1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * LSI MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011, 2012 LSI Corp. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 * 57 * LSI MPT-Fusion Host Adapter FreeBSD 58 * 59 * $FreeBSD$ 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_compat.h" 66 67 /* TODO Move headers to mpsvar */ 68 #include <sys/types.h> 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/kernel.h> 72 #include <sys/selinfo.h> 73 #include <sys/module.h> 74 #include <sys/bus.h> 75 #include <sys/conf.h> 76 #include <sys/bio.h> 77 #include <sys/malloc.h> 78 #include <sys/uio.h> 79 #include <sys/sysctl.h> 80 #include <sys/ioccom.h> 81 #include <sys/endian.h> 82 #include <sys/queue.h> 83 #include <sys/kthread.h> 84 #include <sys/taskqueue.h> 85 #include <sys/proc.h> 86 #include <sys/sysent.h> 87 88 #include <machine/bus.h> 89 #include <machine/resource.h> 90 #include <sys/rman.h> 91 92 #include <cam/cam.h> 93 #include <cam/scsi/scsi_all.h> 94 95 #include <dev/mps/mpi/mpi2_type.h> 96 #include <dev/mps/mpi/mpi2.h> 97 #include <dev/mps/mpi/mpi2_ioc.h> 98 #include <dev/mps/mpi/mpi2_cnfg.h> 99 #include <dev/mps/mpi/mpi2_init.h> 100 #include <dev/mps/mpi/mpi2_tool.h> 101 #include <dev/mps/mps_ioctl.h> 102 #include <dev/mps/mpsvar.h> 103 #include <dev/mps/mps_table.h> 104 #include <dev/mps/mps_sas.h> 105 #include <dev/pci/pcivar.h> 106 #include <dev/pci/pcireg.h> 107 108 static d_open_t mps_open; 109 static d_close_t mps_close; 110 static d_ioctl_t mps_ioctl_devsw; 111 112 static struct cdevsw mps_cdevsw = { 113 .d_version = D_VERSION, 114 .d_flags = 0, 115 .d_open = mps_open, 116 .d_close = mps_close, 117 .d_ioctl = mps_ioctl_devsw, 118 .d_name = "mps", 119 }; 120 121 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *); 122 static mps_user_f mpi_pre_ioc_facts; 123 static mps_user_f mpi_pre_port_facts; 124 static mps_user_f mpi_pre_fw_download; 125 static mps_user_f mpi_pre_fw_upload; 126 static mps_user_f mpi_pre_sata_passthrough; 127 static mps_user_f mpi_pre_smp_passthrough; 128 static mps_user_f mpi_pre_config; 129 static mps_user_f mpi_pre_sas_io_unit_control; 130 131 static int mps_user_read_cfg_header(struct mps_softc *, 132 struct mps_cfg_page_req *); 133 static int mps_user_read_cfg_page(struct mps_softc *, 134 struct mps_cfg_page_req *, void *); 135 static int mps_user_read_extcfg_header(struct mps_softc *, 136 struct mps_ext_cfg_page_req *); 137 static int mps_user_read_extcfg_page(struct mps_softc *, 138 struct mps_ext_cfg_page_req *, void *); 139 static int mps_user_write_cfg_page(struct mps_softc *, 140 struct mps_cfg_page_req *, void *); 141 static int mps_user_setup_request(struct mps_command *, 142 struct mps_usr_command *); 143 static int mps_user_command(struct mps_softc *, struct mps_usr_command *); 144 145 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data); 146 static void mps_user_get_adapter_data(struct mps_softc *sc, 147 mps_adapter_data_t *data); 148 static void mps_user_read_pci_info(struct mps_softc *sc, 149 mps_pci_info_t *data); 150 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc, 151 uint32_t unique_id); 152 static int mps_post_fw_diag_buffer(struct mps_softc *sc, 153 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 154 static int mps_release_fw_diag_buffer(struct mps_softc *sc, 155 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 156 uint32_t diag_type); 157 static int mps_diag_register(struct mps_softc *sc, 158 mps_fw_diag_register_t *diag_register, uint32_t *return_code); 159 static int mps_diag_unregister(struct mps_softc *sc, 160 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 161 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 162 uint32_t *return_code); 163 static int mps_diag_read_buffer(struct mps_softc *sc, 164 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 165 uint32_t *return_code); 166 static int mps_diag_release(struct mps_softc *sc, 167 mps_fw_diag_release_t *diag_release, uint32_t *return_code); 168 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action, 169 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 170 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data); 171 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data); 172 static void mps_user_event_enable(struct mps_softc *sc, 173 mps_event_enable_t *data); 174 static int mps_user_event_report(struct mps_softc *sc, 175 mps_event_report_t *data); 176 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data); 177 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data); 178 179 static MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls"); 180 181 /* Macros from compat/freebsd32/freebsd32.h */ 182 #define PTRIN(v) (void *)(uintptr_t)(v) 183 #define PTROUT(v) (uint32_t)(uintptr_t)(v) 184 185 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0) 186 #define PTRIN_CP(src,dst,fld) \ 187 do { (dst).fld = PTRIN((src).fld); } while (0) 188 #define PTROUT_CP(src,dst,fld) \ 189 do { (dst).fld = PTROUT((src).fld); } while (0) 190 191 int 192 mps_attach_user(struct mps_softc *sc) 193 { 194 int unit; 195 196 unit = device_get_unit(sc->mps_dev); 197 sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 198 "mps%d", unit); 199 if (sc->mps_cdev == NULL) { 200 return (ENOMEM); 201 } 202 sc->mps_cdev->si_drv1 = sc; 203 return (0); 204 } 205 206 void 207 mps_detach_user(struct mps_softc *sc) 208 { 209 210 /* XXX: do a purge of pending requests? */ 211 if (sc->mps_cdev != NULL) 212 destroy_dev(sc->mps_cdev); 213 } 214 215 static int 216 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td) 217 { 218 219 return (0); 220 } 221 222 static int 223 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td) 224 { 225 226 return (0); 227 } 228 229 static int 230 mps_user_read_cfg_header(struct mps_softc *sc, 231 struct mps_cfg_page_req *page_req) 232 { 233 MPI2_CONFIG_PAGE_HEADER *hdr; 234 struct mps_config_params params; 235 int error; 236 237 hdr = ¶ms.hdr.Struct; 238 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 239 params.page_address = le32toh(page_req->page_address); 240 hdr->PageVersion = 0; 241 hdr->PageLength = 0; 242 hdr->PageNumber = page_req->header.PageNumber; 243 hdr->PageType = page_req->header.PageType; 244 params.buffer = NULL; 245 params.length = 0; 246 params.callback = NULL; 247 248 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 249 /* 250 * Leave the request. Without resetting the chip, it's 251 * still owned by it and we'll just get into trouble 252 * freeing it now. Mark it as abandoned so that if it 253 * shows up later it can be freed. 254 */ 255 mps_printf(sc, "read_cfg_header timed out\n"); 256 return (ETIMEDOUT); 257 } 258 259 page_req->ioc_status = htole16(params.status); 260 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 261 MPI2_IOCSTATUS_SUCCESS) { 262 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 263 } 264 265 return (0); 266 } 267 268 static int 269 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req, 270 void *buf) 271 { 272 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 273 struct mps_config_params params; 274 int error; 275 276 reqhdr = buf; 277 hdr = ¶ms.hdr.Struct; 278 hdr->PageVersion = reqhdr->PageVersion; 279 hdr->PageLength = reqhdr->PageLength; 280 hdr->PageNumber = reqhdr->PageNumber; 281 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 282 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 283 params.page_address = le32toh(page_req->page_address); 284 params.buffer = buf; 285 params.length = le32toh(page_req->len); 286 params.callback = NULL; 287 288 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 289 mps_printf(sc, "mps_user_read_cfg_page timed out\n"); 290 return (ETIMEDOUT); 291 } 292 293 page_req->ioc_status = htole16(params.status); 294 return (0); 295 } 296 297 static int 298 mps_user_read_extcfg_header(struct mps_softc *sc, 299 struct mps_ext_cfg_page_req *ext_page_req) 300 { 301 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 302 struct mps_config_params params; 303 int error; 304 305 hdr = ¶ms.hdr.Ext; 306 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 307 hdr->PageVersion = ext_page_req->header.PageVersion; 308 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 309 hdr->ExtPageLength = 0; 310 hdr->PageNumber = ext_page_req->header.PageNumber; 311 hdr->ExtPageType = ext_page_req->header.ExtPageType; 312 params.page_address = le32toh(ext_page_req->page_address); 313 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 314 /* 315 * Leave the request. Without resetting the chip, it's 316 * still owned by it and we'll just get into trouble 317 * freeing it now. Mark it as abandoned so that if it 318 * shows up later it can be freed. 