1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011-2015 LSI Corp. 34 * Copyright (c) 2013-2015 Avago Technologies 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 59 * 60 * $FreeBSD$ 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_compat.h" 67 68 /* TODO Move headers to mpsvar */ 69 #include <sys/types.h> 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/selinfo.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/conf.h> 77 #include <sys/bio.h> 78 #include <sys/malloc.h> 79 #include <sys/uio.h> 80 #include <sys/sysctl.h> 81 #include <sys/ioccom.h> 82 #include <sys/endian.h> 83 #include <sys/queue.h> 84 #include <sys/kthread.h> 85 #include <sys/taskqueue.h> 86 #include <sys/proc.h> 87 #include <sys/sysent.h> 88 89 #include <machine/bus.h> 90 #include <machine/resource.h> 91 #include <sys/rman.h> 92 93 #include <cam/cam.h> 94 #include <cam/cam_ccb.h> 95 #include <cam/scsi/scsi_all.h> 96 97 #include <dev/mps/mpi/mpi2_type.h> 98 #include <dev/mps/mpi/mpi2.h> 99 #include <dev/mps/mpi/mpi2_ioc.h> 100 #include <dev/mps/mpi/mpi2_cnfg.h> 101 #include <dev/mps/mpi/mpi2_init.h> 102 #include <dev/mps/mpi/mpi2_tool.h> 103 #include <dev/mps/mps_ioctl.h> 104 #include <dev/mps/mpsvar.h> 105 #include <dev/mps/mps_table.h> 106 #include <dev/mps/mps_sas.h> 107 #include <dev/pci/pcivar.h> 108 #include <dev/pci/pcireg.h> 109 110 static d_open_t mps_open; 111 static d_close_t mps_close; 112 static d_ioctl_t mps_ioctl_devsw; 113 114 static struct cdevsw mps_cdevsw = { 115 .d_version = D_VERSION, 116 .d_flags = 0, 117 .d_open = mps_open, 118 .d_close = mps_close, 119 .d_ioctl = mps_ioctl_devsw, 120 .d_name = "mps", 121 }; 122 123 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *); 124 static mps_user_f mpi_pre_ioc_facts; 125 static mps_user_f mpi_pre_port_facts; 126 static mps_user_f mpi_pre_fw_download; 127 static mps_user_f mpi_pre_fw_upload; 128 static mps_user_f mpi_pre_sata_passthrough; 129 static mps_user_f mpi_pre_smp_passthrough; 130 static mps_user_f mpi_pre_config; 131 static mps_user_f mpi_pre_sas_io_unit_control; 132 133 static int mps_user_read_cfg_header(struct mps_softc *, 134 struct mps_cfg_page_req *); 135 static int mps_user_read_cfg_page(struct mps_softc *, 136 struct mps_cfg_page_req *, void *); 137 static int mps_user_read_extcfg_header(struct mps_softc *, 138 struct mps_ext_cfg_page_req *); 139 static int mps_user_read_extcfg_page(struct mps_softc *, 140 struct mps_ext_cfg_page_req *, void *); 141 static int mps_user_write_cfg_page(struct mps_softc *, 142 struct mps_cfg_page_req *, void *); 143 static int mps_user_setup_request(struct mps_command *, 144 struct mps_usr_command *); 145 static int mps_user_command(struct mps_softc *, struct mps_usr_command *); 146 147 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data); 148 static void mps_user_get_adapter_data(struct mps_softc *sc, 149 mps_adapter_data_t *data); 150 static void mps_user_read_pci_info(struct mps_softc *sc, 151 mps_pci_info_t *data); 152 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc, 153 uint32_t unique_id); 154 static int mps_post_fw_diag_buffer(struct mps_softc *sc, 155 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 156 static int mps_release_fw_diag_buffer(struct mps_softc *sc, 157 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 158 uint32_t diag_type); 159 static int mps_diag_register(struct mps_softc *sc, 160 mps_fw_diag_register_t *diag_register, uint32_t *return_code); 161 static int mps_diag_unregister(struct mps_softc *sc, 162 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 163 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 164 uint32_t *return_code); 165 static int mps_diag_read_buffer(struct mps_softc *sc, 166 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 167 uint32_t *return_code); 168 static int mps_diag_release(struct mps_softc *sc, 169 mps_fw_diag_release_t *diag_release, uint32_t *return_code); 170 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action, 171 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 172 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data); 173 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data); 174 static void mps_user_event_enable(struct mps_softc *sc, 175 mps_event_enable_t *data); 176 static int mps_user_event_report(struct mps_softc *sc, 177 mps_event_report_t *data); 178 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data); 179 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data); 180 181 static MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls"); 182 183 /* Macros from compat/freebsd32/freebsd32.h */ 184 #define PTRIN(v) (void *)(uintptr_t)(v) 185 #define PTROUT(v) (uint32_t)(uintptr_t)(v) 186 187 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0) 188 #define PTRIN_CP(src,dst,fld) \ 189 do { (dst).fld = PTRIN((src).fld); } while (0) 190 #define PTROUT_CP(src,dst,fld) \ 191 do { (dst).fld = PTROUT((src).fld); } while (0) 192 193 int 194 mps_attach_user(struct mps_softc *sc) 195 { 196 int unit; 197 198 unit = device_get_unit(sc->mps_dev); 199 sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 200 "mps%d", unit); 201 if (sc->mps_cdev == NULL) { 202 return (ENOMEM); 203 } 204 sc->mps_cdev->si_drv1 = sc; 205 return (0); 206 } 207 208 void 209 mps_detach_user(struct mps_softc *sc) 210 { 211 212 /* XXX: do a purge of pending requests? */ 213 if (sc->mps_cdev != NULL) 214 destroy_dev(sc->mps_cdev); 215 } 216 217 static int 218 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td) 219 { 220 221 return (0); 222 } 223 224 static int 225 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td) 226 { 227 228 return (0); 229 } 230 231 static int 232 mps_user_read_cfg_header(struct mps_softc *sc, 233 struct mps_cfg_page_req *page_req) 234 { 235 MPI2_CONFIG_PAGE_HEADER *hdr; 236 struct mps_config_params params; 237 int error; 238 239 hdr = ¶ms.hdr.Struct; 240 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 241 params.page_address = le32toh(page_req->page_address); 242 hdr->PageVersion = 0; 243 hdr->PageLength = 0; 244 hdr->PageNumber = page_req->header.PageNumber; 245 hdr->PageType = page_req->header.PageType; 246 params.buffer = NULL; 247 params.length = 0; 248 params.callback = NULL; 249 250 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 251 /* 252 * Leave the request. Without resetting the chip, it's 253 * still owned by it and we'll just get into trouble 254 * freeing it now. Mark it as abandoned so that if it 255 * shows up later it can be freed. 256 */ 257 mps_printf(sc, "read_cfg_header timed out\n"); 258 return (ETIMEDOUT); 259 } 260 261 page_req->ioc_status = htole16(params.status); 262 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 263 MPI2_IOCSTATUS_SUCCESS) { 264 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 265 } 266 267 return (0); 268 } 269 270 static int 271 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req, 272 void *buf) 273 { 274 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 275 struct mps_config_params params; 276 int error; 277 278 reqhdr = buf; 279 hdr = ¶ms.hdr.Struct; 280 hdr->PageVersion = reqhdr->PageVersion; 281 hdr->PageLength = reqhdr->PageLength; 282 hdr->PageNumber = reqhdr->PageNumber; 283 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 284 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 285 params.page_address = le32toh(page_req->page_address); 286 params.buffer = buf; 287 params.length = le32toh(page_req->len); 288 params.callback = NULL; 289 290 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 291 mps_printf(sc, "mps_user_read_cfg_page timed out\n"); 292 return (ETIMEDOUT); 293 } 294 295 page_req->ioc_status = htole16(params.status); 296 return (0); 297 } 298 299 static int 300 mps_user_read_extcfg_header(struct mps_softc *sc, 301 struct mps_ext_cfg_page_req *ext_page_req) 302 { 303 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 304 struct mps_config_params params; 305 int error; 306 307 hdr = ¶ms.hdr.Ext; 308 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 309 hdr->PageVersion = ext_page_req->header.PageVersion; 310 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 311 hdr->ExtPageLength = 0; 312 hdr->PageNumber = ext_page_req->header.PageNumber; 313 hdr->ExtPageType = ext_page_req->header.ExtPageType; 314 params.page_address = le32toh(ext_page_req->page_address); 315 params.buffer = NULL; 316 params.length = 0; 317 params.callback = NULL; 318 319 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 320 /* 321 * Leave the request. Without resetting the chip, it's 322 * still owned by it and we'll just get into trouble 323 * freeing it now. Mark it as abandoned so that if it 324 * shows up later it can be freed. 