1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Yahoo!, Inc. 5 * All rights reserved. 6 * Written by: John Baldwin <jhb@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 33 */ 34 /*- 35 * Copyright (c) 2011-2015 LSI Corp. 36 * Copyright (c) 2013-2015 Avago Technologies 37 * All rights reserved. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 61 */ 62 63 #include <sys/cdefs.h> 64 /* TODO Move headers to mpsvar */ 65 #include <sys/types.h> 66 #include <sys/param.h> 67 #include <sys/systm.h> 68 #include <sys/kernel.h> 69 #include <sys/selinfo.h> 70 #include <sys/module.h> 71 #include <sys/bus.h> 72 #include <sys/conf.h> 73 #include <sys/bio.h> 74 #include <sys/abi_compat.h> 75 #include <sys/malloc.h> 76 #include <sys/uio.h> 77 #include <sys/sysctl.h> 78 #include <sys/ioccom.h> 79 #include <sys/endian.h> 80 #include <sys/queue.h> 81 #include <sys/kthread.h> 82 #include <sys/taskqueue.h> 83 #include <sys/proc.h> 84 #include <sys/sysent.h> 85 86 #include <machine/bus.h> 87 #include <machine/resource.h> 88 #include <sys/rman.h> 89 90 #include <cam/cam.h> 91 #include <cam/cam_ccb.h> 92 #include <cam/scsi/scsi_all.h> 93 94 #include <dev/mps/mpi/mpi2_type.h> 95 #include <dev/mps/mpi/mpi2.h> 96 #include <dev/mps/mpi/mpi2_ioc.h> 97 #include <dev/mps/mpi/mpi2_cnfg.h> 98 #include <dev/mps/mpi/mpi2_init.h> 99 #include <dev/mps/mpi/mpi2_tool.h> 100 #include <dev/mps/mps_ioctl.h> 101 #include <dev/mps/mpsvar.h> 102 #include <dev/mps/mps_table.h> 103 #include <dev/mps/mps_sas.h> 104 #include <dev/pci/pcivar.h> 105 #include <dev/pci/pcireg.h> 106 107 static d_open_t mps_open; 108 static d_close_t mps_close; 109 static d_ioctl_t mps_ioctl_devsw; 110 111 static struct cdevsw mps_cdevsw = { 112 .d_version = D_VERSION, 113 .d_flags = 0, 114 .d_open = mps_open, 115 .d_close = mps_close, 116 .d_ioctl = mps_ioctl_devsw, 117 .d_name = "mps", 118 }; 119 120 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *); 121 static mps_user_f mpi_pre_ioc_facts; 122 static mps_user_f mpi_pre_port_facts; 123 static mps_user_f mpi_pre_fw_download; 124 static mps_user_f mpi_pre_fw_upload; 125 static mps_user_f mpi_pre_sata_passthrough; 126 static mps_user_f mpi_pre_smp_passthrough; 127 static mps_user_f mpi_pre_config; 128 static mps_user_f mpi_pre_sas_io_unit_control; 129 130 static int mps_user_read_cfg_header(struct mps_softc *, 131 struct mps_cfg_page_req *); 132 static int mps_user_read_cfg_page(struct mps_softc *, 133 struct mps_cfg_page_req *, void *); 134 static int mps_user_read_extcfg_header(struct mps_softc *, 135 struct mps_ext_cfg_page_req *); 136 static int mps_user_read_extcfg_page(struct mps_softc *, 137 struct mps_ext_cfg_page_req *, void *); 138 static int mps_user_write_cfg_page(struct mps_softc *, 139 struct mps_cfg_page_req *, void *); 140 static int mps_user_setup_request(struct mps_command *, 141 struct mps_usr_command *); 142 static int mps_user_command(struct mps_softc *, struct mps_usr_command *); 143 144 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data); 145 static void mps_user_get_adapter_data(struct mps_softc *sc, 146 mps_adapter_data_t *data); 147 static void mps_user_read_pci_info(struct mps_softc *sc, 148 mps_pci_info_t *data); 149 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc, 150 uint32_t unique_id); 151 static int mps_post_fw_diag_buffer(struct mps_softc *sc, 152 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 153 static int mps_release_fw_diag_buffer(struct mps_softc *sc, 154 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 155 uint32_t diag_type); 156 static int mps_diag_register(struct mps_softc *sc, 157 mps_fw_diag_register_t *diag_register, uint32_t *return_code); 158 static int mps_diag_unregister(struct mps_softc *sc, 159 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 160 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 161 uint32_t *return_code); 162 static int mps_diag_read_buffer(struct mps_softc *sc, 163 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 164 uint32_t *return_code); 165 static int mps_diag_release(struct mps_softc *sc, 166 mps_fw_diag_release_t *diag_release, uint32_t *return_code); 167 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action, 168 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 169 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data); 170 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data); 171 static void mps_user_event_enable(struct mps_softc *sc, 172 mps_event_enable_t *data); 173 static int mps_user_event_report(struct mps_softc *sc, 174 mps_event_report_t *data); 175 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data); 176 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data); 177 178 MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls"); 179 180 int 181 mps_attach_user(struct mps_softc *sc) 182 { 183 int unit; 184 185 unit = device_get_unit(sc->mps_dev); 186 sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 187 "mps%d", unit); 188 if (sc->mps_cdev == NULL) { 189 return (ENOMEM); 190 } 191 sc->mps_cdev->si_drv1 = sc; 192 return (0); 193 } 194 195 void 196 mps_detach_user(struct mps_softc *sc) 197 { 198 199 /* XXX: do a purge of pending requests? */ 200 if (sc->mps_cdev != NULL) 201 destroy_dev(sc->mps_cdev); 202 } 203 204 static int 205 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td) 206 { 207 208 return (0); 209 } 210 211 static int 212 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td) 213 { 214 215 return (0); 216 } 217 218 static int 219 mps_user_read_cfg_header(struct mps_softc *sc, 220 struct mps_cfg_page_req *page_req) 221 { 222 MPI2_CONFIG_PAGE_HEADER *hdr; 223 struct mps_config_params params; 224 int error; 225 226 hdr = ¶ms.hdr.Struct; 227 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 228 params.page_address = le32toh(page_req->page_address); 229 hdr->PageVersion = 0; 230 hdr->PageLength = 0; 231 hdr->PageNumber = page_req->header.PageNumber; 232 hdr->PageType = page_req->header.PageType; 233 params.buffer = NULL; 234 params.length = 0; 235 params.callback = NULL; 236 237 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 238 /* 239 * Leave the request. Without resetting the chip, it's 240 * still owned by it and we'll just get into trouble 241 * freeing it now. Mark it as abandoned so that if it 242 * shows up later it can be freed. 243 */ 244 mps_printf(sc, "read_cfg_header timed out\n"); 245 return (ETIMEDOUT); 246 } 247 248 page_req->ioc_status = htole16(params.status); 249 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 250 MPI2_IOCSTATUS_SUCCESS) { 251 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 252 } 253 254 return (0); 255 } 256 257 static int 258 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req, 259 void *buf) 260 { 261 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 262 struct mps_config_params params; 263 int error; 264 265 reqhdr = buf; 266 hdr = ¶ms.hdr.Struct; 267 hdr->PageVersion = reqhdr->PageVersion; 268 hdr->PageLength = reqhdr->PageLength; 269 hdr->PageNumber = reqhdr->PageNumber; 270 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 271 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 272 params.page_address = le32toh(page_req->page_address); 273 params.buffer = buf; 274 params.length = le32toh(page_req->len); 275 params.callback = NULL; 276 277 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 278 mps_printf(sc, "mps_user_read_cfg_page timed out\n"); 279 return (ETIMEDOUT); 280 } 281 282 page_req->ioc_status = htole16(params.status); 283 return (0); 284 } 285 286 static int 287 mps_user_read_extcfg_header(struct mps_softc *sc, 288 struct mps_ext_cfg_page_req *ext_page_req) 289 { 290 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 291 struct mps_config_params params; 292 int error; 293 294 hdr = ¶ms.hdr.Ext; 295 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 296 hdr->PageVersion = ext_page_req->header.PageVersion; 297 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 298 hdr->ExtPageLength = 0; 299 hdr->PageNumber = ext_page_req->header.PageNumber; 300 hdr->ExtPageType = ext_page_req->header.ExtPageType; 301 params.page_address = le32toh(ext_page_req->page_address); 302 params.buffer = NULL; 303 params.length = 0; 304 params.callback = NULL; 305 306 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 307 /* 308 * Leave the request. Without resetting the chip, it's 309 * still owned by it and we'll just get into trouble 310 * freeing it now. Mark it as abandoned so that if it 311 * shows up later it can be freed. 