319 */ 320 mps_printf(sc, "mps_user_read_extcfg_header timed out\n"); 321 return (ETIMEDOUT); 322 } 323 324 ext_page_req->ioc_status = htole16(params.status); 325 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 326 MPI2_IOCSTATUS_SUCCESS) { 327 ext_page_req->header.PageVersion = hdr->PageVersion; 328 ext_page_req->header.PageNumber = hdr->PageNumber; 329 ext_page_req->header.PageType = hdr->PageType; 330 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 331 ext_page_req->header.ExtPageType = hdr->ExtPageType; 332 } 333 334 return (0); 335 } 336 337 static int 338 mps_user_read_extcfg_page(struct mps_softc *sc, 339 struct mps_ext_cfg_page_req *ext_page_req, void *buf) 340 { 341 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 342 struct mps_config_params params; 343 int error; 344 345 reqhdr = buf; 346 hdr = ¶ms.hdr.Ext; 347 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 348 params.page_address = le32toh(ext_page_req->page_address); 349 hdr->PageVersion = reqhdr->PageVersion; 350 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 351 hdr->PageNumber = reqhdr->PageNumber; 352 hdr->ExtPageType = reqhdr->ExtPageType; 353 hdr->ExtPageLength = reqhdr->ExtPageLength; 354 params.buffer = buf; 355 params.length = le32toh(ext_page_req->len); 356 params.callback = NULL; 357 358 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 359 mps_printf(sc, "mps_user_read_extcfg_page timed out\n"); 360 return (ETIMEDOUT); 361 } 362 363 ext_page_req->ioc_status = htole16(params.status); 364 return (0); 365 } 366 367 static int 368 mps_user_write_cfg_page(struct mps_softc *sc, 369 struct mps_cfg_page_req *page_req, void *buf) 370 { 371 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 372 struct mps_config_params params; 373 u_int hdr_attr; 374 int error; 375 376 reqhdr = buf; 377 hdr = ¶ms.hdr.Struct; 378 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 379 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 380 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 381 mps_printf(sc, "page type 0x%x not changeable\n", 382 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 383 return (EINVAL); 384 } 385 386 /* 387 * There isn't any point in restoring stripped out attributes 388 * if you then mask them going down to issue the request. 389 */ 390 391 hdr->PageVersion = reqhdr->PageVersion; 392 hdr->PageLength = reqhdr->PageLength; 393 hdr->PageNumber = reqhdr->PageNumber; 394 hdr->PageType = reqhdr->PageType; 395 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 396 params.page_address = le32toh(page_req->page_address); 397 params.buffer = buf; 398 params.length = le32toh(page_req->len); 399 params.callback = NULL; 400 401 if ((error = mps_write_config_page(sc, ¶ms)) != 0) { 402 mps_printf(sc, "mps_write_cfg_page timed out\n"); 403 return (ETIMEDOUT); 404 } 405 406 page_req->ioc_status = htole16(params.status); 407 return (0); 408 } 409 410 void 411 mpi_init_sge(struct mps_command *cm, void *req, void *sge) 412 { 413 int off, space; 414 415 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4; 416 off = (uintptr_t)sge - (uintptr_t)req; 417 418 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 419 req, sge, off, space)); 420 421 cm->cm_sge = sge; 422 cm->cm_sglsize = space - off; 423 } 424 425 /* 426 * Prepare the mps_command for an IOC_FACTS request. 427 */ 428 static int 429 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd) 430 { 431 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 432 MPI2_IOC_FACTS_REPLY *rpl; 433 434 if (cmd->req_len != sizeof *req) 435 return (EINVAL); 436 if (cmd->rpl_len != sizeof *rpl) 437 return (EINVAL); 438 439 cm->cm_sge = NULL; 440 cm->cm_sglsize = 0; 441 return (0); 442 } 443 444 /* 445 * Prepare the mps_command for a PORT_FACTS request. 446 */ 447 static int 448 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd) 449 { 450 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 451 MPI2_PORT_FACTS_REPLY *rpl; 452 453 if (cmd->req_len != sizeof *req) 454 return (EINVAL); 455 if (cmd->rpl_len != sizeof *rpl) 456 return (EINVAL); 457 458 cm->cm_sge = NULL; 459 cm->cm_sglsize = 0; 460 return (0); 461 } 462 463 /* 464 * Prepare the mps_command for a FW_DOWNLOAD request. 465 */ 466 static int 467 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd) 468 { 469 MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 470 MPI2_FW_DOWNLOAD_REPLY *rpl; 471 MPI2_FW_DOWNLOAD_TCSGE tc; 472 int error; 473 474 /* 475 * This code assumes there is room in the request's SGL for 476 * the TransactionContext plus at least a SGL chain element. 477 */ 478 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 479 480 if (cmd->req_len != sizeof *req) 481 return (EINVAL); 482 if (cmd->rpl_len != sizeof *rpl) 483 return (EINVAL); 484 485 if (cmd->len == 0) 486 return (EINVAL); 487 488 error = copyin(cmd->buf, cm->cm_data, cmd->len); 489 if (error != 0) 490 return (error); 491 492 mpi_init_sge(cm, req, &req->SGL); 493 bzero(&tc, sizeof tc); 494 495 /* 496 * For now, the F/W image must be provided in a single request. 497 */ 498 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 499 return (EINVAL); 500 if (req->TotalImageSize != cmd->len) 501 return (EINVAL); 502 503 /* 504 * The value of the first two elements is specified in the 505 * Fusion-MPT Message Passing Interface document. 506 */ 507 tc.ContextSize = 0; 508 tc.DetailsLength = 12; 509 tc.ImageOffset = 0; 510 tc.ImageSize = cmd->len; 511 512 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 513 514 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 515 } 516 517 /* 518 * Prepare the mps_command for a FW_UPLOAD request. 519 */ 520 static int 521 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd) 522 { 523 MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 524 MPI2_FW_UPLOAD_REPLY *rpl; 525 MPI2_FW_UPLOAD_TCSGE tc; 526 527 /* 528 * This code assumes there is room in the request's SGL for 529 * the TransactionContext plus at least a SGL chain element. 530 */ 531 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 532 533 if (cmd->req_len != sizeof *req) 534 return (EINVAL); 535 if (cmd->rpl_len != sizeof *rpl) 536 return (EINVAL); 537 538 mpi_init_sge(cm, req, &req->SGL); 539 bzero(&tc, sizeof tc); 540 541 /* 542 * The value of the first two elements is specified in the 543 * Fusion-MPT Message Passing Interface document. 544 */ 545 tc.ContextSize = 0; 546 tc.DetailsLength = 12; 547 /* 548 * XXX Is there any reason to fetch a partial image? I.e. to 549 * set ImageOffset to something other than 0? 550 */ 551 tc.ImageOffset = 0; 552 tc.ImageSize = cmd->len; 553 554 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 555 556 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 557 } 558 559 /* 560 * Prepare the mps_command for a SATA_PASSTHROUGH request. 561 */ 562 static int 563 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 564 { 565 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 566 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 567 568 if (cmd->req_len != sizeof *req) 569 return (EINVAL); 570 if (cmd->rpl_len != sizeof *rpl) 571 return (EINVAL); 572 573 mpi_init_sge(cm, req, &req->SGL); 574 return (0); 575 } 576 577 /* 578 * Prepare the mps_command for a SMP_PASSTHROUGH request. 579 */ 580 static int 581 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 582 { 583 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 584 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 585 586 if (cmd->req_len != sizeof *req) 587 return (EINVAL); 588 if (cmd->rpl_len != sizeof *rpl) 589 return (EINVAL); 590 591 mpi_init_sge(cm, req, &req->SGL); 592 return (0); 593 } 594 595 /* 596 * Prepare the mps_command for a CONFIG request. 597 */ 598 static int 599 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd) 600 { 601 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 602 MPI2_CONFIG_REPLY *rpl; 603 604 if (cmd->req_len != sizeof *req) 605 return (EINVAL); 606 if (cmd->rpl_len != sizeof *rpl) 607 return (EINVAL); 608 609 mpi_init_sge(cm, req, &req->PageBufferSGE); 610 return (0); 611 } 612 613 /* 614 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 615 */ 616 static int 617 mpi_pre_sas_io_unit_control(struct mps_command *cm, 618 struct mps_usr_command *cmd) 619 { 620 621 cm->cm_sge = NULL; 622 cm->cm_sglsize = 0; 623 return (0); 624 } 625 626 /* 627 * A set of functions to prepare an mps_command for the various 628 * supported requests. 