1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Yahoo!, Inc. 5 * All rights reserved. 6 * Written by: John Baldwin <jhb@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 33 */ 34 /*- 35 * Copyright (c) 2011-2015 LSI Corp. 36 * Copyright (c) 2013-2015 Avago Technologies 37 * All rights reserved. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 61 * 62 * $FreeBSD$ 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 /* TODO Move headers to mpsvar */ 69 #include <sys/types.h> 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/selinfo.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/conf.h> 77 #include <sys/bio.h> 78 #include <sys/abi_compat.h> 79 #include <sys/malloc.h> 80 #include <sys/uio.h> 81 #include <sys/sysctl.h> 82 #include <sys/ioccom.h> 83 #include <sys/endian.h> 84 #include <sys/queue.h> 85 #include <sys/kthread.h> 86 #include <sys/taskqueue.h> 87 #include <sys/proc.h> 88 #include <sys/sysent.h> 89 90 #include <machine/bus.h> 91 #include <machine/resource.h> 92 #include <sys/rman.h> 93 94 #include <cam/cam.h> 95 #include <cam/cam_ccb.h> 96 #include <cam/scsi/scsi_all.h> 97 98 #include <dev/mps/mpi/mpi2_type.h> 99 #include <dev/mps/mpi/mpi2.h> 100 #include <dev/mps/mpi/mpi2_ioc.h> 101 #include <dev/mps/mpi/mpi2_cnfg.h> 102 #include <dev/mps/mpi/mpi2_init.h> 103 #include <dev/mps/mpi/mpi2_tool.h> 104 #include <dev/mps/mps_ioctl.h> 105 #include <dev/mps/mpsvar.h> 106 #include <dev/mps/mps_table.h> 107 #include <dev/mps/mps_sas.h> 108 #include <dev/pci/pcivar.h> 109 #include <dev/pci/pcireg.h> 110 111 static d_open_t mps_open; 112 static d_close_t mps_close; 113 static d_ioctl_t mps_ioctl_devsw; 114 115 static struct cdevsw mps_cdevsw = { 116 .d_version = D_VERSION, 117 .d_flags = 0, 118 .d_open = mps_open, 119 .d_close = mps_close, 120 .d_ioctl = mps_ioctl_devsw, 121 .d_name = "mps", 122 }; 123 124 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *); 125 static mps_user_f mpi_pre_ioc_facts; 126 static mps_user_f mpi_pre_port_facts; 127 static mps_user_f mpi_pre_fw_download; 128 static mps_user_f mpi_pre_fw_upload; 129 static mps_user_f mpi_pre_sata_passthrough; 130 static mps_user_f mpi_pre_smp_passthrough; 131 static mps_user_f mpi_pre_config; 132 static mps_user_f mpi_pre_sas_io_unit_control; 133 134 static int mps_user_read_cfg_header(struct mps_softc *, 135 struct mps_cfg_page_req *); 136 static int mps_user_read_cfg_page(struct mps_softc *, 137 struct mps_cfg_page_req *, void *); 138 static int mps_user_read_extcfg_header(struct mps_softc *, 139 struct mps_ext_cfg_page_req *); 140 static int mps_user_read_extcfg_page(struct mps_softc *, 141 struct mps_ext_cfg_page_req *, void *); 142 static int mps_user_write_cfg_page(struct mps_softc *, 143 struct mps_cfg_page_req *, void *); 144 static int mps_user_setup_request(struct mps_command *, 145 struct mps_usr_command *); 146 static int mps_user_command(struct mps_softc *, struct mps_usr_command *); 147 148 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data); 149 static void mps_user_get_adapter_data(struct mps_softc *sc, 150 mps_adapter_data_t *data); 151 static void mps_user_read_pci_info(struct mps_softc *sc, 152 mps_pci_info_t *data); 153 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc, 154 uint32_t unique_id); 155 static int mps_post_fw_diag_buffer(struct mps_softc *sc, 156 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 157 static int mps_release_fw_diag_buffer(struct mps_softc *sc, 158 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 159 uint32_t diag_type); 160 static int mps_diag_register(struct mps_softc *sc, 161 mps_fw_diag_register_t *diag_register, uint32_t *return_code); 162 static int mps_diag_unregister(struct mps_softc *sc, 163 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 164 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 165 uint32_t *return_code); 166 static int mps_diag_read_buffer(struct mps_softc *sc, 167 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 168 uint32_t *return_code); 169 static int mps_diag_release(struct mps_softc *sc, 170 mps_fw_diag_release_t *diag_release, uint32_t *return_code); 171 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action, 172 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 173 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data); 174 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data); 175 static void mps_user_event_enable(struct mps_softc *sc, 176 mps_event_enable_t *data); 177 static int mps_user_event_report(struct mps_softc *sc, 178 mps_event_report_t *data); 179 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data); 180 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data); 181 182 MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls"); 183 184 int 185 mps_attach_user(struct mps_softc *sc) 186 { 187 int unit; 188 189 unit = device_get_unit(sc->mps_dev); 190 sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 191 "mps%d", unit); 192 if (sc->mps_cdev == NULL) { 193 return (ENOMEM); 194 } 195 sc->mps_cdev->si_drv1 = sc; 196 return (0); 197 } 198 199 void 200 mps_detach_user(struct mps_softc *sc) 201 { 202 203 /* XXX: do a purge of pending requests? */ 204 if (sc->mps_cdev != NULL) 205 destroy_dev(sc->mps_cdev); 206 } 207 208 static int 209 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td) 210 { 211 212 return (0); 213 } 214 215 static int 216 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td) 217 { 218 219 return (0); 220 } 221 222 static int 223 mps_user_read_cfg_header(struct mps_softc *sc, 224 struct mps_cfg_page_req *page_req) 225 { 226 MPI2_CONFIG_PAGE_HEADER *hdr; 227 struct mps_config_params params; 228 int error; 229 230 hdr = ¶ms.hdr.Struct; 231 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 232 params.page_address = le32toh(page_req->page_address); 233 hdr->PageVersion = 0; 234 hdr->PageLength = 0; 235 hdr->PageNumber = page_req->header.PageNumber; 236 hdr->PageType = page_req->header.PageType; 237 params.buffer = NULL; 238 params.length = 0; 239 params.callback = NULL; 240 241 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 242 /* 243 * Leave the request. Without resetting the chip, it's 244 * still owned by it and we'll just get into trouble 245 * freeing it now. Mark it as abandoned so that if it 246 * shows up later it can be freed. 247 */ 248 mps_printf(sc, "read_cfg_header timed out\n"); 249 return (ETIMEDOUT); 250 } 251 252 page_req->ioc_status = htole16(params.status); 253 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 254 MPI2_IOCSTATUS_SUCCESS) { 255 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 256 } 257 258 return (0); 259 } 260 261 static int 262 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req, 263 void *buf) 264 { 265 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 266 struct mps_config_params params; 267 int error; 268 269 reqhdr = buf; 270 hdr = ¶ms.hdr.Struct; 271 hdr->PageVersion = reqhdr->PageVersion; 272 hdr->PageLength = reqhdr->PageLength; 273 hdr->PageNumber = reqhdr->PageNumber; 274 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 275 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 276 params.page_address = le32toh(page_req->page_address); 277 params.buffer = buf; 278 params.length = le32toh(page_req->len); 279 params.callback = NULL; 280 281 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 282 mps_printf(sc, "mps_user_read_cfg_page timed out\n"); 283 return (ETIMEDOUT); 284 } 285 286 page_req->ioc_status = htole16(params.status); 287 return (0); 288 } 289 290 static int 291 mps_user_read_extcfg_header(struct mps_softc *sc, 292 struct mps_ext_cfg_page_req *ext_page_req) 293 { 294 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 295 struct mps_config_params params; 296 int error; 297 298 hdr = ¶ms.hdr.Ext; 299 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 300 hdr->PageVersion = ext_page_req->header.PageVersion; 301 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 302 hdr->ExtPageLength = 0; 303 hdr->PageNumber = ext_page_req->header.PageNumber; 304 hdr->ExtPageType = ext_page_req->header.ExtPageType; 305 params.page_address = le32toh(ext_page_req->page_address); 306 params.buffer = NULL; 307 params.length = 0; 308 params.callback = NULL; 309 310 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 311 /* 312 * Leave the request. Without resetting the chip, it's 313 * still owned by it and we'll just get into trouble 314 * freeing it now. Mark it as abandoned so that if it 315 * shows up later it can be freed. 