1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Yahoo!, Inc. 5 * All rights reserved. 6 * Written by: John Baldwin <jhb@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 33 */ 34 /*- 35 * Copyright (c) 2011-2015 LSI Corp. 36 * Copyright (c) 2013-2015 Avago Technologies 37 * All rights reserved. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 61 * 62 * $FreeBSD$ 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 /* TODO Move headers to mpsvar */ 69 #include <sys/types.h> 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/selinfo.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/conf.h> 77 #include <sys/bio.h> 78 #include <sys/abi_compat.h> 79 #include <sys/malloc.h> 80 #include <sys/uio.h> 81 #include <sys/sysctl.h> 82 #include <sys/ioccom.h> 83 #include <sys/endian.h> 84 #include <sys/queue.h> 85 #include <sys/kthread.h> 86 #include <sys/taskqueue.h> 87 #include <sys/proc.h> 88 #include <sys/sysent.h> 89 90 #include <machine/bus.h> 91 #include <machine/resource.h> 92 #include <sys/rman.h> 93 94 #include <cam/cam.h> 95 #include <cam/cam_ccb.h> 96 #include <cam/scsi/scsi_all.h> 97 98 #include <dev/mps/mpi/mpi2_type.h> 99 #include <dev/mps/mpi/mpi2.h> 100 #include <dev/mps/mpi/mpi2_ioc.h> 101 #include <dev/mps/mpi/mpi2_cnfg.h> 102 #include <dev/mps/mpi/mpi2_init.h> 103 #include <dev/mps/mpi/mpi2_tool.h> 104 #include <dev/mps/mps_ioctl.h> 105 #include <dev/mps/mpsvar.h> 106 #include <dev/mps/mps_table.h> 107 #include <dev/mps/mps_sas.h> 108 #include <dev/pci/pcivar.h> 109 #include <dev/pci/pcireg.h> 110 111 static d_open_t mps_open; 112 static d_close_t mps_close; 113 static d_ioctl_t mps_ioctl_devsw; 114 115 static struct cdevsw mps_cdevsw = { 116 .d_version = D_VERSION, 117 .d_flags = 0, 118 .d_open = mps_open, 119 .d_close = mps_close, 120 .d_ioctl = mps_ioctl_devsw, 121 .d_name = "mps", 122 }; 123 124 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *); 125 static mps_user_f mpi_pre_ioc_facts; 126 static mps_user_f mpi_pre_port_facts; 127 static mps_user_f mpi_pre_fw_download; 128 static mps_user_f mpi_pre_fw_upload; 129 static mps_user_f mpi_pre_sata_passthrough; 130 static mps_user_f mpi_pre_smp_passthrough; 131 static mps_user_f mpi_pre_config; 132 static mps_user_f mpi_pre_sas_io_unit_control; 133 134 static int mps_user_read_cfg_header(struct mps_softc *, 135 struct mps_cfg_page_req *); 136 static int mps_user_read_cfg_page(struct mps_softc *, 137 struct mps_cfg_page_req *, void *); 138 static int mps_user_read_extcfg_header(struct mps_softc *, 139 struct mps_ext_cfg_page_req *); 140 static int mps_user_read_extcfg_page(struct mps_softc *, 141 struct mps_ext_cfg_page_req *, void *); 142 static int mps_user_write_cfg_page(struct mps_softc *, 143 struct mps_cfg_page_req *, void *); 144 static int mps_user_setup_request(struct mps_command *, 145 struct mps_usr_command *); 146 static int mps_user_command(struct mps_softc *, struct mps_usr_command *); 147 148 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data); 149 static void mps_user_get_adapter_data(struct mps_softc *sc, 150 mps_adapter_data_t *data); 151 static void mps_user_read_pci_info(struct mps_softc *sc, 152 mps_pci_info_t *data); 153 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc, 154 uint32_t unique_id); 155 static int mps_post_fw_diag_buffer(struct mps_softc *sc, 156 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 157 static int mps_release_fw_diag_buffer(struct mps_softc *sc, 158 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 159 uint32_t diag_type); 160 static int mps_diag_register(struct mps_softc *sc, 161 mps_fw_diag_register_t *diag_register, uint32_t *return_code); 162 static int mps_diag_unregister(struct mps_softc *sc, 163 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 164 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 165 uint32_t *return_code); 166 static int mps_diag_read_buffer(struct mps_softc *sc, 167 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 168 uint32_t *return_code); 169 static int mps_diag_release(struct mps_softc *sc, 170 mps_fw_diag_release_t *diag_release, uint32_t *return_code); 171 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action, 172 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 173 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data); 174 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data); 175 static void mps_user_event_enable(struct mps_softc *sc, 176 mps_event_enable_t *data); 177 static int mps_user_event_report(struct mps_softc *sc, 178 mps_event_report_t *data); 179 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data); 180 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data); 181 182 MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls"); 183 184 int 185 mps_attach_user(struct mps_softc *sc) 186 { 187 int unit; 188 189 unit = device_get_unit(sc->mps_dev); 190 sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 191 "mps%d", unit); 192 if (sc->mps_cdev == NULL) { 193 return (ENOMEM); 194 } 195 sc->mps_cdev->si_drv1 = sc; 196 return (0); 197 } 198 199 void 200 mps_detach_user(struct mps_softc *sc) 201 { 202 203 /* XXX: do a purge of pending requests? */ 204 if (sc->mps_cdev != NULL) 205 destroy_dev(sc->mps_cdev); 206 } 207 208 static int 209 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td) 210 { 211 212 return (0); 213 } 214 215 static int 216 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td) 217 { 218 219 return (0); 220 } 221 222 static int 223 mps_user_read_cfg_header(struct mps_softc *sc, 224 struct mps_cfg_page_req *page_req) 225 { 226 MPI2_CONFIG_PAGE_HEADER *hdr; 227 struct mps_config_params params; 228 int error; 229 230 hdr = ¶ms.hdr.Struct; 231 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 232 params.page_address = le32toh(page_req->page_address); 233 hdr->PageVersion = 0; 234 hdr->PageLength = 0; 235 hdr->PageNumber = page_req->header.PageNumber; 236 hdr->PageType = page_req->header.PageType; 237 params.buffer = NULL; 238 params.length = 0; 239 params.callback = NULL; 240 241 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 242 /* 243 * Leave the request. Without resetting the chip, it's 244 * still owned by it and we'll just get into trouble 245 * freeing it now. Mark it as abandoned so that if it 246 * shows up later it can be freed. 247 */ 248 mps_printf(sc, "read_cfg_header timed out\n"); 249 return (ETIMEDOUT); 250 } 251 252 page_req->ioc_status = htole16(params.status); 253 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 254 MPI2_IOCSTATUS_SUCCESS) { 255 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 256 } 257 258 return (0); 259 } 260 261 static int 262 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req, 263 void *buf) 264 { 265 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 266 struct mps_config_params params; 267 int error; 268 269 reqhdr = buf; 270 hdr = ¶ms.hdr.Struct; 271 hdr->PageVersion = reqhdr->PageVersion; 272 hdr->PageLength = reqhdr->PageLength; 273 hdr->PageNumber = reqhdr->PageNumber; 274 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 275 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 276 params.page_address = le32toh(page_req->page_address); 277 params.buffer = buf; 278 params.length = le32toh(page_req->len); 279 params.callback = NULL; 280 281 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 282 mps_printf(sc, "mps_user_read_cfg_page timed out\n"); 283 return (ETIMEDOUT); 284 } 285 286 page_req->ioc_status = htole16(params.status); 287 return (0); 288 } 289 290 static int 291 mps_user_read_extcfg_header(struct mps_softc *sc, 292 struct mps_ext_cfg_page_req *ext_page_req) 293 { 294 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 295 struct mps_config_params params; 296 int error; 297 298 hdr = ¶ms.hdr.Ext; 299 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 300 hdr->PageVersion = ext_page_req->header.PageVersion; 301 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 302 hdr->ExtPageLength = 0; 303 hdr->PageNumber = ext_page_req->header.PageNumber; 304 hdr->ExtPageType = ext_page_req->header.ExtPageType; 305 params.page_address = le32toh(ext_page_req->page_address); 306 params.buffer = NULL; 307 params.length = 0; 308 params.callback = NULL; 309 310 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 311 /* 312 * Leave the request. Without resetting the chip, it's 313 * still owned by it and we'll just get into trouble 314 * freeing it now. Mark it as abandoned so that if it 315 * shows up later it can be freed. 