xref: /freebsd/sys/dev/mps/mps_user.c (revision d2ba5111c125104b09aa1acd1bfe8af2a24c79cc)
1 /*-
2  * Copyright (c) 2008 Yahoo!, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the author nor the names of any co-contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface
31  */
32 /*-
33  * Copyright (c) 2011-2015 LSI Corp.
34  * Copyright (c) 2013-2015 Avago Technologies
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
59  *
60  * $FreeBSD$
61  */
62 
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65 
66 #include "opt_compat.h"
67 
68 /* TODO Move headers to mpsvar */
69 #include <sys/types.h>
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/selinfo.h>
74 #include <sys/module.h>
75 #include <sys/bus.h>
76 #include <sys/conf.h>
77 #include <sys/bio.h>
78 #include <sys/malloc.h>
79 #include <sys/uio.h>
80 #include <sys/sysctl.h>
81 #include <sys/ioccom.h>
82 #include <sys/endian.h>
83 #include <sys/queue.h>
84 #include <sys/kthread.h>
85 #include <sys/taskqueue.h>
86 #include <sys/proc.h>
87 #include <sys/sysent.h>
88 
89 #include <machine/bus.h>
90 #include <machine/resource.h>
91 #include <sys/rman.h>
92 
93 #include <cam/cam.h>
94 #include <cam/cam_ccb.h>
95 #include <cam/scsi/scsi_all.h>
96 
97 #include <dev/mps/mpi/mpi2_type.h>
98 #include <dev/mps/mpi/mpi2.h>
99 #include <dev/mps/mpi/mpi2_ioc.h>
100 #include <dev/mps/mpi/mpi2_cnfg.h>
101 #include <dev/mps/mpi/mpi2_init.h>
102 #include <dev/mps/mpi/mpi2_tool.h>
103 #include <dev/mps/mps_ioctl.h>
104 #include <dev/mps/mpsvar.h>
105 #include <dev/mps/mps_table.h>
106 #include <dev/mps/mps_sas.h>
107 #include <dev/pci/pcivar.h>
108 #include <dev/pci/pcireg.h>
109 
110 static d_open_t		mps_open;
111 static d_close_t	mps_close;
112 static d_ioctl_t	mps_ioctl_devsw;
113 
114 static struct cdevsw mps_cdevsw = {
115 	.d_version =	D_VERSION,
116 	.d_flags =	0,
117 	.d_open =	mps_open,
118 	.d_close =	mps_close,
119 	.d_ioctl =	mps_ioctl_devsw,
120 	.d_name =	"mps",
121 };
122 
123 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *);
124 static mps_user_f	mpi_pre_ioc_facts;
125 static mps_user_f	mpi_pre_port_facts;
126 static mps_user_f	mpi_pre_fw_download;
127 static mps_user_f	mpi_pre_fw_upload;
128 static mps_user_f	mpi_pre_sata_passthrough;
129 static mps_user_f	mpi_pre_smp_passthrough;
130 static mps_user_f	mpi_pre_config;
131 static mps_user_f	mpi_pre_sas_io_unit_control;
132 
133 static int mps_user_read_cfg_header(struct mps_softc *,
134 				    struct mps_cfg_page_req *);
135 static int mps_user_read_cfg_page(struct mps_softc *,
136 				  struct mps_cfg_page_req *, void *);
137 static int mps_user_read_extcfg_header(struct mps_softc *,
138 				     struct mps_ext_cfg_page_req *);
139 static int mps_user_read_extcfg_page(struct mps_softc *,
140 				     struct mps_ext_cfg_page_req *, void *);
141 static int mps_user_write_cfg_page(struct mps_softc *,
142 				   struct mps_cfg_page_req *, void *);
143 static int mps_user_setup_request(struct mps_command *,
144 				  struct mps_usr_command *);
145 static int mps_user_command(struct mps_softc *, struct mps_usr_command *);
146 
147 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data);
148 static void mps_user_get_adapter_data(struct mps_softc *sc,
149     mps_adapter_data_t *data);
150 static void mps_user_read_pci_info(struct mps_softc *sc,
151     mps_pci_info_t *data);
152 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc,
153     uint32_t unique_id);
154 static int mps_post_fw_diag_buffer(struct mps_softc *sc,
155     mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
156 static int mps_release_fw_diag_buffer(struct mps_softc *sc,
157     mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
158     uint32_t diag_type);
159 static int mps_diag_register(struct mps_softc *sc,
160     mps_fw_diag_register_t *diag_register, uint32_t *return_code);
161 static int mps_diag_unregister(struct mps_softc *sc,
162     mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
163 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query,
164     uint32_t *return_code);
165 static int mps_diag_read_buffer(struct mps_softc *sc,
166     mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
167     uint32_t *return_code);
168 static int mps_diag_release(struct mps_softc *sc,
169     mps_fw_diag_release_t *diag_release, uint32_t *return_code);
170 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action,
171     uint8_t *diag_action, uint32_t length, uint32_t *return_code);
172 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data);
173 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data);
174 static void mps_user_event_enable(struct mps_softc *sc,
175     mps_event_enable_t *data);
176 static int mps_user_event_report(struct mps_softc *sc,
177     mps_event_report_t *data);
178 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data);
179 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data);
180 
181 static MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls");
182 
183 /* Macros from compat/freebsd32/freebsd32.h */
184 #define	PTRIN(v)	(void *)(uintptr_t)(v)
185 #define	PTROUT(v)	(uint32_t)(uintptr_t)(v)
186 
187 #define	CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0)
188 #define	PTRIN_CP(src,dst,fld)				\
189 	do { (dst).fld = PTRIN((src).fld); } while (0)
190 #define	PTROUT_CP(src,dst,fld) \
191 	do { (dst).fld = PTROUT((src).fld); } while (0)
192 
193 int
194 mps_attach_user(struct mps_softc *sc)
195 {
196 	int unit;
197 
198 	unit = device_get_unit(sc->mps_dev);
199 	sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640,
200 	    "mps%d", unit);
201 	if (sc->mps_cdev == NULL) {
202 		return (ENOMEM);
203 	}
204 	sc->mps_cdev->si_drv1 = sc;
205 	return (0);
206 }
207 
208 void
209 mps_detach_user(struct mps_softc *sc)
210 {
211 
212 	/* XXX: do a purge of pending requests? */
213 	if (sc->mps_cdev != NULL)
214 		destroy_dev(sc->mps_cdev);
215 }
216 
217 static int
218 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td)
219 {
220 
221 	return (0);
222 }
223 
224 static int
225 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td)
226 {
227 
228 	return (0);
229 }
230 
231 static int
232 mps_user_read_cfg_header(struct mps_softc *sc,
233     struct mps_cfg_page_req *page_req)
234 {
235 	MPI2_CONFIG_PAGE_HEADER *hdr;
236 	struct mps_config_params params;
237 	int	    error;
238 
239 	hdr = &params.hdr.Struct;
240 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
241 	params.page_address = le32toh(page_req->page_address);
242 	hdr->PageVersion = 0;
243 	hdr->PageLength = 0;
244 	hdr->PageNumber = page_req->header.PageNumber;
245 	hdr->PageType = page_req->header.PageType;
246 	params.buffer = NULL;
247 	params.length = 0;
248 	params.callback = NULL;
249 
250 	if ((error = mps_read_config_page(sc, &params)) != 0) {
251 		/*
252 		 * Leave the request. Without resetting the chip, it's
253 		 * still owned by it and we'll just get into trouble
254 		 * freeing it now. Mark it as abandoned so that if it
255 		 * shows up later it can be freed.
256 		 */
257 		mps_printf(sc, "read_cfg_header timed out\n");
258 		return (ETIMEDOUT);
259 	}
260 
261 	page_req->ioc_status = htole16(params.status);
262 	if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
263 	    MPI2_IOCSTATUS_SUCCESS) {
264 		bcopy(hdr, &page_req->header, sizeof(page_req->header));
265 	}
266 
267 	return (0);
268 }
269 
270 static int
271 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req,
272     void *buf)
273 {
274 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
275 	struct mps_config_params params;
276 	int	      error;
277 
278 	reqhdr = buf;
279 	hdr = &params.hdr.Struct;
280 	hdr->PageVersion = reqhdr->PageVersion;
281 	hdr->PageLength = reqhdr->PageLength;
282 	hdr->PageNumber = reqhdr->PageNumber;
283 	hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
284 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
285 	params.page_address = le32toh(page_req->page_address);
286 	params.buffer = buf;
287 	params.length = le32toh(page_req->len);
288 	params.callback = NULL;
289 
290 	if ((error = mps_read_config_page(sc, &params)) != 0) {
291 		mps_printf(sc, "mps_user_read_cfg_page timed out\n");
292 		return (ETIMEDOUT);
293 	}
294 
295 	page_req->ioc_status = htole16(params.status);
296 	return (0);
297 }
298 
299 static int
300 mps_user_read_extcfg_header(struct mps_softc *sc,
301     struct mps_ext_cfg_page_req *ext_page_req)
302 {
303 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
304 	struct mps_config_params params;
305 	int	    error;
306 
307 	hdr = &params.hdr.Ext;
308 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
309 	hdr->PageVersion = ext_page_req->header.PageVersion;
310 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
311 	hdr->ExtPageLength = 0;
312 	hdr->PageNumber = ext_page_req->header.PageNumber;
313 	hdr->ExtPageType = ext_page_req->header.ExtPageType;
314 	params.page_address = le32toh(ext_page_req->page_address);
315 	params.buffer = NULL;
316 	params.length = 0;
317 	params.callback = NULL;
318 
319 	if ((error = mps_read_config_page(sc, &params)) != 0) {
320 		/*
321 		 * Leave the request. Without resetting the chip, it's
322 		 * still owned by it and we'll just get into trouble
323 		 * freeing it now. Mark it as abandoned so that if it
324 		 * shows up later it can be freed.
