1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Yahoo!, Inc. 5 * All rights reserved. 6 * Written by: John Baldwin <jhb@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 33 */ 34 /*- 35 * Copyright (c) 2011-2015 LSI Corp. 36 * Copyright (c) 2013-2015 Avago Technologies 37 * All rights reserved. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 61 * 62 * $FreeBSD$ 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 /* TODO Move headers to mpsvar */ 69 #include <sys/types.h> 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/selinfo.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/conf.h> 77 #include <sys/bio.h> 78 #include <sys/malloc.h> 79 #include <sys/uio.h> 80 #include <sys/sysctl.h> 81 #include <sys/ioccom.h> 82 #include <sys/endian.h> 83 #include <sys/queue.h> 84 #include <sys/kthread.h> 85 #include <sys/taskqueue.h> 86 #include <sys/proc.h> 87 #include <sys/sysent.h> 88 89 #include <machine/bus.h> 90 #include <machine/resource.h> 91 #include <sys/rman.h> 92 93 #include <cam/cam.h> 94 #include <cam/cam_ccb.h> 95 #include <cam/scsi/scsi_all.h> 96 97 #include <dev/mps/mpi/mpi2_type.h> 98 #include <dev/mps/mpi/mpi2.h> 99 #include <dev/mps/mpi/mpi2_ioc.h> 100 #include <dev/mps/mpi/mpi2_cnfg.h> 101 #include <dev/mps/mpi/mpi2_init.h> 102 #include <dev/mps/mpi/mpi2_tool.h> 103 #include <dev/mps/mps_ioctl.h> 104 #include <dev/mps/mpsvar.h> 105 #include <dev/mps/mps_table.h> 106 #include <dev/mps/mps_sas.h> 107 #include <dev/pci/pcivar.h> 108 #include <dev/pci/pcireg.h> 109 110 static d_open_t mps_open; 111 static d_close_t mps_close; 112 static d_ioctl_t mps_ioctl_devsw; 113 114 static struct cdevsw mps_cdevsw = { 115 .d_version = D_VERSION, 116 .d_flags = 0, 117 .d_open = mps_open, 118 .d_close = mps_close, 119 .d_ioctl = mps_ioctl_devsw, 120 .d_name = "mps", 121 }; 122 123 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *); 124 static mps_user_f mpi_pre_ioc_facts; 125 static mps_user_f mpi_pre_port_facts; 126 static mps_user_f mpi_pre_fw_download; 127 static mps_user_f mpi_pre_fw_upload; 128 static mps_user_f mpi_pre_sata_passthrough; 129 static mps_user_f mpi_pre_smp_passthrough; 130 static mps_user_f mpi_pre_config; 131 static mps_user_f mpi_pre_sas_io_unit_control; 132 133 static int mps_user_read_cfg_header(struct mps_softc *, 134 struct mps_cfg_page_req *); 135 static int mps_user_read_cfg_page(struct mps_softc *, 136 struct mps_cfg_page_req *, void *); 137 static int mps_user_read_extcfg_header(struct mps_softc *, 138 struct mps_ext_cfg_page_req *); 139 static int mps_user_read_extcfg_page(struct mps_softc *, 140 struct mps_ext_cfg_page_req *, void *); 141 static int mps_user_write_cfg_page(struct mps_softc *, 142 struct mps_cfg_page_req *, void *); 143 static int mps_user_setup_request(struct mps_command *, 144 struct mps_usr_command *); 145 static int mps_user_command(struct mps_softc *, struct mps_usr_command *); 146 147 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data); 148 static void mps_user_get_adapter_data(struct mps_softc *sc, 149 mps_adapter_data_t *data); 150 static void mps_user_read_pci_info(struct mps_softc *sc, 151 mps_pci_info_t *data); 152 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc, 153 uint32_t unique_id); 154 static int mps_post_fw_diag_buffer(struct mps_softc *sc, 155 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 156 static int mps_release_fw_diag_buffer(struct mps_softc *sc, 157 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 158 uint32_t diag_type); 159 static int mps_diag_register(struct mps_softc *sc, 160 mps_fw_diag_register_t *diag_register, uint32_t *return_code); 161 static int mps_diag_unregister(struct mps_softc *sc, 162 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 163 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 164 uint32_t *return_code); 165 static int mps_diag_read_buffer(struct mps_softc *sc, 166 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 167 uint32_t *return_code); 168 static int mps_diag_release(struct mps_softc *sc, 169 mps_fw_diag_release_t *diag_release, uint32_t *return_code); 170 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action, 171 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 172 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data); 173 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data); 174 static void mps_user_event_enable(struct mps_softc *sc, 175 mps_event_enable_t *data); 176 static int mps_user_event_report(struct mps_softc *sc, 177 mps_event_report_t *data); 178 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data); 179 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data); 180 181 MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls"); 182 183 /* Macros from compat/freebsd32/freebsd32.h */ 184 #define PTRIN(v) (void *)(uintptr_t)(v) 185 #define PTROUT(v) (uint32_t)(uintptr_t)(v) 186 187 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0) 188 #define PTRIN_CP(src,dst,fld) \ 189 do { (dst).fld = PTRIN((src).fld); } while (0) 190 #define PTROUT_CP(src,dst,fld) \ 191 do { (dst).fld = PTROUT((src).fld); } while (0) 192 193 int 194 mps_attach_user(struct mps_softc *sc) 195 { 196 int unit; 197 198 unit = device_get_unit(sc->mps_dev); 199 sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 200 "mps%d", unit); 201 if (sc->mps_cdev == NULL) { 202 return (ENOMEM); 203 } 204 sc->mps_cdev->si_drv1 = sc; 205 return (0); 206 } 207 208 void 209 mps_detach_user(struct mps_softc *sc) 210 { 211 212 /* XXX: do a purge of pending requests? */ 213 if (sc->mps_cdev != NULL) 214 destroy_dev(sc->mps_cdev); 215 } 216 217 static int 218 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td) 219 { 220 221 return (0); 222 } 223 224 static int 225 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td) 226 { 227 228 return (0); 229 } 230 231 static int 232 mps_user_read_cfg_header(struct mps_softc *sc, 233 struct mps_cfg_page_req *page_req) 234 { 235 MPI2_CONFIG_PAGE_HEADER *hdr; 236 struct mps_config_params params; 237 int error; 238 239 hdr = ¶ms.hdr.Struct; 240 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 241 params.page_address = le32toh(page_req->page_address); 242 hdr->PageVersion = 0; 243 hdr->PageLength = 0; 244 hdr->PageNumber = page_req->header.PageNumber; 245 hdr->PageType = page_req->header.PageType; 246 params.buffer = NULL; 247 params.length = 0; 248 params.callback = NULL; 249 250 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 251 /* 252 * Leave the request. Without resetting the chip, it's 253 * still owned by it and we'll just get into trouble 254 * freeing it now. Mark it as abandoned so that if it 255 * shows up later it can be freed. 256 */ 257 mps_printf(sc, "read_cfg_header timed out\n"); 258 return (ETIMEDOUT); 259 } 260 261 page_req->ioc_status = htole16(params.status); 262 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 263 MPI2_IOCSTATUS_SUCCESS) { 264 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 265 } 266 267 return (0); 268 } 269 270 static int 271 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req, 272 void *buf) 273 { 274 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 275 struct mps_config_params params; 276 int error; 277 278 reqhdr = buf; 279 hdr = ¶ms.hdr.Struct; 280 hdr->PageVersion = reqhdr->PageVersion; 281 hdr->PageLength = reqhdr->PageLength; 282 hdr->PageNumber = reqhdr->PageNumber; 283 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 284 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 285 params.page_address = le32toh(page_req->page_address); 286 params.buffer = buf; 287 params.length = le32toh(page_req->len); 288 params.callback = NULL; 289 290 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 291 mps_printf(sc, "mps_user_read_cfg_page timed out\n"); 292 return (ETIMEDOUT); 293 } 294 295 page_req->ioc_status = htole16(params.status); 296 return (0); 297 } 298 299 static int 300 mps_user_read_extcfg_header(struct mps_softc *sc, 301 struct mps_ext_cfg_page_req *ext_page_req) 302 { 303 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 304 struct mps_config_params params; 305 int error; 306 307 hdr = ¶ms.hdr.Ext; 308 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 309 hdr->PageVersion = ext_page_req->header.PageVersion; 310 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 311 hdr->ExtPageLength = 0; 312 hdr->PageNumber = ext_page_req->header.PageNumber; 313 hdr->ExtPageType = ext_page_req->header.ExtPageType; 314 params.page_address = le32toh(ext_page_req->page_address); 315 params.buffer = NULL; 316 params.length = 0; 317 params.callback = NULL; 318 319 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 320 /* 321 * Leave the request. Without resetting the chip, it's 322 * still owned by it and we'll just get into trouble 323 * freeing it now. Mark it as abandoned so that if it 324 * shows up later it can be freed. 