316 */ 317 mps_printf(sc, "mps_user_read_extcfg_header timed out\n"); 318 return (ETIMEDOUT); 319 } 320 321 ext_page_req->ioc_status = htole16(params.status); 322 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 323 MPI2_IOCSTATUS_SUCCESS) { 324 ext_page_req->header.PageVersion = hdr->PageVersion; 325 ext_page_req->header.PageNumber = hdr->PageNumber; 326 ext_page_req->header.PageType = hdr->PageType; 327 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 328 ext_page_req->header.ExtPageType = hdr->ExtPageType; 329 } 330 331 return (0); 332 } 333 334 static int 335 mps_user_read_extcfg_page(struct mps_softc *sc, 336 struct mps_ext_cfg_page_req *ext_page_req, void *buf) 337 { 338 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 339 struct mps_config_params params; 340 int error; 341 342 reqhdr = buf; 343 hdr = ¶ms.hdr.Ext; 344 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 345 params.page_address = le32toh(ext_page_req->page_address); 346 hdr->PageVersion = reqhdr->PageVersion; 347 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 348 hdr->PageNumber = reqhdr->PageNumber; 349 hdr->ExtPageType = reqhdr->ExtPageType; 350 hdr->ExtPageLength = reqhdr->ExtPageLength; 351 params.buffer = buf; 352 params.length = le32toh(ext_page_req->len); 353 params.callback = NULL; 354 355 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 356 mps_printf(sc, "mps_user_read_extcfg_page timed out\n"); 357 return (ETIMEDOUT); 358 } 359 360 ext_page_req->ioc_status = htole16(params.status); 361 return (0); 362 } 363 364 static int 365 mps_user_write_cfg_page(struct mps_softc *sc, 366 struct mps_cfg_page_req *page_req, void *buf) 367 { 368 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 369 struct mps_config_params params; 370 u_int hdr_attr; 371 int error; 372 373 reqhdr = buf; 374 hdr = ¶ms.hdr.Struct; 375 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 376 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 377 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 378 mps_printf(sc, "page type 0x%x not changeable\n", 379 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 380 return (EINVAL); 381 } 382 383 /* 384 * There isn't any point in restoring stripped out attributes 385 * if you then mask them going down to issue the request. 386 */ 387 388 hdr->PageVersion = reqhdr->PageVersion; 389 hdr->PageLength = reqhdr->PageLength; 390 hdr->PageNumber = reqhdr->PageNumber; 391 hdr->PageType = reqhdr->PageType; 392 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 393 params.page_address = le32toh(page_req->page_address); 394 params.buffer = buf; 395 params.length = le32toh(page_req->len); 396 params.callback = NULL; 397 398 if ((error = mps_write_config_page(sc, ¶ms)) != 0) { 399 mps_printf(sc, "mps_write_cfg_page timed out\n"); 400 return (ETIMEDOUT); 401 } 402 403 page_req->ioc_status = htole16(params.status); 404 return (0); 405 } 406 407 void 408 mpi_init_sge(struct mps_command *cm, void *req, void *sge) 409 { 410 int off, space; 411 412 space = (int)cm->cm_sc->reqframesz; 413 off = (uintptr_t)sge - (uintptr_t)req; 414 415 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 416 req, sge, off, space)); 417 418 cm->cm_sge = sge; 419 cm->cm_sglsize = space - off; 420 } 421 422 /* 423 * Prepare the mps_command for an IOC_FACTS request. 424 */ 425 static int 426 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd) 427 { 428 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 429 MPI2_IOC_FACTS_REPLY *rpl; 430 431 if (cmd->req_len != sizeof *req) 432 return (EINVAL); 433 if (cmd->rpl_len != sizeof *rpl) 434 return (EINVAL); 435 436 cm->cm_sge = NULL; 437 cm->cm_sglsize = 0; 438 return (0); 439 } 440 441 /* 442 * Prepare the mps_command for a PORT_FACTS request. 443 */ 444 static int 445 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd) 446 { 447 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 448 MPI2_PORT_FACTS_REPLY *rpl; 449 450 if (cmd->req_len != sizeof *req) 451 return (EINVAL); 452 if (cmd->rpl_len != sizeof *rpl) 453 return (EINVAL); 454 455 cm->cm_sge = NULL; 456 cm->cm_sglsize = 0; 457 return (0); 458 } 459 460 /* 461 * Prepare the mps_command for a FW_DOWNLOAD request. 462 */ 463 static int 464 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd) 465 { 466 MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 467 MPI2_FW_DOWNLOAD_REPLY *rpl; 468 MPI2_FW_DOWNLOAD_TCSGE tc; 469 int error; 470 471 /* 472 * This code assumes there is room in the request's SGL for 473 * the TransactionContext plus at least a SGL chain element. 474 */ 475 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 476 477 if (cmd->req_len != sizeof *req) 478 return (EINVAL); 479 if (cmd->rpl_len != sizeof *rpl) 480 return (EINVAL); 481 482 if (cmd->len == 0) 483 return (EINVAL); 484 485 error = copyin(cmd->buf, cm->cm_data, cmd->len); 486 if (error != 0) 487 return (error); 488 489 mpi_init_sge(cm, req, &req->SGL); 490 bzero(&tc, sizeof tc); 491 492 /* 493 * For now, the F/W image must be provided in a single request. 494 */ 495 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 496 return (EINVAL); 497 if (req->TotalImageSize != cmd->len) 498 return (EINVAL); 499 500 /* 501 * The value of the first two elements is specified in the 502 * Fusion-MPT Message Passing Interface document. 503 */ 504 tc.ContextSize = 0; 505 tc.DetailsLength = 12; 506 tc.ImageOffset = 0; 507 tc.ImageSize = cmd->len; 508 509 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 510 511 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 512 } 513 514 /* 515 * Prepare the mps_command for a FW_UPLOAD request. 516 */ 517 static int 518 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd) 519 { 520 MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 521 MPI2_FW_UPLOAD_REPLY *rpl; 522 MPI2_FW_UPLOAD_TCSGE tc; 523 524 /* 525 * This code assumes there is room in the request's SGL for 526 * the TransactionContext plus at least a SGL chain element. 527 */ 528 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 529 530 if (cmd->req_len != sizeof *req) 531 return (EINVAL); 532 if (cmd->rpl_len != sizeof *rpl) 533 return (EINVAL); 534 535 mpi_init_sge(cm, req, &req->SGL); 536 bzero(&tc, sizeof tc); 537 538 /* 539 * The value of the first two elements is specified in the 540 * Fusion-MPT Message Passing Interface document. 541 */ 542 tc.ContextSize = 0; 543 tc.DetailsLength = 12; 544 /* 545 * XXX Is there any reason to fetch a partial image? I.e. to 546 * set ImageOffset to something other than 0? 547 */ 548 tc.ImageOffset = 0; 549 tc.ImageSize = cmd->len; 550 551 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 552 553 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 554 } 555 556 /* 557 * Prepare the mps_command for a SATA_PASSTHROUGH request. 558 */ 559 static int 560 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 561 { 562 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 563 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 564 565 if (cmd->req_len != sizeof *req) 566 return (EINVAL); 567 if (cmd->rpl_len != sizeof *rpl) 568 return (EINVAL); 569 570 mpi_init_sge(cm, req, &req->SGL); 571 return (0); 572 } 573 574 /* 575 * Prepare the mps_command for a SMP_PASSTHROUGH request. 576 */ 577 static int 578 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 579 { 580 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 581 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 582 583 if (cmd->req_len != sizeof *req) 584 return (EINVAL); 585 if (cmd->rpl_len != sizeof *rpl) 586 return (EINVAL); 587 588 mpi_init_sge(cm, req, &req->SGL); 589 return (0); 590 } 591 592 /* 593 * Prepare the mps_command for a CONFIG request. 594 */ 595 static int 596 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd) 597 { 598 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 599 MPI2_CONFIG_REPLY *rpl; 600 601 if (cmd->req_len != sizeof *req) 602 return (EINVAL); 603 if (cmd->rpl_len != sizeof *rpl) 604 return (EINVAL); 605 606 mpi_init_sge(cm, req, &req->PageBufferSGE); 607 return (0); 608 } 609 610 /* 611 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 612 */ 613 static int 614 mpi_pre_sas_io_unit_control(struct mps_command *cm, 615 struct mps_usr_command *cmd) 616 { 617 618 cm->cm_sge = NULL; 619 cm->cm_sglsize = 0; 620 return (0); 621 } 622 623 /* 624 * A set of functions to prepare an mps_command for the various 625 * supported requests. 