325 		 */
326 		mps_printf(sc, "mps_user_read_extcfg_header timed out\n");
327 		return (ETIMEDOUT);
328 	}
329 
330 	ext_page_req->ioc_status = htole16(params.status);
331 	if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
332 	    MPI2_IOCSTATUS_SUCCESS) {
333 		ext_page_req->header.PageVersion = hdr->PageVersion;
334 		ext_page_req->header.PageNumber = hdr->PageNumber;
335 		ext_page_req->header.PageType = hdr->PageType;
336 		ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
337 		ext_page_req->header.ExtPageType = hdr->ExtPageType;
338 	}
339 
340 	return (0);
341 }
342 
343 static int
344 mps_user_read_extcfg_page(struct mps_softc *sc,
345     struct mps_ext_cfg_page_req *ext_page_req, void *buf)
346 {
347 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
348 	struct mps_config_params params;
349 	int error;
350 
351 	reqhdr = buf;
352 	hdr = &params.hdr.Ext;
353 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
354 	params.page_address = le32toh(ext_page_req->page_address);
355 	hdr->PageVersion = reqhdr->PageVersion;
356 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
357 	hdr->PageNumber = reqhdr->PageNumber;
358 	hdr->ExtPageType = reqhdr->ExtPageType;
359 	hdr->ExtPageLength = reqhdr->ExtPageLength;
360 	params.buffer = buf;
361 	params.length = le32toh(ext_page_req->len);
362 	params.callback = NULL;
363 
364 	if ((error = mps_read_config_page(sc, &params)) != 0) {
365 		mps_printf(sc, "mps_user_read_extcfg_page timed out\n");
366 		return (ETIMEDOUT);
367 	}
368 
369 	ext_page_req->ioc_status = htole16(params.status);
370 	return (0);
371 }
372 
373 static int
374 mps_user_write_cfg_page(struct mps_softc *sc,
375     struct mps_cfg_page_req *page_req, void *buf)
376 {
377 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
378 	struct mps_config_params params;
379 	u_int	      hdr_attr;
380 	int	      error;
381 
382 	reqhdr = buf;
383 	hdr = &params.hdr.Struct;
384 	hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
385 	if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
386 	    hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
387 		mps_printf(sc, "page type 0x%x not changeable\n",
388 			reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
389 		return (EINVAL);
390 	}
391 
392 	/*
393 	 * There isn't any point in restoring stripped out attributes
394 	 * if you then mask them going down to issue the request.
395 	 */
396 
397 	hdr->PageVersion = reqhdr->PageVersion;
398 	hdr->PageLength = reqhdr->PageLength;
399 	hdr->PageNumber = reqhdr->PageNumber;
400 	hdr->PageType = reqhdr->PageType;
401 	params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
402 	params.page_address = le32toh(page_req->page_address);
403 	params.buffer = buf;
404 	params.length = le32toh(page_req->len);
405 	params.callback = NULL;
406 
407 	if ((error = mps_write_config_page(sc, &params)) != 0) {
408 		mps_printf(sc, "mps_write_cfg_page timed out\n");
409 		return (ETIMEDOUT);
410 	}
411 
412 	page_req->ioc_status = htole16(params.status);
413 	return (0);
414 }
415 
416 void
417 mpi_init_sge(struct mps_command *cm, void *req, void *sge)
418 {
419 	int off, space;
420 
421 	space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
422 	off = (uintptr_t)sge - (uintptr_t)req;
423 
424 	KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
425             req, sge, off, space));
426 
427 	cm->cm_sge = sge;
428 	cm->cm_sglsize = space - off;
429 }
430 
431 /*
432  * Prepare the mps_command for an IOC_FACTS request.
433  */
434 static int
435 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd)
436 {
437 	MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
438 	MPI2_IOC_FACTS_REPLY *rpl;
439 
440 	if (cmd->req_len != sizeof *req)
441 		return (EINVAL);
442 	if (cmd->rpl_len != sizeof *rpl)
443 		return (EINVAL);
444 
445 	cm->cm_sge = NULL;
446 	cm->cm_sglsize = 0;
447 	return (0);
448 }
449 
450 /*
451  * Prepare the mps_command for a PORT_FACTS request.
452  */
453 static int
454 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd)
455 {
456 	MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
457 	MPI2_PORT_FACTS_REPLY *rpl;
458 
459 	if (cmd->req_len != sizeof *req)
460 		return (EINVAL);
461 	if (cmd->rpl_len != sizeof *rpl)
462 		return (EINVAL);
463 
464 	cm->cm_sge = NULL;
465 	cm->cm_sglsize = 0;
466 	return (0);
467 }
468 
469 /*
470  * Prepare the mps_command for a FW_DOWNLOAD request.
471  */
472 static int
473 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd)
474 {
475 	MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
476 	MPI2_FW_DOWNLOAD_REPLY *rpl;
477 	MPI2_FW_DOWNLOAD_TCSGE tc;
478 	int error;
479 
480 	/*
481 	 * This code assumes there is room in the request's SGL for
482 	 * the TransactionContext plus at least a SGL chain element.
483 	 */
484 	CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE);
485 
486 	if (cmd->req_len != sizeof *req)
487 		return (EINVAL);
488 	if (cmd->rpl_len != sizeof *rpl)
489 		return (EINVAL);
490 
491 	if (cmd->len == 0)
492 		return (EINVAL);
493 
494 	error = copyin(cmd->buf, cm->cm_data, cmd->len);
495 	if (error != 0)
496 		return (error);
497 
498 	mpi_init_sge(cm, req, &req->SGL);
499 	bzero(&tc, sizeof tc);
500 
501 	/*
502 	 * For now, the F/W image must be provided in a single request.
503 	 */
504 	if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
505 		return (EINVAL);
506 	if (req->TotalImageSize != cmd->len)
507 		return (EINVAL);
508 
509 	/*
510 	 * The value of the first two elements is specified in the
511 	 * Fusion-MPT Message Passing Interface document.
512 	 */
513 	tc.ContextSize = 0;
514 	tc.DetailsLength = 12;
515 	tc.ImageOffset = 0;
516 	tc.ImageSize = cmd->len;
517 
518 	cm->cm_flags |= MPS_CM_FLAGS_DATAOUT;
519 
520 	return (mps_push_sge(cm, &tc, sizeof tc, 0));
521 }
522 
523 /*
524  * Prepare the mps_command for a FW_UPLOAD request.
525  */
526 static int
527 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd)
528 {
529 	MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
530 	MPI2_FW_UPLOAD_REPLY *rpl;
531 	MPI2_FW_UPLOAD_TCSGE tc;
532 
533 	/*
534 	 * This code assumes there is room in the request's SGL for
535 	 * the TransactionContext plus at least a SGL chain element.
536 	 */
537 	CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE);
538 
539 	if (cmd->req_len != sizeof *req)
540 		return (EINVAL);
541 	if (cmd->rpl_len != sizeof *rpl)
542 		return (EINVAL);
543 
544 	mpi_init_sge(cm, req, &req->SGL);
545 	bzero(&tc, sizeof tc);
546 
547 	/*
548 	 * The value of the first two elements is specified in the
549 	 * Fusion-MPT Message Passing Interface document.
550 	 */
551 	tc.ContextSize = 0;
552 	tc.DetailsLength = 12;
553 	/*
554 	 * XXX Is there any reason to fetch a partial image?  I.e. to
555 	 * set ImageOffset to something other than 0?
556 	 */
557 	tc.ImageOffset = 0;
558 	tc.ImageSize = cmd->len;
559 
560 	cm->cm_flags |= MPS_CM_FLAGS_DATAIN;
561 
562 	return (mps_push_sge(cm, &tc, sizeof tc, 0));
563 }
564 
565 /*
566  * Prepare the mps_command for a SATA_PASSTHROUGH request.
567  */
568 static int
569 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd)
570 {
571 	MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
572 	MPI2_SATA_PASSTHROUGH_REPLY *rpl;
573 
574 	if (cmd->req_len != sizeof *req)
575 		return (EINVAL);
576 	if (cmd->rpl_len != sizeof *rpl)
577 		return (EINVAL);
578 
579 	mpi_init_sge(cm, req, &req->SGL);
580 	return (0);
581 }
582 
583 /*
584  * Prepare the mps_command for a SMP_PASSTHROUGH request.
585  */
586 static int
587 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd)
588 {
589 	MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
590 	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
591 
592 	if (cmd->req_len != sizeof *req)
593 		return (EINVAL);
594 	if (cmd->rpl_len != sizeof *rpl)
595 		return (EINVAL);
596 
597 	mpi_init_sge(cm, req, &req->SGL);
598 	return (0);
599 }
600 
601 /*
602  * Prepare the mps_command for a CONFIG request.
603  */
604 static int
605 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd)
606 {
607 	MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
608 	MPI2_CONFIG_REPLY *rpl;
609 
610 	if (cmd->req_len != sizeof *req)
611 		return (EINVAL);
612 	if (cmd->rpl_len != sizeof *rpl)
613 		return (EINVAL);
614 
615 	mpi_init_sge(cm, req, &req->PageBufferSGE);
616 	return (0);
617 }
618 
619 /*
620  * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request.
621  */
622 static int
623 mpi_pre_sas_io_unit_control(struct mps_command *cm,
624 			     struct mps_usr_command *cmd)
625 {
626 
627 	cm->cm_sge = NULL;
628 	cm->cm_sglsize = 0;
629 	return (0);
630 }
631 
632 /*
633  * A set of functions to prepare an mps_command for the various
634  * supported requests.