325 */ 326 mps_printf(sc, "mps_user_read_extcfg_header timed out\n"); 327 return (ETIMEDOUT); 328 } 329 330 ext_page_req->ioc_status = htole16(params.status); 331 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 332 MPI2_IOCSTATUS_SUCCESS) { 333 ext_page_req->header.PageVersion = hdr->PageVersion; 334 ext_page_req->header.PageNumber = hdr->PageNumber; 335 ext_page_req->header.PageType = hdr->PageType; 336 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 337 ext_page_req->header.ExtPageType = hdr->ExtPageType; 338 } 339 340 return (0); 341 } 342 343 static int 344 mps_user_read_extcfg_page(struct mps_softc *sc, 345 struct mps_ext_cfg_page_req *ext_page_req, void *buf) 346 { 347 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 348 struct mps_config_params params; 349 int error; 350 351 reqhdr = buf; 352 hdr = ¶ms.hdr.Ext; 353 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 354 params.page_address = le32toh(ext_page_req->page_address); 355 hdr->PageVersion = reqhdr->PageVersion; 356 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 357 hdr->PageNumber = reqhdr->PageNumber; 358 hdr->ExtPageType = reqhdr->ExtPageType; 359 hdr->ExtPageLength = reqhdr->ExtPageLength; 360 params.buffer = buf; 361 params.length = le32toh(ext_page_req->len); 362 params.callback = NULL; 363 364 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 365 mps_printf(sc, "mps_user_read_extcfg_page timed out\n"); 366 return (ETIMEDOUT); 367 } 368 369 ext_page_req->ioc_status = htole16(params.status); 370 return (0); 371 } 372 373 static int 374 mps_user_write_cfg_page(struct mps_softc *sc, 375 struct mps_cfg_page_req *page_req, void *buf) 376 { 377 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 378 struct mps_config_params params; 379 u_int hdr_attr; 380 int error; 381 382 reqhdr = buf; 383 hdr = ¶ms.hdr.Struct; 384 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 385 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 386 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 387 mps_printf(sc, "page type 0x%x not changeable\n", 388 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 389 return (EINVAL); 390 } 391 392 /* 393 * There isn't any point in restoring stripped out attributes 394 * if you then mask them going down to issue the request. 395 */ 396 397 hdr->PageVersion = reqhdr->PageVersion; 398 hdr->PageLength = reqhdr->PageLength; 399 hdr->PageNumber = reqhdr->PageNumber; 400 hdr->PageType = reqhdr->PageType; 401 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 402 params.page_address = le32toh(page_req->page_address); 403 params.buffer = buf; 404 params.length = le32toh(page_req->len); 405 params.callback = NULL; 406 407 if ((error = mps_write_config_page(sc, ¶ms)) != 0) { 408 mps_printf(sc, "mps_write_cfg_page timed out\n"); 409 return (ETIMEDOUT); 410 } 411 412 page_req->ioc_status = htole16(params.status); 413 return (0); 414 } 415 416 void 417 mpi_init_sge(struct mps_command *cm, void *req, void *sge) 418 { 419 int off, space; 420 421 space = (int)cm->cm_sc->reqframesz; 422 off = (uintptr_t)sge - (uintptr_t)req; 423 424 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 425 req, sge, off, space)); 426 427 cm->cm_sge = sge; 428 cm->cm_sglsize = space - off; 429 } 430 431 /* 432 * Prepare the mps_command for an IOC_FACTS request. 433 */ 434 static int 435 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd) 436 { 437 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 438 MPI2_IOC_FACTS_REPLY *rpl; 439 440 if (cmd->req_len != sizeof *req) 441 return (EINVAL); 442 if (cmd->rpl_len != sizeof *rpl) 443 return (EINVAL); 444 445 cm->cm_sge = NULL; 446 cm->cm_sglsize = 0; 447 return (0); 448 } 449 450 /* 451 * Prepare the mps_command for a PORT_FACTS request. 452 */ 453 static int 454 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd) 455 { 456 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 457 MPI2_PORT_FACTS_REPLY *rpl; 458 459 if (cmd->req_len != sizeof *req) 460 return (EINVAL); 461 if (cmd->rpl_len != sizeof *rpl) 462 return (EINVAL); 463 464 cm->cm_sge = NULL; 465 cm->cm_sglsize = 0; 466 return (0); 467 } 468 469 /* 470 * Prepare the mps_command for a FW_DOWNLOAD request. 471 */ 472 static int 473 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd) 474 { 475 MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 476 MPI2_FW_DOWNLOAD_REPLY *rpl; 477 MPI2_FW_DOWNLOAD_TCSGE tc; 478 int error; 479 480 /* 481 * This code assumes there is room in the request's SGL for 482 * the TransactionContext plus at least a SGL chain element. 483 */ 484 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 485 486 if (cmd->req_len != sizeof *req) 487 return (EINVAL); 488 if (cmd->rpl_len != sizeof *rpl) 489 return (EINVAL); 490 491 if (cmd->len == 0) 492 return (EINVAL); 493 494 error = copyin(cmd->buf, cm->cm_data, cmd->len); 495 if (error != 0) 496 return (error); 497 498 mpi_init_sge(cm, req, &req->SGL); 499 bzero(&tc, sizeof tc); 500 501 /* 502 * For now, the F/W image must be provided in a single request. 503 */ 504 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 505 return (EINVAL); 506 if (req->TotalImageSize != cmd->len) 507 return (EINVAL); 508 509 /* 510 * The value of the first two elements is specified in the 511 * Fusion-MPT Message Passing Interface document. 512 */ 513 tc.ContextSize = 0; 514 tc.DetailsLength = 12; 515 tc.ImageOffset = 0; 516 tc.ImageSize = cmd->len; 517 518 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 519 520 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 521 } 522 523 /* 524 * Prepare the mps_command for a FW_UPLOAD request. 525 */ 526 static int 527 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd) 528 { 529 MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 530 MPI2_FW_UPLOAD_REPLY *rpl; 531 MPI2_FW_UPLOAD_TCSGE tc; 532 533 /* 534 * This code assumes there is room in the request's SGL for 535 * the TransactionContext plus at least a SGL chain element. 536 */ 537 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 538 539 if (cmd->req_len != sizeof *req) 540 return (EINVAL); 541 if (cmd->rpl_len != sizeof *rpl) 542 return (EINVAL); 543 544 mpi_init_sge(cm, req, &req->SGL); 545 bzero(&tc, sizeof tc); 546 547 /* 548 * The value of the first two elements is specified in the 549 * Fusion-MPT Message Passing Interface document. 550 */ 551 tc.ContextSize = 0; 552 tc.DetailsLength = 12; 553 /* 554 * XXX Is there any reason to fetch a partial image? I.e. to 555 * set ImageOffset to something other than 0? 556 */ 557 tc.ImageOffset = 0; 558 tc.ImageSize = cmd->len; 559 560 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 561 562 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 563 } 564 565 /* 566 * Prepare the mps_command for a SATA_PASSTHROUGH request. 567 */ 568 static int 569 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 570 { 571 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 572 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 573 574 if (cmd->req_len != sizeof *req) 575 return (EINVAL); 576 if (cmd->rpl_len != sizeof *rpl) 577 return (EINVAL); 578 579 mpi_init_sge(cm, req, &req->SGL); 580 return (0); 581 } 582 583 /* 584 * Prepare the mps_command for a SMP_PASSTHROUGH request. 585 */ 586 static int 587 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 588 { 589 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 590 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 591 592 if (cmd->req_len != sizeof *req) 593 return (EINVAL); 594 if (cmd->rpl_len != sizeof *rpl) 595 return (EINVAL); 596 597 mpi_init_sge(cm, req, &req->SGL); 598 return (0); 599 } 600 601 /* 602 * Prepare the mps_command for a CONFIG request. 603 */ 604 static int 605 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd) 606 { 607 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 608 MPI2_CONFIG_REPLY *rpl; 609 610 if (cmd->req_len != sizeof *req) 611 return (EINVAL); 612 if (cmd->rpl_len != sizeof *rpl) 613 return (EINVAL); 614 615 mpi_init_sge(cm, req, &req->PageBufferSGE); 616 return (0); 617 } 618 619 /* 620 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 621 */ 622 static int 623 mpi_pre_sas_io_unit_control(struct mps_command *cm, 624 struct mps_usr_command *cmd) 625 { 626 627 cm->cm_sge = NULL; 628 cm->cm_sglsize = 0; 629 return (0); 630 } 631 632 /* 633 * A set of functions to prepare an mps_command for the various 634 * supported requests. 