1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Yahoo!, Inc. 5 * All rights reserved. 6 * Written by: John Baldwin <jhb@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 33 */ 34 /*- 35 * Copyright (c) 2011-2015 LSI Corp. 36 * Copyright (c) 2013-2015 Avago Technologies 37 * All rights reserved. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 61 */ 62 63 /* TODO Move headers to mpsvar */ 64 #include <sys/types.h> 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/kernel.h> 68 #include <sys/selinfo.h> 69 #include <sys/module.h> 70 #include <sys/bus.h> 71 #include <sys/conf.h> 72 #include <sys/bio.h> 73 #include <sys/abi_compat.h> 74 #include <sys/malloc.h> 75 #include <sys/uio.h> 76 #include <sys/sysctl.h> 77 #include <sys/ioccom.h> 78 #include <sys/endian.h> 79 #include <sys/queue.h> 80 #include <sys/kthread.h> 81 #include <sys/taskqueue.h> 82 #include <sys/proc.h> 83 #include <sys/sysent.h> 84 85 #include <machine/bus.h> 86 #include <machine/resource.h> 87 #include <sys/rman.h> 88 89 #include <cam/cam.h> 90 #include <cam/cam_ccb.h> 91 #include <cam/scsi/scsi_all.h> 92 93 #include <dev/mps/mpi/mpi2_type.h> 94 #include <dev/mps/mpi/mpi2.h> 95 #include <dev/mps/mpi/mpi2_ioc.h> 96 #include <dev/mps/mpi/mpi2_cnfg.h> 97 #include <dev/mps/mpi/mpi2_init.h> 98 #include <dev/mps/mpi/mpi2_tool.h> 99 #include <dev/mps/mps_ioctl.h> 100 #include <dev/mps/mpsvar.h> 101 #include <dev/mps/mps_table.h> 102 #include <dev/mps/mps_sas.h> 103 #include <dev/pci/pcivar.h> 104 #include <dev/pci/pcireg.h> 105 106 static d_open_t mps_open; 107 static d_close_t mps_close; 108 static d_ioctl_t mps_ioctl_devsw; 109 110 static struct cdevsw mps_cdevsw = { 111 .d_version = D_VERSION, 112 .d_flags = 0, 113 .d_open = mps_open, 114 .d_close = mps_close, 115 .d_ioctl = mps_ioctl_devsw, 116 .d_name = "mps", 117 }; 118 119 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *); 120 static mps_user_f mpi_pre_ioc_facts; 121 static mps_user_f mpi_pre_port_facts; 122 static mps_user_f mpi_pre_fw_download; 123 static mps_user_f mpi_pre_fw_upload; 124 static mps_user_f mpi_pre_sata_passthrough; 125 static mps_user_f mpi_pre_smp_passthrough; 126 static mps_user_f mpi_pre_config; 127 static mps_user_f mpi_pre_sas_io_unit_control; 128 129 static int mps_user_read_cfg_header(struct mps_softc *, 130 struct mps_cfg_page_req *); 131 static int mps_user_read_cfg_page(struct mps_softc *, 132 struct mps_cfg_page_req *, void *); 133 static int mps_user_read_extcfg_header(struct mps_softc *, 134 struct mps_ext_cfg_page_req *); 135 static int mps_user_read_extcfg_page(struct mps_softc *, 136 struct mps_ext_cfg_page_req *, void *); 137 static int mps_user_write_cfg_page(struct mps_softc *, 138 struct mps_cfg_page_req *, void *); 139 static int mps_user_setup_request(struct mps_command *, 140 struct mps_usr_command *); 141 static int mps_user_command(struct mps_softc *, struct mps_usr_command *); 142 143 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data); 144 static void mps_user_get_adapter_data(struct mps_softc *sc, 145 mps_adapter_data_t *data); 146 static void mps_user_read_pci_info(struct mps_softc *sc, 147 mps_pci_info_t *data); 148 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc, 149 uint32_t unique_id); 150 static int mps_post_fw_diag_buffer(struct mps_softc *sc, 151 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 152 static int mps_release_fw_diag_buffer(struct mps_softc *sc, 153 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 154 uint32_t diag_type); 155 static int mps_diag_register(struct mps_softc *sc, 156 mps_fw_diag_register_t *diag_register, uint32_t *return_code); 157 static int mps_diag_unregister(struct mps_softc *sc, 158 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 159 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 160 uint32_t *return_code); 161 static int mps_diag_read_buffer(struct mps_softc *sc, 162 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 163 uint32_t *return_code); 164 static int mps_diag_release(struct mps_softc *sc, 165 mps_fw_diag_release_t *diag_release, uint32_t *return_code); 166 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action, 167 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 168 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data); 169 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data); 170 static void mps_user_event_enable(struct mps_softc *sc, 171 mps_event_enable_t *data); 172 static int mps_user_event_report(struct mps_softc *sc, 173 mps_event_report_t *data); 174 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data); 175 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data); 176 177 MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls"); 178 179 int 180 mps_attach_user(struct mps_softc *sc) 181 { 182 int unit; 183 184 unit = device_get_unit(sc->mps_dev); 185 sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 186 "mps%d", unit); 187 if (sc->mps_cdev == NULL) { 188 return (ENOMEM); 189 } 190 sc->mps_cdev->si_drv1 = sc; 191 return (0); 192 } 193 194 void 195 mps_detach_user(struct mps_softc *sc) 196 { 197 198 /* XXX: do a purge of pending requests? */ 199 if (sc->mps_cdev != NULL) 200 destroy_dev(sc->mps_cdev); 201 } 202 203 static int 204 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td) 205 { 206 207 return (0); 208 } 209 210 static int 211 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td) 212 { 213 214 return (0); 215 } 216 217 static int 218 mps_user_read_cfg_header(struct mps_softc *sc, 219 struct mps_cfg_page_req *page_req) 220 { 221 MPI2_CONFIG_PAGE_HEADER *hdr; 222 struct mps_config_params params; 223 int error; 224 225 hdr = ¶ms.hdr.Struct; 226 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 227 params.page_address = le32toh(page_req->page_address); 228 hdr->PageVersion = 0; 229 hdr->PageLength = 0; 230 hdr->PageNumber = page_req->header.PageNumber; 231 hdr->PageType = page_req->header.PageType; 232 params.buffer = NULL; 233 params.length = 0; 234 params.callback = NULL; 235 236 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 237 /* 238 * Leave the request. Without resetting the chip, it's 239 * still owned by it and we'll just get into trouble 240 * freeing it now. Mark it as abandoned so that if it 241 * shows up later it can be freed. 242 */ 243 mps_printf(sc, "read_cfg_header timed out\n"); 244 return (ETIMEDOUT); 245 } 246 247 page_req->ioc_status = htole16(params.status); 248 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 249 MPI2_IOCSTATUS_SUCCESS) { 250 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 251 } 252 253 return (0); 254 } 255 256 static int 257 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req, 258 void *buf) 259 { 260 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 261 struct mps_config_params params; 262 int error; 263 264 reqhdr = buf; 265 hdr = ¶ms.hdr.Struct; 266 hdr->PageVersion = reqhdr->PageVersion; 267 hdr->PageLength = reqhdr->PageLength; 268 hdr->PageNumber = reqhdr->PageNumber; 269 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 270 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 271 params.page_address = le32toh(page_req->page_address); 272 params.buffer = buf; 273 params.length = le32toh(page_req->len); 274 params.callback = NULL; 275 276 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 277 mps_printf(sc, "mps_user_read_cfg_page timed out\n"); 278 return (ETIMEDOUT); 279 } 280 281 page_req->ioc_status = htole16(params.status); 282 return (0); 283 } 284 285 static int 286 mps_user_read_extcfg_header(struct mps_softc *sc, 287 struct mps_ext_cfg_page_req *ext_page_req) 288 { 289 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 290 struct mps_config_params params; 291 int error; 292 293 hdr = ¶ms.hdr.Ext; 294 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 295 hdr->PageVersion = ext_page_req->header.PageVersion; 296 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 297 hdr->ExtPageLength = 0; 298 hdr->PageNumber = ext_page_req->header.PageNumber; 299 hdr->ExtPageType = ext_page_req->header.ExtPageType; 300 params.page_address = le32toh(ext_page_req->page_address); 301 params.buffer = NULL; 302 params.length = 0; 303 params.callback = NULL; 304 305 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 306 /* 307 * Leave the request. Without resetting the chip, it's 308 * still owned by it and we'll just get into trouble 309 * freeing it now. Mark it as abandoned so that if it 310 * shows up later it can be freed. 