316 */ 317 mps_printf(sc, "mps_user_read_extcfg_header timed out\n"); 318 return (ETIMEDOUT); 319 } 320 321 ext_page_req->ioc_status = htole16(params.status); 322 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 323 MPI2_IOCSTATUS_SUCCESS) { 324 ext_page_req->header.PageVersion = hdr->PageVersion; 325 ext_page_req->header.PageNumber = hdr->PageNumber; 326 ext_page_req->header.PageType = hdr->PageType; 327 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 328 ext_page_req->header.ExtPageType = hdr->ExtPageType; 329 } 330 331 return (0); 332 } 333 334 static int 335 mps_user_read_extcfg_page(struct mps_softc *sc, 336 struct mps_ext_cfg_page_req *ext_page_req, void *buf) 337 { 338 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 339 struct mps_config_params params; 340 int error; 341 342 reqhdr = buf; 343 hdr = ¶ms.hdr.Ext; 344 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 345 params.page_address = le32toh(ext_page_req->page_address); 346 hdr->PageVersion = reqhdr->PageVersion; 347 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 348 hdr->PageNumber = reqhdr->PageNumber; 349 hdr->ExtPageType = reqhdr->ExtPageType; 350 hdr->ExtPageLength = reqhdr->ExtPageLength; 351 params.buffer = buf; 352 params.length = le32toh(ext_page_req->len); 353 params.callback = NULL; 354 355 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 356 mps_printf(sc, "mps_user_read_extcfg_page timed out\n"); 357 return (ETIMEDOUT); 358 } 359 360 ext_page_req->ioc_status = htole16(params.status); 361 return (0); 362 } 363 364 static int 365 mps_user_write_cfg_page(struct mps_softc *sc, 366 struct mps_cfg_page_req *page_req, void *buf) 367 { 368 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 369 struct mps_config_params params; 370 u_int hdr_attr; 371 int error; 372 373 reqhdr = buf; 374 hdr = ¶ms.hdr.Struct; 375 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 376 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 377 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 378 mps_printf(sc, "page type 0x%x not changeable\n", 379 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 380 return (EINVAL); 381 } 382 383 /* 384 * There isn't any point in restoring stripped out attributes 385 * if you then mask them going down to issue the request. 386 */ 387 388 hdr->PageVersion = reqhdr->PageVersion; 389 hdr->PageLength = reqhdr->PageLength; 390 hdr->PageNumber = reqhdr->PageNumber; 391 hdr->PageType = reqhdr->PageType; 392 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 393 params.page_address = le32toh(page_req->page_address); 394 params.buffer = buf; 395 params.length = le32toh(page_req->len); 396 params.callback = NULL; 397 398 if ((error = mps_write_config_page(sc, ¶ms)) != 0) { 399 mps_printf(sc, "mps_write_cfg_page timed out\n"); 400 return (ETIMEDOUT); 401 } 402 403 page_req->ioc_status = htole16(params.status); 404 return (0); 405 } 406 407 void 408 mpi_init_sge(struct mps_command *cm, void *req, void *sge) 409 { 410 int off, space; 411 412 space = (int)cm->cm_sc->reqframesz; 413 off = (uintptr_t)sge - (uintptr_t)req; 414 415 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 416 req, sge, off, space)); 417 418 cm->cm_sge = sge; 419 cm->cm_sglsize = space - off; 420 } 421 422 /* 423 * Prepare the mps_command for an IOC_FACTS request. 424 */ 425 static int 426 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd) 427 { 428 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 429 MPI2_IOC_FACTS_REPLY *rpl; 430 431 if (cmd->req_len != sizeof *req) 432 return (EINVAL); 433 if (cmd->rpl_len != sizeof *rpl) 434 return (EINVAL); 435 436 cm->cm_sge = NULL; 437 cm->cm_sglsize = 0; 438 return (0); 439 } 440 441 /* 442 * Prepare the mps_command for a PORT_FACTS request. 443 */ 444 static int 445 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd) 446 { 447 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 448 MPI2_PORT_FACTS_REPLY *rpl; 449 450 if (cmd->req_len != sizeof *req) 451 return (EINVAL); 452 if (cmd->rpl_len != sizeof *rpl) 453 return (EINVAL); 454 455 cm->cm_sge = NULL; 456 cm->cm_sglsize = 0; 457 return (0); 458 } 459 460 /* 461 * Prepare the mps_command for a FW_DOWNLOAD request. 462 */ 463 static int 464 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd) 465 { 466 MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 467 MPI2_FW_DOWNLOAD_REPLY *rpl; 468 MPI2_FW_DOWNLOAD_TCSGE tc; 469 int error; 470 471 /* 472 * This code assumes there is room in the request's SGL for 473 * the TransactionContext plus at least a SGL chain element. 474 */ 475 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 476 477 if (cmd->req_len != sizeof *req) 478 return (EINVAL); 479 if (cmd->rpl_len != sizeof *rpl) 480 return (EINVAL); 481 482 if (cmd->len == 0) 483 return (EINVAL); 484 485 error = copyin(cmd->buf, cm->cm_data, cmd->len); 486 if (error != 0) 487 return (error); 488 489 mpi_init_sge(cm, req, &req->SGL); 490 bzero(&tc, sizeof tc); 491 492 /* 493 * For now, the F/W image must be provided in a single request. 494 */ 495 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 496 return (EINVAL); 497 if (req->TotalImageSize != cmd->len) 498 return (EINVAL); 499 500 /* 501 * The value of the first two elements is specified in the 502 * Fusion-MPT Message Passing Interface document. 503 */ 504 tc.ContextSize = 0; 505 tc.DetailsLength = 12; 506 tc.ImageOffset = 0; 507 tc.ImageSize = cmd->len; 508 509 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 510 511 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 512 } 513 514 /* 515 * Prepare the mps_command for a FW_UPLOAD request. 516 */ 517 static int 518 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd) 519 { 520 MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 521 MPI2_FW_UPLOAD_REPLY *rpl; 522 MPI2_FW_UPLOAD_TCSGE tc; 523 524 /* 525 * This code assumes there is room in the request's SGL for 526 * the TransactionContext plus at least a SGL chain element. 527 */ 528 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 529 530 if (cmd->req_len != sizeof *req) 531 return (EINVAL); 532 if (cmd->rpl_len != sizeof *rpl) 533 return (EINVAL); 534 535 mpi_init_sge(cm, req, &req->SGL); 536 bzero(&tc, sizeof tc); 537 538 /* 539 * The value of the first two elements is specified in the 540 * Fusion-MPT Message Passing Interface document. 541 */ 542 tc.ContextSize = 0; 543 tc.DetailsLength = 12; 544 /* 545 * XXX Is there any reason to fetch a partial image? I.e. to 546 * set ImageOffset to something other than 0? 547 */ 548 tc.ImageOffset = 0; 549 tc.ImageSize = cmd->len; 550 551 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 552 553 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 554 } 555 556 /* 557 * Prepare the mps_command for a SATA_PASSTHROUGH request. 558 */ 559 static int 560 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 561 { 562 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 563 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 564 565 if (cmd->req_len != sizeof *req) 566 return (EINVAL); 567 if (cmd->rpl_len != sizeof *rpl) 568 return (EINVAL); 569 570 mpi_init_sge(cm, req, &req->SGL); 571 return (0); 572 } 573 574 /* 575 * Prepare the mps_command for a SMP_PASSTHROUGH request. 576 */ 577 static int 578 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 579 { 580 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 581 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 582 583 if (cmd->req_len != sizeof *req) 584 return (EINVAL); 585 if (cmd->rpl_len != sizeof *rpl) 586 return (EINVAL); 587 588 mpi_init_sge(cm, req, &req->SGL); 589 return (0); 590 } 591 592 /* 593 * Prepare the mps_command for a CONFIG request. 594 */ 595 static int 596 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd) 597 { 598 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 599 MPI2_CONFIG_REPLY *rpl; 600 601 if (cmd->req_len != sizeof *req) 602 return (EINVAL); 603 if (cmd->rpl_len != sizeof *rpl) 604 return (EINVAL); 605 606 mpi_init_sge(cm, req, &req->PageBufferSGE); 607 return (0); 608 } 609 610 /* 611 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 612 */ 613 static int 614 mpi_pre_sas_io_unit_control(struct mps_command *cm, 615 struct mps_usr_command *cmd) 616 { 617 618 cm->cm_sge = NULL; 619 cm->cm_sglsize = 0; 620 return (0); 621 } 622 623 /* 624 * A set of functions to prepare an mps_command for the various 625 * supported requests. 