with our newly installed firmware. 2459 */ 2460 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2461 data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL; 2462 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2463 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data); 2464 2465 if (mpt->is_sas) { 2466 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2467 } 2468 2469 /* 2470 * Re-enable the processor and clear the boot halt flag. 2471 */ 2472 data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 2473 data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM); 2474 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data); 2475 2476 mpt_disable_diag_mode(mpt); 2477 return (0); 2478 } 2479 2480 static int 2481 mpt_dma_buf_alloc(struct mpt_softc *mpt) 2482 { 2483 struct mpt_map_info mi; 2484 uint8_t *vptr; 2485 uint32_t pptr, end; 2486 int i, error; 2487 2488 /* Create a child tag for data buffers */ 2489 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 2490 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 2491 NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE, 2492 mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0, 2493 &mpt->buffer_dmat) != 0) { 2494 mpt_prt(mpt, "cannot create a dma tag for data buffers\n"); 2495 return (1); 2496 } 2497 2498 /* Create a child tag for request buffers */ 2499 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0, 2500 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 2501 NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0, 2502 &mpt->request_dmat) != 0) { 2503 mpt_prt(mpt, "cannot create a dma tag for requests\n"); 2504 return (1); 2505 } 2506 2507 /* Allocate some DMA accessable memory for requests */ 2508 if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request, 2509 BUS_DMA_NOWAIT, &mpt->request_dmap) != 0) { 2510 mpt_prt(mpt, "cannot allocate %d bytes of request memory\n", 2511 MPT_REQ_MEM_SIZE(mpt)); 2512 return (1); 2513 } 2514 2515 mi.mpt = mpt; 2516 mi.error = 0; 2517 2518 /* Load and lock it into "bus space" */ 2519 bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request, 2520 MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0); 2521 2522 if (mi.error) { 2523 mpt_prt(mpt, "error %d loading dma map for DMA request queue\n", 2524 mi.error); 2525 return (1); 2526 } 2527 mpt->request_phys = mi.phys; 2528 2529 /* 2530 * Now create per-request dma maps 2531 */ 2532 i = 0; 2533 pptr = mpt->request_phys; 2534 vptr = mpt->request; 2535 end = pptr + MPT_REQ_MEM_SIZE(mpt); 2536 while(pptr < end) { 2537 request_t *req = &mpt->request_pool[i]; 2538 req->index = i++; 2539 2540 /* Store location of Request Data */ 2541 req->req_pbuf = pptr; 2542 req->req_vbuf = vptr; 2543 2544 pptr += MPT_REQUEST_AREA; 2545 vptr += MPT_REQUEST_AREA; 2546 2547 req->sense_pbuf = (pptr - MPT_SENSE_SIZE); 2548 req->sense_vbuf = (vptr - MPT_SENSE_SIZE); 2549 2550 error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap); 2551 if (error) { 2552 mpt_prt(mpt, "error %d creating per-cmd DMA maps\n", 2553 error); 2554 return (1); 2555 } 2556 } 2557 2558 return (0); 2559 } 2560 2561 static void 2562 mpt_dma_buf_free(struct mpt_softc *mpt) 2563 { 2564 int i; 2565 if (mpt->request_dmat == 0) { 2566 mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n"); 2567 return; 2568 } 2569 for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) { 2570 bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap); 2571 } 2572 bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap); 2573 bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap); 2574 bus_dma_tag_destroy(mpt->request_dmat); 2575 mpt->request_dmat = 0; 2576 bus_dma_tag_destroy(mpt->buffer_dmat); 2577 } 2578 2579 /* 2580 * Allocate/Initialize data structures for the controller. Called 2581 * once at instance startup. 2582 */ 2583 static int 2584 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset) 2585 { 2586 PTR_MSG_PORT_FACTS_REPLY pfp; 2587 int error, port, val; 2588 size_t len; 2589 2590 if (tn == MPT_MAX_TRYS) { 2591 return (-1); 2592 } 2593 2594 /* 2595 * No need to reset if the IOC is already in the READY state. 