626 */ 627 struct mps_user_func { 628 U8 Function; 629 mps_user_f *f_pre; 630 } mps_user_func_list[] = { 631 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 632 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 633 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 634 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 635 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 636 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 637 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 638 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 639 { 0xFF, NULL } /* list end */ 640 }; 641 642 static int 643 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd) 644 { 645 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 646 struct mps_user_func *f; 647 648 for (f = mps_user_func_list; f->f_pre != NULL; f++) { 649 if (hdr->Function == f->Function) 650 return (f->f_pre(cm, cmd)); 651 } 652 return (EINVAL); 653 } 654 655 static int 656 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd) 657 { 658 MPI2_REQUEST_HEADER *hdr; 659 MPI2_DEFAULT_REPLY *rpl; 660 void *buf = NULL; 661 struct mps_command *cm = NULL; 662 int err = 0; 663 int sz; 664 665 mps_lock(sc); 666 cm = mps_alloc_command(sc); 667 668 if (cm == NULL) { 669 mps_printf(sc, "%s: no mps requests\n", __func__); 670 err = ENOMEM; 671 goto RetFree; 672 } 673 mps_unlock(sc); 674 675 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 676 677 mps_dprint(sc, MPS_USER, "%s: req %p %d rpl %p %d\n", __func__, 678 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 679 680 if (cmd->req_len > sc->reqframesz) { 681 err = EINVAL; 682 goto RetFreeUnlocked; 683 } 684 err = copyin(cmd->req, hdr, cmd->req_len); 685 if (err != 0) 686 goto RetFreeUnlocked; 687 688 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 689 hdr->Function, hdr->MsgFlags); 690 691 if (cmd->len > 0) { 692 buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO); 693 cm->cm_data = buf; 694 cm->cm_length = cmd->len; 695 } else { 696 cm->cm_data = NULL; 697 cm->cm_length = 0; 698 } 699 700 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE; 701 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 702 703 err = mps_user_setup_request(cm, cmd); 704 if (err == EINVAL) { 705 mps_printf(sc, "%s: unsupported parameter or unsupported " 706 "function in request (function = 0x%X)\n", __func__, 707 hdr->Function); 708 } 709 if (err != 0) 710 goto RetFreeUnlocked; 711 712 mps_lock(sc); 713 err = mps_wait_command(sc, &cm, 60, CAN_SLEEP); 714 715 if (err || (cm == NULL)) { 716 mps_printf(sc, "%s: invalid request: error %d\n", 717 __func__, err); 718 goto RetFree; 719 } 720 721 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 722 if (rpl != NULL) 723 sz = rpl->MsgLength * 4; 724 else 725 sz = 0; 726 727 if (sz > cmd->rpl_len) { 728 mps_printf(sc, "%s: user reply buffer (%d) smaller than " 729 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 730 sz = cmd->rpl_len; 731 } 732 733 mps_unlock(sc); 734 copyout(rpl, cmd->rpl, sz); 735 if (buf != NULL) 736 copyout(buf, cmd->buf, cmd->len); 737 mps_dprint(sc, MPS_USER, "%s: reply size %d\n", __func__, sz); 738 739 RetFreeUnlocked: 740 mps_lock(sc); 741 RetFree: 742 if (cm != NULL) 743 mps_free_command(sc, cm); 744 mps_unlock(sc); 745 if (buf != NULL) 746 free(buf, M_MPSUSER); 747 return (err); 748 } 749 750 static int 751 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data) 752 { 753 MPI2_REQUEST_HEADER *hdr, *tmphdr; 754 MPI2_DEFAULT_REPLY *rpl = NULL; 755 struct mps_command *cm = NULL; 756 void *req = NULL; 757 int err = 0, dir = 0, sz; 758 uint8_t function = 0; 759 u_int sense_len; 760 struct mpssas_target *targ = NULL; 761 762 /* 763 * Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY 764 * bit to denote that a passthru is being processed. 765 */ 766 mps_lock(sc); 767 if (sc->mps_flags & MPS_FLAGS_BUSY) { 768 mps_dprint(sc, MPS_USER, "%s: Only one passthru command " 769 "allowed at a single time.", __func__); 770 mps_unlock(sc); 771 return (EBUSY); 772 } 773 sc->mps_flags |= MPS_FLAGS_BUSY; 774 mps_unlock(sc); 775 776 /* 777 * Do some validation on data direction. Valid cases are: 778 * 1) DataSize is 0 and direction is NONE 779 * 2) DataSize is non-zero and one of: 780 * a) direction is READ or 781 * b) direction is WRITE or 782 * c) direction is BOTH and DataOutSize is non-zero 783 * If valid and the direction is BOTH, change the direction to READ. 784 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 785 */ 786 if (((data->DataSize == 0) && 787 (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) || 788 ((data->DataSize != 0) && 789 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) || 790 (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) || 791 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) && 792 (data->DataOutSize != 0))))) { 793 if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) 794 data->DataDirection = MPS_PASS_THRU_DIRECTION_READ; 795 else 796 data->DataOutSize = 0; 797 } else { 798 err = EINVAL; 799 goto RetFreeUnlocked; 800 } 801 802 mps_dprint(sc, MPS_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 803 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 804 data->PtrRequest, data->RequestSize, data->PtrReply, 805 data->ReplySize, data->PtrData, data->DataSize, 806 data->PtrDataOut, data->DataOutSize, data->DataDirection); 807 808 if (data->RequestSize > sc->reqframesz) { 809 err = EINVAL; 810 goto RetFreeUnlocked; 811 } 812 813 req = malloc(data->RequestSize, M_MPSUSER, M_WAITOK | M_ZERO); 814 tmphdr = (MPI2_REQUEST_HEADER *)req; 815 816 err = copyin(PTRIN(data->PtrRequest), req, data->RequestSize); 817 if (err != 0) 818 goto RetFreeUnlocked; 819 820 function = tmphdr->Function; 821 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 822 function, tmphdr->MsgFlags); 823 824 /* 825 * Handle a passthru TM request. 826 */ 827 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 828 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 829 830 mps_lock(sc); 831 cm = mpssas_alloc_tm(sc); 832 if (cm == NULL) { 833 err = EINVAL; 834 goto Ret; 835 } 836 837 /* Copy the header in. Only a small fixup is needed. */ 838 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 839 memcpy(task, req, data->RequestSize); 840 task->TaskMID = cm->cm_desc.Default.SMID; 841 842 cm->cm_data = NULL; 843 cm->cm_complete = NULL; 844 cm->cm_complete_data = NULL; 845 846 targ = mpssas_find_target_by_handle(sc->sassc, 0, 847 task->DevHandle); 848 if (targ == NULL) { 849 mps_dprint(sc, MPS_INFO, 850 "%s %d : invalid handle for requested TM 0x%x \n", 851 __func__, __LINE__, task->DevHandle); 852 err = 1; 853 } else { 854 mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 855 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 856 } 857 858 if (err != 0) { 859 err = EIO; 860 mps_dprint(sc, MPS_FAULT, "%s: task management failed", 861 __func__); 862 } 863 /* 864 * Copy the reply data and sense data to user space. 865 */ 866 if ((cm != NULL) && (cm->cm_reply != NULL)) { 867 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 868 sz = rpl->MsgLength * 4; 869 870 if (sz > data->ReplySize) { 871 mps_printf(sc, "%s: user reply buffer (%d) " 872 "smaller than returned buffer (%d)\n", 873 __func__, data->ReplySize, sz); 874 } 875 mps_unlock(sc); 876 copyout(cm->cm_reply, PTRIN(data->PtrReply), 877 data->ReplySize); 878 mps_lock(sc); 879 } 880 mpssas_free_tm(sc, cm); 881 goto Ret; 882 } 883 884 mps_lock(sc); 885 cm = mps_alloc_command(sc); 886 if (cm == NULL) { 887 mps_printf(sc, "%s: no mps requests\n", __func__); 888 err = ENOMEM; 889 goto Ret; 890 } 891 mps_unlock(sc); 892 893 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 894 memcpy(hdr, req, data->RequestSize); 895 896 /* 897 * Do some checking to make sure the IOCTL request contains a valid 898 * request. Then set the SGL info. 899 */ 900 mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 901 902 /* 903 * Set up for read, write or both. From check above, DataOutSize will 904 * be 0 if direction is READ or WRITE, but it will have some non-zero 905 * value if the direction is BOTH. So, just use the biggest size to get 906 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 907 * up; the first is for the request and the second will contain the 908 * response data. cm_out_len needs to be set here and this will be used 909 * when the SGLs are set up. 910 */ 911 cm->cm_data = NULL; 912 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 913 cm->cm_out_len = data->DataOutSize; 914 cm->cm_flags = 0; 915 if (cm->cm_length != 0) { 916 cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK | 917 M_ZERO); 918 cm->cm_flags = MPS_CM_FLAGS_DATAIN; 919 if (data->DataOutSize) { 920 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 921 err = copyin(PTRIN(data->PtrDataOut), 922 cm->cm_data, data->DataOutSize); 923 } else if (data->DataDirection == 924 MPS_PASS_THRU_DIRECTION_WRITE) { 925 cm->cm_flags = MPS_CM_FLAGS_DATAOUT; 926 err = copyin(PTRIN(data->PtrData), 927 cm->cm_data, data->DataSize); 928 } 929 if (err != 0) 930 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 931 "IOCTL data from user space\n", __func__); 932 } 933 cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE; 934 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 935 936 /* 937 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 938 * uses SCSI IO descriptor. 939 */ 940 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 941 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 942 MPI2_SCSI_IO_REQUEST *scsi_io_req; 943 944 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 945 /* 946 * Put SGE for data and data_out buffer at the end of 947 * scsi_io_request message header (64 bytes in total). 948 * Following above SGEs, the residual space will be used by 949 * sense data. 950 */ 951 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 952 64); 953 scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 954 955 /* 956 * Set SGLOffset0 value. This is the number of dwords that SGL 957 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 958 */ 959 scsi_io_req->SGLOffset0 = 24; 960 961 /* 962 * Setup descriptor info. RAID passthrough must use the 963 * default request descriptor which is already set, so if this 964 * is a SCSI IO request, change the descriptor to SCSI IO. 965 * Also, if this is a SCSI IO request, handle the reply in the 966 * mpssas_scsio_complete function. 