312 */ 313 mps_printf(sc, "mps_user_read_extcfg_header timed out\n"); 314 return (ETIMEDOUT); 315 } 316 317 ext_page_req->ioc_status = htole16(params.status); 318 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 319 MPI2_IOCSTATUS_SUCCESS) { 320 ext_page_req->header.PageVersion = hdr->PageVersion; 321 ext_page_req->header.PageNumber = hdr->PageNumber; 322 ext_page_req->header.PageType = hdr->PageType; 323 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 324 ext_page_req->header.ExtPageType = hdr->ExtPageType; 325 } 326 327 return (0); 328 } 329 330 static int 331 mps_user_read_extcfg_page(struct mps_softc *sc, 332 struct mps_ext_cfg_page_req *ext_page_req, void *buf) 333 { 334 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 335 struct mps_config_params params; 336 int error; 337 338 reqhdr = buf; 339 hdr = ¶ms.hdr.Ext; 340 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 341 params.page_address = le32toh(ext_page_req->page_address); 342 hdr->PageVersion = reqhdr->PageVersion; 343 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 344 hdr->PageNumber = reqhdr->PageNumber; 345 hdr->ExtPageType = reqhdr->ExtPageType; 346 hdr->ExtPageLength = reqhdr->ExtPageLength; 347 params.buffer = buf; 348 params.length = le32toh(ext_page_req->len); 349 params.callback = NULL; 350 351 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 352 mps_printf(sc, "mps_user_read_extcfg_page timed out\n"); 353 return (ETIMEDOUT); 354 } 355 356 ext_page_req->ioc_status = htole16(params.status); 357 return (0); 358 } 359 360 static int 361 mps_user_write_cfg_page(struct mps_softc *sc, 362 struct mps_cfg_page_req *page_req, void *buf) 363 { 364 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 365 struct mps_config_params params; 366 u_int hdr_attr; 367 int error; 368 369 reqhdr = buf; 370 hdr = ¶ms.hdr.Struct; 371 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 372 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 373 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 374 mps_printf(sc, "page type 0x%x not changeable\n", 375 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 376 return (EINVAL); 377 } 378 379 /* 380 * There isn't any point in restoring stripped out attributes 381 * if you then mask them going down to issue the request. 382 */ 383 384 hdr->PageVersion = reqhdr->PageVersion; 385 hdr->PageLength = reqhdr->PageLength; 386 hdr->PageNumber = reqhdr->PageNumber; 387 hdr->PageType = reqhdr->PageType; 388 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 389 params.page_address = le32toh(page_req->page_address); 390 params.buffer = buf; 391 params.length = le32toh(page_req->len); 392 params.callback = NULL; 393 394 if ((error = mps_write_config_page(sc, ¶ms)) != 0) { 395 mps_printf(sc, "mps_write_cfg_page timed out\n"); 396 return (ETIMEDOUT); 397 } 398 399 page_req->ioc_status = htole16(params.status); 400 return (0); 401 } 402 403 void 404 mpi_init_sge(struct mps_command *cm, void *req, void *sge) 405 { 406 int off, space; 407 408 space = (int)cm->cm_sc->reqframesz; 409 off = (uintptr_t)sge - (uintptr_t)req; 410 411 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 412 req, sge, off, space)); 413 414 cm->cm_sge = sge; 415 cm->cm_sglsize = space - off; 416 } 417 418 /* 419 * Prepare the mps_command for an IOC_FACTS request. 420 */ 421 static int 422 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd) 423 { 424 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 425 MPI2_IOC_FACTS_REPLY *rpl; 426 427 if (cmd->req_len != sizeof *req) 428 return (EINVAL); 429 if (cmd->rpl_len != sizeof *rpl) 430 return (EINVAL); 431 432 cm->cm_sge = NULL; 433 cm->cm_sglsize = 0; 434 return (0); 435 } 436 437 /* 438 * Prepare the mps_command for a PORT_FACTS request. 439 */ 440 static int 441 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd) 442 { 443 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 444 MPI2_PORT_FACTS_REPLY *rpl; 445 446 if (cmd->req_len != sizeof *req) 447 return (EINVAL); 448 if (cmd->rpl_len != sizeof *rpl) 449 return (EINVAL); 450 451 cm->cm_sge = NULL; 452 cm->cm_sglsize = 0; 453 return (0); 454 } 455 456 /* 457 * Prepare the mps_command for a FW_DOWNLOAD request. 458 */ 459 static int 460 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd) 461 { 462 MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 463 MPI2_FW_DOWNLOAD_REPLY *rpl; 464 MPI2_FW_DOWNLOAD_TCSGE tc; 465 int error; 466 467 if (cmd->req_len != sizeof *req) 468 return (EINVAL); 469 if (cmd->rpl_len != sizeof *rpl) 470 return (EINVAL); 471 472 if (cmd->len == 0) 473 return (EINVAL); 474 475 error = copyin(cmd->buf, cm->cm_data, cmd->len); 476 if (error != 0) 477 return (error); 478 479 mpi_init_sge(cm, req, &req->SGL); 480 bzero(&tc, sizeof tc); 481 482 /* 483 * For now, the F/W image must be provided in a single request. 484 */ 485 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 486 return (EINVAL); 487 if (req->TotalImageSize != cmd->len) 488 return (EINVAL); 489 490 /* 491 * The value of the first two elements is specified in the 492 * Fusion-MPT Message Passing Interface document. 493 */ 494 tc.ContextSize = 0; 495 tc.DetailsLength = 12; 496 tc.ImageOffset = 0; 497 tc.ImageSize = cmd->len; 498 499 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 500 501 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 502 } 503 504 /* 505 * Prepare the mps_command for a FW_UPLOAD request. 506 */ 507 static int 508 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd) 509 { 510 MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 511 MPI2_FW_UPLOAD_REPLY *rpl; 512 MPI2_FW_UPLOAD_TCSGE tc; 513 514 if (cmd->req_len != sizeof *req) 515 return (EINVAL); 516 if (cmd->rpl_len != sizeof *rpl) 517 return (EINVAL); 518 519 mpi_init_sge(cm, req, &req->SGL); 520 bzero(&tc, sizeof tc); 521 522 /* 523 * The value of the first two elements is specified in the 524 * Fusion-MPT Message Passing Interface document. 525 */ 526 tc.ContextSize = 0; 527 tc.DetailsLength = 12; 528 /* 529 * XXX Is there any reason to fetch a partial image? I.e. to 530 * set ImageOffset to something other than 0? 531 */ 532 tc.ImageOffset = 0; 533 tc.ImageSize = cmd->len; 534 535 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 536 537 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 538 } 539 540 /* 541 * Prepare the mps_command for a SATA_PASSTHROUGH request. 542 */ 543 static int 544 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 545 { 546 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 547 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 548 549 if (cmd->req_len != sizeof *req) 550 return (EINVAL); 551 if (cmd->rpl_len != sizeof *rpl) 552 return (EINVAL); 553 554 mpi_init_sge(cm, req, &req->SGL); 555 return (0); 556 } 557 558 /* 559 * Prepare the mps_command for a SMP_PASSTHROUGH request. 560 */ 561 static int 562 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 563 { 564 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 565 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 566 567 if (cmd->req_len != sizeof *req) 568 return (EINVAL); 569 if (cmd->rpl_len != sizeof *rpl) 570 return (EINVAL); 571 572 mpi_init_sge(cm, req, &req->SGL); 573 return (0); 574 } 575 576 /* 577 * Prepare the mps_command for a CONFIG request. 578 */ 579 static int 580 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd) 581 { 582 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 583 MPI2_CONFIG_REPLY *rpl; 584 585 if (cmd->req_len != sizeof *req) 586 return (EINVAL); 587 if (cmd->rpl_len != sizeof *rpl) 588 return (EINVAL); 589 590 mpi_init_sge(cm, req, &req->PageBufferSGE); 591 return (0); 592 } 593 594 /* 595 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 596 */ 597 static int 598 mpi_pre_sas_io_unit_control(struct mps_command *cm, 599 struct mps_usr_command *cmd) 600 { 601 602 cm->cm_sge = NULL; 603 cm->cm_sglsize = 0; 604 return (0); 605 } 606 607 /* 608 * A set of functions to prepare an mps_command for the various 609 * supported requests. 610 */ 611 struct mps_user_func { 612 U8 Function; 613 mps_user_f *f_pre; 614 } mps_user_func_list[] = { 615 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 616 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 617 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 618 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 619 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 620 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 621 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 622 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 623 { 0xFF, NULL } /* list end */ 624 }; 625 626 static int 627 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd) 628 { 629 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 630 struct mps_user_func *f; 631 632 for (f = mps_user_func_list; f->f_pre != NULL; f++) { 633 if (hdr->Function == f->Function) 634 return (f->f_pre(cm, cmd)); 635 } 636 return (EINVAL); 637 } 638 639 static int 640 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd) 641 { 642 MPI2_REQUEST_HEADER *hdr; 643 MPI2_DEFAULT_REPLY *rpl; 644 void *buf = NULL; 645 struct mps_command *cm = NULL; 646 int err = 0; 647 int sz; 648 649 mps_lock(sc); 650 cm = mps_alloc_command(sc); 651 652 if (cm == NULL) { 653 mps_printf(sc, "%s: no mps requests\n", __func__); 654 err = ENOMEM; 655 goto RetFree; 656 } 657 mps_unlock(sc); 658 659 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 660 661 mps_dprint(sc, MPS_USER, "%s: req %p %d rpl %p %d\n", __func__, 662 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 663 664 if (cmd->req_len > sc->reqframesz) { 665 err = EINVAL; 666 goto RetFreeUnlocked; 667 } 668 err = copyin(cmd->req, hdr, cmd->req_len); 669 if (err != 0) 670 goto RetFreeUnlocked; 671 672 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 673 hdr->Function, hdr->MsgFlags); 674 675 if (cmd->len > 0) { 676 buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO); 677 cm->cm_data = buf; 678 cm->cm_length = cmd->len; 679 } else { 680 cm->cm_data = NULL; 681 cm->cm_length = 0; 682 } 683 684 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE; 685 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 686 687 err = mps_user_setup_request(cm, cmd); 688 if (err == EINVAL) { 689 mps_printf(sc, "%s: unsupported parameter or unsupported " 690 "function in request (function = 0x%X)\n", __func__, 691 hdr->Function); 692 } 693 if (err != 0) 694 goto RetFreeUnlocked; 695 696 mps_lock(sc); 697 err = mps_wait_command(sc, &cm, 60, CAN_SLEEP); 698 699 if (err || (cm == NULL)) { 700 mps_printf(sc, "%s: invalid request: error %d\n", 701 __func__, err); 702 goto RetFree; 703 } 704 705 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 706 if (rpl != NULL) 707 sz = rpl->MsgLength * 4; 708 else 709 sz = 0; 710 711 if (sz > cmd->rpl_len) { 712 mps_printf(sc, "%s: user reply buffer (%d) smaller than " 713 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 714 sz = cmd->rpl_len; 715 } 716 717 mps_unlock(sc); 718 copyout(rpl, cmd->rpl, sz); 719 if (buf != NULL) 720 copyout(buf, cmd->buf, cmd->len); 721 mps_dprint(sc, MPS_USER, "%s: reply size %d\n", __func__, sz); 722 723 RetFreeUnlocked: 724 mps_lock(sc); 725 RetFree: 726 if (cm != NULL) 727 mps_free_command(sc, cm); 728 mps_unlock(sc); 729 if (buf != NULL) 730 free(buf, M_MPSUSER); 731 return (err); 732 } 733 734 static int 735 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data) 736 { 737 MPI2_REQUEST_HEADER *hdr, *tmphdr; 738 MPI2_DEFAULT_REPLY *rpl = NULL; 739 struct mps_command *cm = NULL; 740 void *req = NULL; 741 int err = 0, dir = 0, sz; 742 uint8_t function = 0; 743 u_int sense_len; 744 struct mpssas_target *targ = NULL; 745 746 /* 747 * Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY 748 * bit to denote that a passthru is being processed. 749 */ 750 mps_lock(sc); 751 if (sc->mps_flags & MPS_FLAGS_BUSY) { 752 mps_dprint(sc, MPS_USER, "%s: Only one passthru command " 753 "allowed at a single time.", __func__); 754 mps_unlock(sc); 755 return (EBUSY); 756 } 757 sc->mps_flags |= MPS_FLAGS_BUSY; 758 mps_unlock(sc); 759 760 /* 761 * Do some validation on data direction. Valid cases are: 762 * 1) DataSize is 0 and direction is NONE 763 * 2) DataSize is non-zero and one of: 764 * a) direction is READ or 765 * b) direction is WRITE or 766 * c) direction is BOTH and DataOutSize is non-zero 767 * If valid and the direction is BOTH, change the direction to READ. 768 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 769 */ 770 if (((data->DataSize == 0) && 771 (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) || 772 ((data->DataSize != 0) && 773 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) || 774 (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) || 775 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) && 776 (data->DataOutSize != 0))))) { 777 if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) 778 data->DataDirection = MPS_PASS_THRU_DIRECTION_READ; 779 else 780 data->DataOutSize = 0; 781 } else { 782 err = EINVAL; 783 goto RetFreeUnlocked; 784 } 785 786 mps_dprint(sc, MPS_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 787 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 788 data->PtrRequest, data->RequestSize, data->PtrReply, 789 data->ReplySize, data->PtrData, data->DataSize, 790 data->PtrDataOut, data->DataOutSize, data->DataDirection); 791 792 if (data->RequestSize > sc->reqframesz) { 793 err = EINVAL; 794 goto RetFreeUnlocked; 795 } 796 797 req = malloc(data->RequestSize, M_MPSUSER, M_WAITOK | M_ZERO); 798 tmphdr = (MPI2_REQUEST_HEADER *)req; 799 800 err = copyin(PTRIN(data->PtrRequest), req, data->RequestSize); 801 if (err != 0) 802 goto RetFreeUnlocked; 803 804 function = tmphdr->Function; 805 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 806 function, tmphdr->MsgFlags); 807 808 /* 809 * Handle a passthru TM request. 810 */ 811 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 812 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 813 814 mps_lock(sc); 815 cm = mpssas_alloc_tm(sc); 816 if (cm == NULL) { 817 err = EINVAL; 818 goto Ret; 819 } 820 821 /* Copy the header in. Only a small fixup is needed. */ 822 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 823 memcpy(task, req, data->RequestSize); 824 task->TaskMID = cm->cm_desc.Default.SMID; 825 826 cm->cm_data = NULL; 827 cm->cm_complete = NULL; 828 cm->cm_complete_data = NULL; 829 830 targ = mpssas_find_target_by_handle(sc->sassc, 0, 831 task->DevHandle); 832 if (targ == NULL) { 833 mps_dprint(sc, MPS_INFO, 834 "%s %d : invalid handle for requested TM 0x%x \n", 835 __func__, __LINE__, task->DevHandle); 836 err = 1; 837 } else { 838 mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 839 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 840 } 841 842 if (err != 0) { 843 err = EIO; 844 mps_dprint(sc, MPS_FAULT, "%s: task management failed", 845 __func__); 846 } 847 /* 848 * Copy the reply data and sense data to user space. 849 */ 850 if ((cm != NULL) && (cm->cm_reply != NULL)) { 851 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 852 sz = rpl->MsgLength * 4; 853 854 if (bootverbose && sz > data->ReplySize) { 855 mps_printf(sc, "%s: user reply buffer (%d) " 856 "smaller than returned buffer (%d)\n", 857 __func__, data->ReplySize, sz); 858 } 859 mps_unlock(sc); 860 copyout(cm->cm_reply, PTRIN(data->PtrReply), 861 MIN(sz, data->ReplySize)); 862 mps_lock(sc); 863 } 864 mpssas_free_tm(sc, cm); 865 goto Ret; 866 } 867 868 mps_lock(sc); 869 cm = mps_alloc_command(sc); 870 if (cm == NULL) { 871 mps_printf(sc, "%s: no mps requests\n", __func__); 872 err = ENOMEM; 873 goto Ret; 874 } 875 mps_unlock(sc); 876 877 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 878 memcpy(hdr, req, data->RequestSize); 879 880 /* 881 * Do some checking to make sure the IOCTL request contains a valid 882 * request. Then set the SGL info. 883 */ 884 mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 885 886 /* 887 * Set up for read, write or both. From check above, DataOutSize will 888 * be 0 if direction is READ or WRITE, but it will have some non-zero 889 * value if the direction is BOTH. So, just use the biggest size to get 890 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 891 * up; the first is for the request and the second will contain the 892 * response data. cm_out_len needs to be set here and this will be used 893 * when the SGLs are set up. 894 */ 895 cm->cm_data = NULL; 896 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 897 cm->cm_out_len = data->DataOutSize; 898 cm->cm_flags = 0; 899 if (cm->cm_length != 0) { 900 cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK | 901 M_ZERO); 902 cm->cm_flags = MPS_CM_FLAGS_DATAIN; 903 if (data->DataOutSize) { 904 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 905 err = copyin(PTRIN(data->PtrDataOut), 906 cm->cm_data, data->DataOutSize); 907 } else if (data->DataDirection == 908 MPS_PASS_THRU_DIRECTION_WRITE) { 909 cm->cm_flags = MPS_CM_FLAGS_DATAOUT; 910 err = copyin(PTRIN(data->PtrData), 911 cm->cm_data, data->DataSize); 912 } 913 if (err != 0) 914 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 915 "IOCTL data from user space\n", __func__); 916 } 917 cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE; 918 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 919 920 /* 921 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 922 * uses SCSI IO descriptor. 923 */ 924 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 925 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 926 MPI2_SCSI_IO_REQUEST *scsi_io_req; 927 928 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 929 /* 930 * Put SGE for data and data_out buffer at the end of 931 * scsi_io_request message header (64 bytes in total). 932 * Following above SGEs, the residual space will be used by 933 * sense data. 934 */ 935 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 936 64); 937 scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 938 939 /* 940 * Set SGLOffset0 value. This is the number of dwords that SGL 941 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 942 */ 943 scsi_io_req->SGLOffset0 = 24; 944 945 /* 946 * Setup descriptor info. RAID passthrough must use the 947 * default request descriptor which is already set, so if this 948 * is a SCSI IO request, change the descriptor to SCSI IO. 949 * Also, if this is a SCSI IO request, handle the reply in the 950 * mpssas_scsio_complete function. 951 */ 952 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 953 cm->cm_desc.SCSIIO.RequestFlags = 954 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 955 cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle; 956 957 /* 958 * Make sure the DevHandle is not 0 because this is a 959 * likely error. 