311 */ 312 mps_printf(sc, "mps_user_read_extcfg_header timed out\n"); 313 return (ETIMEDOUT); 314 } 315 316 ext_page_req->ioc_status = htole16(params.status); 317 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 318 MPI2_IOCSTATUS_SUCCESS) { 319 ext_page_req->header.PageVersion = hdr->PageVersion; 320 ext_page_req->header.PageNumber = hdr->PageNumber; 321 ext_page_req->header.PageType = hdr->PageType; 322 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 323 ext_page_req->header.ExtPageType = hdr->ExtPageType; 324 } 325 326 return (0); 327 } 328 329 static int 330 mps_user_read_extcfg_page(struct mps_softc *sc, 331 struct mps_ext_cfg_page_req *ext_page_req, void *buf) 332 { 333 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 334 struct mps_config_params params; 335 int error; 336 337 reqhdr = buf; 338 hdr = ¶ms.hdr.Ext; 339 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 340 params.page_address = le32toh(ext_page_req->page_address); 341 hdr->PageVersion = reqhdr->PageVersion; 342 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 343 hdr->PageNumber = reqhdr->PageNumber; 344 hdr->ExtPageType = reqhdr->ExtPageType; 345 hdr->ExtPageLength = reqhdr->ExtPageLength; 346 params.buffer = buf; 347 params.length = le32toh(ext_page_req->len); 348 params.callback = NULL; 349 350 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 351 mps_printf(sc, "mps_user_read_extcfg_page timed out\n"); 352 return (ETIMEDOUT); 353 } 354 355 ext_page_req->ioc_status = htole16(params.status); 356 return (0); 357 } 358 359 static int 360 mps_user_write_cfg_page(struct mps_softc *sc, 361 struct mps_cfg_page_req *page_req, void *buf) 362 { 363 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 364 struct mps_config_params params; 365 u_int hdr_attr; 366 int error; 367 368 reqhdr = buf; 369 hdr = ¶ms.hdr.Struct; 370 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 371 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 372 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 373 mps_printf(sc, "page type 0x%x not changeable\n", 374 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 375 return (EINVAL); 376 } 377 378 /* 379 * There isn't any point in restoring stripped out attributes 380 * if you then mask them going down to issue the request. 381 */ 382 383 hdr->PageVersion = reqhdr->PageVersion; 384 hdr->PageLength = reqhdr->PageLength; 385 hdr->PageNumber = reqhdr->PageNumber; 386 hdr->PageType = reqhdr->PageType; 387 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 388 params.page_address = le32toh(page_req->page_address); 389 params.buffer = buf; 390 params.length = le32toh(page_req->len); 391 params.callback = NULL; 392 393 if ((error = mps_write_config_page(sc, ¶ms)) != 0) { 394 mps_printf(sc, "mps_write_cfg_page timed out\n"); 395 return (ETIMEDOUT); 396 } 397 398 page_req->ioc_status = htole16(params.status); 399 return (0); 400 } 401 402 void 403 mpi_init_sge(struct mps_command *cm, void *req, void *sge) 404 { 405 int off, space; 406 407 space = (int)cm->cm_sc->reqframesz; 408 off = (uintptr_t)sge - (uintptr_t)req; 409 410 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 411 req, sge, off, space)); 412 413 cm->cm_sge = sge; 414 cm->cm_sglsize = space - off; 415 } 416 417 /* 418 * Prepare the mps_command for an IOC_FACTS request. 419 */ 420 static int 421 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd) 422 { 423 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 424 MPI2_IOC_FACTS_REPLY *rpl; 425 426 if (cmd->req_len != sizeof *req) 427 return (EINVAL); 428 if (cmd->rpl_len != sizeof *rpl) 429 return (EINVAL); 430 431 cm->cm_sge = NULL; 432 cm->cm_sglsize = 0; 433 return (0); 434 } 435 436 /* 437 * Prepare the mps_command for a PORT_FACTS request. 438 */ 439 static int 440 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd) 441 { 442 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 443 MPI2_PORT_FACTS_REPLY *rpl; 444 445 if (cmd->req_len != sizeof *req) 446 return (EINVAL); 447 if (cmd->rpl_len != sizeof *rpl) 448 return (EINVAL); 449 450 cm->cm_sge = NULL; 451 cm->cm_sglsize = 0; 452 return (0); 453 } 454 455 /* 456 * Prepare the mps_command for a FW_DOWNLOAD request. 457 */ 458 static int 459 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd) 460 { 461 MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 462 MPI2_FW_DOWNLOAD_REPLY *rpl; 463 MPI2_FW_DOWNLOAD_TCSGE tc; 464 int error; 465 466 if (cmd->req_len != sizeof *req) 467 return (EINVAL); 468 if (cmd->rpl_len != sizeof *rpl) 469 return (EINVAL); 470 471 if (cmd->len == 0) 472 return (EINVAL); 473 474 error = copyin(cmd->buf, cm->cm_data, cmd->len); 475 if (error != 0) 476 return (error); 477 478 mpi_init_sge(cm, req, &req->SGL); 479 bzero(&tc, sizeof tc); 480 481 /* 482 * For now, the F/W image must be provided in a single request. 483 */ 484 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 485 return (EINVAL); 486 if (req->TotalImageSize != cmd->len) 487 return (EINVAL); 488 489 /* 490 * The value of the first two elements is specified in the 491 * Fusion-MPT Message Passing Interface document. 492 */ 493 tc.ContextSize = 0; 494 tc.DetailsLength = 12; 495 tc.ImageOffset = 0; 496 tc.ImageSize = cmd->len; 497 498 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 499 500 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 501 } 502 503 /* 504 * Prepare the mps_command for a FW_UPLOAD request. 505 */ 506 static int 507 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd) 508 { 509 MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 510 MPI2_FW_UPLOAD_REPLY *rpl; 511 MPI2_FW_UPLOAD_TCSGE tc; 512 513 if (cmd->req_len != sizeof *req) 514 return (EINVAL); 515 if (cmd->rpl_len != sizeof *rpl) 516 return (EINVAL); 517 518 mpi_init_sge(cm, req, &req->SGL); 519 bzero(&tc, sizeof tc); 520 521 /* 522 * The value of the first two elements is specified in the 523 * Fusion-MPT Message Passing Interface document. 524 */ 525 tc.ContextSize = 0; 526 tc.DetailsLength = 12; 527 /* 528 * XXX Is there any reason to fetch a partial image? I.e. to 529 * set ImageOffset to something other than 0? 530 */ 531 tc.ImageOffset = 0; 532 tc.ImageSize = cmd->len; 533 534 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 535 536 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 537 } 538 539 /* 540 * Prepare the mps_command for a SATA_PASSTHROUGH request. 541 */ 542 static int 543 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 544 { 545 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 546 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 547 548 if (cmd->req_len != sizeof *req) 549 return (EINVAL); 550 if (cmd->rpl_len != sizeof *rpl) 551 return (EINVAL); 552 553 mpi_init_sge(cm, req, &req->SGL); 554 return (0); 555 } 556 557 /* 558 * Prepare the mps_command for a SMP_PASSTHROUGH request. 559 */ 560 static int 561 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 562 { 563 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 564 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 565 566 if (cmd->req_len != sizeof *req) 567 return (EINVAL); 568 if (cmd->rpl_len != sizeof *rpl) 569 return (EINVAL); 570 571 mpi_init_sge(cm, req, &req->SGL); 572 return (0); 573 } 574 575 /* 576 * Prepare the mps_command for a CONFIG request. 577 */ 578 static int 579 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd) 580 { 581 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 582 MPI2_CONFIG_REPLY *rpl; 583 584 if (cmd->req_len != sizeof *req) 585 return (EINVAL); 586 if (cmd->rpl_len != sizeof *rpl) 587 return (EINVAL); 588 589 mpi_init_sge(cm, req, &req->PageBufferSGE); 590 return (0); 591 } 592 593 /* 594 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 595 */ 596 static int 597 mpi_pre_sas_io_unit_control(struct mps_command *cm, 598 struct mps_usr_command *cmd) 599 { 600 601 cm->cm_sge = NULL; 602 cm->cm_sglsize = 0; 603 return (0); 604 } 605 606 /* 607 * A set of functions to prepare an mps_command for the various 608 * supported requests. 609 */ 610 struct mps_user_func { 611 U8 Function; 612 mps_user_f *f_pre; 613 } mps_user_func_list[] = { 614 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 615 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 616 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 617 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 618 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 619 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 620 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 621 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 622 { 0xFF, NULL } /* list end */ 623 }; 624 625 static int 626 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd) 627 { 628 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 629 struct mps_user_func *f; 630 631 for (f = mps_user_func_list; f->f_pre != NULL; f++) { 632 if (hdr->Function == f->Function) 633 return (f->f_pre(cm, cmd)); 634 } 635 return (EINVAL); 636 } 637 638 static int 639 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd) 640 { 641 MPI2_REQUEST_HEADER *hdr; 642 MPI2_DEFAULT_REPLY *rpl; 643 void *buf = NULL; 644 struct mps_command *cm = NULL; 645 int err = 0; 646 int sz; 647 648 mps_lock(sc); 649 cm = mps_alloc_command(sc); 650 651 if (cm == NULL) { 652 mps_printf(sc, "%s: no mps requests\n", __func__); 653 err = ENOMEM; 654 goto RetFree; 655 } 656 mps_unlock(sc); 657 658 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 659 660 mps_dprint(sc, MPS_USER, "%s: req %p %d rpl %p %d\n", __func__, 661 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 662 663 if (cmd->req_len > sc->reqframesz) { 664 err = EINVAL; 665 goto RetFreeUnlocked; 666 } 667 err = copyin(cmd->req, hdr, cmd->req_len); 668 if (err != 0) 669 goto RetFreeUnlocked; 670 