325 */ 326 mps_printf(sc, "mps_user_read_extcfg_header timed out\n"); 327 return (ETIMEDOUT); 328 } 329 330 ext_page_req->ioc_status = htole16(params.status); 331 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 332 MPI2_IOCSTATUS_SUCCESS) { 333 ext_page_req->header.PageVersion = hdr->PageVersion; 334 ext_page_req->header.PageNumber = hdr->PageNumber; 335 ext_page_req->header.PageType = hdr->PageType; 336 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 337 ext_page_req->header.ExtPageType = hdr->ExtPageType; 338 } 339 340 return (0); 341 } 342 343 static int 344 mps_user_read_extcfg_page(struct mps_softc *sc, 345 struct mps_ext_cfg_page_req *ext_page_req, void *buf) 346 { 347 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 348 struct mps_config_params params; 349 int error; 350 351 reqhdr = buf; 352 hdr = ¶ms.hdr.Ext; 353 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 354 params.page_address = le32toh(ext_page_req->page_address); 355 hdr->PageVersion = reqhdr->PageVersion; 356 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 357 hdr->PageNumber = reqhdr->PageNumber; 358 hdr->ExtPageType = reqhdr->ExtPageType; 359 hdr->ExtPageLength = reqhdr->ExtPageLength; 360 params.buffer = buf; 361 params.length = le32toh(ext_page_req->len); 362 params.callback = NULL; 363 364 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 365 mps_printf(sc, "mps_user_read_extcfg_page timed out\n"); 366 return (ETIMEDOUT); 367 } 368 369 ext_page_req->ioc_status = htole16(params.status); 370 return (0); 371 } 372 373 static int 374 mps_user_write_cfg_page(struct mps_softc *sc, 375 struct mps_cfg_page_req *page_req, void *buf) 376 { 377 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 378 struct mps_config_params params; 379 u_int hdr_attr; 380 int error; 381 382 reqhdr = buf; 383 hdr = ¶ms.hdr.Struct; 384 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 385 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 386 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 387 mps_printf(sc, "page type 0x%x not changeable\n", 388 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 389 return (EINVAL); 390 } 391 392 /* 393 * There isn't any point in restoring stripped out attributes 394 * if you then mask them going down to issue the request. 395 */ 396 397 hdr->PageVersion = reqhdr->PageVersion; 398 hdr->PageLength = reqhdr->PageLength; 399 hdr->PageNumber = reqhdr->PageNumber; 400 hdr->PageType = reqhdr->PageType; 401 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 402 params.page_address = le32toh(page_req->page_address); 403 params.buffer = buf; 404 params.length = le32toh(page_req->len); 405 params.callback = NULL; 406 407 if ((error = mps_write_config_page(sc, ¶ms)) != 0) { 408 mps_printf(sc, "mps_write_cfg_page timed out\n"); 409 return (ETIMEDOUT); 410 } 411 412 page_req->ioc_status = htole16(params.status); 413 return (0); 414 } 415 416 void 417 mpi_init_sge(struct mps_command *cm, void *req, void *sge) 418 { 419 int off, space; 420 421 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4; 422 off = (uintptr_t)sge - (uintptr_t)req; 423 424 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 425 req, sge, off, space)); 426 427 cm->cm_sge = sge; 428 cm->cm_sglsize = space - off; 429 } 430 431 /* 432 * Prepare the mps_command for an IOC_FACTS request. 433 */ 434 static int 435 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd) 436 { 437 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 438 MPI2_IOC_FACTS_REPLY *rpl; 439 440 if (cmd->req_len != sizeof *req) 441 return (EINVAL); 442 if (cmd->rpl_len != sizeof *rpl) 443 return (EINVAL); 444 445 cm->cm_sge = NULL; 446 cm->cm_sglsize = 0; 447 return (0); 448 } 449 450 /* 451 * Prepare the mps_command for a PORT_FACTS request. 452 */ 453 static int 454 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd) 455 { 456 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 457 MPI2_PORT_FACTS_REPLY *rpl; 458 459 if (cmd->req_len != sizeof *req) 460 return (EINVAL); 461 if (cmd->rpl_len != sizeof *rpl) 462 return (EINVAL); 463 464 cm->cm_sge = NULL; 465 cm->cm_sglsize = 0; 466 return (0); 467 } 468 469 /* 470 * Prepare the mps_command for a FW_DOWNLOAD request. 471 */ 472 static int 473 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd) 474 { 475 MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 476 MPI2_FW_DOWNLOAD_REPLY *rpl; 477 MPI2_FW_DOWNLOAD_TCSGE tc; 478 int error; 479 480 /* 481 * This code assumes there is room in the request's SGL for 482 * the TransactionContext plus at least a SGL chain element. 483 */ 484 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 485 486 if (cmd->req_len != sizeof *req) 487 return (EINVAL); 488 if (cmd->rpl_len != sizeof *rpl) 489 return (EINVAL); 490 491 if (cmd->len == 0) 492 return (EINVAL); 493 494 error = copyin(cmd->buf, cm->cm_data, cmd->len); 495 if (error != 0) 496 return (error); 497 498 mpi_init_sge(cm, req, &req->SGL); 499 bzero(&tc, sizeof tc); 500 501 /* 502 * For now, the F/W image must be provided in a single request. 503 */ 504 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 505 return (EINVAL); 506 if (req->TotalImageSize != cmd->len) 507 return (EINVAL); 508 509 /* 510 * The value of the first two elements is specified in the 511 * Fusion-MPT Message Passing Interface document. 512 */ 513 tc.ContextSize = 0; 514 tc.DetailsLength = 12; 515 tc.ImageOffset = 0; 516 tc.ImageSize = cmd->len; 517 518 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 519 520 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 521 } 522 523 /* 524 * Prepare the mps_command for a FW_UPLOAD request. 525 */ 526 static int 527 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd) 528 { 529 MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 530 MPI2_FW_UPLOAD_REPLY *rpl; 531 MPI2_FW_UPLOAD_TCSGE tc; 532 533 /* 534 * This code assumes there is room in the request's SGL for 535 * the TransactionContext plus at least a SGL chain element. 536 */ 537 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 538 539 if (cmd->req_len != sizeof *req) 540 return (EINVAL); 541 if (cmd->rpl_len != sizeof *rpl) 542 return (EINVAL); 543 544 mpi_init_sge(cm, req, &req->SGL); 545 bzero(&tc, sizeof tc); 546 547 /* 548 * The value of the first two elements is specified in the 549 * Fusion-MPT Message Passing Interface document. 550 */ 551 tc.ContextSize = 0; 552 tc.DetailsLength = 12; 553 /* 554 * XXX Is there any reason to fetch a partial image? I.e. to 555 * set ImageOffset to something other than 0? 556 */ 557 tc.ImageOffset = 0; 558 tc.ImageSize = cmd->len; 559 560 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 561 562 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 563 } 564 565 /* 566 * Prepare the mps_command for a SATA_PASSTHROUGH request. 567 */ 568 static int 569 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 570 { 571 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 572 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 573 574 if (cmd->req_len != sizeof *req) 575 return (EINVAL); 576 if (cmd->rpl_len != sizeof *rpl) 577 return (EINVAL); 578 579 mpi_init_sge(cm, req, &req->SGL); 580 return (0); 581 } 582 583 /* 584 * Prepare the mps_command for a SMP_PASSTHROUGH request. 585 */ 586 static int 587 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 588 { 589 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 590 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 591 592 if (cmd->req_len != sizeof *req) 593 return (EINVAL); 594 if (cmd->rpl_len != sizeof *rpl) 595 return (EINVAL); 596 597 mpi_init_sge(cm, req, &req->SGL); 598 return (0); 599 } 600 601 /* 602 * Prepare the mps_command for a CONFIG request. 603 */ 604 static int 605 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd) 606 { 607 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 608 MPI2_CONFIG_REPLY *rpl; 609 610 if (cmd->req_len != sizeof *req) 611 return (EINVAL); 612 if (cmd->rpl_len != sizeof *rpl) 613 return (EINVAL); 614 615 mpi_init_sge(cm, req, &req->PageBufferSGE); 616 return (0); 617 } 618 619 /* 620 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 621 */ 622 static int 623 mpi_pre_sas_io_unit_control(struct mps_command *cm, 624 struct mps_usr_command *cmd) 625 { 626 627 cm->cm_sge = NULL; 628 cm->cm_sglsize = 0; 629 return (0); 630 } 631 632 /* 633 * A set of functions to prepare an mps_command for the various 634 * supported requests. 