635 */ 636 struct mps_user_func { 637 U8 Function; 638 mps_user_f *f_pre; 639 } mps_user_func_list[] = { 640 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 641 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 642 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 643 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 644 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 645 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 646 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 647 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 648 { 0xFF, NULL } /* list end */ 649 }; 650 651 static int 652 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd) 653 { 654 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 655 struct mps_user_func *f; 656 657 for (f = mps_user_func_list; f->f_pre != NULL; f++) { 658 if (hdr->Function == f->Function) 659 return (f->f_pre(cm, cmd)); 660 } 661 return (EINVAL); 662 } 663 664 static int 665 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd) 666 { 667 MPI2_REQUEST_HEADER *hdr; 668 MPI2_DEFAULT_REPLY *rpl; 669 void *buf = NULL; 670 struct mps_command *cm = NULL; 671 int err = 0; 672 int sz; 673 674 mps_lock(sc); 675 cm = mps_alloc_command(sc); 676 677 if (cm == NULL) { 678 mps_printf(sc, "%s: no mps requests\n", __func__); 679 err = ENOMEM; 680 goto RetFree; 681 } 682 mps_unlock(sc); 683 684 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 685 686 mps_dprint(sc, MPS_USER, "%s: req %p %d rpl %p %d\n", __func__, 687 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 688 689 if (cmd->req_len > (int)sc->reqframesz) { 690 err = EINVAL; 691 goto RetFreeUnlocked; 692 } 693 err = copyin(cmd->req, hdr, cmd->req_len); 694 if (err != 0) 695 goto RetFreeUnlocked; 696 697 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 698 hdr->Function, hdr->MsgFlags); 699 700 if (cmd->len > 0) { 701 buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO); 702 cm->cm_data = buf; 703 cm->cm_length = cmd->len; 704 } else { 705 cm->cm_data = NULL; 706 cm->cm_length = 0; 707 } 708 709 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE; 710 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 711 712 err = mps_user_setup_request(cm, cmd); 713 if (err == EINVAL) { 714 mps_printf(sc, "%s: unsupported parameter or unsupported " 715 "function in request (function = 0x%X)\n", __func__, 716 hdr->Function); 717 } 718 if (err != 0) 719 goto RetFreeUnlocked; 720 721 mps_lock(sc); 722 err = mps_wait_command(sc, &cm, 60, CAN_SLEEP); 723 724 if (err || (cm == NULL)) { 725 mps_printf(sc, "%s: invalid request: error %d\n", 726 __func__, err); 727 goto RetFree; 728 } 729 730 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 731 if (rpl != NULL) 732 sz = rpl->MsgLength * 4; 733 else 734 sz = 0; 735 736 if (sz > cmd->rpl_len) { 737 mps_printf(sc, "%s: user reply buffer (%d) smaller than " 738 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 739 sz = cmd->rpl_len; 740 } 741 742 mps_unlock(sc); 743 copyout(rpl, cmd->rpl, sz); 744 if (buf != NULL) 745 copyout(buf, cmd->buf, cmd->len); 746 mps_dprint(sc, MPS_USER, "%s: reply size %d\n", __func__, sz); 747 748 RetFreeUnlocked: 749 mps_lock(sc); 750 RetFree: 751 if (cm != NULL) 752 mps_free_command(sc, cm); 753 mps_unlock(sc); 754 if (buf != NULL) 755 free(buf, M_MPSUSER); 756 return (err); 757 } 758 759 static int 760 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data) 761 { 762 MPI2_REQUEST_HEADER *hdr, tmphdr; 763 MPI2_DEFAULT_REPLY *rpl = NULL; 764 struct mps_command *cm = NULL; 765 int err = 0, dir = 0, sz; 766 uint8_t function = 0; 767 u_int sense_len; 768 struct mpssas_target *targ = NULL; 769 770 /* 771 * Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY 772 * bit to denote that a passthru is being processed. 773 */ 774 mps_lock(sc); 775 if (sc->mps_flags & MPS_FLAGS_BUSY) { 776 mps_dprint(sc, MPS_USER, "%s: Only one passthru command " 777 "allowed at a single time.", __func__); 778 mps_unlock(sc); 779 return (EBUSY); 780 } 781 sc->mps_flags |= MPS_FLAGS_BUSY; 782 mps_unlock(sc); 783 784 /* 785 * Do some validation on data direction. Valid cases are: 786 * 1) DataSize is 0 and direction is NONE 787 * 2) DataSize is non-zero and one of: 788 * a) direction is READ or 789 * b) direction is WRITE or 790 * c) direction is BOTH and DataOutSize is non-zero 791 * If valid and the direction is BOTH, change the direction to READ. 792 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 793 */ 794 if (((data->DataSize == 0) && 795 (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) || 796 ((data->DataSize != 0) && 797 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) || 798 (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) || 799 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) && 800 (data->DataOutSize != 0))))) { 801 if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) 802 data->DataDirection = MPS_PASS_THRU_DIRECTION_READ; 803 else 804 data->DataOutSize = 0; 805 } else { 806 err = EINVAL; 807 goto RetFreeUnlocked; 808 } 809 810 mps_dprint(sc, MPS_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 811 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 812 data->PtrRequest, data->RequestSize, data->PtrReply, 813 data->ReplySize, data->PtrData, data->DataSize, 814 data->PtrDataOut, data->DataOutSize, data->DataDirection); 815 816 /* 817 * copy in the header so we know what we're dealing with before we 818 * commit to allocating a command for it. 819 */ 820 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 821 if (err != 0) 822 goto RetFreeUnlocked; 823 824 if (data->RequestSize > (int)sc->reqframesz) { 825 err = EINVAL; 826 goto RetFreeUnlocked; 827 } 828 829 function = tmphdr.Function; 830 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 831 function, tmphdr.MsgFlags); 832 833 /* 834 * Handle a passthru TM request. 835 */ 836 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 837 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 838 839 mps_lock(sc); 840 cm = mpssas_alloc_tm(sc); 841 if (cm == NULL) { 842 err = EINVAL; 843 goto Ret; 844 } 845 846 /* Copy the header in. Only a small fixup is needed. */ 847 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 848 bcopy(&tmphdr, task, data->RequestSize); 849 task->TaskMID = cm->cm_desc.Default.SMID; 850 851 cm->cm_data = NULL; 852 cm->cm_complete = NULL; 853 cm->cm_complete_data = NULL; 854 855 targ = mpssas_find_target_by_handle(sc->sassc, 0, 856 task->DevHandle); 857 if (targ == NULL) { 858 mps_dprint(sc, MPS_INFO, 859 "%s %d : invalid handle for requested TM 0x%x \n", 860 __func__, __LINE__, task->DevHandle); 861 err = 1; 862 } else { 863 mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 864 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 865 } 866 867 if (err != 0) { 868 err = EIO; 869 mps_dprint(sc, MPS_FAULT, "%s: task management failed", 870 __func__); 871 } 872 /* 873 * Copy the reply data and sense data to user space. 874 */ 875 if ((cm != NULL) && (cm->cm_reply != NULL)) { 876 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 877 sz = rpl->MsgLength * 4; 878 879 if (sz > data->ReplySize) { 880 mps_printf(sc, "%s: user reply buffer (%d) " 881 "smaller than returned buffer (%d)\n", 882 __func__, data->ReplySize, sz); 883 } 884 mps_unlock(sc); 885 copyout(cm->cm_reply, PTRIN(data->PtrReply), 886 data->ReplySize); 887 mps_lock(sc); 888 } 889 mpssas_free_tm(sc, cm); 890 goto Ret; 891 } 892 893 mps_lock(sc); 894 cm = mps_alloc_command(sc); 895 896 if (cm == NULL) { 897 mps_printf(sc, "%s: no mps requests\n", __func__); 898 err = ENOMEM; 899 goto Ret; 900 } 901 mps_unlock(sc); 902 903 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 904 bcopy(&tmphdr, hdr, data->RequestSize); 905 906 /* 907 * Do some checking to make sure the IOCTL request contains a valid 908 * request. Then set the SGL info. 909 */ 910 mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 911 912 /* 913 * Set up for read, write or both. From check above, DataOutSize will 914 * be 0 if direction is READ or WRITE, but it will have some non-zero 915 * value if the direction is BOTH. So, just use the biggest size to get 916 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 917 * up; the first is for the request and the second will contain the 918 * response data. cm_out_len needs to be set here and this will be used 919 * when the SGLs are set up. 920 */ 921 cm->cm_data = NULL; 922 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 923 cm->cm_out_len = data->DataOutSize; 924 cm->cm_flags = 0; 925 if (cm->cm_length != 0) { 926 cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK | 927 M_ZERO); 928 cm->cm_flags = MPS_CM_FLAGS_DATAIN; 929 if (data->DataOutSize) { 930 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 931 err = copyin(PTRIN(data->PtrDataOut), 932 cm->cm_data, data->DataOutSize); 933 } else if (data->DataDirection == 934 MPS_PASS_THRU_DIRECTION_WRITE) { 935 cm->cm_flags = MPS_CM_FLAGS_DATAOUT; 936 err = copyin(PTRIN(data->PtrData), 937 cm->cm_data, data->DataSize); 938 } 939 if (err != 0) 940 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 941 "IOCTL data from user space\n", __func__); 942 } 943 cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE; 944 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 945 946 /* 947 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 948 * uses SCSI IO descriptor. 949 */ 950 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 951 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 952 MPI2_SCSI_IO_REQUEST *scsi_io_req; 953 954 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 955 /* 956 * Put SGE for data and data_out buffer at the end of 957 * scsi_io_request message header (64 bytes in total). 958 * Following above SGEs, the residual space will be used by 959 * sense data. 960 */ 961 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 962 64); 963 scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 964 965 /* 966 * Set SGLOffset0 value. This is the number of dwords that SGL 967 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 968 */ 969 scsi_io_req->SGLOffset0 = 24; 970 971 /* 972 * Setup descriptor info. RAID passthrough must use the 973 * default request descriptor which is already set, so if this 974 * is a SCSI IO request, change the descriptor to SCSI IO. 975 * Also, if this is a SCSI IO request, handle the reply in the 976 * mpssas_scsio_complete function. 