1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Yahoo!, Inc. 5 * All rights reserved. 6 * Written by: John Baldwin <jhb@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 33 */ 34 /*- 35 * Copyright (c) 2011-2015 LSI Corp. 36 * Copyright (c) 2013-2015 Avago Technologies 37 * All rights reserved. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 61 */ 62 63 #include <sys/cdefs.h> 64 /* TODO Move headers to mpsvar */ 65 #include <sys/types.h> 66 #include <sys/param.h> 67 #include <sys/systm.h> 68 #include <sys/kernel.h> 69 #include <sys/selinfo.h> 70 #include <sys/module.h> 71 #include <sys/bus.h> 72 #include <sys/conf.h> 73 #include <sys/bio.h> 74 #include <sys/abi_compat.h> 75 #include <sys/malloc.h> 76 #include <sys/uio.h> 77 #include <sys/sysctl.h> 78 #include <sys/ioccom.h> 79 #include <sys/endian.h> 80 #include <sys/queue.h> 81 #include <sys/kthread.h> 82 #include <sys/taskqueue.h> 83 #include <sys/proc.h> 84 #include <sys/sysent.h> 85 86 #include <machine/bus.h> 87 #include <machine/resource.h> 88 #include <sys/rman.h> 89 90 #include <cam/cam.h> 91 #include <cam/cam_ccb.h> 92 #include <cam/scsi/scsi_all.h> 93 94 #include <dev/mps/mpi/mpi2_type.h> 95 #include <dev/mps/mpi/mpi2.h> 96 #include <dev/mps/mpi/mpi2_ioc.h> 97 #include <dev/mps/mpi/mpi2_cnfg.h> 98 #include <dev/mps/mpi/mpi2_init.h> 99 #include <dev/mps/mpi/mpi2_tool.h> 100 #include <dev/mps/mps_ioctl.h> 101 #include <dev/mps/mpsvar.h> 102 #include <dev/mps/mps_table.h> 103 #include <dev/mps/mps_sas.h> 104 #include <dev/pci/pcivar.h> 105 #include <dev/pci/pcireg.h> 106 107 static d_open_t mps_open; 108 static d_close_t mps_close; 109 static d_ioctl_t mps_ioctl_devsw; 110 111 static struct cdevsw mps_cdevsw = { 112 .d_version = D_VERSION, 113 .d_flags = 0, 114 .d_open = mps_open, 115 .d_close = mps_close, 116 .d_ioctl = mps_ioctl_devsw, 117 .d_name = "mps", 118 }; 119 120 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *); 121 static mps_user_f mpi_pre_ioc_facts; 122 static mps_user_f mpi_pre_port_facts; 123 static mps_user_f mpi_pre_fw_download; 124 static mps_user_f mpi_pre_fw_upload; 125 static mps_user_f mpi_pre_sata_passthrough; 126 static mps_user_f mpi_pre_smp_passthrough; 127 static mps_user_f mpi_pre_config; 128 static mps_user_f mpi_pre_sas_io_unit_control; 129 130 static int mps_user_read_cfg_header(struct mps_softc *, 131 struct mps_cfg_page_req *); 132 static int mps_user_read_cfg_page(struct mps_softc *, 133 struct mps_cfg_page_req *, void *); 134 static int mps_user_read_extcfg_header(struct mps_softc *, 135 struct mps_ext_cfg_page_req *); 136 static int mps_user_read_extcfg_page(struct mps_softc *, 137 struct mps_ext_cfg_page_req *, void *); 138 static int mps_user_write_cfg_page(struct mps_softc *, 139 struct mps_cfg_page_req *, void *); 140 static int mps_user_setup_request(struct mps_command *, 141 struct mps_usr_command *); 142 static int mps_user_command(struct mps_softc *, struct mps_usr_command *); 143 144 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data); 145 static void mps_user_get_adapter_data(struct mps_softc *sc, 146 mps_adapter_data_t *data); 147 static void mps_user_read_pci_info(struct mps_softc *sc, 148 mps_pci_info_t *data); 149 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc, 150 uint32_t unique_id); 151 static int mps_post_fw_diag_buffer(struct mps_softc *sc, 152 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 153 static int mps_release_fw_diag_buffer(struct mps_softc *sc, 154 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 155 uint32_t diag_type); 156 static int mps_diag_register(struct mps_softc *sc, 157 mps_fw_diag_register_t *diag_register, uint32_t *return_code); 158 static int mps_diag_unregister(struct mps_softc *sc, 159 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 160 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 161 uint32_t *return_code); 162 static int mps_diag_read_buffer(struct mps_softc *sc, 163 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 164 uint32_t *return_code); 165 static int mps_diag_release(struct mps_softc *sc, 166 mps_fw_diag_release_t *diag_release, uint32_t *return_code); 167 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action, 168 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 169 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data); 170 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data); 171 static void mps_user_event_enable(struct mps_softc *sc, 172 mps_event_enable_t *data); 173 static int