635  */
636 struct mps_user_func {
637 	U8		Function;
638 	mps_user_f	*f_pre;
639 } mps_user_func_list[] = {
640 	{ MPI2_FUNCTION_IOC_FACTS,		mpi_pre_ioc_facts },
641 	{ MPI2_FUNCTION_PORT_FACTS,		mpi_pre_port_facts },
642 	{ MPI2_FUNCTION_FW_DOWNLOAD, 		mpi_pre_fw_download },
643 	{ MPI2_FUNCTION_FW_UPLOAD,		mpi_pre_fw_upload },
644 	{ MPI2_FUNCTION_SATA_PASSTHROUGH,	mpi_pre_sata_passthrough },
645 	{ MPI2_FUNCTION_SMP_PASSTHROUGH,	mpi_pre_smp_passthrough},
646 	{ MPI2_FUNCTION_CONFIG,			mpi_pre_config},
647 	{ MPI2_FUNCTION_SAS_IO_UNIT_CONTROL,	mpi_pre_sas_io_unit_control },
648 	{ 0xFF,					NULL } /* list end */
649 };
650 
651 static int
652 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd)
653 {
654 	MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
655 	struct mps_user_func *f;
656 
657 	for (f = mps_user_func_list; f->f_pre != NULL; f++) {
658 		if (hdr->Function == f->Function)
659 			return (f->f_pre(cm, cmd));
660 	}
661 	return (EINVAL);
662 }
663 
664 static int
665 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd)
666 {
667 	MPI2_REQUEST_HEADER *hdr;
668 	MPI2_DEFAULT_REPLY *rpl;
669 	void *buf = NULL;
670 	struct mps_command *cm = NULL;
671 	int err = 0;
672 	int sz;
673 
674 	mps_lock(sc);
675 	cm = mps_alloc_command(sc);
676 
677 	if (cm == NULL) {
678 		mps_printf(sc, "%s: no mps requests\n", __func__);
679 		err = ENOMEM;
680 		goto Ret;
681 	}
682 	mps_unlock(sc);
683 
684 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
685 
686 	mps_dprint(sc, MPS_USER, "%s: req %p %d  rpl %p %d\n", __func__,
687 	    cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len);
688 
689 	if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) {
690 		err = EINVAL;
691 		goto RetFreeUnlocked;
692 	}
693 	err = copyin(cmd->req, hdr, cmd->req_len);
694 	if (err != 0)
695 		goto RetFreeUnlocked;
696 
697 	mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
698 	    hdr->Function, hdr->MsgFlags);
699 
700 	if (cmd->len > 0) {
701 		buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO);
702 		cm->cm_data = buf;
703 		cm->cm_length = cmd->len;
704 	} else {
705 		cm->cm_data = NULL;
706 		cm->cm_length = 0;
707 	}
708 
709 	cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE;
710 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
711 
712 	err = mps_user_setup_request(cm, cmd);
713 	if (err == EINVAL) {
714 		mps_printf(sc, "%s: unsupported parameter or unsupported "
715 		    "function in request (function = 0x%X)\n", __func__,
716 		    hdr->Function);
717 	}
718 	if (err != 0)
719 		goto RetFreeUnlocked;
720 
721 	mps_lock(sc);
722 	err = mps_wait_command(sc, cm, 60, CAN_SLEEP);
723 
724 	if (err) {
725 		mps_printf(sc, "%s: invalid request: error %d\n",
726 		    __func__, err);
727 		goto Ret;
728 	}
729 
730 	rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
731 	if (rpl != NULL)
732 		sz = rpl->MsgLength * 4;
733 	else
734 		sz = 0;
735 
736 	if (sz > cmd->rpl_len) {
737 		mps_printf(sc, "%s: user reply buffer (%d) smaller than "
738 		    "returned buffer (%d)\n", __func__, cmd->rpl_len, sz);
739 		sz = cmd->rpl_len;
740 	}
741 
742 	mps_unlock(sc);
743 	copyout(rpl, cmd->rpl, sz);
744 	if (buf != NULL)
745 		copyout(buf, cmd->buf, cmd->len);
746 	mps_dprint(sc, MPS_USER, "%s: reply size %d\n", __func__, sz);
747 
748 RetFreeUnlocked:
749 	mps_lock(sc);
750 	if (cm != NULL)
751 		mps_free_command(sc, cm);
752 Ret:
753 	mps_unlock(sc);
754 	if (buf != NULL)
755 		free(buf, M_MPSUSER);
756 	return (err);
757 }
758 
759 static int
760 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data)
761 {
762 	MPI2_REQUEST_HEADER	*hdr, tmphdr;
763 	MPI2_DEFAULT_REPLY	*rpl;
764 	struct mps_command	*cm = NULL;
765 	int			err = 0, dir = 0, sz;
766 	uint8_t			function = 0;
767 	u_int			sense_len;
768 	struct mpssas_target	*targ = NULL;
769 
770 	/*
771 	 * Only allow one passthru command at a time.  Use the MPS_FLAGS_BUSY
772 	 * bit to denote that a passthru is being processed.
773 	 */
774 	mps_lock(sc);
775 	if (sc->mps_flags & MPS_FLAGS_BUSY) {
776 		mps_dprint(sc, MPS_USER, "%s: Only one passthru command "
777 		    "allowed at a single time.", __func__);
778 		mps_unlock(sc);
779 		return (EBUSY);
780 	}
781 	sc->mps_flags |= MPS_FLAGS_BUSY;
782 	mps_unlock(sc);
783 
784 	/*
785 	 * Do some validation on data direction.  Valid cases are:
786 	 *    1) DataSize is 0 and direction is NONE
787 	 *    2) DataSize is non-zero and one of:
788 	 *        a) direction is READ or
789 	 *        b) direction is WRITE or
790 	 *        c) direction is BOTH and DataOutSize is non-zero
791 	 * If valid and the direction is BOTH, change the direction to READ.
792 	 * if valid and the direction is not BOTH, make sure DataOutSize is 0.
793 	 */
794 	if (((data->DataSize == 0) &&
795 	    (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) ||
796 	    ((data->DataSize != 0) &&
797 	    ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) ||
798 	    (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) ||
799 	    ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) &&
800 	    (data->DataOutSize != 0))))) {
801 		if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH)
802 			data->DataDirection = MPS_PASS_THRU_DIRECTION_READ;
803 		else
804 			data->DataOutSize = 0;
805 	} else
806 		return (EINVAL);
807 
808 	mps_dprint(sc, MPS_USER, "%s: req 0x%jx %d  rpl 0x%jx %d "
809 	    "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
810 	    data->PtrRequest, data->RequestSize, data->PtrReply,
811 	    data->ReplySize, data->PtrData, data->DataSize,
812 	    data->PtrDataOut, data->DataOutSize, data->DataDirection);
813 
814 	/*
815 	 * copy in the header so we know what we're dealing with before we
816 	 * commit to allocating a command for it.
817 	 */
818 	err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize);
819 	if (err != 0)
820 		goto RetFreeUnlocked;
821 
822 	if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) {
823 		err = EINVAL;
824 		goto RetFreeUnlocked;
825 	}
826 
827 	function = tmphdr.Function;
828 	mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
829 	    function, tmphdr.MsgFlags);
830 
831 	/*
832 	 * Handle a passthru TM request.
833 	 */
834 	if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
835 		MPI2_SCSI_TASK_MANAGE_REQUEST	*task;
836 
837 		mps_lock(sc);
838 		cm = mpssas_alloc_tm(sc);
839 		if (cm == NULL) {
840 			err = EINVAL;
841 			goto Ret;
842 		}
843 
844 		/* Copy the header in.  Only a small fixup is needed. */
845 		task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
846 		bcopy(&tmphdr, task, data->RequestSize);
847 		task->TaskMID = cm->cm_desc.Default.SMID;
848 
849 		cm->cm_data = NULL;
850 		cm->cm_desc.HighPriority.RequestFlags =
851 		    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
852 		cm->cm_complete = NULL;
853 		cm->cm_complete_data = NULL;
854 
855 		targ = mpssas_find_target_by_handle(sc->sassc, 0,
856 		    task->DevHandle);
857 		if (targ == NULL) {
858 			mps_dprint(sc, MPS_INFO,
859 			   "%s %d : invalid handle for requested TM 0x%x \n",
860 			   __func__, __LINE__, task->DevHandle);
861 			err = 1;
862 		} else {
863 			mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
864 			err = mps_wait_command(sc, cm, 30, CAN_SLEEP);
865 		}
866 
867 		if (err != 0) {
868 			err = EIO;
869 			mps_dprint(sc, MPS_FAULT, "%s: task management failed",
870 			    __func__);
871 		}
872 		/*
873 		 * Copy the reply data and sense data to user space.
874 		 */
875 		if (cm->cm_reply != NULL) {
876 			rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
877 			sz = rpl->MsgLength * 4;
878 
879 			if (sz > data->ReplySize) {
880 				mps_printf(sc, "%s: user reply buffer (%d) "
881 				    "smaller than returned buffer (%d)\n",
882 				    __func__, data->ReplySize, sz);
883 			}
884 			mps_unlock(sc);
885 			copyout(cm->cm_reply, PTRIN(data->PtrReply),
886 			    data->ReplySize);
887 			mps_lock(sc);
888 		}
889 		mpssas_free_tm(sc, cm);
890 		goto Ret;
891 	}
892 
893 	mps_lock(sc);
894 	cm = mps_alloc_command(sc);
895 
896 	if (cm == NULL) {
897 		mps_printf(sc, "%s: no mps requests\n", __func__);
898 		err = ENOMEM;
899 		goto Ret;
900 	}
901 	mps_unlock(sc);
902 
903 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
904 	bcopy(&tmphdr, hdr, data->RequestSize);
905 
906 	/*
907 	 * Do some checking to make sure the IOCTL request contains a valid
908 	 * request.  Then set the SGL info.
909 	 */
910 	mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
911 
912 	/*
913 	 * Set up for read, write or both.  From check above, DataOutSize will
914 	 * be 0 if direction is READ or WRITE, but it will have some non-zero
915 	 * value if the direction is BOTH.  So, just use the biggest size to get
916 	 * the cm_data buffer size.  If direction is BOTH, 2 SGLs need to be set
917 	 * up; the first is for the request and the second will contain the
918 	 * response data. cm_out_len needs to be set here and this will be used
919 	 * when the SGLs are set up.
920 	 */
921 	cm->cm_data = NULL;
922 	cm->cm_length = MAX(data->DataSize, data->DataOutSize);
923 	cm->cm_out_len = data->DataOutSize;
924 	cm->cm_flags = 0;
925 	if (cm->cm_length != 0) {
926 		cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK |
927 		    M_ZERO);
928 		cm->cm_flags = MPS_CM_FLAGS_DATAIN;
929 		if (data->DataOutSize) {
930 			cm->cm_flags |= MPS_CM_FLAGS_DATAOUT;
931 			err = copyin(PTRIN(data->PtrDataOut),
932 			    cm->cm_data, data->DataOutSize);
933 		} else if (data->DataDirection ==
934 		    MPS_PASS_THRU_DIRECTION_WRITE) {
935 			cm->cm_flags = MPS_CM_FLAGS_DATAOUT;
936 			err = copyin(PTRIN(data->PtrData),
937 			    cm->cm_data, data->DataSize);
938 		}
939 		if (err != 0)
940 			mps_dprint(sc, MPS_FAULT, "%s: failed to copy "
941 			    "IOCTL data from user space\n", __func__);
942 	}
943 	cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE;
944 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
945 
946 	/*
947 	 * Set up Sense buffer and SGL offset for IO passthru.  SCSI IO request
948 	 * uses SCSI IO descriptor.
949 	 */
950 	if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
951 	    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
952 		MPI2_SCSI_IO_REQUEST	*scsi_io_req;
953 
954 		scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
955 		/*
956 		 * Put SGE for data and data_out buffer at the end of
957 		 * scsi_io_request message header (64 bytes in total).
958 		 * Following above SGEs, the residual space will be used by
959 		 * sense data.