629 */ 630 struct mps_user_func { 631 U8 Function; 632 mps_user_f *f_pre; 633 } mps_user_func_list[] = { 634 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 635 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 636 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 637 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 638 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 639 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 640 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 641 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 642 { 0xFF, NULL } /* list end */ 643 }; 644 645 static int 646 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd) 647 { 648 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 649 struct mps_user_func *f; 650 651 for (f = mps_user_func_list; f->f_pre != NULL; f++) { 652 if (hdr->Function == f->Function) 653 return (f->f_pre(cm, cmd)); 654 } 655 return (EINVAL); 656 } 657 658 static int 659 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd) 660 { 661 MPI2_REQUEST_HEADER *hdr; 662 MPI2_DEFAULT_REPLY *rpl; 663 void *buf = NULL; 664 struct mps_command *cm = NULL; 665 int err = 0; 666 int sz; 667 668 mps_lock(sc); 669 cm = mps_alloc_command(sc); 670 671 if (cm == NULL) { 672 mps_printf(sc, "%s: no mps requests\n", __func__); 673 err = ENOMEM; 674 goto Ret; 675 } 676 mps_unlock(sc); 677 678 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 679 680 mps_dprint(sc, MPS_USER, "%s: req %p %d rpl %p %d\n", __func__, 681 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 682 683 if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) { 684 err = EINVAL; 685 goto RetFreeUnlocked; 686 } 687 err = copyin(cmd->req, hdr, cmd->req_len); 688 if (err != 0) 689 goto RetFreeUnlocked; 690 691 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 692 hdr->Function, hdr->MsgFlags); 693 694 if (cmd->len > 0) { 695 buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO); 696 if(!buf) { 697 mps_printf(sc, "Cannot allocate memory %s %d\n", 698 __func__, __LINE__); 699 return (ENOMEM); 700 } 701 cm->cm_data = buf; 702 cm->cm_length = cmd->len; 703 } else { 704 cm->cm_data = NULL; 705 cm->cm_length = 0; 706 } 707 708 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE; 709 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 710 711 err = mps_user_setup_request(cm, cmd); 712 if (err == EINVAL) { 713 mps_printf(sc, "%s: unsupported parameter or unsupported " 714 "function in request (function = 0x%X)\n", __func__, 715 hdr->Function); 716 } 717 if (err != 0) 718 goto RetFreeUnlocked; 719 720 mps_lock(sc); 721 err = mps_wait_command(sc, cm, 60, CAN_SLEEP); 722 723 if (err) { 724 mps_printf(sc, "%s: invalid request: error %d\n", 725 __func__, err); 726 goto Ret; 727 } 728 729 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 730 if (rpl != NULL) 731 sz = rpl->MsgLength * 4; 732 else 733 sz = 0; 734 735 if (sz > cmd->rpl_len) { 736 mps_printf(sc, "%s: user reply buffer (%d) smaller than " 737 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 738 sz = cmd->rpl_len; 739 } 740 741 mps_unlock(sc); 742 copyout(rpl, cmd->rpl, sz); 743 if (buf != NULL) 744 copyout(buf, cmd->buf, cmd->len); 745 mps_dprint(sc, MPS_USER, "%s: reply size %d\n", __func__, sz); 746 747 RetFreeUnlocked: 748 mps_lock(sc); 749 if (cm != NULL) 750 mps_free_command(sc, cm); 751 Ret: 752 mps_unlock(sc); 753 if (buf != NULL) 754 free(buf, M_MPSUSER); 755 return (err); 756 } 757 758 static int 759 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data) 760 { 761 MPI2_REQUEST_HEADER *hdr, tmphdr; 762 MPI2_DEFAULT_REPLY *rpl; 763 struct mps_command *cm = NULL; 764 int err = 0, dir = 0, sz; 765 uint8_t function = 0; 766 u_int sense_len; 767 768 /* 769 * Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY 770 * bit to denote that a passthru is being processed. 771 */ 772 mps_lock(sc); 773 if (sc->mps_flags & MPS_FLAGS_BUSY) { 774 mps_dprint(sc, MPS_USER, "%s: Only one passthru command " 775 "allowed at a single time.", __func__); 776 mps_unlock(sc); 777 return (EBUSY); 778 } 779 sc->mps_flags |= MPS_FLAGS_BUSY; 780 mps_unlock(sc); 781 782 /* 783 * Do some validation on data direction. Valid cases are: 784 * 1) DataSize is 0 and direction is NONE 785 * 2) DataSize is non-zero and one of: 786 * a) direction is READ or 787 * b) direction is WRITE or 788 * c) direction is BOTH and DataOutSize is non-zero 789 * If valid and the direction is BOTH, change the direction to READ. 790 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 791 */ 792 if (((data->DataSize == 0) && 793 (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) || 794 ((data->DataSize != 0) && 795 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) || 796 (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) || 797 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) && 798 (data->DataOutSize != 0))))) { 799 if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) 800 data->DataDirection = MPS_PASS_THRU_DIRECTION_READ; 801 else 802 data->DataOutSize = 0; 803 } else 804 return (EINVAL); 805 806 mps_dprint(sc, MPS_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 807 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 808 data->PtrRequest, data->RequestSize, data->PtrReply, 809 data->ReplySize, data->PtrData, data->DataSize, 810 data->PtrDataOut, data->DataOutSize, data->DataDirection); 811 812 /* 813 * copy in the header so we know what we're dealing with before we 814 * commit to allocating a command for it. 815 */ 816 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 817 if (err != 0) 818 goto RetFreeUnlocked; 819 820 if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) { 821 err = EINVAL; 822 goto RetFreeUnlocked; 823 } 824 825 function = tmphdr.Function; 826 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 827 function, tmphdr.MsgFlags); 828 829 /* 830 * Handle a passthru TM request. 831 */ 832 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 833 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 834 835 mps_lock(sc); 836 cm = mpssas_alloc_tm(sc); 837 if (cm == NULL) { 838 err = EINVAL; 839 goto Ret; 840 } 841 842 /* Copy the header in. Only a small fixup is needed. */ 843 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 844 bcopy(&tmphdr, task, data->RequestSize); 845 task->TaskMID = cm->cm_desc.Default.SMID; 846 847 cm->cm_data = NULL; 848 cm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 849 cm->cm_complete = NULL; 850 cm->cm_complete_data = NULL; 851 852 err = mps_wait_command(sc, cm, 30, CAN_SLEEP); 853 854 if (err != 0) { 855 err = EIO; 856 mps_dprint(sc, MPS_FAULT, "%s: task management failed", 857 __func__); 858 } 859 /* 860 * Copy the reply data and sense data to user space. 861 */ 862 if (cm->cm_reply != NULL) { 863 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 864 sz = rpl->MsgLength * 4; 865 866 if (sz > data->ReplySize) { 867 mps_printf(sc, "%s: user reply buffer (%d) " 868 "smaller than returned buffer (%d)\n", 869 __func__, data->ReplySize, sz); 870 } 871 mps_unlock(sc); 872 copyout(cm->cm_reply, PTRIN(data->PtrReply), 873 data->ReplySize); 874 mps_lock(sc); 875 } 876 mpssas_free_tm(sc, cm); 877 goto Ret; 878 } 879 880 mps_lock(sc); 881 cm = mps_alloc_command(sc); 882 883 if (cm == NULL) { 884 mps_printf(sc, "%s: no mps requests\n", __func__); 885 err = ENOMEM; 886 goto Ret; 887 } 888 mps_unlock(sc); 889 890 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 891 bcopy(&tmphdr, hdr, data->RequestSize); 892 893 /* 894 * Do some checking to make sure the IOCTL request contains a valid 895 * request. Then set the SGL info. 896 */ 897 mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 898 899 /* 900 * Set up for read, write or both. From check above, DataOutSize will 901 * be 0 if direction is READ or WRITE, but it will have some non-zero 902 * value if the direction is BOTH. So, just use the biggest size to get 903 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 904 * up; the first is for the request and the second will contain the 905 * response data. cm_out_len needs to be set here and this will be used 906 * when the SGLs are set up. 907 */ 908 cm->cm_data = NULL; 909 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 910 cm->cm_out_len = data->DataOutSize; 911 cm->cm_flags = 0; 912 if (cm->cm_length != 0) { 913 cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK | 914 M_ZERO); 915 if (cm->cm_data == NULL) { 916 mps_dprint(sc, MPS_FAULT, "%s: alloc failed for IOCTL " 917 "passthru length %d\n", __func__, cm->cm_length); 918 } else { 919 cm->cm_flags = MPS_CM_FLAGS_DATAIN; 920 if (data->DataOutSize) { 921 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 922 err = copyin(PTRIN(data->PtrDataOut), 923 cm->cm_data, data->DataOutSize); 924 } else if (data->DataDirection == 925 MPS_PASS_THRU_DIRECTION_WRITE) { 926 cm->cm_flags = MPS_CM_FLAGS_DATAOUT; 927 err = copyin(PTRIN(data->PtrData), 928 cm->cm_data, data->DataSize); 929 } 930 if (err != 0) 931 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 932 "IOCTL data from user space\n", __func__); 933 } 934 } 935 cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE; 936 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 937 938 /* 939 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 940 * uses SCSI IO descriptor. 