635 */ 636 struct mps_user_func { 637 U8 Function; 638 mps_user_f *f_pre; 639 } mps_user_func_list[] = { 640 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 641 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 642 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 643 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 644 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 645 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 646 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 647 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 648 { 0xFF, NULL } /* list end */ 649 }; 650 651 static int 652 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd) 653 { 654 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 655 struct mps_user_func *f; 656 657 for (f = mps_user_func_list; f->f_pre != NULL; f++) { 658 if (hdr->Function == f->Function) 659 return (f->f_pre(cm, cmd)); 660 } 661 return (EINVAL); 662 } 663 664 static int 665 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd) 666 { 667 MPI2_REQUEST_HEADER *hdr; 668 MPI2_DEFAULT_REPLY *rpl; 669 void *buf = NULL; 670 struct mps_command *cm = NULL; 671 int err = 0; 672 int sz; 673 674 mps_lock(sc); 675 cm = mps_alloc_command(sc); 676 677 if (cm == NULL) { 678 mps_printf(sc, "%s: no mps requests\n", __func__); 679 err = ENOMEM; 680 goto Ret; 681 } 682 mps_unlock(sc); 683 684 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 685 686 mps_dprint(sc, MPS_USER, "%s: req %p %d rpl %p %d\n", __func__, 687 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 688 689 if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) { 690 err = EINVAL; 691 goto RetFreeUnlocked; 692 } 693 err = copyin(cmd->req, hdr, cmd->req_len); 694 if (err != 0) 695 goto RetFreeUnlocked; 696 697 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 698 hdr->Function, hdr->MsgFlags); 699 700 if (cmd->len > 0) { 701 buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO); 702 cm->cm_data = buf; 703 cm->cm_length = cmd->len; 704 } else { 705 cm->cm_data = NULL; 706 cm->cm_length = 0; 707 } 708 709 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE; 710 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 711 712 err = mps_user_setup_request(cm, cmd); 713 if (err == EINVAL) { 714 mps_printf(sc, "%s: unsupported parameter or unsupported " 715 "function in request (function = 0x%X)\n", __func__, 716 hdr->Function); 717 } 718 if (err != 0) 719 goto RetFreeUnlocked; 720 721 mps_lock(sc); 722 err = mps_wait_command(sc, cm, 60, CAN_SLEEP); 723 724 if (err) { 725 mps_printf(sc, "%s: invalid request: error %d\n", 726 __func__, err); 727 goto Ret; 728 } 729 730 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 731 if (rpl != NULL) 732 sz = rpl->MsgLength * 4; 733 else 734 sz = 0; 735 736 if (sz > cmd->rpl_len) { 737 mps_printf(sc, "%s: user reply buffer (%d) smaller than " 738 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 739 sz = cmd->rpl_len; 740 } 741 742 mps_unlock(sc); 743 copyout(rpl, cmd->rpl, sz); 744 if (buf != NULL) 745 copyout(buf, cmd->buf, cmd->len); 746 mps_dprint(sc, MPS_USER, "%s: reply size %d\n", __func__, sz); 747 748 RetFreeUnlocked: 749 mps_lock(sc); 750 if (cm != NULL) 751 mps_free_command(sc, cm); 752 Ret: 753 mps_unlock(sc); 754 if (buf != NULL) 755 free(buf, M_MPSUSER); 756 return (err); 757 } 758 759 static int 760 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data) 761 { 762 MPI2_REQUEST_HEADER *hdr, tmphdr; 763 MPI2_DEFAULT_REPLY *rpl; 764 struct mps_command *cm = NULL; 765 int err = 0, dir = 0, sz; 766 uint8_t function = 0; 767 u_int sense_len; 768 struct mpssas_target *targ = NULL; 769 770 /* 771 * Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY 772 * bit to denote that a passthru is being processed. 773 */ 774 mps_lock(sc); 775 if (sc->mps_flags & MPS_FLAGS_BUSY) { 776 mps_dprint(sc, MPS_USER, "%s: Only one passthru command " 777 "allowed at a single time.", __func__); 778 mps_unlock(sc); 779 return (EBUSY); 780 } 781 sc->mps_flags |= MPS_FLAGS_BUSY; 782 mps_unlock(sc); 783 784 /* 785 * Do some validation on data direction. Valid cases are: 786 * 1) DataSize is 0 and direction is NONE 787 * 2) DataSize is non-zero and one of: 788 * a) direction is READ or 789 * b) direction is WRITE or 790 * c) direction is BOTH and DataOutSize is non-zero 791 * If valid and the direction is BOTH, change the direction to READ. 792 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 793 */ 794 if (((data->DataSize == 0) && 795 (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) || 796 ((data->DataSize != 0) && 797 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) || 798 (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) || 799 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) && 800 (data->DataOutSize != 0))))) { 801 if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) 802 data->DataDirection = MPS_PASS_THRU_DIRECTION_READ; 803 else 804 data->DataOutSize = 0; 805 } else 806 return (EINVAL); 807 808 mps_dprint(sc, MPS_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 809 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 810 data->PtrRequest, data->RequestSize, data->PtrReply, 811 data->ReplySize, data->PtrData, data->DataSize, 812 data->PtrDataOut, data->DataOutSize, data->DataDirection); 813 814 /* 815 * copy in the header so we know what we're dealing with before we 816 * commit to allocating a command for it. 817 */ 818 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 819 if (err != 0) 820 goto RetFreeUnlocked; 821 822 if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) { 823 err = EINVAL; 824 goto RetFreeUnlocked; 825 } 826 827 function = tmphdr.Function; 828 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 829 function, tmphdr.MsgFlags); 830 831 /* 832 * Handle a passthru TM request. 833 */ 834 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 835 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 836 837 mps_lock(sc); 838 cm = mpssas_alloc_tm(sc); 839 if (cm == NULL) { 840 err = EINVAL; 841 goto Ret; 842 } 843 844 /* Copy the header in. Only a small fixup is needed. */ 845 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 846 bcopy(&tmphdr, task, data->RequestSize); 847 task->TaskMID = cm->cm_desc.Default.SMID; 848 849 cm->cm_data = NULL; 850 cm->cm_desc.HighPriority.RequestFlags = 851 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 852 cm->cm_complete = NULL; 853 cm->cm_complete_data = NULL; 854 855 targ = mpssas_find_target_by_handle(sc->sassc, 0, 856 task->DevHandle); 857 if (targ == NULL) { 858 mps_dprint(sc, MPS_INFO, 859 "%s %d : invalid handle for requested TM 0x%x \n", 860 __func__, __LINE__, task->DevHandle); 861 err = 1; 862 } else { 863 mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 864 err = mps_wait_command(sc, cm, 30, CAN_SLEEP); 865 } 866 867 if (err != 0) { 868 err = EIO; 869 mps_dprint(sc, MPS_FAULT, "%s: task management failed", 870 __func__); 871 } 872 /* 873 * Copy the reply data and sense data to user space. 874 */ 875 if (cm->cm_reply != NULL) { 876 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 877 sz = rpl->MsgLength * 4; 878 879 if (sz > data->ReplySize) { 880 mps_printf(sc, "%s: user reply buffer (%d) " 881 "smaller than returned buffer (%d)\n", 882 __func__, data->ReplySize, sz); 883 } 884 mps_unlock(sc); 885 copyout(cm->cm_reply, PTRIN(data->PtrReply), 886 data->ReplySize); 887 mps_lock(sc); 888 } 889 mpssas_free_tm(sc, cm); 890 goto Ret; 891 } 892 893 mps_lock(sc); 894 cm = mps_alloc_command(sc); 895 896 if (cm == NULL) { 897 mps_printf(sc, "%s: no mps requests\n", __func__); 898 err = ENOMEM; 899 goto Ret; 900 } 901 mps_unlock(sc); 902 903 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 904 bcopy(&tmphdr, hdr, data->RequestSize); 905 906 /* 907 * Do some checking to make sure the IOCTL request contains a valid 908 * request. Then set the SGL info. 909 */ 910 mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 911 912 /* 913 * Set up for read, write or both. From check above, DataOutSize will 914 * be 0 if direction is READ or WRITE, but it will have some non-zero 915 * value if the direction is BOTH. So, just use the biggest size to get 916 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 917 * up; the first is for the request and the second will contain the 918 * response data. cm_out_len needs to be set here and this will be used 919 * when the SGLs are set up. 920 */ 921 cm->cm_data = NULL; 922 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 923 cm->cm_out_len = data->DataOutSize; 924 cm->cm_flags = 0; 925 if (cm->cm_length != 0) { 926 cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK | 927 M_ZERO); 928 cm->cm_flags = MPS_CM_FLAGS_DATAIN; 929 if (data->DataOutSize) { 930 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 931 err = copyin(PTRIN(data->PtrDataOut), 932 cm->cm_data, data->DataOutSize); 933 } else if (data->DataDirection == 934 MPS_PASS_THRU_DIRECTION_WRITE) { 935 cm->cm_flags = MPS_CM_FLAGS_DATAOUT; 936 err = copyin(PTRIN(data->PtrData), 937 cm->cm_data, data->DataSize); 938 } 939 if (err != 0) 940 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 941 "IOCTL data from user space\n", __func__); 942 } 943 cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE; 944 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 945 946 /* 947 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 948 * uses SCSI IO descriptor. 