1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011-2015 LSI Corp. 34 * Copyright (c) 2013-2015 Avago Technologies 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 59 * 60 * $FreeBSD$ 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_compat.h" 67 68 /* TODO Move headers to mpsvar */ 69 #include <sys/types.h> 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/selinfo.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/conf.h> 77 #include <sys/bio.h> 78 #include <sys/malloc.h> 79 #include <sys/uio.h> 80 #include <sys/sysctl.h> 81 #include <sys/ioccom.h> 82 #include <sys/endian.h> 83 #include <sys/queue.h> 84 #include <sys/kthread.h> 85 #include <sys/taskqueue.h> 86 #include <sys/proc.h> 87 #include <sys/sysent.h> 88 89 #include <machine/bus.h> 90 #include <machine/resource.h> 91 #include <sys/rman.h> 92 93 #include <cam/cam.h> 94 #include <cam/cam_ccb.h> 95 #include <cam/scsi/scsi_all.h> 96 97 #include <dev/mps/mpi/mpi2_type.h> 98 #include <dev/mps/mpi/mpi2.h> 99 #include <dev/mps/mpi/mpi2_ioc.h> 100 #include <dev/mps/mpi/mpi2_cnfg.h> 101 #include <dev/mps/mpi/mpi2_init.h> 102 #include <dev/mps/mpi/mpi2_tool.h> 103 #include <dev/mps/mps_ioctl.h> 104 #include <dev/mps/mpsvar.h> 105 #include <dev/mps/mps_table.h> 106 #include <dev/mps/mps_sas.h> 107 #include <dev/pci/pcivar.h> 108 #include <dev/pci/pcireg.h> 109 110 static d_open_t mps_open; 111 static d_close_t mps_close; 112 static d_ioctl_t mps_ioctl_devsw; 113 114 static struct cdevsw mps_cdevsw = { 115 .d_version = D_VERSION, 116 .d_flags = 0, 117 .d_open = mps_open, 118 .d_close = mps_close, 119 .d_ioctl = mps_ioctl_devsw, 120 .d_name = "mps", 121 }; 122 123 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *); 124 static mps_user_f mpi_pre_ioc_facts; 125 static mps_user_f mpi_pre_port_facts; 126 static mps_user_f mpi_pre_fw_download; 127 static mps_user_f mpi_pre_fw_upload; 128 static mps_user_f mpi_pre_sata_passthrough; 129 static mps_user_f mpi_pre_smp_passthrough; 130 static mps_user_f mpi_pre_config; 131 static mps_user_f mpi_pre_sas_io_unit_control; 132 133 static int mps_user_read_cfg_header(struct mps_softc *, 134 struct mps_cfg_page_req *); 135 static int mps_user_read_cfg_page(struct mps_softc *, 136 struct mps_cfg_page_req *, void *); 137 static int mps_user_read_extcfg_header(struct mps_softc *, 138 struct mps_ext_cfg_page_req *); 139 static int mps_user_read_extcfg_page(struct mps_softc *, 140 struct mps_ext_cfg_page_req *, void *); 141 static int mps_user_write_cfg_page(struct mps_softc *, 142 struct mps_cfg_page_req *, void *); 143 static int mps_user_setup_request(struct mps_command *, 144 struct mps_usr_command *); 145 static int mps_user_command(struct mps_softc *, struct mps_usr_command *); 146 147 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data); 148 static void mps_user_get_adapter_data(struct mps_softc *sc, 149 mps_adapter_data_t *data); 150 static void mps_user_read_pci_info(struct mps_softc *sc, 151 mps_pci_info_t *data); 152 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc, 153 uint32_t unique_id); 154 static int mps_post_fw_diag_buffer(struct mps_softc *sc, 155 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 156 static int mps_release_fw_diag_buffer(struct mps_softc *sc, 157 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 158 uint32_t diag_type); 159 static int mps_diag_register(struct mps_softc *sc, 160 mps_fw_diag_register_t *diag_register, uint32_t *return_code); 161 static int mps_diag_unregister(struct mps_softc *sc, 162 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 163 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 164 uint32_t *return_code); 165 static int mps_diag_read_buffer(struct mps_softc *sc, 166 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 167 uint32_t *return_code); 168 static int mps_diag_release(struct mps_softc *sc, 169 mps_fw_diag_release_t *diag_release, uint32_t *return_code); 170 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action, 171 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 172 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data); 173 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data); 174 static void mps_user_event_enable(struct mps_softc *sc, 175 mps_event_enable_t *data); 176 static int mps_user_event_report(struct mps_softc *sc, 177 mps_event_report_t *data); 178 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data); 179 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data); 180 181 static MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls"); 182 183 /* Macros from compat/freebsd32/freebsd32.h */ 184 #define PTRIN(v) (void *)(uintptr_t)(v) 185 #define PTROUT(v) (uint32_t)(uintptr_t)(v) 186 187 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0) 188 #define PTRIN_CP(src,dst,fld) \ 189 do { (dst).fld = PTRIN((src).fld); } while (0) 190 #define PTROUT_CP(src,dst,fld) \ 191 do { (dst).fld = PTROUT((src).fld); } while (0) 192 193 int 194 mps_attach_user(struct mps_softc *sc) 195 { 196 int unit; 197 198 unit = device_get_unit(sc->mps_dev); 199 sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 200 "mps%d", unit); 201 if (sc->mps_cdev == NULL) { 202 return (ENOMEM); 203 } 204 sc->mps_cdev->si_drv1 = sc; 205 return (0); 206 } 207 208 void 209 mps_detach_user(struct mps_softc *sc) 210 { 211 212 /* XXX: do a purge of pending requests? */ 213 if (sc->mps_cdev != NULL) 214 destroy_dev(sc->mps_cdev); 215 } 216 217 static int 218 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td) 219 { 220 221 return (0); 222 } 223 224 static int 225 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td) 226 { 227 228 return (0); 229 } 230 231 static int 232 mps_user_read_cfg_header(struct mps_softc *sc, 233 struct mps_cfg_page_req *page_req) 234 { 235 MPI2_CONFIG_PAGE_HEADER *hdr; 236 struct mps_config_params params; 237 int error; 238 239 hdr = ¶ms.hdr.Struct; 240 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 241 params.page_address = le32toh(page_req->page_address); 242 hdr->PageVersion = 0; 243 hdr->PageLength = 0; 244 hdr->PageNumber = page_req->header.PageNumber; 245 hdr->PageType = page_req->header.PageType; 246 params.buffer = NULL; 247 params.length = 0; 248 params.callback = NULL; 249 250 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 251 /* 252 * Leave the request. Without resetting the chip, it's 253 * still owned by it and we'll just get into trouble 254 * freeing it now. Mark it as abandoned so that if it 255 * shows up later it can be freed. 256 */ 257 mps_printf(sc, "read_cfg_header timed out\n"); 258 return (ETIMEDOUT); 259 } 260 261 page_req->ioc_status = htole16(params.status); 262 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 263 MPI2_IOCSTATUS_SUCCESS) { 264 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 265 } 266 267 return (0); 268 } 269 270 static int 271 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req, 272 void *buf) 273 { 274 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 275 struct mps_config_params params; 276 int error; 277 278 reqhdr = buf; 279 hdr = ¶ms.hdr.Struct; 280 hdr->PageVersion = reqhdr->PageVersion; 281 hdr->PageLength = reqhdr->PageLength; 282 hdr->PageNumber = reqhdr->PageNumber; 283 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 284 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 285 params.page_address = le32toh(page_req->page_address); 286 params.buffer = buf; 287 params.length = le32toh(page_req->len); 288 params.callback = NULL; 289 290 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 291 mps_printf(sc, "mps_user_read_cfg_page timed out\n"); 292 return (ETIMEDOUT); 293 } 294 295 page_req->ioc_status = htole16(params.status); 296 return (0); 297 } 298 299 static int 300 mps_user_read_extcfg_header(struct mps_softc *sc, 301 struct mps_ext_cfg_page_req *ext_page_req) 302 { 303 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 304 struct mps_config_params params; 305 int error; 306 307 hdr = ¶ms.hdr.Ext; 308 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 309 hdr->PageVersion = ext_page_req->header.PageVersion; 310 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 311 hdr->ExtPageLength = 0; 312 hdr->PageNumber = ext_page_req->header.PageNumber; 313 hdr->ExtPageType = ext_page_req->header.ExtPageType; 314 params.page_address = le32toh(ext_page_req->page_address); 315 params.buffer = NULL; 316 params.length = 0; 317 params.callback = NULL; 318 319 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 320 /* 321 * Leave the request. Without resetting the chip, it's 322 * still owned by it and we'll just get into trouble 323 * freeing it now. Mark it as abandoned so that if it 324 * shows up later it can be freed. 