2596 * 2597 * Force reset if initialization failed previously. 2598 * Note that a hard_reset of the second channel of a '929 2599 * will stop operation of the first channel. Hopefully, if the 2600 * first channel is ok, the second will not require a hard 2601 * reset. 2602 */ 2603 if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) { 2604 if (mpt_reset(mpt, FALSE) != MPT_OK) { 2605 return (mpt_configure_ioc(mpt, tn++, 1)); 2606 } 2607 needreset = 0; 2608 } 2609 2610 if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) { 2611 mpt_prt(mpt, "mpt_get_iocfacts failed\n"); 2612 return (mpt_configure_ioc(mpt, tn++, 1)); 2613 } 2614 mpt2host_iocfacts_reply(&mpt->ioc_facts); 2615 2616 mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n", 2617 mpt->ioc_facts.MsgVersion >> 8, 2618 mpt->ioc_facts.MsgVersion & 0xFF, 2619 mpt->ioc_facts.HeaderVersion >> 8, 2620 mpt->ioc_facts.HeaderVersion & 0xFF); 2621 2622 /* 2623 * Now that we know request frame size, we can calculate 2624 * the actual (reasonable) segment limit for read/write I/O. 2625 * 2626 * This limit is constrained by: 2627 * 2628 * + The size of each area we allocate per command (and how 2629 * many chain segments we can fit into it). 2630 * + The total number of areas we've set up. 2631 * + The actual chain depth the card will allow. 2632 * 2633 * The first area's segment count is limited by the I/O request 2634 * at the head of it. We cannot allocate realistically more 2635 * than MPT_MAX_REQUESTS areas. Therefore, to account for both 2636 * conditions, we'll just start out with MPT_MAX_REQUESTS-2. 2637 * 2638 */ 2639 /* total number of request areas we (can) allocate */ 2640 mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2; 2641 2642 /* converted to the number of chain areas possible */ 2643 mpt->max_seg_cnt *= MPT_NRFM(mpt); 2644 2645 /* limited by the number of chain areas the card will support */ 2646 if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) { 2647 mpt_lprt(mpt, MPT_PRT_INFO, 2648 "chain depth limited to %u (from %u)\n", 2649 mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt); 2650 mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth; 2651 } 2652 2653 /* converted to the number of simple sges in chain segments. */ 2654 mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1); 2655 2656 /* 2657 * Use this as the basis for reporting the maximum I/O size to CAM. 2658 */ 2659 mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1); 2660 2661 error = mpt_dma_buf_alloc(mpt); 2662 if (error != 0) { 2663 mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n"); 2664 return (EIO); 2665 } 2666 2667 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { 2668 request_t *req = &mpt->request_pool[val]; 2669 req->state = REQ_STATE_ALLOCATED; 2670 mpt_callout_init(mpt, &req->callout); 2671 mpt_free_request(mpt, req); 2672 } 2673 2674 mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum " 2675 "CAM Segment Count: %u\n", mpt->max_seg_cnt, 2676 mpt->max_cam_seg_cnt); 2677 2678 mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n", 2679 mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber); 2680 mpt_lprt(mpt, MPT_PRT_INFO, 2681 "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes " 2682 "Request Frame Size %u bytes Max Chain Depth %u\n", 2683 mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize, 2684 mpt->ioc_facts.RequestFrameSize << 2, 2685 mpt->ioc_facts.MaxChainDepth); 2686 mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, " 2687 "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts, 2688 mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags); 2689 2690 len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY); 2691 mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2692 if (mpt->port_facts == NULL) { 2693 mpt_prt(mpt, "unable to allocate memory for port facts\n"); 2694 return (ENOMEM); 2695 } 2696 2697 2698 if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) && 2699 (mpt->fw_uploaded == 0)) { 2700 struct mpt_map_info mi; 2701 2702 /* 2703 * In some configurations, the IOC's firmware is 2704 * stored in a shared piece of system NVRAM that 2705 * is only accessable via the BIOS. In this 2706 * case, the firmware keeps a copy of firmware in 2707 * RAM until the OS driver retrieves it. Once 2708 * retrieved, we are responsible for re-downloading 2709 * the firmware after any hard-reset. 