xref: /freebsd/sys/dev/mpt/mpt.c (revision 0183e0151669735d62584fbba9125ed90716af5e)
1 /*-
2  * Generic routines for LSI Fusion adapters.
3  * FreeBSD Version.
4  *
5  * Copyright (c) 2000, 2001 by Greg Ansley
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice immediately at the beginning of the file, without modification,
12  *    this list of conditions, and the following disclaimer.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 /*-
29  * Copyright (c) 2002, 2006 by Matthew Jacob
30  * All rights reserved.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions are
34  * met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
38  *    substantially similar to the "NO WARRANTY" disclaimer below
39  *    ("Disclaimer") and any redistribution must be conditioned upon including
40  *    a substantially similar Disclaimer requirement for further binary
41  *    redistribution.
42  * 3. Neither the names of the above listed copyright holders nor the names
43  *    of any contributors may be used to endorse or promote products derived
44  *    from this software without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
47  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
50  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
56  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
57  *
58  * Support from Chris Ellsworth in order to make SAS adapters work
59  * is gratefully acknowledged.
60  *
61  *
62  * Support from LSI-Logic has also gone a great deal toward making this a
63  * workable subsystem and is gratefully acknowledged.
64  */
65 /*-
66  * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
67  * Copyright (c) 2005, WHEEL Sp. z o.o.
68  * Copyright (c) 2004, 2005 Justin T. Gibbs
69  * All rights reserved.
70  *
71  * Redistribution and use in source and binary forms, with or without
72  * modification, are permitted provided that the following conditions are
73  * met:
74  * 1. Redistributions of source code must retain the above copyright
75  *    notice, this list of conditions and the following disclaimer.
76  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
77  *    substantially similar to the "NO WARRANTY" disclaimer below
78  *    ("Disclaimer") and any redistribution must be conditioned upon including
79  *    a substantially similar Disclaimer requirement for further binary
80  *    redistribution.
81  * 3. Neither the names of the above listed copyright holders nor the names
82  *    of any contributors may be used to endorse or promote products derived
83  *    from this software without specific prior written permission.
84  *
85  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
86  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
89  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
90  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
91  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
92  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
93  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
94  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
95  * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
96  */
97 
98 #include <sys/cdefs.h>
99 __FBSDID("$FreeBSD$");
100 
101 #include <dev/mpt/mpt.h>
102 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
103 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
104 
105 #include <dev/mpt/mpilib/mpi.h>
106 #include <dev/mpt/mpilib/mpi_ioc.h>
107 #include <dev/mpt/mpilib/mpi_fc.h>
108 #include <dev/mpt/mpilib/mpi_targ.h>
109 
110 #include <sys/sysctl.h>
111 
112 #define MPT_MAX_TRYS 3
113 #define MPT_MAX_WAIT 300000
114 
115 static int maxwait_ack = 0;
116 static int maxwait_int = 0;
117 static int maxwait_state = 0;
118 
119 static TAILQ_HEAD(, mpt_softc)	mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
120 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
121 
122 static mpt_reply_handler_t mpt_default_reply_handler;
123 static mpt_reply_handler_t mpt_config_reply_handler;
124 static mpt_reply_handler_t mpt_handshake_reply_handler;
125 static mpt_reply_handler_t mpt_event_reply_handler;
126 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
127 			       MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
128 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
129 static int mpt_soft_reset(struct mpt_softc *mpt);
130 static void mpt_hard_reset(struct mpt_softc *mpt);
131 static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
132 static void mpt_dma_buf_free(struct mpt_softc *mpt);
133 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
134 static int mpt_enable_ioc(struct mpt_softc *mpt, int);
135 
136 /************************* Personality Module Support *************************/
137 /*
138  * We include one extra entry that is guaranteed to be NULL
139  * to simplify our itterator.
140  */
141 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
142 static __inline struct mpt_personality*
143 	mpt_pers_find(struct mpt_softc *, u_int);
144 static __inline struct mpt_personality*
145 	mpt_pers_find_reverse(struct mpt_softc *, u_int);
146 
147 static __inline struct mpt_personality *
148 mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
149 {
150 	KASSERT(start_at <= MPT_MAX_PERSONALITIES,
151 		("mpt_pers_find: starting position out of range"));
152 
153 	while (start_at < MPT_MAX_PERSONALITIES
154 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
155 		start_at++;
156 	}
157 	return (mpt_personalities[start_at]);
158 }
159 
160 /*
161  * Used infrequently, so no need to optimize like a forward
162  * traversal where we use the MAX+1 is guaranteed to be NULL
163  * trick.
164  */
165 static __inline struct mpt_personality *
166 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
167 {
168 	while (start_at < MPT_MAX_PERSONALITIES
169 	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
170 		start_at--;
171 	}
172 	if (start_at < MPT_MAX_PERSONALITIES)
173 		return (mpt_personalities[start_at]);
174 	return (NULL);
175 }
176 
177 #define MPT_PERS_FOREACH(mpt, pers)				\
178 	for (pers = mpt_pers_find(mpt, /*start_at*/0);		\
179 	     pers != NULL;					\
180 	     pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
181 
182 #define MPT_PERS_FOREACH_REVERSE(mpt, pers)				\
183 	for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
184 	     pers != NULL;						\
185 	     pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
186 
187 static mpt_load_handler_t      mpt_stdload;
188 static mpt_probe_handler_t     mpt_stdprobe;
189 static mpt_attach_handler_t    mpt_stdattach;
190 static mpt_enable_handler_t    mpt_stdenable;
191 static mpt_ready_handler_t     mpt_stdready;
192 static mpt_event_handler_t     mpt_stdevent;
193 static mpt_reset_handler_t     mpt_stdreset;
194 static mpt_shutdown_handler_t  mpt_stdshutdown;
195 static mpt_detach_handler_t    mpt_stddetach;
196 static mpt_unload_handler_t    mpt_stdunload;
197 static struct mpt_personality mpt_default_personality =
198 {
199 	.load		= mpt_stdload,
200 	.probe		= mpt_stdprobe,
201 	.attach		= mpt_stdattach,
202 	.enable		= mpt_stdenable,
203 	.ready		= mpt_stdready,
204 	.event		= mpt_stdevent,
205 	.reset		= mpt_stdreset,
206 	.shutdown	= mpt_stdshutdown,
207 	.detach		= mpt_stddetach,
208 	.unload		= mpt_stdunload
209 };
210 
211 static mpt_load_handler_t      mpt_core_load;
212 static mpt_attach_handler_t    mpt_core_attach;
213 static mpt_enable_handler_t    mpt_core_enable;
214 static mpt_reset_handler_t     mpt_core_ioc_reset;
215 static mpt_event_handler_t     mpt_core_event;
216 static mpt_shutdown_handler_t  mpt_core_shutdown;
217 static mpt_shutdown_handler_t  mpt_core_detach;
218 static mpt_unload_handler_t    mpt_core_unload;
219 static struct mpt_personality mpt_core_personality =
220 {
221 	.name		= "mpt_core",
222 	.load		= mpt_core_load,
223 //	.attach		= mpt_core_attach,
224 //	.enable		= mpt_core_enable,
225 	.event		= mpt_core_event,
226 	.reset		= mpt_core_ioc_reset,
227 	.shutdown	= mpt_core_shutdown,
228 	.detach		= mpt_core_detach,
229 	.unload		= mpt_core_unload,
230 };
231 
232 /*
233  * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
234  * ordering information.  We want the core to always register FIRST.
235  * other modules are set to SI_ORDER_SECOND.
236  */
237 static moduledata_t mpt_core_mod = {
238 	"mpt_core", mpt_modevent, &mpt_core_personality
239 };
240 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
241 MODULE_VERSION(mpt_core, 1);
242 
243 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
244 
245 int
246 mpt_modevent(module_t mod, int type, void *data)
247 {
248 	struct mpt_personality *pers;
249 	int error;
250 
251 	pers = (struct mpt_personality *)data;
252 
253 	error = 0;
254 	switch (type) {
255 	case MOD_LOAD:
256 	{
257 		mpt_load_handler_t **def_handler;
258 		mpt_load_handler_t **pers_handler;
259 		int i;
260 
261 		for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
262 			if (mpt_personalities[i] == NULL)
263 				break;
264 		}
265 		if (i >= MPT_MAX_PERSONALITIES) {
266 			error = ENOMEM;
267 			break;
268 		}
269 		pers->id = i;
270 		mpt_personalities[i] = pers;
271 
272 		/* Install standard/noop handlers for any NULL entries. */
273 		def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
274 		pers_handler = MPT_PERS_FIRST_HANDLER(pers);
275 		while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
276 			if (*pers_handler == NULL)
277 				*pers_handler = *def_handler;
278 			pers_handler++;
279 			def_handler++;
280 		}
281 
282 		error = (pers->load(pers));
283 		if (error != 0)
284 			mpt_personalities[i] = NULL;
285 		break;
286 	}
287 	case MOD_SHUTDOWN:
288 		break;
289 	case MOD_QUIESCE:
290 		break;
291 	case MOD_UNLOAD:
292 		error = pers->unload(pers);
293 		mpt_personalities[pers->id] = NULL;
294 		break;
295 	default:
296 		error = EINVAL;
297 		break;
298 	}
299 	return (error);
300 }
301 
302 static int
303 mpt_stdload(struct mpt_personality *pers)
304 {
305 
306 	/* Load is always successful. */
307 	return (0);
308 }
309 
310 static int
311 mpt_stdprobe(struct mpt_softc *mpt)
312 {
313 
314 	/* Probe is always successful. */
315 	return (0);
316 }
317 
318 static int
319 mpt_stdattach(struct mpt_softc *mpt)
320 {
321 
322 	/* Attach is always successful. */
323 	return (0);
324 }
325 
326 static int
327 mpt_stdenable(struct mpt_softc *mpt)
328 {
329 
330 	/* Enable is always successful. */
331 	return (0);
332 }
333 
334 static void
335 mpt_stdready(struct mpt_softc *mpt)
336 {
337 
338 }
339 
340 static int
341 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
342 {
343 
344 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
345 	/* Event was not for us. */
346 	return (0);
347 }
348 
349 static void
350 mpt_stdreset(struct mpt_softc *mpt, int type)
351 {
352 
353 }
354 
355 static void
356 mpt_stdshutdown(struct mpt_softc *mpt)
357 {
358 
359 }
360 
361 static void
362 mpt_stddetach(struct mpt_softc *mpt)
363 {
364 
365 }
366 
367 static int
368 mpt_stdunload(struct mpt_personality *pers)
369 {
370 
371 	/* Unload is always successful. */
372 	return (0);
373 }
374 
375 /*
376  * Post driver attachment, we may want to perform some global actions.
377  * Here is the hook to do so.
378  */
379 
380 static void
381 mpt_postattach(void *unused)
382 {
383 	struct mpt_softc *mpt;
384 	struct mpt_personality *pers;
385 
386 	TAILQ_FOREACH(mpt, &mpt_tailq, links) {
387 		MPT_PERS_FOREACH(mpt, pers)
388 			pers->ready(mpt);
389 	}
390 }
391 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
392 
393 /******************************* Bus DMA Support ******************************/
394 void
395 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
396 {
397 	struct mpt_map_info *map_info;
398 
399 	map_info = (struct mpt_map_info *)arg;
400 	map_info->error = error;
401 	map_info->phys = segs->ds_addr;
402 }
403 
404 /**************************** Reply/Event Handling ****************************/
405 int
406 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
407 		     mpt_handler_t handler, uint32_t *phandler_id)
408 {
409 
410 	switch (type) {
411 	case MPT_HANDLER_REPLY:
412 	{
413 		u_int cbi;
414 		u_int free_cbi;
415 
416 		if (phandler_id == NULL)
417 			return (EINVAL);
418 
419 		free_cbi = MPT_HANDLER_ID_NONE;
420 		for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
421 			/*
422 			 * If the same handler is registered multiple
423 			 * times, don't error out.  Just return the
424 			 * index of the original registration.