671 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 672 hdr->Function, hdr->MsgFlags); 673 674 if (cmd->len > 0) { 675 buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO); 676 cm->cm_data = buf; 677 cm->cm_length = cmd->len; 678 } else { 679 cm->cm_data = NULL; 680 cm->cm_length = 0; 681 } 682 683 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE; 684 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 685 686 err = mps_user_setup_request(cm, cmd); 687 if (err == EINVAL) { 688 mps_printf(sc, "%s: unsupported parameter or unsupported " 689 "function in request (function = 0x%X)\n", __func__, 690 hdr->Function); 691 } 692 if (err != 0) 693 goto RetFreeUnlocked; 694 695 mps_lock(sc); 696 err = mps_wait_command(sc, &cm, 60, CAN_SLEEP); 697 698 if (err || (cm == NULL)) { 699 mps_printf(sc, "%s: invalid request: error %d\n", 700 __func__, err); 701 goto RetFree; 702 } 703 704 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 705 if (rpl != NULL) 706 sz = rpl->MsgLength * 4; 707 else 708 sz = 0; 709 710 if (sz > cmd->rpl_len) { 711 mps_printf(sc, "%s: user reply buffer (%d) smaller than " 712 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 713 sz = cmd->rpl_len; 714 } 715 716 mps_unlock(sc); 717 err = copyout(rpl, cmd->rpl, sz); 718 if (buf != NULL && err == 0) 719 err = copyout(buf, cmd->buf, cmd->len); 720 mps_dprint(sc, MPS_USER, "%s: reply size %d\n", __func__, sz); 721 722 RetFreeUnlocked: 723 mps_lock(sc); 724 RetFree: 725 if (cm != NULL) 726 mps_free_command(sc, cm); 727 mps_unlock(sc); 728 if (buf != NULL) 729 free(buf, M_MPSUSER); 730 return (err); 731 } 732 733 static int 734 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data) 735 { 736 MPI2_REQUEST_HEADER *hdr, *tmphdr; 737 MPI2_DEFAULT_REPLY *rpl = NULL; 738 struct mps_command *cm = NULL; 739 void *req = NULL; 740 int err = 0, dir = 0, sz; 741 uint8_t function = 0; 742 u_int sense_len; 743 struct mpssas_target *targ = NULL; 744 745 /* 746 * Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY 747 * bit to denote that a passthru is being processed. 748 */ 749 mps_lock(sc); 750 if (sc->mps_flags & MPS_FLAGS_BUSY) { 751 mps_dprint(sc, MPS_USER, "%s: Only one passthru command " 752 "allowed at a single time.", __func__); 753 mps_unlock(sc); 754 return (EBUSY); 755 } 756 sc->mps_flags |= MPS_FLAGS_BUSY; 757 mps_unlock(sc); 758 759 /* 760 * Do some validation on data direction. Valid cases are: 761 * 1) DataSize is 0 and direction is NONE 762 * 2) DataSize is non-zero and one of: 763 * a) direction is READ or 764 * b) direction is WRITE or 765 * c) direction is BOTH and DataOutSize is non-zero 766 * If valid and the direction is BOTH, change the direction to READ. 767 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 768 */ 769 if (((data->DataSize == 0) && 770 (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) || 771 ((data->DataSize != 0) && 772 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) || 773 (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) || 774 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) && 775 (data->DataOutSize != 0))))) { 776 if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) 777 data->DataDirection = MPS_PASS_THRU_DIRECTION_READ; 778 else 779 data->DataOutSize = 0; 780 } else { 781 err = EINVAL; 782 goto RetFreeUnlocked; 783 } 784 785 mps_dprint(sc, MPS_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 786 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 787 data->PtrRequest, data->RequestSize, data->PtrReply, 788 data->ReplySize, data->PtrData, data->DataSize, 789 data->PtrDataOut, data->DataOutSize, data->DataDirection); 790 791 if (data->RequestSize > sc->reqframesz) { 792 err = EINVAL; 793 goto RetFreeUnlocked; 794 } 795 796 req = malloc(data->RequestSize, M_MPSUSER, M_WAITOK | M_ZERO); 797 tmphdr = (MPI2_REQUEST_HEADER *)req; 798 799 err = copyin(PTRIN(data->PtrRequest), req, data->RequestSize); 800 if (err != 0) 801 goto RetFreeUnlocked; 802 803 function = tmphdr->Function; 804 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 805 function, tmphdr->MsgFlags); 806 807 /* 808 * Handle a passthru TM request. 809 */ 810 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 811 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 812 813 mps_lock(sc); 814 cm = mpssas_alloc_tm(sc); 815 if (cm == NULL) { 816 err = EINVAL; 817 goto Ret; 818 } 819 820 /* Copy the header in. Only a small fixup is needed. */ 821 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 822 memcpy(task, req, data->RequestSize); 823 task->TaskMID = cm->cm_desc.Default.SMID; 824 825 cm->cm_data = NULL; 826 cm->cm_complete = NULL; 827 cm->cm_complete_data = NULL; 828 829 targ = mpssas_find_target_by_handle(sc->sassc, 0, 830 task->DevHandle); 831 if (targ == NULL) { 832 mps_dprint(sc, MPS_INFO, 833 "%s %d : invalid handle for requested TM 0x%x \n", 834 __func__, __LINE__, task->DevHandle); 835 err = 1; 836 } else { 837 mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 838 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 839 } 840 841 if (err != 0) { 842 err = EIO; 843 mps_dprint(sc, MPS_FAULT, "%s: task management failed", 844 __func__); 845 } 846 /* 847 * Copy the reply data and sense data to user space. 848 */ 849 if (err == 0 && cm != NULL && cm->cm_reply != NULL) { 850 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 851 sz = rpl->MsgLength * 4; 852 853 if (bootverbose && sz > data->ReplySize) { 854 mps_printf(sc, "%s: user reply buffer (%d) " 855 "smaller than returned buffer (%d)\n", 856 __func__, data->ReplySize, sz); 857 } 858 mps_unlock(sc); 859 err = copyout(cm->cm_reply, PTRIN(data->PtrReply), 860 MIN(sz, data->ReplySize)); 861 if (err != 0) 862 mps_dprint(sc, MPS_FAULT, 863 "%s: copyout failed\n", __func__); 864 mps_lock(sc); 865 } 866 mpssas_free_tm(sc, cm); 867 goto Ret; 868 } 869 870 mps_lock(sc); 871 cm = mps_alloc_command(sc); 872 if (cm == NULL) { 873 mps_printf(sc, "%s: no mps requests\n", __func__); 874 err = ENOMEM; 875 goto Ret; 876 } 877 mps_unlock(sc); 878 879 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 880 memcpy(hdr, req, data->RequestSize); 881 882 /* 883 * Do some checking to make sure the IOCTL request contains a valid 884 * request. Then set the SGL info. 885 */ 886 mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 887 888 /* 889 * Set up for read, write or both. From check above, DataOutSize will 890 * be 0 if direction is READ or WRITE, but it will have some non-zero 891 * value if the direction is BOTH. So, just use the biggest size to get 892 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 893 * up; the first is for the request and the second will contain the 894 * response data. cm_out_len needs to be set here and this will be used 895 * when the SGLs are set up. 896 */ 897 cm->cm_data = NULL; 898 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 899 cm->cm_out_len = data->DataOutSize; 900 cm->cm_flags = 0; 901 if (cm->cm_length != 0) { 902 cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK | 903 M_ZERO); 904 cm->cm_flags = MPS_CM_FLAGS_DATAIN; 905 if (data->DataOutSize) { 906 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 907 err = copyin(PTRIN(data->PtrDataOut), 908 cm->cm_data, data->DataOutSize); 909 } else if (data->DataDirection == 910 MPS_PASS_THRU_DIRECTION_WRITE) { 911 cm->cm_flags = MPS_CM_FLAGS_DATAOUT; 912 err = copyin(PTRIN(data->PtrData), 913 cm->cm_data, data->DataSize); 914 } 915 if (err != 0) 916 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 917 "IOCTL data from user space\n", __func__); 918 } 919 cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE; 920 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 921 922 /* 923 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 924 * uses SCSI IO descriptor. 925 */ 926 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 927 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 928 MPI2_SCSI_IO_REQUEST *scsi_io_req; 929 930 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 931 /* 932 * Put SGE for data and data_out buffer at the end of 933 * scsi_io_request message header (64 bytes in total). 934 * Following above SGEs, the residual space will be used by 935 * sense data. 936 */ 937 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 938 64); 939 scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 940 941 /* 942 * Set SGLOffset0 value. This is the number of dwords that SGL 943 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 944 */ 945 scsi_io_req->SGLOffset0 = 24; 946 947 /* 948 * Setup descriptor info. RAID passthrough must use the 949 * default request descriptor which is already set, so if this 950 * is a SCSI IO request, change the descriptor to SCSI IO. 951 * Also, if this is a SCSI IO request, handle the reply in the 952 * mpssas_scsio_complete function. 953 */ 954 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 955 cm->cm_desc.SCSIIO.RequestFlags = 956 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 957 cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle; 958 959 /* 960 * Make sure the DevHandle is not 0 because this is a 961 * likely error. 