967 */ 968 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 969 cm->cm_desc.SCSIIO.RequestFlags = 970 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 971 cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle; 972 973 /* 974 * Make sure the DevHandle is not 0 because this is a 975 * likely error. 976 */ 977 if (scsi_io_req->DevHandle == 0) { 978 err = EINVAL; 979 goto RetFreeUnlocked; 980 } 981 } 982 } 983 984 mps_lock(sc); 985 986 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 987 988 if (err || (cm == NULL)) { 989 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 990 err); 991 mps_unlock(sc); 992 goto RetFreeUnlocked; 993 } 994 995 /* 996 * Sync the DMA data, if any. Then copy the data to user space. 997 */ 998 if (cm->cm_data != NULL) { 999 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 1000 dir = BUS_DMASYNC_POSTREAD; 1001 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 1002 dir = BUS_DMASYNC_POSTWRITE; 1003 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1004 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1005 1006 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 1007 mps_unlock(sc); 1008 err = copyout(cm->cm_data, 1009 PTRIN(data->PtrData), data->DataSize); 1010 mps_lock(sc); 1011 if (err != 0) 1012 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 1013 "IOCTL data to user space\n", __func__); 1014 } 1015 } 1016 1017 /* 1018 * Copy the reply data and sense data to user space. 1019 */ 1020 if (cm->cm_reply != NULL) { 1021 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1022 sz = rpl->MsgLength * 4; 1023 1024 if (sz > data->ReplySize) { 1025 mps_printf(sc, "%s: user reply buffer (%d) smaller " 1026 "than returned buffer (%d)\n", __func__, 1027 data->ReplySize, sz); 1028 } 1029 mps_unlock(sc); 1030 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1031 mps_lock(sc); 1032 1033 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1034 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1035 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1036 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1037 sense_len = 1038 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1039 SenseCount)), sizeof(struct 1040 scsi_sense_data)); 1041 mps_unlock(sc); 1042 copyout(cm->cm_sense, (PTRIN(data->PtrReply + 1043 sizeof(MPI2_SCSI_IO_REPLY))), sense_len); 1044 mps_lock(sc); 1045 } 1046 } 1047 } 1048 mps_unlock(sc); 1049 1050 RetFreeUnlocked: 1051 mps_lock(sc); 1052 1053 if (cm != NULL) { 1054 if (cm->cm_data) 1055 free(cm->cm_data, M_MPSUSER); 1056 mps_free_command(sc, cm); 1057 } 1058 Ret: 1059 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1060 mps_unlock(sc); 1061 free(req, M_MPSUSER); 1062 1063 return (err); 1064 } 1065 1066 static void 1067 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data) 1068 { 1069 Mpi2ConfigReply_t mpi_reply; 1070 Mpi2BiosPage3_t config_page; 1071 1072 /* 1073 * Use the PCI interface functions to get the Bus, Device, and Function 1074 * information. 1075 */ 1076 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev); 1077 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev); 1078 data->PciInformation.u.bits.FunctionNumber = 1079 pci_get_function(sc->mps_dev); 1080 1081 /* 1082 * Get the FW version that should already be saved in IOC Facts. 1083 */ 1084 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1085 1086 /* 1087 * General device info. 1088 */ 1089 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2; 1090 if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE) 1091 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200; 1092 data->PCIDeviceHwId = pci_get_device(sc->mps_dev); 1093 data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1); 1094 data->SubSystemId = pci_get_subdevice(sc->mps_dev); 1095 data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev); 1096 1097 /* 1098 * Get the driver version. 1099 */ 1100 strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION); 1101 1102 /* 1103 * Need to get BIOS Config Page 3 for the BIOS Version. 1104 */ 1105 data->BiosVersion = 0; 1106 mps_lock(sc); 1107 if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1108 printf("%s: Error while retrieving BIOS Version\n", __func__); 1109 else 1110 data->BiosVersion = config_page.BiosVersion; 1111 mps_unlock(sc); 1112 } 1113 1114 static void 1115 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data) 1116 { 1117 int i; 1118 1119 /* 1120 * Use the PCI interface functions to get the Bus, Device, and Function 1121 * information. 1122 */ 1123 data->BusNumber = pci_get_bus(sc->mps_dev); 1124 data->DeviceNumber = pci_get_slot(sc->mps_dev); 1125 data->FunctionNumber = pci_get_function(sc->mps_dev); 1126 1127 /* 1128 * Now get the interrupt vector and the pci header. The vector can 1129 * only be 0 right now. The header is the first 256 bytes of config 1130 * space. 1131 */ 1132 data->InterruptVector = 0; 1133 for (i = 0; i < sizeof (data->PciHeader); i++) { 1134 data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1); 1135 } 1136 } 1137 1138 static uint8_t 1139 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id) 1140 { 1141 uint8_t index; 1142 1143 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1144 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1145 return (index); 1146 } 1147 } 1148 1149 return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND); 1150 } 1151 1152 static int 1153 mps_post_fw_diag_buffer(struct mps_softc *sc, 1154 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1155 { 1156 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1157 MPI2_DIAG_BUFFER_POST_REPLY *reply = NULL; 1158 struct mps_command *cm = NULL; 1159 int i, status; 1160 1161 /* 1162 * If buffer is not enabled, just leave. 1163 */ 1164 *return_code = MPS_FW_DIAG_ERROR_POST_FAILED; 1165 if (!pBuffer->enabled) { 1166 return (MPS_DIAG_FAILURE); 1167 } 1168 1169 /* 1170 * Clear some flags initially. 1171 */ 1172 pBuffer->force_release = FALSE; 1173 pBuffer->valid_data = FALSE; 1174 pBuffer->owned_by_firmware = FALSE; 1175 1176 /* 1177 * Get a command. 1178 */ 1179 cm = mps_alloc_command(sc); 1180 if (cm == NULL) { 1181 mps_printf(sc, "%s: no mps requests\n", __func__); 1182 return (MPS_DIAG_FAILURE); 1183 } 1184 1185 /* 1186 * Build the request for releasing the FW Diag Buffer and send it. 1187 */ 1188 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1189 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1190 req->BufferType = pBuffer->buffer_type; 1191 req->ExtendedType = pBuffer->extended_type; 1192 req->BufferLength = pBuffer->size; 1193 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1194 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1195 mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1196 cm->cm_data = NULL; 1197 cm->cm_length = 0; 1198 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1199 cm->cm_complete_data = NULL; 1200 1201 /* 1202 * Send command synchronously. 1203 */ 1204 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1205 if (status || (cm == NULL)) { 1206 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1207 status); 1208 status = MPS_DIAG_FAILURE; 1209 goto done; 1210 } 1211 1212 /* 1213 * Process POST reply. 1214 */ 1215 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1216 if (reply == NULL) { 1217 mps_printf(sc, "%s: reply is NULL, probably due to " 1218 "reinitialization\n", __func__); 1219 status = MPS_DIAG_FAILURE; 1220 goto done; 1221 } 1222 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1223 MPI2_IOCSTATUS_SUCCESS) { 1224 status = MPS_DIAG_FAILURE; 1225 mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed " 1226 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1227 "TransferLength = 0x%x\n", __func__, 1228 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1229 le32toh(reply->TransferLength)); 1230 goto done; 1231 } 1232 1233 /* 1234 * Post was successful. 1235 */ 1236 pBuffer->valid_data = TRUE; 1237 pBuffer->owned_by_firmware = TRUE; 1238 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1239 status = MPS_DIAG_SUCCESS; 1240 1241 done: 1242 if (cm != NULL) 1243 mps_free_command(sc, cm); 1244 return (status); 1245 } 1246 1247 static int 1248 mps_release_fw_diag_buffer(struct mps_softc *sc, 1249 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1250 uint32_t diag_type) 1251 { 1252 MPI2_DIAG_RELEASE_REQUEST *req; 1253 MPI2_DIAG_RELEASE_REPLY *reply = NULL; 1254 struct mps_command *cm = NULL; 1255 int status; 1256 1257 /* 1258 * If buffer is not enabled, just leave. 1259 */ 1260 *return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED; 1261 if (!pBuffer->enabled) { 1262 mps_dprint(sc, MPS_USER, "%s: This buffer type is not " 1263 "supported by the IOC", __func__); 1264 return (MPS_DIAG_FAILURE); 1265 } 1266 1267 /* 1268 * Clear some flags initially. 1269 */ 1270 pBuffer->force_release = FALSE; 1271 pBuffer->valid_data = FALSE; 1272 pBuffer->owned_by_firmware = FALSE; 1273 1274 /* 1275 * Get a command. 