941 */ 942 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 943 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 944 MPI2_SCSI_IO_REQUEST *scsi_io_req; 945 946 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 947 /* 948 * Put SGE for data and data_out buffer at the end of 949 * scsi_io_request message header (64 bytes in total). 950 * Following above SGEs, the residual space will be used by 951 * sense data. 952 */ 953 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 954 64); 955 scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 956 957 /* 958 * Set SGLOffset0 value. This is the number of dwords that SGL 959 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 960 */ 961 scsi_io_req->SGLOffset0 = 24; 962 963 /* 964 * Setup descriptor info. RAID passthrough must use the 965 * default request descriptor which is already set, so if this 966 * is a SCSI IO request, change the descriptor to SCSI IO. 967 * Also, if this is a SCSI IO request, handle the reply in the 968 * mpssas_scsio_complete function. 969 */ 970 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 971 cm->cm_desc.SCSIIO.RequestFlags = 972 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 973 cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle; 974 975 /* 976 * Make sure the DevHandle is not 0 because this is a 977 * likely error. 978 */ 979 if (scsi_io_req->DevHandle == 0) { 980 err = EINVAL; 981 goto RetFreeUnlocked; 982 } 983 } 984 } 985 986 mps_lock(sc); 987 988 err = mps_wait_command(sc, cm, 30, CAN_SLEEP); 989 990 if (err) { 991 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 992 err); 993 mps_unlock(sc); 994 goto RetFreeUnlocked; 995 } 996 997 /* 998 * Sync the DMA data, if any. Then copy the data to user space. 999 */ 1000 if (cm->cm_data != NULL) { 1001 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 1002 dir = BUS_DMASYNC_POSTREAD; 1003 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 1004 dir = BUS_DMASYNC_POSTWRITE; 1005 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1006 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1007 1008 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 1009 mps_unlock(sc); 1010 err = copyout(cm->cm_data, 1011 PTRIN(data->PtrData), data->DataSize); 1012 mps_lock(sc); 1013 if (err != 0) 1014 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 1015 "IOCTL data to user space\n", __func__); 1016 } 1017 } 1018 1019 /* 1020 * Copy the reply data and sense data to user space. 1021 */ 1022 if (cm->cm_reply != NULL) { 1023 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1024 sz = rpl->MsgLength * 4; 1025 1026 if (sz > data->ReplySize) { 1027 mps_printf(sc, "%s: user reply buffer (%d) smaller " 1028 "than returned buffer (%d)\n", __func__, 1029 data->ReplySize, sz); 1030 } 1031 mps_unlock(sc); 1032 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1033 mps_lock(sc); 1034 1035 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1036 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1037 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1038 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1039 sense_len = 1040 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->SenseCount)), 1041 sizeof(struct scsi_sense_data)); 1042 mps_unlock(sc); 1043 copyout(cm->cm_sense, cm->cm_req + 64, sense_len); 1044 mps_lock(sc); 1045 } 1046 } 1047 } 1048 mps_unlock(sc); 1049 1050 RetFreeUnlocked: 1051 mps_lock(sc); 1052 1053 if (cm != NULL) { 1054 if (cm->cm_data) 1055 free(cm->cm_data, M_MPSUSER); 1056 mps_free_command(sc, cm); 1057 } 1058 Ret: 1059 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1060 mps_unlock(sc); 1061 1062 return (err); 1063 } 1064 1065 static void 1066 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data) 1067 { 1068 Mpi2ConfigReply_t mpi_reply; 1069 Mpi2BiosPage3_t config_page; 1070 1071 /* 1072 * Use the PCI interface functions to get the Bus, Device, and Function 1073 * information. 1074 */ 1075 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev); 1076 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev); 1077 data->PciInformation.u.bits.FunctionNumber = 1078 pci_get_function(sc->mps_dev); 1079 1080 /* 1081 * Get the FW version that should already be saved in IOC Facts. 1082 */ 1083 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1084 1085 /* 1086 * General device info. 1087 */ 1088 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2; 1089 if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE) 1090 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200; 1091 data->PCIDeviceHwId = pci_get_device(sc->mps_dev); 1092 data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1); 1093 data->SubSystemId = pci_get_subdevice(sc->mps_dev); 1094 data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev); 1095 1096 /* 1097 * Get the driver version. 1098 */ 1099 strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION); 1100 1101 /* 1102 * Need to get BIOS Config Page 3 for the BIOS Version. 1103 */ 1104 data->BiosVersion = 0; 1105 mps_lock(sc); 1106 if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1107 printf("%s: Error while retrieving BIOS Version\n", __func__); 1108 else 1109 data->BiosVersion = config_page.BiosVersion; 1110 mps_unlock(sc); 1111 } 1112 1113 static void 1114 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data) 1115 { 1116 int i; 1117 1118 /* 1119 * Use the PCI interface functions to get the Bus, Device, and Function 1120 * information. 1121 */ 1122 data->BusNumber = pci_get_bus(sc->mps_dev); 1123 data->DeviceNumber = pci_get_slot(sc->mps_dev); 1124 data->FunctionNumber = pci_get_function(sc->mps_dev); 1125 1126 /* 1127 * Now get the interrupt vector and the pci header. The vector can 1128 * only be 0 right now. The header is the first 256 bytes of config 1129 * space. 1130 */ 1131 data->InterruptVector = 0; 1132 for (i = 0; i < sizeof (data->PciHeader); i++) { 1133 data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1); 1134 } 1135 } 1136 1137 static uint8_t 1138 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id) 1139 { 1140 uint8_t index; 1141 1142 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1143 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1144 return (index); 1145 } 1146 } 1147 1148 return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND); 1149 } 1150 1151 static int 1152 mps_post_fw_diag_buffer(struct mps_softc *sc, 1153 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1154 { 1155 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1156 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1157 struct mps_command *cm = NULL; 1158 int i, status; 1159 1160 /* 1161 * If buffer is not enabled, just leave. 1162 */ 1163 *return_code = MPS_FW_DIAG_ERROR_POST_FAILED; 1164 if (!pBuffer->enabled) { 1165 return (MPS_DIAG_FAILURE); 1166 } 1167 1168 /* 1169 * Clear some flags initially. 1170 */ 1171 pBuffer->force_release = FALSE; 1172 pBuffer->valid_data = FALSE; 1173 pBuffer->owned_by_firmware = FALSE; 1174 1175 /* 1176 * Get a command. 1177 */ 1178 cm = mps_alloc_command(sc); 1179 if (cm == NULL) { 1180 mps_printf(sc, "%s: no mps requests\n", __func__); 1181 return (MPS_DIAG_FAILURE); 1182 } 1183 1184 /* 1185 * Build the request for releasing the FW Diag Buffer and send it. 1186 */ 1187 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1188 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1189 req->BufferType = pBuffer->buffer_type; 1190 req->ExtendedType = pBuffer->extended_type; 1191 req->BufferLength = pBuffer->size; 1192 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1193 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1194 mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1195 cm->cm_data = NULL; 1196 cm->cm_length = 0; 1197 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1198 cm->cm_complete_data = NULL; 1199 1200 /* 1201 * Send command synchronously. 1202 */ 1203 status = mps_wait_command(sc, cm, 30, CAN_SLEEP); 1204 if (status) { 1205 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1206 status); 1207 status = MPS_DIAG_FAILURE; 1208 goto done; 1209 } 1210 1211 /* 1212 * Process POST reply. 1213 */ 1214 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1215 if (reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) { 1216 status = MPS_DIAG_FAILURE; 1217 mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed " 1218 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1219 "TransferLength = 0x%x\n", __func__, reply->IOCStatus, 1220 reply->IOCLogInfo, reply->TransferLength); 1221 goto done; 1222 } 1223 1224 /* 1225 * Post was successful. 