425 			 */
426 			if (mpt_reply_handlers[cbi] == handler.reply_handler) {
427 				*phandler_id = MPT_CBI_TO_HID(cbi);
428 				return (0);
429 			}
430 
431 			/*
432 			 * Fill from the front in the hope that
433 			 * all registered handlers consume only a
434 			 * single cache line.
435 			 *
436 			 * We don't break on the first empty slot so
437 			 * that the full table is checked to see if
438 			 * this handler was previously registered.
439 			 */
440 			if (free_cbi == MPT_HANDLER_ID_NONE &&
441 			    (mpt_reply_handlers[cbi]
442 			  == mpt_default_reply_handler))
443 				free_cbi = cbi;
444 		}
445 		if (free_cbi == MPT_HANDLER_ID_NONE) {
446 			return (ENOMEM);
447 		}
448 		mpt_reply_handlers[free_cbi] = handler.reply_handler;
449 		*phandler_id = MPT_CBI_TO_HID(free_cbi);
450 		break;
451 	}
452 	default:
453 		mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
454 		return (EINVAL);
455 	}
456 	return (0);
457 }
458 
459 int
460 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
461 		       mpt_handler_t handler, uint32_t handler_id)
462 {
463 
464 	switch (type) {
465 	case MPT_HANDLER_REPLY:
466 	{
467 		u_int cbi;
468 
469 		cbi = MPT_CBI(handler_id);
470 		if (cbi >= MPT_NUM_REPLY_HANDLERS
471 		 || mpt_reply_handlers[cbi] != handler.reply_handler)
472 			return (ENOENT);
473 		mpt_reply_handlers[cbi] = mpt_default_reply_handler;
474 		break;
475 	}
476 	default:
477 		mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
478 		return (EINVAL);
479 	}
480 	return (0);
481 }
482 
483 static int
484 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
485 	uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
486 {
487 
488 	mpt_prt(mpt,
489 	    "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
490 	    req, req->serno, reply_desc, reply_frame);
491 
492 	if (reply_frame != NULL)
493 		mpt_dump_reply_frame(mpt, reply_frame);
494 
495 	mpt_prt(mpt, "Reply Frame Ignored\n");
496 
497 	return (/*free_reply*/TRUE);
498 }
499 
500 static int
501 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
502  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
503 {
504 
505 	if (req != NULL) {
506 		if (reply_frame != NULL) {
507 			MSG_CONFIG *cfgp;
508 			MSG_CONFIG_REPLY *reply;
509 
510 			cfgp = (MSG_CONFIG *)req->req_vbuf;
511 			reply = (MSG_CONFIG_REPLY *)reply_frame;
512 			req->IOCStatus = le16toh(reply_frame->IOCStatus);
513 			bcopy(&reply->Header, &cfgp->Header,
514 			      sizeof(cfgp->Header));
515 			cfgp->ExtPageLength = reply->ExtPageLength;
516 			cfgp->ExtPageType = reply->ExtPageType;
517 		}
518 		req->state &= ~REQ_STATE_QUEUED;
519 		req->state |= REQ_STATE_DONE;
520 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
521 		if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
522 			wakeup(req);
523 		} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
524 			/*
525 			 * Whew- we can free this request (late completion)
526 			 */
527 			mpt_free_request(mpt, req);
528 		}
529 	}
530 
531 	return (TRUE);
532 }
533 
534 static int
535 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
536  uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
537 {
538 
539 	/* Nothing to be done. */
540 	return (TRUE);
541 }
542 
543 static int
544 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
545     uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
546 {
547 	int free_reply;
548 
549 	KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
550 	KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
551 
552 	free_reply = TRUE;
553 	switch (reply_frame->Function) {
554 	case MPI_FUNCTION_EVENT_NOTIFICATION:
555 	{
556 		MSG_EVENT_NOTIFY_REPLY *msg;
557 		struct mpt_personality *pers;
558 		u_int handled;
559 
560 		handled = 0;
561 		msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
562 		msg->EventDataLength = le16toh(msg->EventDataLength);
563 		msg->IOCStatus = le16toh(msg->IOCStatus);
564 		msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
565 		msg->Event = le32toh(msg->Event);
566 		MPT_PERS_FOREACH(mpt, pers)
567 			handled += pers->event(mpt, req, msg);
568 
569 		if (handled == 0 && mpt->mpt_pers_mask == 0) {
570 			mpt_lprt(mpt, MPT_PRT_INFO,
571 				"No Handlers For Any Event Notify Frames. "
572 				"Event %#x (ACK %sequired).\n",
573 				msg->Event, msg->AckRequired? "r" : "not r");
574 		} else if (handled == 0) {
575 			mpt_lprt(mpt,
576 				msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
577 				"Unhandled Event Notify Frame. Event %#x "
578 				"(ACK %sequired).\n",
579 				msg->Event, msg->AckRequired? "r" : "not r");
580 		}
581 
582 		if (msg->AckRequired) {
583 			request_t *ack_req;
584 			uint32_t context;
585 
586 			context = req->index | MPT_REPLY_HANDLER_EVENTS;
587 			ack_req = mpt_get_request(mpt, FALSE);
588 			if (ack_req == NULL) {
589 				struct mpt_evtf_record *evtf;
590 
591 				evtf = (struct mpt_evtf_record *)reply_frame;
592 				evtf->context = context;
593 				LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
594 				free_reply = FALSE;
595 				break;
596 			}
597 			mpt_send_event_ack(mpt, ack_req, msg, context);
598 			/*
599 			 * Don't check for CONTINUATION_REPLY here
600 			 */
601 			return (free_reply);
602 		}
603 		break;
604 	}
605 	case MPI_FUNCTION_PORT_ENABLE:
606 		mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
607 		break;
608 	case MPI_FUNCTION_EVENT_ACK:
609 		break;
610 	default:
611 		mpt_prt(mpt, "unknown event function: %x\n",
612 			reply_frame->Function);
613 		break;
614 	}
615 
616 	/*
617 	 * I'm not sure that this continuation stuff works as it should.
618 	 *
619 	 * I've had FC async events occur that free the frame up because
620 	 * the continuation bit isn't set, and then additional async events
621 	 * then occur using the same context. As you might imagine, this
622 	 * leads to Very Bad Thing.
623 	 *
624 	 *  Let's just be safe for now and not free them up until we figure
625 	 * out what's actually happening here.
626 	 */
627 #if	0
628 	if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
629 		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
630 		mpt_free_request(mpt, req);
631 		mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
632 		    reply_frame->Function, req, req->serno);
633 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
634 			MSG_EVENT_NOTIFY_REPLY *msg =
635 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
636 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
637 			    msg->Event, msg->AckRequired);
638 		}
639 	} else {
640 		mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
641 		    reply_frame->Function, req, req->serno);
642 		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
643 			MSG_EVENT_NOTIFY_REPLY *msg =
644 			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
645 			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
646 			    msg->Event, msg->AckRequired);
647 		}
648 		mpt_prtc(mpt, "\n");
649 	}
650 #endif
651 	return (free_reply);
652 }
653 
654 /*
655  * Process an asynchronous event from the IOC.
656  */
657 static int
658 mpt_core_event(struct mpt_softc *mpt, request_t *req,
659 	       MSG_EVENT_NOTIFY_REPLY *msg)
660 {
661 
662 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
663                  msg->Event & 0xFF);
664 	switch(msg->Event & 0xFF) {
665 	case MPI_EVENT_NONE:
666 		break;
667 	case MPI_EVENT_LOG_DATA:
668 	{
669 		int i;
670 
671 		/* Some error occurred that LSI wants logged */
672 		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
673 			msg->IOCLogInfo);
674 		mpt_prt(mpt, "\tEvtLogData: Event Data:");
675 		for (i = 0; i < msg->EventDataLength; i++)
676 			mpt_prtc(mpt, "  %08x", msg->Data[i]);
677 		mpt_prtc(mpt, "\n");
678 		break;
679 	}
680 	case MPI_EVENT_EVENT_CHANGE:
681 		/*
682 		 * This is just an acknowledgement
683 		 * of our mpt_send_event_request.
684 		 */
685 		break;
686 	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
687 		break;
688 	default:
689 		return (0);
690 		break;
691 	}
692 	return (1);
693 }
694 
695 static void
696 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
697 		   MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
698 {
699 	MSG_EVENT_ACK *ackp;
700 
701 	ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
702 	memset(ackp, 0, sizeof (*ackp));
703 	ackp->Function = MPI_FUNCTION_EVENT_ACK;
704 	ackp->Event = htole32(msg->Event);
705 	ackp->EventContext = htole32(msg->EventContext);
706 	ackp->MsgContext = htole32(context);
707 	mpt_check_doorbell(mpt);
708 	mpt_send_cmd(mpt, ack_req);
709 }
710 
711 /***************************** Interrupt Handling *****************************/
712 void
713 mpt_intr(void *arg)
714 {
715 	struct mpt_softc *mpt;
716 	uint32_t reply_desc;
717 	int ntrips = 0;
718 
719 	mpt = (struct mpt_softc *)arg;
720 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
721 	MPT_LOCK_ASSERT(mpt);
722 
723 	while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
724 		request_t	  *req;
725 		MSG_DEFAULT_REPLY *reply_frame;
726 		uint32_t	   reply_baddr;
727 		uint32_t           ctxt_idx;
728 		u_int		   cb_index;
729 		u_int		   req_index;
730 		u_int		   offset;
731 		int		   free_rf;
732 
733 		req = NULL;
734 		reply_frame = NULL;
735 		reply_baddr = 0;
736 		offset = 0;
737 		if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
738 			/*
739 			 * Ensure that the reply frame is coherent.
740 			 */
741 			reply_baddr = MPT_REPLY_BADDR(reply_desc);
742 			offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
743 			bus_dmamap_sync_range(mpt->reply_dmat,
744 			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
745 			    BUS_DMASYNC_POSTREAD);
746 			reply_frame = MPT_REPLY_OTOV(mpt, offset);
747 			ctxt_idx = le32toh(reply_frame->MsgContext);
748 		} else {
749 			uint32_t type;
750 
751 			type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
752 			ctxt_idx = reply_desc;
753 			mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
754 				    reply_desc);
755 
756 			switch (type) {
757 			case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
758 				ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
759 				break;
760 			case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
761 				ctxt_idx = GET_IO_INDEX(reply_desc);
762 				if (mpt->tgt_cmd_ptrs == NULL) {
763 					mpt_prt(mpt,
764 					    "mpt_intr: no target cmd ptrs\n");
765 					reply_desc = MPT_REPLY_EMPTY;
766 					break;
767 				}
768 				if (ctxt_idx >= mpt->tgt_cmds_allocated) {
769 					mpt_prt(mpt,
770 					    "mpt_intr: bad tgt cmd ctxt %u\n",
771 					    ctxt_idx);
772 					reply_desc = MPT_REPLY_EMPTY;
773 					ntrips = 1000;
774 					break;
775 				}
776 				req = mpt->tgt_cmd_ptrs[ctxt_idx];
777 				if (req == NULL) {
778 					mpt_prt(mpt, "no request backpointer "
779 					    "at index %u", ctxt_idx);
780 					reply_desc = MPT_REPLY_EMPTY;
781 					ntrips = 1000;
782 					break;
783 				}
784 				/*
785 				 * Reformulate ctxt_idx to be just as if
786 				 * it were another type of context reply
787 				 * so the code below will find the request
788 				 * via indexing into the pool.