962 */ 963 if (scsi_io_req->DevHandle == 0) { 964 err = EINVAL; 965 goto RetFreeUnlocked; 966 } 967 } 968 } 969 970 mps_lock(sc); 971 972 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 973 974 if (err || (cm == NULL)) { 975 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 976 err); 977 mps_unlock(sc); 978 goto RetFreeUnlocked; 979 } 980 981 /* 982 * Sync the DMA data, if any. Then copy the data to user space. 983 */ 984 if (cm->cm_data != NULL) { 985 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 986 dir = BUS_DMASYNC_POSTREAD; 987 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 988 dir = BUS_DMASYNC_POSTWRITE; 989 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 990 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 991 992 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 993 mps_unlock(sc); 994 err = copyout(cm->cm_data, 995 PTRIN(data->PtrData), data->DataSize); 996 mps_lock(sc); 997 if (err != 0) 998 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 999 "IOCTL data to user space\n", __func__); 1000 } 1001 } 1002 1003 /* 1004 * Copy the reply data and sense data to user space. 1005 */ 1006 if (err == 0 && cm->cm_reply != NULL) { 1007 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1008 sz = rpl->MsgLength * 4; 1009 1010 if (bootverbose && sz > data->ReplySize) { 1011 mps_printf(sc, "%s: user reply buffer (%d) smaller " 1012 "than returned buffer (%d)\n", __func__, 1013 data->ReplySize, sz); 1014 } 1015 mps_unlock(sc); 1016 err = copyout(cm->cm_reply, PTRIN(data->PtrReply), 1017 MIN(sz, data->ReplySize)); 1018 mps_lock(sc); 1019 if (err != 0) 1020 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 1021 "IOCTL data to user space\n", __func__); 1022 1023 if (err == 0 && 1024 (function == MPI2_FUNCTION_SCSI_IO_REQUEST || 1025 function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1026 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1027 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1028 sense_len = 1029 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1030 SenseCount)), sizeof(struct 1031 scsi_sense_data)); 1032 mps_unlock(sc); 1033 err = copyout(cm->cm_sense, (PTRIN(data->PtrReply + 1034 sizeof(MPI2_SCSI_IO_REPLY))), sense_len); 1035 mps_lock(sc); 1036 if (err != 0) 1037 mps_dprint(sc, MPS_FAULT, 1038 "%s: failed to copy IOCTL data to " 1039 "user space\n", __func__); 1040 } 1041 } 1042 } 1043 mps_unlock(sc); 1044 1045 RetFreeUnlocked: 1046 mps_lock(sc); 1047 1048 if (cm != NULL) { 1049 if (cm->cm_data) 1050 free(cm->cm_data, M_MPSUSER); 1051 mps_free_command(sc, cm); 1052 } 1053 Ret: 1054 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1055 mps_unlock(sc); 1056 free(req, M_MPSUSER); 1057 1058 return (err); 1059 } 1060 1061 static void 1062 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data) 1063 { 1064 Mpi2ConfigReply_t mpi_reply; 1065 Mpi2BiosPage3_t config_page; 1066 1067 /* 1068 * Use the PCI interface functions to get the Bus, Device, and Function 1069 * information. 1070 */ 1071 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev); 1072 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev); 1073 data->PciInformation.u.bits.FunctionNumber = 1074 pci_get_function(sc->mps_dev); 1075 1076 /* 1077 * Get the FW version that should already be saved in IOC Facts. 1078 */ 1079 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1080 1081 /* 1082 * General device info. 1083 */ 1084 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2; 1085 if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE) 1086 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200; 1087 data->PCIDeviceHwId = pci_get_device(sc->mps_dev); 1088 data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1); 1089 data->SubSystemId = pci_get_subdevice(sc->mps_dev); 1090 data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev); 1091 1092 /* 1093 * Get the driver version. 1094 */ 1095 strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION); 1096 1097 /* 1098 * Need to get BIOS Config Page 3 for the BIOS Version. 1099 */ 1100 data->BiosVersion = 0; 1101 mps_lock(sc); 1102 if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1103 printf("%s: Error while retrieving BIOS Version\n", __func__); 1104 else 1105 data->BiosVersion = config_page.BiosVersion; 1106 mps_unlock(sc); 1107 } 1108 1109 static void 1110 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data) 1111 { 1112 int i; 1113 1114 /* 1115 * Use the PCI interface functions to get the Bus, Device, and Function 1116 * information. 1117 */ 1118 data->BusNumber = pci_get_bus(sc->mps_dev); 1119 data->DeviceNumber = pci_get_slot(sc->mps_dev); 1120 data->FunctionNumber = pci_get_function(sc->mps_dev); 1121 1122 /* 1123 * Now get the interrupt vector and the pci header. The vector can 1124 * only be 0 right now. The header is the first 256 bytes of config 1125 * space. 1126 */ 1127 data->InterruptVector = 0; 1128 for (i = 0; i < sizeof (data->PciHeader); i++) { 1129 data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1); 1130 } 1131 } 1132 1133 static uint8_t 1134 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id) 1135 { 1136 uint8_t index; 1137 1138 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1139 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1140 return (index); 1141 } 1142 } 1143 1144 return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND); 1145 } 1146 1147 static int 1148 mps_post_fw_diag_buffer(struct mps_softc *sc, 1149 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1150 { 1151 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1152 MPI2_DIAG_BUFFER_POST_REPLY *reply = NULL; 1153 struct mps_command *cm = NULL; 1154 int i, status; 1155 1156 /* 1157 * If buffer is not enabled, just leave. 1158 */ 1159 *return_code = MPS_FW_DIAG_ERROR_POST_FAILED; 1160 if (!pBuffer->enabled) { 1161 return (MPS_DIAG_FAILURE); 1162 } 1163 1164 /* 1165 * Clear some flags initially. 1166 */ 1167 pBuffer->force_release = FALSE; 1168 pBuffer->valid_data = FALSE; 1169 pBuffer->owned_by_firmware = FALSE; 1170 1171 /* 1172 * Get a command. 1173 */ 1174 cm = mps_alloc_command(sc); 1175 if (cm == NULL) { 1176 mps_printf(sc, "%s: no mps requests\n", __func__); 1177 return (MPS_DIAG_FAILURE); 1178 } 1179 1180 /* 1181 * Build the request for releasing the FW Diag Buffer and send it. 1182 */ 1183 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1184 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1185 req->BufferType = pBuffer->buffer_type; 1186 req->ExtendedType = pBuffer->extended_type; 1187 req->BufferLength = pBuffer->size; 1188 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1189 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1190 mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1191 cm->cm_data = NULL; 1192 cm->cm_length = 0; 1193 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1194 cm->cm_complete_data = NULL; 1195 1196 /* 1197 * Send command synchronously. 1198 */ 1199 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1200 if (status || (cm == NULL)) { 1201 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1202 status); 1203 status = MPS_DIAG_FAILURE; 1204 goto done; 1205 } 1206 1207 /* 1208 * Process POST reply. 1209 */ 1210 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1211 if (reply == NULL) { 1212 mps_printf(sc, "%s: reply is NULL, probably due to " 1213 "reinitialization\n", __func__); 1214 status = MPS_DIAG_FAILURE; 1215 goto done; 1216 } 1217 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1218 MPI2_IOCSTATUS_SUCCESS) { 1219 status = MPS_DIAG_FAILURE; 1220 mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed " 1221 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1222 "TransferLength = 0x%x\n", __func__, 1223 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1224 le32toh(reply->TransferLength)); 1225 goto done; 1226 } 1227 1228 /* 1229 * Post was successful. 1230 */ 1231 pBuffer->valid_data = TRUE; 1232 pBuffer->owned_by_firmware = TRUE; 1233 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1234 status = MPS_DIAG_SUCCESS; 1235 1236 done: 1237 if (cm != NULL) 1238 mps_free_command(sc, cm); 1239 return (status); 1240 } 1241 1242 static int 1243 mps_release_fw_diag_buffer(struct mps_softc *sc, 1244 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1245 uint32_t diag_type) 1246 { 1247 MPI2_DIAG_RELEASE_REQUEST *req; 1248 MPI2_DIAG_RELEASE_REPLY *reply = NULL; 1249 struct mps_command *cm = NULL; 1250 int status; 1251 1252 /* 1253 * If buffer is not enabled, just leave. 1254 */ 1255 *return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED; 1256 if (!pBuffer->enabled) { 1257 mps_dprint(sc, MPS_USER, "%s: This buffer type is not " 1258 "supported by the IOC", __func__); 1259 return (MPS_DIAG_FAILURE); 1260 } 1261 1262 /* 1263 * Clear some flags initially. 1264 */ 1265 pBuffer->force_release = FALSE; 1266 pBuffer->valid_data = FALSE; 1267 pBuffer->owned_by_firmware = FALSE; 1268 1269 /* 1270 * Get a command. 