977 */ 978 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 979 cm->cm_desc.SCSIIO.RequestFlags = 980 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 981 cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle; 982 983 /* 984 * Make sure the DevHandle is not 0 because this is a 985 * likely error. 986 */ 987 if (scsi_io_req->DevHandle == 0) { 988 err = EINVAL; 989 goto RetFreeUnlocked; 990 } 991 } 992 } 993 994 mps_lock(sc); 995 996 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 997 998 if (err || (cm == NULL)) { 999 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1000 err); 1001 mps_unlock(sc); 1002 goto RetFreeUnlocked; 1003 } 1004 1005 /* 1006 * Sync the DMA data, if any. Then copy the data to user space. 1007 */ 1008 if (cm->cm_data != NULL) { 1009 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 1010 dir = BUS_DMASYNC_POSTREAD; 1011 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 1012 dir = BUS_DMASYNC_POSTWRITE; 1013 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1014 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1015 1016 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 1017 mps_unlock(sc); 1018 err = copyout(cm->cm_data, 1019 PTRIN(data->PtrData), data->DataSize); 1020 mps_lock(sc); 1021 if (err != 0) 1022 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 1023 "IOCTL data to user space\n", __func__); 1024 } 1025 } 1026 1027 /* 1028 * Copy the reply data and sense data to user space. 1029 */ 1030 if (cm->cm_reply != NULL) { 1031 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1032 sz = rpl->MsgLength * 4; 1033 1034 if (sz > data->ReplySize) { 1035 mps_printf(sc, "%s: user reply buffer (%d) smaller " 1036 "than returned buffer (%d)\n", __func__, 1037 data->ReplySize, sz); 1038 } 1039 mps_unlock(sc); 1040 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1041 mps_lock(sc); 1042 1043 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1044 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1045 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1046 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1047 sense_len = 1048 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1049 SenseCount)), sizeof(struct 1050 scsi_sense_data)); 1051 mps_unlock(sc); 1052 copyout(cm->cm_sense, (PTRIN(data->PtrReply + 1053 sizeof(MPI2_SCSI_IO_REPLY))), sense_len); 1054 mps_lock(sc); 1055 } 1056 } 1057 } 1058 mps_unlock(sc); 1059 1060 RetFreeUnlocked: 1061 mps_lock(sc); 1062 1063 if (cm != NULL) { 1064 if (cm->cm_data) 1065 free(cm->cm_data, M_MPSUSER); 1066 mps_free_command(sc, cm); 1067 } 1068 Ret: 1069 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1070 mps_unlock(sc); 1071 1072 return (err); 1073 } 1074 1075 static void 1076 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data) 1077 { 1078 Mpi2ConfigReply_t mpi_reply; 1079 Mpi2BiosPage3_t config_page; 1080 1081 /* 1082 * Use the PCI interface functions to get the Bus, Device, and Function 1083 * information. 1084 */ 1085 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev); 1086 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev); 1087 data->PciInformation.u.bits.FunctionNumber = 1088 pci_get_function(sc->mps_dev); 1089 1090 /* 1091 * Get the FW version that should already be saved in IOC Facts. 1092 */ 1093 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1094 1095 /* 1096 * General device info. 1097 */ 1098 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2; 1099 if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE) 1100 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200; 1101 data->PCIDeviceHwId = pci_get_device(sc->mps_dev); 1102 data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1); 1103 data->SubSystemId = pci_get_subdevice(sc->mps_dev); 1104 data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev); 1105 1106 /* 1107 * Get the driver version. 1108 */ 1109 strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION); 1110 1111 /* 1112 * Need to get BIOS Config Page 3 for the BIOS Version. 1113 */ 1114 data->BiosVersion = 0; 1115 mps_lock(sc); 1116 if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1117 printf("%s: Error while retrieving BIOS Version\n", __func__); 1118 else 1119 data->BiosVersion = config_page.BiosVersion; 1120 mps_unlock(sc); 1121 } 1122 1123 static void 1124 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data) 1125 { 1126 int i; 1127 1128 /* 1129 * Use the PCI interface functions to get the Bus, Device, and Function 1130 * information. 1131 */ 1132 data->BusNumber = pci_get_bus(sc->mps_dev); 1133 data->DeviceNumber = pci_get_slot(sc->mps_dev); 1134 data->FunctionNumber = pci_get_function(sc->mps_dev); 1135 1136 /* 1137 * Now get the interrupt vector and the pci header. The vector can 1138 * only be 0 right now. The header is the first 256 bytes of config 1139 * space. 1140 */ 1141 data->InterruptVector = 0; 1142 for (i = 0; i < sizeof (data->PciHeader); i++) { 1143 data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1); 1144 } 1145 } 1146 1147 static uint8_t 1148 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id) 1149 { 1150 uint8_t index; 1151 1152 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1153 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1154 return (index); 1155 } 1156 } 1157 1158 return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND); 1159 } 1160 1161 static int 1162 mps_post_fw_diag_buffer(struct mps_softc *sc, 1163 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1164 { 1165 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1166 MPI2_DIAG_BUFFER_POST_REPLY *reply = NULL; 1167 struct mps_command *cm = NULL; 1168 int i, status; 1169 1170 /* 1171 * If buffer is not enabled, just leave. 1172 */ 1173 *return_code = MPS_FW_DIAG_ERROR_POST_FAILED; 1174 if (!pBuffer->enabled) { 1175 return (MPS_DIAG_FAILURE); 1176 } 1177 1178 /* 1179 * Clear some flags initially. 1180 */ 1181 pBuffer->force_release = FALSE; 1182 pBuffer->valid_data = FALSE; 1183 pBuffer->owned_by_firmware = FALSE; 1184 1185 /* 1186 * Get a command. 1187 */ 1188 cm = mps_alloc_command(sc); 1189 if (cm == NULL) { 1190 mps_printf(sc, "%s: no mps requests\n", __func__); 1191 return (MPS_DIAG_FAILURE); 1192 } 1193 1194 /* 1195 * Build the request for releasing the FW Diag Buffer and send it. 1196 */ 1197 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1198 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1199 req->BufferType = pBuffer->buffer_type; 1200 req->ExtendedType = pBuffer->extended_type; 1201 req->BufferLength = pBuffer->size; 1202 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1203 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1204 mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1205 cm->cm_data = NULL; 1206 cm->cm_length = 0; 1207 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1208 cm->cm_complete_data = NULL; 1209 1210 /* 1211 * Send command synchronously. 1212 */ 1213 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1214 if (status || (cm == NULL)) { 1215 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1216 status); 1217 status = MPS_DIAG_FAILURE; 1218 goto done; 1219 } 1220 1221 /* 1222 * Process POST reply. 1223 */ 1224 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1225 if (reply == NULL) { 1226 mps_printf(sc, "%s: reply is NULL, probably due to " 1227 "reinitialization\n", __func__); 1228 status = MPS_DIAG_FAILURE; 1229 goto done; 1230 } 1231 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1232 MPI2_IOCSTATUS_SUCCESS) { 1233 status = MPS_DIAG_FAILURE; 1234 mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed " 1235 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1236 "TransferLength = 0x%x\n", __func__, 1237 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1238 le32toh(reply->TransferLength)); 1239 goto done; 1240 } 1241 1242 /* 1243 * Post was successful. 1244 */ 1245 pBuffer->valid_data = TRUE; 1246 pBuffer->owned_by_firmware = TRUE; 1247 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1248 status = MPS_DIAG_SUCCESS; 1249 1250 done: 1251 if (cm != NULL) 1252 mps_free_command(sc, cm); 1253 return (status); 1254 } 1255 1256 static int 1257 mps_release_fw_diag_buffer(struct mps_softc *sc, 1258 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1259 uint32_t diag_type) 1260 { 1261 MPI2_DIAG_RELEASE_REQUEST *req; 1262 MPI2_DIAG_RELEASE_REPLY *reply = NULL; 1263 struct mps_command *cm = NULL; 1264 int status; 1265 1266 /* 1267 * If buffer is not enabled, just leave. 1268 */ 1269 *return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED; 1270 if (!pBuffer->enabled) { 1271 mps_dprint(sc, MPS_USER, "%s: This buffer type is not " 1272 "supported by the IOC", __func__); 1273 return (MPS_DIAG_FAILURE); 1274 } 1275 1276 /* 1277 * Clear some flags initially. 1278 */ 1279 pBuffer->force_release = FALSE; 1280 pBuffer->valid_data = FALSE; 1281 pBuffer->owned_by_firmware = FALSE; 1282 1283 /* 1284 * Get a command. 