789 				 */
790 				ctxt_idx =
791 				    req->index | mpt->scsi_tgt_handler_id;
792 				req = NULL;
793 				break;
794 			case MPI_CONTEXT_REPLY_TYPE_LAN:
795 				mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
796 				    reply_desc);
797 				reply_desc = MPT_REPLY_EMPTY;
798 				break;
799 			default:
800 				mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
801 				reply_desc = MPT_REPLY_EMPTY;
802 				break;
803 			}
804 			if (reply_desc == MPT_REPLY_EMPTY) {
805 				if (ntrips++ > 1000) {
806 					break;
807 				}
808 				continue;
809 			}
810 		}
811 
812 		cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
813 		req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
814 		if (req_index < MPT_MAX_REQUESTS(mpt)) {
815 			req = &mpt->request_pool[req_index];
816 		} else {
817 			mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
818 			    " 0x%x)\n", req_index, reply_desc);
819 		}
820 
821 		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
822 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
823 		free_rf = mpt_reply_handlers[cb_index](mpt, req,
824 		    reply_desc, reply_frame);
825 
826 		if (reply_frame != NULL && free_rf) {
827 			bus_dmamap_sync_range(mpt->reply_dmat,
828 			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
829 			    BUS_DMASYNC_PREREAD);
830 			mpt_free_reply(mpt, reply_baddr);
831 		}
832 
833 		/*
834 		 * If we got ourselves disabled, don't get stuck in a loop
835 		 */
836 		if (mpt->disabled) {
837 			mpt_disable_ints(mpt);
838 			break;
839 		}
840 		if (ntrips++ > 1000) {
841 			break;
842 		}
843 	}
844 	mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
845 }
846 
847 /******************************* Error Recovery *******************************/
848 void
849 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
850 			    u_int iocstatus)
851 {
852 	MSG_DEFAULT_REPLY  ioc_status_frame;
853 	request_t	  *req;
854 
855 	memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
856 	ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
857 	ioc_status_frame.IOCStatus = iocstatus;
858 	while((req = TAILQ_FIRST(chain)) != NULL) {
859 		MSG_REQUEST_HEADER *msg_hdr;
860 		u_int		    cb_index;
861 
862 		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
863 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
864 		msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
865 		ioc_status_frame.Function = msg_hdr->Function;
866 		ioc_status_frame.MsgContext = msg_hdr->MsgContext;
867 		cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
868 		mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
869 		    &ioc_status_frame);
870 		if (mpt_req_on_pending_list(mpt, req) != 0)
871 			TAILQ_REMOVE(chain, req, links);
872 	}
873 }
874 
875 /********************************* Diagnostics ********************************/
876 /*
877  * Perform a diagnostic dump of a reply frame.
878  */
879 void
880 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
881 {
882 
883 	mpt_prt(mpt, "Address Reply:\n");
884 	mpt_print_reply(reply_frame);
885 }
886 
887 /******************************* Doorbell Access ******************************/
888 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
889 static __inline  uint32_t mpt_rd_intr(struct mpt_softc *mpt);
890 
891 static __inline uint32_t
892 mpt_rd_db(struct mpt_softc *mpt)
893 {
894 
895 	return mpt_read(mpt, MPT_OFFSET_DOORBELL);
896 }
897 
898 static __inline uint32_t
899 mpt_rd_intr(struct mpt_softc *mpt)
900 {
901 
902 	return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
903 }
904 
905 /* Busy wait for a door bell to be read by IOC */
906 static int
907 mpt_wait_db_ack(struct mpt_softc *mpt)
908 {
909 	int i;
910 
911 	for (i=0; i < MPT_MAX_WAIT; i++) {
912 		if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
913 			maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
914 			return (MPT_OK);
915 		}
916 		DELAY(200);
917 	}
918 	return (MPT_FAIL);
919 }
920 
921 /* Busy wait for a door bell interrupt */
922 static int
923 mpt_wait_db_int(struct mpt_softc *mpt)
924 {
925 	int i;
926 
927 	for (i = 0; i < MPT_MAX_WAIT; i++) {
928 		if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
929 			maxwait_int = i > maxwait_int ? i : maxwait_int;
930 			return MPT_OK;
931 		}
932 		DELAY(100);
933 	}
934 	return (MPT_FAIL);
935 }
936 
937 /* Wait for IOC to transition to a give state */
938 void
939 mpt_check_doorbell(struct mpt_softc *mpt)
940 {
941 	uint32_t db = mpt_rd_db(mpt);
942 
943 	if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
944 		mpt_prt(mpt, "Device not running\n");
945 		mpt_print_db(db);
946 	}
947 }
948 
949 /* Wait for IOC to transition to a give state */
950 static int
951 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
952 {
953 	int i;
954 
955 	for (i = 0; i < MPT_MAX_WAIT; i++) {
956 		uint32_t db = mpt_rd_db(mpt);
957 		if (MPT_STATE(db) == state) {
958 			maxwait_state = i > maxwait_state ? i : maxwait_state;
959 			return (MPT_OK);
960 		}
961 		DELAY(100);
962 	}
963 	return (MPT_FAIL);
964 }
965 
966 
967 /************************* Initialization/Configuration ************************/
968 static int mpt_download_fw(struct mpt_softc *mpt);
969 
970 /* Issue the reset COMMAND to the IOC */
971 static int
972 mpt_soft_reset(struct mpt_softc *mpt)
973 {
974 
975 	mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
976 
977 	/* Have to use hard reset if we are not in Running state */
978 	if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
979 		mpt_prt(mpt, "soft reset failed: device not running\n");
980 		return (MPT_FAIL);
981 	}
982 
983 	/* If door bell is in use we don't have a chance of getting
984 	 * a word in since the IOC probably crashed in message
985 	 * processing. So don't waste our time.
986 	 */
987 	if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
988 		mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
989 		return (MPT_FAIL);
990 	}
991 
992 	/* Send the reset request to the IOC */
993 	mpt_write(mpt, MPT_OFFSET_DOORBELL,
994 	    MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
995 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
996 		mpt_prt(mpt, "soft reset failed: ack timeout\n");
997 		return (MPT_FAIL);
998 	}
999 
1000 	/* Wait for the IOC to reload and come out of reset state */
1001 	if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
1002 		mpt_prt(mpt, "soft reset failed: device did not restart\n");
1003 		return (MPT_FAIL);
1004 	}
1005 
1006 	return MPT_OK;
1007 }
1008 
1009 static int
1010 mpt_enable_diag_mode(struct mpt_softc *mpt)
1011 {
1012 	int try;
1013 
1014 	try = 20;
1015 	while (--try) {
1016 
1017 		if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1018 			break;
1019 
1020 		/* Enable diagnostic registers */
1021 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1022 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1023 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1024 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1025 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1026 		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1027 
1028 		DELAY(100000);
1029 	}
1030 	if (try == 0)
1031 		return (EIO);
1032 	return (0);
1033 }
1034 
1035 static void
1036 mpt_disable_diag_mode(struct mpt_softc *mpt)
1037 {
1038 
1039 	mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1040 }
1041 
1042 /* This is a magic diagnostic reset that resets all the ARM
1043  * processors in the chip.
1044  */
1045 static void
1046 mpt_hard_reset(struct mpt_softc *mpt)
1047 {
1048 	int error;
1049 	int wait;
1050 	uint32_t diagreg;
1051 
1052 	mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1053 
1054 	if (mpt->is_1078) {
1055 		mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07);
1056 		DELAY(1000);
1057 		return;
1058 	}
1059 
1060 	error = mpt_enable_diag_mode(mpt);
1061 	if (error) {
1062 		mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1063 		mpt_prt(mpt, "Trying to reset anyway.\n");
1064 	}
1065 
1066 	diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1067 
1068 	/*
1069 	 * This appears to be a workaround required for some
1070 	 * firmware or hardware revs.
1071 	 */
1072 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1073 	DELAY(1000);
1074 
1075 	/* Diag. port is now active so we can now hit the reset bit */
1076 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1077 
1078         /*
1079          * Ensure that the reset has finished.  We delay 1ms
1080          * prior to reading the register to make sure the chip
1081          * has sufficiently completed its reset to handle register
1082          * accesses.
1083          */
1084 	wait = 5000;
1085 	do {
1086 		DELAY(1000);
1087 		diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1088 	} while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1089 
1090 	if (wait == 0) {
1091 		mpt_prt(mpt, "WARNING - Failed hard reset! "
1092 			"Trying to initialize anyway.\n");
1093 	}
1094 
1095 	/*
1096 	 * If we have firmware to download, it must be loaded before
1097 	 * the controller will become operational.  Do so now.
1098 	 */
1099 	if (mpt->fw_image != NULL) {
1100 
1101 		error = mpt_download_fw(mpt);
1102 
1103 		if (error) {
1104 			mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1105 			mpt_prt(mpt, "Trying to initialize anyway.\n");
1106 		}
1107 	}
1108 
1109 	/*
1110 	 * Reseting the controller should have disabled write
1111 	 * access to the diagnostic registers, but disable
1112 	 * manually to be sure.
1113 	 */
1114 	mpt_disable_diag_mode(mpt);
1115 }
1116 
1117 static void
1118 mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1119 {
1120 
1121 	/*
1122 	 * Complete all pending requests with a status
1123 	 * appropriate for an IOC reset.
1124 	 */
1125 	mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1126 				   MPI_IOCSTATUS_INVALID_STATE);
1127 }
1128 
1129 /*
1130  * Reset the IOC when needed. Try software command first then if needed
1131  * poke at the magic diagnostic reset. Note that a hard reset resets
1132  * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1133  * fouls up the PCI configuration registers.
1134  */
1135 int
1136 mpt_reset(struct mpt_softc *mpt, int reinit)
1137 {
1138 	struct	mpt_personality *pers;
1139 	int	ret;
1140 	int	retry_cnt = 0;
1141 
1142 	/*
1143 	 * Try a soft reset. If that fails, get out the big hammer.
1144 	 */
1145  again:
1146 	if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1147 		int	cnt;
1148 		for (cnt = 0; cnt < 5; cnt++) {
1149 			/* Failed; do a hard reset */
1150 			mpt_hard_reset(mpt);
1151 
1152 			/*
1153 			 * Wait for the IOC to reload
1154 			 * and come out of reset state
1155 			 */
1156 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1157 			if (ret == MPT_OK) {
1158 				break;
1159 			}
1160 			/*
1161 			 * Okay- try to check again...
1162 			 */
1163 			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1164 			if (ret == MPT_OK) {
1165 				break;
1166 			}
1167 			mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1168 			    retry_cnt, cnt);
1169 		}
1170 	}
1171 
1172 	if (retry_cnt == 0) {
1173 		/*
1174 		 * Invoke reset handlers.  We bump the reset count so
1175 		 * that mpt_wait_req() understands that regardless of
1176 		 * the specified wait condition, it should stop its wait.
1177 		 */
1178 		mpt->reset_cnt++;
1179 		MPT_PERS_FOREACH(mpt, pers)
1180 			pers->reset(mpt, ret);
1181 	}
1182 
1183 	if (reinit) {
1184 		ret = mpt_enable_ioc(mpt, 1);
1185 		if (ret == MPT_OK) {
1186 			mpt_enable_ints(mpt);
1187 		}
1188 	}
1189 	if (ret != MPT_OK && retry_cnt++ < 2) {
1190 		goto again;
1191 	}
1192 	return ret;
1193 }
1194 
1195 /* Return a command buffer to the free queue */
1196 void
1197 mpt_free_request(struct mpt_softc *mpt, request_t *req)
1198 {
1199 	request_t *nxt;
1200 	struct mpt_evtf_record *record;
1201 	uint32_t offset, reply_baddr;
1202 
1203 	if (req == NULL || req != &mpt->request_pool[req->index]) {
1204 		panic("mpt_free_request: bad req ptr");
1205 	}
1206 	if ((nxt = req->chain) != NULL) {
1207 		req->chain = NULL;
1208 		mpt_free_request(mpt, nxt);	/* NB: recursion */
1209 	}
1210 	KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1211 	KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1212 	MPT_LOCK_ASSERT(mpt);
1213 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1214 	    ("mpt_free_request: req %p:%u func %x already on freelist",
1215 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1216 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1217 	    ("mpt_free_request: req %p:%u func %x on pending list",
1218 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1219 #ifdef	INVARIANTS
1220 	mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1221 #endif
1222 
1223 	req->ccb = NULL;
1224 	if (LIST_EMPTY(&mpt->ack_frames)) {
1225 		/*
1226 		 * Insert free ones at the tail
1227 		 */
1228 		req->serno = 0;
1229 		req->state = REQ_STATE_FREE;
1230 #ifdef	INVARIANTS
1231 		memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1232 #endif
1233 		TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1234 		if (mpt->getreqwaiter != 0) {
1235 			mpt->getreqwaiter = 0;
1236 			wakeup(&mpt->request_free_list);
1237 		}
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * Process an ack frame deferred due to resource shortage.