949 */ 950 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 951 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 952 MPI2_SCSI_IO_REQUEST *scsi_io_req; 953 954 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 955 /* 956 * Put SGE for data and data_out buffer at the end of 957 * scsi_io_request message header (64 bytes in total). 958 * Following above SGEs, the residual space will be used by 959 * sense data. 960 */ 961 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 962 64); 963 scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 964 965 /* 966 * Set SGLOffset0 value. This is the number of dwords that SGL 967 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 968 */ 969 scsi_io_req->SGLOffset0 = 24; 970 971 /* 972 * Setup descriptor info. RAID passthrough must use the 973 * default request descriptor which is already set, so if this 974 * is a SCSI IO request, change the descriptor to SCSI IO. 975 * Also, if this is a SCSI IO request, handle the reply in the 976 * mpssas_scsio_complete function. 977 */ 978 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 979 cm->cm_desc.SCSIIO.RequestFlags = 980 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 981 cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle; 982 983 /* 984 * Make sure the DevHandle is not 0 because this is a 985 * likely error. 986 */ 987 if (scsi_io_req->DevHandle == 0) { 988 err = EINVAL; 989 goto RetFreeUnlocked; 990 } 991 } 992 } 993 994 mps_lock(sc); 995 996 err = mps_wait_command(sc, cm, 30, CAN_SLEEP); 997 998 if (err) { 999 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1000 err); 1001 mps_unlock(sc); 1002 goto RetFreeUnlocked; 1003 } 1004 1005 /* 1006 * Sync the DMA data, if any. Then copy the data to user space. 1007 */ 1008 if (cm->cm_data != NULL) { 1009 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 1010 dir = BUS_DMASYNC_POSTREAD; 1011 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 1012 dir = BUS_DMASYNC_POSTWRITE; 1013 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1014 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1015 1016 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 1017 mps_unlock(sc); 1018 err = copyout(cm->cm_data, 1019 PTRIN(data->PtrData), data->DataSize); 1020 mps_lock(sc); 1021 if (err != 0) 1022 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 1023 "IOCTL data to user space\n", __func__); 1024 } 1025 } 1026 1027 /* 1028 * Copy the reply data and sense data to user space. 1029 */ 1030 if (cm->cm_reply != NULL) { 1031 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1032 sz = rpl->MsgLength * 4; 1033 1034 if (sz > data->ReplySize) { 1035 mps_printf(sc, "%s: user reply buffer (%d) smaller " 1036 "than returned buffer (%d)\n", __func__, 1037 data->ReplySize, sz); 1038 } 1039 mps_unlock(sc); 1040 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1041 mps_lock(sc); 1042 1043 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1044 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1045 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1046 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1047 sense_len = 1048 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->SenseCount)), 1049 sizeof(struct scsi_sense_data)); 1050 mps_unlock(sc); 1051 copyout(cm->cm_sense, cm->cm_req + 64, sense_len); 1052 mps_lock(sc); 1053 } 1054 } 1055 } 1056 mps_unlock(sc); 1057 1058 RetFreeUnlocked: 1059 mps_lock(sc); 1060 1061 if (cm != NULL) { 1062 if (cm->cm_data) 1063 free(cm->cm_data, M_MPSUSER); 1064 mps_free_command(sc, cm); 1065 } 1066 Ret: 1067 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1068 mps_unlock(sc); 1069 1070 return (err); 1071 } 1072 1073 static void 1074 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data) 1075 { 1076 Mpi2ConfigReply_t mpi_reply; 1077 Mpi2BiosPage3_t config_page; 1078 1079 /* 1080 * Use the PCI interface functions to get the Bus, Device, and Function 1081 * information. 1082 */ 1083 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev); 1084 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev); 1085 data->PciInformation.u.bits.FunctionNumber = 1086 pci_get_function(sc->mps_dev); 1087 1088 /* 1089 * Get the FW version that should already be saved in IOC Facts. 1090 */ 1091 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1092 1093 /* 1094 * General device info. 1095 */ 1096 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2; 1097 if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE) 1098 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200; 1099 data->PCIDeviceHwId = pci_get_device(sc->mps_dev); 1100 data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1); 1101 data->SubSystemId = pci_get_subdevice(sc->mps_dev); 1102 data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev); 1103 1104 /* 1105 * Get the driver version. 1106 */ 1107 strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION); 1108 1109 /* 1110 * Need to get BIOS Config Page 3 for the BIOS Version. 1111 */ 1112 data->BiosVersion = 0; 1113 mps_lock(sc); 1114 if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1115 printf("%s: Error while retrieving BIOS Version\n", __func__); 1116 else 1117 data->BiosVersion = config_page.BiosVersion; 1118 mps_unlock(sc); 1119 } 1120 1121 static void 1122 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data) 1123 { 1124 int i; 1125 1126 /* 1127 * Use the PCI interface functions to get the Bus, Device, and Function 1128 * information. 1129 */ 1130 data->BusNumber = pci_get_bus(sc->mps_dev); 1131 data->DeviceNumber = pci_get_slot(sc->mps_dev); 1132 data->FunctionNumber = pci_get_function(sc->mps_dev); 1133 1134 /* 1135 * Now get the interrupt vector and the pci header. The vector can 1136 * only be 0 right now. The header is the first 256 bytes of config 1137 * space. 1138 */ 1139 data->InterruptVector = 0; 1140 for (i = 0; i < sizeof (data->PciHeader); i++) { 1141 data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1); 1142 } 1143 } 1144 1145 static uint8_t 1146 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id) 1147 { 1148 uint8_t index; 1149 1150 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1151 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1152 return (index); 1153 } 1154 } 1155 1156 return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND); 1157 } 1158 1159 static int 1160 mps_post_fw_diag_buffer(struct mps_softc *sc, 1161 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1162 { 1163 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1164 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1165 struct mps_command *cm = NULL; 1166 int i, status; 1167 1168 /* 1169 * If buffer is not enabled, just leave. 1170 */ 1171 *return_code = MPS_FW_DIAG_ERROR_POST_FAILED; 1172 if (!pBuffer->enabled) { 1173 return (MPS_DIAG_FAILURE); 1174 } 1175 1176 /* 1177 * Clear some flags initially. 1178 */ 1179 pBuffer->force_release = FALSE; 1180 pBuffer->valid_data = FALSE; 1181 pBuffer->owned_by_firmware = FALSE; 1182 1183 /* 1184 * Get a command. 1185 */ 1186 cm = mps_alloc_command(sc); 1187 if (cm == NULL) { 1188 mps_printf(sc, "%s: no mps requests\n", __func__); 1189 return (MPS_DIAG_FAILURE); 1190 } 1191 1192 /* 1193 * Build the request for releasing the FW Diag Buffer and send it. 1194 */ 1195 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1196 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1197 req->BufferType = pBuffer->buffer_type; 1198 req->ExtendedType = pBuffer->extended_type; 1199 req->BufferLength = pBuffer->size; 1200 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1201 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1202 mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1203 cm->cm_data = NULL; 1204 cm->cm_length = 0; 1205 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1206 cm->cm_complete_data = NULL; 1207 1208 /* 1209 * Send command synchronously. 1210 */ 1211 status = mps_wait_command(sc, cm, 30, CAN_SLEEP); 1212 if (status) { 1213 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1214 status); 1215 status = MPS_DIAG_FAILURE; 1216 goto done; 1217 } 1218 1219 /* 1220 * Process POST reply. 1221 */ 1222 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1223 if (reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) { 1224 status = MPS_DIAG_FAILURE; 1225 mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed " 1226 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1227 "TransferLength = 0x%x\n", __func__, reply->IOCStatus, 1228 reply->IOCLogInfo, reply->TransferLength); 1229 goto done; 1230 } 1231 1232 /* 1233 * Post was successful. 