1226 */ 1227 pBuffer->valid_data = TRUE; 1228 pBuffer->owned_by_firmware = TRUE; 1229 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1230 status = MPS_DIAG_SUCCESS; 1231 1232 done: 1233 mps_free_command(sc, cm); 1234 return (status); 1235 } 1236 1237 static int 1238 mps_release_fw_diag_buffer(struct mps_softc *sc, 1239 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1240 uint32_t diag_type) 1241 { 1242 MPI2_DIAG_RELEASE_REQUEST *req; 1243 MPI2_DIAG_RELEASE_REPLY *reply; 1244 struct mps_command *cm = NULL; 1245 int status; 1246 1247 /* 1248 * If buffer is not enabled, just leave. 1249 */ 1250 *return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED; 1251 if (!pBuffer->enabled) { 1252 mps_dprint(sc, MPS_USER, "%s: This buffer type is not " 1253 "supported by the IOC", __func__); 1254 return (MPS_DIAG_FAILURE); 1255 } 1256 1257 /* 1258 * Clear some flags initially. 1259 */ 1260 pBuffer->force_release = FALSE; 1261 pBuffer->valid_data = FALSE; 1262 pBuffer->owned_by_firmware = FALSE; 1263 1264 /* 1265 * Get a command. 1266 */ 1267 cm = mps_alloc_command(sc); 1268 if (cm == NULL) { 1269 mps_printf(sc, "%s: no mps requests\n", __func__); 1270 return (MPS_DIAG_FAILURE); 1271 } 1272 1273 /* 1274 * Build the request for releasing the FW Diag Buffer and send it. 1275 */ 1276 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1277 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1278 req->BufferType = pBuffer->buffer_type; 1279 cm->cm_data = NULL; 1280 cm->cm_length = 0; 1281 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1282 cm->cm_complete_data = NULL; 1283 1284 /* 1285 * Send command synchronously. 1286 */ 1287 status = mps_wait_command(sc, cm, 30, CAN_SLEEP); 1288 if (status) { 1289 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1290 status); 1291 status = MPS_DIAG_FAILURE; 1292 goto done; 1293 } 1294 1295 /* 1296 * Process RELEASE reply. 1297 */ 1298 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1299 if ((reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) || 1300 pBuffer->owned_by_firmware) { 1301 status = MPS_DIAG_FAILURE; 1302 mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer " 1303 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1304 __func__, reply->IOCStatus, reply->IOCLogInfo); 1305 goto done; 1306 } 1307 1308 /* 1309 * Release was successful. 1310 */ 1311 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1312 status = MPS_DIAG_SUCCESS; 1313 1314 /* 1315 * If this was for an UNREGISTER diag type command, clear the unique ID. 1316 */ 1317 if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) { 1318 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1319 } 1320 1321 done: 1322 return (status); 1323 } 1324 1325 static int 1326 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register, 1327 uint32_t *return_code) 1328 { 1329 mps_fw_diagnostic_buffer_t *pBuffer; 1330 uint8_t extended_type, buffer_type, i; 1331 uint32_t buffer_size; 1332 uint32_t unique_id; 1333 int status; 1334 1335 extended_type = diag_register->ExtendedType; 1336 buffer_type = diag_register->BufferType; 1337 buffer_size = diag_register->RequestedBufferSize; 1338 unique_id = diag_register->UniqueId; 1339 1340 /* 1341 * Check for valid buffer type 1342 */ 1343 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1344 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1345 return (MPS_DIAG_FAILURE); 1346 } 1347 1348 /* 1349 * Get the current buffer and look up the unique ID. The unique ID 1350 * should not be found. If it is, the ID is already in use. 1351 */ 1352 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1353 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1354 if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1355 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1356 return (MPS_DIAG_FAILURE); 1357 } 1358 1359 /* 1360 * The buffer's unique ID should not be registered yet, and the given 1361 * unique ID cannot be 0. 1362 */ 1363 if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) || 1364 (unique_id == MPS_FW_DIAG_INVALID_UID)) { 1365 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1366 return (MPS_DIAG_FAILURE); 1367 } 1368 1369 /* 1370 * If this buffer is already posted as immediate, just change owner. 1371 */ 1372 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1373 (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) { 1374 pBuffer->immediate = FALSE; 1375 pBuffer->unique_id = unique_id; 1376 return (MPS_DIAG_SUCCESS); 1377 } 1378 1379 /* 1380 * Post a new buffer after checking if it's enabled. The DMA buffer 1381 * that is allocated will be contiguous (nsegments = 1). 1382 */ 1383 if (!pBuffer->enabled) { 1384 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1385 return (MPS_DIAG_FAILURE); 1386 } 1387 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1388 1, 0, /* algnmnt, boundary */ 1389 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1390 BUS_SPACE_MAXADDR, /* highaddr */ 1391 NULL, NULL, /* filter, filterarg */ 1392 buffer_size, /* maxsize */ 1393 1, /* nsegments */ 1394 buffer_size, /* maxsegsize */ 1395 0, /* flags */ 1396 NULL, NULL, /* lockfunc, lockarg */ 1397 &sc->fw_diag_dmat)) { 1398 device_printf(sc->mps_dev, "Cannot allocate FW diag buffer DMA " 1399 "tag\n"); 1400 return (ENOMEM); 1401 } 1402 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1403 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1404 device_printf(sc->mps_dev, "Cannot allocate FW diag buffer " 1405 "memory\n"); 1406 return (ENOMEM); 1407 } 1408 bzero(sc->fw_diag_buffer, buffer_size); 1409 bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer, 1410 buffer_size, mps_memaddr_cb, &sc->fw_diag_busaddr, 0); 1411 pBuffer->size = buffer_size; 1412 1413 /* 1414 * Copy the given info to the diag buffer and post the buffer. 1415 */ 1416 pBuffer->buffer_type = buffer_type; 1417 pBuffer->immediate = FALSE; 1418 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1419 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1420 i++) { 1421 pBuffer->product_specific[i] = 1422 diag_register->ProductSpecific[i]; 1423 } 1424 } 1425 pBuffer->extended_type = extended_type; 1426 pBuffer->unique_id = unique_id; 1427 status = mps_post_fw_diag_buffer(sc, pBuffer, return_code); 1428 1429 /* 1430 * In case there was a failure, free the DMA buffer. 1431 */ 1432 if (status == MPS_DIAG_FAILURE) { 1433 if (sc->fw_diag_busaddr != 0) 1434 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1435 if (sc->fw_diag_buffer != NULL) 1436 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1437 sc->fw_diag_map); 1438 if (sc->fw_diag_dmat != NULL) 1439 bus_dma_tag_destroy(sc->fw_diag_dmat); 1440 } 1441 1442 return (status); 1443 } 1444 1445 static int 1446 mps_diag_unregister(struct mps_softc *sc, 1447 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1448 { 1449 mps_fw_diagnostic_buffer_t *pBuffer; 1450 uint8_t i; 1451 uint32_t unique_id; 1452 int status; 1453 1454 unique_id = diag_unregister->UniqueId; 1455 1456 /* 1457 * Get the current buffer and look up the unique ID. The unique ID 1458 * should be there. 1459 */ 1460 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1461 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1462 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1463 return (MPS_DIAG_FAILURE); 1464 } 1465 1466 pBuffer = &sc->fw_diag_buffer_list[i]; 1467 1468 /* 1469 * Try to release the buffer from FW before freeing it. If release 1470 * fails, don't free the DMA buffer in case FW tries to access it 1471 * later. If buffer is not owned by firmware, can't release it. 1472 */ 1473 if (!pBuffer->owned_by_firmware) { 1474 status = MPS_DIAG_SUCCESS; 1475 } else { 1476 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1477 MPS_FW_DIAG_TYPE_UNREGISTER); 1478 } 1479 1480 /* 1481 * At this point, return the current status no matter what happens with 1482 * the DMA buffer. 