1243 	 */
1244 	record = LIST_FIRST(&mpt->ack_frames);
1245 	LIST_REMOVE(record, links);
1246 	req->state = REQ_STATE_ALLOCATED;
1247 	mpt_assign_serno(mpt, req);
1248 	mpt_send_event_ack(mpt, req, &record->reply, record->context);
1249 	offset = (uint32_t)((uint8_t *)record - mpt->reply);
1250 	reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1251 	bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1252 	    MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1253 	mpt_free_reply(mpt, reply_baddr);
1254 }
1255 
1256 /* Get a command buffer from the free queue */
1257 request_t *
1258 mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1259 {
1260 	request_t *req;
1261 
1262 retry:
1263 	MPT_LOCK_ASSERT(mpt);
1264 	req = TAILQ_FIRST(&mpt->request_free_list);
1265 	if (req != NULL) {
1266 		KASSERT(req == &mpt->request_pool[req->index],
1267 		    ("mpt_get_request: corrupted request free list"));
1268 		KASSERT(req->state == REQ_STATE_FREE,
1269 		    ("req %p:%u not free on free list %x index %d function %x",
1270 		    req, req->serno, req->state, req->index,
1271 		    ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1272 		TAILQ_REMOVE(&mpt->request_free_list, req, links);
1273 		req->state = REQ_STATE_ALLOCATED;
1274 		req->chain = NULL;
1275 		mpt_assign_serno(mpt, req);
1276 	} else if (sleep_ok != 0) {
1277 		mpt->getreqwaiter = 1;
1278 		mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
1279 		goto retry;
1280 	}
1281 	return (req);
1282 }
1283 
1284 /* Pass the command to the IOC */
1285 void
1286 mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1287 {
1288 
1289 	if (mpt->verbose > MPT_PRT_DEBUG2) {
1290 		mpt_dump_request(mpt, req);
1291 	}
1292 	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1293 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1294 	req->state |= REQ_STATE_QUEUED;
1295 	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1296 	    ("req %p:%u func %x on freelist list in mpt_send_cmd",
1297 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1298 	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1299 	    ("req %p:%u func %x already on pending list in mpt_send_cmd",
1300 	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1301 	TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1302 	mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1303 }
1304 
1305 /*
1306  * Wait for a request to complete.
1307  *
1308  * Inputs:
1309  *	mpt		softc of controller executing request
1310  *	req		request to wait for
1311  *	sleep_ok	nonzero implies may sleep in this context
1312  *	time_ms		timeout in ms.  0 implies no timeout.
1313  *
1314  * Return Values:
1315  *	0		Request completed
1316  *	non-0		Timeout fired before request completion.
1317  */
1318 int
1319 mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1320 	     mpt_req_state_t state, mpt_req_state_t mask,
1321 	     int sleep_ok, int time_ms)
1322 {
1323 	int   timeout;
1324 	u_int saved_cnt;
1325 	sbintime_t sbt;
1326 
1327 	/*
1328 	 * time_ms is in ms, 0 indicates infinite wait.
1329 	 * Convert to sbintime_t or 500us units depending on
1330 	 * our sleep mode.
1331 	 */
1332 	if (sleep_ok != 0) {
1333 		sbt = SBT_1MS * time_ms;
1334 		/* Set timeout as well so final timeout check works. */
1335 		timeout = time_ms;
1336 	} else {
1337 		sbt = 0; /* Squelch bogus gcc warning. */
1338 		timeout = time_ms * 2;
1339 	}
1340 	req->state |= REQ_STATE_NEED_WAKEUP;
1341 	mask &= ~REQ_STATE_NEED_WAKEUP;
1342 	saved_cnt = mpt->reset_cnt;
1343 	while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1344 		if (sleep_ok != 0) {
1345 			if (mpt_sleep(mpt, req, PUSER, "mptreq", sbt) ==
1346 			    EWOULDBLOCK) {
1347 				timeout = 0;
1348 				break;
1349 			}
1350 		} else {
1351 			if (time_ms != 0 && --timeout == 0) {
1352 				break;
1353 			}
1354 			DELAY(500);
1355 			mpt_intr(mpt);
1356 		}
1357 	}
1358 	req->state &= ~REQ_STATE_NEED_WAKEUP;
1359 	if (mpt->reset_cnt != saved_cnt) {
1360 		return (EIO);
1361 	}
1362 	if (time_ms && timeout <= 0) {
1363 		MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1364 		req->state |= REQ_STATE_TIMEDOUT;
1365 		mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1366 		return (ETIMEDOUT);
1367 	}
1368 	return (0);
1369 }
1370 
1371 /*
1372  * Send a command to the IOC via the handshake register.
1373  *
1374  * Only done at initialization time and for certain unusual
1375  * commands such as device/bus reset as specified by LSI.
1376  */
1377 int
1378 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1379 {
1380 	int i;
1381 	uint32_t data, *data32;
1382 
1383 	/* Check condition of the IOC */
1384 	data = mpt_rd_db(mpt);
1385 	if ((MPT_STATE(data) != MPT_DB_STATE_READY
1386 	  && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1387 	  && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1388 	 || MPT_DB_IS_IN_USE(data)) {
1389 		mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1390 		mpt_print_db(data);
1391 		return (EBUSY);
1392 	}
1393 
1394 	/* We move things in 32 bit chunks */
1395 	len = (len + 3) >> 2;
1396 	data32 = cmd;
1397 
1398 	/* Clear any left over pending doorbell interrupts */
1399 	if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1400 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1401 
1402 	/*
1403 	 * Tell the handshake reg. we are going to send a command
1404          * and how long it is going to be.
1405 	 */
1406 	data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1407 	    (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1408 	mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1409 
1410 	/* Wait for the chip to notice */
1411 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1412 		mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1413 		return (ETIMEDOUT);
1414 	}
1415 
1416 	/* Clear the interrupt */
1417 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1418 
1419 	if (mpt_wait_db_ack(mpt) != MPT_OK) {
1420 		mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1421 		return (ETIMEDOUT);
1422 	}
1423 
1424 	/* Send the command */
1425 	for (i = 0; i < len; i++) {
1426 		mpt_write_stream(mpt, MPT_OFFSET_DOORBELL, *data32++);
1427 		if (mpt_wait_db_ack(mpt) != MPT_OK) {
1428 			mpt_prt(mpt,
1429 			    "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1430 			return (ETIMEDOUT);
1431 		}
1432 	}
1433 	return MPT_OK;
1434 }
1435 
1436 /* Get the response from the handshake register */
1437 int
1438 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1439 {
1440 	int left, reply_left;
1441 	u_int16_t *data16;
1442 	uint32_t data;
1443 	MSG_DEFAULT_REPLY *hdr;
1444 
1445 	/* We move things out in 16 bit chunks */
1446 	reply_len >>= 1;
1447 	data16 = (u_int16_t *)reply;
1448 
1449 	hdr = (MSG_DEFAULT_REPLY *)reply;
1450 
1451 	/* Get first word */
1452 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1453 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1454 		return ETIMEDOUT;
1455 	}
1456 	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1457 	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1458 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1459 
1460 	/* Get second word */
1461 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1462 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1463 		return ETIMEDOUT;
1464 	}
1465 	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1466 	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1467 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1468 
1469 	/*
1470 	 * With the second word, we can now look at the length.
1471 	 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1472 	 */
1473 	if ((reply_len >> 1) != hdr->MsgLength &&
1474 	    (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1475 		mpt_prt(mpt, "reply length does not match message length: "
1476 			"got %x; expected %zx for function %x\n",
1477 			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1478 	}
1479 
1480 	/* Get rest of the reply; but don't overflow the provided buffer */
1481 	left = (hdr->MsgLength << 1) - 2;
1482 	reply_left =  reply_len - 2;
1483 	while (left--) {
1484 		if (mpt_wait_db_int(mpt) != MPT_OK) {
1485 			mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1486 			return ETIMEDOUT;
1487 		}
1488 		data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1489 		if (reply_left-- > 0)
1490 			*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1491 		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1492 	}
1493 
1494 	/* One more wait & clear at the end */
1495 	if (mpt_wait_db_int(mpt) != MPT_OK) {
1496 		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1497 		return ETIMEDOUT;
1498 	}
1499 	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1500 
1501 	if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1502 		if (mpt->verbose >= MPT_PRT_TRACE)
1503 			mpt_print_reply(hdr);
1504 		return (MPT_FAIL | hdr->IOCStatus);
1505 	}
1506 
1507 	return (0);
1508 }
1509 
1510 static int
1511 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1512 {
1513 	MSG_IOC_FACTS f_req;
1514 	int error;
1515 
1516 	memset(&f_req, 0, sizeof f_req);
1517 	f_req.Function = MPI_FUNCTION_IOC_FACTS;
1518 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1519 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1520 	if (error) {
1521 		return(error);
1522 	}
1523 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1524 	return (error);
1525 }
1526 
1527 static int
1528 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1529 {
1530 	MSG_PORT_FACTS f_req;
1531 	int error;
1532 
1533 	memset(&f_req, 0, sizeof f_req);
1534 	f_req.Function = MPI_FUNCTION_PORT_FACTS;
1535 	f_req.PortNumber = port;
1536 	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1537 	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1538 	if (error) {
1539 		return(error);
1540 	}
1541 	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1542 	return (error);
1543 }
1544 
1545 /*
1546  * Send the initialization request. This is where we specify how many
1547  * SCSI buses and how many devices per bus we wish to emulate.
1548  * This is also the command that specifies the max size of the reply
1549  * frames from the IOC that we will be allocating.
1550  */
1551 static int
1552 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1553 {
1554 	int error = 0;
1555 	MSG_IOC_INIT init;
1556 	MSG_IOC_INIT_REPLY reply;
1557 
1558 	memset(&init, 0, sizeof init);
1559 	init.WhoInit = who;
1560 	init.Function = MPI_FUNCTION_IOC_INIT;
1561 	init.MaxDevices = 0;	/* at least 256 devices per bus */
1562 	init.MaxBuses = 16;	/* at least 16 buses */
1563 
1564 	init.MsgVersion = htole16(MPI_VERSION);
1565 	init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1566 	init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1567 	init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1568 
1569 	if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1570 		return(error);
1571 	}
1572 
1573 	error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1574 	return (error);
1575 }
1576 
1577 
1578 /*
1579  * Utiltity routine to read configuration headers and pages
1580  */
1581 int
1582 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1583 		  bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1584 {
1585 	MSG_CONFIG *cfgp;
1586 	SGE_SIMPLE32 *se;
1587 
1588 	cfgp = req->req_vbuf;
1589 	memset(cfgp, 0, sizeof *cfgp);
1590 	cfgp->Action = params->Action;
1591 	cfgp->Function = MPI_FUNCTION_CONFIG;
1592 	cfgp->Header.PageVersion = params->PageVersion;
1593 	cfgp->Header.PageNumber = params->PageNumber;
1594 	cfgp->PageAddress = htole32(params->PageAddress);
1595 	if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1596 	    MPI_CONFIG_PAGETYPE_EXTENDED) {
1597 		cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1598 		cfgp->Header.PageLength = 0;
1599 		cfgp->ExtPageLength = htole16(params->ExtPageLength);
1600 		cfgp->ExtPageType = params->ExtPageType;
1601 	} else {
1602 		cfgp->Header.PageType = params->PageType;
1603 		cfgp->Header.PageLength = params->PageLength;
1604 	}
1605 	se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1606 	se->Address = htole32(addr);
1607 	MPI_pSGE_SET_LENGTH(se, len);
1608 	MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1609 	    MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1610 	    MPI_SGE_FLAGS_END_OF_LIST |
1611 	    ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1612 	  || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1613 	   ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1614 	se->FlagsLength = htole32(se->FlagsLength);
1615 	cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1616 
1617 	mpt_check_doorbell(mpt);
1618 	mpt_send_cmd(mpt, req);
1619 	return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1620 			     sleep_ok, timeout_ms));
1621 }
1622 
1623 int
1624 mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1625 		       uint32_t PageAddress, int ExtPageType,
1626 		       CONFIG_EXTENDED_PAGE_HEADER *rslt,
1627 		       int sleep_ok, int timeout_ms)
1628 {
1629 	request_t  *req;
1630 	cfgparms_t params;
1631 	MSG_CONFIG_REPLY *cfgp;
1632 	int	    error;
1633 
1634 	req = mpt_get_request(mpt, sleep_ok);
1635 	if (req == NULL) {
1636 		mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1637 		return (ENOMEM);
1638 	}
1639 
1640 	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1641 	params.PageVersion = PageVersion;
1642 	params.PageLength = 0;
1643 	params.PageNumber = PageNumber;
1644 	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1645 	params.PageAddress = PageAddress;
1646 	params.ExtPageType = ExtPageType;
1647 	params.ExtPageLength = 0;
1648 	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1649 				  sleep_ok, timeout_ms);
1650 	if (error != 0) {
1651 		/*
1652 		 * Leave the request. Without resetting the chip, it's
1653 		 * still owned by it and we'll just get into trouble
1654 		 * freeing it now. Mark it as abandoned so that if it
1655 		 * shows up later it can be freed.