960 		 */
961 		scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
962 		    64);
963 		scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr);
964 
965 		/*
966 		 * Set SGLOffset0 value.  This is the number of dwords that SGL
967 		 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
968 		 */
969 		scsi_io_req->SGLOffset0 = 24;
970 
971 		/*
972 		 * Setup descriptor info.  RAID passthrough must use the
973 		 * default request descriptor which is already set, so if this
974 		 * is a SCSI IO request, change the descriptor to SCSI IO.
975 		 * Also, if this is a SCSI IO request, handle the reply in the
976 		 * mpssas_scsio_complete function.
977 		 */
978 		if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
979 			cm->cm_desc.SCSIIO.RequestFlags =
980 			    MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
981 			cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle;
982 
983 			/*
984 			 * Make sure the DevHandle is not 0 because this is a
985 			 * likely error.
986 			 */
987 			if (scsi_io_req->DevHandle == 0) {
988 				err = EINVAL;
989 				goto RetFreeUnlocked;
990 			}
991 		}
992 	}
993 
994 	mps_lock(sc);
995 
996 	err = mps_wait_command(sc, cm, 30, CAN_SLEEP);
997 
998 	if (err) {
999 		mps_printf(sc, "%s: invalid request: error %d\n", __func__,
1000 		    err);
1001 		mps_unlock(sc);
1002 		goto RetFreeUnlocked;
1003 	}
1004 
1005 	/*
1006 	 * Sync the DMA data, if any.  Then copy the data to user space.
1007 	 */
1008 	if (cm->cm_data != NULL) {
1009 		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN)
1010 			dir = BUS_DMASYNC_POSTREAD;
1011 		else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT)
1012 			dir = BUS_DMASYNC_POSTWRITE;
1013 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
1014 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
1015 
1016 		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
1017 			mps_unlock(sc);
1018 			err = copyout(cm->cm_data,
1019 			    PTRIN(data->PtrData), data->DataSize);
1020 			mps_lock(sc);
1021 			if (err != 0)
1022 				mps_dprint(sc, MPS_FAULT, "%s: failed to copy "
1023 				    "IOCTL data to user space\n", __func__);
1024 		}
1025 	}
1026 
1027 	/*
1028 	 * Copy the reply data and sense data to user space.
1029 	 */
1030 	if (cm->cm_reply != NULL) {
1031 		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
1032 		sz = rpl->MsgLength * 4;
1033 
1034 		if (sz > data->ReplySize) {
1035 			mps_printf(sc, "%s: user reply buffer (%d) smaller "
1036 			    "than returned buffer (%d)\n", __func__,
1037 			    data->ReplySize, sz);
1038 		}
1039 		mps_unlock(sc);
1040 		copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize);
1041 		mps_lock(sc);
1042 
1043 		if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
1044 		    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
1045 			if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
1046 			    MPI2_SCSI_STATE_AUTOSENSE_VALID) {
1047 				sense_len =
1048 				    MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->SenseCount)),
1049 				    sizeof(struct scsi_sense_data));
1050 				mps_unlock(sc);
1051 				copyout(cm->cm_sense, cm->cm_req + 64, sense_len);
1052 				mps_lock(sc);
1053 			}
1054 		}
1055 	}
1056 	mps_unlock(sc);
1057 
1058 RetFreeUnlocked:
1059 	mps_lock(sc);
1060 
1061 	if (cm != NULL) {
1062 		if (cm->cm_data)
1063 			free(cm->cm_data, M_MPSUSER);
1064 		mps_free_command(sc, cm);
1065 	}
1066 Ret:
1067 	sc->mps_flags &= ~MPS_FLAGS_BUSY;
1068 	mps_unlock(sc);
1069 
1070 	return (err);
1071 }
1072 
1073 static void
1074 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data)
1075 {
1076 	Mpi2ConfigReply_t	mpi_reply;
1077 	Mpi2BiosPage3_t		config_page;
1078 
1079 	/*
1080 	 * Use the PCI interface functions to get the Bus, Device, and Function
1081 	 * information.
1082 	 */
1083 	data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev);
1084 	data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev);
1085 	data->PciInformation.u.bits.FunctionNumber =
1086 	    pci_get_function(sc->mps_dev);
1087 
1088 	/*
1089 	 * Get the FW version that should already be saved in IOC Facts.
1090 	 */
1091 	data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
1092 
1093 	/*
1094 	 * General device info.
1095 	 */
1096 	data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2;
1097 	if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE)
1098 		data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200;
1099 	data->PCIDeviceHwId = pci_get_device(sc->mps_dev);
1100 	data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1);
1101 	data->SubSystemId = pci_get_subdevice(sc->mps_dev);
1102 	data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev);
1103 
1104 	/*
1105 	 * Get the driver version.
1106 	 */
1107 	strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION);
1108 
1109 	/*
1110 	 * Need to get BIOS Config Page 3 for the BIOS Version.
1111 	 */
1112 	data->BiosVersion = 0;
1113 	mps_lock(sc);
1114 	if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page))
1115 		printf("%s: Error while retrieving BIOS Version\n", __func__);
1116 	else
1117 		data->BiosVersion = config_page.BiosVersion;
1118 	mps_unlock(sc);
1119 }
1120 
1121 static void
1122 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data)
1123 {
1124 	int	i;
1125 
1126 	/*
1127 	 * Use the PCI interface functions to get the Bus, Device, and Function
1128 	 * information.
1129 	 */
1130 	data->BusNumber = pci_get_bus(sc->mps_dev);
1131 	data->DeviceNumber = pci_get_slot(sc->mps_dev);
1132 	data->FunctionNumber = pci_get_function(sc->mps_dev);
1133 
1134 	/*
1135 	 * Now get the interrupt vector and the pci header.  The vector can
1136 	 * only be 0 right now.  The header is the first 256 bytes of config
1137 	 * space.
1138 	 */
1139 	data->InterruptVector = 0;
1140 	for (i = 0; i < sizeof (data->PciHeader); i++) {
1141 		data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1);
1142 	}
1143 }
1144 
1145 static uint8_t
1146 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id)
1147 {
1148 	uint8_t	index;
1149 
1150 	for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1151 		if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
1152 			return (index);
1153 		}
1154 	}
1155 
1156 	return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND);
1157 }
1158 
1159 static int
1160 mps_post_fw_diag_buffer(struct mps_softc *sc,
1161     mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
1162 {
1163 	MPI2_DIAG_BUFFER_POST_REQUEST	*req;
1164 	MPI2_DIAG_BUFFER_POST_REPLY	*reply;
1165 	struct mps_command		*cm = NULL;
1166 	int				i, status;
1167 
1168 	/*
1169 	 * If buffer is not enabled, just leave.
1170 	 */
1171 	*return_code = MPS_FW_DIAG_ERROR_POST_FAILED;
1172 	if (!pBuffer->enabled) {
1173 		return (MPS_DIAG_FAILURE);
1174 	}
1175 
1176 	/*
1177 	 * Clear some flags initially.
1178 	 */
1179 	pBuffer->force_release = FALSE;
1180 	pBuffer->valid_data = FALSE;
1181 	pBuffer->owned_by_firmware = FALSE;
1182 
1183 	/*
1184 	 * Get a command.
1185 	 */
1186 	cm = mps_alloc_command(sc);
1187 	if (cm == NULL) {
1188 		mps_printf(sc, "%s: no mps requests\n", __func__);
1189 		return (MPS_DIAG_FAILURE);
1190 	}
1191 
1192 	/*
1193 	 * Build the request for releasing the FW Diag Buffer and send it.
1194 	 */
1195 	req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
1196 	req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1197 	req->BufferType = pBuffer->buffer_type;
1198 	req->ExtendedType = pBuffer->extended_type;
1199 	req->BufferLength = pBuffer->size;
1200 	for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
1201 		req->ProductSpecific[i] = pBuffer->product_specific[i];
1202 	mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
1203 	cm->cm_data = NULL;
1204 	cm->cm_length = 0;
1205 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1206 	cm->cm_complete_data = NULL;
1207 
1208 	/*
1209 	 * Send command synchronously.
1210 	 */
1211 	status = mps_wait_command(sc, cm, 30, CAN_SLEEP);
1212 	if (status) {
1213 		mps_printf(sc, "%s: invalid request: error %d\n", __func__,
1214 		    status);
1215 		status = MPS_DIAG_FAILURE;
1216 		goto done;
1217 	}
1218 
1219 	/*
1220 	 * Process POST reply.
1221 	 */
1222 	reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
1223 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1224 	    MPI2_IOCSTATUS_SUCCESS) {
1225 		status = MPS_DIAG_FAILURE;
1226 		mps_dprint(sc, MPS_FAULT, "%s: post of FW  Diag Buffer failed "
1227 		    "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
1228 		    "TransferLength = 0x%x\n", __func__,
1229 		    le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo),
1230 		    le32toh(reply->TransferLength));
1231 		goto done;
1232 	}
1233 
1234 	/*
1235 	 * Post was successful.
1236 	 */
1237 	pBuffer->valid_data = TRUE;
1238 	pBuffer->owned_by_firmware = TRUE;
1239 	*return_code = MPS_FW_DIAG_ERROR_SUCCESS;
1240 	status = MPS_DIAG_SUCCESS;
1241 
1242 done:
1243 	mps_free_command(sc, cm);
1244 	return (status);
1245 }
1246 
1247 static int
1248 mps_release_fw_diag_buffer(struct mps_softc *sc,
1249     mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
1250     uint32_t diag_type)
1251 {
1252 	MPI2_DIAG_RELEASE_REQUEST	*req;
1253 	MPI2_DIAG_RELEASE_REPLY		*reply;
1254 	struct mps_command		*cm = NULL;
1255 	int				status;
1256 
1257 	/*
1258 	 * If buffer is not enabled, just leave.
1259 	 */
1260 	*return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED;
1261 	if (!pBuffer->enabled) {
1262 		mps_dprint(sc, MPS_USER, "%s: This buffer type is not "
1263 		    "supported by the IOC", __func__);
1264 		return (MPS_DIAG_FAILURE);
1265 	}
1266 
1267 	/*
1268 	 * Clear some flags initially.
1269 	 */
1270 	pBuffer->force_release = FALSE;
1271 	pBuffer->valid_data = FALSE;
1272 	pBuffer->owned_by_firmware = FALSE;
1273 
1274 	/*
1275 	 * Get a command.