1285 */ 1286 cm = mps_alloc_command(sc); 1287 if (cm == NULL) { 1288 mps_printf(sc, "%s: no mps requests\n", __func__); 1289 return (MPS_DIAG_FAILURE); 1290 } 1291 1292 /* 1293 * Build the request for releasing the FW Diag Buffer and send it. 1294 */ 1295 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1296 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1297 req->BufferType = pBuffer->buffer_type; 1298 cm->cm_data = NULL; 1299 cm->cm_length = 0; 1300 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1301 cm->cm_complete_data = NULL; 1302 1303 /* 1304 * Send command synchronously. 1305 */ 1306 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1307 if (status || (cm == NULL)) { 1308 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1309 status); 1310 status = MPS_DIAG_FAILURE; 1311 goto done; 1312 } 1313 1314 /* 1315 * Process RELEASE reply. 1316 */ 1317 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1318 if (reply == NULL) { 1319 mps_printf(sc, "%s: reply is NULL, probably due to " 1320 "reinitialization\n", __func__); 1321 status = MPS_DIAG_FAILURE; 1322 goto done; 1323 } 1324 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1325 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1326 status = MPS_DIAG_FAILURE; 1327 mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer " 1328 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1329 __func__, le16toh(reply->IOCStatus), 1330 le32toh(reply->IOCLogInfo)); 1331 goto done; 1332 } 1333 1334 /* 1335 * Release was successful. 1336 */ 1337 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1338 status = MPS_DIAG_SUCCESS; 1339 1340 /* 1341 * If this was for an UNREGISTER diag type command, clear the unique ID. 1342 */ 1343 if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) { 1344 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1345 } 1346 1347 done: 1348 if (cm != NULL) 1349 mps_free_command(sc, cm); 1350 1351 return (status); 1352 } 1353 1354 static int 1355 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register, 1356 uint32_t *return_code) 1357 { 1358 mps_fw_diagnostic_buffer_t *pBuffer; 1359 struct mps_busdma_context *ctx; 1360 uint8_t extended_type, buffer_type, i; 1361 uint32_t buffer_size; 1362 uint32_t unique_id; 1363 int status; 1364 int error; 1365 1366 extended_type = diag_register->ExtendedType; 1367 buffer_type = diag_register->BufferType; 1368 buffer_size = diag_register->RequestedBufferSize; 1369 unique_id = diag_register->UniqueId; 1370 ctx = NULL; 1371 error = 0; 1372 1373 /* 1374 * Check for valid buffer type 1375 */ 1376 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1377 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1378 return (MPS_DIAG_FAILURE); 1379 } 1380 1381 /* 1382 * Get the current buffer and look up the unique ID. The unique ID 1383 * should not be found. If it is, the ID is already in use. 1384 */ 1385 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1386 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1387 if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1388 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1389 return (MPS_DIAG_FAILURE); 1390 } 1391 1392 /* 1393 * The buffer's unique ID should not be registered yet, and the given 1394 * unique ID cannot be 0. 1395 */ 1396 if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) || 1397 (unique_id == MPS_FW_DIAG_INVALID_UID)) { 1398 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1399 return (MPS_DIAG_FAILURE); 1400 } 1401 1402 /* 1403 * If this buffer is already posted as immediate, just change owner. 1404 */ 1405 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1406 (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) { 1407 pBuffer->immediate = FALSE; 1408 pBuffer->unique_id = unique_id; 1409 return (MPS_DIAG_SUCCESS); 1410 } 1411 1412 /* 1413 * Post a new buffer after checking if it's enabled. The DMA buffer 1414 * that is allocated will be contiguous (nsegments = 1). 1415 */ 1416 if (!pBuffer->enabled) { 1417 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1418 return (MPS_DIAG_FAILURE); 1419 } 1420 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1421 1, 0, /* algnmnt, boundary */ 1422 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1423 BUS_SPACE_MAXADDR, /* highaddr */ 1424 NULL, NULL, /* filter, filterarg */ 1425 buffer_size, /* maxsize */ 1426 1, /* nsegments */ 1427 buffer_size, /* maxsegsize */ 1428 0, /* flags */ 1429 NULL, NULL, /* lockfunc, lockarg */ 1430 &sc->fw_diag_dmat)) { 1431 mps_dprint(sc, MPS_ERROR, 1432 "Cannot allocate FW diag buffer DMA tag\n"); 1433 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1434 status = MPS_DIAG_FAILURE; 1435 goto bailout; 1436 } 1437 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1438 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1439 mps_dprint(sc, MPS_ERROR, 1440 "Cannot allocate FW diag buffer memory\n"); 1441 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1442 status = MPS_DIAG_FAILURE; 1443 goto bailout; 1444 } 1445 bzero(sc->fw_diag_buffer, buffer_size); 1446 1447 ctx = malloc(sizeof(*ctx), M_MPSUSER, M_WAITOK | M_ZERO); 1448 if (ctx == NULL) { 1449 device_printf(sc->mps_dev, "%s: context malloc failed\n", 1450 __func__); 1451 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1452 status = MPS_DIAG_FAILURE; 1453 goto bailout; 1454 } 1455 ctx->addr = &sc->fw_diag_busaddr; 1456 ctx->buffer_dmat = sc->fw_diag_dmat; 1457 ctx->buffer_dmamap = sc->fw_diag_map; 1458 ctx->softc = sc; 1459 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1460 sc->fw_diag_buffer, buffer_size, mps_memaddr_wait_cb, 1461 ctx, 0); 1462 1463 if (error == EINPROGRESS) { 1464 1465 /* XXX KDM */ 1466 device_printf(sc->mps_dev, "%s: Deferred bus_dmamap_load\n", 1467 __func__); 1468 /* 1469 * Wait for the load to complete. If we're interrupted, 1470 * bail out. 1471 */ 1472 mps_lock(sc); 1473 if (ctx->completed == 0) { 1474 error = msleep(ctx, &sc->mps_mtx, PCATCH, "mpswait", 0); 1475 if (error != 0) { 1476 /* 1477 * We got an error from msleep(9). This is 1478 * most likely due to a signal. Tell 1479 * mpr_memaddr_wait_cb() that we've abandoned 1480 * the context, so it needs to clean up when 1481 * it is called. 1482 */ 1483 ctx->abandoned = 1; 1484 1485 /* The callback will free this memory */ 1486 ctx = NULL; 1487 mps_unlock(sc); 1488 1489 device_printf(sc->mps_dev, "Cannot " 1490 "bus_dmamap_load FW diag buffer, error = " 1491 "%d returned from msleep\n", error); 1492 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1493 status = MPS_DIAG_FAILURE; 1494 goto bailout; 1495 } 1496 } 1497 mps_unlock(sc); 1498 } 1499 1500 if ((error != 0) || (ctx->error != 0)) { 1501 device_printf(sc->mps_dev, "Cannot bus_dmamap_load FW diag " 1502 "buffer, %serror = %d\n", error ? "" : "callback ", 1503 error ? error : ctx->error); 1504 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1505 status = MPS_DIAG_FAILURE; 1506 goto bailout; 1507 } 1508 1509 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1510 1511 pBuffer->size = buffer_size; 1512 1513 /* 1514 * Copy the given info to the diag buffer and post the buffer. 1515 */ 1516 pBuffer->buffer_type = buffer_type; 1517 pBuffer->immediate = FALSE; 1518 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1519 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1520 i++) { 1521 pBuffer->product_specific[i] = 1522 diag_register->ProductSpecific[i]; 1523 } 1524 } 1525 pBuffer->extended_type = extended_type; 1526 pBuffer->unique_id = unique_id; 1527 status = mps_post_fw_diag_buffer(sc, pBuffer, return_code); 1528 1529 bailout: 1530 /* 1531 * In case there was a failure, free the DMA buffer. 1532 */ 1533 if (status == MPS_DIAG_FAILURE) { 1534 if (sc->fw_diag_busaddr != 0) { 1535 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1536 sc->fw_diag_busaddr = 0; 1537 } 1538 if (sc->fw_diag_buffer != NULL) { 1539 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1540 sc->fw_diag_map); 1541 sc->fw_diag_buffer = NULL; 1542 } 1543 if (sc->fw_diag_dmat != NULL) { 1544 bus_dma_tag_destroy(sc->fw_diag_dmat); 1545 sc->fw_diag_dmat = NULL; 1546 } 1547 } 1548 1549 if (ctx != NULL) 1550 free(ctx, M_MPSUSER); 1551 1552 return (status); 1553 } 1554 1555 static int 1556 mps_diag_unregister(struct mps_softc *sc, 1557 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1558 { 1559 mps_fw_diagnostic_buffer_t *pBuffer; 1560 uint8_t i; 1561 uint32_t unique_id; 1562 int status; 1563 1564 unique_id = diag_unregister->UniqueId; 1565 1566 /* 1567 * Get the current buffer and look up the unique ID. The unique ID 1568 * should be there. 1569 */ 1570 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1571 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1572 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1573 return (MPS_DIAG_FAILURE); 1574 } 1575 1576 pBuffer = &sc->fw_diag_buffer_list[i]; 1577 1578 /* 1579 * Try to release the buffer from FW before freeing it. If release 1580 * fails, don't free the DMA buffer in case FW tries to access it 1581 * later. If buffer is not owned by firmware, can't release it. 1582 */ 1583 if (!pBuffer->owned_by_firmware) { 1584 status = MPS_DIAG_SUCCESS; 1585 } else { 1586 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1587 MPS_FW_DIAG_TYPE_UNREGISTER); 1588 } 1589 1590 /* 1591 * At this point, return the current status no matter what happens with 1592 * the DMA buffer. 