1271 */ 1272 cm = mps_alloc_command(sc); 1273 if (cm == NULL) { 1274 mps_printf(sc, "%s: no mps requests\n", __func__); 1275 return (MPS_DIAG_FAILURE); 1276 } 1277 1278 /* 1279 * Build the request for releasing the FW Diag Buffer and send it. 1280 */ 1281 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1282 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1283 req->BufferType = pBuffer->buffer_type; 1284 cm->cm_data = NULL; 1285 cm->cm_length = 0; 1286 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1287 cm->cm_complete_data = NULL; 1288 1289 /* 1290 * Send command synchronously. 1291 */ 1292 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1293 if (status || (cm == NULL)) { 1294 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1295 status); 1296 status = MPS_DIAG_FAILURE; 1297 goto done; 1298 } 1299 1300 /* 1301 * Process RELEASE reply. 1302 */ 1303 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1304 if (reply == NULL) { 1305 mps_printf(sc, "%s: reply is NULL, probably due to " 1306 "reinitialization\n", __func__); 1307 status = MPS_DIAG_FAILURE; 1308 goto done; 1309 } 1310 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1311 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1312 status = MPS_DIAG_FAILURE; 1313 mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer " 1314 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1315 __func__, le16toh(reply->IOCStatus), 1316 le32toh(reply->IOCLogInfo)); 1317 goto done; 1318 } 1319 1320 /* 1321 * Release was successful. 1322 */ 1323 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1324 status = MPS_DIAG_SUCCESS; 1325 1326 /* 1327 * If this was for an UNREGISTER diag type command, clear the unique ID. 1328 */ 1329 if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) { 1330 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1331 } 1332 1333 done: 1334 if (cm != NULL) 1335 mps_free_command(sc, cm); 1336 1337 return (status); 1338 } 1339 1340 static int 1341 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register, 1342 uint32_t *return_code) 1343 { 1344 bus_dma_template_t t; 1345 mps_fw_diagnostic_buffer_t *pBuffer; 1346 struct mps_busdma_context *ctx; 1347 uint8_t extended_type, buffer_type, i; 1348 uint32_t buffer_size; 1349 uint32_t unique_id; 1350 int status; 1351 int error; 1352 1353 extended_type = diag_register->ExtendedType; 1354 buffer_type = diag_register->BufferType; 1355 buffer_size = diag_register->RequestedBufferSize; 1356 unique_id = diag_register->UniqueId; 1357 ctx = NULL; 1358 error = 0; 1359 1360 /* 1361 * Check for valid buffer type 1362 */ 1363 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1364 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1365 return (MPS_DIAG_FAILURE); 1366 } 1367 1368 /* 1369 * Get the current buffer and look up the unique ID. The unique ID 1370 * should not be found. If it is, the ID is already in use. 1371 */ 1372 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1373 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1374 if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1375 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1376 return (MPS_DIAG_FAILURE); 1377 } 1378 1379 /* 1380 * The buffer's unique ID should not be registered yet, and the given 1381 * unique ID cannot be 0. 1382 */ 1383 if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) || 1384 (unique_id == MPS_FW_DIAG_INVALID_UID)) { 1385 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1386 return (MPS_DIAG_FAILURE); 1387 } 1388 1389 /* 1390 * If this buffer is already posted as immediate, just change owner. 1391 */ 1392 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1393 (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) { 1394 pBuffer->immediate = FALSE; 1395 pBuffer->unique_id = unique_id; 1396 return (MPS_DIAG_SUCCESS); 1397 } 1398 1399 /* 1400 * Post a new buffer after checking if it's enabled. The DMA buffer 1401 * that is allocated will be contiguous (nsegments = 1). 1402 */ 1403 if (!pBuffer->enabled) { 1404 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1405 return (MPS_DIAG_FAILURE); 1406 } 1407 bus_dma_template_init(&t, sc->mps_parent_dmat); 1408 BUS_DMA_TEMPLATE_FILL(&t, BD_NSEGMENTS(1), BD_MAXSIZE(buffer_size), 1409 BD_MAXSEGSIZE(buffer_size), BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1410 if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) { 1411 mps_dprint(sc, MPS_ERROR, 1412 "Cannot allocate FW diag buffer DMA tag\n"); 1413 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1414 status = MPS_DIAG_FAILURE; 1415 goto bailout; 1416 } 1417 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1418 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1419 mps_dprint(sc, MPS_ERROR, 1420 "Cannot allocate FW diag buffer memory\n"); 1421 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1422 status = MPS_DIAG_FAILURE; 1423 goto bailout; 1424 } 1425 bzero(sc->fw_diag_buffer, buffer_size); 1426 1427 ctx = malloc(sizeof(*ctx), M_MPSUSER, M_WAITOK | M_ZERO); 1428 ctx->addr = &sc->fw_diag_busaddr; 1429 ctx->buffer_dmat = sc->fw_diag_dmat; 1430 ctx->buffer_dmamap = sc->fw_diag_map; 1431 ctx->softc = sc; 1432 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1433 sc->fw_diag_buffer, buffer_size, mps_memaddr_wait_cb, 1434 ctx, 0); 1435 1436 if (error == EINPROGRESS) { 1437 /* XXX KDM */ 1438 device_printf(sc->mps_dev, "%s: Deferred bus_dmamap_load\n", 1439 __func__); 1440 /* 1441 * Wait for the load to complete. If we're interrupted, 1442 * bail out. 1443 */ 1444 mps_lock(sc); 1445 if (ctx->completed == 0) { 1446 error = msleep(ctx, &sc->mps_mtx, PCATCH, "mpswait", 0); 1447 if (error != 0) { 1448 /* 1449 * We got an error from msleep(9). This is 1450 * most likely due to a signal. Tell 1451 * mpr_memaddr_wait_cb() that we've abandoned 1452 * the context, so it needs to clean up when 1453 * it is called. 1454 */ 1455 ctx->abandoned = 1; 1456 1457 /* The callback will free this memory */ 1458 ctx = NULL; 1459 mps_unlock(sc); 1460 1461 device_printf(sc->mps_dev, "Cannot " 1462 "bus_dmamap_load FW diag buffer, error = " 1463 "%d returned from msleep\n", error); 1464 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1465 status = MPS_DIAG_FAILURE; 1466 goto bailout; 1467 } 1468 } 1469 mps_unlock(sc); 1470 } 1471 1472 if ((error != 0) || (ctx->error != 0)) { 1473 device_printf(sc->mps_dev, "Cannot bus_dmamap_load FW diag " 1474 "buffer, %serror = %d\n", error ? "" : "callback ", 1475 error ? error : ctx->error); 1476 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1477 status = MPS_DIAG_FAILURE; 1478 goto bailout; 1479 } 1480 1481 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1482 1483 pBuffer->size = buffer_size; 1484 1485 /* 1486 * Copy the given info to the diag buffer and post the buffer. 1487 */ 1488 pBuffer->buffer_type = buffer_type; 1489 pBuffer->immediate = FALSE; 1490 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1491 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1492 i++) { 1493 pBuffer->product_specific[i] = 1494 diag_register->ProductSpecific[i]; 1495 } 1496 } 1497 pBuffer->extended_type = extended_type; 1498 pBuffer->unique_id = unique_id; 1499 status = mps_post_fw_diag_buffer(sc, pBuffer, return_code); 1500 1501 bailout: 1502 /* 1503 * In case there was a failure, free the DMA buffer. 1504 */ 1505 if (status == MPS_DIAG_FAILURE) { 1506 if (sc->fw_diag_busaddr != 0) { 1507 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1508 sc->fw_diag_busaddr = 0; 1509 } 1510 if (sc->fw_diag_buffer != NULL) { 1511 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1512 sc->fw_diag_map); 1513 sc->fw_diag_buffer = NULL; 1514 } 1515 if (sc->fw_diag_dmat != NULL) { 1516 bus_dma_tag_destroy(sc->fw_diag_dmat); 1517 sc->fw_diag_dmat = NULL; 1518 } 1519 } 1520 1521 if (ctx != NULL) 1522 free(ctx, M_MPSUSER); 1523 1524 return (status); 1525 } 1526 1527 static int 1528 mps_diag_unregister(struct mps_softc *sc, 1529 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1530 { 1531 mps_fw_diagnostic_buffer_t *pBuffer; 1532 uint8_t i; 1533 uint32_t unique_id; 1534 int status; 1535 1536 unique_id = diag_unregister->UniqueId; 1537 1538 /* 1539 * Get the current buffer and look up the unique ID. The unique ID 1540 * should be there. 1541 */ 1542 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1543 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1544 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1545 return (MPS_DIAG_FAILURE); 1546 } 1547 1548 pBuffer = &sc->fw_diag_buffer_list[i]; 1549 1550 /* 1551 * Try to release the buffer from FW before freeing it. If release 1552 * fails, don't free the DMA buffer in case FW tries to access it 1553 * later. If buffer is not owned by firmware, can't release it. 1554 */ 1555 if (!pBuffer->owned_by_firmware) { 1556 status = MPS_DIAG_SUCCESS; 1557 } else { 1558 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1559 MPS_FW_DIAG_TYPE_UNREGISTER); 1560 } 1561 1562 /* 1563 * At this point, return the current status no matter what happens with 1564 * the DMA buffer. 