1276 	 */
1277 	cm = mps_alloc_command(sc);
1278 	if (cm == NULL) {
1279 		mps_printf(sc, "%s: no mps requests\n", __func__);
1280 		return (MPS_DIAG_FAILURE);
1281 	}
1282 
1283 	/*
1284 	 * Build the request for releasing the FW Diag Buffer and send it.
1285 	 */
1286 	req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
1287 	req->Function = MPI2_FUNCTION_DIAG_RELEASE;
1288 	req->BufferType = pBuffer->buffer_type;
1289 	cm->cm_data = NULL;
1290 	cm->cm_length = 0;
1291 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1292 	cm->cm_complete_data = NULL;
1293 
1294 	/*
1295 	 * Send command synchronously.
1296 	 */
1297 	status = mps_wait_command(sc, cm, 30, CAN_SLEEP);
1298 	if (status) {
1299 		mps_printf(sc, "%s: invalid request: error %d\n", __func__,
1300 		    status);
1301 		status = MPS_DIAG_FAILURE;
1302 		goto done;
1303 	}
1304 
1305 	/*
1306 	 * Process RELEASE reply.
1307 	 */
1308 	reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
1309 	if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1310 	    MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) {
1311 		status = MPS_DIAG_FAILURE;
1312 		mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer "
1313 		    "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
1314 		    __func__, le16toh(reply->IOCStatus),
1315 		    le32toh(reply->IOCLogInfo));
1316 		goto done;
1317 	}
1318 
1319 	/*
1320 	 * Release was successful.
1321 	 */
1322 	*return_code = MPS_FW_DIAG_ERROR_SUCCESS;
1323 	status = MPS_DIAG_SUCCESS;
1324 
1325 	/*
1326 	 * If this was for an UNREGISTER diag type command, clear the unique ID.
1327 	 */
1328 	if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) {
1329 		pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID;
1330 	}
1331 
1332 done:
1333 	return (status);
1334 }
1335 
1336 static int
1337 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register,
1338     uint32_t *return_code)
1339 {
1340 	mps_fw_diagnostic_buffer_t	*pBuffer;
1341 	uint8_t				extended_type, buffer_type, i;
1342 	uint32_t			buffer_size;
1343 	uint32_t			unique_id;
1344 	int				status;
1345 
1346 	extended_type = diag_register->ExtendedType;
1347 	buffer_type = diag_register->BufferType;
1348 	buffer_size = diag_register->RequestedBufferSize;
1349 	unique_id = diag_register->UniqueId;
1350 
1351 	/*
1352 	 * Check for valid buffer type
1353 	 */
1354 	if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
1355 		*return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1356 		return (MPS_DIAG_FAILURE);
1357 	}
1358 
1359 	/*
1360 	 * Get the current buffer and look up the unique ID.  The unique ID
1361 	 * should not be found.  If it is, the ID is already in use.
1362 	 */
1363 	i = mps_get_fw_diag_buffer_number(sc, unique_id);
1364 	pBuffer = &sc->fw_diag_buffer_list[buffer_type];
1365 	if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1366 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1367 		return (MPS_DIAG_FAILURE);
1368 	}
1369 
1370 	/*
1371 	 * The buffer's unique ID should not be registered yet, and the given
1372 	 * unique ID cannot be 0.
1373 	 */
1374 	if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) ||
1375 	    (unique_id == MPS_FW_DIAG_INVALID_UID)) {
1376 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1377 		return (MPS_DIAG_FAILURE);
1378 	}
1379 
1380 	/*
1381 	 * If this buffer is already posted as immediate, just change owner.
1382 	 */
1383 	if (pBuffer->immediate && pBuffer->owned_by_firmware &&
1384 	    (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) {
1385 		pBuffer->immediate = FALSE;
1386 		pBuffer->unique_id = unique_id;
1387 		return (MPS_DIAG_SUCCESS);
1388 	}
1389 
1390 	/*
1391 	 * Post a new buffer after checking if it's enabled.  The DMA buffer
1392 	 * that is allocated will be contiguous (nsegments = 1).
1393 	 */
1394 	if (!pBuffer->enabled) {
1395 		*return_code = MPS_FW_DIAG_ERROR_NO_BUFFER;
1396 		return (MPS_DIAG_FAILURE);
1397 	}
1398         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1399 				1, 0,			/* algnmnt, boundary */
1400 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1401 				BUS_SPACE_MAXADDR,	/* highaddr */
1402 				NULL, NULL,		/* filter, filterarg */
1403                                 buffer_size,		/* maxsize */
1404                                 1,			/* nsegments */
1405                                 buffer_size,		/* maxsegsize */
1406                                 0,			/* flags */
1407                                 NULL, NULL,		/* lockfunc, lockarg */
1408                                 &sc->fw_diag_dmat)) {
1409 		device_printf(sc->mps_dev, "Cannot allocate FW diag buffer DMA "
1410 		    "tag\n");
1411 		return (ENOMEM);
1412         }
1413         if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
1414 	    BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
1415 		device_printf(sc->mps_dev, "Cannot allocate FW diag buffer "
1416 		    "memory\n");
1417 		return (ENOMEM);
1418         }
1419         bzero(sc->fw_diag_buffer, buffer_size);
1420         bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer,
1421 	    buffer_size, mps_memaddr_cb, &sc->fw_diag_busaddr, 0);
1422 	pBuffer->size = buffer_size;
1423 
1424 	/*
1425 	 * Copy the given info to the diag buffer and post the buffer.
1426 	 */
1427 	pBuffer->buffer_type = buffer_type;
1428 	pBuffer->immediate = FALSE;
1429 	if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
1430 		for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
1431 		    i++) {
1432 			pBuffer->product_specific[i] =
1433 			    diag_register->ProductSpecific[i];
1434 		}
1435 	}
1436 	pBuffer->extended_type = extended_type;
1437 	pBuffer->unique_id = unique_id;
1438 	status = mps_post_fw_diag_buffer(sc, pBuffer, return_code);
1439 
1440 	/*
1441 	 * In case there was a failure, free the DMA buffer.
1442 	 */
1443 	if (status == MPS_DIAG_FAILURE) {
1444 		if (sc->fw_diag_busaddr != 0)
1445 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1446 		if (sc->fw_diag_buffer != NULL)
1447 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1448 			    sc->fw_diag_map);
1449 		if (sc->fw_diag_dmat != NULL)
1450 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1451 	}
1452 
1453 	return (status);
1454 }
1455 
1456 static int
1457 mps_diag_unregister(struct mps_softc *sc,
1458     mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
1459 {
1460 	mps_fw_diagnostic_buffer_t	*pBuffer;
1461 	uint8_t				i;
1462 	uint32_t			unique_id;
1463 	int				status;
1464 
1465 	unique_id = diag_unregister->UniqueId;
1466 
1467 	/*
1468 	 * Get the current buffer and look up the unique ID.  The unique ID
1469 	 * should be there.
1470 	 */
1471 	i = mps_get_fw_diag_buffer_number(sc, unique_id);
1472 	if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1473 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1474 		return (MPS_DIAG_FAILURE);
1475 	}
1476 
1477 	pBuffer = &sc->fw_diag_buffer_list[i];
1478 
1479 	/*
1480 	 * Try to release the buffer from FW before freeing it.  If release
1481 	 * fails, don't free the DMA buffer in case FW tries to access it
1482 	 * later.  If buffer is not owned by firmware, can't release it.
1483 	 */
1484 	if (!pBuffer->owned_by_firmware) {
1485 		status = MPS_DIAG_SUCCESS;
1486 	} else {
1487 		status = mps_release_fw_diag_buffer(sc, pBuffer, return_code,
1488 		    MPS_FW_DIAG_TYPE_UNREGISTER);
1489 	}
1490 
1491 	/*
1492 	 * At this point, return the current status no matter what happens with
1493 	 * the DMA buffer.
1494 	 */
1495 	pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID;
1496 	if (status == MPS_DIAG_SUCCESS) {
1497 		if (sc->fw_diag_busaddr != 0)
1498 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1499 		if (sc->fw_diag_buffer != NULL)
1500 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1501 			    sc->fw_diag_map);
1502 		if (sc->fw_diag_dmat != NULL)
1503 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1504 	}
1505 
1506 	return (status);
1507 }
1508 
1509 static int
1510 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query,
1511     uint32_t *return_code)
1512 {
1513 	mps_fw_diagnostic_buffer_t	*pBuffer;
1514 	uint8_t				i;
1515 	uint32_t			unique_id;
1516 
1517 	unique_id = diag_query->UniqueId;
1518 
1519 	/*
1520 	 * If ID is valid, query on ID.
1521 	 * If ID is invalid, query on buffer type.
1522 	 */
1523 	if (unique_id == MPS_FW_DIAG_INVALID_UID) {
1524 		i = diag_query->BufferType;
1525 		if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
1526 			*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1527 			return (MPS_DIAG_FAILURE);
1528 		}
1529 	} else {
1530 		i = mps_get_fw_diag_buffer_number(sc, unique_id);
1531 		if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1532 			*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1533 			return (MPS_DIAG_FAILURE);
1534 		}
1535 	}
1536 
1537 	/*
1538 	 * Fill query structure with the diag buffer info.
1539 	 */
1540 	pBuffer = &sc->fw_diag_buffer_list[i];
1541 	diag_query->BufferType = pBuffer->buffer_type;
1542 	diag_query->ExtendedType = pBuffer->extended_type;
1543 	if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
1544 		for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
1545 		    i++) {
1546 			diag_query->ProductSpecific[i] =
1547 			    pBuffer->product_specific[i];
1548 		}
1549 	}
1550 	diag_query->TotalBufferSize = pBuffer->size;
1551 	diag_query->DriverAddedBufferSize = 0;
1552 	diag_query->UniqueId = pBuffer->unique_id;
1553 	diag_query->ApplicationFlags = 0;
1554 	diag_query->DiagnosticFlags = 0;
1555 
1556 	/*
1557 	 * Set/Clear application flags
1558 	 */
1559 	if (pBuffer->immediate) {
1560 		diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED;
1561 	} else {
1562 		diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED;
1563 	}
1564 	if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
1565 		diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID;
1566 	} else {
1567 		diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID;
1568 	}
1569 	if (pBuffer->owned_by_firmware) {
1570 		diag_query->ApplicationFlags |=
1571 		    MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1572 	} else {
1573 		diag_query->ApplicationFlags &=
1574 		    ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1575 	}
1576 
1577 	return (MPS_DIAG_SUCCESS);
1578 }
1579 
1580 static int
1581 mps_diag_read_buffer(struct mps_softc *sc,
1582     mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
1583     uint32_t *return_code)
1584 {
1585 	mps_fw_diagnostic_buffer_t	*pBuffer;
1586 	uint8_t				i, *pData;
1587 	uint32_t			unique_id;
1588 	int				status;
1589 
1590 	unique_id = diag_read_buffer->UniqueId;
1591 
1592 	/*
1593 	 * Get the current buffer and look up the unique ID.  The unique ID
1594 	 * should be there.