1276 */ 1277 cm = mps_alloc_command(sc); 1278 if (cm == NULL) { 1279 mps_printf(sc, "%s: no mps requests\n", __func__); 1280 return (MPS_DIAG_FAILURE); 1281 } 1282 1283 /* 1284 * Build the request for releasing the FW Diag Buffer and send it. 1285 */ 1286 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1287 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1288 req->BufferType = pBuffer->buffer_type; 1289 cm->cm_data = NULL; 1290 cm->cm_length = 0; 1291 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1292 cm->cm_complete_data = NULL; 1293 1294 /* 1295 * Send command synchronously. 1296 */ 1297 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1298 if (status || (cm == NULL)) { 1299 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1300 status); 1301 status = MPS_DIAG_FAILURE; 1302 goto done; 1303 } 1304 1305 /* 1306 * Process RELEASE reply. 1307 */ 1308 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1309 if (reply == NULL) { 1310 mps_printf(sc, "%s: reply is NULL, probably due to " 1311 "reinitialization\n", __func__); 1312 status = MPS_DIAG_FAILURE; 1313 goto done; 1314 } 1315 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1316 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1317 status = MPS_DIAG_FAILURE; 1318 mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer " 1319 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1320 __func__, le16toh(reply->IOCStatus), 1321 le32toh(reply->IOCLogInfo)); 1322 goto done; 1323 } 1324 1325 /* 1326 * Release was successful. 1327 */ 1328 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1329 status = MPS_DIAG_SUCCESS; 1330 1331 /* 1332 * If this was for an UNREGISTER diag type command, clear the unique ID. 1333 */ 1334 if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) { 1335 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1336 } 1337 1338 done: 1339 if (cm != NULL) 1340 mps_free_command(sc, cm); 1341 1342 return (status); 1343 } 1344 1345 static int 1346 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register, 1347 uint32_t *return_code) 1348 { 1349 bus_dma_template_t t; 1350 mps_fw_diagnostic_buffer_t *pBuffer; 1351 struct mps_busdma_context *ctx; 1352 uint8_t extended_type, buffer_type, i; 1353 uint32_t buffer_size; 1354 uint32_t unique_id; 1355 int status; 1356 int error; 1357 1358 extended_type = diag_register->ExtendedType; 1359 buffer_type = diag_register->BufferType; 1360 buffer_size = diag_register->RequestedBufferSize; 1361 unique_id = diag_register->UniqueId; 1362 ctx = NULL; 1363 error = 0; 1364 1365 /* 1366 * Check for valid buffer type 1367 */ 1368 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1369 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1370 return (MPS_DIAG_FAILURE); 1371 } 1372 1373 /* 1374 * Get the current buffer and look up the unique ID. The unique ID 1375 * should not be found. If it is, the ID is already in use. 1376 */ 1377 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1378 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1379 if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1380 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1381 return (MPS_DIAG_FAILURE); 1382 } 1383 1384 /* 1385 * The buffer's unique ID should not be registered yet, and the given 1386 * unique ID cannot be 0. 1387 */ 1388 if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) || 1389 (unique_id == MPS_FW_DIAG_INVALID_UID)) { 1390 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1391 return (MPS_DIAG_FAILURE); 1392 } 1393 1394 /* 1395 * If this buffer is already posted as immediate, just change owner. 1396 */ 1397 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1398 (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) { 1399 pBuffer->immediate = FALSE; 1400 pBuffer->unique_id = unique_id; 1401 return (MPS_DIAG_SUCCESS); 1402 } 1403 1404 /* 1405 * Post a new buffer after checking if it's enabled. The DMA buffer 1406 * that is allocated will be contiguous (nsegments = 1). 1407 */ 1408 if (!pBuffer->enabled) { 1409 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1410 return (MPS_DIAG_FAILURE); 1411 } 1412 bus_dma_template_init(&t, sc->mps_parent_dmat); 1413 BUS_DMA_TEMPLATE_FILL(&t, BD_NSEGMENTS(1), BD_MAXSIZE(buffer_size), 1414 BD_MAXSEGSIZE(buffer_size), BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1415 if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) { 1416 mps_dprint(sc, MPS_ERROR, 1417 "Cannot allocate FW diag buffer DMA tag\n"); 1418 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1419 status = MPS_DIAG_FAILURE; 1420 goto bailout; 1421 } 1422 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1423 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1424 mps_dprint(sc, MPS_ERROR, 1425 "Cannot allocate FW diag buffer memory\n"); 1426 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1427 status = MPS_DIAG_FAILURE; 1428 goto bailout; 1429 } 1430 bzero(sc->fw_diag_buffer, buffer_size); 1431 1432 ctx = malloc(sizeof(*ctx), M_MPSUSER, M_WAITOK | M_ZERO); 1433 ctx->addr = &sc->fw_diag_busaddr; 1434 ctx->buffer_dmat = sc->fw_diag_dmat; 1435 ctx->buffer_dmamap = sc->fw_diag_map; 1436 ctx->softc = sc; 1437 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1438 sc->fw_diag_buffer, buffer_size, mps_memaddr_wait_cb, 1439 ctx, 0); 1440 1441 if (error == EINPROGRESS) { 1442 /* XXX KDM */ 1443 device_printf(sc->mps_dev, "%s: Deferred bus_dmamap_load\n", 1444 __func__); 1445 /* 1446 * Wait for the load to complete. If we're interrupted, 1447 * bail out. 1448 */ 1449 mps_lock(sc); 1450 if (ctx->completed == 0) { 1451 error = msleep(ctx, &sc->mps_mtx, PCATCH, "mpswait", 0); 1452 if (error != 0) { 1453 /* 1454 * We got an error from msleep(9). This is 1455 * most likely due to a signal. Tell 1456 * mpr_memaddr_wait_cb() that we've abandoned 1457 * the context, so it needs to clean up when 1458 * it is called. 1459 */ 1460 ctx->abandoned = 1; 1461 1462 /* The callback will free this memory */ 1463 ctx = NULL; 1464 mps_unlock(sc); 1465 1466 device_printf(sc->mps_dev, "Cannot " 1467 "bus_dmamap_load FW diag buffer, error = " 1468 "%d returned from msleep\n", error); 1469 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1470 status = MPS_DIAG_FAILURE; 1471 goto bailout; 1472 } 1473 } 1474 mps_unlock(sc); 1475 } 1476 1477 if ((error != 0) || (ctx->error != 0)) { 1478 device_printf(sc->mps_dev, "Cannot bus_dmamap_load FW diag " 1479 "buffer, %serror = %d\n", error ? "" : "callback ", 1480 error ? error : ctx->error); 1481 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1482 status = MPS_DIAG_FAILURE; 1483 goto bailout; 1484 } 1485 1486 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1487 1488 pBuffer->size = buffer_size; 1489 1490 /* 1491 * Copy the given info to the diag buffer and post the buffer. 1492 */ 1493 pBuffer->buffer_type = buffer_type; 1494 pBuffer->immediate = FALSE; 1495 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1496 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1497 i++) { 1498 pBuffer->product_specific[i] = 1499 diag_register->ProductSpecific[i]; 1500 } 1501 } 1502 pBuffer->extended_type = extended_type; 1503 pBuffer->unique_id = unique_id; 1504 status = mps_post_fw_diag_buffer(sc, pBuffer, return_code); 1505 1506 bailout: 1507 /* 1508 * In case there was a failure, free the DMA buffer. 1509 */ 1510 if (status == MPS_DIAG_FAILURE) { 1511 if (sc->fw_diag_busaddr != 0) { 1512 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1513 sc->fw_diag_busaddr = 0; 1514 } 1515 if (sc->fw_diag_buffer != NULL) { 1516 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1517 sc->fw_diag_map); 1518 sc->fw_diag_buffer = NULL; 1519 } 1520 if (sc->fw_diag_dmat != NULL) { 1521 bus_dma_tag_destroy(sc->fw_diag_dmat); 1522 sc->fw_diag_dmat = NULL; 1523 } 1524 } 1525 1526 if (ctx != NULL) 1527 free(ctx, M_MPSUSER); 1528 1529 return (status); 1530 } 1531 1532 static int 1533 mps_diag_unregister(struct mps_softc *sc, 1534 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1535 { 1536 mps_fw_diagnostic_buffer_t *pBuffer; 1537 uint8_t i; 1538 uint32_t unique_id; 1539 int status; 1540 1541 unique_id = diag_unregister->UniqueId; 1542 1543 /* 1544 * Get the current buffer and look up the unique ID. The unique ID 1545 * should be there. 1546 */ 1547 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1548 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1549 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1550 return (MPS_DIAG_FAILURE); 1551 } 1552 1553 pBuffer = &sc->fw_diag_buffer_list[i]; 1554 1555 /* 1556 * Try to release the buffer from FW before freeing it. If release 1557 * fails, don't free the DMA buffer in case FW tries to access it 1558 * later. If buffer is not owned by firmware, can't release it. 1559 */ 1560 if (!pBuffer->owned_by_firmware) { 1561 status = MPS_DIAG_SUCCESS; 1562 } else { 1563 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1564 MPS_FW_DIAG_TYPE_UNREGISTER); 1565 } 1566 1567 /* 1568 * At this point, return the current status no matter what happens with 1569 * the DMA buffer. 