1565 */ 1566 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1567 if (status == MPS_DIAG_SUCCESS) { 1568 if (sc->fw_diag_busaddr != 0) { 1569 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1570 sc->fw_diag_busaddr = 0; 1571 } 1572 if (sc->fw_diag_buffer != NULL) { 1573 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1574 sc->fw_diag_map); 1575 sc->fw_diag_buffer = NULL; 1576 } 1577 if (sc->fw_diag_dmat != NULL) { 1578 bus_dma_tag_destroy(sc->fw_diag_dmat); 1579 sc->fw_diag_dmat = NULL; 1580 } 1581 } 1582 1583 return (status); 1584 } 1585 1586 static int 1587 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 1588 uint32_t *return_code) 1589 { 1590 mps_fw_diagnostic_buffer_t *pBuffer; 1591 uint8_t i; 1592 uint32_t unique_id; 1593 1594 unique_id = diag_query->UniqueId; 1595 1596 /* 1597 * If ID is valid, query on ID. 1598 * If ID is invalid, query on buffer type. 1599 */ 1600 if (unique_id == MPS_FW_DIAG_INVALID_UID) { 1601 i = diag_query->BufferType; 1602 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1603 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1604 return (MPS_DIAG_FAILURE); 1605 } 1606 } else { 1607 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1608 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1609 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1610 return (MPS_DIAG_FAILURE); 1611 } 1612 } 1613 1614 /* 1615 * Fill query structure with the diag buffer info. 1616 */ 1617 pBuffer = &sc->fw_diag_buffer_list[i]; 1618 diag_query->BufferType = pBuffer->buffer_type; 1619 diag_query->ExtendedType = pBuffer->extended_type; 1620 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1621 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1622 i++) { 1623 diag_query->ProductSpecific[i] = 1624 pBuffer->product_specific[i]; 1625 } 1626 } 1627 diag_query->TotalBufferSize = pBuffer->size; 1628 diag_query->DriverAddedBufferSize = 0; 1629 diag_query->UniqueId = pBuffer->unique_id; 1630 diag_query->ApplicationFlags = 0; 1631 diag_query->DiagnosticFlags = 0; 1632 1633 /* 1634 * Set/Clear application flags 1635 */ 1636 if (pBuffer->immediate) { 1637 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED; 1638 } else { 1639 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED; 1640 } 1641 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1642 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID; 1643 } else { 1644 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID; 1645 } 1646 if (pBuffer->owned_by_firmware) { 1647 diag_query->ApplicationFlags |= 1648 MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1649 } else { 1650 diag_query->ApplicationFlags &= 1651 ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1652 } 1653 1654 return (MPS_DIAG_SUCCESS); 1655 } 1656 1657 static int 1658 mps_diag_read_buffer(struct mps_softc *sc, 1659 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1660 uint32_t *return_code) 1661 { 1662 mps_fw_diagnostic_buffer_t *pBuffer; 1663 uint8_t i, *pData; 1664 uint32_t unique_id; 1665 int status; 1666 1667 unique_id = diag_read_buffer->UniqueId; 1668 1669 /* 1670 * Get the current buffer and look up the unique ID. The unique ID 1671 * should be there. 1672 */ 1673 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1674 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1675 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1676 return (MPS_DIAG_FAILURE); 1677 } 1678 1679 pBuffer = &sc->fw_diag_buffer_list[i]; 1680 1681 /* 1682 * Make sure requested read is within limits 1683 */ 1684 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1685 pBuffer->size) { 1686 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1687 return (MPS_DIAG_FAILURE); 1688 } 1689 1690 /* Sync the DMA map before we copy to userland. */ 1691 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1692 BUS_DMASYNC_POSTREAD); 1693 1694 /* 1695 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1696 * buffer that was allocated is one contiguous buffer. 1697 */ 1698 pData = (uint8_t *)(sc->fw_diag_buffer + 1699 diag_read_buffer->StartingOffset); 1700 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1701 return (MPS_DIAG_FAILURE); 1702 diag_read_buffer->Status = 0; 1703 1704 /* 1705 * Set or clear the Force Release flag. 1706 */ 1707 if (pBuffer->force_release) { 1708 diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1709 } else { 1710 diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1711 } 1712 1713 /* 1714 * If buffer is to be reregistered, make sure it's not already owned by 1715 * firmware first. 1716 */ 1717 status = MPS_DIAG_SUCCESS; 1718 if (!pBuffer->owned_by_firmware) { 1719 if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) { 1720 status = mps_post_fw_diag_buffer(sc, pBuffer, 1721 return_code); 1722 } 1723 } 1724 1725 return (status); 1726 } 1727 1728 static int 1729 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release, 1730 uint32_t *return_code) 1731 { 1732 mps_fw_diagnostic_buffer_t *pBuffer; 1733 uint8_t i; 1734 uint32_t unique_id; 1735 int status; 1736 1737 unique_id = diag_release->UniqueId; 1738 1739 /* 1740 * Get the current buffer and look up the unique ID. The unique ID 1741 * should be there. 1742 */ 1743 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1744 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1745 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1746 return (MPS_DIAG_FAILURE); 1747 } 1748 1749 pBuffer = &sc->fw_diag_buffer_list[i]; 1750 1751 /* 1752 * If buffer is not owned by firmware, it's already been released. 1753 */ 1754 if (!pBuffer->owned_by_firmware) { 1755 *return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED; 1756 return (MPS_DIAG_FAILURE); 1757 } 1758 1759 /* 1760 * Release the buffer. 1761 */ 1762 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1763 MPS_FW_DIAG_TYPE_RELEASE); 1764 return (status); 1765 } 1766 1767 static int 1768 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action, 1769 uint32_t length, uint32_t *return_code) 1770 { 1771 mps_fw_diag_register_t diag_register; 1772 mps_fw_diag_unregister_t diag_unregister; 1773 mps_fw_diag_query_t diag_query; 1774 mps_diag_read_buffer_t diag_read_buffer; 1775 mps_fw_diag_release_t diag_release; 1776 int status = MPS_DIAG_SUCCESS; 1777 uint32_t original_return_code; 1778 1779 original_return_code = *return_code; 1780 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1781 1782 switch (action) { 1783 case MPS_FW_DIAG_TYPE_REGISTER: 1784 if (!length) { 1785 *return_code = 1786 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1787 status = MPS_DIAG_FAILURE; 1788 break; 1789 } 1790 if (copyin(diag_action, &diag_register, 1791 sizeof(diag_register)) != 0) 1792 return (MPS_DIAG_FAILURE); 1793 status = mps_diag_register(sc, &diag_register, 1794 return_code); 1795 break; 1796 1797 case MPS_FW_DIAG_TYPE_UNREGISTER: 1798 if (length < sizeof(diag_unregister)) { 1799 *return_code = 1800 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1801 status = MPS_DIAG_FAILURE; 1802 break; 1803 } 1804 if (copyin(diag_action, &diag_unregister, 1805 sizeof(diag_unregister)) != 0) 1806 return (MPS_DIAG_FAILURE); 1807 status = mps_diag_unregister(sc, &diag_unregister, 1808 return_code); 1809 break; 1810 1811 case MPS_FW_DIAG_TYPE_QUERY: 1812 if (length < sizeof (diag_query)) { 1813 *return_code = 1814 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1815 status = MPS_DIAG_FAILURE; 1816 break; 1817 } 1818 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1819 != 0) 1820 return (MPS_DIAG_FAILURE); 1821 status = mps_diag_query(sc, &diag_query, return_code); 1822 if (status == MPS_DIAG_SUCCESS) 1823 if (copyout(&diag_query, diag_action, 1824 sizeof (diag_query)) != 0) 1825 return (MPS_DIAG_FAILURE); 1826 break; 1827 1828 case MPS_FW_DIAG_TYPE_READ_BUFFER: 1829 if (copyin(diag_action, &diag_read_buffer, 1830 sizeof(diag_read_buffer)) != 0) 1831 return (MPS_DIAG_FAILURE); 1832 if (length < diag_read_buffer.BytesToRead) { 1833 *return_code = 1834 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1835 status = MPS_DIAG_FAILURE; 1836 break; 1837 } 1838 status = mps_diag_read_buffer(sc, &diag_read_buffer, 1839 PTRIN(diag_read_buffer.PtrDataBuffer), 1840 return_code); 1841 if (status == MPS_DIAG_SUCCESS) { 1842 if (copyout(&diag_read_buffer, diag_action, 1843 sizeof(diag_read_buffer) - 1844 sizeof(diag_read_buffer.PtrDataBuffer)) != 1845 0) 1846 return (MPS_DIAG_FAILURE); 1847 } 1848 break; 1849 1850 case MPS_FW_DIAG_TYPE_RELEASE: 1851 if (length < sizeof(diag_release)) { 1852 *return_code = 1853 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1854 status = MPS_DIAG_FAILURE; 1855 break; 1856 } 1857 if (copyin(diag_action, &diag_release, 1858 sizeof(diag_release)) != 0) 1859 return (MPS_DIAG_FAILURE); 1860 status = mps_diag_release(sc, &diag_release, 1861 return_code); 1862 break; 1863 1864 default: 1865 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1866 status = MPS_DIAG_FAILURE; 1867 break; 1868 } 1869 1870 if ((status == MPS_DIAG_FAILURE) && 1871 (original_return_code == MPS_FW_DIAG_NEW) && 1872 (*return_code != MPS_FW_DIAG_ERROR_SUCCESS)) 1873 status = MPS_DIAG_SUCCESS; 1874 1875 return (status); 1876 } 1877 1878 static int 1879 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data) 1880 { 1881 int status; 1882 1883 /* 1884 * Only allow one diag action at one time. 1885 */ 1886 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1887 mps_dprint(sc, MPS_USER, "%s: Only one FW diag command " 1888 "allowed at a single time.", __func__); 1889 return (EBUSY); 1890 } 1891 sc->mps_flags |= MPS_FLAGS_BUSY; 1892 1893 /* 1894 * Send diag action request 1895 */ 1896 if (data->Action == MPS_FW_DIAG_TYPE_REGISTER || 1897 data->Action == MPS_FW_DIAG_TYPE_UNREGISTER || 1898 data->Action == MPS_FW_DIAG_TYPE_QUERY || 1899 data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER || 1900 data->Action == MPS_FW_DIAG_TYPE_RELEASE) { 1901 status = mps_do_diag_action(sc, data->Action, 1902 PTRIN(data->PtrDiagAction), data->Length, 1903 &data->ReturnCode); 1904 } else 1905 status = EINVAL; 1906 1907 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1908 return (status); 1909 } 1910 1911 /* 1912 * Copy the event recording mask and the event queue size out. For 1913 * clarification, the event recording mask (events_to_record) is not the same 1914 * thing as the event mask (event_mask). events_to_record has a bit set for 1915 * every event type that is to be recorded by the driver, and event_mask has a 1916 * bit cleared for every event that is allowed into the driver from the IOC. 1917 * They really have nothing to do with each other. 