mps_user_event_report(struct mps_softc *sc, 174 mps_event_report_t *data); 175 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data); 176 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data); 177 178 MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls"); 179 180 int 181 mps_attach_user(struct mps_softc *sc) 182 { 183 int unit; 184 185 unit = device_get_unit(sc->mps_dev); 186 sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 187 "mps%d", unit); 188 if (sc->mps_cdev == NULL) { 189 return (ENOMEM); 190 } 191 sc->mps_cdev->si_drv1 = sc; 192 return (0); 193 } 194 195 void 196 mps_detach_user(struct mps_softc *sc) 197 { 198 199 /* XXX: do a purge of pending requests? */ 200 if (sc->mps_cdev != NULL) 201 destroy_dev(sc->mps_cdev); 202 } 203 204 static int 205 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td) 206 { 207 208 return (0); 209 } 210 211 static int 212 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td) 213 { 214 215 return (0); 216 } 217 218 static int 219 mps_user_read_cfg_header(struct mps_softc *sc, 220 struct mps_cfg_page_req *page_req) 221 { 222 MPI2_CONFIG_PAGE_HEADER *hdr; 223 struct mps_config_params params; 224 int error; 225 226 hdr = ¶ms.hdr.Struct; 227 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 228 params.page_address = le32toh(page_req->page_address); 229 hdr->PageVersion = 0; 230 hdr->PageLength = 0; 231 hdr->PageNumber = page_req->header.PageNumber; 232 hdr->PageType = page_req->header.PageType; 233 params.buffer = NULL; 234 params.length = 0; 235 params.callback = NULL; 236 237 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 238 /* 239 * Leave the request. Without resetting the chip, it's 240 * still owned by it and we'll just get into trouble 241 * freeing it now. Mark it as abandoned so that if it 242 * shows up later it can be freed. 243 */ 244 mps_printf(sc, "read_cfg_header timed out\n"); 245 return (ETIMEDOUT); 246 } 247 248 page_req->ioc_status = htole16(params.status); 249 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 250 MPI2_IOCSTATUS_SUCCESS) { 251 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 252 } 253 254 return (0); 255 } 256 257 static int 258 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req, 259 void *buf) 260 { 261 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 262 struct mps_config_params params; 263 int error; 264 265 reqhdr = buf; 266 hdr = ¶ms.hdr.Struct; 267 hdr->PageVersion = reqhdr->PageVersion; 268 hdr->PageLength = reqhdr->PageLength; 269 hdr->PageNumber = reqhdr->PageNumber; 270 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 271 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 272 params.page_address = le32toh(page_req->page_address); 273 params.buffer = buf; 274 params.length = le32toh(page_req->len); 275 params.callback = NULL; 276 277 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 278 mps_printf(sc, "mps_user_read_cfg_page timed out\n"); 279 return (ETIMEDOUT); 280 } 281 282 page_req->ioc_status = htole16(params.status); 283 return (0); 284 } 285 286 static int 287 mps_user_read_extcfg_header(struct mps_softc *sc, 288 struct mps_ext_cfg_page_req *ext_page_req) 289 { 290 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 291 struct mps_config_params params; 292 int error; 293 294 hdr = ¶ms.hdr.Ext; 295 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 296 hdr->PageVersion = ext_page_req->header.PageVersion; 297 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 298 hdr->ExtPageLength = 0; 299 hdr->PageNumber = ext_page_req->header.PageNumber; 300 hdr->ExtPageType = ext_page_req->header.ExtPageType; 301 params.page_address = le32toh(ext_page_req->page_address); 302 params.buffer = NULL; 303 params.length = 0; 304 params.callback = NULL; 305 306 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 307 /* 308 * Leave the request. Without resetting the chip, it's 309 * still owned by it and we'll just get into trouble 310 * freeing it now. Mark it as abandoned so that if it 311 * shows up later it can be freed. 