1595 	 */
1596 	i = mps_get_fw_diag_buffer_number(sc, unique_id);
1597 	if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1598 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1599 		return (MPS_DIAG_FAILURE);
1600 	}
1601 
1602 	pBuffer = &sc->fw_diag_buffer_list[i];
1603 
1604 	/*
1605 	 * Make sure requested read is within limits
1606 	 */
1607 	if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
1608 	    pBuffer->size) {
1609 		*return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1610 		return (MPS_DIAG_FAILURE);
1611 	}
1612 
1613 	/*
1614 	 * Copy the requested data from DMA to the diag_read_buffer.  The DMA
1615 	 * buffer that was allocated is one contiguous buffer.
1616 	 */
1617 	pData = (uint8_t *)(sc->fw_diag_buffer +
1618 	    diag_read_buffer->StartingOffset);
1619 	if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
1620 		return (MPS_DIAG_FAILURE);
1621 	diag_read_buffer->Status = 0;
1622 
1623 	/*
1624 	 * Set or clear the Force Release flag.
1625 	 */
1626 	if (pBuffer->force_release) {
1627 		diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE;
1628 	} else {
1629 		diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE;
1630 	}
1631 
1632 	/*
1633 	 * If buffer is to be reregistered, make sure it's not already owned by
1634 	 * firmware first.
1635 	 */
1636 	status = MPS_DIAG_SUCCESS;
1637 	if (!pBuffer->owned_by_firmware) {
1638 		if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) {
1639 			status = mps_post_fw_diag_buffer(sc, pBuffer,
1640 			    return_code);
1641 		}
1642 	}
1643 
1644 	return (status);
1645 }
1646 
1647 static int
1648 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release,
1649     uint32_t *return_code)
1650 {
1651 	mps_fw_diagnostic_buffer_t	*pBuffer;
1652 	uint8_t				i;
1653 	uint32_t			unique_id;
1654 	int				status;
1655 
1656 	unique_id = diag_release->UniqueId;
1657 
1658 	/*
1659 	 * Get the current buffer and look up the unique ID.  The unique ID
1660 	 * should be there.
1661 	 */
1662 	i = mps_get_fw_diag_buffer_number(sc, unique_id);
1663 	if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1664 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1665 		return (MPS_DIAG_FAILURE);
1666 	}
1667 
1668 	pBuffer = &sc->fw_diag_buffer_list[i];
1669 
1670 	/*
1671 	 * If buffer is not owned by firmware, it's already been released.
1672 	 */
1673 	if (!pBuffer->owned_by_firmware) {
1674 		*return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED;
1675 		return (MPS_DIAG_FAILURE);
1676 	}
1677 
1678 	/*
1679 	 * Release the buffer.
1680 	 */
1681 	status = mps_release_fw_diag_buffer(sc, pBuffer, return_code,
1682 	    MPS_FW_DIAG_TYPE_RELEASE);
1683 	return (status);
1684 }
1685 
1686 static int
1687 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action,
1688     uint32_t length, uint32_t *return_code)
1689 {
1690 	mps_fw_diag_register_t		diag_register;
1691 	mps_fw_diag_unregister_t	diag_unregister;
1692 	mps_fw_diag_query_t		diag_query;
1693 	mps_diag_read_buffer_t		diag_read_buffer;
1694 	mps_fw_diag_release_t		diag_release;
1695 	int				status = MPS_DIAG_SUCCESS;
1696 	uint32_t			original_return_code;
1697 
1698 	original_return_code = *return_code;
1699 	*return_code = MPS_FW_DIAG_ERROR_SUCCESS;
1700 
1701 	switch (action) {
1702 		case MPS_FW_DIAG_TYPE_REGISTER:
1703 			if (!length) {
1704 				*return_code =
1705 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1706 				status = MPS_DIAG_FAILURE;
1707 				break;
1708 			}
1709 			if (copyin(diag_action, &diag_register,
1710 			    sizeof(diag_register)) != 0)
1711 				return (MPS_DIAG_FAILURE);
1712 			status = mps_diag_register(sc, &diag_register,
1713 			    return_code);
1714 			break;
1715 
1716 		case MPS_FW_DIAG_TYPE_UNREGISTER:
1717 			if (length < sizeof(diag_unregister)) {
1718 				*return_code =
1719 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1720 				status = MPS_DIAG_FAILURE;
1721 				break;
1722 			}
1723 			if (copyin(diag_action, &diag_unregister,
1724 			    sizeof(diag_unregister)) != 0)
1725 				return (MPS_DIAG_FAILURE);
1726 			status = mps_diag_unregister(sc, &diag_unregister,
1727 			    return_code);
1728 			break;
1729 
1730 		case MPS_FW_DIAG_TYPE_QUERY:
1731 			if (length < sizeof (diag_query)) {
1732 				*return_code =
1733 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1734 				status = MPS_DIAG_FAILURE;
1735 				break;
1736 			}
1737 			if (copyin(diag_action, &diag_query, sizeof(diag_query))
1738 			    != 0)
1739 				return (MPS_DIAG_FAILURE);
1740 			status = mps_diag_query(sc, &diag_query, return_code);
1741 			if (status == MPS_DIAG_SUCCESS)
1742 				if (copyout(&diag_query, diag_action,
1743 				    sizeof (diag_query)) != 0)
1744 					return (MPS_DIAG_FAILURE);
1745 			break;
1746 
1747 		case MPS_FW_DIAG_TYPE_READ_BUFFER:
1748 			if (copyin(diag_action, &diag_read_buffer,
1749 			    sizeof(diag_read_buffer)) != 0)
1750 				return (MPS_DIAG_FAILURE);
1751 			if (length < diag_read_buffer.BytesToRead) {
1752 				*return_code =
1753 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1754 				status = MPS_DIAG_FAILURE;
1755 				break;
1756 			}
1757 			status = mps_diag_read_buffer(sc, &diag_read_buffer,
1758 			    PTRIN(diag_read_buffer.PtrDataBuffer),
1759 			    return_code);
1760 			if (status == MPS_DIAG_SUCCESS) {
1761 				if (copyout(&diag_read_buffer, diag_action,
1762 				    sizeof(diag_read_buffer) -
1763 				    sizeof(diag_read_buffer.PtrDataBuffer)) !=
1764 				    0)
1765 					return (MPS_DIAG_FAILURE);
1766 			}
1767 			break;
1768 
1769 		case MPS_FW_DIAG_TYPE_RELEASE:
1770 			if (length < sizeof(diag_release)) {
1771 				*return_code =
1772 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1773 				status = MPS_DIAG_FAILURE;
1774 				break;
1775 			}
1776 			if (copyin(diag_action, &diag_release,
1777 			    sizeof(diag_release)) != 0)
1778 				return (MPS_DIAG_FAILURE);
1779 			status = mps_diag_release(sc, &diag_release,
1780 			    return_code);
1781 			break;
1782 
1783 		default:
1784 			*return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1785 			status = MPS_DIAG_FAILURE;
1786 			break;
1787 	}
1788 
1789 	if ((status == MPS_DIAG_FAILURE) &&
1790 	    (original_return_code == MPS_FW_DIAG_NEW) &&
1791 	    (*return_code != MPS_FW_DIAG_ERROR_SUCCESS))
1792 		status = MPS_DIAG_SUCCESS;
1793 
1794 	return (status);
1795 }
1796 
1797 static int
1798 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data)
1799 {
1800 	int			status;
1801 
1802 	/*
1803 	 * Only allow one diag action at one time.
1804 	 */
1805 	if (sc->mps_flags & MPS_FLAGS_BUSY) {
1806 		mps_dprint(sc, MPS_USER, "%s: Only one FW diag command "
1807 		    "allowed at a single time.", __func__);
1808 		return (EBUSY);
1809 	}
1810 	sc->mps_flags |= MPS_FLAGS_BUSY;
1811 
1812 	/*
1813 	 * Send diag action request
1814 	 */
1815 	if (data->Action == MPS_FW_DIAG_TYPE_REGISTER ||
1816 	    data->Action == MPS_FW_DIAG_TYPE_UNREGISTER ||
1817 	    data->Action == MPS_FW_DIAG_TYPE_QUERY ||
1818 	    data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER ||
1819 	    data->Action == MPS_FW_DIAG_TYPE_RELEASE) {
1820 		status = mps_do_diag_action(sc, data->Action,
1821 		    PTRIN(data->PtrDiagAction), data->Length,
1822 		    &data->ReturnCode);
1823 	} else
1824 		status = EINVAL;
1825 
1826 	sc->mps_flags &= ~MPS_FLAGS_BUSY;
1827 	return (status);
1828 }
1829 
1830 /*
1831  * Copy the event recording mask and the event queue size out.  For
1832  * clarification, the event recording mask (events_to_record) is not the same
1833  * thing as the event mask (event_mask).  events_to_record has a bit set for
1834  * every event type that is to be recorded by the driver, and event_mask has a
1835  * bit cleared for every event that is allowed into the driver from the IOC.
1836  * They really have nothing to do with each other.
1837  */
1838 static void
1839 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data)
1840 {
1841 	uint8_t	i;
1842 
1843 	mps_lock(sc);
1844 	data->Entries = MPS_EVENT_QUEUE_SIZE;
1845 
1846 	for (i = 0; i < 4; i++) {
1847 		data->Types[i] = sc->events_to_record[i];
1848 	}
1849 	mps_unlock(sc);
1850 }
1851 
1852 /*
1853  * Set the driver's event mask according to what's been given.  See
1854  * mps_user_event_query for explanation of the event recording mask and the IOC
1855  * event mask.  It's the app's responsibility to enable event logging by setting
1856  * the bits in events_to_record.  Initially, no events will be logged.
1857  */
1858 static void
1859 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data)
1860 {
1861 	uint8_t	i;
1862 
1863 	mps_lock(sc);
1864 	for (i = 0; i < 4; i++) {
1865 		sc->events_to_record[i] = data->Types[i];
1866 	}
1867 	mps_unlock(sc);
1868 }
1869 
1870 /*
1871  * Copy out the events that have been recorded, up to the max events allowed.