960 */ 961 if (scsi_io_req->DevHandle == 0) { 962 err = EINVAL; 963 goto RetFreeUnlocked; 964 } 965 } 966 } 967 968 mps_lock(sc); 969 970 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 971 972 if (err || (cm == NULL)) { 973 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 974 err); 975 mps_unlock(sc); 976 goto RetFreeUnlocked; 977 } 978 979 /* 980 * Sync the DMA data, if any. Then copy the data to user space. 981 */ 982 if (cm->cm_data != NULL) { 983 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 984 dir = BUS_DMASYNC_POSTREAD; 985 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 986 dir = BUS_DMASYNC_POSTWRITE; 987 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 988 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 989 990 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 991 mps_unlock(sc); 992 err = copyout(cm->cm_data, 993 PTRIN(data->PtrData), data->DataSize); 994 mps_lock(sc); 995 if (err != 0) 996 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 997 "IOCTL data to user space\n", __func__); 998 } 999 } 1000 1001 /* 1002 * Copy the reply data and sense data to user space. 1003 */ 1004 if (cm->cm_reply != NULL) { 1005 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1006 sz = rpl->MsgLength * 4; 1007 1008 if (bootverbose && sz > data->ReplySize) { 1009 mps_printf(sc, "%s: user reply buffer (%d) smaller " 1010 "than returned buffer (%d)\n", __func__, 1011 data->ReplySize, sz); 1012 } 1013 mps_unlock(sc); 1014 copyout(cm->cm_reply, PTRIN(data->PtrReply), 1015 MIN(sz, data->ReplySize)); 1016 mps_lock(sc); 1017 1018 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1019 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1020 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1021 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1022 sense_len = 1023 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1024 SenseCount)), sizeof(struct 1025 scsi_sense_data)); 1026 mps_unlock(sc); 1027 copyout(cm->cm_sense, (PTRIN(data->PtrReply + 1028 sizeof(MPI2_SCSI_IO_REPLY))), sense_len); 1029 mps_lock(sc); 1030 } 1031 } 1032 } 1033 mps_unlock(sc); 1034 1035 RetFreeUnlocked: 1036 mps_lock(sc); 1037 1038 if (cm != NULL) { 1039 if (cm->cm_data) 1040 free(cm->cm_data, M_MPSUSER); 1041 mps_free_command(sc, cm); 1042 } 1043 Ret: 1044 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1045 mps_unlock(sc); 1046 free(req, M_MPSUSER); 1047 1048 return (err); 1049 } 1050 1051 static void 1052 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data) 1053 { 1054 Mpi2ConfigReply_t mpi_reply; 1055 Mpi2BiosPage3_t config_page; 1056 1057 /* 1058 * Use the PCI interface functions to get the Bus, Device, and Function 1059 * information. 1060 */ 1061 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev); 1062 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev); 1063 data->PciInformation.u.bits.FunctionNumber = 1064 pci_get_function(sc->mps_dev); 1065 1066 /* 1067 * Get the FW version that should already be saved in IOC Facts. 1068 */ 1069 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1070 1071 /* 1072 * General device info. 1073 */ 1074 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2; 1075 if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE) 1076 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200; 1077 data->PCIDeviceHwId = pci_get_device(sc->mps_dev); 1078 data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1); 1079 data->SubSystemId = pci_get_subdevice(sc->mps_dev); 1080 data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev); 1081 1082 /* 1083 * Get the driver version. 1084 */ 1085 strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION); 1086 1087 /* 1088 * Need to get BIOS Config Page 3 for the BIOS Version. 1089 */ 1090 data->BiosVersion = 0; 1091 mps_lock(sc); 1092 if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1093 printf("%s: Error while retrieving BIOS Version\n", __func__); 1094 else 1095 data->BiosVersion = config_page.BiosVersion; 1096 mps_unlock(sc); 1097 } 1098 1099 static void 1100 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data) 1101 { 1102 int i; 1103 1104 /* 1105 * Use the PCI interface functions to get the Bus, Device, and Function 1106 * information. 1107 */ 1108 data->BusNumber = pci_get_bus(sc->mps_dev); 1109 data->DeviceNumber = pci_get_slot(sc->mps_dev); 1110 data->FunctionNumber = pci_get_function(sc->mps_dev); 1111 1112 /* 1113 * Now get the interrupt vector and the pci header. The vector can 1114 * only be 0 right now. The header is the first 256 bytes of config 1115 * space. 1116 */ 1117 data->InterruptVector = 0; 1118 for (i = 0; i < sizeof (data->PciHeader); i++) { 1119 data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1); 1120 } 1121 } 1122 1123 static uint8_t 1124 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id) 1125 { 1126 uint8_t index; 1127 1128 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1129 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1130 return (index); 1131 } 1132 } 1133 1134 return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND); 1135 } 1136 1137 static int 1138 mps_post_fw_diag_buffer(struct mps_softc *sc, 1139 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1140 { 1141 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1142 MPI2_DIAG_BUFFER_POST_REPLY *reply = NULL; 1143 struct mps_command *cm = NULL; 1144 int i, status; 1145 1146 /* 1147 * If buffer is not enabled, just leave. 1148 */ 1149 *return_code = MPS_FW_DIAG_ERROR_POST_FAILED; 1150 if (!pBuffer->enabled) { 1151 return (MPS_DIAG_FAILURE); 1152 } 1153 1154 /* 1155 * Clear some flags initially. 1156 */ 1157 pBuffer->force_release = FALSE; 1158 pBuffer->valid_data = FALSE; 1159 pBuffer->owned_by_firmware = FALSE; 1160 1161 /* 1162 * Get a command. 1163 */ 1164 cm = mps_alloc_command(sc); 1165 if (cm == NULL) { 1166 mps_printf(sc, "%s: no mps requests\n", __func__); 1167 return (MPS_DIAG_FAILURE); 1168 } 1169 1170 /* 1171 * Build the request for releasing the FW Diag Buffer and send it. 1172 */ 1173 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1174 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1175 req->BufferType = pBuffer->buffer_type; 1176 req->ExtendedType = pBuffer->extended_type; 1177 req->BufferLength = pBuffer->size; 1178 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1179 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1180 mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1181 cm->cm_data = NULL; 1182 cm->cm_length = 0; 1183 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1184 cm->cm_complete_data = NULL; 1185 1186 /* 1187 * Send command synchronously. 1188 */ 1189 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1190 if (status || (cm == NULL)) { 1191 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1192 status); 1193 status = MPS_DIAG_FAILURE; 1194 goto done; 1195 } 1196 1197 /* 1198 * Process POST reply. 1199 */ 1200 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1201 if (reply == NULL) { 1202 mps_printf(sc, "%s: reply is NULL, probably due to " 1203 "reinitialization\n", __func__); 1204 status = MPS_DIAG_FAILURE; 1205 goto done; 1206 } 1207 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1208 MPI2_IOCSTATUS_SUCCESS) { 1209 status = MPS_DIAG_FAILURE; 1210 mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed " 1211 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1212 "TransferLength = 0x%x\n", __func__, 1213 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1214 le32toh(reply->TransferLength)); 1215 goto done; 1216 } 1217 1218 /* 1219 * Post was successful. 1220 */ 1221 pBuffer->valid_data = TRUE; 1222 pBuffer->owned_by_firmware = TRUE; 1223 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1224 status = MPS_DIAG_SUCCESS; 1225 1226 done: 1227 if (cm != NULL) 1228 mps_free_command(sc, cm); 1229 return (status); 1230 } 1231 1232 static int 1233 mps_release_fw_diag_buffer(struct mps_softc *sc, 1234 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1235 uint32_t diag_type) 1236 { 1237 MPI2_DIAG_RELEASE_REQUEST *req; 1238 MPI2_DIAG_RELEASE_REPLY *reply = NULL; 1239 struct mps_command *cm = NULL; 1240 int status; 1241 1242 /* 1243 * If buffer is not enabled, just leave. 1244 */ 1245 *return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED; 1246 if (!pBuffer->enabled) { 1247 mps_dprint(sc, MPS_USER, "%s: This buffer type is not " 1248 "supported by the IOC", __func__); 1249 return (MPS_DIAG_FAILURE); 1250 } 1251 1252 /* 1253 * Clear some flags initially. 1254 */ 1255 pBuffer->force_release = FALSE; 1256 pBuffer->valid_data = FALSE; 1257 pBuffer->owned_by_firmware = FALSE; 1258 1259 /* 1260 * Get a command. 1261 */ 1262 cm = mps_alloc_command(sc); 1263 if (cm == NULL) { 1264 mps_printf(sc, "%s: no mps requests\n", __func__); 1265 return (MPS_DIAG_FAILURE); 1266 } 1267 1268 /* 1269 * Build the request for releasing the FW Diag Buffer and send it. 1270 */ 1271 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1272 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1273 req->BufferType = pBuffer->buffer_type; 1274 cm->cm_data = NULL; 1275 cm->cm_length = 0; 1276 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1277 cm->cm_complete_data = NULL; 1278 1279 /* 1280 * Send command synchronously. 