1656 		 */
1657 		mpt_prt(mpt, "read_extcfg_header timed out\n");
1658 		return (ETIMEDOUT);
1659 	}
1660 
1661         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1662 	case MPI_IOCSTATUS_SUCCESS:
1663 		cfgp = req->req_vbuf;
1664 		rslt->PageVersion = cfgp->Header.PageVersion;
1665 		rslt->PageNumber = cfgp->Header.PageNumber;
1666 		rslt->PageType = cfgp->Header.PageType;
1667 		rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1668 		rslt->ExtPageType = cfgp->ExtPageType;
1669 		error = 0;
1670 		break;
1671 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1672 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1673 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1674 		    MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1675 		error = EINVAL;
1676 		break;
1677 	default:
1678 		mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1679 			req->IOCStatus);
1680 		error = EIO;
1681 		break;
1682 	}
1683 	mpt_free_request(mpt, req);
1684 	return (error);
1685 }
1686 
1687 int
1688 mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1689 		     CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1690 		     int sleep_ok, int timeout_ms)
1691 {
1692 	request_t    *req;
1693 	cfgparms_t    params;
1694 	int	      error;
1695 
1696 	req = mpt_get_request(mpt, sleep_ok);
1697 	if (req == NULL) {
1698 		mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1699 		return (-1);
1700 	}
1701 
1702 	params.Action = Action;
1703 	params.PageVersion = hdr->PageVersion;
1704 	params.PageLength = 0;
1705 	params.PageNumber = hdr->PageNumber;
1706 	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1707 	params.PageAddress = PageAddress;
1708 	params.ExtPageType = hdr->ExtPageType;
1709 	params.ExtPageLength = hdr->ExtPageLength;
1710 	error = mpt_issue_cfg_req(mpt, req, &params,
1711 				  req->req_pbuf + MPT_RQSL(mpt),
1712 				  len, sleep_ok, timeout_ms);
1713 	if (error != 0) {
1714 		mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1715 		return (-1);
1716 	}
1717 
1718 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1719 		mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1720 			req->IOCStatus);
1721 		mpt_free_request(mpt, req);
1722 		return (-1);
1723 	}
1724 	memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1725 	mpt_free_request(mpt, req);
1726 	return (0);
1727 }
1728 
1729 int
1730 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1731 		    uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1732 		    int sleep_ok, int timeout_ms)
1733 {
1734 	request_t  *req;
1735 	cfgparms_t params;
1736 	MSG_CONFIG *cfgp;
1737 	int	    error;
1738 
1739 	req = mpt_get_request(mpt, sleep_ok);
1740 	if (req == NULL) {
1741 		mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1742 		return (ENOMEM);
1743 	}
1744 
1745 	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1746 	params.PageVersion = 0;
1747 	params.PageLength = 0;
1748 	params.PageNumber = PageNumber;
1749 	params.PageType = PageType;
1750 	params.PageAddress = PageAddress;
1751 	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1752 				  sleep_ok, timeout_ms);
1753 	if (error != 0) {
1754 		/*
1755 		 * Leave the request. Without resetting the chip, it's
1756 		 * still owned by it and we'll just get into trouble
1757 		 * freeing it now. Mark it as abandoned so that if it
1758 		 * shows up later it can be freed.
1759 		 */
1760 		mpt_prt(mpt, "read_cfg_header timed out\n");
1761 		return (ETIMEDOUT);
1762 	}
1763 
1764         switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1765 	case MPI_IOCSTATUS_SUCCESS:
1766 		cfgp = req->req_vbuf;
1767 		bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1768 		error = 0;
1769 		break;
1770 	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1771 		mpt_lprt(mpt, MPT_PRT_DEBUG,
1772 		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1773 		    PageType, PageNumber, PageAddress);
1774 		error = EINVAL;
1775 		break;
1776 	default:
1777 		mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1778 			req->IOCStatus);
1779 		error = EIO;
1780 		break;
1781 	}
1782 	mpt_free_request(mpt, req);
1783 	return (error);
1784 }
1785 
1786 int
1787 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1788 		  CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1789 		  int timeout_ms)
1790 {
1791 	request_t    *req;
1792 	cfgparms_t    params;
1793 	int	      error;
1794 
1795 	req = mpt_get_request(mpt, sleep_ok);
1796 	if (req == NULL) {
1797 		mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1798 		return (-1);
1799 	}
1800 
1801 	params.Action = Action;
1802 	params.PageVersion = hdr->PageVersion;
1803 	params.PageLength = hdr->PageLength;
1804 	params.PageNumber = hdr->PageNumber;
1805 	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1806 	params.PageAddress = PageAddress;
1807 	error = mpt_issue_cfg_req(mpt, req, &params,
1808 				  req->req_pbuf + MPT_RQSL(mpt),
1809 				  len, sleep_ok, timeout_ms);
1810 	if (error != 0) {
1811 		mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1812 		return (-1);
1813 	}
1814 
1815 	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1816 		mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1817 			req->IOCStatus);
1818 		mpt_free_request(mpt, req);
1819 		return (-1);
1820 	}
1821 	memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1822 	mpt_free_request(mpt, req);
1823 	return (0);
1824 }
1825 
1826 int
1827 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1828 		   CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1829 		   int timeout_ms)
1830 {
1831 	request_t    *req;
1832 	cfgparms_t    params;
1833 	u_int	      hdr_attr;
1834 	int	      error;
1835 
1836 	hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1837 	if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1838 	    hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1839 		mpt_prt(mpt, "page type 0x%x not changeable\n",
1840 			hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1841 		return (-1);
1842 	}
1843 
1844 #if	0
1845 	/*
1846 	 * We shouldn't mask off other bits here.
1847 	 */
1848 	hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1849 #endif
1850 
1851 	req = mpt_get_request(mpt, sleep_ok);
1852 	if (req == NULL)
1853 		return (-1);
1854 
1855 	memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1856 
1857 	/*
1858 	 * There isn't any point in restoring stripped out attributes
1859 	 * if you then mask them going down to issue the request.
1860 	 */
1861 
1862 	params.Action = Action;
1863 	params.PageVersion = hdr->PageVersion;
1864 	params.PageLength = hdr->PageLength;
1865 	params.PageNumber = hdr->PageNumber;
1866 	params.PageAddress = PageAddress;
1867 #if	0
1868 	/* Restore stripped out attributes */
1869 	hdr->PageType |= hdr_attr;
1870 	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1871 #else
1872 	params.PageType = hdr->PageType;
1873 #endif
1874 	error = mpt_issue_cfg_req(mpt, req, &params,
1875 				  req->req_pbuf + MPT_RQSL(mpt),
1876 				  len, sleep_ok, timeout_ms);
1877 	if (error != 0) {
1878 		mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1879 		return (-1);
1880 	}
1881 
1882         if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1883 		mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1884 			req->IOCStatus);
1885 		mpt_free_request(mpt, req);
1886 		return (-1);
1887 	}
1888 	mpt_free_request(mpt, req);
1889 	return (0);
1890 }
1891 
1892 /*
1893  * Read IOC configuration information
1894  */
1895 static int
1896 mpt_read_config_info_ioc(struct mpt_softc *mpt)
1897 {
1898 	CONFIG_PAGE_HEADER hdr;
1899 	struct mpt_raid_volume *mpt_raid;
1900 	int rv;
1901 	int i;
1902 	size_t len;
1903 
1904 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1905 		2, 0, &hdr, FALSE, 5000);
1906 	/*
1907 	 * If it's an invalid page, so what? Not a supported function....
1908 	 */
1909 	if (rv == EINVAL) {
1910 		return (0);
1911 	}
1912 	if (rv) {
1913 		return (rv);
1914 	}
1915 
1916 	mpt_lprt(mpt, MPT_PRT_DEBUG,
1917 	    "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1918 	    hdr.PageVersion, hdr.PageLength << 2,
1919 	    hdr.PageNumber, hdr.PageType);
1920 
1921 	len = hdr.PageLength * sizeof(uint32_t);
1922 	mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1923 	if (mpt->ioc_page2 == NULL) {
1924 		mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1925 		mpt_raid_free_mem(mpt);
1926 		return (ENOMEM);
1927 	}
1928 	memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1929 	rv = mpt_read_cur_cfg_page(mpt, 0,
1930 	    &mpt->ioc_page2->Header, len, FALSE, 5000);
1931 	if (rv) {
1932 		mpt_prt(mpt, "failed to read IOC Page 2\n");
1933 		mpt_raid_free_mem(mpt);
1934 		return (EIO);
1935 	}
1936 	mpt2host_config_page_ioc2(mpt->ioc_page2);
1937 
1938 	if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1939 		uint32_t mask;
1940 
1941 		mpt_prt(mpt, "Capabilities: (");
1942 		for (mask = 1; mask != 0; mask <<= 1) {
1943 			if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1944 				continue;
1945 			}
1946 			switch (mask) {
1947 			case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1948 				mpt_prtc(mpt, " RAID-0");
1949 				break;
1950 			case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1951 				mpt_prtc(mpt, " RAID-1E");
1952 				break;
1953 			case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1954 				mpt_prtc(mpt, " RAID-1");
1955 				break;
1956 			case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1957 				mpt_prtc(mpt, " SES");
1958 				break;
1959 			case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1960 				mpt_prtc(mpt, " SAFTE");
1961 				break;
1962 			case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1963 				mpt_prtc(mpt, " Multi-Channel-Arrays");
1964 			default:
1965 				break;
1966 			}
1967 		}
1968 		mpt_prtc(mpt, " )\n");
1969 		if ((mpt->ioc_page2->CapabilitiesFlags
1970 		   & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1971 		    | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1972 		    | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1973 			mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1974 				mpt->ioc_page2->NumActiveVolumes,
1975 				mpt->ioc_page2->NumActiveVolumes != 1
1976 			      ? "s " : " ",
1977 				mpt->ioc_page2->MaxVolumes);
1978 			mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1979 				mpt->ioc_page2->NumActivePhysDisks,
1980 				mpt->ioc_page2->NumActivePhysDisks != 1
1981 			      ? "s " : " ",
1982 				mpt->ioc_page2->MaxPhysDisks);
1983 		}
1984 	}
1985 
1986 	len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1987 	mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1988 	if (mpt->raid_volumes == NULL) {
1989 		mpt_prt(mpt, "Could not allocate RAID volume data\n");
1990 		mpt_raid_free_mem(mpt);
1991 		return (ENOMEM);
1992 	}
1993 
1994 	/*
1995 	 * Copy critical data out of ioc_page2 so that we can
1996 	 * safely refresh the page without windows of unreliable
1997 	 * data.