1593 */ 1594 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1595 if (status == MPS_DIAG_SUCCESS) { 1596 if (sc->fw_diag_busaddr != 0) { 1597 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1598 sc->fw_diag_busaddr = 0; 1599 } 1600 if (sc->fw_diag_buffer != NULL) { 1601 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1602 sc->fw_diag_map); 1603 sc->fw_diag_buffer = NULL; 1604 } 1605 if (sc->fw_diag_dmat != NULL) { 1606 bus_dma_tag_destroy(sc->fw_diag_dmat); 1607 sc->fw_diag_dmat = NULL; 1608 } 1609 } 1610 1611 return (status); 1612 } 1613 1614 static int 1615 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 1616 uint32_t *return_code) 1617 { 1618 mps_fw_diagnostic_buffer_t *pBuffer; 1619 uint8_t i; 1620 uint32_t unique_id; 1621 1622 unique_id = diag_query->UniqueId; 1623 1624 /* 1625 * If ID is valid, query on ID. 1626 * If ID is invalid, query on buffer type. 1627 */ 1628 if (unique_id == MPS_FW_DIAG_INVALID_UID) { 1629 i = diag_query->BufferType; 1630 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1631 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1632 return (MPS_DIAG_FAILURE); 1633 } 1634 } else { 1635 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1636 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1637 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1638 return (MPS_DIAG_FAILURE); 1639 } 1640 } 1641 1642 /* 1643 * Fill query structure with the diag buffer info. 1644 */ 1645 pBuffer = &sc->fw_diag_buffer_list[i]; 1646 diag_query->BufferType = pBuffer->buffer_type; 1647 diag_query->ExtendedType = pBuffer->extended_type; 1648 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1649 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1650 i++) { 1651 diag_query->ProductSpecific[i] = 1652 pBuffer->product_specific[i]; 1653 } 1654 } 1655 diag_query->TotalBufferSize = pBuffer->size; 1656 diag_query->DriverAddedBufferSize = 0; 1657 diag_query->UniqueId = pBuffer->unique_id; 1658 diag_query->ApplicationFlags = 0; 1659 diag_query->DiagnosticFlags = 0; 1660 1661 /* 1662 * Set/Clear application flags 1663 */ 1664 if (pBuffer->immediate) { 1665 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED; 1666 } else { 1667 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED; 1668 } 1669 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1670 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID; 1671 } else { 1672 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID; 1673 } 1674 if (pBuffer->owned_by_firmware) { 1675 diag_query->ApplicationFlags |= 1676 MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1677 } else { 1678 diag_query->ApplicationFlags &= 1679 ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1680 } 1681 1682 return (MPS_DIAG_SUCCESS); 1683 } 1684 1685 static int 1686 mps_diag_read_buffer(struct mps_softc *sc, 1687 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1688 uint32_t *return_code) 1689 { 1690 mps_fw_diagnostic_buffer_t *pBuffer; 1691 uint8_t i, *pData; 1692 uint32_t unique_id; 1693 int status; 1694 1695 unique_id = diag_read_buffer->UniqueId; 1696 1697 /* 1698 * Get the current buffer and look up the unique ID. The unique ID 1699 * should be there. 1700 */ 1701 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1702 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1703 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1704 return (MPS_DIAG_FAILURE); 1705 } 1706 1707 pBuffer = &sc->fw_diag_buffer_list[i]; 1708 1709 /* 1710 * Make sure requested read is within limits 1711 */ 1712 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1713 pBuffer->size) { 1714 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1715 return (MPS_DIAG_FAILURE); 1716 } 1717 1718 /* Sync the DMA map before we copy to userland. */ 1719 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1720 BUS_DMASYNC_POSTREAD); 1721 1722 /* 1723 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1724 * buffer that was allocated is one contiguous buffer. 1725 */ 1726 pData = (uint8_t *)(sc->fw_diag_buffer + 1727 diag_read_buffer->StartingOffset); 1728 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1729 return (MPS_DIAG_FAILURE); 1730 diag_read_buffer->Status = 0; 1731 1732 /* 1733 * Set or clear the Force Release flag. 1734 */ 1735 if (pBuffer->force_release) { 1736 diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1737 } else { 1738 diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1739 } 1740 1741 /* 1742 * If buffer is to be reregistered, make sure it's not already owned by 1743 * firmware first. 1744 */ 1745 status = MPS_DIAG_SUCCESS; 1746 if (!pBuffer->owned_by_firmware) { 1747 if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) { 1748 status = mps_post_fw_diag_buffer(sc, pBuffer, 1749 return_code); 1750 } 1751 } 1752 1753 return (status); 1754 } 1755 1756 static int 1757 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release, 1758 uint32_t *return_code) 1759 { 1760 mps_fw_diagnostic_buffer_t *pBuffer; 1761 uint8_t i; 1762 uint32_t unique_id; 1763 int status; 1764 1765 unique_id = diag_release->UniqueId; 1766 1767 /* 1768 * Get the current buffer and look up the unique ID. The unique ID 1769 * should be there. 1770 */ 1771 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1772 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1773 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1774 return (MPS_DIAG_FAILURE); 1775 } 1776 1777 pBuffer = &sc->fw_diag_buffer_list[i]; 1778 1779 /* 1780 * If buffer is not owned by firmware, it's already been released. 1781 */ 1782 if (!pBuffer->owned_by_firmware) { 1783 *return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED; 1784 return (MPS_DIAG_FAILURE); 1785 } 1786 1787 /* 1788 * Release the buffer. 1789 */ 1790 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1791 MPS_FW_DIAG_TYPE_RELEASE); 1792 return (status); 1793 } 1794 1795 static int 1796 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action, 1797 uint32_t length, uint32_t *return_code) 1798 { 1799 mps_fw_diag_register_t diag_register; 1800 mps_fw_diag_unregister_t diag_unregister; 1801 mps_fw_diag_query_t diag_query; 1802 mps_diag_read_buffer_t diag_read_buffer; 1803 mps_fw_diag_release_t diag_release; 1804 int status = MPS_DIAG_SUCCESS; 1805 uint32_t original_return_code; 1806 1807 original_return_code = *return_code; 1808 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1809 1810 switch (action) { 1811 case MPS_FW_DIAG_TYPE_REGISTER: 1812 if (!length) { 1813 *return_code = 1814 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1815 status = MPS_DIAG_FAILURE; 1816 break; 1817 } 1818 if (copyin(diag_action, &diag_register, 1819 sizeof(diag_register)) != 0) 1820 return (MPS_DIAG_FAILURE); 1821 status = mps_diag_register(sc, &diag_register, 1822 return_code); 1823 break; 1824 1825 case MPS_FW_DIAG_TYPE_UNREGISTER: 1826 if (length < sizeof(diag_unregister)) { 1827 *return_code = 1828 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1829 status = MPS_DIAG_FAILURE; 1830 break; 1831 } 1832 if (copyin(diag_action, &diag_unregister, 1833 sizeof(diag_unregister)) != 0) 1834 return (MPS_DIAG_FAILURE); 1835 status = mps_diag_unregister(sc, &diag_unregister, 1836 return_code); 1837 break; 1838 1839 case MPS_FW_DIAG_TYPE_QUERY: 1840 if (length < sizeof (diag_query)) { 1841 *return_code = 1842 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1843 status = MPS_DIAG_FAILURE; 1844 break; 1845 } 1846 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1847 != 0) 1848 return (MPS_DIAG_FAILURE); 1849 status = mps_diag_query(sc, &diag_query, return_code); 1850 if (status == MPS_DIAG_SUCCESS) 1851 if (copyout(&diag_query, diag_action, 1852 sizeof (diag_query)) != 0) 1853 return (MPS_DIAG_FAILURE); 1854 break; 1855 1856 case MPS_FW_DIAG_TYPE_READ_BUFFER: 1857 if (copyin(diag_action, &diag_read_buffer, 1858 sizeof(diag_read_buffer)) != 0) 1859 return (MPS_DIAG_FAILURE); 1860 if (length < diag_read_buffer.BytesToRead) { 1861 *return_code = 1862 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1863 status = MPS_DIAG_FAILURE; 1864 break; 1865 } 1866 status = mps_diag_read_buffer(sc, &diag_read_buffer, 1867 PTRIN(diag_read_buffer.PtrDataBuffer), 1868 return_code); 1869 if (status == MPS_DIAG_SUCCESS) { 1870 if (copyout(&diag_read_buffer, diag_action, 1871 sizeof(diag_read_buffer) - 1872 sizeof(diag_read_buffer.PtrDataBuffer)) != 1873 0) 1874 return (MPS_DIAG_FAILURE); 1875 } 1876 break; 1877 1878 case MPS_FW_DIAG_TYPE_RELEASE: 1879 if (length < sizeof(diag_release)) { 1880 *return_code = 1881 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1882 status = MPS_DIAG_FAILURE; 1883 break; 1884 } 1885 if (copyin(diag_action, &diag_release, 1886 sizeof(diag_release)) != 0) 1887 return (MPS_DIAG_FAILURE); 1888 status = mps_diag_release(sc, &diag_release, 1889 return_code); 1890 break; 1891 1892 default: 1893 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1894 