1483 */ 1484 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1485 if (status == MPS_DIAG_SUCCESS) { 1486 if (sc->fw_diag_busaddr != 0) 1487 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1488 if (sc->fw_diag_buffer != NULL) 1489 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1490 sc->fw_diag_map); 1491 if (sc->fw_diag_dmat != NULL) 1492 bus_dma_tag_destroy(sc->fw_diag_dmat); 1493 } 1494 1495 return (status); 1496 } 1497 1498 static int 1499 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 1500 uint32_t *return_code) 1501 { 1502 mps_fw_diagnostic_buffer_t *pBuffer; 1503 uint8_t i; 1504 uint32_t unique_id; 1505 1506 unique_id = diag_query->UniqueId; 1507 1508 /* 1509 * If ID is valid, query on ID. 1510 * If ID is invalid, query on buffer type. 1511 */ 1512 if (unique_id == MPS_FW_DIAG_INVALID_UID) { 1513 i = diag_query->BufferType; 1514 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1515 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1516 return (MPS_DIAG_FAILURE); 1517 } 1518 } else { 1519 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1520 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1521 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1522 return (MPS_DIAG_FAILURE); 1523 } 1524 } 1525 1526 /* 1527 * Fill query structure with the diag buffer info. 1528 */ 1529 pBuffer = &sc->fw_diag_buffer_list[i]; 1530 diag_query->BufferType = pBuffer->buffer_type; 1531 diag_query->ExtendedType = pBuffer->extended_type; 1532 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1533 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1534 i++) { 1535 diag_query->ProductSpecific[i] = 1536 pBuffer->product_specific[i]; 1537 } 1538 } 1539 diag_query->TotalBufferSize = pBuffer->size; 1540 diag_query->DriverAddedBufferSize = 0; 1541 diag_query->UniqueId = pBuffer->unique_id; 1542 diag_query->ApplicationFlags = 0; 1543 diag_query->DiagnosticFlags = 0; 1544 1545 /* 1546 * Set/Clear application flags 1547 */ 1548 if (pBuffer->immediate) { 1549 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED; 1550 } else { 1551 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED; 1552 } 1553 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1554 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID; 1555 } else { 1556 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID; 1557 } 1558 if (pBuffer->owned_by_firmware) { 1559 diag_query->ApplicationFlags |= 1560 MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1561 } else { 1562 diag_query->ApplicationFlags &= 1563 ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1564 } 1565 1566 return (MPS_DIAG_SUCCESS); 1567 } 1568 1569 static int 1570 mps_diag_read_buffer(struct mps_softc *sc, 1571 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1572 uint32_t *return_code) 1573 { 1574 mps_fw_diagnostic_buffer_t *pBuffer; 1575 uint8_t i, *pData; 1576 uint32_t unique_id; 1577 int status; 1578 1579 unique_id = diag_read_buffer->UniqueId; 1580 1581 /* 1582 * Get the current buffer and look up the unique ID. The unique ID 1583 * should be there. 1584 */ 1585 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1586 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1587 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1588 return (MPS_DIAG_FAILURE); 1589 } 1590 1591 pBuffer = &sc->fw_diag_buffer_list[i]; 1592 1593 /* 1594 * Make sure requested read is within limits 1595 */ 1596 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1597 pBuffer->size) { 1598 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1599 return (MPS_DIAG_FAILURE); 1600 } 1601 1602 /* 1603 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1604 * buffer that was allocated is one contiguous buffer. 1605 */ 1606 pData = (uint8_t *)(sc->fw_diag_buffer + 1607 diag_read_buffer->StartingOffset); 1608 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1609 return (MPS_DIAG_FAILURE); 1610 diag_read_buffer->Status = 0; 1611 1612 /* 1613 * Set or clear the Force Release flag. 1614 */ 1615 if (pBuffer->force_release) { 1616 diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1617 } else { 1618 diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1619 } 1620 1621 /* 1622 * If buffer is to be reregistered, make sure it's not already owned by 1623 * firmware first. 1624 */ 1625 status = MPS_DIAG_SUCCESS; 1626 if (!pBuffer->owned_by_firmware) { 1627 if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) { 1628 status = mps_post_fw_diag_buffer(sc, pBuffer, 1629 return_code); 1630 } 1631 } 1632 1633 return (status); 1634 } 1635 1636 static int 1637 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release, 1638 uint32_t *return_code) 1639 { 1640 mps_fw_diagnostic_buffer_t *pBuffer; 1641 uint8_t i; 1642 uint32_t unique_id; 1643 int status; 1644 1645 unique_id = diag_release->UniqueId; 1646 1647 /* 1648 * Get the current buffer and look up the unique ID. The unique ID 1649 * should be there. 1650 */ 1651 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1652 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1653 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1654 return (MPS_DIAG_FAILURE); 1655 } 1656 1657 pBuffer = &sc->fw_diag_buffer_list[i]; 1658 1659 /* 1660 * If buffer is not owned by firmware, it's already been released. 1661 */ 1662 if (!pBuffer->owned_by_firmware) { 1663 *return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED; 1664 return (MPS_DIAG_FAILURE); 1665 } 1666 1667 /* 1668 * Release the buffer. 1669 */ 1670 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1671 MPS_FW_DIAG_TYPE_RELEASE); 1672 return (status); 1673 } 1674 1675 static int 1676 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action, 1677 uint32_t length, uint32_t *return_code) 1678 { 1679 mps_fw_diag_register_t diag_register; 1680 mps_fw_diag_unregister_t diag_unregister; 1681 mps_fw_diag_query_t diag_query; 1682 mps_diag_read_buffer_t diag_read_buffer; 1683 mps_fw_diag_release_t diag_release; 1684 int status = MPS_DIAG_SUCCESS; 1685 uint32_t original_return_code; 1686 1687 original_return_code = *return_code; 1688 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1689 1690 switch (action) { 1691 case MPS_FW_DIAG_TYPE_REGISTER: 1692 if (!length) { 1693 *return_code = 1694 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1695 status = MPS_DIAG_FAILURE; 1696 break; 1697 } 1698 if (copyin(diag_action, &diag_register, 1699 sizeof(diag_register)) != 0) 1700 return (MPS_DIAG_FAILURE); 1701 status = mps_diag_register(sc, &diag_register, 1702 return_code); 1703 break; 1704 1705 case MPS_FW_DIAG_TYPE_UNREGISTER: 1706 if (length < sizeof(diag_unregister)) { 1707 *return_code = 1708 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1709 status = MPS_DIAG_FAILURE; 1710 break; 1711 } 1712 if (copyin(diag_action, &diag_unregister, 1713 sizeof(diag_unregister)) != 0) 1714 return (MPS_DIAG_FAILURE); 1715 status = mps_diag_unregister(sc, &diag_unregister, 1716 return_code); 1717 break; 1718 1719 case MPS_FW_DIAG_TYPE_QUERY: 1720 if (length < sizeof (diag_query)) { 1721 *return_code = 1722 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1723 status = MPS_DIAG_FAILURE; 1724 break; 1725 } 1726 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1727 != 0) 1728 return (MPS_DIAG_FAILURE); 1729 status = mps_diag_query(sc, &diag_query, return_code); 1730 if (status == MPS_DIAG_SUCCESS) 1731 if (copyout(&diag_query, diag_action, 1732 sizeof (diag_query)) != 0) 1733 return (MPS_DIAG_FAILURE); 1734 break; 1735 1736 case MPS_FW_DIAG_TYPE_READ_BUFFER: 1737 if (copyin(diag_action, &diag_read_buffer, 1738 sizeof(diag_read_buffer)) != 0) 1739 return (MPS_DIAG_FAILURE); 1740 if (length < diag_read_buffer.BytesToRead) { 1741 *return_code = 1742 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1743 status = MPS_DIAG_FAILURE; 1744 break; 1745 } 1746 status = mps_diag_read_buffer(sc, &diag_read_buffer, 1747 PTRIN(diag_read_buffer.PtrDataBuffer), 1748 return_code); 1749 if (status == MPS_DIAG_SUCCESS) { 1750 if (copyout(&diag_read_buffer, diag_action, 1751 sizeof(diag_read_buffer) - 1752 sizeof(diag_read_buffer.PtrDataBuffer)) != 1753 0) 1754 return (MPS_DIAG_FAILURE); 1755 } 1756 break; 1757 1758 case MPS_FW_DIAG_TYPE_RELEASE: 1759 if (length < sizeof(diag_release)) { 1760 *return_code = 1761 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1762 status = MPS_DIAG_FAILURE; 1763 break; 1764 } 1765 if (copyin(diag_action, &diag_release, 1766 sizeof(diag_release)) != 0) 1767 return (MPS_DIAG_FAILURE); 1768 status = mps_diag_release(sc, &diag_release, 1769 return_code); 1770 break; 1771 1772 default: 1773 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1774 status = MPS_DIAG_FAILURE; 1775 break; 1776 } 1777 1778 if ((status == MPS_DIAG_FAILURE) && 1779 (original_return_code == MPS_FW_DIAG_NEW) && 1780 (*return_code != MPS_FW_DIAG_ERROR_SUCCESS)) 1781 status = MPS_DIAG_SUCCESS; 1782 1783 return (status); 1784 } 1785 1786 static int 1787 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data) 1788 { 1789 int status; 1790 1791 /* 1792 * Only allow one diag action at one time. 1793 */ 1794 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1795 mps_dprint(sc, MPS_USER, "%s: Only one FW diag command " 1796 "allowed at a single time.", __func__); 1797 return (EBUSY); 1798 } 1799 sc->mps_flags |= MPS_FLAGS_BUSY; 1800 1801 /* 1802 * Send diag action request 1803 */ 1804 if (data->Action == MPS_FW_DIAG_TYPE_REGISTER || 1805 data->Action == MPS_FW_DIAG_TYPE_UNREGISTER || 1806 data->Action == MPS_FW_DIAG_TYPE_QUERY || 1807 data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER || 1808 data->Action == MPS_FW_DIAG_TYPE_RELEASE) { 1809 status = mps_do_diag_action(sc, data->Action, 1810 PTRIN(data->PtrDiagAction), data->Length, 1811 &data->ReturnCode); 1812 } else 1813 status = EINVAL; 1814 1815 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1816 return (status); 1817 } 1818 1819 /* 1820 * Copy the event recording mask and the event queue size out. For 1821 * clarification, the event recording mask (events_to_record) is not the same 1822 * thing as the event mask (event_mask). events_to_record has a bit set for 1823 * every event type that is to be recorded by the driver, and event_mask has a 1824 * bit cleared for every event that is allowed into the driver from the IOC. 1825 * They really have nothing to do with each other. 