1998 	 */
1999 	mpt->raid_max_volumes =  mpt->ioc_page2->MaxVolumes;
2000 
2001 	len = sizeof(*mpt->raid_volumes->config_page) +
2002 	    (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
2003 	for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
2004 		mpt_raid = &mpt->raid_volumes[i];
2005 		mpt_raid->config_page =
2006 		    malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2007 		if (mpt_raid->config_page == NULL) {
2008 			mpt_prt(mpt, "Could not allocate RAID page data\n");
2009 			mpt_raid_free_mem(mpt);
2010 			return (ENOMEM);
2011 		}
2012 	}
2013 	mpt->raid_page0_len = len;
2014 
2015 	len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
2016 	mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2017 	if (mpt->raid_disks == NULL) {
2018 		mpt_prt(mpt, "Could not allocate RAID disk data\n");
2019 		mpt_raid_free_mem(mpt);
2020 		return (ENOMEM);
2021 	}
2022 	mpt->raid_max_disks =  mpt->ioc_page2->MaxPhysDisks;
2023 
2024 	/*
2025 	 * Load page 3.
2026 	 */
2027 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2028 	    3, 0, &hdr, FALSE, 5000);
2029 	if (rv) {
2030 		mpt_raid_free_mem(mpt);
2031 		return (EIO);
2032 	}
2033 
2034 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2035 	    hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2036 
2037 	len = hdr.PageLength * sizeof(uint32_t);
2038 	mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2039 	if (mpt->ioc_page3 == NULL) {
2040 		mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2041 		mpt_raid_free_mem(mpt);
2042 		return (ENOMEM);
2043 	}
2044 	memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2045 	rv = mpt_read_cur_cfg_page(mpt, 0,
2046 	    &mpt->ioc_page3->Header, len, FALSE, 5000);
2047 	if (rv) {
2048 		mpt_raid_free_mem(mpt);
2049 		return (EIO);
2050 	}
2051 	mpt2host_config_page_ioc3(mpt->ioc_page3);
2052 	mpt_raid_wakeup(mpt);
2053 	return (0);
2054 }
2055 
2056 /*
2057  * Enable IOC port
2058  */
2059 static int
2060 mpt_send_port_enable(struct mpt_softc *mpt, int port)
2061 {
2062 	request_t	*req;
2063 	MSG_PORT_ENABLE *enable_req;
2064 	int		 error;
2065 
2066 	req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2067 	if (req == NULL)
2068 		return (-1);
2069 
2070 	enable_req = req->req_vbuf;
2071 	memset(enable_req, 0,  MPT_RQSL(mpt));
2072 
2073 	enable_req->Function   = MPI_FUNCTION_PORT_ENABLE;
2074 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2075 	enable_req->PortNumber = port;
2076 
2077 	mpt_check_doorbell(mpt);
2078 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2079 
2080 	mpt_send_cmd(mpt, req);
2081 	error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2082 	    FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000);
2083 	if (error != 0) {
2084 		mpt_prt(mpt, "port %d enable timed out\n", port);
2085 		return (-1);
2086 	}
2087 	mpt_free_request(mpt, req);
2088 	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2089 	return (0);
2090 }
2091 
2092 /*
2093  * Enable/Disable asynchronous event reporting.
2094  */
2095 static int
2096 mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2097 {
2098 	request_t *req;
2099 	MSG_EVENT_NOTIFY *enable_req;
2100 
2101 	req = mpt_get_request(mpt, FALSE);
2102 	if (req == NULL) {
2103 		return (ENOMEM);
2104 	}
2105 	enable_req = req->req_vbuf;
2106 	memset(enable_req, 0, sizeof *enable_req);
2107 
2108 	enable_req->Function   = MPI_FUNCTION_EVENT_NOTIFICATION;
2109 	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2110 	enable_req->Switch     = onoff;
2111 
2112 	mpt_check_doorbell(mpt);
2113 	mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2114 	    onoff ? "en" : "dis");
2115 	/*
2116 	 * Send the command off, but don't wait for it.
2117 	 */
2118 	mpt_send_cmd(mpt, req);
2119 	return (0);
2120 }
2121 
2122 /*
2123  * Un-mask the interrupts on the chip.
2124  */
2125 void
2126 mpt_enable_ints(struct mpt_softc *mpt)
2127 {
2128 
2129 	/* Unmask every thing except door bell int */
2130 	mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2131 }
2132 
2133 /*
2134  * Mask the interrupts on the chip.
2135  */
2136 void
2137 mpt_disable_ints(struct mpt_softc *mpt)
2138 {
2139 
2140 	/* Mask all interrupts */
2141 	mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2142 	    MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2143 }
2144 
2145 static void
2146 mpt_sysctl_attach(struct mpt_softc *mpt)
2147 {
2148 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
2149 	struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
2150 
2151 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2152 		       "debug", CTLFLAG_RW, &mpt->verbose, 0,
2153 		       "Debugging/Verbose level");
2154 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2155 		       "role", CTLFLAG_RD, &mpt->role, 0,
2156 		       "HBA role");
2157 #ifdef	MPT_TEST_MULTIPATH
2158 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2159 		       "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2160 		       "Next Target to Fail");
2161 #endif
2162 }
2163 
2164 int
2165 mpt_attach(struct mpt_softc *mpt)
2166 {
2167 	struct mpt_personality *pers;
2168 	int i;
2169 	int error;
2170 
2171 	mpt_core_attach(mpt);
2172 	mpt_core_enable(mpt);
2173 
2174 	TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2175 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2176 		pers = mpt_personalities[i];
2177 		if (pers == NULL) {
2178 			continue;
2179 		}
2180 		if (pers->probe(mpt) == 0) {
2181 			error = pers->attach(mpt);
2182 			if (error != 0) {
2183 				mpt_detach(mpt);
2184 				return (error);
2185 			}
2186 			mpt->mpt_pers_mask |= (0x1 << pers->id);
2187 			pers->use_count++;
2188 		}
2189 	}
2190 
2191 	/*
2192 	 * Now that we've attached everything, do the enable function
2193 	 * for all of the personalities. This allows the personalities
2194 	 * to do setups that are appropriate for them prior to enabling
2195 	 * any ports.
2196 	 */
2197 	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2198 		pers = mpt_personalities[i];
2199 		if (pers != NULL  && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2200 			error = pers->enable(mpt);
2201 			if (error != 0) {
2202 				mpt_prt(mpt, "personality %s attached but would"
2203 				    " not enable (%d)\n", pers->name, error);
2204 				mpt_detach(mpt);
2205 				return (error);
2206 			}
2207 		}
2208 	}
2209 	return (0);
2210 }
2211 
2212 int
2213 mpt_shutdown(struct mpt_softc *mpt)
2214 {
2215 	struct mpt_personality *pers;
2216 
2217 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2218 		pers->shutdown(mpt);
2219 	}
2220 	return (0);
2221 }
2222 
2223 int
2224 mpt_detach(struct mpt_softc *mpt)
2225 {
2226 	struct mpt_personality *pers;
2227 
2228 	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2229 		pers->detach(mpt);
2230 		mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2231 		pers->use_count--;
2232 	}
2233 	TAILQ_REMOVE(&mpt_tailq, mpt, links);
2234 	return (0);
2235 }
2236 
2237 static int
2238 mpt_core_load(struct mpt_personality *pers)
2239 {
2240 	int i;
2241 
2242 	/*
2243 	 * Setup core handlers and insert the default handler
2244 	 * into all "empty slots".
2245 	 */
2246 	for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2247 		mpt_reply_handlers[i] = mpt_default_reply_handler;
2248 	}
2249 
2250 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2251 	    mpt_event_reply_handler;
2252 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2253 	    mpt_config_reply_handler;
2254 	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2255 	    mpt_handshake_reply_handler;
2256 	return (0);
2257 }
2258 
2259 /*
2260  * Initialize per-instance driver data and perform
2261  * initial controller configuration.
2262  */
2263 static int
2264 mpt_core_attach(struct mpt_softc *mpt)
2265 {
2266         int val, error;
2267 
2268 	LIST_INIT(&mpt->ack_frames);
2269 	/* Put all request buffers on the free list */
2270 	TAILQ_INIT(&mpt->request_pending_list);
2271 	TAILQ_INIT(&mpt->request_free_list);
2272 	TAILQ_INIT(&mpt->request_timeout_list);
2273 	for (val = 0; val < MPT_MAX_LUNS; val++) {
2274 		STAILQ_INIT(&mpt->trt[val].atios);
2275 		STAILQ_INIT(&mpt->trt[val].inots);
2276 	}
2277 	STAILQ_INIT(&mpt->trt_wildcard.atios);
2278 	STAILQ_INIT(&mpt->trt_wildcard.inots);
2279 #ifdef	MPT_TEST_MULTIPATH
2280 	mpt->failure_id = -1;
2281 #endif
2282 	mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2283 	mpt_sysctl_attach(mpt);
2284 	mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2285 	    mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2286 
2287 	MPT_LOCK(mpt);
2288 	error = mpt_configure_ioc(mpt, 0, 0);
2289 	MPT_UNLOCK(mpt);
2290 
2291 	return (error);
2292 }
2293 
2294 static int
2295 mpt_core_enable(struct mpt_softc *mpt)
2296 {
2297 
2298 	/*
2299 	 * We enter with the IOC enabled, but async events
2300 	 * not enabled, ports not enabled and interrupts
2301 	 * not enabled.
2302 	 */
2303 	MPT_LOCK(mpt);
2304 
2305 	/*
2306 	 * Enable asynchronous event reporting- all personalities
2307 	 * have attached so that they should be able to now field
2308 	 * async events.
2309 	 */
2310 	mpt_send_event_request(mpt, 1);
2311 
2312 	/*
2313 	 * Catch any pending interrupts
2314 	 *
2315 	 * This seems to be crucial- otherwise
2316 	 * the portenable below times out.
2317 	 */
2318 	mpt_intr(mpt);
2319 
2320 	/*
2321 	 * Enable Interrupts
2322 	 */
2323 	mpt_enable_ints(mpt);
2324 
2325 	/*
2326 	 * Catch any pending interrupts
2327 	 *
2328 	 * This seems to be crucial- otherwise
2329 	 * the portenable below times out.
2330 	 */
2331 	mpt_intr(mpt);
2332 
2333 	/*
2334 	 * Enable the port.