626 */ 627 struct mps_user_func { 628 U8 Function; 629 mps_user_f *f_pre; 630 } mps_user_func_list[] = { 631 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 632 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 633 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 634 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 635 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 636 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 637 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 638 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 639 { 0xFF, NULL } /* list end */ 640 }; 641 642 static int 643 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd) 644 { 645 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 646 struct mps_user_func *f; 647 648 for (f = mps_user_func_list; f->f_pre != NULL; f++) { 649 if (hdr->Function == f->Function) 650 return (f->f_pre(cm, cmd)); 651 } 652 return (EINVAL); 653 } 654 655 static int 656 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd) 657 { 658 MPI2_REQUEST_HEADER *hdr; 659 MPI2_DEFAULT_REPLY *rpl; 660 void *buf = NULL; 661 struct mps_command *cm = NULL; 662 int err = 0; 663 int sz; 664 665 mps_lock(sc); 666 cm = mps_alloc_command(sc); 667 668 if (cm == NULL) { 669 mps_printf(sc, "%s: no mps requests\n", __func__); 670 err = ENOMEM; 671 goto RetFree; 672 } 673 mps_unlock(sc); 674 675 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 676 677 mps_dprint(sc, MPS_USER, "%s: req %p %d rpl %p %d\n", __func__, 678 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 679 680 if (cmd->req_len > (int)sc->reqframesz) { 681 err = EINVAL; 682 goto RetFreeUnlocked; 683 } 684 err = copyin(cmd->req, hdr, cmd->req_len); 685 if (err != 0) 686 goto RetFreeUnlocked; 687 688 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 689 hdr->Function, hdr->MsgFlags); 690 691 if (cmd->len > 0) { 692 buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO); 693 cm->cm_data = buf; 694 cm->cm_length = cmd->len; 695 } else { 696 cm->cm_data = NULL; 697 cm->cm_length = 0; 698 } 699 700 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE; 701 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 702 703 err = mps_user_setup_request(cm, cmd); 704 if (err == EINVAL) { 705 mps_printf(sc, "%s: unsupported parameter or unsupported " 706 "function in request (function = 0x%X)\n", __func__, 707 hdr->Function); 708 } 709 if (err != 0) 710 goto RetFreeUnlocked; 711 712 mps_lock(sc); 713 err = mps_wait_command(sc, &cm, 60, CAN_SLEEP); 714 715 if (err || (cm == NULL)) { 716 mps_printf(sc, "%s: invalid request: error %d\n", 717 __func__, err); 718 goto RetFree; 719 } 720 721 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 722 if (rpl != NULL) 723 sz = rpl->MsgLength * 4; 724 else 725 sz = 0; 726 727 if (sz > cmd->rpl_len) { 728 mps_printf(sc, "%s: user reply buffer (%d) smaller than " 729 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 730 sz = cmd->rpl_len; 731 } 732 733 mps_unlock(sc); 734 copyout(rpl, cmd->rpl, sz); 735 if (buf != NULL) 736 copyout(buf, cmd->buf, cmd->len); 737 mps_dprint(sc, MPS_USER, "%s: reply size %d\n", __func__, sz); 738 739 RetFreeUnlocked: 740 mps_lock(sc); 741 RetFree: 742 if (cm != NULL) 743 mps_free_command(sc, cm); 744 mps_unlock(sc); 745 if (buf != NULL) 746 free(buf, M_MPSUSER); 747 return (err); 748 } 749 750 static int 751 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data) 752 { 753 MPI2_REQUEST_HEADER *hdr, tmphdr; 754 MPI2_DEFAULT_REPLY *rpl = NULL; 755 struct mps_command *cm = NULL; 756 int err = 0, dir = 0, sz; 757 uint8_t function = 0; 758 u_int sense_len; 759 struct mpssas_target *targ = NULL; 760 761 /* 762 * Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY 763 * bit to denote that a passthru is being processed. 764 */ 765 mps_lock(sc); 766 if (sc->mps_flags & MPS_FLAGS_BUSY) { 767 mps_dprint(sc, MPS_USER, "%s: Only one passthru command " 768 "allowed at a single time.", __func__); 769 mps_unlock(sc); 770 return (EBUSY); 771 } 772 sc->mps_flags |= MPS_FLAGS_BUSY; 773 mps_unlock(sc); 774 775 /* 776 * Do some validation on data direction. Valid cases are: 777 * 1) DataSize is 0 and direction is NONE 778 * 2) DataSize is non-zero and one of: 779 * a) direction is READ or 780 * b) direction is WRITE or 781 * c) direction is BOTH and DataOutSize is non-zero 782 * If valid and the direction is BOTH, change the direction to READ. 783 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 784 */ 785 if (((data->DataSize == 0) && 786 (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) || 787 ((data->DataSize != 0) && 788 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) || 789 (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) || 790 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) && 791 (data->DataOutSize != 0))))) { 792 if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) 793 data->DataDirection = MPS_PASS_THRU_DIRECTION_READ; 794 else 795 data->DataOutSize = 0; 796 } else { 797 err = EINVAL; 798 goto RetFreeUnlocked; 799 } 800 801 mps_dprint(sc, MPS_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 802 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 803 data->PtrRequest, data->RequestSize, data->PtrReply, 804 data->ReplySize, data->PtrData, data->DataSize, 805 data->PtrDataOut, data->DataOutSize, data->DataDirection); 806 807 /* 808 * copy in the header so we know what we're dealing with before we 809 * commit to allocating a command for it. 810 */ 811 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 812 if (err != 0) 813 goto RetFreeUnlocked; 814 815 if (data->RequestSize > (int)sc->reqframesz) { 816 err = EINVAL; 817 goto RetFreeUnlocked; 818 } 819 820 function = tmphdr.Function; 821 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 822 function, tmphdr.MsgFlags); 823 824 /* 825 * Handle a passthru TM request. 826 */ 827 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 828 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 829 830 mps_lock(sc); 831 cm = mpssas_alloc_tm(sc); 832 if (cm == NULL) { 833 err = EINVAL; 834 goto Ret; 835 } 836 837 /* Copy the header in. Only a small fixup is needed. */ 838 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 839 bcopy(&tmphdr, task, data->RequestSize); 840 task->TaskMID = cm->cm_desc.Default.SMID; 841 842 cm->cm_data = NULL; 843 cm->cm_complete = NULL; 844 cm->cm_complete_data = NULL; 845 846 targ = mpssas_find_target_by_handle(sc->sassc, 0, 847 task->DevHandle); 848 if (targ == NULL) { 849 mps_dprint(sc, MPS_INFO, 850 "%s %d : invalid handle for requested TM 0x%x \n", 851 __func__, __LINE__, task->DevHandle); 852 err = 1; 853 } else { 854 mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 855 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 856 } 857 858 if (err != 0) { 859 err = EIO; 860 mps_dprint(sc, MPS_FAULT, "%s: task management failed", 861 __func__); 862 } 863 /* 864 * Copy the reply data and sense data to user space. 865 */ 866 if ((cm != NULL) && (cm->cm_reply != NULL)) { 867 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 868 sz = rpl->MsgLength * 4; 869 870 if (sz > data->ReplySize) { 871 mps_printf(sc, "%s: user reply buffer (%d) " 872 "smaller than returned buffer (%d)\n", 873 __func__, data->ReplySize, sz); 874 } 875 mps_unlock(sc); 876 copyout(cm->cm_reply, PTRIN(data->PtrReply), 877 data->ReplySize); 878 mps_lock(sc); 879 } 880 mpssas_free_tm(sc, cm); 881 goto Ret; 882 } 883 884 mps_lock(sc); 885 cm = mps_alloc_command(sc); 886 887 if (cm == NULL) { 888 mps_printf(sc, "%s: no mps requests\n", __func__); 889 err = ENOMEM; 890 goto Ret; 891 } 892 mps_unlock(sc); 893 894 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 895 bcopy(&tmphdr, hdr, data->RequestSize); 896 897 /* 898 * Do some checking to make sure the IOCTL request contains a valid 899 * request. Then set the SGL info. 900 */ 901 mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 902 903 /* 904 * Set up for read, write or both. From check above, DataOutSize will 905 * be 0 if direction is READ or WRITE, but it will have some non-zero 906 * value if the direction is BOTH. So, just use the biggest size to get 907 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 908 * up; the first is for the request and the second will contain the 909 * response data. cm_out_len needs to be set here and this will be used 910 * when the SGLs are set up. 911 */ 912 cm->cm_data = NULL; 913 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 914 cm->cm_out_len = data->DataOutSize; 915 cm->cm_flags = 0; 916 if (cm->cm_length != 0) { 917 cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK | 918 M_ZERO); 919 cm->cm_flags = MPS_CM_FLAGS_DATAIN; 920 if (data->DataOutSize) { 921 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 922 err = copyin(PTRIN(data->PtrDataOut), 923 cm->cm_data, data->DataOutSize); 924 } else if (data->DataDirection == 925 MPS_PASS_THRU_DIRECTION_WRITE) { 926 cm->cm_flags = MPS_CM_FLAGS_DATAOUT; 927 err = copyin(PTRIN(data->PtrData), 928 cm->cm_data, data->DataSize); 929 } 930 if (err != 0) 931 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 932 "IOCTL data from user space\n", __func__); 933 } 934 cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE; 935 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 936 937 /* 938 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 939 * uses SCSI IO descriptor. 940 */ 941 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 942 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 943 MPI2_SCSI_IO_REQUEST *scsi_io_req; 944 945 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 946 /* 947 * Put SGE for data and data_out buffer at the end of 948 * scsi_io_request message header (64 bytes in total). 949 * Following above SGEs, the residual space will be used by 950 * sense data. 951 */ 952 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 953 64); 954 scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 955 956 /* 957 * Set SGLOffset0 value. This is the number of dwords that SGL 958 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 959 */ 960 scsi_io_req->SGLOffset0 = 24; 961 962 /* 963 * Setup descriptor info. RAID passthrough must use the 964 * default request descriptor which is already set, so if this 965 * is a SCSI IO request, change the descriptor to SCSI IO. 966 * Also, if this is a SCSI IO request, handle the reply in the 967 * mpssas_scsio_complete function. 