1826 */ 1827 static void 1828 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data) 1829 { 1830 uint8_t i; 1831 1832 mps_lock(sc); 1833 data->Entries = MPS_EVENT_QUEUE_SIZE; 1834 1835 for (i = 0; i < 4; i++) { 1836 data->Types[i] = sc->events_to_record[i]; 1837 } 1838 mps_unlock(sc); 1839 } 1840 1841 /* 1842 * Set the driver's event mask according to what's been given. See 1843 * mps_user_event_query for explanation of the event recording mask and the IOC 1844 * event mask. It's the app's responsibility to enable event logging by setting 1845 * the bits in events_to_record. Initially, no events will be logged. 1846 */ 1847 static void 1848 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data) 1849 { 1850 uint8_t i; 1851 1852 mps_lock(sc); 1853 for (i = 0; i < 4; i++) { 1854 sc->events_to_record[i] = data->Types[i]; 1855 } 1856 mps_unlock(sc); 1857 } 1858 1859 /* 1860 * Copy out the events that have been recorded, up to the max events allowed. 1861 */ 1862 static int 1863 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data) 1864 { 1865 int status = 0; 1866 uint32_t size; 1867 1868 mps_lock(sc); 1869 size = data->Size; 1870 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1871 mps_unlock(sc); 1872 if (copyout((void *)sc->recorded_events, 1873 PTRIN(data->PtrEvents), size) != 0) 1874 status = EFAULT; 1875 mps_lock(sc); 1876 } else { 1877 /* 1878 * data->Size value is not large enough to copy event data. 1879 */ 1880 status = EFAULT; 1881 } 1882 1883 /* 1884 * Change size value to match the number of bytes that were copied. 1885 */ 1886 if (status == 0) 1887 data->Size = sizeof(sc->recorded_events); 1888 mps_unlock(sc); 1889 1890 return (status); 1891 } 1892 1893 /* 1894 * Record events into the driver from the IOC if they are not masked. 1895 */ 1896 void 1897 mpssas_record_event(struct mps_softc *sc, 1898 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 1899 { 1900 uint32_t event; 1901 int i, j; 1902 uint16_t event_data_len; 1903 boolean_t sendAEN = FALSE; 1904 1905 event = event_reply->Event; 1906 1907 /* 1908 * Generate a system event to let anyone who cares know that a 1909 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 1910 * event mask is set to. 1911 */ 1912 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 1913 sendAEN = TRUE; 1914 } 1915 1916 /* 1917 * Record the event only if its corresponding bit is set in 1918 * events_to_record. event_index is the index into recorded_events and 1919 * event_number is the overall number of an event being recorded since 1920 * start-of-day. event_index will roll over; event_number will never 1921 * roll over. 1922 */ 1923 i = (uint8_t)(event / 32); 1924 j = (uint8_t)(event % 32); 1925 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 1926 i = sc->event_index; 1927 sc->recorded_events[i].Type = event; 1928 sc->recorded_events[i].Number = ++sc->event_number; 1929 bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH * 1930 4); 1931 event_data_len = event_reply->EventDataLength; 1932 1933 if (event_data_len > 0) { 1934 /* 1935 * Limit data to size in m_event entry 1936 */ 1937 if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) { 1938 event_data_len = MPS_MAX_EVENT_DATA_LENGTH; 1939 } 1940 for (j = 0; j < event_data_len; j++) { 1941 sc->recorded_events[i].Data[j] = 1942 event_reply->EventData[j]; 1943 } 1944 1945 /* 1946 * check for index wrap-around 1947 */ 1948 if (++i == MPS_EVENT_QUEUE_SIZE) { 1949 i = 0; 1950 } 1951 sc->event_index = (uint8_t)i; 1952 1953 /* 1954 * Set flag to send the event. 1955 */ 1956 sendAEN = TRUE; 1957 } 1958 } 1959 1960 /* 1961 * Generate a system event if flag is set to let anyone who cares know 1962 * that an event has occurred. 1963 */ 1964 if (sendAEN) { 1965 //SLM-how to send a system event (see kqueue, kevent) 1966 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 1967 // "SAS", NULL, NULL, DDI_NOSLEEP); 1968 } 1969 } 1970 1971 static int 1972 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data) 1973 { 1974 int status = 0; 1975 1976 switch (data->Command) { 1977 /* 1978 * IO access is not supported. 1979 */ 1980 case REG_IO_READ: 1981 case REG_IO_WRITE: 1982 mps_dprint(sc, MPS_USER, "IO access is not supported. " 1983 "Use memory access."); 1984 status = EINVAL; 1985 break; 1986 1987 case REG_MEM_READ: 1988 data->RegData = mps_regread(sc, data->RegOffset); 1989 break; 1990 1991 case REG_MEM_WRITE: 1992 mps_regwrite(sc, data->RegOffset, data->RegData); 1993 break; 1994 1995 default: 1996 status = EINVAL; 1997 break; 1998 } 1999 2000 return (status); 2001 } 2002 2003 static int 2004 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data) 2005 { 2006 uint8_t bt2dh = FALSE; 2007 uint8_t dh2bt = FALSE; 2008 uint16_t dev_handle, bus, target; 2009 2010 bus = data->Bus; 2011 target = data->TargetID; 2012 dev_handle = data->DevHandle; 2013 2014 /* 2015 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2016 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2017 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2018 * invalid. 2019 */ 2020 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2021 dh2bt = TRUE; 2022 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2023 bt2dh = TRUE; 2024 if (!dh2bt && !bt2dh) 2025 return (EINVAL); 2026 2027 /* 2028 * Only handle bus of 0. Make sure target is within range. 2029 */ 2030 if (bt2dh) { 2031 if (bus != 0) 2032 return (EINVAL); 2033 2034 if (target > sc->max_devices) { 2035 mps_dprint(sc, MPS_FAULT, "Target ID is out of range " 2036 "for Bus/Target to DevHandle mapping."); 2037 return (EINVAL); 2038 } 2039 dev_handle = sc->mapping_table[target].dev_handle; 2040 if (dev_handle) 2041 data->DevHandle = dev_handle; 2042 } else { 2043 bus = 0; 2044 target = mps_mapping_get_sas_id_from_handle(sc, dev_handle); 2045 data->Bus = bus; 2046 data->TargetID = target; 2047 } 2048 2049 return (0); 2050 } 2051 2052 static int 2053 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2054 struct thread *td) 2055 { 2056 struct mps_softc *sc; 2057 struct mps_cfg_page_req *page_req; 2058 struct mps_ext_cfg_page_req *ext_page_req; 2059 void *mps_page; 2060 int error, msleep_ret; 2061 2062 mps_page = NULL; 2063 sc = dev->si_drv1; 2064 page_req = (void *)arg; 2065 ext_page_req = (void *)arg; 2066 2067 switch (cmd) { 2068 case MPSIO_READ_CFG_HEADER: 2069 mps_lock(sc); 2070 error = mps_user_read_cfg_header(sc, page_req); 2071 mps_unlock(sc); 2072 break; 2073 case MPSIO_READ_CFG_PAGE: 2074 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO); 2075 if(!mps_page) { 2076 mps_printf(sc, "Cannot allocate memory %s %d\n", 2077 __func__, __LINE__); 2078 return (ENOMEM); 2079 } 2080 error = copyin(page_req->buf, mps_page, 2081 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2082 if (error) 2083 break; 2084 mps_lock(sc); 2085 error = mps_user_read_cfg_page(sc, page_req, mps_page); 2086 mps_unlock(sc); 2087 if (error) 2088 break; 2089 error = copyout(mps_page, page_req->buf, page_req->len); 2090 break; 2091 case MPSIO_READ_EXT_CFG_HEADER: 2092 mps_lock(sc); 2093 error = mps_user_read_extcfg_header(sc, ext_page_req); 2094 mps_unlock(sc); 2095 break; 2096 case MPSIO_READ_EXT_CFG_PAGE: 2097 mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2098 if(!mps_page) { 2099 mps_printf(sc, "Cannot allocate memory %s %d\n", 2100 __func__, __LINE__); 2101 return (ENOMEM); 2102 } 2103 error = copyin(ext_page_req->buf, mps_page, 2104 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2105 if (error) 2106 break; 2107 mps_lock(sc); 2108 error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page); 2109 mps_unlock(sc); 2110 if (error) 2111 break; 2112 error = copyout(mps_page, ext_page_req->buf, ext_page_req->len); 2113 break; 2114 case MPSIO_WRITE_CFG_PAGE: 2115 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2116 if(!mps_page) { 2117 mps_printf(sc, "Cannot allocate memory %s %d\n", 2118 __func__, __LINE__); 2119 return (ENOMEM); 2120 } 2121 error = copyin(page_req->buf, mps_page, page_req->len); 2122 if (error) 2123 break; 2124 mps_lock(sc); 2125 error = mps_user_write_cfg_page(sc, page_req, mps_page); 2126 mps_unlock(sc); 2127 break; 2128 case MPSIO_MPS_COMMAND: 2129 error = mps_user_command(sc, (struct mps_usr_command *)arg); 2130 break; 2131 case MPTIOCTL_PASS_THRU: 2132 /* 2133 * The user has requested to pass through a command to be 2134 * executed by the MPT firmware. Call our routine which does 2135 * this. Only allow one passthru IOCTL at one time. 2136 */ 2137 error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg); 2138 break; 2139 case MPTIOCTL_GET_ADAPTER_DATA: 2140 /* 2141 * The user has requested to read adapter data. Call our 2142 * routine which does this. 2143 */ 2144 error = 0; 2145 mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg); 2146 break; 2147 case MPTIOCTL_GET_PCI_INFO: 2148 /* 2149 * The user has requested to read pci info. Call 2150 * our routine which does this. 2151 */ 2152 mps_lock(sc); 2153 error = 0; 2154 mps_user_read_pci_info(sc, (mps_pci_info_t *)arg); 2155 mps_unlock(sc); 2156 break; 2157 case MPTIOCTL_RESET_ADAPTER: 2158 mps_lock(sc); 2159 sc->port_enable_complete = 0; 2160 uint32_t reinit_start = time_uptime; 2161 error = mps_reinit(sc); 2162 /* Sleep for 300 second. */ 2163 msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO, 2164 "mps_porten", 300 * hz); 2165 mps_unlock(sc); 2166 if (msleep_ret) 2167 printf("Port Enable did not complete after Diag " 2168 "Reset msleep error %d.