status = MPS_DIAG_FAILURE; 1895 break; 1896 } 1897 1898 if ((status == MPS_DIAG_FAILURE) && 1899 (original_return_code == MPS_FW_DIAG_NEW) && 1900 (*return_code != MPS_FW_DIAG_ERROR_SUCCESS)) 1901 status = MPS_DIAG_SUCCESS; 1902 1903 return (status); 1904 } 1905 1906 static int 1907 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data) 1908 { 1909 int status; 1910 1911 /* 1912 * Only allow one diag action at one time. 1913 */ 1914 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1915 mps_dprint(sc, MPS_USER, "%s: Only one FW diag command " 1916 "allowed at a single time.", __func__); 1917 return (EBUSY); 1918 } 1919 sc->mps_flags |= MPS_FLAGS_BUSY; 1920 1921 /* 1922 * Send diag action request 1923 */ 1924 if (data->Action == MPS_FW_DIAG_TYPE_REGISTER || 1925 data->Action == MPS_FW_DIAG_TYPE_UNREGISTER || 1926 data->Action == MPS_FW_DIAG_TYPE_QUERY || 1927 data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER || 1928 data->Action == MPS_FW_DIAG_TYPE_RELEASE) { 1929 status = mps_do_diag_action(sc, data->Action, 1930 PTRIN(data->PtrDiagAction), data->Length, 1931 &data->ReturnCode); 1932 } else 1933 status = EINVAL; 1934 1935 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1936 return (status); 1937 } 1938 1939 /* 1940 * Copy the event recording mask and the event queue size out. For 1941 * clarification, the event recording mask (events_to_record) is not the same 1942 * thing as the event mask (event_mask). events_to_record has a bit set for 1943 * every event type that is to be recorded by the driver, and event_mask has a 1944 * bit cleared for every event that is allowed into the driver from the IOC. 1945 * They really have nothing to do with each other. 1946 */ 1947 static void 1948 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data) 1949 { 1950 uint8_t i; 1951 1952 mps_lock(sc); 1953 data->Entries = MPS_EVENT_QUEUE_SIZE; 1954 1955 for (i = 0; i < 4; i++) { 1956 data->Types[i] = sc->events_to_record[i]; 1957 } 1958 mps_unlock(sc); 1959 } 1960 1961 /* 1962 * Set the driver's event mask according to what's been given. See 1963 * mps_user_event_query for explanation of the event recording mask and the IOC 1964 * event mask. It's the app's responsibility to enable event logging by setting 1965 * the bits in events_to_record. Initially, no events will be logged. 1966 */ 1967 static void 1968 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data) 1969 { 1970 uint8_t i; 1971 1972 mps_lock(sc); 1973 for (i = 0; i < 4; i++) { 1974 sc->events_to_record[i] = data->Types[i]; 1975 } 1976 mps_unlock(sc); 1977 } 1978 1979 /* 1980 * Copy out the events that have been recorded, up to the max events allowed. 1981 */ 1982 static int 1983 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data) 1984 { 1985 int status = 0; 1986 uint32_t size; 1987 1988 mps_lock(sc); 1989 size = data->Size; 1990 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1991 mps_unlock(sc); 1992 if (copyout((void *)sc->recorded_events, 1993 PTRIN(data->PtrEvents), size) != 0) 1994 status = EFAULT; 1995 mps_lock(sc); 1996 } else { 1997 /* 1998 * data->Size value is not large enough to copy event data. 1999 */ 2000 status = EFAULT; 2001 } 2002 2003 /* 2004 * Change size value to match the number of bytes that were copied. 2005 */ 2006 if (status == 0) 2007 data->Size = sizeof(sc->recorded_events); 2008 mps_unlock(sc); 2009 2010 return (status); 2011 } 2012 2013 /* 2014 * Record events into the driver from the IOC if they are not masked. 2015 */ 2016 void 2017 mpssas_record_event(struct mps_softc *sc, 2018 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 2019 { 2020 uint32_t event; 2021 int i, j; 2022 uint16_t event_data_len; 2023 boolean_t sendAEN = FALSE; 2024 2025 event = event_reply->Event; 2026 2027 /* 2028 * Generate a system event to let anyone who cares know that a 2029 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2030 * event mask is set to. 2031 */ 2032 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2033 sendAEN = TRUE; 2034 } 2035 2036 /* 2037 * Record the event only if its corresponding bit is set in 2038 * events_to_record. event_index is the index into recorded_events and 2039 * event_number is the overall number of an event being recorded since 2040 * start-of-day. event_index will roll over; event_number will never 2041 * roll over. 2042 */ 2043 i = (uint8_t)(event / 32); 2044 j = (uint8_t)(event % 32); 2045 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2046 i = sc->event_index; 2047 sc->recorded_events[i].Type = event; 2048 sc->recorded_events[i].Number = ++sc->event_number; 2049 bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH * 2050 4); 2051 event_data_len = event_reply->EventDataLength; 2052 2053 if (event_data_len > 0) { 2054 /* 2055 * Limit data to size in m_event entry 2056 */ 2057 if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) { 2058 event_data_len = MPS_MAX_EVENT_DATA_LENGTH; 2059 } 2060 for (j = 0; j < event_data_len; j++) { 2061 sc->recorded_events[i].Data[j] = 2062 event_reply->EventData[j]; 2063 } 2064 2065 /* 2066 * check for index wrap-around 2067 */ 2068 if (++i == MPS_EVENT_QUEUE_SIZE) { 2069 i = 0; 2070 } 2071 sc->event_index = (uint8_t)i; 2072 2073 /* 2074 * Set flag to send the event. 2075 */ 2076 sendAEN = TRUE; 2077 } 2078 } 2079 2080 /* 2081 * Generate a system event if flag is set to let anyone who cares know 2082 * that an event has occurred. 2083 */ 2084 if (sendAEN) { 2085 //SLM-how to send a system event (see kqueue, kevent) 2086 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2087 // "SAS", NULL, NULL, DDI_NOSLEEP); 2088 } 2089 } 2090 2091 static int 2092 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data) 2093 { 2094 int status = 0; 2095 2096 switch (data->Command) { 2097 /* 2098 * IO access is not supported. 2099 */ 2100 case REG_IO_READ: 2101 case REG_IO_WRITE: 2102 mps_dprint(sc, MPS_USER, "IO access is not supported. " 2103 "Use memory access."); 2104 status = EINVAL; 2105 break; 2106 2107 case REG_MEM_READ: 2108 data->RegData = mps_regread(sc, data->RegOffset); 2109 break; 2110 2111 case REG_MEM_WRITE: 2112 mps_regwrite(sc, data->RegOffset, data->RegData); 2113 break; 2114 2115 default: 2116 status = EINVAL; 2117 break; 2118 } 2119 2120 return (status); 2121 } 2122 2123 static int 2124 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data) 2125 { 2126 uint8_t bt2dh = FALSE; 2127 uint8_t dh2bt = FALSE; 2128 uint16_t dev_handle, bus, target; 2129 2130 bus = data->Bus; 2131 target = data->TargetID; 2132 dev_handle = data->DevHandle; 2133 2134 /* 2135 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2136 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2137 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2138 * invalid. 2139 */ 2140 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2141 dh2bt = TRUE; 2142 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2143 bt2dh = TRUE; 2144 if (!dh2bt && !bt2dh) 2145 return (EINVAL); 2146 2147 /* 2148 * Only handle bus of 0. Make sure target is within range. 2149 */ 2150 if (bt2dh) { 2151 if (bus != 0) 2152 return (EINVAL); 2153 2154 if (target > sc->max_devices) { 2155 mps_dprint(sc, MPS_FAULT, "Target ID is out of range " 2156 "for Bus/Target to DevHandle mapping."); 2157 return (EINVAL); 2158 } 2159 dev_handle = sc->mapping_table[target].dev_handle; 2160 if (dev_handle) 2161 data->DevHandle = dev_handle; 2162 } else { 2163 bus = 0; 2164 target = mps_mapping_get_tid_from_handle(sc, dev_handle); 2165 data->Bus = bus; 2166 data->TargetID = target; 2167 } 2168 2169 return (0); 2170 } 2171 2172 static int 2173 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2174 struct thread *td) 2175 { 2176 struct mps_softc *sc; 2177 struct mps_cfg_page_req *page_req; 2178 struct mps_ext_cfg_page_req *ext_page_req; 2179 void *mps_page; 2180 int error, msleep_ret; 2181 2182 mps_page = NULL; 2183 sc = dev->si_drv1; 2184 page_req = (void *)arg; 2185 ext_page_req = (void *)arg; 2186 2187 switch (cmd) { 2188 case MPSIO_READ_CFG_HEADER: 2189 mps_lock(sc); 2190 error = mps_user_read_cfg_header(sc, page_req); 2191 mps_unlock(sc); 2192 break; 2193 case MPSIO_READ_CFG_PAGE: 2194 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO); 2195 error = copyin(page_req->buf, mps_page, 2196 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2197 if (error) 2198 break; 2199 mps_lock(sc); 2200 error = mps_user_read_cfg_page(sc, page_req, mps_page); 2201 mps_unlock(sc); 2202 if (error) 2203 break; 2204 error = copyout(mps_page, page_req->buf, page_req->len); 2205 break; 2206 case MPSIO_READ_EXT_CFG_HEADER: 2207 mps_lock(sc); 2208 error = mps_user_read_extcfg_header(sc, ext_page_req); 2209 mps_unlock(sc); 2210 break; 2211 case MPSIO_READ_EXT_CFG_PAGE: 2212 mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2213 error = copyin(ext_page_req->buf, mps_page, 2214 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2215 if (error) 2216 break; 2217 mps_lock(sc); 2218 error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page); 2219 mps_unlock(sc); 2220 if (error) 2221 break; 2222 error = copyout(mps_page, ext_page_req->buf, ext_page_req->len); 2223 