325 */ 326 mps_printf(sc, "mps_user_read_extcfg_header timed out\n"); 327 return (ETIMEDOUT); 328 } 329 330 ext_page_req->ioc_status = htole16(params.status); 331 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 332 MPI2_IOCSTATUS_SUCCESS) { 333 ext_page_req->header.PageVersion = hdr->PageVersion; 334 ext_page_req->header.PageNumber = hdr->PageNumber; 335 ext_page_req->header.PageType = hdr->PageType; 336 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 337 ext_page_req->header.ExtPageType = hdr->ExtPageType; 338 } 339 340 return (0); 341 } 342 343 static int 344 mps_user_read_extcfg_page(struct mps_softc *sc, 345 struct mps_ext_cfg_page_req *ext_page_req, void *buf) 346 { 347 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 348 struct mps_config_params params; 349 int error; 350 351 reqhdr = buf; 352 hdr = ¶ms.hdr.Ext; 353 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 354 params.page_address = le32toh(ext_page_req->page_address); 355 hdr->PageVersion = reqhdr->PageVersion; 356 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 357 hdr->PageNumber = reqhdr->PageNumber; 358 hdr->ExtPageType = reqhdr->ExtPageType; 359 hdr->ExtPageLength = reqhdr->ExtPageLength; 360 params.buffer = buf; 361 params.length = le32toh(ext_page_req->len); 362 params.callback = NULL; 363 364 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 365 mps_printf(sc, "mps_user_read_extcfg_page timed out\n"); 366 return (ETIMEDOUT); 367 } 368 369 ext_page_req->ioc_status = htole16(params.status); 370 return (0); 371 } 372 373 static int 374 mps_user_write_cfg_page(struct mps_softc *sc, 375 struct mps_cfg_page_req *page_req, void *buf) 376 { 377 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 378 struct mps_config_params params; 379 u_int hdr_attr; 380 int error; 381 382 reqhdr = buf; 383 hdr = ¶ms.hdr.Struct; 384 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 385 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 386 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 387 mps_printf(sc, "page type 0x%x not changeable\n", 388 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 389 return (EINVAL); 390 } 391 392 /* 393 * There isn't any point in restoring stripped out attributes 394 * if you then mask them going down to issue the request. 395 */ 396 397 hdr->PageVersion = reqhdr->PageVersion; 398 hdr->PageLength = reqhdr->PageLength; 399 hdr->PageNumber = reqhdr->PageNumber; 400 hdr->PageType = reqhdr->PageType; 401 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 402 params.page_address = le32toh(page_req->page_address); 403 params.buffer = buf; 404 params.length = le32toh(page_req->len); 405 params.callback = NULL; 406 407 if ((error = mps_write_config_page(sc, ¶ms)) != 0) { 408 mps_printf(sc, "mps_write_cfg_page timed out\n"); 409 return (ETIMEDOUT); 410 } 411 412 page_req->ioc_status = htole16(params.status); 413 return (0); 414 } 415 416 void 417 mpi_init_sge(struct mps_command *cm, void *req, void *sge) 418 { 419 int off, space; 420 421 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4; 422 off = (uintptr_t)sge - (uintptr_t)req; 423 424 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 425 req, sge, off, space)); 426 427 cm->cm_sge = sge; 428 cm->cm_sglsize = space - off; 429 } 430 431 /* 432 * Prepare the mps_command for an IOC_FACTS request. 433 */ 434 static int 435 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd) 436 { 437 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 438 MPI2_IOC_FACTS_REPLY *rpl; 439 440 if (cmd->req_len != sizeof *req) 441 return (EINVAL); 442 if (cmd->rpl_len != sizeof *rpl) 443 return (EINVAL); 444 445 cm->cm_sge = NULL; 446 cm->cm_sglsize = 0; 447 return (0); 448 } 449 450 /* 451 * Prepare the mps_command for a PORT_FACTS request. 452 */ 453 static int 454 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd) 455 { 456 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 457 MPI2_PORT_FACTS_REPLY *rpl; 458 459 if (cmd->req_len != sizeof *req) 460 return (EINVAL); 461 if (cmd->rpl_len != sizeof *rpl) 462 return (EINVAL); 463 464 cm->cm_sge = NULL; 465 cm->cm_sglsize = 0; 466 return (0); 467 } 468 469 /* 470 * Prepare the mps_command for a FW_DOWNLOAD request. 471 */ 472 static int 473 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd) 474 { 475 MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 476 MPI2_FW_DOWNLOAD_REPLY *rpl; 477 MPI2_FW_DOWNLOAD_TCSGE tc; 478 int error; 479 480 /* 481 * This code assumes there is room in the request's SGL for 482 * the TransactionContext plus at least a SGL chain element. 483 */ 484 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 485 486 if (cmd->req_len != sizeof *req) 487 return (EINVAL); 488 if (cmd->rpl_len != sizeof *rpl) 489 return (EINVAL); 490 491 if (cmd->len == 0) 492 return (EINVAL); 493 494 error = copyin(cmd->buf, cm->cm_data, cmd->len); 495 if (error != 0) 496 return (error); 497 498 mpi_init_sge(cm, req, &req->SGL); 499 bzero(&tc, sizeof tc); 500 501 /* 502 * For now, the F/W image must be provided in a single request. 503 */ 504 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 505 return (EINVAL); 506 if (req->TotalImageSize != cmd->len) 507 return (EINVAL); 508 509 /* 510 * The value of the first two elements is specified in the 511 * Fusion-MPT Message Passing Interface document. 512 */ 513 tc.ContextSize = 0; 514 tc.DetailsLength = 12; 515 tc.ImageOffset = 0; 516 tc.ImageSize = cmd->len; 517 518 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 519 520 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 521 } 522 523 /* 524 * Prepare the mps_command for a FW_UPLOAD request. 525 */ 526 static int 527 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd) 528 { 529 MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 530 MPI2_FW_UPLOAD_REPLY *rpl; 531 MPI2_FW_UPLOAD_TCSGE tc; 532 533 /* 534 * This code assumes there is room in the request's SGL for 535 * the TransactionContext plus at least a SGL chain element. 536 */ 537 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 538 539 if (cmd->req_len != sizeof *req) 540 return (EINVAL); 541 if (cmd->rpl_len != sizeof *rpl) 542 return (EINVAL); 543 544 mpi_init_sge(cm, req, &req->SGL); 545 bzero(&tc, sizeof tc); 546 547 /* 548 * The value of the first two elements is specified in the 549 * Fusion-MPT Message Passing Interface document. 550 */ 551 tc.ContextSize = 0; 552 tc.DetailsLength = 12; 553 /* 554 * XXX Is there any reason to fetch a partial image? I.e. to 555 * set ImageOffset to something other than 0? 556 */ 557 tc.ImageOffset = 0; 558 tc.ImageSize = cmd->len; 559 560 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 561 562 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 563 } 564 565 /* 566 * Prepare the mps_command for a SATA_PASSTHROUGH request. 567 */ 568 static int 569 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 570 { 571 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 572 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 573 574 if (cmd->req_len != sizeof *req) 575 return (EINVAL); 576 if (cmd->rpl_len != sizeof *rpl) 577 return (EINVAL); 578 579 mpi_init_sge(cm, req, &req->SGL); 580 return (0); 581 } 582 583 /* 584 * Prepare the mps_command for a SMP_PASSTHROUGH request. 585 */ 586 static int 587 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 588 { 589 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 590 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 591 592 if (cmd->req_len != sizeof *req) 593 return (EINVAL); 594 if (cmd->rpl_len != sizeof *rpl) 595 return (EINVAL); 596 597 mpi_init_sge(cm, req, &req->SGL); 598 return (0); 599 } 600 601 /* 602 * Prepare the mps_command for a CONFIG request. 603 */ 604 static int 605 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd) 606 { 607 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 608 MPI2_CONFIG_REPLY *rpl; 609 610 if (cmd->req_len != sizeof *req) 611 return (EINVAL); 612 if (cmd->rpl_len != sizeof *rpl) 613 return (EINVAL); 614 615 mpi_init_sge(cm, req, &req->PageBufferSGE); 616 return (0); 617 } 618 619 /* 620 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 621 */ 622 static int 623 mpi_pre_sas_io_unit_control(struct mps_command *cm, 624 struct mps_usr_command *cmd) 625 { 626 627 cm->cm_sge = NULL; 628 cm->cm_sglsize = 0; 629 return (0); 630 } 631 632 /* 633 * A set of functions to prepare an mps_command for the various 634 * supported requests. 