968 */ 969 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 970 cm->cm_desc.SCSIIO.RequestFlags = 971 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 972 cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle; 973 974 /* 975 * Make sure the DevHandle is not 0 because this is a 976 * likely error. 977 */ 978 if (scsi_io_req->DevHandle == 0) { 979 err = EINVAL; 980 goto RetFreeUnlocked; 981 } 982 } 983 } 984 985 mps_lock(sc); 986 987 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 988 989 if (err || (cm == NULL)) { 990 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 991 err); 992 mps_unlock(sc); 993 goto RetFreeUnlocked; 994 } 995 996 /* 997 * Sync the DMA data, if any. Then copy the data to user space. 998 */ 999 if (cm->cm_data != NULL) { 1000 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 1001 dir = BUS_DMASYNC_POSTREAD; 1002 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 1003 dir = BUS_DMASYNC_POSTWRITE; 1004 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1005 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1006 1007 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 1008 mps_unlock(sc); 1009 err = copyout(cm->cm_data, 1010 PTRIN(data->PtrData), data->DataSize); 1011 mps_lock(sc); 1012 if (err != 0) 1013 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 1014 "IOCTL data to user space\n", __func__); 1015 } 1016 } 1017 1018 /* 1019 * Copy the reply data and sense data to user space. 1020 */ 1021 if (cm->cm_reply != NULL) { 1022 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1023 sz = rpl->MsgLength * 4; 1024 1025 if (sz > data->ReplySize) { 1026 mps_printf(sc, "%s: user reply buffer (%d) smaller " 1027 "than returned buffer (%d)\n", __func__, 1028 data->ReplySize, sz); 1029 } 1030 mps_unlock(sc); 1031 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1032 mps_lock(sc); 1033 1034 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1035 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1036 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1037 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1038 sense_len = 1039 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1040 SenseCount)), sizeof(struct 1041 scsi_sense_data)); 1042 mps_unlock(sc); 1043 copyout(cm->cm_sense, (PTRIN(data->PtrReply + 1044 sizeof(MPI2_SCSI_IO_REPLY))), sense_len); 1045 mps_lock(sc); 1046 } 1047 } 1048 } 1049 mps_unlock(sc); 1050 1051 RetFreeUnlocked: 1052 mps_lock(sc); 1053 1054 if (cm != NULL) { 1055 if (cm->cm_data) 1056 free(cm->cm_data, M_MPSUSER); 1057 mps_free_command(sc, cm); 1058 } 1059 Ret: 1060 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1061 mps_unlock(sc); 1062 1063 return (err); 1064 } 1065 1066 static void 1067 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data) 1068 { 1069 Mpi2ConfigReply_t mpi_reply; 1070 Mpi2BiosPage3_t config_page; 1071 1072 /* 1073 * Use the PCI interface functions to get the Bus, Device, and Function 1074 * information. 1075 */ 1076 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev); 1077 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev); 1078 data->PciInformation.u.bits.FunctionNumber = 1079 pci_get_function(sc->mps_dev); 1080 1081 /* 1082 * Get the FW version that should already be saved in IOC Facts. 1083 */ 1084 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1085 1086 /* 1087 * General device info. 1088 */ 1089 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2; 1090 if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE) 1091 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200; 1092 data->PCIDeviceHwId = pci_get_device(sc->mps_dev); 1093 data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1); 1094 data->SubSystemId = pci_get_subdevice(sc->mps_dev); 1095 data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev); 1096 1097 /* 1098 * Get the driver version. 1099 */ 1100 strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION); 1101 1102 /* 1103 * Need to get BIOS Config Page 3 for the BIOS Version. 1104 */ 1105 data->BiosVersion = 0; 1106 mps_lock(sc); 1107 if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1108 printf("%s: Error while retrieving BIOS Version\n", __func__); 1109 else 1110 data->BiosVersion = config_page.BiosVersion; 1111 mps_unlock(sc); 1112 } 1113 1114 static void 1115 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data) 1116 { 1117 int i; 1118 1119 /* 1120 * Use the PCI interface functions to get the Bus, Device, and Function 1121 * information. 1122 */ 1123 data->BusNumber = pci_get_bus(sc->mps_dev); 1124 data->DeviceNumber = pci_get_slot(sc->mps_dev); 1125 data->FunctionNumber = pci_get_function(sc->mps_dev); 1126 1127 /* 1128 * Now get the interrupt vector and the pci header. The vector can 1129 * only be 0 right now. The header is the first 256 bytes of config 1130 * space. 1131 */ 1132 data->InterruptVector = 0; 1133 for (i = 0; i < sizeof (data->PciHeader); i++) { 1134 data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1); 1135 } 1136 } 1137 1138 static uint8_t 1139 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id) 1140 { 1141 uint8_t index; 1142 1143 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1144 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1145 return (index); 1146 } 1147 } 1148 1149 return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND); 1150 } 1151 1152 static int 1153 mps_post_fw_diag_buffer(struct mps_softc *sc, 1154 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1155 { 1156 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1157 MPI2_DIAG_BUFFER_POST_REPLY *reply = NULL; 1158 struct mps_command *cm = NULL; 1159 int i, status; 1160 1161 /* 1162 * If buffer is not enabled, just leave. 1163 */ 1164 *return_code = MPS_FW_DIAG_ERROR_POST_FAILED; 1165 if (!pBuffer->enabled) { 1166 return (MPS_DIAG_FAILURE); 1167 } 1168 1169 /* 1170 * Clear some flags initially. 1171 */ 1172 pBuffer->force_release = FALSE; 1173 pBuffer->valid_data = FALSE; 1174 pBuffer->owned_by_firmware = FALSE; 1175 1176 /* 1177 * Get a command. 1178 */ 1179 cm = mps_alloc_command(sc); 1180 if (cm == NULL) { 1181 mps_printf(sc, "%s: no mps requests\n", __func__); 1182 return (MPS_DIAG_FAILURE); 1183 } 1184 1185 /* 1186 * Build the request for releasing the FW Diag Buffer and send it. 1187 */ 1188 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1189 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1190 req->BufferType = pBuffer->buffer_type; 1191 req->ExtendedType = pBuffer->extended_type; 1192 req->BufferLength = pBuffer->size; 1193 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1194 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1195 mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1196 cm->cm_data = NULL; 1197 cm->cm_length = 0; 1198 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1199 cm->cm_complete_data = NULL; 1200 1201 /* 1202 * Send command synchronously. 1203 */ 1204 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1205 if (status || (cm == NULL)) { 1206 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1207 status); 1208 status = MPS_DIAG_FAILURE; 1209 goto done; 1210 } 1211 1212 /* 1213 * Process POST reply. 1214 */ 1215 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1216 if (reply == NULL) { 1217 mps_printf(sc, "%s: reply is NULL, probably due to " 1218 "reinitialization\n", __func__); 1219 status = MPS_DIAG_FAILURE; 1220 goto done; 1221 } 1222 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1223 MPI2_IOCSTATUS_SUCCESS) { 1224 status = MPS_DIAG_FAILURE; 1225 mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed " 1226 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1227 "TransferLength = 0x%x\n", __func__, 1228 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1229 le32toh(reply->TransferLength)); 1230 goto done; 1231 } 1232 1233 /* 1234 * Post was successful. 1235 */ 1236 pBuffer->valid_data = TRUE; 1237 pBuffer->owned_by_firmware = TRUE; 1238 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1239 status = MPS_DIAG_SUCCESS; 1240 1241 done: 1242 if (cm != NULL) 1243 mps_free_command(sc, cm); 1244 return (status); 1245 } 1246 1247 static int 1248 mps_release_fw_diag_buffer(struct mps_softc *sc, 1249 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1250 uint32_t diag_type) 1251 { 1252 MPI2_DIAG_RELEASE_REQUEST *req; 1253 MPI2_DIAG_RELEASE_REPLY *reply = NULL; 1254 struct mps_command *cm = NULL; 1255 int status; 1256 1257 /* 1258 * If buffer is not enabled, just leave. 1259 */ 1260 *return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED; 1261 if (!pBuffer->enabled) { 1262 mps_dprint(sc, MPS_USER, "%s: This buffer type is not " 1263 "supported by the IOC", __func__); 1264 return (MPS_DIAG_FAILURE); 1265 } 1266 1267 /* 1268 * Clear some flags initially. 1269 */ 1270 pBuffer->force_release = FALSE; 1271 pBuffer->valid_data = FALSE; 1272 pBuffer->owned_by_firmware = FALSE; 1273 1274 /* 1275 * Get a command. 