1234 */ 1235 pBuffer->valid_data = TRUE; 1236 pBuffer->owned_by_firmware = TRUE; 1237 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1238 status = MPS_DIAG_SUCCESS; 1239 1240 done: 1241 mps_free_command(sc, cm); 1242 return (status); 1243 } 1244 1245 static int 1246 mps_release_fw_diag_buffer(struct mps_softc *sc, 1247 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1248 uint32_t diag_type) 1249 { 1250 MPI2_DIAG_RELEASE_REQUEST *req; 1251 MPI2_DIAG_RELEASE_REPLY *reply; 1252 struct mps_command *cm = NULL; 1253 int status; 1254 1255 /* 1256 * If buffer is not enabled, just leave. 1257 */ 1258 *return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED; 1259 if (!pBuffer->enabled) { 1260 mps_dprint(sc, MPS_USER, "%s: This buffer type is not " 1261 "supported by the IOC", __func__); 1262 return (MPS_DIAG_FAILURE); 1263 } 1264 1265 /* 1266 * Clear some flags initially. 1267 */ 1268 pBuffer->force_release = FALSE; 1269 pBuffer->valid_data = FALSE; 1270 pBuffer->owned_by_firmware = FALSE; 1271 1272 /* 1273 * Get a command. 1274 */ 1275 cm = mps_alloc_command(sc); 1276 if (cm == NULL) { 1277 mps_printf(sc, "%s: no mps requests\n", __func__); 1278 return (MPS_DIAG_FAILURE); 1279 } 1280 1281 /* 1282 * Build the request for releasing the FW Diag Buffer and send it. 1283 */ 1284 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1285 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1286 req->BufferType = pBuffer->buffer_type; 1287 cm->cm_data = NULL; 1288 cm->cm_length = 0; 1289 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1290 cm->cm_complete_data = NULL; 1291 1292 /* 1293 * Send command synchronously. 1294 */ 1295 status = mps_wait_command(sc, cm, 30, CAN_SLEEP); 1296 if (status) { 1297 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1298 status); 1299 status = MPS_DIAG_FAILURE; 1300 goto done; 1301 } 1302 1303 /* 1304 * Process RELEASE reply. 1305 */ 1306 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1307 if ((reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) || 1308 pBuffer->owned_by_firmware) { 1309 status = MPS_DIAG_FAILURE; 1310 mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer " 1311 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1312 __func__, reply->IOCStatus, reply->IOCLogInfo); 1313 goto done; 1314 } 1315 1316 /* 1317 * Release was successful. 1318 */ 1319 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1320 status = MPS_DIAG_SUCCESS; 1321 1322 /* 1323 * If this was for an UNREGISTER diag type command, clear the unique ID. 1324 */ 1325 if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) { 1326 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1327 } 1328 1329 done: 1330 return (status); 1331 } 1332 1333 static int 1334 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register, 1335 uint32_t *return_code) 1336 { 1337 mps_fw_diagnostic_buffer_t *pBuffer; 1338 uint8_t extended_type, buffer_type, i; 1339 uint32_t buffer_size; 1340 uint32_t unique_id; 1341 int status; 1342 1343 extended_type = diag_register->ExtendedType; 1344 buffer_type = diag_register->BufferType; 1345 buffer_size = diag_register->RequestedBufferSize; 1346 unique_id = diag_register->UniqueId; 1347 1348 /* 1349 * Check for valid buffer type 1350 */ 1351 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1352 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1353 return (MPS_DIAG_FAILURE); 1354 } 1355 1356 /* 1357 * Get the current buffer and look up the unique ID. The unique ID 1358 * should not be found. If it is, the ID is already in use. 1359 */ 1360 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1361 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1362 if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1363 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1364 return (MPS_DIAG_FAILURE); 1365 } 1366 1367 /* 1368 * The buffer's unique ID should not be registered yet, and the given 1369 * unique ID cannot be 0. 1370 */ 1371 if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) || 1372 (unique_id == MPS_FW_DIAG_INVALID_UID)) { 1373 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1374 return (MPS_DIAG_FAILURE); 1375 } 1376 1377 /* 1378 * If this buffer is already posted as immediate, just change owner. 1379 */ 1380 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1381 (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) { 1382 pBuffer->immediate = FALSE; 1383 pBuffer->unique_id = unique_id; 1384 return (MPS_DIAG_SUCCESS); 1385 } 1386 1387 /* 1388 * Post a new buffer after checking if it's enabled. The DMA buffer 1389 * that is allocated will be contiguous (nsegments = 1). 1390 */ 1391 if (!pBuffer->enabled) { 1392 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1393 return (MPS_DIAG_FAILURE); 1394 } 1395 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1396 1, 0, /* algnmnt, boundary */ 1397 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1398 BUS_SPACE_MAXADDR, /* highaddr */ 1399 NULL, NULL, /* filter, filterarg */ 1400 buffer_size, /* maxsize */ 1401 1, /* nsegments */ 1402 buffer_size, /* maxsegsize */ 1403 0, /* flags */ 1404 NULL, NULL, /* lockfunc, lockarg */ 1405 &sc->fw_diag_dmat)) { 1406 device_printf(sc->mps_dev, "Cannot allocate FW diag buffer DMA " 1407 "tag\n"); 1408 return (ENOMEM); 1409 } 1410 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1411 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1412 device_printf(sc->mps_dev, "Cannot allocate FW diag buffer " 1413 "memory\n"); 1414 return (ENOMEM); 1415 } 1416 bzero(sc->fw_diag_buffer, buffer_size); 1417 bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer, 1418 buffer_size, mps_memaddr_cb, &sc->fw_diag_busaddr, 0); 1419 pBuffer->size = buffer_size; 1420 1421 /* 1422 * Copy the given info to the diag buffer and post the buffer. 1423 */ 1424 pBuffer->buffer_type = buffer_type; 1425 pBuffer->immediate = FALSE; 1426 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1427 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1428 i++) { 1429 pBuffer->product_specific[i] = 1430 diag_register->ProductSpecific[i]; 1431 } 1432 } 1433 pBuffer->extended_type = extended_type; 1434 pBuffer->unique_id = unique_id; 1435 status = mps_post_fw_diag_buffer(sc, pBuffer, return_code); 1436 1437 /* 1438 * In case there was a failure, free the DMA buffer. 1439 */ 1440 if (status == MPS_DIAG_FAILURE) { 1441 if (sc->fw_diag_busaddr != 0) 1442 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1443 if (sc->fw_diag_buffer != NULL) 1444 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1445 sc->fw_diag_map); 1446 if (sc->fw_diag_dmat != NULL) 1447 bus_dma_tag_destroy(sc->fw_diag_dmat); 1448 } 1449 1450 return (status); 1451 } 1452 1453 static int 1454 mps_diag_unregister(struct mps_softc *sc, 1455 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1456 { 1457 mps_fw_diagnostic_buffer_t *pBuffer; 1458 uint8_t i; 1459 uint32_t unique_id; 1460 int status; 1461 1462 unique_id = diag_unregister->UniqueId; 1463 1464 /* 1465 * Get the current buffer and look up the unique ID. The unique ID 1466 * should be there. 1467 */ 1468 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1469 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1470 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1471 return (MPS_DIAG_FAILURE); 1472 } 1473 1474 pBuffer = &sc->fw_diag_buffer_list[i]; 1475 1476 /* 1477 * Try to release the buffer from FW before freeing it. If release 1478 * fails, don't free the DMA buffer in case FW tries to access it 1479 * later. If buffer is not owned by firmware, can't release it. 1480 */ 1481 if (!pBuffer->owned_by_firmware) { 1482 status = MPS_DIAG_SUCCESS; 1483 } else { 1484 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1485 MPS_FW_DIAG_TYPE_UNREGISTER); 1486 } 1487 1488 /* 1489 * At this point, return the current status no matter what happens with 1490 * the DMA buffer. 