635 */ 636 struct mps_user_func { 637 U8 Function; 638 mps_user_f *f_pre; 639 } mps_user_func_list[] = { 640 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 641 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 642 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 643 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 644 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 645 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 646 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 647 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 648 { 0xFF, NULL } /* list end */ 649 }; 650 651 static int 652 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd) 653 { 654 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 655 struct mps_user_func *f; 656 657 for (f = mps_user_func_list; f->f_pre != NULL; f++) { 658 if (hdr->Function == f->Function) 659 return (f->f_pre(cm, cmd)); 660 } 661 return (EINVAL); 662 } 663 664 static int 665 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd) 666 { 667 MPI2_REQUEST_HEADER *hdr; 668 MPI2_DEFAULT_REPLY *rpl; 669 void *buf = NULL; 670 struct mps_command *cm = NULL; 671 int err = 0; 672 int sz; 673 674 mps_lock(sc); 675 cm = mps_alloc_command(sc); 676 677 if (cm == NULL) { 678 mps_printf(sc, "%s: no mps requests\n", __func__); 679 err = ENOMEM; 680 goto Ret; 681 } 682 mps_unlock(sc); 683 684 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 685 686 mps_dprint(sc, MPS_USER, "%s: req %p %d rpl %p %d\n", __func__, 687 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 688 689 if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) { 690 err = EINVAL; 691 goto RetFreeUnlocked; 692 } 693 err = copyin(cmd->req, hdr, cmd->req_len); 694 if (err != 0) 695 goto RetFreeUnlocked; 696 697 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 698 hdr->Function, hdr->MsgFlags); 699 700 if (cmd->len > 0) { 701 buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO); 702 if(!buf) { 703 mps_printf(sc, "Cannot allocate memory %s %d\n", 704 __func__, __LINE__); 705 return (ENOMEM); 706 } 707 cm->cm_data = buf; 708 cm->cm_length = cmd->len; 709 } else { 710 cm->cm_data = NULL; 711 cm->cm_length = 0; 712 } 713 714 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE; 715 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 716 717 err = mps_user_setup_request(cm, cmd); 718 if (err == EINVAL) { 719 mps_printf(sc, "%s: unsupported parameter or unsupported " 720 "function in request (function = 0x%X)\n", __func__, 721 hdr->Function); 722 } 723 if (err != 0) 724 goto RetFreeUnlocked; 725 726 mps_lock(sc); 727 err = mps_wait_command(sc, cm, 60, CAN_SLEEP); 728 729 if (err) { 730 mps_printf(sc, "%s: invalid request: error %d\n", 731 __func__, err); 732 goto Ret; 733 } 734 735 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 736 if (rpl != NULL) 737 sz = rpl->MsgLength * 4; 738 else 739 sz = 0; 740 741 if (sz > cmd->rpl_len) { 742 mps_printf(sc, "%s: user reply buffer (%d) smaller than " 743 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 744 sz = cmd->rpl_len; 745 } 746 747 mps_unlock(sc); 748 copyout(rpl, cmd->rpl, sz); 749 if (buf != NULL) 750 copyout(buf, cmd->buf, cmd->len); 751 mps_dprint(sc, MPS_USER, "%s: reply size %d\n", __func__, sz); 752 753 RetFreeUnlocked: 754 mps_lock(sc); 755 if (cm != NULL) 756 mps_free_command(sc, cm); 757 Ret: 758 mps_unlock(sc); 759 if (buf != NULL) 760 free(buf, M_MPSUSER); 761 return (err); 762 } 763 764 static int 765 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data) 766 { 767 MPI2_REQUEST_HEADER *hdr, tmphdr; 768 MPI2_DEFAULT_REPLY *rpl; 769 struct mps_command *cm = NULL; 770 int err = 0, dir = 0, sz; 771 uint8_t function = 0; 772 u_int sense_len; 773 struct mpssas_target *targ = NULL; 774 775 /* 776 * Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY 777 * bit to denote that a passthru is being processed. 778 */ 779 mps_lock(sc); 780 if (sc->mps_flags & MPS_FLAGS_BUSY) { 781 mps_dprint(sc, MPS_USER, "%s: Only one passthru command " 782 "allowed at a single time.", __func__); 783 mps_unlock(sc); 784 return (EBUSY); 785 } 786 sc->mps_flags |= MPS_FLAGS_BUSY; 787 mps_unlock(sc); 788 789 /* 790 * Do some validation on data direction. Valid cases are: 791 * 1) DataSize is 0 and direction is NONE 792 * 2) DataSize is non-zero and one of: 793 * a) direction is READ or 794 * b) direction is WRITE or 795 * c) direction is BOTH and DataOutSize is non-zero 796 * If valid and the direction is BOTH, change the direction to READ. 797 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 798 */ 799 if (((data->DataSize == 0) && 800 (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) || 801 ((data->DataSize != 0) && 802 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) || 803 (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) || 804 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) && 805 (data->DataOutSize != 0))))) { 806 if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) 807 data->DataDirection = MPS_PASS_THRU_DIRECTION_READ; 808 else 809 data->DataOutSize = 0; 810 } else 811 return (EINVAL); 812 813 mps_dprint(sc, MPS_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 814 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 815 data->PtrRequest, data->RequestSize, data->PtrReply, 816 data->ReplySize, data->PtrData, data->DataSize, 817 data->PtrDataOut, data->DataOutSize, data->DataDirection); 818 819 /* 820 * copy in the header so we know what we're dealing with before we 821 * commit to allocating a command for it. 822 */ 823 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 824 if (err != 0) 825 goto RetFreeUnlocked; 826 827 if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) { 828 err = EINVAL; 829 goto RetFreeUnlocked; 830 } 831 832 function = tmphdr.Function; 833 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 834 function, tmphdr.MsgFlags); 835 836 /* 837 * Handle a passthru TM request. 838 */ 839 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 840 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 841 842 mps_lock(sc); 843 cm = mpssas_alloc_tm(sc); 844 if (cm == NULL) { 845 err = EINVAL; 846 goto Ret; 847 } 848 849 /* Copy the header in. Only a small fixup is needed. */ 850 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 851 bcopy(&tmphdr, task, data->RequestSize); 852 task->TaskMID = cm->cm_desc.Default.SMID; 853 854 cm->cm_data = NULL; 855 cm->cm_desc.HighPriority.RequestFlags = 856 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 857 cm->cm_complete = NULL; 858 cm->cm_complete_data = NULL; 859 860 targ = mpssas_find_target_by_handle(sc->sassc, 0, 861 task->DevHandle); 862 if (targ == NULL) { 863 mps_dprint(sc, MPS_INFO, 864 "%s %d : invalid handle for requested TM 0x%x \n", 865 __func__, __LINE__, task->DevHandle); 866 err = 1; 867 } else { 868 mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 869 err = mps_wait_command(sc, cm, 30, CAN_SLEEP); 870 } 871 872 if (err != 0) { 873 err = EIO; 874 mps_dprint(sc, MPS_FAULT, "%s: task management failed", 875 __func__); 876 } 877 /* 878 * Copy the reply data and sense data to user space. 879 */ 880 if (cm->cm_reply != NULL) { 881 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 882 sz = rpl->MsgLength * 4; 883 884 if (sz > data->ReplySize) { 885 mps_printf(sc, "%s: user reply buffer (%d) " 886 "smaller than returned buffer (%d)\n", 887 __func__, data->ReplySize, sz); 888 } 889 mps_unlock(sc); 890 copyout(cm->cm_reply, PTRIN(data->PtrReply), 891 data->ReplySize); 892 mps_lock(sc); 893 } 894 mpssas_free_tm(sc, cm); 895 goto Ret; 896 } 897 898 mps_lock(sc); 899 cm = mps_alloc_command(sc); 900 901 if (cm == NULL) { 902 mps_printf(sc, "%s: no mps requests\n", __func__); 903 err = ENOMEM; 904 goto Ret; 905 } 906 mps_unlock(sc); 907 908 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 909 bcopy(&tmphdr, hdr, data->RequestSize); 910 911 /* 912 * Do some checking to make sure the IOCTL request contains a valid 913 * request. Then set the SGL info. 914 */ 915 mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 916 917 /* 918 * Set up for read, write or both. From check above, DataOutSize will 919 * be 0 if direction is READ or WRITE, but it will have some non-zero 920 * value if the direction is BOTH. So, just use the biggest size to get 921 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 922 * up; the first is for the request and the second will contain the 923 * response data. cm_out_len needs to be set here and this will be used 924 * when the SGLs are set up. 925 */ 926 cm->cm_data = NULL; 927 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 928 cm->cm_out_len = data->DataOutSize; 929 cm->cm_flags = 0; 930 if (cm->cm_length != 0) { 931 cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK | 932 M_ZERO); 933 if (cm->cm_data == NULL) { 934 mps_dprint(sc, MPS_FAULT, "%s: alloc failed for IOCTL " 935 "passthru length %d\n", __func__, cm->cm_length); 936 } else { 937 cm->cm_flags = MPS_CM_FLAGS_DATAIN; 938 if (data->DataOutSize) { 939 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 940 err = copyin(PTRIN(data->PtrDataOut), 941 cm->cm_data, data->DataOutSize); 942 } else if (data->DataDirection == 943 MPS_PASS_THRU_DIRECTION_WRITE) { 944 cm->cm_flags = MPS_CM_FLAGS_DATAOUT; 945 err = copyin(PTRIN(data->PtrData), 946 cm->cm_data, data->DataSize); 947 } 948 if (err != 0) 949 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 950 "IOCTL data from user space\n", __func__); 951 } 952 } 953 cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE; 954 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 955 956 /* 957 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 958 * uses SCSI IO descriptor. 