1276 */ 1277 cm = mps_alloc_command(sc); 1278 if (cm == NULL) { 1279 mps_printf(sc, "%s: no mps requests\n", __func__); 1280 return (MPS_DIAG_FAILURE); 1281 } 1282 1283 /* 1284 * Build the request for releasing the FW Diag Buffer and send it. 1285 */ 1286 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1287 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1288 req->BufferType = pBuffer->buffer_type; 1289 cm->cm_data = NULL; 1290 cm->cm_length = 0; 1291 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1292 cm->cm_complete_data = NULL; 1293 1294 /* 1295 * Send command synchronously. 1296 */ 1297 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1298 if (status || (cm == NULL)) { 1299 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1300 status); 1301 status = MPS_DIAG_FAILURE; 1302 goto done; 1303 } 1304 1305 /* 1306 * Process RELEASE reply. 1307 */ 1308 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1309 if (reply == NULL) { 1310 mps_printf(sc, "%s: reply is NULL, probably due to " 1311 "reinitialization\n", __func__); 1312 status = MPS_DIAG_FAILURE; 1313 goto done; 1314 } 1315 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1316 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1317 status = MPS_DIAG_FAILURE; 1318 mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer " 1319 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1320 __func__, le16toh(reply->IOCStatus), 1321 le32toh(reply->IOCLogInfo)); 1322 goto done; 1323 } 1324 1325 /* 1326 * Release was successful. 1327 */ 1328 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1329 status = MPS_DIAG_SUCCESS; 1330 1331 /* 1332 * If this was for an UNREGISTER diag type command, clear the unique ID. 1333 */ 1334 if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) { 1335 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1336 } 1337 1338 done: 1339 if (cm != NULL) 1340 mps_free_command(sc, cm); 1341 1342 return (status); 1343 } 1344 1345 static int 1346 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register, 1347 uint32_t *return_code) 1348 { 1349 mps_fw_diagnostic_buffer_t *pBuffer; 1350 struct mps_busdma_context *ctx; 1351 uint8_t extended_type, buffer_type, i; 1352 uint32_t buffer_size; 1353 uint32_t unique_id; 1354 int status; 1355 int error; 1356 1357 extended_type = diag_register->ExtendedType; 1358 buffer_type = diag_register->BufferType; 1359 buffer_size = diag_register->RequestedBufferSize; 1360 unique_id = diag_register->UniqueId; 1361 ctx = NULL; 1362 error = 0; 1363 1364 /* 1365 * Check for valid buffer type 1366 */ 1367 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1368 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1369 return (MPS_DIAG_FAILURE); 1370 } 1371 1372 /* 1373 * Get the current buffer and look up the unique ID. The unique ID 1374 * should not be found. If it is, the ID is already in use. 1375 */ 1376 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1377 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1378 if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1379 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1380 return (MPS_DIAG_FAILURE); 1381 } 1382 1383 /* 1384 * The buffer's unique ID should not be registered yet, and the given 1385 * unique ID cannot be 0. 1386 */ 1387 if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) || 1388 (unique_id == MPS_FW_DIAG_INVALID_UID)) { 1389 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1390 return (MPS_DIAG_FAILURE); 1391 } 1392 1393 /* 1394 * If this buffer is already posted as immediate, just change owner. 1395 */ 1396 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1397 (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) { 1398 pBuffer->immediate = FALSE; 1399 pBuffer->unique_id = unique_id; 1400 return (MPS_DIAG_SUCCESS); 1401 } 1402 1403 /* 1404 * Post a new buffer after checking if it's enabled. The DMA buffer 1405 * that is allocated will be contiguous (nsegments = 1). 1406 */ 1407 if (!pBuffer->enabled) { 1408 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1409 return (MPS_DIAG_FAILURE); 1410 } 1411 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1412 1, 0, /* algnmnt, boundary */ 1413 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1414 BUS_SPACE_MAXADDR, /* highaddr */ 1415 NULL, NULL, /* filter, filterarg */ 1416 buffer_size, /* maxsize */ 1417 1, /* nsegments */ 1418 buffer_size, /* maxsegsize */ 1419 0, /* flags */ 1420 NULL, NULL, /* lockfunc, lockarg */ 1421 &sc->fw_diag_dmat)) { 1422 mps_dprint(sc, MPS_ERROR, 1423 "Cannot allocate FW diag buffer DMA tag\n"); 1424 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1425 status = MPS_DIAG_FAILURE; 1426 goto bailout; 1427 } 1428 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1429 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1430 mps_dprint(sc, MPS_ERROR, 1431 "Cannot allocate FW diag buffer memory\n"); 1432 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1433 status = MPS_DIAG_FAILURE; 1434 goto bailout; 1435 } 1436 bzero(sc->fw_diag_buffer, buffer_size); 1437 1438 ctx = malloc(sizeof(*ctx), M_MPSUSER, M_WAITOK | M_ZERO); 1439 if (ctx == NULL) { 1440 device_printf(sc->mps_dev, "%s: context malloc failed\n", 1441 __func__); 1442 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1443 status = MPS_DIAG_FAILURE; 1444 goto bailout; 1445 } 1446 ctx->addr = &sc->fw_diag_busaddr; 1447 ctx->buffer_dmat = sc->fw_diag_dmat; 1448 ctx->buffer_dmamap = sc->fw_diag_map; 1449 ctx->softc = sc; 1450 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1451 sc->fw_diag_buffer, buffer_size, mps_memaddr_wait_cb, 1452 ctx, 0); 1453 1454 if (error == EINPROGRESS) { 1455 1456 /* XXX KDM */ 1457 device_printf(sc->mps_dev, "%s: Deferred bus_dmamap_load\n", 1458 __func__); 1459 /* 1460 * Wait for the load to complete. If we're interrupted, 1461 * bail out. 1462 */ 1463 mps_lock(sc); 1464 if (ctx->completed == 0) { 1465 error = msleep(ctx, &sc->mps_mtx, PCATCH, "mpswait", 0); 1466 if (error != 0) { 1467 /* 1468 * We got an error from msleep(9). This is 1469 * most likely due to a signal. Tell 1470 * mpr_memaddr_wait_cb() that we've abandoned 1471 * the context, so it needs to clean up when 1472 * it is called. 1473 */ 1474 ctx->abandoned = 1; 1475 1476 /* The callback will free this memory */ 1477 ctx = NULL; 1478 mps_unlock(sc); 1479 1480 device_printf(sc->mps_dev, "Cannot " 1481 "bus_dmamap_load FW diag buffer, error = " 1482 "%d returned from msleep\n", error); 1483 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1484 status = MPS_DIAG_FAILURE; 1485 goto bailout; 1486 } 1487 } 1488 mps_unlock(sc); 1489 } 1490 1491 if ((error != 0) || (ctx->error != 0)) { 1492 device_printf(sc->mps_dev, "Cannot bus_dmamap_load FW diag " 1493 "buffer, %serror = %d\n", error ? "" : "callback ", 1494 error ? error : ctx->error); 1495 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1496 status = MPS_DIAG_FAILURE; 1497 goto bailout; 1498 } 1499 1500 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1501 1502 pBuffer->size = buffer_size; 1503 1504 /* 1505 * Copy the given info to the diag buffer and post the buffer. 1506 */ 1507 pBuffer->buffer_type = buffer_type; 1508 pBuffer->immediate = FALSE; 1509 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1510 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1511 i++) { 1512 pBuffer->product_specific[i] = 1513 diag_register->ProductSpecific[i]; 1514 } 1515 } 1516 pBuffer->extended_type = extended_type; 1517 pBuffer->unique_id = unique_id; 1518 status = mps_post_fw_diag_buffer(sc, pBuffer, return_code); 1519 1520 bailout: 1521 /* 1522 * In case there was a failure, free the DMA buffer. 1523 */ 1524 if (status == MPS_DIAG_FAILURE) { 1525 if (sc->fw_diag_busaddr != 0) { 1526 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1527 sc->fw_diag_busaddr = 0; 1528 } 1529 if (sc->fw_diag_buffer != NULL) { 1530 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1531 sc->fw_diag_map); 1532 sc->fw_diag_buffer = NULL; 1533 } 1534 if (sc->fw_diag_dmat != NULL) { 1535 bus_dma_tag_destroy(sc->fw_diag_dmat); 1536 sc->fw_diag_dmat = NULL; 1537 } 1538 } 1539 1540 if (ctx != NULL) 1541 free(ctx, M_MPSUSER); 1542 1543 return (status); 1544 } 1545 1546 static int 1547 mps_diag_unregister(struct mps_softc *sc, 1548 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1549 { 1550 mps_fw_diagnostic_buffer_t *pBuffer; 1551 uint8_t i; 1552 uint32_t unique_id; 1553 int status; 1554 1555 unique_id = diag_unregister->UniqueId; 1556 1557 /* 1558 * Get the current buffer and look up the unique ID. The unique ID 1559 * should be there. 1560 */ 1561 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1562 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1563 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1564 return (MPS_DIAG_FAILURE); 1565 } 1566 1567 pBuffer = &sc->fw_diag_buffer_list[i]; 1568 1569 /* 1570 * Try to release the buffer from FW before freeing it. If release 1571 * fails, don't free the DMA buffer in case FW tries to access it 1572 * later. If buffer is not owned by firmware, can't release it. 1573 */ 1574 if (!pBuffer->owned_by_firmware) { 1575 status = MPS_DIAG_SUCCESS; 1576 } else { 1577 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1578 MPS_FW_DIAG_TYPE_UNREGISTER); 1579 } 1580 1581 /* 1582 * At this point, return the current status no matter what happens with 1583 * the DMA buffer. 