2710 */ 2711 mpt->fw_image_size = mpt->ioc_facts.FWImageSize; 2712 error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0, 2713 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 2714 mpt->fw_image_size, 1, mpt->fw_image_size, 0, 2715 &mpt->fw_dmat); 2716 if (error != 0) { 2717 mpt_prt(mpt, "cannot create firmwarew dma tag\n"); 2718 return (ENOMEM); 2719 } 2720 error = bus_dmamem_alloc(mpt->fw_dmat, 2721 (void **)&mpt->fw_image, BUS_DMA_NOWAIT, &mpt->fw_dmap); 2722 if (error != 0) { 2723 mpt_prt(mpt, "cannot allocate firmware memory\n"); 2724 bus_dma_tag_destroy(mpt->fw_dmat); 2725 return (ENOMEM); 2726 } 2727 mi.mpt = mpt; 2728 mi.error = 0; 2729 bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap, 2730 mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0); 2731 mpt->fw_phys = mi.phys; 2732 2733 error = mpt_upload_fw(mpt); 2734 if (error != 0) { 2735 mpt_prt(mpt, "firmware upload failed.\n"); 2736 bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap); 2737 bus_dmamem_free(mpt->fw_dmat, mpt->fw_image, 2738 mpt->fw_dmap); 2739 bus_dma_tag_destroy(mpt->fw_dmat); 2740 mpt->fw_image = NULL; 2741 return (EIO); 2742 } 2743 mpt->fw_uploaded = 1; 2744 } 2745 2746 for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) { 2747 pfp = &mpt->port_facts[port]; 2748 error = mpt_get_portfacts(mpt, 0, pfp); 2749 if (error != MPT_OK) { 2750 mpt_prt(mpt, 2751 "mpt_get_portfacts on port %d failed\n", port); 2752 free(mpt->port_facts, M_DEVBUF); 2753 mpt->port_facts = NULL; 2754 return (mpt_configure_ioc(mpt, tn++, 1)); 2755 } 2756 mpt2host_portfacts_reply(pfp); 2757 2758 if (port > 0) { 2759 error = MPT_PRT_INFO; 2760 } else { 2761 error = MPT_PRT_DEBUG; 2762 } 2763 mpt_lprt(mpt, error, 2764 "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n", 2765 port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID, 2766 pfp->MaxDevices); 2767 2768 } 2769 2770 /* 2771 * XXX: Not yet supporting more than port 0 2772 */ 2773 pfp = &mpt->port_facts[0]; 2774 if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) { 2775 mpt->is_fc = 1; 2776 mpt->is_sas = 0; 2777 mpt->is_spi = 0; 2778 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) { 2779 mpt->is_fc = 0; 2780 mpt->is_sas = 1; 2781 mpt->is_spi = 0; 2782 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) { 2783 mpt->is_fc = 0; 2784 mpt->is_sas = 0; 2785 mpt->is_spi = 1; 2786 if (mpt->mpt_ini_id == MPT_INI_ID_NONE) 2787 mpt->mpt_ini_id = pfp->PortSCSIID; 2788 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) { 2789 mpt_prt(mpt, "iSCSI not supported yet\n"); 2790 return (ENXIO); 2791 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) { 2792 mpt_prt(mpt, "Inactive Port\n"); 2793 return (ENXIO); 2794 } else { 2795 mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType); 2796 return (ENXIO); 2797 } 2798 2799 /* 2800 * Set our role with what this port supports. 2801 * 2802 * Note this might be changed later in different modules 2803 * if this is different from what is wanted. 2804 */ 2805 mpt->role = MPT_ROLE_NONE; 2806 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) { 2807 mpt->role |= MPT_ROLE_INITIATOR; 2808 } 2809 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) { 2810 mpt->role |= MPT_ROLE_TARGET; 2811 } 2812 2813 /* 2814 * Enable the IOC 2815 */ 2816 if (mpt_enable_ioc(mpt, 1) != MPT_OK) { 2817 mpt_prt(mpt, "unable to initialize IOC\n"); 2818 return (ENXIO); 2819 } 2820 2821 /* 2822 * Read IOC configuration information. 