959 */ 960 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 961 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 962 MPI2_SCSI_IO_REQUEST *scsi_io_req; 963 964 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 965 /* 966 * Put SGE for data and data_out buffer at the end of 967 * scsi_io_request message header (64 bytes in total). 968 * Following above SGEs, the residual space will be used by 969 * sense data. 970 */ 971 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 972 64); 973 scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 974 975 /* 976 * Set SGLOffset0 value. This is the number of dwords that SGL 977 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 978 */ 979 scsi_io_req->SGLOffset0 = 24; 980 981 /* 982 * Setup descriptor info. RAID passthrough must use the 983 * default request descriptor which is already set, so if this 984 * is a SCSI IO request, change the descriptor to SCSI IO. 985 * Also, if this is a SCSI IO request, handle the reply in the 986 * mpssas_scsio_complete function. 987 */ 988 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 989 cm->cm_desc.SCSIIO.RequestFlags = 990 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 991 cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle; 992 993 /* 994 * Make sure the DevHandle is not 0 because this is a 995 * likely error. 996 */ 997 if (scsi_io_req->DevHandle == 0) { 998 err = EINVAL; 999 goto RetFreeUnlocked; 1000 } 1001 } 1002 } 1003 1004 mps_lock(sc); 1005 1006 err = mps_wait_command(sc, cm, 30, CAN_SLEEP); 1007 1008 if (err) { 1009 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1010 err); 1011 mps_unlock(sc); 1012 goto RetFreeUnlocked; 1013 } 1014 1015 /* 1016 * Sync the DMA data, if any. Then copy the data to user space. 1017 */ 1018 if (cm->cm_data != NULL) { 1019 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 1020 dir = BUS_DMASYNC_POSTREAD; 1021 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 1022 dir = BUS_DMASYNC_POSTWRITE; 1023 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1024 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1025 1026 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 1027 mps_unlock(sc); 1028 err = copyout(cm->cm_data, 1029 PTRIN(data->PtrData), data->DataSize); 1030 mps_lock(sc); 1031 if (err != 0) 1032 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 1033 "IOCTL data to user space\n", __func__); 1034 } 1035 } 1036 1037 /* 1038 * Copy the reply data and sense data to user space. 1039 */ 1040 if (cm->cm_reply != NULL) { 1041 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1042 sz = rpl->MsgLength * 4; 1043 1044 if (sz > data->ReplySize) { 1045 mps_printf(sc, "%s: user reply buffer (%d) smaller " 1046 "than returned buffer (%d)\n", __func__, 1047 data->ReplySize, sz); 1048 } 1049 mps_unlock(sc); 1050 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1051 mps_lock(sc); 1052 1053 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1054 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1055 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1056 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1057 sense_len = 1058 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->SenseCount)), 1059 sizeof(struct scsi_sense_data)); 1060 mps_unlock(sc); 1061 copyout(cm->cm_sense, cm->cm_req + 64, sense_len); 1062 mps_lock(sc); 1063 } 1064 } 1065 } 1066 mps_unlock(sc); 1067 1068 RetFreeUnlocked: 1069 mps_lock(sc); 1070 1071 if (cm != NULL) { 1072 if (cm->cm_data) 1073 free(cm->cm_data, M_MPSUSER); 1074 mps_free_command(sc, cm); 1075 } 1076 Ret: 1077 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1078 mps_unlock(sc); 1079 1080 return (err); 1081 } 1082 1083 static void 1084 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data) 1085 { 1086 Mpi2ConfigReply_t mpi_reply; 1087 Mpi2BiosPage3_t config_page; 1088 1089 /* 1090 * Use the PCI interface functions to get the Bus, Device, and Function 1091 * information. 1092 */ 1093 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev); 1094 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev); 1095 data->PciInformation.u.bits.FunctionNumber = 1096 pci_get_function(sc->mps_dev); 1097 1098 /* 1099 * Get the FW version that should already be saved in IOC Facts. 1100 */ 1101 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1102 1103 /* 1104 * General device info. 1105 */ 1106 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2; 1107 if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE) 1108 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200; 1109 data->PCIDeviceHwId = pci_get_device(sc->mps_dev); 1110 data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1); 1111 data->SubSystemId = pci_get_subdevice(sc->mps_dev); 1112 data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev); 1113 1114 /* 1115 * Get the driver version. 1116 */ 1117 strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION); 1118 1119 /* 1120 * Need to get BIOS Config Page 3 for the BIOS Version. 1121 */ 1122 data->BiosVersion = 0; 1123 mps_lock(sc); 1124 if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1125 printf("%s: Error while retrieving BIOS Version\n", __func__); 1126 else 1127 data->BiosVersion = config_page.BiosVersion; 1128 mps_unlock(sc); 1129 } 1130 1131 static void 1132 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data) 1133 { 1134 int i; 1135 1136 /* 1137 * Use the PCI interface functions to get the Bus, Device, and Function 1138 * information. 1139 */ 1140 data->BusNumber = pci_get_bus(sc->mps_dev); 1141 data->DeviceNumber = pci_get_slot(sc->mps_dev); 1142 data->FunctionNumber = pci_get_function(sc->mps_dev); 1143 1144 /* 1145 * Now get the interrupt vector and the pci header. The vector can 1146 * only be 0 right now. The header is the first 256 bytes of config 1147 * space. 1148 */ 1149 data->InterruptVector = 0; 1150 for (i = 0; i < sizeof (data->PciHeader); i++) { 1151 data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1); 1152 } 1153 } 1154 1155 static uint8_t 1156 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id) 1157 { 1158 uint8_t index; 1159 1160 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1161 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1162 return (index); 1163 } 1164 } 1165 1166 return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND); 1167 } 1168 1169 static int 1170 mps_post_fw_diag_buffer(struct mps_softc *sc, 1171 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1172 { 1173 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1174 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1175 struct mps_command *cm = NULL; 1176 int i, status; 1177 1178 /* 1179 * If buffer is not enabled, just leave. 1180 */ 1181 *return_code = MPS_FW_DIAG_ERROR_POST_FAILED; 1182 if (!pBuffer->enabled) { 1183 return (MPS_DIAG_FAILURE); 1184 } 1185 1186 /* 1187 * Clear some flags initially. 1188 */ 1189 pBuffer->force_release = FALSE; 1190 pBuffer->valid_data = FALSE; 1191 pBuffer->owned_by_firmware = FALSE; 1192 1193 /* 1194 * Get a command. 1195 */ 1196 cm = mps_alloc_command(sc); 1197 if (cm == NULL) { 1198 mps_printf(sc, "%s: no mps requests\n", __func__); 1199 return (MPS_DIAG_FAILURE); 1200 } 1201 1202 /* 1203 * Build the request for releasing the FW Diag Buffer and send it. 1204 */ 1205 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1206 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1207 req->BufferType = pBuffer->buffer_type; 1208 req->ExtendedType = pBuffer->extended_type; 1209 req->BufferLength = pBuffer->size; 1210 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1211 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1212 mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1213 cm->cm_data = NULL; 1214 cm->cm_length = 0; 1215 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1216 cm->cm_complete_data = NULL; 1217 1218 /* 1219 * Send command synchronously. 1220 */ 1221 status = mps_wait_command(sc, cm, 30, CAN_SLEEP); 1222 if (status) { 1223 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1224 status); 1225 status = MPS_DIAG_FAILURE; 1226 goto done; 1227 } 1228 1229 /* 1230 * Process POST reply. 1231 */ 1232 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1233 if (reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) { 1234 status = MPS_DIAG_FAILURE; 1235 mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed " 1236 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1237 "TransferLength = 0x%x\n", __func__, reply->IOCStatus, 1238 reply->IOCLogInfo, reply->TransferLength); 1239 goto done; 1240 } 1241 1242 /* 1243 * Post was successful. 