1281 */ 1282 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1283 if (status || (cm == NULL)) { 1284 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1285 status); 1286 status = MPS_DIAG_FAILURE; 1287 goto done; 1288 } 1289 1290 /* 1291 * Process RELEASE reply. 1292 */ 1293 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1294 if (reply == NULL) { 1295 mps_printf(sc, "%s: reply is NULL, probably due to " 1296 "reinitialization\n", __func__); 1297 status = MPS_DIAG_FAILURE; 1298 goto done; 1299 } 1300 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1301 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1302 status = MPS_DIAG_FAILURE; 1303 mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer " 1304 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1305 __func__, le16toh(reply->IOCStatus), 1306 le32toh(reply->IOCLogInfo)); 1307 goto done; 1308 } 1309 1310 /* 1311 * Release was successful. 1312 */ 1313 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1314 status = MPS_DIAG_SUCCESS; 1315 1316 /* 1317 * If this was for an UNREGISTER diag type command, clear the unique ID. 1318 */ 1319 if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) { 1320 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1321 } 1322 1323 done: 1324 if (cm != NULL) 1325 mps_free_command(sc, cm); 1326 1327 return (status); 1328 } 1329 1330 static int 1331 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register, 1332 uint32_t *return_code) 1333 { 1334 bus_dma_template_t t; 1335 mps_fw_diagnostic_buffer_t *pBuffer; 1336 struct mps_busdma_context *ctx; 1337 uint8_t extended_type, buffer_type, i; 1338 uint32_t buffer_size; 1339 uint32_t unique_id; 1340 int status; 1341 int error; 1342 1343 extended_type = diag_register->ExtendedType; 1344 buffer_type = diag_register->BufferType; 1345 buffer_size = diag_register->RequestedBufferSize; 1346 unique_id = diag_register->UniqueId; 1347 ctx = NULL; 1348 error = 0; 1349 1350 /* 1351 * Check for valid buffer type 1352 */ 1353 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1354 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1355 return (MPS_DIAG_FAILURE); 1356 } 1357 1358 /* 1359 * Get the current buffer and look up the unique ID. The unique ID 1360 * should not be found. If it is, the ID is already in use. 1361 */ 1362 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1363 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1364 if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1365 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1366 return (MPS_DIAG_FAILURE); 1367 } 1368 1369 /* 1370 * The buffer's unique ID should not be registered yet, and the given 1371 * unique ID cannot be 0. 1372 */ 1373 if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) || 1374 (unique_id == MPS_FW_DIAG_INVALID_UID)) { 1375 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1376 return (MPS_DIAG_FAILURE); 1377 } 1378 1379 /* 1380 * If this buffer is already posted as immediate, just change owner. 1381 */ 1382 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1383 (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) { 1384 pBuffer->immediate = FALSE; 1385 pBuffer->unique_id = unique_id; 1386 return (MPS_DIAG_SUCCESS); 1387 } 1388 1389 /* 1390 * Post a new buffer after checking if it's enabled. The DMA buffer 1391 * that is allocated will be contiguous (nsegments = 1). 1392 */ 1393 if (!pBuffer->enabled) { 1394 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1395 return (MPS_DIAG_FAILURE); 1396 } 1397 bus_dma_template_init(&t, sc->mps_parent_dmat); 1398 BUS_DMA_TEMPLATE_FILL(&t, BD_NSEGMENTS(1), BD_MAXSIZE(buffer_size), 1399 BD_MAXSEGSIZE(buffer_size), BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1400 if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) { 1401 mps_dprint(sc, MPS_ERROR, 1402 "Cannot allocate FW diag buffer DMA tag\n"); 1403 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1404 status = MPS_DIAG_FAILURE; 1405 goto bailout; 1406 } 1407 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1408 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1409 mps_dprint(sc, MPS_ERROR, 1410 "Cannot allocate FW diag buffer memory\n"); 1411 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1412 status = MPS_DIAG_FAILURE; 1413 goto bailout; 1414 } 1415 bzero(sc->fw_diag_buffer, buffer_size); 1416 1417 ctx = malloc(sizeof(*ctx), M_MPSUSER, M_WAITOK | M_ZERO); 1418 ctx->addr = &sc->fw_diag_busaddr; 1419 ctx->buffer_dmat = sc->fw_diag_dmat; 1420 ctx->buffer_dmamap = sc->fw_diag_map; 1421 ctx->softc = sc; 1422 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1423 sc->fw_diag_buffer, buffer_size, mps_memaddr_wait_cb, 1424 ctx, 0); 1425 1426 if (error == EINPROGRESS) { 1427 /* XXX KDM */ 1428 device_printf(sc->mps_dev, "%s: Deferred bus_dmamap_load\n", 1429 __func__); 1430 /* 1431 * Wait for the load to complete. If we're interrupted, 1432 * bail out. 1433 */ 1434 mps_lock(sc); 1435 if (ctx->completed == 0) { 1436 error = msleep(ctx, &sc->mps_mtx, PCATCH, "mpswait", 0); 1437 if (error != 0) { 1438 /* 1439 * We got an error from msleep(9). This is 1440 * most likely due to a signal. Tell 1441 * mpr_memaddr_wait_cb() that we've abandoned 1442 * the context, so it needs to clean up when 1443 * it is called. 1444 */ 1445 ctx->abandoned = 1; 1446 1447 /* The callback will free this memory */ 1448 ctx = NULL; 1449 mps_unlock(sc); 1450 1451 device_printf(sc->mps_dev, "Cannot " 1452 "bus_dmamap_load FW diag buffer, error = " 1453 "%d returned from msleep\n", error); 1454 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1455 status = MPS_DIAG_FAILURE; 1456 goto bailout; 1457 } 1458 } 1459 mps_unlock(sc); 1460 } 1461 1462 if ((error != 0) || (ctx->error != 0)) { 1463 device_printf(sc->mps_dev, "Cannot bus_dmamap_load FW diag " 1464 "buffer, %serror = %d\n", error ? "" : "callback ", 1465 error ? error : ctx->error); 1466 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1467 status = MPS_DIAG_FAILURE; 1468 goto bailout; 1469 } 1470 1471 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1472 1473 pBuffer->size = buffer_size; 1474 1475 /* 1476 * Copy the given info to the diag buffer and post the buffer. 1477 */ 1478 pBuffer->buffer_type = buffer_type; 1479 pBuffer->immediate = FALSE; 1480 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1481 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1482 i++) { 1483 pBuffer->product_specific[i] = 1484 diag_register->ProductSpecific[i]; 1485 } 1486 } 1487 pBuffer->extended_type = extended_type; 1488 pBuffer->unique_id = unique_id; 1489 status = mps_post_fw_diag_buffer(sc, pBuffer, return_code); 1490 1491 bailout: 1492 /* 1493 * In case there was a failure, free the DMA buffer. 1494 */ 1495 if (status == MPS_DIAG_FAILURE) { 1496 if (sc->fw_diag_busaddr != 0) { 1497 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1498 sc->fw_diag_busaddr = 0; 1499 } 1500 if (sc->fw_diag_buffer != NULL) { 1501 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1502 sc->fw_diag_map); 1503 sc->fw_diag_buffer = NULL; 1504 } 1505 if (sc->fw_diag_dmat != NULL) { 1506 bus_dma_tag_destroy(sc->fw_diag_dmat); 1507 sc->fw_diag_dmat = NULL; 1508 } 1509 } 1510 1511 if (ctx != NULL) 1512 free(ctx, M_MPSUSER); 1513 1514 return (status); 1515 } 1516 1517 static int 1518 mps_diag_unregister(struct mps_softc *sc, 1519 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1520 { 1521 mps_fw_diagnostic_buffer_t *pBuffer; 1522 uint8_t i; 1523 uint32_t unique_id; 1524 int status; 1525 1526 unique_id = diag_unregister->UniqueId; 1527 1528 /* 1529 * Get the current buffer and look up the unique ID. The unique ID 1530 * should be there. 1531 */ 1532 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1533 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1534 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1535 return (MPS_DIAG_FAILURE); 1536 } 1537 1538 pBuffer = &sc->fw_diag_buffer_list[i]; 1539 1540 /* 1541 * Try to release the buffer from FW before freeing it. If release 1542 * fails, don't free the DMA buffer in case FW tries to access it 1543 * later. If buffer is not owned by firmware, can't release it. 1544 */ 1545 if (!pBuffer->owned_by_firmware) { 1546 status = MPS_DIAG_SUCCESS; 1547 } else { 1548 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1549 MPS_FW_DIAG_TYPE_UNREGISTER); 1550 } 1551 1552 /* 1553 * At this point, return the current status no matter what happens with 1554 * the DMA buffer. 