1918 */ 1919 static void 1920 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data) 1921 { 1922 uint8_t i; 1923 1924 mps_lock(sc); 1925 data->Entries = MPS_EVENT_QUEUE_SIZE; 1926 1927 for (i = 0; i < 4; i++) { 1928 data->Types[i] = sc->events_to_record[i]; 1929 } 1930 mps_unlock(sc); 1931 } 1932 1933 /* 1934 * Set the driver's event mask according to what's been given. See 1935 * mps_user_event_query for explanation of the event recording mask and the IOC 1936 * event mask. It's the app's responsibility to enable event logging by setting 1937 * the bits in events_to_record. Initially, no events will be logged. 1938 */ 1939 static void 1940 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data) 1941 { 1942 uint8_t i; 1943 1944 mps_lock(sc); 1945 for (i = 0; i < 4; i++) { 1946 sc->events_to_record[i] = data->Types[i]; 1947 } 1948 mps_unlock(sc); 1949 } 1950 1951 /* 1952 * Copy out the events that have been recorded, up to the max events allowed. 1953 */ 1954 static int 1955 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data) 1956 { 1957 int status = 0; 1958 uint32_t size; 1959 1960 mps_lock(sc); 1961 size = data->Size; 1962 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1963 mps_unlock(sc); 1964 if (copyout((void *)sc->recorded_events, 1965 PTRIN(data->PtrEvents), sizeof(sc->recorded_events)) != 0) 1966 status = EFAULT; 1967 mps_lock(sc); 1968 } else { 1969 /* 1970 * data->Size value is not large enough to copy event data. 1971 */ 1972 status = EFAULT; 1973 } 1974 1975 /* 1976 * Change size value to match the number of bytes that were copied. 1977 */ 1978 if (status == 0) 1979 data->Size = sizeof(sc->recorded_events); 1980 mps_unlock(sc); 1981 1982 return (status); 1983 } 1984 1985 /* 1986 * Record events into the driver from the IOC if they are not masked. 1987 */ 1988 void 1989 mpssas_record_event(struct mps_softc *sc, 1990 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 1991 { 1992 uint32_t event; 1993 int i, j; 1994 uint16_t event_data_len; 1995 boolean_t sendAEN = FALSE; 1996 1997 event = event_reply->Event; 1998 1999 /* 2000 * Generate a system event to let anyone who cares know that a 2001 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2002 * event mask is set to. 2003 */ 2004 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2005 sendAEN = TRUE; 2006 } 2007 2008 /* 2009 * Record the event only if its corresponding bit is set in 2010 * events_to_record. event_index is the index into recorded_events and 2011 * event_number is the overall number of an event being recorded since 2012 * start-of-day. event_index will roll over; event_number will never 2013 * roll over. 2014 */ 2015 i = (uint8_t)(event / 32); 2016 j = (uint8_t)(event % 32); 2017 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2018 i = sc->event_index; 2019 sc->recorded_events[i].Type = event; 2020 sc->recorded_events[i].Number = ++sc->event_number; 2021 bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH * 2022 4); 2023 event_data_len = event_reply->EventDataLength; 2024 2025 if (event_data_len > 0) { 2026 /* 2027 * Limit data to size in m_event entry 2028 */ 2029 if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) { 2030 event_data_len = MPS_MAX_EVENT_DATA_LENGTH; 2031 } 2032 for (j = 0; j < event_data_len; j++) { 2033 sc->recorded_events[i].Data[j] = 2034 event_reply->EventData[j]; 2035 } 2036 2037 /* 2038 * check for index wrap-around 2039 */ 2040 if (++i == MPS_EVENT_QUEUE_SIZE) { 2041 i = 0; 2042 } 2043 sc->event_index = (uint8_t)i; 2044 2045 /* 2046 * Set flag to send the event. 2047 */ 2048 sendAEN = TRUE; 2049 } 2050 } 2051 2052 /* 2053 * Generate a system event if flag is set to let anyone who cares know 2054 * that an event has occurred. 2055 */ 2056 if (sendAEN) { 2057 //SLM-how to send a system event (see kqueue, kevent) 2058 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2059 // "SAS", NULL, NULL, DDI_NOSLEEP); 2060 } 2061 } 2062 2063 static int 2064 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data) 2065 { 2066 int status = 0; 2067 2068 switch (data->Command) { 2069 /* 2070 * IO access is not supported. 2071 */ 2072 case REG_IO_READ: 2073 case REG_IO_WRITE: 2074 mps_dprint(sc, MPS_USER, "IO access is not supported. " 2075 "Use memory access."); 2076 status = EINVAL; 2077 break; 2078 2079 case REG_MEM_READ: 2080 data->RegData = mps_regread(sc, data->RegOffset); 2081 break; 2082 2083 case REG_MEM_WRITE: 2084 mps_regwrite(sc, data->RegOffset, data->RegData); 2085 break; 2086 2087 default: 2088 status = EINVAL; 2089 break; 2090 } 2091 2092 return (status); 2093 } 2094 2095 static int 2096 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data) 2097 { 2098 uint8_t bt2dh = FALSE; 2099 uint8_t dh2bt = FALSE; 2100 uint16_t dev_handle, bus, target; 2101 2102 bus = data->Bus; 2103 target = data->TargetID; 2104 dev_handle = data->DevHandle; 2105 2106 /* 2107 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2108 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2109 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2110 * invalid. 2111 */ 2112 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2113 dh2bt = TRUE; 2114 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2115 bt2dh = TRUE; 2116 if (!dh2bt && !bt2dh) 2117 return (EINVAL); 2118 2119 /* 2120 * Only handle bus of 0. Make sure target is within range. 2121 */ 2122 if (bt2dh) { 2123 if (bus != 0) 2124 return (EINVAL); 2125 2126 if (target >= sc->max_devices) { 2127 mps_dprint(sc, MPS_FAULT, "Target ID is out of range " 2128 "for Bus/Target to DevHandle mapping."); 2129 return (EINVAL); 2130 } 2131 dev_handle = sc->mapping_table[target].dev_handle; 2132 if (dev_handle) 2133 data->DevHandle = dev_handle; 2134 } else { 2135 bus = 0; 2136 target = mps_mapping_get_tid_from_handle(sc, dev_handle); 2137 data->Bus = bus; 2138 data->TargetID = target; 2139 } 2140 2141 return (0); 2142 } 2143 2144 static int 2145 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2146 struct thread *td) 2147 { 2148 struct mps_softc *sc; 2149 struct mps_cfg_page_req *page_req; 2150 struct mps_ext_cfg_page_req *ext_page_req; 2151 void *mps_page; 2152 int error, msleep_ret; 2153 2154 mps_page = NULL; 2155 sc = dev->si_drv1; 2156 page_req = (void *)arg; 2157 ext_page_req = (void *)arg; 2158 2159 switch (cmd) { 2160 case MPSIO_READ_CFG_HEADER: 2161 mps_lock(sc); 2162 error = mps_user_read_cfg_header(sc, page_req); 2163 mps_unlock(sc); 2164 break; 2165 case MPSIO_READ_CFG_PAGE: 2166 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2167 error = EINVAL; 2168 break; 2169 } 2170 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO); 2171 error = copyin(page_req->buf, mps_page, 2172 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2173 if (error) 2174 break; 2175 mps_lock(sc); 2176 error = mps_user_read_cfg_page(sc, page_req, mps_page); 2177 mps_unlock(sc); 2178 if (error) 2179 break; 2180 error = copyout(mps_page, page_req->buf, page_req->len); 2181 break; 2182 case MPSIO_READ_EXT_CFG_HEADER: 2183 mps_lock(sc); 2184 error = mps_user_read_extcfg_header(sc, ext_page_req); 2185 mps_unlock(sc); 2186 break; 2187 case MPSIO_READ_EXT_CFG_PAGE: 2188 if (ext_page_req->len < 2189 (int)sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)) { 2190 error = EINVAL; 2191 break; 2192 } 2193 mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2194 error = copyin(ext_page_req->buf, mps_page, 2195 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2196 if (error) 2197 break; 2198 mps_lock(sc); 2199 error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page); 2200 mps_unlock(sc); 2201 if (error) 2202 break; 2203 error = copyout(mps_page, ext_page_req->buf, ext_page_req->len); 2204 break; 2205 case MPSIO_WRITE_CFG_PAGE: 2206 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2207 error = EINVAL; 2208 break; 