312 */ 313 mps_printf(sc, "mps_user_read_extcfg_header timed out\n"); 314 return (ETIMEDOUT); 315 } 316 317 ext_page_req->ioc_status = htole16(params.status); 318 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 319 MPI2_IOCSTATUS_SUCCESS) { 320 ext_page_req->header.PageVersion = hdr->PageVersion; 321 ext_page_req->header.PageNumber = hdr->PageNumber; 322 ext_page_req->header.PageType = hdr->PageType; 323 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 324 ext_page_req->header.ExtPageType = hdr->ExtPageType; 325 } 326 327 return (0); 328 } 329 330 static int 331 mps_user_read_extcfg_page(struct mps_softc *sc, 332 struct mps_ext_cfg_page_req *ext_page_req, void *buf) 333 { 334 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 335 struct mps_config_params params; 336 int error; 337 338 reqhdr = buf; 339 hdr = ¶ms.hdr.Ext; 340 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 341 params.page_address = le32toh(ext_page_req->page_address); 342 hdr->PageVersion = reqhdr->PageVersion; 343 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 344 hdr->PageNumber = reqhdr->PageNumber; 345 hdr->ExtPageType = reqhdr->ExtPageType; 346 hdr->ExtPageLength = reqhdr->ExtPageLength; 347 params.buffer = buf; 348 params.length = le32toh(ext_page_req->len); 349 params.callback = NULL; 350 351 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 352 mps_printf(sc, "mps_user_read_extcfg_page timed out\n"); 353 return (ETIMEDOUT); 354 } 355 356 ext_page_req->ioc_status = htole16(params.status); 357 return (0); 358 } 359 360 static int 361 mps_user_write_cfg_page(struct mps_softc *sc, 362 struct mps_cfg_page_req *page_req, void *buf) 363 { 364 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 365 struct mps_config_params params; 366 u_int hdr_attr; 367 int error; 368 369 reqhdr = buf; 370 hdr = ¶ms.hdr.Struct; 371 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 372 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 373 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 374 mps_printf(sc, "page type 0x%x not changeable\n", 375 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 376 return (EINVAL); 377 } 378 379 /* 380 * There isn't any point in restoring stripped out attributes 381 * if you then mask them going down to issue the request. 382 */ 383 384 hdr->PageVersion = reqhdr->PageVersion; 385 hdr->PageLength = reqhdr->PageLength; 386 hdr->PageNumber = reqhdr->PageNumber; 387 hdr->PageType = reqhdr->PageType; 388 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 389 params.page_address = le32toh(page_req->page_address); 390 params.buffer = buf; 391 params.length = le32toh(page_req->len); 392 params.callback = NULL; 393 394 if ((error = mps_write_config_page(sc, ¶ms)) != 0) { 395 mps_printf(sc, "mps_write_cfg_page timed out\n"); 396 return (ETIMEDOUT); 397 } 398 399 page_req->ioc_status = htole16(params.status); 400 return (0); 401 } 402 403 void 404 mpi_init_sge(struct mps_command *cm, void *req, void *sge) 405 { 406 int off, space; 407 408 space = (int)cm->cm_sc->reqframesz; 409 off = (uintptr_t)sge - (uintptr_t)req; 410 411 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 412 req, sge, off, space)); 413 414 cm->cm_sge = sge; 415 cm->cm_sglsize = space - off; 416 } 417 418 /* 419 * Prepare the mps_command for an IOC_FACTS request. 420 */ 421 static int 422 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd) 423 { 424 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 425 MPI2_IOC_FACTS_REPLY *rpl; 426 427 if (cmd->req_len != sizeof *req) 428 return (EINVAL); 429 if (cmd->rpl_len != sizeof *rpl) 430 return (EINVAL); 431 432 cm->cm_sge = NULL; 433 cm->cm_sglsize = 0; 434 return (0); 435 } 436 437 /* 438 * Prepare the mps_command for a PORT_FACTS request. 439 */ 440 static int 441 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd) 442 { 443 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 444 MPI2_PORT_FACTS_REPLY *rpl; 445 446 if (cmd->req_len != sizeof *req) 447 return (EINVAL); 448 if (cmd->rpl_len != sizeof *rpl) 449 return (EINVAL); 450 451 cm->cm_sge = NULL; 452 cm->cm_sglsize = 0; 453 return (0); 454 } 455 456 /* 457 * Prepare the mps_command for a FW_DOWNLOAD request. 458 */ 459 static int 460 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd) 461 { 462 MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 463 MPI2_FW_DOWNLOAD_REPLY *rpl; 464 MPI2_FW_DOWNLOAD_TCSGE tc; 465 int error; 466 467 if (cmd->req_len != sizeof *req) 468 return (EINVAL); 469 if (cmd->rpl_len != sizeof *rpl) 470 return (EINVAL); 471 472 if (cmd->len == 0) 473 return (EINVAL); 474 475 error = copyin(cmd->buf, cm->cm_data, cmd->len); 476 if (error != 0) 477 return (error); 478 479 mpi_init_sge(cm, req, &req->SGL); 480 bzero(&tc, sizeof tc); 481 482 /* 483 * For now, the F/W image must be provided in a single request. 