1555 */ 1556 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1557 if (status == MPS_DIAG_SUCCESS) { 1558 if (sc->fw_diag_busaddr != 0) { 1559 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1560 sc->fw_diag_busaddr = 0; 1561 } 1562 if (sc->fw_diag_buffer != NULL) { 1563 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1564 sc->fw_diag_map); 1565 sc->fw_diag_buffer = NULL; 1566 } 1567 if (sc->fw_diag_dmat != NULL) { 1568 bus_dma_tag_destroy(sc->fw_diag_dmat); 1569 sc->fw_diag_dmat = NULL; 1570 } 1571 } 1572 1573 return (status); 1574 } 1575 1576 static int 1577 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 1578 uint32_t *return_code) 1579 { 1580 mps_fw_diagnostic_buffer_t *pBuffer; 1581 uint8_t i; 1582 uint32_t unique_id; 1583 1584 unique_id = diag_query->UniqueId; 1585 1586 /* 1587 * If ID is valid, query on ID. 1588 * If ID is invalid, query on buffer type. 1589 */ 1590 if (unique_id == MPS_FW_DIAG_INVALID_UID) { 1591 i = diag_query->BufferType; 1592 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1593 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1594 return (MPS_DIAG_FAILURE); 1595 } 1596 } else { 1597 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1598 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1599 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1600 return (MPS_DIAG_FAILURE); 1601 } 1602 } 1603 1604 /* 1605 * Fill query structure with the diag buffer info. 1606 */ 1607 pBuffer = &sc->fw_diag_buffer_list[i]; 1608 diag_query->BufferType = pBuffer->buffer_type; 1609 diag_query->ExtendedType = pBuffer->extended_type; 1610 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1611 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1612 i++) { 1613 diag_query->ProductSpecific[i] = 1614 pBuffer->product_specific[i]; 1615 } 1616 } 1617 diag_query->TotalBufferSize = pBuffer->size; 1618 diag_query->DriverAddedBufferSize = 0; 1619 diag_query->UniqueId = pBuffer->unique_id; 1620 diag_query->ApplicationFlags = 0; 1621 diag_query->DiagnosticFlags = 0; 1622 1623 /* 1624 * Set/Clear application flags 1625 */ 1626 if (pBuffer->immediate) { 1627 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED; 1628 } else { 1629 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED; 1630 } 1631 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1632 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID; 1633 } else { 1634 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID; 1635 } 1636 if (pBuffer->owned_by_firmware) { 1637 diag_query->ApplicationFlags |= 1638 MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1639 } else { 1640 diag_query->ApplicationFlags &= 1641 ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1642 } 1643 1644 return (MPS_DIAG_SUCCESS); 1645 } 1646 1647 static int 1648 mps_diag_read_buffer(struct mps_softc *sc, 1649 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1650 uint32_t *return_code) 1651 { 1652 mps_fw_diagnostic_buffer_t *pBuffer; 1653 uint8_t i, *pData; 1654 uint32_t unique_id; 1655 int status; 1656 1657 unique_id = diag_read_buffer->UniqueId; 1658 1659 /* 1660 * Get the current buffer and look up the unique ID. The unique ID 1661 * should be there. 1662 */ 1663 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1664 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1665 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1666 return (MPS_DIAG_FAILURE); 1667 } 1668 1669 pBuffer = &sc->fw_diag_buffer_list[i]; 1670 1671 /* 1672 * Make sure requested read is within limits 1673 */ 1674 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1675 pBuffer->size) { 1676 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1677 return (MPS_DIAG_FAILURE); 1678 } 1679 1680 /* Sync the DMA map before we copy to userland. */ 1681 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1682 BUS_DMASYNC_POSTREAD); 1683 1684 /* 1685 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1686 * buffer that was allocated is one contiguous buffer. 1687 */ 1688 pData = (uint8_t *)(sc->fw_diag_buffer + 1689 diag_read_buffer->StartingOffset); 1690 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1691 return (MPS_DIAG_FAILURE); 1692 diag_read_buffer->Status = 0; 1693 1694 /* 1695 * Set or clear the Force Release flag. 1696 */ 1697 if (pBuffer->force_release) { 1698 diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1699 } else { 1700 diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1701 } 1702 1703 /* 1704 * If buffer is to be reregistered, make sure it's not already owned by 1705 * firmware first. 1706 */ 1707 status = MPS_DIAG_SUCCESS; 1708 if (!pBuffer->owned_by_firmware) { 1709 if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) { 1710 status = mps_post_fw_diag_buffer(sc, pBuffer, 1711 return_code); 1712 } 1713 } 1714 1715 return (status); 1716 } 1717 1718 static int 1719 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release, 1720 uint32_t *return_code) 1721 { 1722 mps_fw_diagnostic_buffer_t *pBuffer; 1723 uint8_t i; 1724 uint32_t unique_id; 1725 int status; 1726 1727 unique_id = diag_release->UniqueId; 1728 1729 /* 1730 * Get the current buffer and look up the unique ID. The unique ID 1731 * should be there. 1732 */ 1733 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1734 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1735 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1736 return (MPS_DIAG_FAILURE); 1737 } 1738 1739 pBuffer = &sc->fw_diag_buffer_list[i]; 1740 1741 /* 1742 * If buffer is not owned by firmware, it's already been released. 1743 */ 1744 if (!pBuffer->owned_by_firmware) { 1745 *return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED; 1746 return (MPS_DIAG_FAILURE); 1747 } 1748 1749 /* 1750 * Release the buffer. 1751 */ 1752 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1753 MPS_FW_DIAG_TYPE_RELEASE); 1754 return (status); 1755 } 1756 1757 static int 1758 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action, 1759 uint32_t length, uint32_t *return_code) 1760 { 1761 mps_fw_diag_register_t diag_register; 1762 mps_fw_diag_unregister_t diag_unregister; 1763 mps_fw_diag_query_t diag_query; 1764 mps_diag_read_buffer_t diag_read_buffer; 1765 mps_fw_diag_release_t diag_release; 1766 int status = MPS_DIAG_SUCCESS; 1767 uint32_t original_return_code; 1768 1769 original_return_code = *return_code; 1770 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1771 1772 switch (action) { 1773 case MPS_FW_DIAG_TYPE_REGISTER: 1774 if (!length) { 1775 *return_code = 1776 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1777 status = MPS_DIAG_FAILURE; 1778 break; 1779 } 1780 if (copyin(diag_action, &diag_register, 1781 sizeof(diag_register)) != 0) 1782 return (MPS_DIAG_FAILURE); 1783 status = mps_diag_register(sc, &diag_register, 1784 return_code); 1785 break; 1786 1787 case MPS_FW_DIAG_TYPE_UNREGISTER: 1788 if (length < sizeof(diag_unregister)) { 1789 *return_code = 1790 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1791 status = MPS_DIAG_FAILURE; 1792 break; 1793 } 1794 if (copyin(diag_action, &diag_unregister, 1795 sizeof(diag_unregister)) != 0) 1796 return (MPS_DIAG_FAILURE); 1797 status = mps_diag_unregister(sc, &diag_unregister, 1798 return_code); 1799 break; 1800 1801 case MPS_FW_DIAG_TYPE_QUERY: 1802 if (length < sizeof (diag_query)) { 1803 *return_code = 1804 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1805 status = MPS_DIAG_FAILURE; 1806 break; 1807 } 1808 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1809 != 0) 1810 return (MPS_DIAG_FAILURE); 1811 status = mps_diag_query(sc, &diag_query, return_code); 1812 if (status == MPS_DIAG_SUCCESS) 1813 if (copyout(&diag_query, diag_action, 1814 sizeof (diag_query)) != 0) 1815 return (MPS_DIAG_FAILURE); 1816 break; 1817 1818 case MPS_FW_DIAG_TYPE_READ_BUFFER: 1819 if (copyin(diag_action, &diag_read_buffer, 1820 sizeof(diag_read_buffer)) != 0) 1821 return (MPS_DIAG_FAILURE); 1822 if (length < diag_read_buffer.BytesToRead) { 1823 *return_code = 1824 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1825 status = MPS_DIAG_FAILURE; 1826 break; 1827 } 1828 status = mps_diag_read_buffer(sc, &diag_read_buffer, 1829 PTRIN(diag_read_buffer.PtrDataBuffer), 1830 return_code); 1831 if (status == MPS_DIAG_SUCCESS) { 1832 if (copyout(&diag_read_buffer, diag_action, 1833 sizeof(diag_read_buffer) - 1834 sizeof(diag_read_buffer.PtrDataBuffer)) != 1835 0) 1836 return (MPS_DIAG_FAILURE); 1837 } 1838 break; 1839 1840 case MPS_FW_DIAG_TYPE_RELEASE: 1841 if (length < sizeof(diag_release)) { 1842 *return_code = 1843 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1844 status = MPS_DIAG_FAILURE; 1845 break; 1846 } 1847 if (copyin(diag_action, &diag_release, 1848 sizeof(diag_release)) != 0) 1849 return (MPS_DIAG_FAILURE); 1850 status = mps_diag_release(sc, &diag_release, 1851 return_code); 1852 break; 1853 1854 default: 1855 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1856 status = MPS_DIAG_FAILURE; 1857 break; 1858 } 1859 1860 if ((status == MPS_DIAG_FAILURE) && 1861 (original_return_code == MPS_FW_DIAG_NEW) && 1862 (*return_code != MPS_FW_DIAG_ERROR_SUCCESS)) 1863 status = MPS_DIAG_SUCCESS; 1864 1865 return (status); 1866 } 1867 1868 static int 1869 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data) 1870 { 1871 int status; 1872 1873 /* 1874 * Only allow one diag action at one time. 1875 */ 1876 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1877 mps_dprint(sc, MPS_USER, "%s: Only one FW diag command " 1878 "allowed at a single time.", __func__); 1879 return (EBUSY); 1880 } 1881 sc->mps_flags |= MPS_FLAGS_BUSY; 1882 1883 /* 1884 * Send diag action request 1885 */ 1886 if (data->Action == MPS_FW_DIAG_TYPE_REGISTER || 1887 data->Action == MPS_FW_DIAG_TYPE_UNREGISTER || 1888 data->Action == MPS_FW_DIAG_TYPE_QUERY || 1889 data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER || 1890 data->Action == MPS_FW_DIAG_TYPE_RELEASE) { 1891 status = mps_do_diag_action(sc, data->Action, 1892 PTRIN(data->PtrDiagAction), data->Length, 1893 &data->ReturnCode); 1894 } else 1895 status = EINVAL; 1896 1897 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1898 return (status); 1899 } 1900 1901 /* 1902 * Copy the event recording mask and the event queue size out. For 1903 * clarification, the event recording mask (events_to_record) is not the same 1904 * thing as the event mask (event_mask). events_to_record has a bit set for 1905 * every event type that is to be recorded by the driver, and event_mask has a 1906 * bit cleared for every event that is allowed into the driver from the IOC. 1907 * They really have nothing to do with each other. 