1244 */ 1245 pBuffer->valid_data = TRUE; 1246 pBuffer->owned_by_firmware = TRUE; 1247 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1248 status = MPS_DIAG_SUCCESS; 1249 1250 done: 1251 mps_free_command(sc, cm); 1252 return (status); 1253 } 1254 1255 static int 1256 mps_release_fw_diag_buffer(struct mps_softc *sc, 1257 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1258 uint32_t diag_type) 1259 { 1260 MPI2_DIAG_RELEASE_REQUEST *req; 1261 MPI2_DIAG_RELEASE_REPLY *reply; 1262 struct mps_command *cm = NULL; 1263 int status; 1264 1265 /* 1266 * If buffer is not enabled, just leave. 1267 */ 1268 *return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED; 1269 if (!pBuffer->enabled) { 1270 mps_dprint(sc, MPS_USER, "%s: This buffer type is not " 1271 "supported by the IOC", __func__); 1272 return (MPS_DIAG_FAILURE); 1273 } 1274 1275 /* 1276 * Clear some flags initially. 1277 */ 1278 pBuffer->force_release = FALSE; 1279 pBuffer->valid_data = FALSE; 1280 pBuffer->owned_by_firmware = FALSE; 1281 1282 /* 1283 * Get a command. 1284 */ 1285 cm = mps_alloc_command(sc); 1286 if (cm == NULL) { 1287 mps_printf(sc, "%s: no mps requests\n", __func__); 1288 return (MPS_DIAG_FAILURE); 1289 } 1290 1291 /* 1292 * Build the request for releasing the FW Diag Buffer and send it. 1293 */ 1294 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1295 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1296 req->BufferType = pBuffer->buffer_type; 1297 cm->cm_data = NULL; 1298 cm->cm_length = 0; 1299 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1300 cm->cm_complete_data = NULL; 1301 1302 /* 1303 * Send command synchronously. 1304 */ 1305 status = mps_wait_command(sc, cm, 30, CAN_SLEEP); 1306 if (status) { 1307 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1308 status); 1309 status = MPS_DIAG_FAILURE; 1310 goto done; 1311 } 1312 1313 /* 1314 * Process RELEASE reply. 1315 */ 1316 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1317 if ((reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) || 1318 pBuffer->owned_by_firmware) { 1319 status = MPS_DIAG_FAILURE; 1320 mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer " 1321 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1322 __func__, reply->IOCStatus, reply->IOCLogInfo); 1323 goto done; 1324 } 1325 1326 /* 1327 * Release was successful. 1328 */ 1329 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1330 status = MPS_DIAG_SUCCESS; 1331 1332 /* 1333 * If this was for an UNREGISTER diag type command, clear the unique ID. 1334 */ 1335 if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) { 1336 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1337 } 1338 1339 done: 1340 return (status); 1341 } 1342 1343 static int 1344 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register, 1345 uint32_t *return_code) 1346 { 1347 mps_fw_diagnostic_buffer_t *pBuffer; 1348 uint8_t extended_type, buffer_type, i; 1349 uint32_t buffer_size; 1350 uint32_t unique_id; 1351 int status; 1352 1353 extended_type = diag_register->ExtendedType; 1354 buffer_type = diag_register->BufferType; 1355 buffer_size = diag_register->RequestedBufferSize; 1356 unique_id = diag_register->UniqueId; 1357 1358 /* 1359 * Check for valid buffer type 1360 */ 1361 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1362 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1363 return (MPS_DIAG_FAILURE); 1364 } 1365 1366 /* 1367 * Get the current buffer and look up the unique ID. The unique ID 1368 * should not be found. If it is, the ID is already in use. 1369 */ 1370 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1371 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1372 if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1373 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1374 return (MPS_DIAG_FAILURE); 1375 } 1376 1377 /* 1378 * The buffer's unique ID should not be registered yet, and the given 1379 * unique ID cannot be 0. 1380 */ 1381 if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) || 1382 (unique_id == MPS_FW_DIAG_INVALID_UID)) { 1383 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1384 return (MPS_DIAG_FAILURE); 1385 } 1386 1387 /* 1388 * If this buffer is already posted as immediate, just change owner. 1389 */ 1390 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1391 (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) { 1392 pBuffer->immediate = FALSE; 1393 pBuffer->unique_id = unique_id; 1394 return (MPS_DIAG_SUCCESS); 1395 } 1396 1397 /* 1398 * Post a new buffer after checking if it's enabled. The DMA buffer 1399 * that is allocated will be contiguous (nsegments = 1). 1400 */ 1401 if (!pBuffer->enabled) { 1402 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1403 return (MPS_DIAG_FAILURE); 1404 } 1405 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1406 1, 0, /* algnmnt, boundary */ 1407 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1408 BUS_SPACE_MAXADDR, /* highaddr */ 1409 NULL, NULL, /* filter, filterarg */ 1410 buffer_size, /* maxsize */ 1411 1, /* nsegments */ 1412 buffer_size, /* maxsegsize */ 1413 0, /* flags */ 1414 NULL, NULL, /* lockfunc, lockarg */ 1415 &sc->fw_diag_dmat)) { 1416 device_printf(sc->mps_dev, "Cannot allocate FW diag buffer DMA " 1417 "tag\n"); 1418 return (ENOMEM); 1419 } 1420 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1421 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1422 device_printf(sc->mps_dev, "Cannot allocate FW diag buffer " 1423 "memory\n"); 1424 return (ENOMEM); 1425 } 1426 bzero(sc->fw_diag_buffer, buffer_size); 1427 bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer, 1428 buffer_size, mps_memaddr_cb, &sc->fw_diag_busaddr, 0); 1429 pBuffer->size = buffer_size; 1430 1431 /* 1432 * Copy the given info to the diag buffer and post the buffer. 1433 */ 1434 pBuffer->buffer_type = buffer_type; 1435 pBuffer->immediate = FALSE; 1436 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1437 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1438 i++) { 1439 pBuffer->product_specific[i] = 1440 diag_register->ProductSpecific[i]; 1441 } 1442 } 1443 pBuffer->extended_type = extended_type; 1444 pBuffer->unique_id = unique_id; 1445 status = mps_post_fw_diag_buffer(sc, pBuffer, return_code); 1446 1447 /* 1448 * In case there was a failure, free the DMA buffer. 1449 */ 1450 if (status == MPS_DIAG_FAILURE) { 1451 if (sc->fw_diag_busaddr != 0) 1452 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1453 if (sc->fw_diag_buffer != NULL) 1454 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1455 sc->fw_diag_map); 1456 if (sc->fw_diag_dmat != NULL) 1457 bus_dma_tag_destroy(sc->fw_diag_dmat); 1458 } 1459 1460 return (status); 1461 } 1462 1463 static int 1464 mps_diag_unregister(struct mps_softc *sc, 1465 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1466 { 1467 mps_fw_diagnostic_buffer_t *pBuffer; 1468 uint8_t i; 1469 uint32_t unique_id; 1470 int status; 1471 1472 unique_id = diag_unregister->UniqueId; 1473 1474 /* 1475 * Get the current buffer and look up the unique ID. The unique ID 1476 * should be there. 1477 */ 1478 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1479 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1480 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1481 return (MPS_DIAG_FAILURE); 1482 } 1483 1484 pBuffer = &sc->fw_diag_buffer_list[i]; 1485 1486 /* 1487 * Try to release the buffer from FW before freeing it. If release 1488 * fails, don't free the DMA buffer in case FW tries to access it 1489 * later. If buffer is not owned by firmware, can't release it. 1490 */ 1491 if (!pBuffer->owned_by_firmware) { 1492 status = MPS_DIAG_SUCCESS; 1493 } else { 1494 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1495 MPS_FW_DIAG_TYPE_UNREGISTER); 1496 } 1497 1498 /* 1499 * At this point, return the current status no matter what happens with 1500 * the DMA buffer. 