1570 */ 1571 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1572 if (status == MPS_DIAG_SUCCESS) { 1573 if (sc->fw_diag_busaddr != 0) { 1574 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1575 sc->fw_diag_busaddr = 0; 1576 } 1577 if (sc->fw_diag_buffer != NULL) { 1578 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1579 sc->fw_diag_map); 1580 sc->fw_diag_buffer = NULL; 1581 } 1582 if (sc->fw_diag_dmat != NULL) { 1583 bus_dma_tag_destroy(sc->fw_diag_dmat); 1584 sc->fw_diag_dmat = NULL; 1585 } 1586 } 1587 1588 return (status); 1589 } 1590 1591 static int 1592 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 1593 uint32_t *return_code) 1594 { 1595 mps_fw_diagnostic_buffer_t *pBuffer; 1596 uint8_t i; 1597 uint32_t unique_id; 1598 1599 unique_id = diag_query->UniqueId; 1600 1601 /* 1602 * If ID is valid, query on ID. 1603 * If ID is invalid, query on buffer type. 1604 */ 1605 if (unique_id == MPS_FW_DIAG_INVALID_UID) { 1606 i = diag_query->BufferType; 1607 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1608 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1609 return (MPS_DIAG_FAILURE); 1610 } 1611 } else { 1612 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1613 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1614 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1615 return (MPS_DIAG_FAILURE); 1616 } 1617 } 1618 1619 /* 1620 * Fill query structure with the diag buffer info. 1621 */ 1622 pBuffer = &sc->fw_diag_buffer_list[i]; 1623 diag_query->BufferType = pBuffer->buffer_type; 1624 diag_query->ExtendedType = pBuffer->extended_type; 1625 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1626 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1627 i++) { 1628 diag_query->ProductSpecific[i] = 1629 pBuffer->product_specific[i]; 1630 } 1631 } 1632 diag_query->TotalBufferSize = pBuffer->size; 1633 diag_query->DriverAddedBufferSize = 0; 1634 diag_query->UniqueId = pBuffer->unique_id; 1635 diag_query->ApplicationFlags = 0; 1636 diag_query->DiagnosticFlags = 0; 1637 1638 /* 1639 * Set/Clear application flags 1640 */ 1641 if (pBuffer->immediate) { 1642 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED; 1643 } else { 1644 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED; 1645 } 1646 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1647 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID; 1648 } else { 1649 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID; 1650 } 1651 if (pBuffer->owned_by_firmware) { 1652 diag_query->ApplicationFlags |= 1653 MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1654 } else { 1655 diag_query->ApplicationFlags &= 1656 ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1657 } 1658 1659 return (MPS_DIAG_SUCCESS); 1660 } 1661 1662 static int 1663 mps_diag_read_buffer(struct mps_softc *sc, 1664 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1665 uint32_t *return_code) 1666 { 1667 mps_fw_diagnostic_buffer_t *pBuffer; 1668 uint8_t i, *pData; 1669 uint32_t unique_id; 1670 int status; 1671 1672 unique_id = diag_read_buffer->UniqueId; 1673 1674 /* 1675 * Get the current buffer and look up the unique ID. The unique ID 1676 * should be there. 1677 */ 1678 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1679 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1680 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1681 return (MPS_DIAG_FAILURE); 1682 } 1683 1684 pBuffer = &sc->fw_diag_buffer_list[i]; 1685 1686 /* 1687 * Make sure requested read is within limits 1688 */ 1689 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1690 pBuffer->size) { 1691 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1692 return (MPS_DIAG_FAILURE); 1693 } 1694 1695 /* Sync the DMA map before we copy to userland. */ 1696 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1697 BUS_DMASYNC_POSTREAD); 1698 1699 /* 1700 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1701 * buffer that was allocated is one contiguous buffer. 1702 */ 1703 pData = (uint8_t *)(sc->fw_diag_buffer + 1704 diag_read_buffer->StartingOffset); 1705 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1706 return (MPS_DIAG_FAILURE); 1707 diag_read_buffer->Status = 0; 1708 1709 /* 1710 * Set or clear the Force Release flag. 1711 */ 1712 if (pBuffer->force_release) { 1713 diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1714 } else { 1715 diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1716 } 1717 1718 /* 1719 * If buffer is to be reregistered, make sure it's not already owned by 1720 * firmware first. 1721 */ 1722 status = MPS_DIAG_SUCCESS; 1723 if (!pBuffer->owned_by_firmware) { 1724 if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) { 1725 status = mps_post_fw_diag_buffer(sc, pBuffer, 1726 return_code); 1727 } 1728 } 1729 1730 return (status); 1731 } 1732 1733 static int 1734 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release, 1735 uint32_t *return_code) 1736 { 1737 mps_fw_diagnostic_buffer_t *pBuffer; 1738 uint8_t i; 1739 uint32_t unique_id; 1740 int status; 1741 1742 unique_id = diag_release->UniqueId; 1743 1744 /* 1745 * Get the current buffer and look up the unique ID. The unique ID 1746 * should be there. 1747 */ 1748 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1749 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1750 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1751 return (MPS_DIAG_FAILURE); 1752 } 1753 1754 pBuffer = &sc->fw_diag_buffer_list[i]; 1755 1756 /* 1757 * If buffer is not owned by firmware, it's already been released. 1758 */ 1759 if (!pBuffer->owned_by_firmware) { 1760 *return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED; 1761 return (MPS_DIAG_FAILURE); 1762 } 1763 1764 /* 1765 * Release the buffer. 1766 */ 1767 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1768 MPS_FW_DIAG_TYPE_RELEASE); 1769 return (status); 1770 } 1771 1772 static int 1773 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action, 1774 uint32_t length, uint32_t *return_code) 1775 { 1776 mps_fw_diag_register_t diag_register; 1777 mps_fw_diag_unregister_t diag_unregister; 1778 mps_fw_diag_query_t diag_query; 1779 mps_diag_read_buffer_t diag_read_buffer; 1780 mps_fw_diag_release_t diag_release; 1781 int status = MPS_DIAG_SUCCESS; 1782 uint32_t original_return_code; 1783 1784 original_return_code = *return_code; 1785 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1786 1787 switch (action) { 1788 case MPS_FW_DIAG_TYPE_REGISTER: 1789 if (!length) { 1790 *return_code = 1791 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1792 status = MPS_DIAG_FAILURE; 1793 break; 1794 } 1795 if (copyin(diag_action, &diag_register, 1796 sizeof(diag_register)) != 0) 1797 return (MPS_DIAG_FAILURE); 1798 status = mps_diag_register(sc, &diag_register, 1799 return_code); 1800 break; 1801 1802 case MPS_FW_DIAG_TYPE_UNREGISTER: 1803 if (length < sizeof(diag_unregister)) { 1804 *return_code = 1805 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1806 status = MPS_DIAG_FAILURE; 1807 break; 1808 } 1809 if (copyin(diag_action, &diag_unregister, 1810 sizeof(diag_unregister)) != 0) 1811 return (MPS_DIAG_FAILURE); 1812 status = mps_diag_unregister(sc, &diag_unregister, 1813 return_code); 1814 break; 1815 1816 case MPS_FW_DIAG_TYPE_QUERY: 1817 if (length < sizeof (diag_query)) { 1818 *return_code = 1819 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1820 status = MPS_DIAG_FAILURE; 1821 break; 1822 } 1823 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1824 != 0) 1825 return (MPS_DIAG_FAILURE); 1826 status = mps_diag_query(sc, &diag_query, return_code); 1827 if (status == MPS_DIAG_SUCCESS) 1828 if (copyout(&diag_query, diag_action, 1829 sizeof (diag_query)) != 0) 1830 return (MPS_DIAG_FAILURE); 1831 break; 1832 1833 case MPS_FW_DIAG_TYPE_READ_BUFFER: 1834 if (copyin(diag_action, &diag_read_buffer, 1835 sizeof(diag_read_buffer)) != 0) 1836 return (MPS_DIAG_FAILURE); 1837 if (length < diag_read_buffer.BytesToRead) { 1838 *return_code = 1839 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1840 status = MPS_DIAG_FAILURE; 1841 break; 1842 } 1843 status = mps_diag_read_buffer(sc, &diag_read_buffer, 1844 PTRIN(diag_read_buffer.PtrDataBuffer), 1845 return_code); 1846 if (status == MPS_DIAG_SUCCESS) { 1847 if (copyout(&diag_read_buffer, diag_action, 1848 sizeof(diag_read_buffer) - 1849 sizeof(diag_read_buffer.PtrDataBuffer)) != 1850 0) 1851 return (MPS_DIAG_FAILURE); 1852 } 1853 break; 1854 1855 case MPS_FW_DIAG_TYPE_RELEASE: 1856 if (length < sizeof(diag_release)) { 1857 *return_code = 1858 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1859 status = MPS_DIAG_FAILURE; 1860 break; 1861 } 1862 if (copyin(diag_action, &diag_release, 1863 sizeof(diag_release)) != 0) 1864 return (MPS_DIAG_FAILURE); 1865 status = mps_diag_release(sc, &diag_release, 1866 return_code); 1867 break; 1868 1869 default: 1870 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1871 status = MPS_DIAG_FAILURE; 1872 break; 1873 } 1874 1875 if ((status == MPS_DIAG_FAILURE) && 1876 (original_return_code == MPS_FW_DIAG_NEW) && 