1491 */ 1492 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1493 if (status == MPS_DIAG_SUCCESS) { 1494 if (sc->fw_diag_busaddr != 0) 1495 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1496 if (sc->fw_diag_buffer != NULL) 1497 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1498 sc->fw_diag_map); 1499 if (sc->fw_diag_dmat != NULL) 1500 bus_dma_tag_destroy(sc->fw_diag_dmat); 1501 } 1502 1503 return (status); 1504 } 1505 1506 static int 1507 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 1508 uint32_t *return_code) 1509 { 1510 mps_fw_diagnostic_buffer_t *pBuffer; 1511 uint8_t i; 1512 uint32_t unique_id; 1513 1514 unique_id = diag_query->UniqueId; 1515 1516 /* 1517 * If ID is valid, query on ID. 1518 * If ID is invalid, query on buffer type. 1519 */ 1520 if (unique_id == MPS_FW_DIAG_INVALID_UID) { 1521 i = diag_query->BufferType; 1522 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1523 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1524 return (MPS_DIAG_FAILURE); 1525 } 1526 } else { 1527 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1528 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1529 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1530 return (MPS_DIAG_FAILURE); 1531 } 1532 } 1533 1534 /* 1535 * Fill query structure with the diag buffer info. 1536 */ 1537 pBuffer = &sc->fw_diag_buffer_list[i]; 1538 diag_query->BufferType = pBuffer->buffer_type; 1539 diag_query->ExtendedType = pBuffer->extended_type; 1540 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1541 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1542 i++) { 1543 diag_query->ProductSpecific[i] = 1544 pBuffer->product_specific[i]; 1545 } 1546 } 1547 diag_query->TotalBufferSize = pBuffer->size; 1548 diag_query->DriverAddedBufferSize = 0; 1549 diag_query->UniqueId = pBuffer->unique_id; 1550 diag_query->ApplicationFlags = 0; 1551 diag_query->DiagnosticFlags = 0; 1552 1553 /* 1554 * Set/Clear application flags 1555 */ 1556 if (pBuffer->immediate) { 1557 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED; 1558 } else { 1559 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED; 1560 } 1561 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1562 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID; 1563 } else { 1564 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID; 1565 } 1566 if (pBuffer->owned_by_firmware) { 1567 diag_query->ApplicationFlags |= 1568 MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1569 } else { 1570 diag_query->ApplicationFlags &= 1571 ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1572 } 1573 1574 return (MPS_DIAG_SUCCESS); 1575 } 1576 1577 static int 1578 mps_diag_read_buffer(struct mps_softc *sc, 1579 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1580 uint32_t *return_code) 1581 { 1582 mps_fw_diagnostic_buffer_t *pBuffer; 1583 uint8_t i, *pData; 1584 uint32_t unique_id; 1585 int status; 1586 1587 unique_id = diag_read_buffer->UniqueId; 1588 1589 /* 1590 * Get the current buffer and look up the unique ID. The unique ID 1591 * should be there. 1592 */ 1593 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1594 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1595 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1596 return (MPS_DIAG_FAILURE); 1597 } 1598 1599 pBuffer = &sc->fw_diag_buffer_list[i]; 1600 1601 /* 1602 * Make sure requested read is within limits 1603 */ 1604 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1605 pBuffer->size) { 1606 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1607 return (MPS_DIAG_FAILURE); 1608 } 1609 1610 /* 1611 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1612 * buffer that was allocated is one contiguous buffer. 1613 */ 1614 pData = (uint8_t *)(sc->fw_diag_buffer + 1615 diag_read_buffer->StartingOffset); 1616 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1617 return (MPS_DIAG_FAILURE); 1618 diag_read_buffer->Status = 0; 1619 1620 /* 1621 * Set or clear the Force Release flag. 1622 */ 1623 if (pBuffer->force_release) { 1624 diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1625 } else { 1626 diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1627 } 1628 1629 /* 1630 * If buffer is to be reregistered, make sure it's not already owned by 1631 * firmware first. 1632 */ 1633 status = MPS_DIAG_SUCCESS; 1634 if (!pBuffer->owned_by_firmware) { 1635 if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) { 1636 status = mps_post_fw_diag_buffer(sc, pBuffer, 1637 return_code); 1638 } 1639 } 1640 1641 return (status); 1642 } 1643 1644 static int 1645 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release, 1646 uint32_t *return_code) 1647 { 1648 mps_fw_diagnostic_buffer_t *pBuffer; 1649 uint8_t i; 1650 uint32_t unique_id; 1651 int status; 1652 1653 unique_id = diag_release->UniqueId; 1654 1655 /* 1656 * Get the current buffer and look up the unique ID. The unique ID 1657 * should be there. 1658 */ 1659 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1660 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1661 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1662 return (MPS_DIAG_FAILURE); 1663 } 1664 1665 pBuffer = &sc->fw_diag_buffer_list[i]; 1666 1667 /* 1668 * If buffer is not owned by firmware, it's already been released. 1669 */ 1670 if (!pBuffer->owned_by_firmware) { 1671 *return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED; 1672 return (MPS_DIAG_FAILURE); 1673 } 1674 1675 /* 1676 * Release the buffer. 1677 */ 1678 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1679 MPS_FW_DIAG_TYPE_RELEASE); 1680 return (status); 1681 } 1682 1683 static int 1684 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action, 1685 uint32_t length, uint32_t *return_code) 1686 { 1687 mps_fw_diag_register_t diag_register; 1688 mps_fw_diag_unregister_t diag_unregister; 1689 mps_fw_diag_query_t diag_query; 1690 mps_diag_read_buffer_t diag_read_buffer; 1691 mps_fw_diag_release_t diag_release; 1692 int status = MPS_DIAG_SUCCESS; 1693 uint32_t original_return_code; 1694 1695 original_return_code = *return_code; 1696 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1697 1698 switch (action) { 1699 case MPS_FW_DIAG_TYPE_REGISTER: 1700 if (!length) { 1701 *return_code = 1702 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1703 status = MPS_DIAG_FAILURE; 1704 break; 1705 } 1706 if (copyin(diag_action, &diag_register, 1707 sizeof(diag_register)) != 0) 1708 return (MPS_DIAG_FAILURE); 1709 status = mps_diag_register(sc, &diag_register, 1710 return_code); 1711 break; 1712 1713 case MPS_FW_DIAG_TYPE_UNREGISTER: 1714 if (length < sizeof(diag_unregister)) { 1715 *return_code = 1716 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1717 status = MPS_DIAG_FAILURE; 1718 break; 1719 } 1720 if (copyin(diag_action, &diag_unregister, 1721 sizeof(diag_unregister)) != 0) 1722 return (MPS_DIAG_FAILURE); 1723 status = mps_diag_unregister(sc, &diag_unregister, 1724 return_code); 1725 break; 1726 1727 case MPS_FW_DIAG_TYPE_QUERY: 1728 if (length < sizeof (diag_query)) { 1729 *return_code = 1730 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1731 status = MPS_DIAG_FAILURE; 1732 break; 1733 } 1734 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1735 != 0) 1736 return (MPS_DIAG_FAILURE); 1737 status = mps_diag_query(sc, &diag_query, return_code); 1738 if (status == MPS_DIAG_SUCCESS) 1739 if (copyout(&diag_query, diag_action, 1740 sizeof (diag_query)) != 0) 1741 return (MPS_DIAG_FAILURE); 1742 break; 1743 1744 case MPS_FW_DIAG_TYPE_READ_BUFFER: 1745 if (copyin(diag_action, &diag_read_buffer, 1746 sizeof(diag_read_buffer)) != 0) 1747 return (MPS_DIAG_FAILURE); 1748 if (length < diag_read_buffer.BytesToRead) { 1749 *return_code = 1750 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1751 status = MPS_DIAG_FAILURE; 1752 break; 1753 } 1754 status = mps_diag_read_buffer(sc, &diag_read_buffer, 1755 PTRIN(diag_read_buffer.PtrDataBuffer), 1756 return_code); 1757 if (status == MPS_DIAG_SUCCESS) { 1758 if (copyout(&diag_read_buffer, diag_action, 1759 sizeof(diag_read_buffer) - 1760 sizeof(diag_read_buffer.PtrDataBuffer)) != 1761 0) 1762 return (MPS_DIAG_FAILURE); 1763 } 1764 break; 1765 1766 case MPS_FW_DIAG_TYPE_RELEASE: 1767 if (length < sizeof(diag_release)) { 1768 *return_code = 1769 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1770 status = MPS_DIAG_FAILURE; 1771 break; 1772 } 1773 if (copyin(diag_action, &diag_release, 1774 sizeof(diag_release)) != 0) 1775 return (MPS_DIAG_FAILURE); 1776 status = mps_diag_release(sc, &diag_release, 1777 return_code); 1778 break; 1779 1780 default: 1781 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1782 status = MPS_DIAG_FAILURE; 1783 break; 1784 } 1785 1786 if ((status == MPS_DIAG_FAILURE) && 1787 (original_return_code == MPS_FW_DIAG_NEW) && 1788 (*return_code != MPS_FW_DIAG_ERROR_SUCCESS)) 1789 status = MPS_DIAG_SUCCESS; 1790 1791 return (status); 1792 } 1793 1794 static int 1795 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data) 1796 { 1797 int status; 1798 1799 /* 1800 * Only allow one diag action at one time. 1801 */ 1802 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1803 mps_dprint(sc, MPS_USER, "%s: Only one FW diag command " 1804 "allowed at a single time.", __func__); 1805 return (EBUSY); 1806 } 1807 sc->mps_flags |= MPS_FLAGS_BUSY; 1808 1809 /* 1810 * Send diag action request 1811 */ 1812 if (data->Action == MPS_FW_DIAG_TYPE_REGISTER || 1813 data->Action == MPS_FW_DIAG_TYPE_UNREGISTER || 1814 data->Action == MPS_FW_DIAG_TYPE_QUERY || 1815 data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER || 1816 data->Action == MPS_FW_DIAG_TYPE_RELEASE) { 1817 status = mps_do_diag_action(sc, data->Action, 1818 PTRIN(data->PtrDiagAction), data->Length, 1819 &data->ReturnCode); 1820 } else 1821 status = EINVAL; 1822 1823 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1824 return (status); 1825 } 1826 1827 /* 1828 * Copy the event recording mask and the event queue size out. For 1829 * clarification, the event recording mask (events_to_record) is not the same 1830 * thing as the event mask (event_mask). events_to_record has a bit set for 1831 * every event type that is to be recorded by the driver, and event_mask has a 1832 * bit cleared for every event that is allowed into the driver from the IOC. 1833 * They really have nothing to do with each other. 