break; 2224 case MPSIO_WRITE_CFG_PAGE: 2225 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2226 error = copyin(page_req->buf, mps_page, page_req->len); 2227 if (error) 2228 break; 2229 mps_lock(sc); 2230 error = mps_user_write_cfg_page(sc, page_req, mps_page); 2231 mps_unlock(sc); 2232 break; 2233 case MPSIO_MPS_COMMAND: 2234 error = mps_user_command(sc, (struct mps_usr_command *)arg); 2235 break; 2236 case MPTIOCTL_PASS_THRU: 2237 /* 2238 * The user has requested to pass through a command to be 2239 * executed by the MPT firmware. Call our routine which does 2240 * this. Only allow one passthru IOCTL at one time. 2241 */ 2242 error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg); 2243 break; 2244 case MPTIOCTL_GET_ADAPTER_DATA: 2245 /* 2246 * The user has requested to read adapter data. Call our 2247 * routine which does this. 2248 */ 2249 error = 0; 2250 mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg); 2251 break; 2252 case MPTIOCTL_GET_PCI_INFO: 2253 /* 2254 * The user has requested to read pci info. Call 2255 * our routine which does this. 2256 */ 2257 mps_lock(sc); 2258 error = 0; 2259 mps_user_read_pci_info(sc, (mps_pci_info_t *)arg); 2260 mps_unlock(sc); 2261 break; 2262 case MPTIOCTL_RESET_ADAPTER: 2263 mps_lock(sc); 2264 sc->port_enable_complete = 0; 2265 uint32_t reinit_start = time_uptime; 2266 error = mps_reinit(sc); 2267 /* Sleep for 300 second. */ 2268 msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO, 2269 "mps_porten", 300 * hz); 2270 mps_unlock(sc); 2271 if (msleep_ret) 2272 printf("Port Enable did not complete after Diag " 2273 "Reset msleep error %d.\n", msleep_ret); 2274 else 2275 mps_dprint(sc, MPS_USER, 2276 "Hard Reset with Port Enable completed in %d seconds.\n", 2277 (uint32_t) (time_uptime - reinit_start)); 2278 break; 2279 case MPTIOCTL_DIAG_ACTION: 2280 /* 2281 * The user has done a diag buffer action. Call our routine 2282 * which does this. Only allow one diag action at one time. 2283 */ 2284 mps_lock(sc); 2285 error = mps_user_diag_action(sc, (mps_diag_action_t *)arg); 2286 mps_unlock(sc); 2287 break; 2288 case MPTIOCTL_EVENT_QUERY: 2289 /* 2290 * The user has done an event query. Call our routine which does 2291 * this. 2292 */ 2293 error = 0; 2294 mps_user_event_query(sc, (mps_event_query_t *)arg); 2295 break; 2296 case MPTIOCTL_EVENT_ENABLE: 2297 /* 2298 * The user has done an event enable. Call our routine which 2299 * does this. 2300 */ 2301 error = 0; 2302 mps_user_event_enable(sc, (mps_event_enable_t *)arg); 2303 break; 2304 case MPTIOCTL_EVENT_REPORT: 2305 /* 2306 * The user has done an event report. Call our routine which 2307 * does this. 2308 */ 2309 error = mps_user_event_report(sc, (mps_event_report_t *)arg); 2310 break; 2311 case MPTIOCTL_REG_ACCESS: 2312 /* 2313 * The user has requested register access. Call our routine 2314 * which does this. 2315 */ 2316 mps_lock(sc); 2317 error = mps_user_reg_access(sc, (mps_reg_access_t *)arg); 2318 mps_unlock(sc); 2319 break; 2320 case MPTIOCTL_BTDH_MAPPING: 2321 /* 2322 * The user has requested to translate a bus/target to a 2323 * DevHandle or a DevHandle to a bus/target. Call our routine 2324 * which does this. 2325 */ 2326 error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg); 2327 break; 2328 default: 2329 error = ENOIOCTL; 2330 break; 2331 } 2332 2333 if (mps_page != NULL) 2334 free(mps_page, M_MPSUSER); 2335 2336 return (error); 2337 } 2338 2339 #ifdef COMPAT_FREEBSD32 2340 2341 struct mps_cfg_page_req32 { 2342 MPI2_CONFIG_PAGE_HEADER header; 2343 uint32_t page_address; 2344 uint32_t buf; 2345 int len; 2346 uint16_t ioc_status; 2347 }; 2348 2349 struct mps_ext_cfg_page_req32 { 2350 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2351 uint32_t page_address; 2352 uint32_t buf; 2353 int len; 2354 uint16_t ioc_status; 2355 }; 2356 2357 struct mps_raid_action32 { 2358 uint8_t action; 2359 uint8_t volume_bus; 2360 uint8_t volume_id; 2361 uint8_t phys_disk_num; 2362 uint32_t action_data_word; 2363 uint32_t buf; 2364 int len; 2365 uint32_t volume_status; 2366 uint32_t action_data[4]; 2367 uint16_t action_status; 2368 uint16_t ioc_status; 2369 uint8_t write; 2370 }; 2371 2372 struct mps_usr_command32 { 2373 uint32_t req; 2374 uint32_t req_len; 2375 uint32_t rpl; 2376 uint32_t rpl_len; 2377 uint32_t buf; 2378 int len; 2379 uint32_t flags; 2380 }; 2381 2382 #define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32) 2383 #define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32) 2384 #define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32) 2385 #define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32) 2386 #define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32) 2387 #define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32) 2388 #define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32) 2389 2390 static int 2391 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2392 struct thread *td) 2393 { 2394 struct mps_cfg_page_req32 *page32 = _arg; 2395 struct mps_ext_cfg_page_req32 *ext32 = _arg; 2396 struct mps_raid_action32 *raid32 = _arg; 2397 struct mps_usr_command32 *user32 = _arg; 2398 union { 2399 struct mps_cfg_page_req page; 2400 struct mps_ext_cfg_page_req ext; 2401 struct mps_raid_action raid; 2402 struct mps_usr_command user; 2403 } arg; 2404 u_long cmd; 2405 int error; 2406 2407 switch (cmd32) { 2408 case MPSIO_READ_CFG_HEADER32: 2409 case MPSIO_READ_CFG_PAGE32: 2410 case MPSIO_WRITE_CFG_PAGE32: 2411 if (cmd32 == MPSIO_READ_CFG_HEADER32) 2412 cmd = MPSIO_READ_CFG_HEADER; 2413 else if (cmd32 == MPSIO_READ_CFG_PAGE32) 2414 cmd = MPSIO_READ_CFG_PAGE; 2415 else 2416 cmd = MPSIO_WRITE_CFG_PAGE; 2417 CP(*page32, arg.page, header); 2418 CP(*page32, arg.page, page_address); 2419 PTRIN_CP(*page32, arg.page, buf); 2420 CP(*page32, arg.page, len); 2421 CP(*page32, arg.page, ioc_status); 2422 break; 2423 2424 case MPSIO_READ_EXT_CFG_HEADER32: 2425 case MPSIO_READ_EXT_CFG_PAGE32: 2426 if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32) 2427 cmd = MPSIO_READ_EXT_CFG_HEADER; 2428 else 2429 cmd = MPSIO_READ_EXT_CFG_PAGE; 2430 CP(*ext32, arg.ext, header); 2431 CP(*ext32, arg.ext, page_address); 2432 PTRIN_CP(*ext32, arg.ext, buf); 2433 CP(*ext32, arg.ext, len); 2434 CP(*ext32, arg.ext, ioc_status); 2435 break; 2436 2437 case MPSIO_RAID_ACTION32: 2438 cmd = MPSIO_RAID_ACTION; 2439 CP(*raid32, arg.raid, action); 2440 CP(*raid32, arg.raid, volume_bus); 2441 CP(*raid32, arg.raid, volume_id); 2442 CP(*raid32, arg.raid, phys_disk_num); 2443 CP(*raid32, arg.raid, action_data_word); 2444 PTRIN_CP(*raid32, arg.raid, buf); 2445 CP(*raid32, arg.raid, len); 2446 CP(*raid32, arg.raid, volume_status); 2447 bcopy(raid32->action_data, arg.raid.action_data, 2448 sizeof arg.raid.action_data); 2449 CP(*raid32, arg.raid, ioc_status); 2450 CP(*raid32, arg.raid, write); 2451 break; 2452 2453 case MPSIO_MPS_COMMAND32: 2454 cmd = MPSIO_MPS_COMMAND; 2455 PTRIN_CP(*user32, arg.user, req); 2456 CP(*user32, arg.user, req_len); 2457 PTRIN_CP(*user32, arg.user, rpl); 2458 CP(*user32, arg.user, rpl_len); 2459 PTRIN_CP(*user32, arg.user, buf); 2460 CP(*user32, arg.user, len); 2461 CP(*user32, arg.user, flags); 2462 break; 2463 default: 2464 return (ENOIOCTL); 2465 } 2466 2467 error = mps_ioctl(dev, cmd, &arg, flag, td); 2468 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2469 switch (cmd32) { 2470 case MPSIO_READ_CFG_HEADER32: 2471 case MPSIO_READ_CFG_PAGE32: 2472 case MPSIO_WRITE_CFG_PAGE32: 2473 CP(arg.page, *page32, header); 2474 CP(arg.page, *page32, page_address); 2475 PTROUT_CP(arg.page, *page32, buf); 2476 CP(arg.page, *page32, len); 2477 CP(arg.page, *page32, ioc_status); 2478 break; 2479 2480 case MPSIO_READ_EXT_CFG_HEADER32: 2481 case MPSIO_READ_EXT_CFG_PAGE32: 2482 CP(arg.ext, *ext32, header); 2483 CP(arg.ext, *ext32, page_address); 2484 PTROUT_CP(arg.ext, *ext32, buf); 2485 CP(arg.ext, *ext32, len); 2486 CP(arg.ext, *ext32, ioc_status); 2487 break; 2488 2489 case MPSIO_RAID_ACTION32: 2490 CP(arg.raid, *raid32, action); 2491 CP(arg.raid, *raid32, volume_bus); 2492 CP(arg.raid, *raid32, volume_id); 2493 CP(arg.raid, *raid32, phys_disk_num); 2494 CP(arg.raid, *raid32, action_data_word); 2495 PTROUT_CP(arg.raid, *raid32, buf); 2496 CP(arg.raid, *raid32, len); 2497 CP(arg.raid, *raid32, volume_status); 2498 bcopy(arg.raid.action_data, raid32->action_data, 2499 sizeof arg.raid.action_data); 2500 CP(arg.raid, *raid32, ioc_status); 2501 CP(arg.raid, *raid32, write); 2502 break; 2503 2504 case MPSIO_MPS_COMMAND32: 2505 PTROUT_CP(arg.user, *user32, req); 2506 CP(arg.user, *user32, req_len); 2507 PTROUT_CP(arg.user, *user32, rpl); 2508 CP(arg.user, *user32, rpl_len); 2509 PTROUT_CP(arg.user, *user32, buf); 2510 CP(arg.user, *user32, len); 2511 CP(arg.user, *user32, flags); 2512 break; 2513 } 2514 } 2515 2516 return (error); 2517 } 2518 #endif /* COMPAT_FREEBSD32 */ 2519 2520 static int 2521 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2522 struct thread *td) 2523 { 2524 #ifdef COMPAT_FREEBSD32 2525 if (SV_CURPROC_FLAG(SV_ILP32)) 2526 return (mps_ioctl32(dev, com, arg, flag, td)); 2527 #endif 2528 return (mps_ioctl(dev, com, arg, flag, td)); 2529 } 2530