1872  */
1873 static int
1874 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data)
1875 {
1876 	int		status = 0;
1877 	uint32_t	size;
1878 
1879 	mps_lock(sc);
1880 	size = data->Size;
1881 	if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
1882 		mps_unlock(sc);
1883 		if (copyout((void *)sc->recorded_events,
1884 		    PTRIN(data->PtrEvents), size) != 0)
1885 			status = EFAULT;
1886 		mps_lock(sc);
1887 	} else {
1888 		/*
1889 		 * data->Size value is not large enough to copy event data.
1890 		 */
1891 		status = EFAULT;
1892 	}
1893 
1894 	/*
1895 	 * Change size value to match the number of bytes that were copied.
1896 	 */
1897 	if (status == 0)
1898 		data->Size = sizeof(sc->recorded_events);
1899 	mps_unlock(sc);
1900 
1901 	return (status);
1902 }
1903 
1904 /*
1905  * Record events into the driver from the IOC if they are not masked.
1906  */
1907 void
1908 mpssas_record_event(struct mps_softc *sc,
1909     MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
1910 {
1911 	uint32_t	event;
1912 	int		i, j;
1913 	uint16_t	event_data_len;
1914 	boolean_t	sendAEN = FALSE;
1915 
1916 	event = event_reply->Event;
1917 
1918 	/*
1919 	 * Generate a system event to let anyone who cares know that a
1920 	 * LOG_ENTRY_ADDED event has occurred.  This is sent no matter what the
1921 	 * event mask is set to.
1922 	 */
1923 	if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
1924 		sendAEN = TRUE;
1925 	}
1926 
1927 	/*
1928 	 * Record the event only if its corresponding bit is set in
1929 	 * events_to_record.  event_index is the index into recorded_events and
1930 	 * event_number is the overall number of an event being recorded since
1931 	 * start-of-day.  event_index will roll over; event_number will never
1932 	 * roll over.
1933 	 */
1934 	i = (uint8_t)(event / 32);
1935 	j = (uint8_t)(event % 32);
1936 	if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
1937 		i = sc->event_index;
1938 		sc->recorded_events[i].Type = event;
1939 		sc->recorded_events[i].Number = ++sc->event_number;
1940 		bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH *
1941 		    4);
1942 		event_data_len = event_reply->EventDataLength;
1943 
1944 		if (event_data_len > 0) {
1945 			/*
1946 			 * Limit data to size in m_event entry
1947 			 */
1948 			if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) {
1949 				event_data_len = MPS_MAX_EVENT_DATA_LENGTH;
1950 			}
1951 			for (j = 0; j < event_data_len; j++) {
1952 				sc->recorded_events[i].Data[j] =
1953 				    event_reply->EventData[j];
1954 			}
1955 
1956 			/*
1957 			 * check for index wrap-around
1958 			 */
1959 			if (++i == MPS_EVENT_QUEUE_SIZE) {
1960 				i = 0;
1961 			}
1962 			sc->event_index = (uint8_t)i;
1963 
1964 			/*
1965 			 * Set flag to send the event.
1966 			 */
1967 			sendAEN = TRUE;
1968 		}
1969 	}
1970 
1971 	/*
1972 	 * Generate a system event if flag is set to let anyone who cares know
1973 	 * that an event has occurred.
1974 	 */
1975 	if (sendAEN) {
1976 //SLM-how to send a system event (see kqueue, kevent)
1977 //		(void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
1978 //		    "SAS", NULL, NULL, DDI_NOSLEEP);
1979 	}
1980 }
1981 
1982 static int
1983 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data)
1984 {
1985 	int	status = 0;
1986 
1987 	switch (data->Command) {
1988 		/*
1989 		 * IO access is not supported.
1990 		 */
1991 		case REG_IO_READ:
1992 		case REG_IO_WRITE:
1993 			mps_dprint(sc, MPS_USER, "IO access is not supported. "
1994 			    "Use memory access.");
1995 			status = EINVAL;
1996 			break;
1997 
1998 		case REG_MEM_READ:
1999 			data->RegData = mps_regread(sc, data->RegOffset);
2000 			break;
2001 
2002 		case REG_MEM_WRITE:
2003 			mps_regwrite(sc, data->RegOffset, data->RegData);
2004 			break;
2005 
2006 		default:
2007 			status = EINVAL;
2008 			break;
2009 	}
2010 
2011 	return (status);
2012 }
2013 
2014 static int
2015 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data)
2016 {
2017 	uint8_t		bt2dh = FALSE;
2018 	uint8_t		dh2bt = FALSE;
2019 	uint16_t	dev_handle, bus, target;
2020 
2021 	bus = data->Bus;
2022 	target = data->TargetID;
2023 	dev_handle = data->DevHandle;
2024 
2025 	/*
2026 	 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
2027 	 * Target to get DevHandle.  When Bus/Target are 0xFFFF and DevHandle is
2028 	 * not 0xFFFF, use DevHandle to get Bus/Target.  Anything else is
2029 	 * invalid.
2030 	 */
2031 	if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
2032 		dh2bt = TRUE;
2033 	if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
2034 		bt2dh = TRUE;
2035 	if (!dh2bt && !bt2dh)
2036 		return (EINVAL);
2037 
2038 	/*
2039 	 * Only handle bus of 0.  Make sure target is within range.
2040 	 */
2041 	if (bt2dh) {
2042 		if (bus != 0)
2043 			return (EINVAL);
2044 
2045 		if (target > sc->max_devices) {
2046 			mps_dprint(sc, MPS_FAULT, "Target ID is out of range "
2047 			   "for Bus/Target to DevHandle mapping.");
2048 			return (EINVAL);
2049 		}
2050 		dev_handle = sc->mapping_table[target].dev_handle;
2051 		if (dev_handle)
2052 			data->DevHandle = dev_handle;
2053 	} else {
2054 		bus = 0;
2055 		target = mps_mapping_get_tid_from_handle(sc, dev_handle);
2056 		data->Bus = bus;
2057 		data->TargetID = target;
2058 	}
2059 
2060 	return (0);
2061 }
2062 
2063 static int
2064 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag,
2065     struct thread *td)
2066 {
2067 	struct mps_softc *sc;
2068 	struct mps_cfg_page_req *page_req;
2069 	struct mps_ext_cfg_page_req *ext_page_req;
2070 	void *mps_page;
2071 	int error, msleep_ret;
2072 
2073 	mps_page = NULL;
2074 	sc = dev->si_drv1;
2075 	page_req = (void *)arg;
2076 	ext_page_req = (void *)arg;
2077 
2078 	switch (cmd) {
2079 	case MPSIO_READ_CFG_HEADER:
2080 		mps_lock(sc);
2081 		error = mps_user_read_cfg_header(sc, page_req);
2082 		mps_unlock(sc);
2083 		break;
2084 	case MPSIO_READ_CFG_PAGE:
2085 		mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO);
2086 		error = copyin(page_req->buf, mps_page,
2087 		    sizeof(MPI2_CONFIG_PAGE_HEADER));
2088 		if (error)
2089 			break;
2090 		mps_lock(sc);
2091 		error = mps_user_read_cfg_page(sc, page_req, mps_page);
2092 		mps_unlock(sc);
2093 		if (error)
2094 			break;
2095 		error = copyout(mps_page, page_req->buf, page_req->len);
2096 		break;
2097 	case MPSIO_READ_EXT_CFG_HEADER:
2098 		mps_lock(sc);
2099 		error = mps_user_read_extcfg_header(sc, ext_page_req);
2100 		mps_unlock(sc);
2101 		break;
2102 	case MPSIO_READ_EXT_CFG_PAGE:
2103 		mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO);
2104 		error = copyin(ext_page_req->buf, mps_page,
2105 		    sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
2106 		if (error)
2107 			break;
2108 		mps_lock(sc);
2109 		error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page);
2110 		mps_unlock(sc);
2111 		if (error)
2112 			break;
2113 		error = copyout(mps_page, ext_page_req->buf, ext_page_req->len);
2114 		break;
2115 	case MPSIO_WRITE_CFG_PAGE:
2116 		mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO);
2117 		error = copyin(page_req->buf, mps_page, page_req->len);
2118 		if (error)
2119 			break;
2120 		mps_lock(sc);
2121 		error = mps_user_write_cfg_page(sc, page_req, mps_page);
2122 		mps_unlock(sc);
2123 		break;
2124 	case MPSIO_MPS_COMMAND:
2125 		error = mps_user_command(sc, (struct mps_usr_command *)arg);
2126 		break;
2127 	case MPTIOCTL_PASS_THRU:
2128 		/*
2129 		 * The user has requested to pass through a command to be
2130 		 * executed by the MPT firmware.  Call our routine which does
2131 		 * this.  Only allow one passthru IOCTL at one time.
2132 		 */
2133 		error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg);
2134 		break;
2135 	case MPTIOCTL_GET_ADAPTER_DATA:
2136 		/*
2137 		 * The user has requested to read adapter data.  Call our
2138 		 * routine which does this.
2139 		 */
2140 		error = 0;
2141 		mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg);
2142 		break;
2143 	case MPTIOCTL_GET_PCI_INFO:
2144 		/*
2145 		 * The user has requested to read pci info.  Call
2146 		 * our routine which does this.
2147 		 */
2148 		mps_lock(sc);
2149 		error = 0;
2150 		mps_user_read_pci_info(sc, (mps_pci_info_t *)arg);
2151 		mps_unlock(sc);
2152 		break;
2153 	case MPTIOCTL_RESET_ADAPTER:
2154 		mps_lock(sc);
2155 		sc->port_enable_complete = 0;
2156 		uint32_t reinit_start = time_uptime;
2157 		error = mps_reinit(sc);
2158 		/* Sleep for 300 second. */
2159 		msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO,
2160 		       "mps_porten", 300 * hz);
2161 		mps_unlock(sc);
2162 		if (msleep_ret)
2163 			printf("Port Enable did not complete after Diag "
2164 			    "Reset msleep error %d.\n", msleep_ret);
2165 		else
2166 			mps_dprint(sc, MPS_USER,
2167 				"Hard Reset with Port Enable completed in %d seconds.\n",
2168 				 (uint32_t) (time_uptime - reinit_start));
2169 		break;
2170 	case MPTIOCTL_DIAG_ACTION:
2171 		/*
2172 		 * The user has done a diag buffer action.  Call our routine
2173 		 * which does this.  Only allow one diag action at one time.