1834 */ 1835 static void 1836 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data) 1837 { 1838 uint8_t i; 1839 1840 mps_lock(sc); 1841 data->Entries = MPS_EVENT_QUEUE_SIZE; 1842 1843 for (i = 0; i < 4; i++) { 1844 data->Types[i] = sc->events_to_record[i]; 1845 } 1846 mps_unlock(sc); 1847 } 1848 1849 /* 1850 * Set the driver's event mask according to what's been given. See 1851 * mps_user_event_query for explanation of the event recording mask and the IOC 1852 * event mask. It's the app's responsibility to enable event logging by setting 1853 * the bits in events_to_record. Initially, no events will be logged. 1854 */ 1855 static void 1856 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data) 1857 { 1858 uint8_t i; 1859 1860 mps_lock(sc); 1861 for (i = 0; i < 4; i++) { 1862 sc->events_to_record[i] = data->Types[i]; 1863 } 1864 mps_unlock(sc); 1865 } 1866 1867 /* 1868 * Copy out the events that have been recorded, up to the max events allowed. 1869 */ 1870 static int 1871 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data) 1872 { 1873 int status = 0; 1874 uint32_t size; 1875 1876 mps_lock(sc); 1877 size = data->Size; 1878 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1879 mps_unlock(sc); 1880 if (copyout((void *)sc->recorded_events, 1881 PTRIN(data->PtrEvents), size) != 0) 1882 status = EFAULT; 1883 mps_lock(sc); 1884 } else { 1885 /* 1886 * data->Size value is not large enough to copy event data. 1887 */ 1888 status = EFAULT; 1889 } 1890 1891 /* 1892 * Change size value to match the number of bytes that were copied. 1893 */ 1894 if (status == 0) 1895 data->Size = sizeof(sc->recorded_events); 1896 mps_unlock(sc); 1897 1898 return (status); 1899 } 1900 1901 /* 1902 * Record events into the driver from the IOC if they are not masked. 1903 */ 1904 void 1905 mpssas_record_event(struct mps_softc *sc, 1906 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 1907 { 1908 uint32_t event; 1909 int i, j; 1910 uint16_t event_data_len; 1911 boolean_t sendAEN = FALSE; 1912 1913 event = event_reply->Event; 1914 1915 /* 1916 * Generate a system event to let anyone who cares know that a 1917 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 1918 * event mask is set to. 1919 */ 1920 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 1921 sendAEN = TRUE; 1922 } 1923 1924 /* 1925 * Record the event only if its corresponding bit is set in 1926 * events_to_record. event_index is the index into recorded_events and 1927 * event_number is the overall number of an event being recorded since 1928 * start-of-day. event_index will roll over; event_number will never 1929 * roll over. 1930 */ 1931 i = (uint8_t)(event / 32); 1932 j = (uint8_t)(event % 32); 1933 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 1934 i = sc->event_index; 1935 sc->recorded_events[i].Type = event; 1936 sc->recorded_events[i].Number = ++sc->event_number; 1937 bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH * 1938 4); 1939 event_data_len = event_reply->EventDataLength; 1940 1941 if (event_data_len > 0) { 1942 /* 1943 * Limit data to size in m_event entry 1944 */ 1945 if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) { 1946 event_data_len = MPS_MAX_EVENT_DATA_LENGTH; 1947 } 1948 for (j = 0; j < event_data_len; j++) { 1949 sc->recorded_events[i].Data[j] = 1950 event_reply->EventData[j]; 1951 } 1952 1953 /* 1954 * check for index wrap-around 1955 */ 1956 if (++i == MPS_EVENT_QUEUE_SIZE) { 1957 i = 0; 1958 } 1959 sc->event_index = (uint8_t)i; 1960 1961 /* 1962 * Set flag to send the event. 1963 */ 1964 sendAEN = TRUE; 1965 } 1966 } 1967 1968 /* 1969 * Generate a system event if flag is set to let anyone who cares know 1970 * that an event has occurred. 1971 */ 1972 if (sendAEN) { 1973 //SLM-how to send a system event (see kqueue, kevent) 1974 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 1975 // "SAS", NULL, NULL, DDI_NOSLEEP); 1976 } 1977 } 1978 1979 static int 1980 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data) 1981 { 1982 int status = 0; 1983 1984 switch (data->Command) { 1985 /* 1986 * IO access is not supported. 1987 */ 1988 case REG_IO_READ: 1989 case REG_IO_WRITE: 1990 mps_dprint(sc, MPS_USER, "IO access is not supported. " 1991 "Use memory access."); 1992 status = EINVAL; 1993 break; 1994 1995 case REG_MEM_READ: 1996 data->RegData = mps_regread(sc, data->RegOffset); 1997 break; 1998 1999 case REG_MEM_WRITE: 2000 mps_regwrite(sc, data->RegOffset, data->RegData); 2001 break; 2002 2003 default: 2004 status = EINVAL; 2005 break; 2006 } 2007 2008 return (status); 2009 } 2010 2011 static int 2012 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data) 2013 { 2014 uint8_t bt2dh = FALSE; 2015 uint8_t dh2bt = FALSE; 2016 uint16_t dev_handle, bus, target; 2017 2018 bus = data->Bus; 2019 target = data->TargetID; 2020 dev_handle = data->DevHandle; 2021 2022 /* 2023 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2024 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2025 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2026 * invalid. 2027 */ 2028 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2029 dh2bt = TRUE; 2030 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2031 bt2dh = TRUE; 2032 if (!dh2bt && !bt2dh) 2033 return (EINVAL); 2034 2035 /* 2036 * Only handle bus of 0. Make sure target is within range. 2037 */ 2038 if (bt2dh) { 2039 if (bus != 0) 2040 return (EINVAL); 2041 2042 if (target > sc->max_devices) { 2043 mps_dprint(sc, MPS_FAULT, "Target ID is out of range " 2044 "for Bus/Target to DevHandle mapping."); 2045 return (EINVAL); 2046 } 2047 dev_handle = sc->mapping_table[target].dev_handle; 2048 if (dev_handle) 2049 data->DevHandle = dev_handle; 2050 } else { 2051 bus = 0; 2052 target = mps_mapping_get_sas_id_from_handle(sc, dev_handle); 2053 data->Bus = bus; 2054 data->TargetID = target; 2055 } 2056 2057 return (0); 2058 } 2059 2060 static int 2061 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2062 struct thread *td) 2063 { 2064 struct mps_softc *sc; 2065 struct mps_cfg_page_req *page_req; 2066 struct mps_ext_cfg_page_req *ext_page_req; 2067 void *mps_page; 2068 int error, msleep_ret; 2069 2070 mps_page = NULL; 2071 sc = dev->si_drv1; 2072 page_req = (void *)arg; 2073 ext_page_req = (void *)arg; 2074 2075 switch (cmd) { 2076 case MPSIO_READ_CFG_HEADER: 2077 mps_lock(sc); 2078 error = mps_user_read_cfg_header(sc, page_req); 2079 mps_unlock(sc); 2080 break; 2081 case MPSIO_READ_CFG_PAGE: 2082 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO); 2083 error = copyin(page_req->buf, mps_page, 2084 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2085 if (error) 2086 break; 2087 mps_lock(sc); 2088 error = mps_user_read_cfg_page(sc, page_req, mps_page); 2089 mps_unlock(sc); 2090 if (error) 2091 break; 2092 error = copyout(mps_page, page_req->buf, page_req->len); 2093 break; 2094 case MPSIO_READ_EXT_CFG_HEADER: 2095 mps_lock(sc); 2096 error = mps_user_read_extcfg_header(sc, ext_page_req); 2097 mps_unlock(sc); 2098 break; 2099 case MPSIO_READ_EXT_CFG_PAGE: 2100 mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2101 error = copyin(ext_page_req->buf, mps_page, 2102 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2103 if (error) 2104 break; 2105 mps_lock(sc); 2106 error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page); 2107 mps_unlock(sc); 2108 if (error) 2109 break; 2110 error = copyout(mps_page, ext_page_req->buf, ext_page_req->len); 2111 break; 2112 case MPSIO_WRITE_CFG_PAGE: 2113 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2114 error = copyin(page_req->buf, mps_page, page_req->len); 2115 if (error) 2116 break; 2117 mps_lock(sc); 2118 error = mps_user_write_cfg_page(sc, page_req, mps_page); 2119 mps_unlock(sc); 2120 break; 2121 case MPSIO_MPS_COMMAND: 2122 error = mps_user_command(sc, (struct mps_usr_command *)arg); 2123 break; 2124 case MPTIOCTL_PASS_THRU: 2125 /* 2126 * The user has requested to pass through a command to be 2127 * executed by the MPT firmware. Call our routine which does 2128 * this. Only allow one passthru IOCTL at one time. 2129 */ 2130 error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg); 2131 break; 2132 case MPTIOCTL_GET_ADAPTER_DATA: 2133 /* 2134 * The user has requested to read adapter data. Call our 2135 * routine which does this. 2136 */ 2137 error = 0; 2138 mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg); 2139 break; 2140 case MPTIOCTL_GET_PCI_INFO: 2141 /* 2142 * The user has requested to read pci info. Call 2143 * our routine which does this. 2144 */ 2145 mps_lock(sc); 2146 error = 0; 2147 mps_user_read_pci_info(sc, (mps_pci_info_t *)arg); 2148 mps_unlock(sc); 2149 break; 2150 case MPTIOCTL_RESET_ADAPTER: 2151 mps_lock(sc); 2152 sc->port_enable_complete = 0; 2153 uint32_t reinit_start = time_uptime; 2154 error = mps_reinit(sc); 2155 /* Sleep for 300 second. */ 2156 msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO, 2157 "mps_porten", 300 * hz); 2158 mps_unlock(sc); 2159 if (msleep_ret) 2160 printf("Port Enable did not complete after Diag " 2161 "Reset msleep error %d.