1501 */ 1502 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1503 if (status == MPS_DIAG_SUCCESS) { 1504 if (sc->fw_diag_busaddr != 0) 1505 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1506 if (sc->fw_diag_buffer != NULL) 1507 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1508 sc->fw_diag_map); 1509 if (sc->fw_diag_dmat != NULL) 1510 bus_dma_tag_destroy(sc->fw_diag_dmat); 1511 } 1512 1513 return (status); 1514 } 1515 1516 static int 1517 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 1518 uint32_t *return_code) 1519 { 1520 mps_fw_diagnostic_buffer_t *pBuffer; 1521 uint8_t i; 1522 uint32_t unique_id; 1523 1524 unique_id = diag_query->UniqueId; 1525 1526 /* 1527 * If ID is valid, query on ID. 1528 * If ID is invalid, query on buffer type. 1529 */ 1530 if (unique_id == MPS_FW_DIAG_INVALID_UID) { 1531 i = diag_query->BufferType; 1532 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1533 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1534 return (MPS_DIAG_FAILURE); 1535 } 1536 } else { 1537 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1538 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1539 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1540 return (MPS_DIAG_FAILURE); 1541 } 1542 } 1543 1544 /* 1545 * Fill query structure with the diag buffer info. 1546 */ 1547 pBuffer = &sc->fw_diag_buffer_list[i]; 1548 diag_query->BufferType = pBuffer->buffer_type; 1549 diag_query->ExtendedType = pBuffer->extended_type; 1550 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1551 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1552 i++) { 1553 diag_query->ProductSpecific[i] = 1554 pBuffer->product_specific[i]; 1555 } 1556 } 1557 diag_query->TotalBufferSize = pBuffer->size; 1558 diag_query->DriverAddedBufferSize = 0; 1559 diag_query->UniqueId = pBuffer->unique_id; 1560 diag_query->ApplicationFlags = 0; 1561 diag_query->DiagnosticFlags = 0; 1562 1563 /* 1564 * Set/Clear application flags 1565 */ 1566 if (pBuffer->immediate) { 1567 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED; 1568 } else { 1569 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED; 1570 } 1571 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1572 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID; 1573 } else { 1574 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID; 1575 } 1576 if (pBuffer->owned_by_firmware) { 1577 diag_query->ApplicationFlags |= 1578 MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1579 } else { 1580 diag_query->ApplicationFlags &= 1581 ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1582 } 1583 1584 return (MPS_DIAG_SUCCESS); 1585 } 1586 1587 static int 1588 mps_diag_read_buffer(struct mps_softc *sc, 1589 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1590 uint32_t *return_code) 1591 { 1592 mps_fw_diagnostic_buffer_t *pBuffer; 1593 uint8_t i, *pData; 1594 uint32_t unique_id; 1595 int status; 1596 1597 unique_id = diag_read_buffer->UniqueId; 1598 1599 /* 1600 * Get the current buffer and look up the unique ID. The unique ID 1601 * should be there. 1602 */ 1603 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1604 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1605 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1606 return (MPS_DIAG_FAILURE); 1607 } 1608 1609 pBuffer = &sc->fw_diag_buffer_list[i]; 1610 1611 /* 1612 * Make sure requested read is within limits 1613 */ 1614 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1615 pBuffer->size) { 1616 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1617 return (MPS_DIAG_FAILURE); 1618 } 1619 1620 /* 1621 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1622 * buffer that was allocated is one contiguous buffer. 1623 */ 1624 pData = (uint8_t *)(sc->fw_diag_buffer + 1625 diag_read_buffer->StartingOffset); 1626 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1627 return (MPS_DIAG_FAILURE); 1628 diag_read_buffer->Status = 0; 1629 1630 /* 1631 * Set or clear the Force Release flag. 1632 */ 1633 if (pBuffer->force_release) { 1634 diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1635 } else { 1636 diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1637 } 1638 1639 /* 1640 * If buffer is to be reregistered, make sure it's not already owned by 1641 * firmware first. 1642 */ 1643 status = MPS_DIAG_SUCCESS; 1644 if (!pBuffer->owned_by_firmware) { 1645 if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) { 1646 status = mps_post_fw_diag_buffer(sc, pBuffer, 1647 return_code); 1648 } 1649 } 1650 1651 return (status); 1652 } 1653 1654 static int 1655 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release, 1656 uint32_t *return_code) 1657 { 1658 mps_fw_diagnostic_buffer_t *pBuffer; 1659 uint8_t i; 1660 uint32_t unique_id; 1661 int status; 1662 1663 unique_id = diag_release->UniqueId; 1664 1665 /* 1666 * Get the current buffer and look up the unique ID. The unique ID 1667 * should be there. 1668 */ 1669 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1670 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1671 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1672 return (MPS_DIAG_FAILURE); 1673 } 1674 1675 pBuffer = &sc->fw_diag_buffer_list[i]; 1676 1677 /* 1678 * If buffer is not owned by firmware, it's already been released. 1679 */ 1680 if (!pBuffer->owned_by_firmware) { 1681 *return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED; 1682 return (MPS_DIAG_FAILURE); 1683 } 1684 1685 /* 1686 * Release the buffer. 1687 */ 1688 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1689 MPS_FW_DIAG_TYPE_RELEASE); 1690 return (status); 1691 } 1692 1693 static int 1694 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action, 1695 uint32_t length, uint32_t *return_code) 1696 { 1697 mps_fw_diag_register_t diag_register; 1698 mps_fw_diag_unregister_t diag_unregister; 1699 mps_fw_diag_query_t diag_query; 1700 mps_diag_read_buffer_t diag_read_buffer; 1701 mps_fw_diag_release_t diag_release; 1702 int status = MPS_DIAG_SUCCESS; 1703 uint32_t original_return_code; 1704 1705 original_return_code = *return_code; 1706 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1707 1708 switch (action) { 1709 case MPS_FW_DIAG_TYPE_REGISTER: 1710 if (!length) { 1711 *return_code = 1712 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1713 status = MPS_DIAG_FAILURE; 1714 break; 1715 } 1716 if (copyin(diag_action, &diag_register, 1717 sizeof(diag_register)) != 0) 1718 return (MPS_DIAG_FAILURE); 1719 status = mps_diag_register(sc, &diag_register, 1720 return_code); 1721 break; 1722 1723 case MPS_FW_DIAG_TYPE_UNREGISTER: 1724 if (length < sizeof(diag_unregister)) { 1725 *return_code = 1726 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1727 status = MPS_DIAG_FAILURE; 1728 break; 1729 } 1730 if (copyin(diag_action, &diag_unregister, 1731 sizeof(diag_unregister)) != 0) 1732 return (MPS_DIAG_FAILURE); 1733 status = mps_diag_unregister(sc, &diag_unregister, 1734 return_code); 1735 break; 1736 1737 case MPS_FW_DIAG_TYPE_QUERY: 1738 if (length < sizeof (diag_query)) { 1739 *return_code = 1740 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1741 status = MPS_DIAG_FAILURE; 1742 break; 1743 } 1744 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1745 != 0) 1746 return (MPS_DIAG_FAILURE); 1747 status = mps_diag_query(sc, &diag_query, return_code); 1748 if (status == MPS_DIAG_SUCCESS) 1749 if (copyout(&diag_query, diag_action, 1750 sizeof (diag_query)) != 0) 1751 return (MPS_DIAG_FAILURE); 1752 break; 1753 1754 case MPS_FW_DIAG_TYPE_READ_BUFFER: 1755 if (copyin(diag_action, &diag_read_buffer, 1756 sizeof(diag_read_buffer)) != 0) 1757 return (MPS_DIAG_FAILURE); 1758 if (length < diag_read_buffer.BytesToRead) { 1759 *return_code = 1760 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1761 status = MPS_DIAG_FAILURE; 1762 break; 1763 } 1764 status = mps_diag_read_buffer(sc, &diag_read_buffer, 1765 PTRIN(diag_read_buffer.PtrDataBuffer), 1766 return_code); 1767 if (status == MPS_DIAG_SUCCESS) { 1768 if (copyout(&diag_read_buffer, diag_action, 1769 sizeof(diag_read_buffer) - 1770 sizeof(diag_read_buffer.PtrDataBuffer)) != 1771 0) 1772 return (MPS_DIAG_FAILURE); 1773 } 1774 break; 1775 1776 case MPS_FW_DIAG_TYPE_RELEASE: 1777 if (length < sizeof(diag_release)) { 1778 *return_code = 1779 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1780 status = MPS_DIAG_FAILURE; 1781 break; 1782 } 1783 if (copyin(diag_action, &diag_release, 1784 sizeof(diag_release)) != 0) 1785 return (MPS_DIAG_FAILURE); 1786 status = mps_diag_release(sc, &diag_release, 1787 return_code); 1788 break; 1789 1790 default: 1791 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1792 status = MPS_DIAG_FAILURE; 1793 break; 1794 } 1795 1796 if ((status == MPS_DIAG_FAILURE) && 1797 (original_return_code == MPS_FW_DIAG_NEW) && 1798 (*return_code != MPS_FW_DIAG_ERROR_SUCCESS)) 1799 status = MPS_DIAG_SUCCESS; 1800 1801 return (status); 1802 } 1803 1804 static int 1805 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data) 1806 { 1807 int status; 1808 1809 /* 1810 * Only allow one diag action at one time. 1811 */ 1812 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1813 mps_dprint(sc, MPS_USER, "%s: Only one FW diag command " 1814 "allowed at a single time.", __func__); 1815 return (EBUSY); 1816 } 1817 sc->mps_flags |= MPS_FLAGS_BUSY; 1818 1819 /* 1820 * Send diag action request 1821 */ 1822 if (data->Action == MPS_FW_DIAG_TYPE_REGISTER || 1823 data->Action == MPS_FW_DIAG_TYPE_UNREGISTER || 1824 data->Action == MPS_FW_DIAG_TYPE_QUERY || 1825 data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER || 1826 data->Action == MPS_FW_DIAG_TYPE_RELEASE) { 1827 status = mps_do_diag_action(sc, data->Action, 1828 PTRIN(data->PtrDiagAction), data->Length, 1829 &data->ReturnCode); 1830 } else 1831 status = EINVAL; 1832 1833 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1834 return (status); 1835 } 1836 1837 /* 1838 * Copy the event recording mask and the event queue size out. For 1839 * clarification, the event recording mask (events_to_record) is not the same 1840 * thing as the event mask (event_mask). events_to_record has a bit set for 1841 * every event type that is to be recorded by the driver, and event_mask has a 1842 * bit cleared for every event that is allowed into the driver from the IOC. 1843 * They really have nothing to do with each other. 