2335 	 */
2336 	if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2337 		mpt_prt(mpt, "failed to enable port 0\n");
2338 		MPT_UNLOCK(mpt);
2339 		return (ENXIO);
2340 	}
2341 	MPT_UNLOCK(mpt);
2342 	return (0);
2343 }
2344 
2345 static void
2346 mpt_core_shutdown(struct mpt_softc *mpt)
2347 {
2348 
2349 	mpt_disable_ints(mpt);
2350 }
2351 
2352 static void
2353 mpt_core_detach(struct mpt_softc *mpt)
2354 {
2355 	int val;
2356 
2357 	/*
2358 	 * XXX: FREE MEMORY
2359 	 */
2360 	mpt_disable_ints(mpt);
2361 
2362 	/* Make sure no request has pending timeouts. */
2363 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2364 		request_t *req = &mpt->request_pool[val];
2365 		mpt_callout_drain(mpt, &req->callout);
2366 	}
2367 
2368 	mpt_dma_buf_free(mpt);
2369 }
2370 
2371 static int
2372 mpt_core_unload(struct mpt_personality *pers)
2373 {
2374 
2375 	/* Unload is always successful. */
2376 	return (0);
2377 }
2378 
2379 #define FW_UPLOAD_REQ_SIZE				\
2380 	(sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION)	\
2381        + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2382 
2383 static int
2384 mpt_upload_fw(struct mpt_softc *mpt)
2385 {
2386 	uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2387 	MSG_FW_UPLOAD_REPLY fw_reply;
2388 	MSG_FW_UPLOAD *fw_req;
2389 	FW_UPLOAD_TCSGE *tsge;
2390 	SGE_SIMPLE32 *sge;
2391 	uint32_t flags;
2392 	int error;
2393 
2394 	memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2395 	fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2396 	fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2397 	fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2398 	fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2399 	tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2400 	tsge->DetailsLength = 12;
2401 	tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2402 	tsge->ImageSize = htole32(mpt->fw_image_size);
2403 	sge = (SGE_SIMPLE32 *)(tsge + 1);
2404 	flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2405 	      | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2406 	      | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2407 	flags <<= MPI_SGE_FLAGS_SHIFT;
2408 	sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2409 	sge->Address = htole32(mpt->fw_phys);
2410 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2411 	error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2412 	if (error)
2413 		return(error);
2414 	error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2415 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2416 	return (error);
2417 }
2418 
2419 static void
2420 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2421 	       uint32_t *data, bus_size_t len)
2422 {
2423 	uint32_t *data_end;
2424 
2425 	data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2426 	if (mpt->is_sas) {
2427 		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2428 	}
2429 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2430 	while (data != data_end) {
2431 		mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2432 		data++;
2433 	}
2434 	if (mpt->is_sas) {
2435 		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2436 	}
2437 }
2438 
2439 static int
2440 mpt_download_fw(struct mpt_softc *mpt)
2441 {
2442 	MpiFwHeader_t *fw_hdr;
2443 	int error;
2444 	uint32_t ext_offset;
2445 	uint32_t data;
2446 
2447 	if (mpt->pci_pio_reg == NULL) {
2448 		mpt_prt(mpt, "No PIO resource!\n");
2449 		return (ENXIO);
2450 	}
2451 
2452 	mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2453 		mpt->fw_image_size);
2454 
2455 	error = mpt_enable_diag_mode(mpt);
2456 	if (error != 0) {
2457 		mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2458 		return (EIO);
2459 	}
2460 
2461 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2462 		  MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2463 
2464 	fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2465 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2466 	mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2467 		       fw_hdr->ImageSize);
2468 	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2469 
2470 	ext_offset = fw_hdr->NextImageHeaderOffset;
2471 	while (ext_offset != 0) {
2472 		MpiExtImageHeader_t *ext;
2473 
2474 		ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2475 		ext_offset = ext->NextImageHeaderOffset;
2476 		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2477 		    BUS_DMASYNC_PREWRITE);
2478 		mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2479 			       ext->ImageSize);
2480 		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2481 		    BUS_DMASYNC_POSTWRITE);
2482 	}
2483 
2484 	if (mpt->is_sas) {
2485 		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2486 	}
2487 	/* Setup the address to jump to on reset. */
2488 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2489 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2490 
2491 	/*
2492 	 * The controller sets the "flash bad" status after attempting
2493 	 * to auto-boot from flash.  Clear the status so that the controller
2494 	 * will continue the boot process with our newly installed firmware.
2495 	 */
2496 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2497 	data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2498 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2499 	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2500 
2501 	if (mpt->is_sas) {
2502 		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2503 	}
2504 
2505 	/*
2506 	 * Re-enable the processor and clear the boot halt flag.
2507 	 */
2508 	data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2509 	data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2510 	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2511 
2512 	mpt_disable_diag_mode(mpt);
2513 	return (0);
2514 }
2515 
2516 static int
2517 mpt_dma_buf_alloc(struct mpt_softc *mpt)
2518 {
2519 	struct mpt_map_info mi;
2520 	uint8_t *vptr;
2521 	uint32_t pptr, end;
2522 	int i, error;
2523 
2524 	/* Create a child tag for data buffers */
2525 	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2526 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2527 	    NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2528 	    mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2529 	    &mpt->buffer_dmat) != 0) {
2530 		mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2531 		return (1);
2532 	}
2533 
2534 	/* Create a child tag for request buffers */
2535 	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2536 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2537 	    NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2538 	    &mpt->request_dmat) != 0) {
2539 		mpt_prt(mpt, "cannot create a dma tag for requests\n");
2540 		return (1);
2541 	}
2542 
2543 	/* Allocate some DMA accessible memory for requests */
2544 	if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2545 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2546 		mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2547 		    MPT_REQ_MEM_SIZE(mpt));
2548 		return (1);
2549 	}
2550 
2551 	mi.mpt = mpt;
2552 	mi.error = 0;
2553 
2554 	/* Load and lock it into "bus space" */
2555 	bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2556 	    MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2557 
2558 	if (mi.error) {
2559 		mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2560 		    mi.error);
2561 		return (1);
2562 	}
2563 	mpt->request_phys = mi.phys;
2564 
2565 	/*
2566 	 * Now create per-request dma maps
2567 	 */
2568 	i = 0;
2569 	pptr =  mpt->request_phys;
2570 	vptr =  mpt->request;
2571 	end = pptr + MPT_REQ_MEM_SIZE(mpt);
2572 	while(pptr < end) {
2573 		request_t *req = &mpt->request_pool[i];
2574 		req->index = i++;
2575 
2576 		/* Store location of Request Data */
2577 		req->req_pbuf = pptr;
2578 		req->req_vbuf = vptr;
2579 
2580 		pptr += MPT_REQUEST_AREA;
2581 		vptr += MPT_REQUEST_AREA;
2582 
2583 		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2584 		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2585 
2586 		error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2587 		if (error) {
2588 			mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2589 			    error);
2590 			return (1);
2591 		}
2592 	}
2593 
2594 	return (0);
2595 }
2596 
2597 static void
2598 mpt_dma_buf_free(struct mpt_softc *mpt)
2599 {
2600 	int i;
2601 
2602 	if (mpt->request_dmat == 0) {
2603 		mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2604 		return;
2605 	}
2606 	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2607 		bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2608 	}
2609 	bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2610 	bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2611 	bus_dma_tag_destroy(mpt->request_dmat);
2612 	mpt->request_dmat = 0;
2613 	bus_dma_tag_destroy(mpt->buffer_dmat);
2614 }
2615 
2616 /*
2617  * Allocate/Initialize data structures for the controller.  Called
2618  * once at instance startup.
2619  */
2620 static int
2621 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2622 {
2623 	PTR_MSG_PORT_FACTS_REPLY pfp;
2624 	int error, port, val;
2625 	size_t len;
2626 
2627 	if (tn == MPT_MAX_TRYS) {
2628 		return (-1);
2629 	}
2630 
2631 	/*
2632 	 * No need to reset if the IOC is already in the READY state.
2633 	 *
2634 	 * Force reset if initialization failed previously.
2635 	 * Note that a hard_reset of the second channel of a '929
2636 	 * will stop operation of the first channel.  Hopefully, if the
2637 	 * first channel is ok, the second will not require a hard
2638 	 * reset.
2639 	 */
2640 	if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2641 		if (mpt_reset(mpt, FALSE) != MPT_OK) {
2642 			return (mpt_configure_ioc(mpt, tn++, 1));
2643 		}
2644 		needreset = 0;
2645 	}
2646 
2647 	if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2648 		mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2649 		return (mpt_configure_ioc(mpt, tn++, 1));
2650 	}
2651 	mpt2host_iocfacts_reply(&mpt->ioc_facts);
2652 
2653 	mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2654 	    mpt->ioc_facts.MsgVersion >> 8,
2655 	    mpt->ioc_facts.MsgVersion & 0xFF,
2656 	    mpt->ioc_facts.HeaderVersion >> 8,
2657 	    mpt->ioc_facts.HeaderVersion & 0xFF);
2658 
2659 	/*
2660 	 * Now that we know request frame size, we can calculate
2661 	 * the actual (reasonable) segment limit for read/write I/O.
2662 	 *
2663 	 * This limit is constrained by:
2664 	 *
2665 	 *  + The size of each area we allocate per command (and how
2666 	 *    many chain segments we can fit into it).
2667 	 *  + The total number of areas we've set up.
2668 	 *  + The actual chain depth the card will allow.
2669 	 *
2670 	 * The first area's segment count is limited by the I/O request
2671 	 * at the head of it. We cannot allocate realistically more
2672 	 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2673 	 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2674 	 *
2675 	 */
2676 	/* total number of request areas we (can) allocate */
2677 	mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2678 
2679 	/* converted to the number of chain areas possible */
2680 	mpt->max_seg_cnt *= MPT_NRFM(mpt);
2681 
2682 	/* limited by the number of chain areas the card will support */
2683 	if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2684 		mpt_lprt(mpt, MPT_PRT_INFO,
2685 		    "chain depth limited to %u (from %u)\n",
2686 		    mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2687 		mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2688 	}
2689 
2690 	/* converted to the number of simple sges in chain segments. */
2691 	mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2692 
2693 	/*
2694 	 * Use this as the basis for reporting the maximum I/O size to CAM.
2695 	 */
2696 	mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1);
2697 
2698 	/* XXX Lame Locking! */
2699 	MPT_UNLOCK(mpt);
2700 	error = mpt_dma_buf_alloc(mpt);
2701 	MPT_LOCK(mpt);
2702 
2703 	if (error != 0) {
2704 		mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2705 		return (EIO);
2706 	}
2707 
2708 	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2709 		request_t *req = &mpt->request_pool[val];
2710 		req->state = REQ_STATE_ALLOCATED;
2711 		mpt_callout_init(mpt, &req->callout);
2712 		mpt_free_request(mpt, req);
2713 	}
2714 
2715 	mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2716 		 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2717 		 mpt->max_cam_seg_cnt);
2718 
2719 	mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2720 	    mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2721 	mpt_lprt(mpt, MPT_PRT_INFO,
2722 	    "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2723 	    "Request Frame Size %u bytes Max Chain Depth %u\n",
2724 	    mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2725 	    mpt->ioc_facts.RequestFrameSize << 2,
2726 	    mpt->ioc_facts.MaxChainDepth);
2727 	mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2728 	    "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2729 	    mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2730 
2731 	len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2732 	mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2733 	if (mpt->port_facts == NULL) {
2734 		mpt_prt(mpt, "unable to allocate memory for port facts\n");
2735 		return (ENOMEM);
2736 	}
2737 
2738 
2739 	if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2740 	    (mpt->fw_uploaded == 0)) {
2741 		struct mpt_map_info mi;
2742 
2743 		/*
2744 		 * In some configurations, the IOC's firmware is
2745 		 * stored in a shared piece of system NVRAM that
2746 		 * is only accessible via the BIOS.  In this
2747 		 * case, the firmware keeps a copy of firmware in
2748 		 * RAM until the OS driver retrieves it.  Once
2749 		 * retrieved, we are responsible for re-downloading
2750 		 * the firmware after any hard-reset.