2823 * 2824 * We need this to determine whether or not we have certain 2825 * settings for Integrated Mirroring (e.g.). 2826 */ 2827 mpt_read_config_info_ioc(mpt); 2828 2829 return (0); 2830 } 2831 2832 static int 2833 mpt_enable_ioc(struct mpt_softc *mpt, int portenable) 2834 { 2835 uint32_t pptr; 2836 int val; 2837 2838 if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) { 2839 mpt_prt(mpt, "mpt_send_ioc_init failed\n"); 2840 return (EIO); 2841 } 2842 2843 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n"); 2844 2845 if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) { 2846 mpt_prt(mpt, "IOC failed to go to run state\n"); 2847 return (ENXIO); 2848 } 2849 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n"); 2850 2851 /* 2852 * Give it reply buffers 2853 * 2854 * Do *not* exceed global credits. 2855 */ 2856 for (val = 0, pptr = mpt->reply_phys; 2857 (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE); 2858 pptr += MPT_REPLY_SIZE) { 2859 mpt_free_reply(mpt, pptr); 2860 if (++val == mpt->ioc_facts.GlobalCredits - 1) 2861 break; 2862 } 2863 2864 2865 /* 2866 * Enable the port if asked. This is only done if we're resetting 2867 * the IOC after initial startup. 2868 */ 2869 if (portenable) { 2870 /* 2871 * Enable asynchronous event reporting 2872 */ 2873 mpt_send_event_request(mpt, 1); 2874 2875 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2876 mpt_prt(mpt, "%s: failed to enable port 0\n", __func__); 2877 return (ENXIO); 2878 } 2879 } 2880 return (MPT_OK); 2881 } 2882 2883 /* 2884 * Endian Conversion Functions- only used on Big Endian machines 2885 */ 2886 #if _BYTE_ORDER == _BIG_ENDIAN 2887 void 2888 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge) 2889 { 2890 2891 MPT_2_HOST32(sge, FlagsLength); 2892 MPT_2_HOST32(sge, u.Address64.Low); 2893 MPT_2_HOST32(sge, u.Address64.High); 2894 } 2895 2896 void 2897 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp) 2898 { 2899 2900 MPT_2_HOST16(rp, MsgVersion); 2901 MPT_2_HOST16(rp, HeaderVersion); 2902 MPT_2_HOST32(rp, MsgContext); 2903 MPT_2_HOST16(rp, IOCExceptions); 2904 MPT_2_HOST16(rp, IOCStatus); 2905 MPT_2_HOST32(rp, IOCLogInfo); 2906 MPT_2_HOST16(rp, ReplyQueueDepth); 2907 MPT_2_HOST16(rp, RequestFrameSize); 2908 MPT_2_HOST16(rp, Reserved_0101_FWVersion); 2909 MPT_2_HOST16(rp, ProductID); 2910 MPT_2_HOST32(rp, CurrentHostMfaHighAddr); 2911 MPT_2_HOST16(rp, GlobalCredits); 2912 MPT_2_HOST32(rp, CurrentSenseBufferHighAddr); 2913 MPT_2_HOST16(rp, CurReplyFrameSize); 2914 MPT_2_HOST32(rp, FWImageSize); 2915 MPT_2_HOST32(rp, IOCCapabilities); 2916 MPT_2_HOST32(rp, FWVersion.Word); 2917 MPT_2_HOST16(rp, HighPriorityQueueDepth); 2918 MPT_2_HOST16(rp, Reserved2); 2919 mpt2host_sge_simple_union(&rp->HostPageBufferSGE); 2920 MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr); 2921 } 2922 2923 void 2924 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp) 2925 { 2926 2927 MPT_2_HOST16(pfp, Reserved); 2928 MPT_2_HOST16(pfp, Reserved1); 2929 MPT_2_HOST32(pfp, MsgContext); 2930 MPT_2_HOST16(pfp, Reserved2); 2931 MPT_2_HOST16(pfp, IOCStatus); 2932 MPT_2_HOST32(pfp, IOCLogInfo); 2933 MPT_2_HOST16(pfp, MaxDevices); 2934 MPT_2_HOST16(pfp, PortSCSIID); 2935 MPT_2_HOST16(pfp, ProtocolFlags); 2936 MPT_2_HOST16(pfp, MaxPostedCmdBuffers); 2937 MPT_2_HOST16(pfp, MaxPersistentIDs); 2938 MPT_2_HOST16(pfp, MaxLanBuckets); 2939 MPT_2_HOST16(pfp, Reserved4); 2940 MPT_2_HOST32(pfp, Reserved5); 2941 } 2942 2943 void 2944 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2) 2945 { 2946 int i; 2947 2948 MPT_2_HOST32(ioc2, CapabilitiesFlags); 2949 for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) { 2950 MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3); 2951 } 2952 } 2953 2954 void 2955 mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3) 2956 { 2957 2958 MPT_2_HOST16(ioc3, Reserved2); 2959 } 2960 2961 void 2962 mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0) 2963 { 2964 2965 MPT_2_HOST32(sp0, Capabilities); 