1877 (*return_code != MPS_FW_DIAG_ERROR_SUCCESS)) 1878 status = MPS_DIAG_SUCCESS; 1879 1880 return (status); 1881 } 1882 1883 static int 1884 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data) 1885 { 1886 int status; 1887 1888 /* 1889 * Only allow one diag action at one time. 1890 */ 1891 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1892 mps_dprint(sc, MPS_USER, "%s: Only one FW diag command " 1893 "allowed at a single time.", __func__); 1894 return (EBUSY); 1895 } 1896 sc->mps_flags |= MPS_FLAGS_BUSY; 1897 1898 /* 1899 * Send diag action request 1900 */ 1901 if (data->Action == MPS_FW_DIAG_TYPE_REGISTER || 1902 data->Action == MPS_FW_DIAG_TYPE_UNREGISTER || 1903 data->Action == MPS_FW_DIAG_TYPE_QUERY || 1904 data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER || 1905 data->Action == MPS_FW_DIAG_TYPE_RELEASE) { 1906 status = mps_do_diag_action(sc, data->Action, 1907 PTRIN(data->PtrDiagAction), data->Length, 1908 &data->ReturnCode); 1909 } else 1910 status = EINVAL; 1911 1912 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1913 return (status); 1914 } 1915 1916 /* 1917 * Copy the event recording mask and the event queue size out. For 1918 * clarification, the event recording mask (events_to_record) is not the same 1919 * thing as the event mask (event_mask). events_to_record has a bit set for 1920 * every event type that is to be recorded by the driver, and event_mask has a 1921 * bit cleared for every event that is allowed into the driver from the IOC. 1922 * They really have nothing to do with each other. 1923 */ 1924 static void 1925 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data) 1926 { 1927 uint8_t i; 1928 1929 mps_lock(sc); 1930 data->Entries = MPS_EVENT_QUEUE_SIZE; 1931 1932 for (i = 0; i < 4; i++) { 1933 data->Types[i] = sc->events_to_record[i]; 1934 } 1935 mps_unlock(sc); 1936 } 1937 1938 /* 1939 * Set the driver's event mask according to what's been given. See 1940 * mps_user_event_query for explanation of the event recording mask and the IOC 1941 * event mask. It's the app's responsibility to enable event logging by setting 1942 * the bits in events_to_record. Initially, no events will be logged. 1943 */ 1944 static void 1945 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data) 1946 { 1947 uint8_t i; 1948 1949 mps_lock(sc); 1950 for (i = 0; i < 4; i++) { 1951 sc->events_to_record[i] = data->Types[i]; 1952 } 1953 mps_unlock(sc); 1954 } 1955 1956 /* 1957 * Copy out the events that have been recorded, up to the max events allowed. 1958 */ 1959 static int 1960 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data) 1961 { 1962 int status = 0; 1963 uint32_t size; 1964 1965 mps_lock(sc); 1966 size = data->Size; 1967 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1968 mps_unlock(sc); 1969 if (copyout((void *)sc->recorded_events, 1970 PTRIN(data->PtrEvents), size) != 0) 1971 status = EFAULT; 1972 mps_lock(sc); 1973 } else { 1974 /* 1975 * data->Size value is not large enough to copy event data. 1976 */ 1977 status = EFAULT; 1978 } 1979 1980 /* 1981 * Change size value to match the number of bytes that were copied. 1982 */ 1983 if (status == 0) 1984 data->Size = sizeof(sc->recorded_events); 1985 mps_unlock(sc); 1986 1987 return (status); 1988 } 1989 1990 /* 1991 * Record events into the driver from the IOC if they are not masked. 1992 */ 1993 void 1994 mpssas_record_event(struct mps_softc *sc, 1995 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 1996 { 1997 uint32_t event; 1998 int i, j; 1999 uint16_t event_data_len; 2000 boolean_t sendAEN = FALSE; 2001 2002 event = event_reply->Event; 2003 2004 /* 2005 * Generate a system event to let anyone who cares know that a 2006 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2007 * event mask is set to. 2008 */ 2009 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2010 sendAEN = TRUE; 2011 } 2012 2013 /* 2014 * Record the event only if its corresponding bit is set in 2015 * events_to_record. event_index is the index into recorded_events and 2016 * event_number is the overall number of an event being recorded since 2017 * start-of-day. event_index will roll over; event_number will never 2018 * roll over. 2019 */ 2020 i = (uint8_t)(event / 32); 2021 j = (uint8_t)(event % 32); 2022 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2023 i = sc->event_index; 2024 sc->recorded_events[i].Type = event; 2025 sc->recorded_events[i].Number = ++sc->event_number; 2026 bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH * 2027 4); 2028 event_data_len = event_reply->EventDataLength; 2029 2030 if (event_data_len > 0) { 2031 /* 2032 * Limit data to size in m_event entry 2033 */ 2034 if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) { 2035 event_data_len = MPS_MAX_EVENT_DATA_LENGTH; 2036 } 2037 for (j = 0; j < event_data_len; j++) { 2038 sc->recorded_events[i].Data[j] = 2039 event_reply->EventData[j]; 2040 } 2041 2042 /* 2043 * check for index wrap-around 2044 */ 2045 if (++i == MPS_EVENT_QUEUE_SIZE) { 2046 i = 0; 2047 } 2048 sc->event_index = (uint8_t)i; 2049 2050 /* 2051 * Set flag to send the event. 2052 */ 2053 sendAEN = TRUE; 2054 } 2055 } 2056 2057 /* 2058 * Generate a system event if flag is set to let anyone who cares know 2059 * that an event has occurred. 2060 */ 2061 if (sendAEN) { 2062 //SLM-how to send a system event (see kqueue, kevent) 2063 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2064 // "SAS", NULL, NULL, DDI_NOSLEEP); 2065 } 2066 } 2067 2068 static int 2069 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data) 2070 { 2071 int status = 0; 2072 2073 switch (data->Command) { 2074 /* 2075 * IO access is not supported. 2076 */ 2077 case REG_IO_READ: 2078 case REG_IO_WRITE: 2079 mps_dprint(sc, MPS_USER, "IO access is not supported. " 2080 "Use memory access."); 2081 status = EINVAL; 2082 break; 2083 2084 case REG_MEM_READ: 2085 data->RegData = mps_regread(sc, data->RegOffset); 2086 break; 2087 2088 case REG_MEM_WRITE: 2089 mps_regwrite(sc, data->RegOffset, data->RegData); 2090 break; 2091 2092 default: 2093 status = EINVAL; 2094 break; 2095 } 2096 2097 return (status); 2098 } 2099 2100 static int 2101 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data) 2102 { 2103 uint8_t bt2dh = FALSE; 2104 uint8_t dh2bt = FALSE; 2105 uint16_t dev_handle, bus, target; 2106 2107 bus = data->Bus; 2108 target = data->TargetID; 2109 dev_handle = data->DevHandle; 2110 2111 /* 2112 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2113 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2114 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2115 * invalid. 2116 */ 2117 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2118 dh2bt = TRUE; 2119 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2120 bt2dh = TRUE; 2121 if (!dh2bt && !bt2dh) 2122 return (EINVAL); 2123 2124 /* 2125 * Only handle bus of 0. Make sure target is within range. 2126 */ 2127 if (bt2dh) { 2128 if (bus != 0) 2129 return (EINVAL); 2130 2131 if (target >= sc->max_devices) { 2132 mps_dprint(sc, MPS_FAULT, "Target ID is out of range " 2133 "for Bus/Target to DevHandle mapping."); 2134 return (EINVAL); 2135 } 2136 dev_handle = sc->mapping_table[target].dev_handle; 2137 if (dev_handle) 2138 data->DevHandle = dev_handle; 2139 } else { 2140 bus = 0; 2141 target = mps_mapping_get_tid_from_handle(sc, dev_handle); 2142 data->Bus = bus; 2143 data->TargetID = target; 2144 } 2145 2146 return (0); 2147 } 2148 2149 static int 2150 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2151 struct thread *td) 2152 { 2153 struct mps_softc *sc; 2154 struct mps_cfg_page_req *page_req; 2155 struct mps_ext_cfg_page_req *ext_page_req; 2156 void *mps_page; 2157 int error, msleep_ret; 2158 2159 mps_page = NULL; 2160 sc = dev->si_drv1; 2161 page_req = (void *)arg; 2162 ext_page_req = (void *)arg; 2163 2164 switch (cmd) { 2165 case MPSIO_READ_CFG_HEADER: 2166 mps_lock(sc); 2167 error = mps_user_read_cfg_header(sc, page_req); 2168 mps_unlock(sc); 2169 break; 2170 case MPSIO_READ_CFG_PAGE: 2171 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO); 2172 error = copyin(page_req->buf, mps_page, 2173 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2174 if (error) 2175 break; 2176 mps_lock(sc); 2177 error = mps_user_read_cfg_page(sc, page_req, mps_page); 2178 mps_unlock(sc); 2179 if (error) 2180 break; 2181 error = copyout(mps_page, page_req->buf, page_req->len); 2182 break; 2183 case MPSIO_READ_EXT_CFG_HEADER: 2184 mps_lock(sc); 2185 error = mps_user_read_extcfg_header(sc, ext_page_req); 2186 mps_unlock(sc); 2187 break; 2188 case MPSIO_READ_EXT_CFG_PAGE: 2189 mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2190 error = copyin(ext_page_req->buf, mps_page, 2191 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2192 if (error) 2193 break; 2194 mps_lock(sc); 2195 error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page); 2196 mps_unlock(sc); 2197 if (error) 2198 break; 2199 error = copyout(mps_page, ext_page_req->buf, ext_page_req->len); 2200 break; 2201 case MPSIO_WRITE_CFG_PAGE: 2202 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2203 