2209 } 2210 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2211 error = copyin(page_req->buf, mps_page, page_req->len); 2212 if (error) 2213 break; 2214 mps_lock(sc); 2215 error = mps_user_write_cfg_page(sc, page_req, mps_page); 2216 mps_unlock(sc); 2217 break; 2218 case MPSIO_MPS_COMMAND: 2219 error = mps_user_command(sc, (struct mps_usr_command *)arg); 2220 break; 2221 case MPTIOCTL_PASS_THRU: 2222 /* 2223 * The user has requested to pass through a command to be 2224 * executed by the MPT firmware. Call our routine which does 2225 * this. Only allow one passthru IOCTL at one time. 2226 */ 2227 error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg); 2228 break; 2229 case MPTIOCTL_GET_ADAPTER_DATA: 2230 /* 2231 * The user has requested to read adapter data. Call our 2232 * routine which does this. 2233 */ 2234 error = 0; 2235 mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg); 2236 break; 2237 case MPTIOCTL_GET_PCI_INFO: 2238 /* 2239 * The user has requested to read pci info. Call 2240 * our routine which does this. 2241 */ 2242 mps_lock(sc); 2243 error = 0; 2244 mps_user_read_pci_info(sc, (mps_pci_info_t *)arg); 2245 mps_unlock(sc); 2246 break; 2247 case MPTIOCTL_RESET_ADAPTER: 2248 mps_lock(sc); 2249 sc->port_enable_complete = 0; 2250 uint32_t reinit_start = time_uptime; 2251 error = mps_reinit(sc); 2252 /* Sleep for 300 second. */ 2253 msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO, 2254 "mps_porten", 300 * hz); 2255 mps_unlock(sc); 2256 if (msleep_ret) 2257 printf("Port Enable did not complete after Diag " 2258 "Reset msleep error %d.\n", msleep_ret); 2259 else 2260 mps_dprint(sc, MPS_USER, 2261 "Hard Reset with Port Enable completed in %d seconds.\n", 2262 (uint32_t) (time_uptime - reinit_start)); 2263 break; 2264 case MPTIOCTL_DIAG_ACTION: 2265 /* 2266 * The user has done a diag buffer action. Call our routine 2267 * which does this. Only allow one diag action at one time. 2268 */ 2269 mps_lock(sc); 2270 error = mps_user_diag_action(sc, (mps_diag_action_t *)arg); 2271 mps_unlock(sc); 2272 break; 2273 case MPTIOCTL_EVENT_QUERY: 2274 /* 2275 * The user has done an event query. Call our routine which does 2276 * this. 2277 */ 2278 error = 0; 2279 mps_user_event_query(sc, (mps_event_query_t *)arg); 2280 break; 2281 case MPTIOCTL_EVENT_ENABLE: 2282 /* 2283 * The user has done an event enable. Call our routine which 2284 * does this. 2285 */ 2286 error = 0; 2287 mps_user_event_enable(sc, (mps_event_enable_t *)arg); 2288 break; 2289 case MPTIOCTL_EVENT_REPORT: 2290 /* 2291 * The user has done an event report. Call our routine which 2292 * does this. 2293 */ 2294 error = mps_user_event_report(sc, (mps_event_report_t *)arg); 2295 break; 2296 case MPTIOCTL_REG_ACCESS: 2297 /* 2298 * The user has requested register access. Call our routine 2299 * which does this. 2300 */ 2301 mps_lock(sc); 2302 error = mps_user_reg_access(sc, (mps_reg_access_t *)arg); 2303 mps_unlock(sc); 2304 break; 2305 case MPTIOCTL_BTDH_MAPPING: 2306 /* 2307 * The user has requested to translate a bus/target to a 2308 * DevHandle or a DevHandle to a bus/target. Call our routine 2309 * which does this. 2310 */ 2311 error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg); 2312 break; 2313 default: 2314 error = ENOIOCTL; 2315 break; 2316 } 2317 2318 if (mps_page != NULL) 2319 free(mps_page, M_MPSUSER); 2320 2321 return (error); 2322 } 2323 2324 #ifdef COMPAT_FREEBSD32 2325 2326 struct mps_cfg_page_req32 { 2327 MPI2_CONFIG_PAGE_HEADER header; 2328 uint32_t page_address; 2329 uint32_t buf; 2330 int len; 2331 uint16_t ioc_status; 2332 }; 2333 2334 struct mps_ext_cfg_page_req32 { 2335 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2336 uint32_t page_address; 2337 uint32_t buf; 2338 int len; 2339 uint16_t ioc_status; 2340 }; 2341 2342 struct mps_raid_action32 { 2343 uint8_t action; 2344 uint8_t volume_bus; 2345 uint8_t volume_id; 2346 uint8_t phys_disk_num; 2347 uint32_t action_data_word; 2348 uint32_t buf; 2349 int len; 2350 uint32_t volume_status; 2351 uint32_t action_data[4]; 2352 uint16_t action_status; 2353 uint16_t ioc_status; 2354 uint8_t write; 2355 }; 2356 2357 struct mps_usr_command32 { 2358 uint32_t req; 2359 uint32_t req_len; 2360 uint32_t rpl; 2361 uint32_t rpl_len; 2362 uint32_t buf; 2363 int len; 2364 uint32_t flags; 2365 }; 2366 2367 #define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32) 2368 #define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32) 2369 #define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32) 2370 #define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32) 2371 #define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32) 2372 #define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32) 2373 #define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32) 2374 2375 static int 2376 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2377 struct thread *td) 2378 { 2379 struct mps_cfg_page_req32 *page32 = _arg; 2380 struct mps_ext_cfg_page_req32 *ext32 = _arg; 2381 struct mps_raid_action32 *raid32 = _arg; 2382 struct mps_usr_command32 *user32 = _arg; 2383 union { 2384 struct mps_cfg_page_req page; 2385 struct mps_ext_cfg_page_req ext; 2386 struct mps_raid_action raid; 2387 struct mps_usr_command user; 2388 } arg; 2389 u_long cmd; 2390 int error; 2391 2392 switch (cmd32) { 2393 case MPSIO_READ_CFG_HEADER32: 2394 case MPSIO_READ_CFG_PAGE32: 2395 case MPSIO_WRITE_CFG_PAGE32: 2396 if (cmd32 == MPSIO_READ_CFG_HEADER32) 2397 cmd = MPSIO_READ_CFG_HEADER; 2398 else if (cmd32 == MPSIO_READ_CFG_PAGE32) 2399 cmd = MPSIO_READ_CFG_PAGE; 2400 else 2401 cmd = MPSIO_WRITE_CFG_PAGE; 2402 CP(*page32, arg.page, header); 2403 CP(*page32, arg.page, page_address); 2404 PTRIN_CP(*page32, arg.page, buf); 2405 CP(*page32, arg.page, len); 2406 CP(*page32, arg.page, ioc_status); 2407 break; 2408 2409 case MPSIO_READ_EXT_CFG_HEADER32: 2410 case MPSIO_READ_EXT_CFG_PAGE32: 2411 if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32) 2412 cmd = MPSIO_READ_EXT_CFG_HEADER; 2413 else 2414 cmd = MPSIO_READ_EXT_CFG_PAGE; 2415 CP(*ext32, arg.ext, header); 2416 CP(*ext32, arg.ext, page_address); 2417 PTRIN_CP(*ext32, arg.ext, buf); 2418 CP(*ext32, arg.ext, len); 2419 CP(*ext32, arg.ext, ioc_status); 2420 break; 2421 2422 case MPSIO_RAID_ACTION32: 2423 cmd = MPSIO_RAID_ACTION; 2424 CP(*raid32, arg.raid, action); 2425 CP(*raid32, arg.raid, volume_bus); 2426 CP(*raid32, arg.raid, volume_id); 2427 CP(*raid32, arg.raid, phys_disk_num); 2428 CP(*raid32, arg.raid, action_data_word); 2429 PTRIN_CP(*raid32, arg.raid, buf); 2430 CP(*raid32, arg.raid, len); 2431 CP(*raid32, arg.raid, volume_status); 2432 bcopy(raid32->action_data, arg.raid.action_data, 2433 sizeof arg.raid.action_data); 2434 CP(*raid32, arg.raid, ioc_status); 2435 CP(*raid32, arg.raid, write); 2436 break; 2437 2438 case MPSIO_MPS_COMMAND32: 2439 cmd = MPSIO_MPS_COMMAND; 2440 PTRIN_CP(*user32, arg.user, req); 2441 CP(*user32, arg.user, req_len); 2442 PTRIN_CP(*user32, arg.user, rpl); 2443 CP(*user32, arg.user, rpl_len); 2444 PTRIN_CP(*user32, arg.user, buf); 2445 CP(*user32, arg.user, len); 2446 CP(*user32, arg.user, flags); 2447 break; 2448 default: 2449 return (ENOIOCTL); 2450 } 2451 2452 error = mps_ioctl(dev, cmd, &arg, flag, td); 2453 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2454 switch (cmd32) { 2455 case MPSIO_READ_CFG_HEADER32: 2456 case MPSIO_READ_CFG_PAGE32: 2457 case MPSIO_WRITE_CFG_PAGE32: 2458 CP(arg.page, *page32, header); 2459 CP(arg.page, *page32, page_address); 2460 PTROUT_CP(arg.page, *page32, buf); 2461 CP(arg.page, *page32, len); 2462 CP(arg.page, *page32, ioc_status); 2463 break; 2464 2465 case MPSIO_READ_EXT_CFG_HEADER32: 2466 case MPSIO_READ_EXT_CFG_PAGE32: 2467 CP(arg.ext, *ext32, header); 2468 CP(arg.ext, *ext32, page_address); 2469 PTROUT_CP(arg.ext, *ext32, buf); 2470 CP(arg.ext, *ext32, len); 2471 CP(arg.ext, *ext32, ioc_status); 2472 break; 2473 2474 case MPSIO_RAID_ACTION32: 2475 CP(arg.raid, *raid32, action); 2476 CP(arg.raid, *raid32, volume_bus); 2477 CP(arg.raid, *raid32, volume_id); 2478 CP(arg.raid, *raid32, phys_disk_num); 2479 CP(arg.raid, *raid32, action_data_word); 2480 PTROUT_CP(arg.raid, *raid32, buf); 2481 CP(arg.raid, *raid32, len); 2482 CP(arg.raid, *raid32, volume_status); 2483 bcopy(arg.raid.action_data, raid32->action_data, 2484 sizeof arg.raid.action_data); 2485 CP(arg.raid, *raid32, ioc_status); 2486 CP(arg.raid, *raid32, write); 2487 break; 2488 2489 case MPSIO_MPS_COMMAND32: 2490 PTROUT_CP(arg.user, *user32, req); 2491 CP(arg.user, *user32, req_len); 2492 PTROUT_CP(arg.user, *user32, rpl); 2493 CP(arg.user, *user32, rpl_len); 2494 PTROUT_CP(arg.user, *user32, buf); 2495 CP(arg.user, *user32, len); 2496 CP(arg.user, *user32, flags); 2497 break; 2498 } 2499 } 2500 2501 return (error); 2502 } 2503 #endif /* COMPAT_FREEBSD32 */ 2504 2505 static int 2506 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2507 struct thread *td) 2508 { 2509 #ifdef COMPAT_FREEBSD32 2510 if (SV_CURPROC_FLAG(SV_ILP32)) 2511 return (mps_ioctl32(dev, com, arg, flag, td)); 2512 #endif 2513 return (mps_ioctl(dev, com, arg, flag, td)); 2514 } 2515