2751 		 */
2752 		MPT_UNLOCK(mpt);
2753 		mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2754 		error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2755 		    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2756 		    mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2757 		    &mpt->fw_dmat);
2758 		if (error != 0) {
2759 			mpt_prt(mpt, "cannot create firmware dma tag\n");
2760 			MPT_LOCK(mpt);
2761 			return (ENOMEM);
2762 		}
2763 		error = bus_dmamem_alloc(mpt->fw_dmat,
2764 		    (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2765 		    BUS_DMA_COHERENT, &mpt->fw_dmap);
2766 		if (error != 0) {
2767 			mpt_prt(mpt, "cannot allocate firmware memory\n");
2768 			bus_dma_tag_destroy(mpt->fw_dmat);
2769 			MPT_LOCK(mpt);
2770 			return (ENOMEM);
2771 		}
2772 		mi.mpt = mpt;
2773 		mi.error = 0;
2774 		bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2775 		    mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2776 		mpt->fw_phys = mi.phys;
2777 
2778 		MPT_LOCK(mpt);
2779 		error = mpt_upload_fw(mpt);
2780 		if (error != 0) {
2781 			mpt_prt(mpt, "firmware upload failed.\n");
2782 			bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2783 			bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2784 			    mpt->fw_dmap);
2785 			bus_dma_tag_destroy(mpt->fw_dmat);
2786 			mpt->fw_image = NULL;
2787 			return (EIO);
2788 		}
2789 		mpt->fw_uploaded = 1;
2790 	}
2791 
2792 	for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2793 		pfp = &mpt->port_facts[port];
2794 		error = mpt_get_portfacts(mpt, 0, pfp);
2795 		if (error != MPT_OK) {
2796 			mpt_prt(mpt,
2797 			    "mpt_get_portfacts on port %d failed\n", port);
2798 			free(mpt->port_facts, M_DEVBUF);
2799 			mpt->port_facts = NULL;
2800 			return (mpt_configure_ioc(mpt, tn++, 1));
2801 		}
2802 		mpt2host_portfacts_reply(pfp);
2803 
2804 		if (port > 0) {
2805 			error = MPT_PRT_INFO;
2806 		} else {
2807 			error = MPT_PRT_DEBUG;
2808 		}
2809 		mpt_lprt(mpt, error,
2810 		    "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2811 		    port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2812 		    pfp->MaxDevices);
2813 
2814 	}
2815 
2816 	/*
2817 	 * XXX: Not yet supporting more than port 0
2818 	 */
2819 	pfp = &mpt->port_facts[0];
2820 	if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2821 		mpt->is_fc = 1;
2822 		mpt->is_sas = 0;
2823 		mpt->is_spi = 0;
2824 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2825 		mpt->is_fc = 0;
2826 		mpt->is_sas = 1;
2827 		mpt->is_spi = 0;
2828 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2829 		mpt->is_fc = 0;
2830 		mpt->is_sas = 0;
2831 		mpt->is_spi = 1;
2832 		if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2833 			mpt->mpt_ini_id = pfp->PortSCSIID;
2834 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2835 		mpt_prt(mpt, "iSCSI not supported yet\n");
2836 		return (ENXIO);
2837 	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2838 		mpt_prt(mpt, "Inactive Port\n");
2839 		return (ENXIO);
2840 	} else {
2841 		mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2842 		return (ENXIO);
2843 	}
2844 
2845 	/*
2846 	 * Set our role with what this port supports.
2847 	 *
2848 	 * Note this might be changed later in different modules
2849 	 * if this is different from what is wanted.
2850 	 */
2851 	mpt->role = MPT_ROLE_NONE;
2852 	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2853 		mpt->role |= MPT_ROLE_INITIATOR;
2854 	}
2855 	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2856 		mpt->role |= MPT_ROLE_TARGET;
2857 	}
2858 
2859 	/*
2860 	 * Enable the IOC
2861 	 */
2862 	if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2863 		mpt_prt(mpt, "unable to initialize IOC\n");
2864 		return (ENXIO);
2865 	}
2866 
2867 	/*
2868 	 * Read IOC configuration information.
2869 	 *
2870 	 * We need this to determine whether or not we have certain
2871 	 * settings for Integrated Mirroring (e.g.).
2872 	 */
2873 	mpt_read_config_info_ioc(mpt);
2874 
2875 	return (0);
2876 }
2877 
2878 static int
2879 mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2880 {
2881 	uint32_t pptr;
2882 	int val;
2883 
2884 	if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2885 		mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2886 		return (EIO);
2887 	}
2888 
2889 	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2890 
2891 	if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2892 		mpt_prt(mpt, "IOC failed to go to run state\n");
2893 		return (ENXIO);
2894 	}
2895 	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2896 
2897 	/*
2898 	 * Give it reply buffers
2899 	 *
2900 	 * Do *not* exceed global credits.
2901 	 */
2902 	for (val = 0, pptr = mpt->reply_phys;
2903 	    (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2904 	     pptr += MPT_REPLY_SIZE) {
2905 		mpt_free_reply(mpt, pptr);
2906 		if (++val == mpt->ioc_facts.GlobalCredits - 1)
2907 			break;
2908 	}
2909 
2910 
2911 	/*
2912 	 * Enable the port if asked. This is only done if we're resetting
2913 	 * the IOC after initial startup.
2914 	 */
2915 	if (portenable) {
2916 		/*
2917 		 * Enable asynchronous event reporting
2918 		 */
2919 		mpt_send_event_request(mpt, 1);
2920 
2921 		if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2922 			mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2923 			return (ENXIO);
2924 		}
2925 	}
2926 	return (MPT_OK);
2927 }
2928 
2929 /*
2930  * Endian Conversion Functions- only used on Big Endian machines
2931  */
2932 #if	_BYTE_ORDER == _BIG_ENDIAN
2933 void
2934 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2935 {
2936 
2937 	MPT_2_HOST32(sge, FlagsLength);
2938 	MPT_2_HOST32(sge, u.Address64.Low);
2939 	MPT_2_HOST32(sge, u.Address64.High);
2940 }
2941 
2942 void
2943 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2944 {
2945 
2946 	MPT_2_HOST16(rp, MsgVersion);
2947 	MPT_2_HOST16(rp, HeaderVersion);
2948 	MPT_2_HOST32(rp, MsgContext);
2949 	MPT_2_HOST16(rp, IOCExceptions);
2950 	MPT_2_HOST16(rp, IOCStatus);
2951 	MPT_2_HOST32(rp, IOCLogInfo);
2952 	MPT_2_HOST16(rp, ReplyQueueDepth);
2953 	MPT_2_HOST16(rp, RequestFrameSize);
2954 	MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2955 	MPT_2_HOST16(rp, ProductID);
2956 	MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2957 	MPT_2_HOST16(rp, GlobalCredits);
2958 	MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2959 	MPT_2_HOST16(rp, CurReplyFrameSize);
2960 	MPT_2_HOST32(rp, FWImageSize);
2961 	MPT_2_HOST32(rp, IOCCapabilities);
2962 	MPT_2_HOST32(rp, FWVersion.Word);
2963 	MPT_2_HOST16(rp, HighPriorityQueueDepth);
2964 	MPT_2_HOST16(rp, Reserved2);
2965 	mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2966 	MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2967 }
2968 
2969 void
2970 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2971 {
2972 
2973 	MPT_2_HOST16(pfp, Reserved);
2974 	MPT_2_HOST16(pfp, Reserved1);
2975 	MPT_2_HOST32(pfp, MsgContext);
2976 	MPT_2_HOST16(pfp, Reserved2);
2977 	MPT_2_HOST16(pfp, IOCStatus);
2978 	MPT_2_HOST32(pfp, IOCLogInfo);
2979 	MPT_2_HOST16(pfp, MaxDevices);
2980 	MPT_2_HOST16(pfp, PortSCSIID);
2981 	MPT_2_HOST16(pfp, ProtocolFlags);
2982 	MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2983 	MPT_2_HOST16(pfp, MaxPersistentIDs);
2984 	MPT_2_HOST16(pfp, MaxLanBuckets);
2985 	MPT_2_HOST16(pfp, Reserved4);
2986 	MPT_2_HOST32(pfp, Reserved5);
2987 }
2988 
2989 void
2990 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2991 {
2992 	int i;
2993 
2994 	MPT_2_HOST32(ioc2, CapabilitiesFlags);
2995 	for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
2996 		MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
2997 	}
2998 }
2999 
3000 void
3001 mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
3002 {
3003 
3004 	MPT_2_HOST16(ioc3, Reserved2);
3005 }
3006 
3007 void
3008 mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
3009 {
3010 
3011 	MPT_2_HOST32(sp0, Capabilities);
3012 	MPT_2_HOST32(sp0, PhysicalInterface);
3013 }
3014 
3015 void
3016 mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3017 {
3018 
3019 	MPT_2_HOST32(sp1, Configuration);
3020 	MPT_2_HOST32(sp1, OnBusTimerValue);
3021 	MPT_2_HOST16(sp1, IDConfig);
3022 }
3023 
3024 void
3025 host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3026 {
3027 
3028 	HOST_2_MPT32(sp1, Configuration);
3029 	HOST_2_MPT32(sp1, OnBusTimerValue);
3030 	HOST_2_MPT16(sp1, IDConfig);
3031 }
3032 
3033 void
3034 mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3035 {
3036 	int i;
3037 
3038 	MPT_2_HOST32(sp2, PortFlags);
3039 	MPT_2_HOST32(sp2, PortSettings);
3040 	for (i = 0; i < sizeof(sp2->DeviceSettings) /
3041 	    sizeof(*sp2->DeviceSettings); i++) {
3042 		MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3043 	}
3044 }
3045 
3046 void
3047 mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3048 {
3049 
3050 	MPT_2_HOST32(sd0, NegotiatedParameters);
3051 	MPT_2_HOST32(sd0, Information);
3052 }
3053 
3054 void
3055 mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3056 {
3057 
3058 	MPT_2_HOST32(sd1, RequestedParameters);
3059 	MPT_2_HOST32(sd1, Reserved);
3060 	MPT_2_HOST32(sd1, Configuration);
3061 }
3062 
3063 void
3064 host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3065 {
3066 
3067 	HOST_2_MPT32(sd1, RequestedParameters);
3068 	HOST_2_MPT32(sd1, Reserved);
3069 	HOST_2_MPT32(sd1, Configuration);
3070 }
3071 
3072 void
3073 mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3074 {
3075 
3076 	MPT_2_HOST32(fp0, Flags);
3077 	MPT_2_HOST32(fp0, PortIdentifier);
3078 	MPT_2_HOST32(fp0, WWNN.Low);
3079 	MPT_2_HOST32(fp0, WWNN.High);
3080 	MPT_2_HOST32(fp0, WWPN.Low);
3081 	MPT_2_HOST32(fp0, WWPN.High);
3082 	MPT_2_HOST32(fp0, SupportedServiceClass);
3083 	MPT_2_HOST32(fp0, SupportedSpeeds);
3084 	MPT_2_HOST32(fp0, CurrentSpeed);
3085 	MPT_2_HOST32(fp0, MaxFrameSize);
3086 	MPT_2_HOST32(fp0, FabricWWNN.Low);
3087 	MPT_2_HOST32(fp0, FabricWWNN.High);
3088 	MPT_2_HOST32(fp0, FabricWWPN.Low);
3089 	MPT_2_HOST32(fp0, FabricWWPN.High);
3090 	MPT_2_HOST32(fp0, DiscoveredPortsCount);
3091 	MPT_2_HOST32(fp0, MaxInitiators);
3092 }
3093 
3094 void
3095 mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3096 {
3097 
3098 	MPT_2_HOST32(fp1, Flags);
3099 	MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3100 	MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3101 	MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3102 	MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3103 }
3104 
3105 void
3106 host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3107 {
3108 
3109 	HOST_2_MPT32(fp1, Flags);
3110 	HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3111 	HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3112 	HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3113 	HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3114 }
3115 
3116 void
3117 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3118 {
3119 	int i;
3120 
3121 	MPT_2_HOST16(volp, VolumeStatus.Reserved);
3122 	MPT_2_HOST16(volp, VolumeSettings.Settings);
3123 	MPT_2_HOST32(volp, MaxLBA);
3124 	MPT_2_HOST32(volp, MaxLBAHigh);
3125 	MPT_2_HOST32(volp, StripeSize);
3126 	MPT_2_HOST32(volp, Reserved2);
3127 	MPT_2_HOST32(volp, Reserved3);
3128 	for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3129 		MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3130 	}
3131 }
3132 
3133 void
3134 mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3135 {
3136 
3137 	MPT_2_HOST32(rpd0, Reserved1);
3138 	MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3139 	MPT_2_HOST32(rpd0, MaxLBA);
3140 	MPT_2_HOST16(rpd0, ErrorData.Reserved);
3141 	MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3142 	MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3143 }
3144 
3145 void
3146 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3147 {
3148 
3149 	MPT_2_HOST16(vi, TotalBlocks.High);
3150 	MPT_2_HOST16(vi, TotalBlocks.Low);
3151 	MPT_2_HOST16(vi, BlocksRemaining.High);
3152 	MPT_2_HOST16(vi, BlocksRemaining.Low);
3153 }
3154 #endif
3155