2966 MPT_2_HOST32(sp0, PhysicalInterface); 2967 } 2968 2969 void 2970 mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1) 2971 { 2972 2973 MPT_2_HOST32(sp1, Configuration); 2974 MPT_2_HOST32(sp1, OnBusTimerValue); 2975 MPT_2_HOST16(sp1, IDConfig); 2976 } 2977 2978 void 2979 host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1) 2980 { 2981 2982 HOST_2_MPT32(sp1, Configuration); 2983 HOST_2_MPT32(sp1, OnBusTimerValue); 2984 HOST_2_MPT16(sp1, IDConfig); 2985 } 2986 2987 void 2988 mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2) 2989 { 2990 int i; 2991 2992 MPT_2_HOST32(sp2, PortFlags); 2993 MPT_2_HOST32(sp2, PortSettings); 2994 for (i = 0; i < sizeof(sp2->DeviceSettings) / 2995 sizeof(*sp2->DeviceSettings); i++) { 2996 MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags); 2997 } 2998 } 2999 3000 void 3001 mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0) 3002 { 3003 3004 MPT_2_HOST32(sd0, NegotiatedParameters); 3005 MPT_2_HOST32(sd0, Information); 3006 } 3007 3008 void 3009 mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1) 3010 { 3011 3012 MPT_2_HOST32(sd1, RequestedParameters); 3013 MPT_2_HOST32(sd1, Reserved); 3014 MPT_2_HOST32(sd1, Configuration); 3015 } 3016 3017 void 3018 host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1) 3019 { 3020 3021 HOST_2_MPT32(sd1, RequestedParameters); 3022 HOST_2_MPT32(sd1, Reserved); 3023 HOST_2_MPT32(sd1, Configuration); 3024 } 3025 3026 void 3027 mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0) 3028 { 3029 3030 MPT_2_HOST32(fp0, Flags); 3031 MPT_2_HOST32(fp0, PortIdentifier); 3032 MPT_2_HOST32(fp0, WWNN.Low); 3033 MPT_2_HOST32(fp0, WWNN.High); 3034 MPT_2_HOST32(fp0, WWPN.Low); 3035 MPT_2_HOST32(fp0, WWPN.High); 3036 MPT_2_HOST32(fp0, SupportedServiceClass); 3037 MPT_2_HOST32(fp0, SupportedSpeeds); 3038 MPT_2_HOST32(fp0, CurrentSpeed); 3039 MPT_2_HOST32(fp0, MaxFrameSize); 3040 MPT_2_HOST32(fp0, FabricWWNN.Low); 3041 MPT_2_HOST32(fp0, FabricWWNN.High); 3042 MPT_2_HOST32(fp0, FabricWWPN.Low); 3043 MPT_2_HOST32(fp0, FabricWWPN.High); 3044 MPT_2_HOST32(fp0, DiscoveredPortsCount); 3045 MPT_2_HOST32(fp0, MaxInitiators); 3046 } 3047 3048 void 3049 mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1) 3050 { 3051 3052 MPT_2_HOST32(fp1, Flags); 3053 MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low); 3054 MPT_2_HOST32(fp1, NoSEEPROMWWNN.High); 3055 MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low); 3056 MPT_2_HOST32(fp1, NoSEEPROMWWPN.High); 3057 } 3058 3059 void 3060 host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1) 3061 { 3062 3063 HOST_2_MPT32(fp1, Flags); 3064 HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low); 3065 HOST_2_MPT32(fp1, NoSEEPROMWWNN.High); 3066 HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low); 3067 HOST_2_MPT32(fp1, NoSEEPROMWWPN.High); 3068 } 3069 3070 void 3071 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp) 3072 { 3073 int i; 3074 3075 MPT_2_HOST16(volp, VolumeStatus.Reserved); 3076 MPT_2_HOST16(volp, VolumeSettings.Settings); 3077 MPT_2_HOST32(volp, MaxLBA); 3078 MPT_2_HOST32(volp, MaxLBAHigh); 3079 MPT_2_HOST32(volp, StripeSize); 3080 MPT_2_HOST32(volp, Reserved2); 3081 MPT_2_HOST32(volp, Reserved3); 3082 for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) { 3083 MPT_2_HOST16(volp, PhysDisk[i].Reserved); 3084 } 3085 } 3086 3087 void 3088 mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0) 3089 { 3090 3091 MPT_2_HOST32(rpd0, Reserved1); 3092 MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved); 3093 MPT_2_HOST32(rpd0, MaxLBA); 3094 MPT_2_HOST16(rpd0, ErrorData.Reserved); 3095 MPT_2_HOST16(rpd0, ErrorData.ErrorCount); 3096 MPT_2_HOST16(rpd0, ErrorData.SmartCount); 3097 } 3098 3099 void 3100 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi) 3101 { 3102 3103 MPT_2_HOST16(vi, TotalBlocks.High); 3104 MPT_2_HOST16(vi, TotalBlocks.Low); 3105 MPT_2_HOST16(vi, BlocksRemaining.High); 3106 MPT_2_HOST16(vi, BlocksRemaining.Low); 3107 } 3108 #endif 3109