2174 		 */
2175 		mps_lock(sc);
2176 		error = mps_user_diag_action(sc, (mps_diag_action_t *)arg);
2177 		mps_unlock(sc);
2178 		break;
2179 	case MPTIOCTL_EVENT_QUERY:
2180 		/*
2181 		 * The user has done an event query. Call our routine which does
2182 		 * this.
2183 		 */
2184 		error = 0;
2185 		mps_user_event_query(sc, (mps_event_query_t *)arg);
2186 		break;
2187 	case MPTIOCTL_EVENT_ENABLE:
2188 		/*
2189 		 * The user has done an event enable. Call our routine which
2190 		 * does this.
2191 		 */
2192 		error = 0;
2193 		mps_user_event_enable(sc, (mps_event_enable_t *)arg);
2194 		break;
2195 	case MPTIOCTL_EVENT_REPORT:
2196 		/*
2197 		 * The user has done an event report. Call our routine which
2198 		 * does this.
2199 		 */
2200 		error = mps_user_event_report(sc, (mps_event_report_t *)arg);
2201 		break;
2202 	case MPTIOCTL_REG_ACCESS:
2203 		/*
2204 		 * The user has requested register access.  Call our routine
2205 		 * which does this.
2206 		 */
2207 		mps_lock(sc);
2208 		error = mps_user_reg_access(sc, (mps_reg_access_t *)arg);
2209 		mps_unlock(sc);
2210 		break;
2211 	case MPTIOCTL_BTDH_MAPPING:
2212 		/*
2213 		 * The user has requested to translate a bus/target to a
2214 		 * DevHandle or a DevHandle to a bus/target.  Call our routine
2215 		 * which does this.
2216 		 */
2217 		error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg);
2218 		break;
2219 	default:
2220 		error = ENOIOCTL;
2221 		break;
2222 	}
2223 
2224 	if (mps_page != NULL)
2225 		free(mps_page, M_MPSUSER);
2226 
2227 	return (error);
2228 }
2229 
2230 #ifdef COMPAT_FREEBSD32
2231 
2232 struct mps_cfg_page_req32 {
2233 	MPI2_CONFIG_PAGE_HEADER header;
2234 	uint32_t page_address;
2235 	uint32_t buf;
2236 	int	len;
2237 	uint16_t ioc_status;
2238 };
2239 
2240 struct mps_ext_cfg_page_req32 {
2241 	MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
2242 	uint32_t page_address;
2243 	uint32_t buf;
2244 	int	len;
2245 	uint16_t ioc_status;
2246 };
2247 
2248 struct mps_raid_action32 {
2249 	uint8_t action;
2250 	uint8_t volume_bus;
2251 	uint8_t volume_id;
2252 	uint8_t phys_disk_num;
2253 	uint32_t action_data_word;
2254 	uint32_t buf;
2255 	int len;
2256 	uint32_t volume_status;
2257 	uint32_t action_data[4];
2258 	uint16_t action_status;
2259 	uint16_t ioc_status;
2260 	uint8_t write;
2261 };
2262 
2263 struct mps_usr_command32 {
2264 	uint32_t req;
2265 	uint32_t req_len;
2266 	uint32_t rpl;
2267 	uint32_t rpl_len;
2268 	uint32_t buf;
2269 	int len;
2270 	uint32_t flags;
2271 };
2272 
2273 #define	MPSIO_READ_CFG_HEADER32	_IOWR('M', 200, struct mps_cfg_page_req32)
2274 #define	MPSIO_READ_CFG_PAGE32	_IOWR('M', 201, struct mps_cfg_page_req32)
2275 #define	MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32)
2276 #define	MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32)
2277 #define	MPSIO_WRITE_CFG_PAGE32	_IOWR('M', 204, struct mps_cfg_page_req32)
2278 #define	MPSIO_RAID_ACTION32	_IOWR('M', 205, struct mps_raid_action32)
2279 #define	MPSIO_MPS_COMMAND32	_IOWR('M', 210, struct mps_usr_command32)
2280 
2281 static int
2282 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
2283     struct thread *td)
2284 {
2285 	struct mps_cfg_page_req32 *page32 = _arg;
2286 	struct mps_ext_cfg_page_req32 *ext32 = _arg;
2287 	struct mps_raid_action32 *raid32 = _arg;
2288 	struct mps_usr_command32 *user32 = _arg;
2289 	union {
2290 		struct mps_cfg_page_req page;
2291 		struct mps_ext_cfg_page_req ext;
2292 		struct mps_raid_action raid;
2293 		struct mps_usr_command user;
2294 	} arg;
2295 	u_long cmd;
2296 	int error;
2297 
2298 	switch (cmd32) {
2299 	case MPSIO_READ_CFG_HEADER32:
2300 	case MPSIO_READ_CFG_PAGE32:
2301 	case MPSIO_WRITE_CFG_PAGE32:
2302 		if (cmd32 == MPSIO_READ_CFG_HEADER32)
2303 			cmd = MPSIO_READ_CFG_HEADER;
2304 		else if (cmd32 == MPSIO_READ_CFG_PAGE32)
2305 			cmd = MPSIO_READ_CFG_PAGE;
2306 		else
2307 			cmd = MPSIO_WRITE_CFG_PAGE;
2308 		CP(*page32, arg.page, header);
2309 		CP(*page32, arg.page, page_address);
2310 		PTRIN_CP(*page32, arg.page, buf);
2311 		CP(*page32, arg.page, len);
2312 		CP(*page32, arg.page, ioc_status);
2313 		break;
2314 
2315 	case MPSIO_READ_EXT_CFG_HEADER32:
2316 	case MPSIO_READ_EXT_CFG_PAGE32:
2317 		if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32)
2318 			cmd = MPSIO_READ_EXT_CFG_HEADER;
2319 		else
2320 			cmd = MPSIO_READ_EXT_CFG_PAGE;
2321 		CP(*ext32, arg.ext, header);
2322 		CP(*ext32, arg.ext, page_address);
2323 		PTRIN_CP(*ext32, arg.ext, buf);
2324 		CP(*ext32, arg.ext, len);
2325 		CP(*ext32, arg.ext, ioc_status);
2326 		break;
2327 
2328 	case MPSIO_RAID_ACTION32:
2329 		cmd = MPSIO_RAID_ACTION;
2330 		CP(*raid32, arg.raid, action);
2331 		CP(*raid32, arg.raid, volume_bus);
2332 		CP(*raid32, arg.raid, volume_id);
2333 		CP(*raid32, arg.raid, phys_disk_num);
2334 		CP(*raid32, arg.raid, action_data_word);
2335 		PTRIN_CP(*raid32, arg.raid, buf);
2336 		CP(*raid32, arg.raid, len);
2337 		CP(*raid32, arg.raid, volume_status);
2338 		bcopy(raid32->action_data, arg.raid.action_data,
2339 		    sizeof arg.raid.action_data);
2340 		CP(*raid32, arg.raid, ioc_status);
2341 		CP(*raid32, arg.raid, write);
2342 		break;
2343 
2344 	case MPSIO_MPS_COMMAND32:
2345 		cmd = MPSIO_MPS_COMMAND;
2346 		PTRIN_CP(*user32, arg.user, req);
2347 		CP(*user32, arg.user, req_len);
2348 		PTRIN_CP(*user32, arg.user, rpl);
2349 		CP(*user32, arg.user, rpl_len);
2350 		PTRIN_CP(*user32, arg.user, buf);
2351 		CP(*user32, arg.user, len);
2352 		CP(*user32, arg.user, flags);
2353 		break;
2354 	default:
2355 		return (ENOIOCTL);
2356 	}
2357 
2358 	error = mps_ioctl(dev, cmd, &arg, flag, td);
2359 	if (error == 0 && (cmd32 & IOC_OUT) != 0) {
2360 		switch (cmd32) {
2361 		case MPSIO_READ_CFG_HEADER32:
2362 		case MPSIO_READ_CFG_PAGE32:
2363 		case MPSIO_WRITE_CFG_PAGE32:
2364 			CP(arg.page, *page32, header);
2365 			CP(arg.page, *page32, page_address);
2366 			PTROUT_CP(arg.page, *page32, buf);
2367 			CP(arg.page, *page32, len);
2368 			CP(arg.page, *page32, ioc_status);
2369 			break;
2370 
2371 		case MPSIO_READ_EXT_CFG_HEADER32:
2372 		case MPSIO_READ_EXT_CFG_PAGE32:
2373 			CP(arg.ext, *ext32, header);
2374 			CP(arg.ext, *ext32, page_address);
2375 			PTROUT_CP(arg.ext, *ext32, buf);
2376 			CP(arg.ext, *ext32, len);
2377 			CP(arg.ext, *ext32, ioc_status);
2378 			break;
2379 
2380 		case MPSIO_RAID_ACTION32:
2381 			CP(arg.raid, *raid32, action);
2382 			CP(arg.raid, *raid32, volume_bus);
2383 			CP(arg.raid, *raid32, volume_id);
2384 			CP(arg.raid, *raid32, phys_disk_num);
2385 			CP(arg.raid, *raid32, action_data_word);
2386 			PTROUT_CP(arg.raid, *raid32, buf);
2387 			CP(arg.raid, *raid32, len);
2388 			CP(arg.raid, *raid32, volume_status);
2389 			bcopy(arg.raid.action_data, raid32->action_data,
2390 			    sizeof arg.raid.action_data);
2391 			CP(arg.raid, *raid32, ioc_status);
2392 			CP(arg.raid, *raid32, write);
2393 			break;
2394 
2395 		case MPSIO_MPS_COMMAND32:
2396 			PTROUT_CP(arg.user, *user32, req);
2397 			CP(arg.user, *user32, req_len);
2398 			PTROUT_CP(arg.user, *user32, rpl);
2399 			CP(arg.user, *user32, rpl_len);
2400 			PTROUT_CP(arg.user, *user32, buf);
2401 			CP(arg.user, *user32, len);
2402 			CP(arg.user, *user32, flags);
2403 			break;
2404 		}
2405 	}
2406 
2407 	return (error);
2408 }
2409 #endif /* COMPAT_FREEBSD32 */
2410 
2411 static int
2412 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag,
2413     struct thread *td)
2414 {
2415 #ifdef COMPAT_FREEBSD32
2416 	if (SV_CURPROC_FLAG(SV_ILP32))
2417 		return (mps_ioctl32(dev, com, arg, flag, td));
2418 #endif
2419 	return (mps_ioctl(dev, com, arg, flag, td));
2420 }
2421