1584 */ 1585 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1586 if (status == MPS_DIAG_SUCCESS) { 1587 if (sc->fw_diag_busaddr != 0) { 1588 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1589 sc->fw_diag_busaddr = 0; 1590 } 1591 if (sc->fw_diag_buffer != NULL) { 1592 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1593 sc->fw_diag_map); 1594 sc->fw_diag_buffer = NULL; 1595 } 1596 if (sc->fw_diag_dmat != NULL) { 1597 bus_dma_tag_destroy(sc->fw_diag_dmat); 1598 sc->fw_diag_dmat = NULL; 1599 } 1600 } 1601 1602 return (status); 1603 } 1604 1605 static int 1606 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 1607 uint32_t *return_code) 1608 { 1609 mps_fw_diagnostic_buffer_t *pBuffer; 1610 uint8_t i; 1611 uint32_t unique_id; 1612 1613 unique_id = diag_query->UniqueId; 1614 1615 /* 1616 * If ID is valid, query on ID. 1617 * If ID is invalid, query on buffer type. 1618 */ 1619 if (unique_id == MPS_FW_DIAG_INVALID_UID) { 1620 i = diag_query->BufferType; 1621 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1622 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1623 return (MPS_DIAG_FAILURE); 1624 } 1625 } else { 1626 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1627 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1628 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1629 return (MPS_DIAG_FAILURE); 1630 } 1631 } 1632 1633 /* 1634 * Fill query structure with the diag buffer info. 1635 */ 1636 pBuffer = &sc->fw_diag_buffer_list[i]; 1637 diag_query->BufferType = pBuffer->buffer_type; 1638 diag_query->ExtendedType = pBuffer->extended_type; 1639 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1640 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1641 i++) { 1642 diag_query->ProductSpecific[i] = 1643 pBuffer->product_specific[i]; 1644 } 1645 } 1646 diag_query->TotalBufferSize = pBuffer->size; 1647 diag_query->DriverAddedBufferSize = 0; 1648 diag_query->UniqueId = pBuffer->unique_id; 1649 diag_query->ApplicationFlags = 0; 1650 diag_query->DiagnosticFlags = 0; 1651 1652 /* 1653 * Set/Clear application flags 1654 */ 1655 if (pBuffer->immediate) { 1656 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED; 1657 } else { 1658 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED; 1659 } 1660 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1661 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID; 1662 } else { 1663 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID; 1664 } 1665 if (pBuffer->owned_by_firmware) { 1666 diag_query->ApplicationFlags |= 1667 MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1668 } else { 1669 diag_query->ApplicationFlags &= 1670 ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1671 } 1672 1673 return (MPS_DIAG_SUCCESS); 1674 } 1675 1676 static int 1677 mps_diag_read_buffer(struct mps_softc *sc, 1678 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1679 uint32_t *return_code) 1680 { 1681 mps_fw_diagnostic_buffer_t *pBuffer; 1682 uint8_t i, *pData; 1683 uint32_t unique_id; 1684 int status; 1685 1686 unique_id = diag_read_buffer->UniqueId; 1687 1688 /* 1689 * Get the current buffer and look up the unique ID. The unique ID 1690 * should be there. 1691 */ 1692 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1693 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1694 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1695 return (MPS_DIAG_FAILURE); 1696 } 1697 1698 pBuffer = &sc->fw_diag_buffer_list[i]; 1699 1700 /* 1701 * Make sure requested read is within limits 1702 */ 1703 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1704 pBuffer->size) { 1705 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1706 return (MPS_DIAG_FAILURE); 1707 } 1708 1709 /* Sync the DMA map before we copy to userland. */ 1710 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1711 BUS_DMASYNC_POSTREAD); 1712 1713 /* 1714 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1715 * buffer that was allocated is one contiguous buffer. 1716 */ 1717 pData = (uint8_t *)(sc->fw_diag_buffer + 1718 diag_read_buffer->StartingOffset); 1719 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1720 return (MPS_DIAG_FAILURE); 1721 diag_read_buffer->Status = 0; 1722 1723 /* 1724 * Set or clear the Force Release flag. 1725 */ 1726 if (pBuffer->force_release) { 1727 diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1728 } else { 1729 diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1730 } 1731 1732 /* 1733 * If buffer is to be reregistered, make sure it's not already owned by 1734 * firmware first. 1735 */ 1736 status = MPS_DIAG_SUCCESS; 1737 if (!pBuffer->owned_by_firmware) { 1738 if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) { 1739 status = mps_post_fw_diag_buffer(sc, pBuffer, 1740 return_code); 1741 } 1742 } 1743 1744 return (status); 1745 } 1746 1747 static int 1748 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release, 1749 uint32_t *return_code) 1750 { 1751 mps_fw_diagnostic_buffer_t *pBuffer; 1752 uint8_t i; 1753 uint32_t unique_id; 1754 int status; 1755 1756 unique_id = diag_release->UniqueId; 1757 1758 /* 1759 * Get the current buffer and look up the unique ID. The unique ID 1760 * should be there. 1761 */ 1762 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1763 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1764 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1765 return (MPS_DIAG_FAILURE); 1766 } 1767 1768 pBuffer = &sc->fw_diag_buffer_list[i]; 1769 1770 /* 1771 * If buffer is not owned by firmware, it's already been released. 1772 */ 1773 if (!pBuffer->owned_by_firmware) { 1774 *return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED; 1775 return (MPS_DIAG_FAILURE); 1776 } 1777 1778 /* 1779 * Release the buffer. 1780 */ 1781 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1782 MPS_FW_DIAG_TYPE_RELEASE); 1783 return (status); 1784 } 1785 1786 static int 1787 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action, 1788 uint32_t length, uint32_t *return_code) 1789 { 1790 mps_fw_diag_register_t diag_register; 1791 mps_fw_diag_unregister_t diag_unregister; 1792 mps_fw_diag_query_t diag_query; 1793 mps_diag_read_buffer_t diag_read_buffer; 1794 mps_fw_diag_release_t diag_release; 1795 int status = MPS_DIAG_SUCCESS; 1796 uint32_t original_return_code; 1797 1798 original_return_code = *return_code; 1799 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1800 1801 switch (action) { 1802 case MPS_FW_DIAG_TYPE_REGISTER: 1803 if (!length) { 1804 *return_code = 1805 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1806 status = MPS_DIAG_FAILURE; 1807 break; 1808 } 1809 if (copyin(diag_action, &diag_register, 1810 sizeof(diag_register)) != 0) 1811 return (MPS_DIAG_FAILURE); 1812 status = mps_diag_register(sc, &diag_register, 1813 return_code); 1814 break; 1815 1816 case MPS_FW_DIAG_TYPE_UNREGISTER: 1817 if (length < sizeof(diag_unregister)) { 1818 *return_code = 1819 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1820 status = MPS_DIAG_FAILURE; 1821 break; 1822 } 1823 if (copyin(diag_action, &diag_unregister, 1824 sizeof(diag_unregister)) != 0) 1825 return (MPS_DIAG_FAILURE); 1826 status = mps_diag_unregister(sc, &diag_unregister, 1827 return_code); 1828 break; 1829 1830 case MPS_FW_DIAG_TYPE_QUERY: 1831 if (length < sizeof (diag_query)) { 1832 *return_code = 1833 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1834 status = MPS_DIAG_FAILURE; 1835 break; 1836 } 1837 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1838 != 0) 1839 return (MPS_DIAG_FAILURE); 1840 status = mps_diag_query(sc, &diag_query, return_code); 1841 if (status == MPS_DIAG_SUCCESS) 1842 if (copyout(&diag_query, diag_action, 1843 sizeof (diag_query)) != 0) 1844 return (MPS_DIAG_FAILURE); 1845 break; 1846 1847 case MPS_FW_DIAG_TYPE_READ_BUFFER: 1848 if (copyin(diag_action, &diag_read_buffer, 1849 sizeof(diag_read_buffer)) != 0) 1850 return (MPS_DIAG_FAILURE); 1851 if (length < diag_read_buffer.BytesToRead) { 1852 *return_code = 1853 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1854 status = MPS_DIAG_FAILURE; 1855 break; 1856 } 1857 status = mps_diag_read_buffer(sc, &diag_read_buffer, 1858 PTRIN(diag_read_buffer.PtrDataBuffer), 1859 return_code); 1860 if (status == MPS_DIAG_SUCCESS) { 1861 if (copyout(&diag_read_buffer, diag_action, 1862 sizeof(diag_read_buffer) - 1863 sizeof(diag_read_buffer.PtrDataBuffer)) != 1864 0) 1865 return (MPS_DIAG_FAILURE); 1866 } 1867 break; 1868 1869 case MPS_FW_DIAG_TYPE_RELEASE: 1870 if (length < sizeof(diag_release)) { 1871 *return_code = 1872 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1873 status = MPS_DIAG_FAILURE; 1874 break; 1875 } 1876 if (copyin(diag_action, &diag_release, 1877 sizeof(diag_release)) != 0) 1878 return (MPS_DIAG_FAILURE); 1879 status = mps_diag_release(sc, &diag_release, 1880 return_code); 1881 break; 1882 1883 default: 1884 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1885 status = MPS_DIAG_FAILURE; 1886 break; 1887 } 1888 1889 if ((status == MPS_DIAG_FAILURE) && 1890 (original_return_code == MPS_FW_DIAG_NEW) && 1891 (*return_code != MPS_FW_DIAG_ERROR_SUCCESS)) 1892 status = MPS_DIAG_SUCCESS; 1893 1894 return (status); 1895 } 1896 1897 static int 1898 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data) 1899 { 1900 int status; 1901 1902 /* 1903 * Only allow one diag action at one time. 1904 */ 1905 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1906 mps_dprint(sc, MPS_USER, "%s: Only one FW diag command " 1907 "allowed at a single time.", __func__); 1908 return (EBUSY); 1909 } 1910 sc->mps_flags |= MPS_FLAGS_BUSY; 1911 1912 /* 1913 * Send diag action request 1914 */ 1915 if (data->Action == MPS_FW_DIAG_TYPE_REGISTER || 1916 data->Action == MPS_FW_DIAG_TYPE_UNREGISTER || 1917 data->Action == MPS_FW_DIAG_TYPE_QUERY || 1918 data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER || 1919 data->Action == MPS_FW_DIAG_TYPE_RELEASE) { 1920 status = mps_do_diag_action(sc, data->Action, 1921 PTRIN(data->PtrDiagAction), data->Length, 1922 &data->ReturnCode); 1923 } else 1924 status = EINVAL; 1925 1926 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1927 return (status); 1928 } 1929 1930 /* 1931 * Copy the event recording mask and the event queue size out. For 1932 * clarification, the event recording mask (events_to_record) is not the same 1933 * thing as the event mask (event_mask). events_to_record has a bit set for 1934 * every event type that is to be recorded by the driver, and event_mask has a 1935 * bit cleared for every event that is allowed into the driver from the IOC. 1936 * They really have nothing to do with each other. 1937 */ 1938 static void 1939 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data) 1940 { 1941 uint8_t i; 1942 1943 mps_lock(sc); 1944 data->Entries = MPS_EVENT_QUEUE_SIZE; 1945 1946 for (i = 0; i < 4; i++) { 1947 data->Types[i] = sc->events_to_record[i]; 1948 } 1949 mps_unlock(sc); 1950 } 1951 1952 /* 1953 * Set the driver's event mask according to what's been given. See 1954 * mps_user_event_query for explanation of the event recording mask and the IOC 1955 * event mask. It's the app's responsibility to enable event logging by setting 1956 * the bits in events_to_record. Initially, no events will be logged. 1957 */ 1958 static void 1959 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data) 1960 { 1961 uint8_t i; 1962 1963 mps_lock(sc); 1964 for (i = 0; i < 4; i++) { 1965 sc->events_to_record[i] = data->Types[i]; 1966 } 1967 mps_unlock(sc); 1968 } 1969 1970 /* 1971 * Copy out the events that have been recorded, up to the max events allowed. 1972 */ 1973 static int 1974 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data) 1975 { 1976 int status = 0; 1977 uint32_t size; 1978 1979 mps_lock(sc); 1980 size = data->Size; 1981 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1982 mps_unlock(sc); 1983 if (copyout((void *)sc->recorded_events, 1984 PTRIN(data->PtrEvents), size) != 0) 1985 status = EFAULT; 1986 mps_lock(sc); 1987 } else { 1988 /* 1989 * data->Size value is not large enough to copy event data. 1990 */ 1991 status = EFAULT; 1992 } 1993 1994 /* 1995 * Change size value to match the number of bytes that were copied. 1996 */ 1997 if (status == 0) 1998 data->Size = sizeof(sc->recorded_events); 1999 mps_unlock(sc); 2000 2001 return (status); 2002 } 2003 2004 /* 2005 * Record events into the driver from the IOC if they are not masked. 2006 */ 2007 void 2008 mpssas_record_event(struct mps_softc *sc, 2009 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 2010 { 2011 uint32_t event; 2012 int i, j; 2013 uint16_t event_data_len; 2014 boolean_t sendAEN = FALSE; 2015 2016 event = event_reply->Event; 2017 2018 /* 2019 * Generate a system event to let anyone who cares know that a 2020 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2021 * event mask is set to. 2022 */ 2023 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2024 sendAEN = TRUE; 2025 } 2026 2027 /* 2028 * Record the event only if its corresponding bit is set in 2029 * events_to_record. event_index is the index into recorded_events and 2030 * event_number is the overall number of an event being recorded since 2031 * start-of-day. event_index will roll over; event_number will never 2032 * roll over. 2033 */ 2034 i = (uint8_t)(event / 32); 2035 j = (uint8_t)(event % 32); 2036 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2037 i = sc->event_index; 2038 sc->recorded_events[i].Type = event; 2039 sc->recorded_events[i].Number = ++sc->event_number; 2040 bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH * 2041 4); 2042 event_data_len = event_reply->EventDataLength; 2043 2044 if (event_data_len > 0) { 2045 /* 2046 * Limit data to size in m_event entry 2047 */ 2048 if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) { 2049 event_data_len = MPS_MAX_EVENT_DATA_LENGTH; 2050 } 2051 for (j = 0; j < event_data_len; j++) { 2052 sc->recorded_events[i].Data[j] = 2053 event_reply->EventData[j]; 2054 } 2055 2056 /* 2057 * check for index wrap-around 2058 */ 2059 if (++i == MPS_EVENT_QUEUE_SIZE) { 2060 i = 0; 2061 } 2062 sc->event_index = (uint8_t)i; 2063 2064 /* 2065 * Set flag to send the event. 2066 */ 2067 sendAEN = TRUE; 2068 } 2069 } 2070 2071 /* 2072 * Generate a system event if flag is set to let anyone who cares know 2073 * that an event has occurred. 2074 */ 2075 if (sendAEN) { 2076 //SLM-how to send a system event (see kqueue, kevent) 2077 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2078 // "SAS", NULL, NULL, DDI_NOSLEEP); 2079 } 2080 } 2081 2082 static int 2083 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data) 2084 { 2085 int status = 0; 2086 2087 switch (data->Command) { 2088 /* 2089 * IO access is not supported. 2090 */ 2091 case REG_IO_READ: 2092 case REG_IO_WRITE: 2093 mps_dprint(sc, MPS_USER, "IO access is not supported. " 2094 "Use memory access."); 2095 status = EINVAL; 2096 break; 2097 2098 case REG_MEM_READ: 2099 data->RegData = mps_regread(sc, data->RegOffset); 2100 break; 2101 2102 case REG_MEM_WRITE: 2103 mps_regwrite(sc, data->RegOffset, data->RegData); 2104 break; 2105 2106 default: 2107 status = EINVAL; 2108 break; 2109 } 2110 2111 return (status); 2112 } 2113 2114 static int 2115 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data) 2116 { 2117 uint8_t bt2dh = FALSE; 2118 uint8_t dh2bt = FALSE; 2119 uint16_t dev_handle, bus, target; 2120 2121 bus = data->Bus; 2122 target = data->TargetID; 2123 dev_handle = data->DevHandle; 2124 2125 /* 2126 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2127 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2128 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2129 * invalid. 2130 */ 2131 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2132 dh2bt = TRUE; 2133 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2134 bt2dh = TRUE; 2135 if (!dh2bt && !bt2dh) 2136 return (EINVAL); 2137 2138 /* 2139 * Only handle bus of 0. Make sure target is within range. 2140 */ 2141 if (bt2dh) { 2142 if (bus != 0) 2143 return (EINVAL); 2144 2145 if (target > sc->max_devices) { 2146 mps_dprint(sc, MPS_FAULT, "Target ID is out of range " 2147 "for Bus/Target to DevHandle mapping."); 2148 return (EINVAL); 2149 } 2150 dev_handle = sc->mapping_table[target].dev_handle; 2151 if (dev_handle) 2152 data->DevHandle = dev_handle; 2153 } else { 2154 bus = 0; 2155 target = mps_mapping_get_tid_from_handle(sc, dev_handle); 2156 data->Bus = bus; 2157 data->TargetID = target; 2158 } 2159 2160 return (0); 2161 } 2162 2163 static int 2164 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2165 struct thread *td) 2166 { 2167 struct mps_softc *sc; 2168 struct mps_cfg_page_req *page_req; 2169 struct mps_ext_cfg_page_req *ext_page_req; 2170 void *mps_page; 2171 int error, msleep_ret; 2172 2173 mps_page = NULL; 2174 sc = dev->si_drv1; 2175 page_req = (void *)arg; 2176 ext_page_req = (void *)arg; 2177 2178 switch (cmd) { 2179 case MPSIO_READ_CFG_HEADER: 2180 mps_lock(sc); 2181 error = mps_user_read_cfg_header(sc, page_req); 2182 mps_unlock(sc); 2183 break; 2184 case MPSIO_READ_CFG_PAGE: 2185 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO); 2186 error = copyin(page_req->buf, mps_page, 2187 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2188 if (error) 2189 break; 2190 mps_lock(sc); 2191 error = mps_user_read_cfg_page(sc, page_req, mps_page); 2192 mps_unlock(sc); 2193 if (error) 2194 break; 2195 error = copyout(mps_page, page_req->buf, page_req->len); 2196 break; 2197 case MPSIO_READ_EXT_CFG_HEADER: 2198 mps_lock(sc); 2199 error = mps_user_read_extcfg_header(sc, ext_page_req); 2200 mps_unlock(sc); 2201 break; 2202 case MPSIO_READ_EXT_CFG_PAGE: 2203 mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2204 error = copyin(ext_page_req->buf, mps_page, 2205 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2206 if (error) 2207 break; 2208 mps_lock(sc); 2209 error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page); 2210 mps_unlock(sc); 2211 if (error) 2212 break; 2213 error = copyout(mps_page, ext_page_req->buf, ext_page_req->len); 2214 break; 2215 case MPSIO_WRITE_CFG_PAGE: 2216 