error = copyin(page_req->buf, mps_page, page_req->len); 2204 if (error) 2205 break; 2206 mps_lock(sc); 2207 error = mps_user_write_cfg_page(sc, page_req, mps_page); 2208 mps_unlock(sc); 2209 break; 2210 case MPSIO_MPS_COMMAND: 2211 error = mps_user_command(sc, (struct mps_usr_command *)arg); 2212 break; 2213 case MPTIOCTL_PASS_THRU: 2214 /* 2215 * The user has requested to pass through a command to be 2216 * executed by the MPT firmware. Call our routine which does 2217 * this. Only allow one passthru IOCTL at one time. 2218 */ 2219 error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg); 2220 break; 2221 case MPTIOCTL_GET_ADAPTER_DATA: 2222 /* 2223 * The user has requested to read adapter data. Call our 2224 * routine which does this. 2225 */ 2226 error = 0; 2227 mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg); 2228 break; 2229 case MPTIOCTL_GET_PCI_INFO: 2230 /* 2231 * The user has requested to read pci info. Call 2232 * our routine which does this. 2233 */ 2234 mps_lock(sc); 2235 error = 0; 2236 mps_user_read_pci_info(sc, (mps_pci_info_t *)arg); 2237 mps_unlock(sc); 2238 break; 2239 case MPTIOCTL_RESET_ADAPTER: 2240 mps_lock(sc); 2241 sc->port_enable_complete = 0; 2242 uint32_t reinit_start = time_uptime; 2243 error = mps_reinit(sc); 2244 /* Sleep for 300 second. */ 2245 msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO, 2246 "mps_porten", 300 * hz); 2247 mps_unlock(sc); 2248 if (msleep_ret) 2249 printf("Port Enable did not complete after Diag " 2250 "Reset msleep error %d.\n", msleep_ret); 2251 else 2252 mps_dprint(sc, MPS_USER, 2253 "Hard Reset with Port Enable completed in %d seconds.\n", 2254 (uint32_t) (time_uptime - reinit_start)); 2255 break; 2256 case MPTIOCTL_DIAG_ACTION: 2257 /* 2258 * The user has done a diag buffer action. Call our routine 2259 * which does this. Only allow one diag action at one time. 2260 */ 2261 mps_lock(sc); 2262 error = mps_user_diag_action(sc, (mps_diag_action_t *)arg); 2263 mps_unlock(sc); 2264 break; 2265 case MPTIOCTL_EVENT_QUERY: 2266 /* 2267 * The user has done an event query. Call our routine which does 2268 * this. 2269 */ 2270 error = 0; 2271 mps_user_event_query(sc, (mps_event_query_t *)arg); 2272 break; 2273 case MPTIOCTL_EVENT_ENABLE: 2274 /* 2275 * The user has done an event enable. Call our routine which 2276 * does this. 2277 */ 2278 error = 0; 2279 mps_user_event_enable(sc, (mps_event_enable_t *)arg); 2280 break; 2281 case MPTIOCTL_EVENT_REPORT: 2282 /* 2283 * The user has done an event report. Call our routine which 2284 * does this. 2285 */ 2286 error = mps_user_event_report(sc, (mps_event_report_t *)arg); 2287 break; 2288 case MPTIOCTL_REG_ACCESS: 2289 /* 2290 * The user has requested register access. Call our routine 2291 * which does this. 2292 */ 2293 mps_lock(sc); 2294 error = mps_user_reg_access(sc, (mps_reg_access_t *)arg); 2295 mps_unlock(sc); 2296 break; 2297 case MPTIOCTL_BTDH_MAPPING: 2298 /* 2299 * The user has requested to translate a bus/target to a 2300 * DevHandle or a DevHandle to a bus/target. Call our routine 2301 * which does this. 2302 */ 2303 error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg); 2304 break; 2305 default: 2306 error = ENOIOCTL; 2307 break; 2308 } 2309 2310 if (mps_page != NULL) 2311 free(mps_page, M_MPSUSER); 2312 2313 return (error); 2314 } 2315 2316 #ifdef COMPAT_FREEBSD32 2317 2318 struct mps_cfg_page_req32 { 2319 MPI2_CONFIG_PAGE_HEADER header; 2320 uint32_t page_address; 2321 uint32_t buf; 2322 int len; 2323 uint16_t ioc_status; 2324 }; 2325 2326 struct mps_ext_cfg_page_req32 { 2327 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2328 uint32_t page_address; 2329 uint32_t buf; 2330 int len; 2331 uint16_t ioc_status; 2332 }; 2333 2334 struct mps_raid_action32 { 2335 uint8_t action; 2336 uint8_t volume_bus; 2337 uint8_t volume_id; 2338 uint8_t phys_disk_num; 2339 uint32_t action_data_word; 2340 uint32_t buf; 2341 int len; 2342 uint32_t volume_status; 2343 uint32_t action_data[4]; 2344 uint16_t action_status; 2345 uint16_t ioc_status; 2346 uint8_t write; 2347 }; 2348 2349 struct mps_usr_command32 { 2350 uint32_t req; 2351 uint32_t req_len; 2352 uint32_t rpl; 2353 uint32_t rpl_len; 2354 uint32_t buf; 2355 int len; 2356 uint32_t flags; 2357 }; 2358 2359 #define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32) 2360 #define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32) 2361 #define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32) 2362 #define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32) 2363 #define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32) 2364 #define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32) 2365 #define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32) 2366 2367 static int 2368 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2369 struct thread *td) 2370 { 2371 struct mps_cfg_page_req32 *page32 = _arg; 2372 struct mps_ext_cfg_page_req32 *ext32 = _arg; 2373 struct mps_raid_action32 *raid32 = _arg; 2374 struct mps_usr_command32 *user32 = _arg; 2375 union { 2376 struct mps_cfg_page_req page; 2377 struct mps_ext_cfg_page_req ext; 2378 struct mps_raid_action raid; 2379 struct mps_usr_command user; 2380 } arg; 2381 u_long cmd; 2382 int error; 2383 2384 switch (cmd32) { 2385 case MPSIO_READ_CFG_HEADER32: 2386 case MPSIO_READ_CFG_PAGE32: 2387 case MPSIO_WRITE_CFG_PAGE32: 2388 if (cmd32 == MPSIO_READ_CFG_HEADER32) 2389 cmd = MPSIO_READ_CFG_HEADER; 2390 else if (cmd32 == MPSIO_READ_CFG_PAGE32) 2391 cmd = MPSIO_READ_CFG_PAGE; 2392 else 2393 cmd = MPSIO_WRITE_CFG_PAGE; 2394 CP(*page32, arg.page, header); 2395 CP(*page32, arg.page, page_address); 2396 PTRIN_CP(*page32, arg.page, buf); 2397 CP(*page32, arg.page, len); 2398 CP(*page32, arg.page, ioc_status); 2399 break; 2400 2401 case MPSIO_READ_EXT_CFG_HEADER32: 2402 case MPSIO_READ_EXT_CFG_PAGE32: 2403 if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32) 2404 cmd = MPSIO_READ_EXT_CFG_HEADER; 2405 else 2406 cmd = MPSIO_READ_EXT_CFG_PAGE; 2407 CP(*ext32, arg.ext, header); 2408 CP(*ext32, arg.ext, page_address); 2409 PTRIN_CP(*ext32, arg.ext, buf); 2410 CP(*ext32, arg.ext, len); 2411 CP(*ext32, arg.ext, ioc_status); 2412 break; 2413 2414 case MPSIO_RAID_ACTION32: 2415 cmd = MPSIO_RAID_ACTION; 2416 CP(*raid32, arg.raid, action); 2417 CP(*raid32, arg.raid, volume_bus); 2418 CP(*raid32, arg.raid, volume_id); 2419 CP(*raid32, arg.raid, phys_disk_num); 2420 CP(*raid32, arg.raid, action_data_word); 2421 PTRIN_CP(*raid32, arg.raid, buf); 2422 CP(*raid32, arg.raid, len); 2423 CP(*raid32, arg.raid, volume_status); 2424 bcopy(raid32->action_data, arg.raid.action_data, 2425 sizeof arg.raid.action_data); 2426 CP(*raid32, arg.raid, ioc_status); 2427 CP(*raid32, arg.raid, write); 2428 break; 2429 2430 case MPSIO_MPS_COMMAND32: 2431 cmd = MPSIO_MPS_COMMAND; 2432 PTRIN_CP(*user32, arg.user, req); 2433 CP(*user32, arg.user, req_len); 2434 PTRIN_CP(*user32, arg.user, rpl); 2435 CP(*user32, arg.user, rpl_len); 2436 PTRIN_CP(*user32, arg.user, buf); 2437 CP(*user32, arg.user, len); 2438 CP(*user32, arg.user, flags); 2439 break; 2440 default: 2441 return (ENOIOCTL); 2442 } 2443 2444 error = mps_ioctl(dev, cmd, &arg, flag, td); 2445 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2446 switch (cmd32) { 2447 case MPSIO_READ_CFG_HEADER32: 2448 case MPSIO_READ_CFG_PAGE32: 2449 case MPSIO_WRITE_CFG_PAGE32: 2450 CP(arg.page, *page32, header); 2451 CP(arg.page, *page32, page_address); 2452 PTROUT_CP(arg.page, *page32, buf); 2453 CP(arg.page, *page32, len); 2454 CP(arg.page, *page32, ioc_status); 2455 break; 2456 2457 case MPSIO_READ_EXT_CFG_HEADER32: 2458 case MPSIO_READ_EXT_CFG_PAGE32: 2459 CP(arg.ext, *ext32, header); 2460 CP(arg.ext, *ext32, page_address); 2461 PTROUT_CP(arg.ext, *ext32, buf); 2462 CP(arg.ext, *ext32, len); 2463 CP(arg.ext, *ext32, ioc_status); 2464 break; 2465 2466 case MPSIO_RAID_ACTION32: 2467 CP(arg.raid, *raid32, action); 2468 CP(arg.raid, *raid32, volume_bus); 2469 CP(arg.raid, *raid32, volume_id); 2470 CP(arg.raid, *raid32, phys_disk_num); 2471 CP(arg.raid, *raid32, action_data_word); 2472 PTROUT_CP(arg.raid, *raid32, buf); 2473 CP(arg.raid, *raid32, len); 2474 CP(arg.raid, *raid32, volume_status); 2475 bcopy(arg.raid.action_data, raid32->action_data, 2476 sizeof arg.raid.action_data); 2477 CP(arg.raid, *raid32, ioc_status); 2478 CP(arg.raid, *raid32, write); 2479 break; 2480 2481 case MPSIO_MPS_COMMAND32: 2482 PTROUT_CP(arg.user, *user32, req); 2483 CP(arg.user, *user32, req_len); 2484 PTROUT_CP(arg.user, *user32, rpl); 2485 CP(arg.user, *user32, rpl_len); 2486 PTROUT_CP(arg.user, *user32, buf); 2487 CP(arg.user, *user32, len); 2488 CP(arg.user, *user32, flags); 2489 break; 2490 } 2491 } 2492 2493 return (error); 2494 } 2495 #endif /* COMPAT_FREEBSD32 */ 2496 2497 static int 2498 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2499 struct thread *td) 2500 { 2501 #ifdef COMPAT_FREEBSD32 2502 if (SV_CURPROC_FLAG(SV_ILP32)) 2503 return (mps_ioctl32(dev, com, arg, flag, td)); 2504 #endif 2505 return (mps_ioctl(dev, com, arg, flag, td)); 2506 } 2507