1908 */ 1909 static void 1910 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data) 1911 { 1912 uint8_t i; 1913 1914 mps_lock(sc); 1915 data->Entries = MPS_EVENT_QUEUE_SIZE; 1916 1917 for (i = 0; i < 4; i++) { 1918 data->Types[i] = sc->events_to_record[i]; 1919 } 1920 mps_unlock(sc); 1921 } 1922 1923 /* 1924 * Set the driver's event mask according to what's been given. See 1925 * mps_user_event_query for explanation of the event recording mask and the IOC 1926 * event mask. It's the app's responsibility to enable event logging by setting 1927 * the bits in events_to_record. Initially, no events will be logged. 1928 */ 1929 static void 1930 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data) 1931 { 1932 uint8_t i; 1933 1934 mps_lock(sc); 1935 for (i = 0; i < 4; i++) { 1936 sc->events_to_record[i] = data->Types[i]; 1937 } 1938 mps_unlock(sc); 1939 } 1940 1941 /* 1942 * Copy out the events that have been recorded, up to the max events allowed. 1943 */ 1944 static int 1945 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data) 1946 { 1947 int status = 0; 1948 uint32_t size; 1949 1950 mps_lock(sc); 1951 size = data->Size; 1952 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1953 mps_unlock(sc); 1954 if (copyout((void *)sc->recorded_events, 1955 PTRIN(data->PtrEvents), sizeof(sc->recorded_events)) != 0) 1956 status = EFAULT; 1957 mps_lock(sc); 1958 } else { 1959 /* 1960 * data->Size value is not large enough to copy event data. 1961 */ 1962 status = EFAULT; 1963 } 1964 1965 /* 1966 * Change size value to match the number of bytes that were copied. 1967 */ 1968 if (status == 0) 1969 data->Size = sizeof(sc->recorded_events); 1970 mps_unlock(sc); 1971 1972 return (status); 1973 } 1974 1975 /* 1976 * Record events into the driver from the IOC if they are not masked. 1977 */ 1978 void 1979 mpssas_record_event(struct mps_softc *sc, 1980 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 1981 { 1982 uint32_t event; 1983 int i, j; 1984 uint16_t event_data_len; 1985 boolean_t sendAEN = FALSE; 1986 1987 event = event_reply->Event; 1988 1989 /* 1990 * Generate a system event to let anyone who cares know that a 1991 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 1992 * event mask is set to. 1993 */ 1994 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 1995 sendAEN = TRUE; 1996 } 1997 1998 /* 1999 * Record the event only if its corresponding bit is set in 2000 * events_to_record. event_index is the index into recorded_events and 2001 * event_number is the overall number of an event being recorded since 2002 * start-of-day. event_index will roll over; event_number will never 2003 * roll over. 2004 */ 2005 i = (uint8_t)(event / 32); 2006 j = (uint8_t)(event % 32); 2007 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2008 i = sc->event_index; 2009 sc->recorded_events[i].Type = event; 2010 sc->recorded_events[i].Number = ++sc->event_number; 2011 bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH * 2012 4); 2013 event_data_len = event_reply->EventDataLength; 2014 2015 if (event_data_len > 0) { 2016 /* 2017 * Limit data to size in m_event entry 2018 */ 2019 if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) { 2020 event_data_len = MPS_MAX_EVENT_DATA_LENGTH; 2021 } 2022 for (j = 0; j < event_data_len; j++) { 2023 sc->recorded_events[i].Data[j] = 2024 event_reply->EventData[j]; 2025 } 2026 2027 /* 2028 * check for index wrap-around 2029 */ 2030 if (++i == MPS_EVENT_QUEUE_SIZE) { 2031 i = 0; 2032 } 2033 sc->event_index = (uint8_t)i; 2034 2035 /* 2036 * Set flag to send the event. 2037 */ 2038 sendAEN = TRUE; 2039 } 2040 } 2041 2042 /* 2043 * Generate a system event if flag is set to let anyone who cares know 2044 * that an event has occurred. 2045 */ 2046 if (sendAEN) { 2047 //SLM-how to send a system event (see kqueue, kevent) 2048 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2049 // "SAS", NULL, NULL, DDI_NOSLEEP); 2050 } 2051 } 2052 2053 static int 2054 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data) 2055 { 2056 int status = 0; 2057 2058 switch (data->Command) { 2059 /* 2060 * IO access is not supported. 2061 */ 2062 case REG_IO_READ: 2063 case REG_IO_WRITE: 2064 mps_dprint(sc, MPS_USER, "IO access is not supported. " 2065 "Use memory access."); 2066 status = EINVAL; 2067 break; 2068 2069 case REG_MEM_READ: 2070 data->RegData = mps_regread(sc, data->RegOffset); 2071 break; 2072 2073 case REG_MEM_WRITE: 2074 mps_regwrite(sc, data->RegOffset, data->RegData); 2075 break; 2076 2077 default: 2078 status = EINVAL; 2079 break; 2080 } 2081 2082 return (status); 2083 } 2084 2085 static int 2086 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data) 2087 { 2088 uint8_t bt2dh = FALSE; 2089 uint8_t dh2bt = FALSE; 2090 uint16_t dev_handle, bus, target; 2091 2092 bus = data->Bus; 2093 target = data->TargetID; 2094 dev_handle = data->DevHandle; 2095 2096 /* 2097 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2098 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2099 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2100 * invalid. 2101 */ 2102 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2103 dh2bt = TRUE; 2104 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2105 bt2dh = TRUE; 2106 if (!dh2bt && !bt2dh) 2107 return (EINVAL); 2108 2109 /* 2110 * Only handle bus of 0. Make sure target is within range. 2111 */ 2112 if (bt2dh) { 2113 if (bus != 0) 2114 return (EINVAL); 2115 2116 if (target >= sc->max_devices) { 2117 mps_dprint(sc, MPS_FAULT, "Target ID is out of range " 2118 "for Bus/Target to DevHandle mapping."); 2119 return (EINVAL); 2120 } 2121 dev_handle = sc->mapping_table[target].dev_handle; 2122 if (dev_handle) 2123 data->DevHandle = dev_handle; 2124 } else { 2125 bus = 0; 2126 target = mps_mapping_get_tid_from_handle(sc, dev_handle); 2127 data->Bus = bus; 2128 data->TargetID = target; 2129 } 2130 2131 return (0); 2132 } 2133 2134 static int 2135 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2136 struct thread *td) 2137 { 2138 struct mps_softc *sc; 2139 struct mps_cfg_page_req *page_req; 2140 struct mps_ext_cfg_page_req *ext_page_req; 2141 void *mps_page; 2142 int error, msleep_ret; 2143 2144 mps_page = NULL; 2145 sc = dev->si_drv1; 2146 page_req = (void *)arg; 2147 ext_page_req = (void *)arg; 2148 2149 switch (cmd) { 2150 case MPSIO_READ_CFG_HEADER: 2151 mps_lock(sc); 2152 error = mps_user_read_cfg_header(sc, page_req); 2153 mps_unlock(sc); 2154 break; 2155 case MPSIO_READ_CFG_PAGE: 2156 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2157 error = EINVAL; 2158 break; 2159 } 2160 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO); 2161 error = copyin(page_req->buf, mps_page, 2162 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2163 if (error) 2164 break; 2165 mps_lock(sc); 2166 error = mps_user_read_cfg_page(sc, page_req, mps_page); 2167 mps_unlock(sc); 2168 if (error) 2169 break; 2170 error = copyout(mps_page, page_req->buf, page_req->len); 2171 break; 2172 case MPSIO_READ_EXT_CFG_HEADER: 2173 mps_lock(sc); 2174 error = mps_user_read_extcfg_header(sc, ext_page_req); 2175 mps_unlock(sc); 2176 break; 2177 case MPSIO_READ_EXT_CFG_PAGE: 2178 if (ext_page_req->len < 2179 (int)sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)) { 2180 error = EINVAL; 2181 break; 2182 } 2183 mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2184 error = copyin(ext_page_req->buf, mps_page, 2185 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2186 if (error) 2187 break; 2188 mps_lock(sc); 2189 error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page); 2190 mps_unlock(sc); 2191 if (error) 2192 break; 2193 error = copyout(mps_page, ext_page_req->buf, ext_page_req->len); 2194 break; 2195 case MPSIO_WRITE_CFG_PAGE: 2196 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2197 error = EINVAL; 2198 break; 2199 } 2200 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2201 