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2217 error = copyin(page_req->buf, mps_page, page_req->len); 2218 if (error) 2219 break; 2220 mps_lock(sc); 2221 error = mps_user_write_cfg_page(sc, page_req, mps_page); 2222 mps_unlock(sc); 2223 break; 2224 case MPSIO_MPS_COMMAND: 2225 error = mps_user_command(sc, (struct mps_usr_command *)arg); 2226 break; 2227 case MPTIOCTL_PASS_THRU: 2228 /* 2229 * The user has requested to pass through a command to be 2230 * executed by the MPT firmware. Call our routine which does 2231 * this. Only allow one passthru IOCTL at one time. 2232 */ 2233 error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg); 2234 break; 2235 case MPTIOCTL_GET_ADAPTER_DATA: 2236 /* 2237 * The user has requested to read adapter data. Call our 2238 * routine which does this. 2239 */ 2240 error = 0; 2241 mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg); 2242 break; 2243 case MPTIOCTL_GET_PCI_INFO: 2244 /* 2245 * The user has requested to read pci info. Call 2246 * our routine which does this. 2247 */ 2248 mps_lock(sc); 2249 error = 0; 2250 mps_user_read_pci_info(sc, (mps_pci_info_t *)arg); 2251 mps_unlock(sc); 2252 break; 2253 case MPTIOCTL_RESET_ADAPTER: 2254 mps_lock(sc); 2255 sc->port_enable_complete = 0; 2256 uint32_t reinit_start = time_uptime; 2257 error = mps_reinit(sc); 2258 /* Sleep for 300 second. */ 2259 msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO, 2260 "mps_porten", 300 * hz); 2261 mps_unlock(sc); 2262 if (msleep_ret) 2263 printf("Port Enable did not complete after Diag " 2264 "Reset msleep error %d.\n", msleep_ret); 2265 else 2266 mps_dprint(sc, MPS_USER, 2267 "Hard Reset with Port Enable completed in %d seconds.\n", 2268 (uint32_t) (time_uptime - reinit_start)); 2269 break; 2270 case MPTIOCTL_DIAG_ACTION: 2271 /* 2272 * The user has done a diag buffer action. Call our routine 2273 * which does this. Only allow one diag action at one time. 2274 */ 2275 mps_lock(sc); 2276 error = mps_user_diag_action(sc, (mps_diag_action_t *)arg); 2277 mps_unlock(sc); 2278 break; 2279 case MPTIOCTL_EVENT_QUERY: 2280 /* 2281 * The user has done an event query. Call our routine which does 2282 * this. 2283 */ 2284 error = 0; 2285 mps_user_event_query(sc, (mps_event_query_t *)arg); 2286 break; 2287 case MPTIOCTL_EVENT_ENABLE: 2288 /* 2289 * The user has done an event enable. Call our routine which 2290 * does this. 2291 */ 2292 error = 0; 2293 mps_user_event_enable(sc, (mps_event_enable_t *)arg); 2294 break; 2295 case MPTIOCTL_EVENT_REPORT: 2296 /* 2297 * The user has done an event report. Call our routine which 2298 * does this. 2299 */ 2300 error = mps_user_event_report(sc, (mps_event_report_t *)arg); 2301 break; 2302 case MPTIOCTL_REG_ACCESS: 2303 /* 2304 * The user has requested register access. Call our routine 2305 * which does this. 2306 */ 2307 mps_lock(sc); 2308 error = mps_user_reg_access(sc, (mps_reg_access_t *)arg); 2309 mps_unlock(sc); 2310 break; 2311 case MPTIOCTL_BTDH_MAPPING: 2312 /* 2313 * The user has requested to translate a bus/target to a 2314 * DevHandle or a DevHandle to a bus/target. Call our routine 2315 * which does this. 2316 */ 2317 error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg); 2318 break; 2319 default: 2320 error = ENOIOCTL; 2321 break; 2322 } 2323 2324 if (mps_page != NULL) 2325 free(mps_page, M_MPSUSER); 2326 2327 return (error); 2328 } 2329 2330 #ifdef COMPAT_FREEBSD32 2331 2332 struct mps_cfg_page_req32 { 2333 MPI2_CONFIG_PAGE_HEADER header; 2334 uint32_t page_address; 2335 uint32_t buf; 2336 int len; 2337 uint16_t ioc_status; 2338 }; 2339 2340 struct mps_ext_cfg_page_req32 { 2341 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2342 uint32_t page_address; 2343 uint32_t buf; 2344 int len; 2345 uint16_t ioc_status; 2346 }; 2347 2348 struct mps_raid_action32 { 2349 uint8_t action; 2350 uint8_t volume_bus; 2351 uint8_t volume_id; 2352 uint8_t phys_disk_num; 2353 uint32_t action_data_word; 2354 uint32_t buf; 2355 int len; 2356 uint32_t volume_status; 2357 uint32_t action_data[4]; 2358 uint16_t action_status; 2359 uint16_t ioc_status; 2360 uint8_t write; 2361 }; 2362 2363 struct mps_usr_command32 { 2364 uint32_t req; 2365 uint32_t req_len; 2366 uint32_t rpl; 2367 uint32_t rpl_len; 2368 uint32_t buf; 2369 int len; 2370 uint32_t flags; 2371 }; 2372 2373 #define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32) 2374 #define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32) 2375 #define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32) 2376 #define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32) 2377 #define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32) 2378 #define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32) 2379 #define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32) 2380 2381 static int 2382 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2383 struct thread *td) 2384 { 2385 struct mps_cfg_page_req32 *page32 = _arg; 2386 struct mps_ext_cfg_page_req32 *ext32 = _arg; 2387 struct mps_raid_action32 *raid32 = _arg; 2388 struct mps_usr_command32 *user32 = _arg; 2389 union { 2390 struct mps_cfg_page_req page; 2391 struct mps_ext_cfg_page_req ext; 2392 struct mps_raid_action raid; 2393 struct mps_usr_command user; 2394 } arg; 2395 u_long cmd; 2396 int error; 2397 2398 switch (cmd32) { 2399 case MPSIO_READ_CFG_HEADER32: 2400 case MPSIO_READ_CFG_PAGE32: 2401 case MPSIO_WRITE_CFG_PAGE32: 2402 if (cmd32 == MPSIO_READ_CFG_HEADER32) 2403 cmd = MPSIO_READ_CFG_HEADER; 2404 else if (cmd32 == MPSIO_READ_CFG_PAGE32) 2405 cmd = MPSIO_READ_CFG_PAGE; 2406 else 2407 cmd = MPSIO_WRITE_CFG_PAGE; 2408 CP(*page32, arg.page, header); 2409 CP(*page32, arg.page, page_address); 2410 PTRIN_CP(*page32, arg.page, buf); 2411 CP(*page32, arg.page, len); 2412 CP(*page32, arg.page, ioc_status); 2413 break; 2414 2415 case MPSIO_READ_EXT_CFG_HEADER32: 2416 case MPSIO_READ_EXT_CFG_PAGE32: 2417 if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32) 2418 cmd = MPSIO_READ_EXT_CFG_HEADER; 2419 else 2420 cmd = MPSIO_READ_EXT_CFG_PAGE; 2421 CP(*ext32, arg.ext, header); 2422 CP(*ext32, arg.ext, page_address); 2423 PTRIN_CP(*ext32, arg.ext, buf); 2424 CP(*ext32, arg.ext, len); 2425 CP(*ext32, arg.ext, ioc_status); 2426 break; 2427 2428 case MPSIO_RAID_ACTION32: 2429 cmd = MPSIO_RAID_ACTION; 2430 CP(*raid32, arg.raid, action); 2431 CP(*raid32, arg.raid, volume_bus); 2432 CP(*raid32, arg.raid, volume_id); 2433 CP(*raid32, arg.raid, phys_disk_num); 2434 CP(*raid32, arg.raid, action_data_word); 2435 PTRIN_CP(*raid32, arg.raid, buf); 2436 CP(*raid32, arg.raid, len); 2437 CP(*raid32, arg.raid, volume_status); 2438 bcopy(raid32->action_data, arg.raid.action_data, 2439 sizeof arg.raid.action_data); 2440 CP(*raid32, arg.raid, ioc_status); 2441 CP(*raid32, arg.raid, write); 2442 break; 2443 2444 case MPSIO_MPS_COMMAND32: 2445 cmd = MPSIO_MPS_COMMAND; 2446 PTRIN_CP(*user32, arg.user, req); 2447 CP(*user32, arg.user, req_len); 2448 PTRIN_CP(*user32, arg.user, rpl); 2449 CP(*user32, arg.user, rpl_len); 2450 PTRIN_CP(*user32, arg.user, buf); 2451 CP(*user32, arg.user, len); 2452 CP(*user32, arg.user, flags); 2453 break; 2454 default: 2455 return (ENOIOCTL); 2456 } 2457 2458 error = mps_ioctl(dev, cmd, &arg, flag, td); 2459 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2460 switch (cmd32) { 2461 case MPSIO_READ_CFG_HEADER32: 2462 case MPSIO_READ_CFG_PAGE32: 2463 case MPSIO_WRITE_CFG_PAGE32: 2464 CP(arg.page, *page32, header); 2465 CP(arg.page, *page32, page_address); 2466 PTROUT_CP(arg.page, *page32, buf); 2467 CP(arg.page, *page32, len); 2468 CP(arg.page, *page32, ioc_status); 2469 break; 2470 2471 case MPSIO_READ_EXT_CFG_HEADER32: 2472 case MPSIO_READ_EXT_CFG_PAGE32: 2473 CP(arg.ext, *ext32, header); 2474 CP(arg.ext, *ext32, page_address); 2475 PTROUT_CP(arg.ext, *ext32, buf); 2476 CP(arg.ext, *ext32, len); 2477 CP(arg.ext, *ext32, ioc_status); 2478 break; 2479 2480 case MPSIO_RAID_ACTION32: 2481 CP(arg.raid, *raid32, action); 2482 CP(arg.raid, *raid32, volume_bus); 2483 CP(arg.raid, *raid32, volume_id); 2484 CP(arg.raid, *raid32, phys_disk_num); 2485 CP(arg.raid, *raid32, action_data_word); 2486 PTROUT_CP(arg.raid, *raid32, buf); 2487 CP(arg.raid, *raid32, len); 2488 CP(arg.raid, *raid32, volume_status); 2489 bcopy(arg.raid.action_data, raid32->action_data, 2490 sizeof arg.raid.action_data); 2491 CP(arg.raid, *raid32, ioc_status); 2492 CP(arg.raid, *raid32, write); 2493 break; 2494 2495 case MPSIO_MPS_COMMAND32: 2496 PTROUT_CP(arg.user, *user32, req); 2497 CP(arg.user, *user32, req_len); 2498 PTROUT_CP(arg.user, *user32, rpl); 2499 CP(arg.user, *user32, rpl_len); 2500 PTROUT_CP(arg.user, *user32, buf); 2501 CP(arg.user, *user32, len); 2502 CP(arg.user, *user32, flags); 2503 break; 2504 } 2505 } 2506 2507 return (error); 2508 } 2509 #endif /* COMPAT_FREEBSD32 */ 2510 2511 static int 2512 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2513 struct thread *td) 2514 { 2515 #ifdef COMPAT_FREEBSD32 2516 if (SV_CURPROC_FLAG(SV_ILP32)) 2517 return (mps_ioctl32(dev, com, arg, flag, td)); 2518 #endif 2519 return (mps_ioctl(dev, com, arg, flag, td)); 2520 } 2521