\n", msleep_ret); 2169 else 2170 mps_dprint(sc, MPS_USER, 2171 "Hard Reset with Port Enable completed in %d seconds.\n", 2172 (uint32_t) (time_uptime - reinit_start)); 2173 break; 2174 case MPTIOCTL_DIAG_ACTION: 2175 /* 2176 * The user has done a diag buffer action. Call our routine 2177 * which does this. Only allow one diag action at one time. 2178 */ 2179 mps_lock(sc); 2180 error = mps_user_diag_action(sc, (mps_diag_action_t *)arg); 2181 mps_unlock(sc); 2182 break; 2183 case MPTIOCTL_EVENT_QUERY: 2184 /* 2185 * The user has done an event query. Call our routine which does 2186 * this. 2187 */ 2188 error = 0; 2189 mps_user_event_query(sc, (mps_event_query_t *)arg); 2190 break; 2191 case MPTIOCTL_EVENT_ENABLE: 2192 /* 2193 * The user has done an event enable. Call our routine which 2194 * does this. 2195 */ 2196 error = 0; 2197 mps_user_event_enable(sc, (mps_event_enable_t *)arg); 2198 break; 2199 case MPTIOCTL_EVENT_REPORT: 2200 /* 2201 * The user has done an event report. Call our routine which 2202 * does this. 2203 */ 2204 error = mps_user_event_report(sc, (mps_event_report_t *)arg); 2205 break; 2206 case MPTIOCTL_REG_ACCESS: 2207 /* 2208 * The user has requested register access. Call our routine 2209 * which does this. 2210 */ 2211 mps_lock(sc); 2212 error = mps_user_reg_access(sc, (mps_reg_access_t *)arg); 2213 mps_unlock(sc); 2214 break; 2215 case MPTIOCTL_BTDH_MAPPING: 2216 /* 2217 * The user has requested to translate a bus/target to a 2218 * DevHandle or a DevHandle to a bus/target. Call our routine 2219 * which does this. 2220 */ 2221 error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg); 2222 break; 2223 default: 2224 error = ENOIOCTL; 2225 break; 2226 } 2227 2228 if (mps_page != NULL) 2229 free(mps_page, M_MPSUSER); 2230 2231 return (error); 2232 } 2233 2234 #ifdef COMPAT_FREEBSD32 2235 2236 struct mps_cfg_page_req32 { 2237 MPI2_CONFIG_PAGE_HEADER header; 2238 uint32_t page_address; 2239 uint32_t buf; 2240 int len; 2241 uint16_t ioc_status; 2242 }; 2243 2244 struct mps_ext_cfg_page_req32 { 2245 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2246 uint32_t page_address; 2247 uint32_t buf; 2248 int len; 2249 uint16_t ioc_status; 2250 }; 2251 2252 struct mps_raid_action32 { 2253 uint8_t action; 2254 uint8_t volume_bus; 2255 uint8_t volume_id; 2256 uint8_t phys_disk_num; 2257 uint32_t action_data_word; 2258 uint32_t buf; 2259 int len; 2260 uint32_t volume_status; 2261 uint32_t action_data[4]; 2262 uint16_t action_status; 2263 uint16_t ioc_status; 2264 uint8_t write; 2265 }; 2266 2267 struct mps_usr_command32 { 2268 uint32_t req; 2269 uint32_t req_len; 2270 uint32_t rpl; 2271 uint32_t rpl_len; 2272 uint32_t buf; 2273 int len; 2274 uint32_t flags; 2275 }; 2276 2277 #define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32) 2278 #define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32) 2279 #define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32) 2280 #define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32) 2281 #define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32) 2282 #define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32) 2283 #define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32) 2284 2285 static int 2286 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2287 struct thread *td) 2288 { 2289 struct mps_cfg_page_req32 *page32 = _arg; 2290 struct mps_ext_cfg_page_req32 *ext32 = _arg; 2291 struct mps_raid_action32 *raid32 = _arg; 2292 struct mps_usr_command32 *user32 = _arg; 2293 union { 2294 struct mps_cfg_page_req page; 2295 struct mps_ext_cfg_page_req ext; 2296 struct mps_raid_action raid; 2297 struct mps_usr_command user; 2298 } arg; 2299 u_long cmd; 2300 int error; 2301 2302 switch (cmd32) { 2303 case MPSIO_READ_CFG_HEADER32: 2304 case MPSIO_READ_CFG_PAGE32: 2305 case MPSIO_WRITE_CFG_PAGE32: 2306 if (cmd32 == MPSIO_READ_CFG_HEADER32) 2307 cmd = MPSIO_READ_CFG_HEADER; 2308 else if (cmd32 == MPSIO_READ_CFG_PAGE32) 2309 cmd = MPSIO_READ_CFG_PAGE; 2310 else 2311 cmd = MPSIO_WRITE_CFG_PAGE; 2312 CP(*page32, arg.page, header); 2313 CP(*page32, arg.page, page_address); 2314 PTRIN_CP(*page32, arg.page, buf); 2315 CP(*page32, arg.page, len); 2316 CP(*page32, arg.page, ioc_status); 2317 break; 2318 2319 case MPSIO_READ_EXT_CFG_HEADER32: 2320 case MPSIO_READ_EXT_CFG_PAGE32: 2321 if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32) 2322 cmd = MPSIO_READ_EXT_CFG_HEADER; 2323 else 2324 cmd = MPSIO_READ_EXT_CFG_PAGE; 2325 CP(*ext32, arg.ext, header); 2326 CP(*ext32, arg.ext, page_address); 2327 PTRIN_CP(*ext32, arg.ext, buf); 2328 CP(*ext32, arg.ext, len); 2329 CP(*ext32, arg.ext, ioc_status); 2330 break; 2331 2332 case MPSIO_RAID_ACTION32: 2333 cmd = MPSIO_RAID_ACTION; 2334 CP(*raid32, arg.raid, action); 2335 CP(*raid32, arg.raid, volume_bus); 2336 CP(*raid32, arg.raid, volume_id); 2337 CP(*raid32, arg.raid, phys_disk_num); 2338 CP(*raid32, arg.raid, action_data_word); 2339 PTRIN_CP(*raid32, arg.raid, buf); 2340 CP(*raid32, arg.raid, len); 2341 CP(*raid32, arg.raid, volume_status); 2342 bcopy(raid32->action_data, arg.raid.action_data, 2343 sizeof arg.raid.action_data); 2344 CP(*raid32, arg.raid, ioc_status); 2345 CP(*raid32, arg.raid, write); 2346 break; 2347 2348 case MPSIO_MPS_COMMAND32: 2349 cmd = MPSIO_MPS_COMMAND; 2350 PTRIN_CP(*user32, arg.user, req); 2351 CP(*user32, arg.user, req_len); 2352 PTRIN_CP(*user32, arg.user, rpl); 2353 CP(*user32, arg.user, rpl_len); 2354 PTRIN_CP(*user32, arg.user, buf); 2355 CP(*user32, arg.user, len); 2356 CP(*user32, arg.user, flags); 2357 break; 2358 default: 2359 return (ENOIOCTL); 2360 } 2361 2362 error = mps_ioctl(dev, cmd, &arg, flag, td); 2363 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2364 switch (cmd32) { 2365 case MPSIO_READ_CFG_HEADER32: 2366 case MPSIO_READ_CFG_PAGE32: 2367 case MPSIO_WRITE_CFG_PAGE32: 2368 CP(arg.page, *page32, header); 2369 CP(arg.page, *page32, page_address); 2370 PTROUT_CP(arg.page, *page32, buf); 2371 CP(arg.page, *page32, len); 2372 CP(arg.page, *page32, ioc_status); 2373 break; 2374 2375 case MPSIO_READ_EXT_CFG_HEADER32: 2376 case MPSIO_READ_EXT_CFG_PAGE32: 2377 CP(arg.ext, *ext32, header); 2378 CP(arg.ext, *ext32, page_address); 2379 PTROUT_CP(arg.ext, *ext32, buf); 2380 CP(arg.ext, *ext32, len); 2381 CP(arg.ext, *ext32, ioc_status); 2382 break; 2383 2384 case MPSIO_RAID_ACTION32: 2385 CP(arg.raid, *raid32, action); 2386 CP(arg.raid, *raid32, volume_bus); 2387 CP(arg.raid, *raid32, volume_id); 2388 CP(arg.raid, *raid32, phys_disk_num); 2389 CP(arg.raid, *raid32, action_data_word); 2390 PTROUT_CP(arg.raid, *raid32, buf); 2391 CP(arg.raid, *raid32, len); 2392 CP(arg.raid, *raid32, volume_status); 2393 bcopy(arg.raid.action_data, raid32->action_data, 2394 sizeof arg.raid.action_data); 2395 CP(arg.raid, *raid32, ioc_status); 2396 CP(arg.raid, *raid32, write); 2397 break; 2398 2399 case MPSIO_MPS_COMMAND32: 2400 PTROUT_CP(arg.user, *user32, req); 2401 CP(arg.user, *user32, req_len); 2402 PTROUT_CP(arg.user, *user32, rpl); 2403 CP(arg.user, *user32, rpl_len); 2404 PTROUT_CP(arg.user, *user32, buf); 2405 CP(arg.user, *user32, len); 2406 CP(arg.user, *user32, flags); 2407 break; 2408 } 2409 } 2410 2411 return (error); 2412 } 2413 #endif /* COMPAT_FREEBSD32 */ 2414 2415 static int 2416 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2417 struct thread *td) 2418 { 2419 #ifdef COMPAT_FREEBSD32 2420 if (SV_CURPROC_FLAG(SV_ILP32)) 2421 return (mps_ioctl32(dev, com, arg, flag, td)); 2422 #endif 2423 return (mps_ioctl(dev, com, arg, flag, td)); 2424 } 2425