1844 */ 1845 static void 1846 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data) 1847 { 1848 uint8_t i; 1849 1850 mps_lock(sc); 1851 data->Entries = MPS_EVENT_QUEUE_SIZE; 1852 1853 for (i = 0; i < 4; i++) { 1854 data->Types[i] = sc->events_to_record[i]; 1855 } 1856 mps_unlock(sc); 1857 } 1858 1859 /* 1860 * Set the driver's event mask according to what's been given. See 1861 * mps_user_event_query for explanation of the event recording mask and the IOC 1862 * event mask. It's the app's responsibility to enable event logging by setting 1863 * the bits in events_to_record. Initially, no events will be logged. 1864 */ 1865 static void 1866 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data) 1867 { 1868 uint8_t i; 1869 1870 mps_lock(sc); 1871 for (i = 0; i < 4; i++) { 1872 sc->events_to_record[i] = data->Types[i]; 1873 } 1874 mps_unlock(sc); 1875 } 1876 1877 /* 1878 * Copy out the events that have been recorded, up to the max events allowed. 1879 */ 1880 static int 1881 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data) 1882 { 1883 int status = 0; 1884 uint32_t size; 1885 1886 mps_lock(sc); 1887 size = data->Size; 1888 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1889 mps_unlock(sc); 1890 if (copyout((void *)sc->recorded_events, 1891 PTRIN(data->PtrEvents), size) != 0) 1892 status = EFAULT; 1893 mps_lock(sc); 1894 } else { 1895 /* 1896 * data->Size value is not large enough to copy event data. 1897 */ 1898 status = EFAULT; 1899 } 1900 1901 /* 1902 * Change size value to match the number of bytes that were copied. 1903 */ 1904 if (status == 0) 1905 data->Size = sizeof(sc->recorded_events); 1906 mps_unlock(sc); 1907 1908 return (status); 1909 } 1910 1911 /* 1912 * Record events into the driver from the IOC if they are not masked. 1913 */ 1914 void 1915 mpssas_record_event(struct mps_softc *sc, 1916 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 1917 { 1918 uint32_t event; 1919 int i, j; 1920 uint16_t event_data_len; 1921 boolean_t sendAEN = FALSE; 1922 1923 event = event_reply->Event; 1924 1925 /* 1926 * Generate a system event to let anyone who cares know that a 1927 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 1928 * event mask is set to. 1929 */ 1930 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 1931 sendAEN = TRUE; 1932 } 1933 1934 /* 1935 * Record the event only if its corresponding bit is set in 1936 * events_to_record. event_index is the index into recorded_events and 1937 * event_number is the overall number of an event being recorded since 1938 * start-of-day. event_index will roll over; event_number will never 1939 * roll over. 1940 */ 1941 i = (uint8_t)(event / 32); 1942 j = (uint8_t)(event % 32); 1943 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 1944 i = sc->event_index; 1945 sc->recorded_events[i].Type = event; 1946 sc->recorded_events[i].Number = ++sc->event_number; 1947 bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH * 1948 4); 1949 event_data_len = event_reply->EventDataLength; 1950 1951 if (event_data_len > 0) { 1952 /* 1953 * Limit data to size in m_event entry 1954 */ 1955 if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) { 1956 event_data_len = MPS_MAX_EVENT_DATA_LENGTH; 1957 } 1958 for (j = 0; j < event_data_len; j++) { 1959 sc->recorded_events[i].Data[j] = 1960 event_reply->EventData[j]; 1961 } 1962 1963 /* 1964 * check for index wrap-around 1965 */ 1966 if (++i == MPS_EVENT_QUEUE_SIZE) { 1967 i = 0; 1968 } 1969 sc->event_index = (uint8_t)i; 1970 1971 /* 1972 * Set flag to send the event. 1973 */ 1974 sendAEN = TRUE; 1975 } 1976 } 1977 1978 /* 1979 * Generate a system event if flag is set to let anyone who cares know 1980 * that an event has occurred. 1981 */ 1982 if (sendAEN) { 1983 //SLM-how to send a system event (see kqueue, kevent) 1984 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 1985 // "SAS", NULL, NULL, DDI_NOSLEEP); 1986 } 1987 } 1988 1989 static int 1990 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data) 1991 { 1992 int status = 0; 1993 1994 switch (data->Command) { 1995 /* 1996 * IO access is not supported. 1997 */ 1998 case REG_IO_READ: 1999 case REG_IO_WRITE: 2000 mps_dprint(sc, MPS_USER, "IO access is not supported. " 2001 "Use memory access."); 2002 status = EINVAL; 2003 break; 2004 2005 case REG_MEM_READ: 2006 data->RegData = mps_regread(sc, data->RegOffset); 2007 break; 2008 2009 case REG_MEM_WRITE: 2010 mps_regwrite(sc, data->RegOffset, data->RegData); 2011 break; 2012 2013 default: 2014 status = EINVAL; 2015 break; 2016 } 2017 2018 return (status); 2019 } 2020 2021 static int 2022 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data) 2023 { 2024 uint8_t bt2dh = FALSE; 2025 uint8_t dh2bt = FALSE; 2026 uint16_t dev_handle, bus, target; 2027 2028 bus = data->Bus; 2029 target = data->TargetID; 2030 dev_handle = data->DevHandle; 2031 2032 /* 2033 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2034 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2035 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2036 * invalid. 2037 */ 2038 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2039 dh2bt = TRUE; 2040 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2041 bt2dh = TRUE; 2042 if (!dh2bt && !bt2dh) 2043 return (EINVAL); 2044 2045 /* 2046 * Only handle bus of 0. Make sure target is within range. 2047 */ 2048 if (bt2dh) { 2049 if (bus != 0) 2050 return (EINVAL); 2051 2052 if (target > sc->max_devices) { 2053 mps_dprint(sc, MPS_FAULT, "Target ID is out of range " 2054 "for Bus/Target to DevHandle mapping."); 2055 return (EINVAL); 2056 } 2057 dev_handle = sc->mapping_table[target].dev_handle; 2058 if (dev_handle) 2059 data->DevHandle = dev_handle; 2060 } else { 2061 bus = 0; 2062 target = mps_mapping_get_sas_id_from_handle(sc, dev_handle); 2063 data->Bus = bus; 2064 data->TargetID = target; 2065 } 2066 2067 return (0); 2068 } 2069 2070 static int 2071 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2072 struct thread *td) 2073 { 2074 struct mps_softc *sc; 2075 struct mps_cfg_page_req *page_req; 2076 struct mps_ext_cfg_page_req *ext_page_req; 2077 void *mps_page; 2078 int error, msleep_ret; 2079 2080 mps_page = NULL; 2081 sc = dev->si_drv1; 2082 page_req = (void *)arg; 2083 ext_page_req = (void *)arg; 2084 2085 switch (cmd) { 2086 case MPSIO_READ_CFG_HEADER: 2087 mps_lock(sc); 2088 error = mps_user_read_cfg_header(sc, page_req); 2089 mps_unlock(sc); 2090 break; 2091 case MPSIO_READ_CFG_PAGE: 2092 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO); 2093 if(!mps_page) { 2094 mps_printf(sc, "Cannot allocate memory %s %d\n", 2095 __func__, __LINE__); 2096 return (ENOMEM); 2097 } 2098 error = copyin(page_req->buf, mps_page, 2099 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2100 if (error) 2101 break; 2102 mps_lock(sc); 2103 error = mps_user_read_cfg_page(sc, page_req, mps_page); 2104 mps_unlock(sc); 2105 if (error) 2106 break; 2107 error = copyout(mps_page, page_req->buf, page_req->len); 2108 break; 2109 case MPSIO_READ_EXT_CFG_HEADER: 2110 mps_lock(sc); 2111 error = mps_user_read_extcfg_header(sc, ext_page_req); 2112 mps_unlock(sc); 2113 break; 2114 case MPSIO_READ_EXT_CFG_PAGE: 2115 mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2116 if(!mps_page) { 2117 mps_printf(sc, "Cannot allocate memory %s %d\n", 2118 __func__, __LINE__); 2119 return (ENOMEM); 2120 } 2121 error = copyin(ext_page_req->buf, mps_page, 2122 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2123 if (error) 2124 break; 2125 mps_lock(sc); 2126 error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page); 2127 mps_unlock(sc); 2128 if (error) 2129 break; 2130 error = copyout(mps_page, ext_page_req->buf, ext_page_req->len); 2131 break; 2132 case MPSIO_WRITE_CFG_PAGE: 2133 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2134 if(!mps_page) { 2135 mps_printf(sc, "Cannot allocate memory %s %d\n", 2136 __func__, __LINE__); 2137 return (ENOMEM); 2138 } 2139 error = copyin(page_req->buf, mps_page, page_req->len); 2140 if (error) 2141 break; 2142 mps_lock(sc); 2143 error = mps_user_write_cfg_page(sc, page_req, mps_page); 2144 mps_unlock(sc); 2145 break; 2146 case MPSIO_MPS_COMMAND: 2147 error = mps_user_command(sc, (struct mps_usr_command *)arg); 2148 break; 2149 case MPTIOCTL_PASS_THRU: 2150 /* 2151 * The user has requested to pass through a command to be 2152 * executed by the MPT firmware. Call our routine which does 2153 * this. Only allow one passthru IOCTL at one time. 2154 */ 2155 error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg); 2156 break; 2157 case MPTIOCTL_GET_ADAPTER_DATA: 2158 /* 2159 * The user has requested to read adapter data. Call our 2160 * routine which does this. 2161 */ 2162 error = 0; 2163 mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg); 2164 break; 2165 case MPTIOCTL_GET_PCI_INFO: 2166 /* 2167 * The user has requested to read pci info. Call 2168 * our routine which does this. 2169 */ 2170 mps_lock(sc); 2171 error = 0; 2172 mps_user_read_pci_info(sc, (mps_pci_info_t *)arg); 2173 mps_unlock(sc); 2174 break; 2175 case MPTIOCTL_RESET_ADAPTER: 2176 mps_lock(sc); 2177 sc->port_enable_complete = 0; 2178 uint32_t reinit_start = time_uptime; 2179 error = mps_reinit(sc); 2180 /* Sleep for 300 second. */ 2181 msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO, 2182 "mps_porten", 300 * hz); 2183 mps_unlock(sc); 2184 if (msleep_ret) 2185 printf("Port Enable did not complete after Diag " 2186 "Reset msleep error %d.