\n", msleep_ret); 2162 else 2163 mps_dprint(sc, MPS_USER, 2164 "Hard Reset with Port Enable completed in %d seconds.\n", 2165 (uint32_t) (time_uptime - reinit_start)); 2166 break; 2167 case MPTIOCTL_DIAG_ACTION: 2168 /* 2169 * The user has done a diag buffer action. Call our routine 2170 * which does this. Only allow one diag action at one time. 2171 */ 2172 mps_lock(sc); 2173 error = mps_user_diag_action(sc, (mps_diag_action_t *)arg); 2174 mps_unlock(sc); 2175 break; 2176 case MPTIOCTL_EVENT_QUERY: 2177 /* 2178 * The user has done an event query. Call our routine which does 2179 * this. 2180 */ 2181 error = 0; 2182 mps_user_event_query(sc, (mps_event_query_t *)arg); 2183 break; 2184 case MPTIOCTL_EVENT_ENABLE: 2185 /* 2186 * The user has done an event enable. Call our routine which 2187 * does this. 2188 */ 2189 error = 0; 2190 mps_user_event_enable(sc, (mps_event_enable_t *)arg); 2191 break; 2192 case MPTIOCTL_EVENT_REPORT: 2193 /* 2194 * The user has done an event report. Call our routine which 2195 * does this. 2196 */ 2197 error = mps_user_event_report(sc, (mps_event_report_t *)arg); 2198 break; 2199 case MPTIOCTL_REG_ACCESS: 2200 /* 2201 * The user has requested register access. Call our routine 2202 * which does this. 2203 */ 2204 mps_lock(sc); 2205 error = mps_user_reg_access(sc, (mps_reg_access_t *)arg); 2206 mps_unlock(sc); 2207 break; 2208 case MPTIOCTL_BTDH_MAPPING: 2209 /* 2210 * The user has requested to translate a bus/target to a 2211 * DevHandle or a DevHandle to a bus/target. Call our routine 2212 * which does this. 2213 */ 2214 error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg); 2215 break; 2216 default: 2217 error = ENOIOCTL; 2218 break; 2219 } 2220 2221 if (mps_page != NULL) 2222 free(mps_page, M_MPSUSER); 2223 2224 return (error); 2225 } 2226 2227 #ifdef COMPAT_FREEBSD32 2228 2229 struct mps_cfg_page_req32 { 2230 MPI2_CONFIG_PAGE_HEADER header; 2231 uint32_t page_address; 2232 uint32_t buf; 2233 int len; 2234 uint16_t ioc_status; 2235 }; 2236 2237 struct mps_ext_cfg_page_req32 { 2238 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2239 uint32_t page_address; 2240 uint32_t buf; 2241 int len; 2242 uint16_t ioc_status; 2243 }; 2244 2245 struct mps_raid_action32 { 2246 uint8_t action; 2247 uint8_t volume_bus; 2248 uint8_t volume_id; 2249 uint8_t phys_disk_num; 2250 uint32_t action_data_word; 2251 uint32_t buf; 2252 int len; 2253 uint32_t volume_status; 2254 uint32_t action_data[4]; 2255 uint16_t action_status; 2256 uint16_t ioc_status; 2257 uint8_t write; 2258 }; 2259 2260 struct mps_usr_command32 { 2261 uint32_t req; 2262 uint32_t req_len; 2263 uint32_t rpl; 2264 uint32_t rpl_len; 2265 uint32_t buf; 2266 int len; 2267 uint32_t flags; 2268 }; 2269 2270 #define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32) 2271 #define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32) 2272 #define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32) 2273 #define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32) 2274 #define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32) 2275 #define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32) 2276 #define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32) 2277 2278 static int 2279 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2280 struct thread *td) 2281 { 2282 struct mps_cfg_page_req32 *page32 = _arg; 2283 struct mps_ext_cfg_page_req32 *ext32 = _arg; 2284 struct mps_raid_action32 *raid32 = _arg; 2285 struct mps_usr_command32 *user32 = _arg; 2286 union { 2287 struct mps_cfg_page_req page; 2288 struct mps_ext_cfg_page_req ext; 2289 struct mps_raid_action raid; 2290 struct mps_usr_command user; 2291 } arg; 2292 u_long cmd; 2293 int error; 2294 2295 switch (cmd32) { 2296 case MPSIO_READ_CFG_HEADER32: 2297 case MPSIO_READ_CFG_PAGE32: 2298 case MPSIO_WRITE_CFG_PAGE32: 2299 if (cmd32 == MPSIO_READ_CFG_HEADER32) 2300 cmd = MPSIO_READ_CFG_HEADER; 2301 else if (cmd32 == MPSIO_READ_CFG_PAGE32) 2302 cmd = MPSIO_READ_CFG_PAGE; 2303 else 2304 cmd = MPSIO_WRITE_CFG_PAGE; 2305 CP(*page32, arg.page, header); 2306 CP(*page32, arg.page, page_address); 2307 PTRIN_CP(*page32, arg.page, buf); 2308 CP(*page32, arg.page, len); 2309 CP(*page32, arg.page, ioc_status); 2310 break; 2311 2312 case MPSIO_READ_EXT_CFG_HEADER32: 2313 case MPSIO_READ_EXT_CFG_PAGE32: 2314 if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32) 2315 cmd = MPSIO_READ_EXT_CFG_HEADER; 2316 else 2317 cmd = MPSIO_READ_EXT_CFG_PAGE; 2318 CP(*ext32, arg.ext, header); 2319 CP(*ext32, arg.ext, page_address); 2320 PTRIN_CP(*ext32, arg.ext, buf); 2321 CP(*ext32, arg.ext, len); 2322 CP(*ext32, arg.ext, ioc_status); 2323 break; 2324 2325 case MPSIO_RAID_ACTION32: 2326 cmd = MPSIO_RAID_ACTION; 2327 CP(*raid32, arg.raid, action); 2328 CP(*raid32, arg.raid, volume_bus); 2329 CP(*raid32, arg.raid, volume_id); 2330 CP(*raid32, arg.raid, phys_disk_num); 2331 CP(*raid32, arg.raid, action_data_word); 2332 PTRIN_CP(*raid32, arg.raid, buf); 2333 CP(*raid32, arg.raid, len); 2334 CP(*raid32, arg.raid, volume_status); 2335 bcopy(raid32->action_data, arg.raid.action_data, 2336 sizeof arg.raid.action_data); 2337 CP(*raid32, arg.raid, ioc_status); 2338 CP(*raid32, arg.raid, write); 2339 break; 2340 2341 case MPSIO_MPS_COMMAND32: 2342 cmd = MPSIO_MPS_COMMAND; 2343 PTRIN_CP(*user32, arg.user, req); 2344 CP(*user32, arg.user, req_len); 2345 PTRIN_CP(*user32, arg.user, rpl); 2346 CP(*user32, arg.user, rpl_len); 2347 PTRIN_CP(*user32, arg.user, buf); 2348 CP(*user32, arg.user, len); 2349 CP(*user32, arg.user, flags); 2350 break; 2351 default: 2352 return (ENOIOCTL); 2353 } 2354 2355 error = mps_ioctl(dev, cmd, &arg, flag, td); 2356 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2357 switch (cmd32) { 2358 case MPSIO_READ_CFG_HEADER32: 2359 case MPSIO_READ_CFG_PAGE32: 2360 case MPSIO_WRITE_CFG_PAGE32: 2361 CP(arg.page, *page32, header); 2362 CP(arg.page, *page32, page_address); 2363 PTROUT_CP(arg.page, *page32, buf); 2364 CP(arg.page, *page32, len); 2365 CP(arg.page, *page32, ioc_status); 2366 break; 2367 2368 case MPSIO_READ_EXT_CFG_HEADER32: 2369 case MPSIO_READ_EXT_CFG_PAGE32: 2370 CP(arg.ext, *ext32, header); 2371 CP(arg.ext, *ext32, page_address); 2372 PTROUT_CP(arg.ext, *ext32, buf); 2373 CP(arg.ext, *ext32, len); 2374 CP(arg.ext, *ext32, ioc_status); 2375 break; 2376 2377 case MPSIO_RAID_ACTION32: 2378 CP(arg.raid, *raid32, action); 2379 CP(arg.raid, *raid32, volume_bus); 2380 CP(arg.raid, *raid32, volume_id); 2381 CP(arg.raid, *raid32, phys_disk_num); 2382 CP(arg.raid, *raid32, action_data_word); 2383 PTROUT_CP(arg.raid, *raid32, buf); 2384 CP(arg.raid, *raid32, len); 2385 CP(arg.raid, *raid32, volume_status); 2386 bcopy(arg.raid.action_data, raid32->action_data, 2387 sizeof arg.raid.action_data); 2388 CP(arg.raid, *raid32, ioc_status); 2389 CP(arg.raid, *raid32, write); 2390 break; 2391 2392 case MPSIO_MPS_COMMAND32: 2393 PTROUT_CP(arg.user, *user32, req); 2394 CP(arg.user, *user32, req_len); 2395 PTROUT_CP(arg.user, *user32, rpl); 2396 CP(arg.user, *user32, rpl_len); 2397 PTROUT_CP(arg.user, *user32, buf); 2398 CP(arg.user, *user32, len); 2399 CP(arg.user, *user32, flags); 2400 break; 2401 } 2402 } 2403 2404 return (error); 2405 } 2406 #endif /* COMPAT_FREEBSD32 */ 2407 2408 static int 2409 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2410 struct thread *td) 2411 { 2412 #ifdef COMPAT_FREEBSD32 2413 if (SV_CURPROC_FLAG(SV_ILP32)) 2414 return (mps_ioctl32(dev, com, arg, flag, td)); 2415 #endif 2416 return (mps_ioctl(dev, com, arg, flag, td)); 2417 } 2418