error = copyin(page_req->buf, mps_page, page_req->len); 2202 if (error) 2203 break; 2204 mps_lock(sc); 2205 error = mps_user_write_cfg_page(sc, page_req, mps_page); 2206 mps_unlock(sc); 2207 break; 2208 case MPSIO_MPS_COMMAND: 2209 error = mps_user_command(sc, (struct mps_usr_command *)arg); 2210 break; 2211 case MPTIOCTL_PASS_THRU: 2212 /* 2213 * The user has requested to pass through a command to be 2214 * executed by the MPT firmware. Call our routine which does 2215 * this. Only allow one passthru IOCTL at one time. 2216 */ 2217 error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg); 2218 break; 2219 case MPTIOCTL_GET_ADAPTER_DATA: 2220 /* 2221 * The user has requested to read adapter data. Call our 2222 * routine which does this. 2223 */ 2224 error = 0; 2225 mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg); 2226 break; 2227 case MPTIOCTL_GET_PCI_INFO: 2228 /* 2229 * The user has requested to read pci info. Call 2230 * our routine which does this. 2231 */ 2232 mps_lock(sc); 2233 error = 0; 2234 mps_user_read_pci_info(sc, (mps_pci_info_t *)arg); 2235 mps_unlock(sc); 2236 break; 2237 case MPTIOCTL_RESET_ADAPTER: 2238 mps_lock(sc); 2239 sc->port_enable_complete = 0; 2240 uint32_t reinit_start = time_uptime; 2241 error = mps_reinit(sc); 2242 /* Sleep for 300 second. */ 2243 msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO, 2244 "mps_porten", 300 * hz); 2245 mps_unlock(sc); 2246 if (msleep_ret) 2247 printf("Port Enable did not complete after Diag " 2248 "Reset msleep error %d.\n", msleep_ret); 2249 else 2250 mps_dprint(sc, MPS_USER, 2251 "Hard Reset with Port Enable completed in %d seconds.\n", 2252 (uint32_t) (time_uptime - reinit_start)); 2253 break; 2254 case MPTIOCTL_DIAG_ACTION: 2255 /* 2256 * The user has done a diag buffer action. Call our routine 2257 * which does this. Only allow one diag action at one time. 2258 */ 2259 mps_lock(sc); 2260 error = mps_user_diag_action(sc, (mps_diag_action_t *)arg); 2261 mps_unlock(sc); 2262 break; 2263 case MPTIOCTL_EVENT_QUERY: 2264 /* 2265 * The user has done an event query. Call our routine which does 2266 * this. 2267 */ 2268 error = 0; 2269 mps_user_event_query(sc, (mps_event_query_t *)arg); 2270 break; 2271 case MPTIOCTL_EVENT_ENABLE: 2272 /* 2273 * The user has done an event enable. Call our routine which 2274 * does this. 2275 */ 2276 error = 0; 2277 mps_user_event_enable(sc, (mps_event_enable_t *)arg); 2278 break; 2279 case MPTIOCTL_EVENT_REPORT: 2280 /* 2281 * The user has done an event report. Call our routine which 2282 * does this. 2283 */ 2284 error = mps_user_event_report(sc, (mps_event_report_t *)arg); 2285 break; 2286 case MPTIOCTL_REG_ACCESS: 2287 /* 2288 * The user has requested register access. Call our routine 2289 * which does this. 2290 */ 2291 mps_lock(sc); 2292 error = mps_user_reg_access(sc, (mps_reg_access_t *)arg); 2293 mps_unlock(sc); 2294 break; 2295 case MPTIOCTL_BTDH_MAPPING: 2296 /* 2297 * The user has requested to translate a bus/target to a 2298 * DevHandle or a DevHandle to a bus/target. Call our routine 2299 * which does this. 2300 */ 2301 error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg); 2302 break; 2303 default: 2304 error = ENOIOCTL; 2305 break; 2306 } 2307 2308 if (mps_page != NULL) 2309 free(mps_page, M_MPSUSER); 2310 2311 return (error); 2312 } 2313 2314 #ifdef COMPAT_FREEBSD32 2315 2316 struct mps_cfg_page_req32 { 2317 MPI2_CONFIG_PAGE_HEADER header; 2318 uint32_t page_address; 2319 uint32_t buf; 2320 int len; 2321 uint16_t ioc_status; 2322 }; 2323 2324 struct mps_ext_cfg_page_req32 { 2325 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2326 uint32_t page_address; 2327 uint32_t buf; 2328 int len; 2329 uint16_t ioc_status; 2330 }; 2331 2332 struct mps_raid_action32 { 2333 uint8_t action; 2334 uint8_t volume_bus; 2335 uint8_t volume_id; 2336 uint8_t phys_disk_num; 2337 uint32_t action_data_word; 2338 uint32_t buf; 2339 int len; 2340 uint32_t volume_status; 2341 uint32_t action_data[4]; 2342 uint16_t action_status; 2343 uint16_t ioc_status; 2344 uint8_t write; 2345 }; 2346 2347 struct mps_usr_command32 { 2348 uint32_t req; 2349 uint32_t req_len; 2350 uint32_t rpl; 2351 uint32_t rpl_len; 2352 uint32_t buf; 2353 int len; 2354 uint32_t flags; 2355 }; 2356 2357 #define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32) 2358 #define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32) 2359 #define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32) 2360 #define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32) 2361 #define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32) 2362 #define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32) 2363 #define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32) 2364 2365 static int 2366 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2367 struct thread *td) 2368 { 2369 struct mps_cfg_page_req32 *page32 = _arg; 2370 struct mps_ext_cfg_page_req32 *ext32 = _arg; 2371 struct mps_raid_action32 *raid32 = _arg; 2372 struct mps_usr_command32 *user32 = _arg; 2373 union { 2374 struct mps_cfg_page_req page; 2375 struct mps_ext_cfg_page_req ext; 2376 struct mps_raid_action raid; 2377 struct mps_usr_command user; 2378 } arg; 2379 u_long cmd; 2380 int error; 2381 2382 switch (cmd32) { 2383 case MPSIO_READ_CFG_HEADER32: 2384 case MPSIO_READ_CFG_PAGE32: 2385 case MPSIO_WRITE_CFG_PAGE32: 2386 if (cmd32 == MPSIO_READ_CFG_HEADER32) 2387 cmd = MPSIO_READ_CFG_HEADER; 2388 else if (cmd32 == MPSIO_READ_CFG_PAGE32) 2389 cmd = MPSIO_READ_CFG_PAGE; 2390 else 2391 cmd = MPSIO_WRITE_CFG_PAGE; 2392 CP(*page32, arg.page, header); 2393 CP(*page32, arg.page, page_address); 2394 PTRIN_CP(*page32, arg.page, buf); 2395 CP(*page32, arg.page, len); 2396 CP(*page32, arg.page, ioc_status); 2397 break; 2398 2399 case MPSIO_READ_EXT_CFG_HEADER32: 2400 case MPSIO_READ_EXT_CFG_PAGE32: 2401 if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32) 2402 cmd = MPSIO_READ_EXT_CFG_HEADER; 2403 else 2404 cmd = MPSIO_READ_EXT_CFG_PAGE; 2405 CP(*ext32, arg.ext, header); 2406 CP(*ext32, arg.ext, page_address); 2407 PTRIN_CP(*ext32, arg.ext, buf); 2408 CP(*ext32, arg.ext, len); 2409 CP(*ext32, arg.ext, ioc_status); 2410 break; 2411 2412 case MPSIO_RAID_ACTION32: 2413 cmd = MPSIO_RAID_ACTION; 2414 CP(*raid32, arg.raid, action); 2415 CP(*raid32, arg.raid, volume_bus); 2416 CP(*raid32, arg.raid, volume_id); 2417 CP(*raid32, arg.raid, phys_disk_num); 2418 CP(*raid32, arg.raid, action_data_word); 2419 PTRIN_CP(*raid32, arg.raid, buf); 2420 CP(*raid32, arg.raid, len); 2421 CP(*raid32, arg.raid, volume_status); 2422 bcopy(raid32->action_data, arg.raid.action_data, 2423 sizeof arg.raid.action_data); 2424 CP(*raid32, arg.raid, ioc_status); 2425 CP(*raid32, arg.raid, write); 2426 break; 2427 2428 case MPSIO_MPS_COMMAND32: 2429 cmd = MPSIO_MPS_COMMAND; 2430 PTRIN_CP(*user32, arg.user, req); 2431 CP(*user32, arg.user, req_len); 2432 PTRIN_CP(*user32, arg.user, rpl); 2433 CP(*user32, arg.user, rpl_len); 2434 PTRIN_CP(*user32, arg.user, buf); 2435 CP(*user32, arg.user, len); 2436 CP(*user32, arg.user, flags); 2437 break; 2438 default: 2439 return (ENOIOCTL); 2440 } 2441 2442 error = mps_ioctl(dev, cmd, &arg, flag, td); 2443 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2444 switch (cmd32) { 2445 case MPSIO_READ_CFG_HEADER32: 2446 case MPSIO_READ_CFG_PAGE32: 2447 case MPSIO_WRITE_CFG_PAGE32: 2448 CP(arg.page, *page32, header); 2449 CP(arg.page, *page32, page_address); 2450 PTROUT_CP(arg.page, *page32, buf); 2451 CP(arg.page, *page32, len); 2452 CP(arg.page, *page32, ioc_status); 2453 break; 2454 2455 case MPSIO_READ_EXT_CFG_HEADER32: 2456 case MPSIO_READ_EXT_CFG_PAGE32: 2457 CP(arg.ext, *ext32, header); 2458 CP(arg.ext, *ext32, page_address); 2459 PTROUT_CP(arg.ext, *ext32, buf); 2460 CP(arg.ext, *ext32, len); 2461 CP(arg.ext, *ext32, ioc_status); 2462 break; 2463 2464 case MPSIO_RAID_ACTION32: 2465 CP(arg.raid, *raid32, action); 2466 CP(arg.raid, *raid32, volume_bus); 2467 CP(arg.raid, *raid32, volume_id); 2468 CP(arg.raid, *raid32, phys_disk_num); 2469 CP(arg.raid, *raid32, action_data_word); 2470 PTROUT_CP(arg.raid, *raid32, buf); 2471 CP(arg.raid, *raid32, len); 2472 CP(arg.raid, *raid32, volume_status); 2473 bcopy(arg.raid.action_data, raid32->action_data, 2474 sizeof arg.raid.action_data); 2475 CP(arg.raid, *raid32, ioc_status); 2476 CP(arg.raid, *raid32, write); 2477 break; 2478 2479 case MPSIO_MPS_COMMAND32: 2480 PTROUT_CP(arg.user, *user32, req); 2481 CP(arg.user, *user32, req_len); 2482 PTROUT_CP(arg.user, *user32, rpl); 2483 CP(arg.user, *user32, rpl_len); 2484 PTROUT_CP(arg.user, *user32, buf); 2485 CP(arg.user, *user32, len); 2486 CP(arg.user, *user32, flags); 2487 break; 2488 } 2489 } 2490 2491 return (error); 2492 } 2493 #endif /* COMPAT_FREEBSD32 */ 2494 2495 static int 2496 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2497 struct thread *td) 2498 { 2499 #ifdef COMPAT_FREEBSD32 2500 if (SV_CURPROC_FLAG(SV_ILP32)) 2501 return (mps_ioctl32(dev, com, arg, flag, td)); 2502 #endif 2503 return (mps_ioctl(dev, com, arg, flag, td)); 2504 } 2505