\n", msleep_ret); 2187 else 2188 mps_dprint(sc, MPS_USER, 2189 "Hard Reset with Port Enable completed in %d seconds.\n", 2190 (uint32_t) (time_uptime - reinit_start)); 2191 break; 2192 case MPTIOCTL_DIAG_ACTION: 2193 /* 2194 * The user has done a diag buffer action. Call our routine 2195 * which does this. Only allow one diag action at one time. 2196 */ 2197 mps_lock(sc); 2198 error = mps_user_diag_action(sc, (mps_diag_action_t *)arg); 2199 mps_unlock(sc); 2200 break; 2201 case MPTIOCTL_EVENT_QUERY: 2202 /* 2203 * The user has done an event query. Call our routine which does 2204 * this. 2205 */ 2206 error = 0; 2207 mps_user_event_query(sc, (mps_event_query_t *)arg); 2208 break; 2209 case MPTIOCTL_EVENT_ENABLE: 2210 /* 2211 * The user has done an event enable. Call our routine which 2212 * does this. 2213 */ 2214 error = 0; 2215 mps_user_event_enable(sc, (mps_event_enable_t *)arg); 2216 break; 2217 case MPTIOCTL_EVENT_REPORT: 2218 /* 2219 * The user has done an event report. Call our routine which 2220 * does this. 2221 */ 2222 error = mps_user_event_report(sc, (mps_event_report_t *)arg); 2223 break; 2224 case MPTIOCTL_REG_ACCESS: 2225 /* 2226 * The user has requested register access. Call our routine 2227 * which does this. 2228 */ 2229 mps_lock(sc); 2230 error = mps_user_reg_access(sc, (mps_reg_access_t *)arg); 2231 mps_unlock(sc); 2232 break; 2233 case MPTIOCTL_BTDH_MAPPING: 2234 /* 2235 * The user has requested to translate a bus/target to a 2236 * DevHandle or a DevHandle to a bus/target. Call our routine 2237 * which does this. 2238 */ 2239 error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg); 2240 break; 2241 default: 2242 error = ENOIOCTL; 2243 break; 2244 } 2245 2246 if (mps_page != NULL) 2247 free(mps_page, M_MPSUSER); 2248 2249 return (error); 2250 } 2251 2252 #ifdef COMPAT_FREEBSD32 2253 2254 struct mps_cfg_page_req32 { 2255 MPI2_CONFIG_PAGE_HEADER header; 2256 uint32_t page_address; 2257 uint32_t buf; 2258 int len; 2259 uint16_t ioc_status; 2260 }; 2261 2262 struct mps_ext_cfg_page_req32 { 2263 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2264 uint32_t page_address; 2265 uint32_t buf; 2266 int len; 2267 uint16_t ioc_status; 2268 }; 2269 2270 struct mps_raid_action32 { 2271 uint8_t action; 2272 uint8_t volume_bus; 2273 uint8_t volume_id; 2274 uint8_t phys_disk_num; 2275 uint32_t action_data_word; 2276 uint32_t buf; 2277 int len; 2278 uint32_t volume_status; 2279 uint32_t action_data[4]; 2280 uint16_t action_status; 2281 uint16_t ioc_status; 2282 uint8_t write; 2283 }; 2284 2285 struct mps_usr_command32 { 2286 uint32_t req; 2287 uint32_t req_len; 2288 uint32_t rpl; 2289 uint32_t rpl_len; 2290 uint32_t buf; 2291 int len; 2292 uint32_t flags; 2293 }; 2294 2295 #define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32) 2296 #define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32) 2297 #define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32) 2298 #define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32) 2299 #define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32) 2300 #define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32) 2301 #define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32) 2302 2303 static int 2304 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2305 struct thread *td) 2306 { 2307 struct mps_cfg_page_req32 *page32 = _arg; 2308 struct mps_ext_cfg_page_req32 *ext32 = _arg; 2309 struct mps_raid_action32 *raid32 = _arg; 2310 struct mps_usr_command32 *user32 = _arg; 2311 union { 2312 struct mps_cfg_page_req page; 2313 struct mps_ext_cfg_page_req ext; 2314 struct mps_raid_action raid; 2315 struct mps_usr_command user; 2316 } arg; 2317 u_long cmd; 2318 int error; 2319 2320 switch (cmd32) { 2321 case MPSIO_READ_CFG_HEADER32: 2322 case MPSIO_READ_CFG_PAGE32: 2323 case MPSIO_WRITE_CFG_PAGE32: 2324 if (cmd32 == MPSIO_READ_CFG_HEADER32) 2325 cmd = MPSIO_READ_CFG_HEADER; 2326 else if (cmd32 == MPSIO_READ_CFG_PAGE32) 2327 cmd = MPSIO_READ_CFG_PAGE; 2328 else 2329 cmd = MPSIO_WRITE_CFG_PAGE; 2330 CP(*page32, arg.page, header); 2331 CP(*page32, arg.page, page_address); 2332 PTRIN_CP(*page32, arg.page, buf); 2333 CP(*page32, arg.page, len); 2334 CP(*page32, arg.page, ioc_status); 2335 break; 2336 2337 case MPSIO_READ_EXT_CFG_HEADER32: 2338 case MPSIO_READ_EXT_CFG_PAGE32: 2339 if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32) 2340 cmd = MPSIO_READ_EXT_CFG_HEADER; 2341 else 2342 cmd = MPSIO_READ_EXT_CFG_PAGE; 2343 CP(*ext32, arg.ext, header); 2344 CP(*ext32, arg.ext, page_address); 2345 PTRIN_CP(*ext32, arg.ext, buf); 2346 CP(*ext32, arg.ext, len); 2347 CP(*ext32, arg.ext, ioc_status); 2348 break; 2349 2350 case MPSIO_RAID_ACTION32: 2351 cmd = MPSIO_RAID_ACTION; 2352 CP(*raid32, arg.raid, action); 2353 CP(*raid32, arg.raid, volume_bus); 2354 CP(*raid32, arg.raid, volume_id); 2355 CP(*raid32, arg.raid, phys_disk_num); 2356 CP(*raid32, arg.raid, action_data_word); 2357 PTRIN_CP(*raid32, arg.raid, buf); 2358 CP(*raid32, arg.raid, len); 2359 CP(*raid32, arg.raid, volume_status); 2360 bcopy(raid32->action_data, arg.raid.action_data, 2361 sizeof arg.raid.action_data); 2362 CP(*raid32, arg.raid, ioc_status); 2363 CP(*raid32, arg.raid, write); 2364 break; 2365 2366 case MPSIO_MPS_COMMAND32: 2367 cmd = MPSIO_MPS_COMMAND; 2368 PTRIN_CP(*user32, arg.user, req); 2369 CP(*user32, arg.user, req_len); 2370 PTRIN_CP(*user32, arg.user, rpl); 2371 CP(*user32, arg.user, rpl_len); 2372 PTRIN_CP(*user32, arg.user, buf); 2373 CP(*user32, arg.user, len); 2374 CP(*user32, arg.user, flags); 2375 break; 2376 default: 2377 return (ENOIOCTL); 2378 } 2379 2380 error = mps_ioctl(dev, cmd, &arg, flag, td); 2381 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2382 switch (cmd32) { 2383 case MPSIO_READ_CFG_HEADER32: 2384 case MPSIO_READ_CFG_PAGE32: 2385 case MPSIO_WRITE_CFG_PAGE32: 2386 CP(arg.page, *page32, header); 2387 CP(arg.page, *page32, page_address); 2388 PTROUT_CP(arg.page, *page32, buf); 2389 CP(arg.page, *page32, len); 2390 CP(arg.page, *page32, ioc_status); 2391 break; 2392 2393 case MPSIO_READ_EXT_CFG_HEADER32: 2394 case MPSIO_READ_EXT_CFG_PAGE32: 2395 CP(arg.ext, *ext32, header); 2396 CP(arg.ext, *ext32, page_address); 2397 PTROUT_CP(arg.ext, *ext32, buf); 2398 CP(arg.ext, *ext32, len); 2399 CP(arg.ext, *ext32, ioc_status); 2400 break; 2401 2402 case MPSIO_RAID_ACTION32: 2403 CP(arg.raid, *raid32, action); 2404 CP(arg.raid, *raid32, volume_bus); 2405 CP(arg.raid, *raid32, volume_id); 2406 CP(arg.raid, *raid32, phys_disk_num); 2407 CP(arg.raid, *raid32, action_data_word); 2408 PTROUT_CP(arg.raid, *raid32, buf); 2409 CP(arg.raid, *raid32, len); 2410 CP(arg.raid, *raid32, volume_status); 2411 bcopy(arg.raid.action_data, raid32->action_data, 2412 sizeof arg.raid.action_data); 2413 CP(arg.raid, *raid32, ioc_status); 2414 CP(arg.raid, *raid32, write); 2415 break; 2416 2417 case MPSIO_MPS_COMMAND32: 2418 PTROUT_CP(arg.user, *user32, req); 2419 CP(arg.user, *user32, req_len); 2420 PTROUT_CP(arg.user, *user32, rpl); 2421 CP(arg.user, *user32, rpl_len); 2422 PTROUT_CP(arg.user, *user32, buf); 2423 CP(arg.user, *user32, len); 2424 CP(arg.user, *user32, flags); 2425 break; 2426 } 2427 } 2428 2429 return (error); 2430 } 2431 #endif /* COMPAT_FREEBSD32 */ 2432 2433 static int 2434 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2435 struct thread *td) 2436 { 2437 #ifdef COMPAT_FREEBSD32 2438 if (SV_CURPROC_FLAG(SV_ILP32)) 2439 return (mps_ioctl32(dev, com, arg, flag, td)); 2440 #endif 2441 return (mps_ioctl(dev, com, arg, flag, td)); 2442 } 2443