484 */ 485 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 486 return (EINVAL); 487 if (req->TotalImageSize != cmd->len) 488 return (EINVAL); 489 490 /* 491 * The value of the first two elements is specified in the 492 * Fusion-MPT Message Passing Interface document. 493 */ 494 tc.ContextSize = 0; 495 tc.DetailsLength = 12; 496 tc.ImageOffset = 0; 497 tc.ImageSize = cmd->len; 498 499 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 500 501 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 502 } 503 504 /* 505 * Prepare the mps_command for a FW_UPLOAD request. 506 */ 507 static int 508 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd) 509 { 510 MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 511 MPI2_FW_UPLOAD_REPLY *rpl; 512 MPI2_FW_UPLOAD_TCSGE tc; 513 514 if (cmd->req_len != sizeof *req) 515 return (EINVAL); 516 if (cmd->rpl_len != sizeof *rpl) 517 return (EINVAL); 518 519 mpi_init_sge(cm, req, &req->SGL); 520 bzero(&tc, sizeof tc); 521 522 /* 523 * The value of the first two elements is specified in the 524 * Fusion-MPT Message Passing Interface document. 525 */ 526 tc.ContextSize = 0; 527 tc.DetailsLength = 12; 528 /* 529 * XXX Is there any reason to fetch a partial image? I.e. to 530 * set ImageOffset to something other than 0? 531 */ 532 tc.ImageOffset = 0; 533 tc.ImageSize = cmd->len; 534 535 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 536 537 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 538 } 539 540 /* 541 * Prepare the mps_command for a SATA_PASSTHROUGH request. 542 */ 543 static int 544 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 545 { 546 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 547 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 548 549 if (cmd->req_len != sizeof *req) 550 return (EINVAL); 551 if (cmd->rpl_len != sizeof *rpl) 552 return (EINVAL); 553 554 mpi_init_sge(cm, req, &req->SGL); 555 return (0); 556 } 557 558 /* 559 * Prepare the mps_command for a SMP_PASSTHROUGH request. 560 */ 561 static int 562 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 563 { 564 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 565 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 566 567 if (cmd->req_len != sizeof *req) 568 return (EINVAL); 569 if (cmd->rpl_len != sizeof *rpl) 570 return (EINVAL); 571 572 mpi_init_sge(cm, req, &req->SGL); 573 return (0); 574 } 575 576 /* 577 * Prepare the mps_command for a CONFIG request. 578 */ 579 static int 580 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd) 581 { 582 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 583 MPI2_CONFIG_REPLY *rpl; 584 585 if (cmd->req_len != sizeof *req) 586 return (EINVAL); 587 if (cmd->rpl_len != sizeof *rpl) 588 return (EINVAL); 589 590 mpi_init_sge(cm, req, &req->PageBufferSGE); 591 return (0); 592 } 593 594 /* 595 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 596 */ 597 static int 598 mpi_pre_sas_io_unit_control(struct mps_command *cm, 599 struct mps_usr_command *cmd) 600 { 601 602 cm->cm_sge = NULL; 603 cm->cm_sglsize = 0; 604 return (0); 605 } 606 607 /* 608 * A set of functions to prepare an mps_command for the various 609 * supported requests. 610 */ 611 struct mps_user_func { 612 U8 Function; 613 mps_user_f *f_pre; 614 } mps_user_func_list[] = { 615 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 616 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 617 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 618 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 619 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 620 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 621 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 622 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 623 { 0xFF, NULL } /* list end */ 624 }; 625 626 static int 627 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd) 628 { 629 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 630 struct mps_user_func *f; 631 632 for (f = mps_user_func_list; f->f_pre != NULL; f++) { 633 if (hdr->Function == f->Function) 634 return (f->f_pre(cm, cmd)); 635 } 636 return (EINVAL); 637 } 638 639 static int 640 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd) 641 { 642 MPI2_REQUEST_HEADER *hdr; 643 MPI2_DEFAULT_REPLY *rpl; 644 void *buf = NULL; 645 struct mps_command *cm = NULL; 646 int err = 0; 647 int sz; 648 649 mps_lock(sc); 650 cm = mps_alloc_command(sc); 651 652 if (cm == NULL) { 653 mps_printf(sc, "%s: no mps requests\n", __func__); 654 err = ENOMEM; 655 goto RetFree; 656 } 657 mps_unlock(sc); 658 659 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 660 661 mps_dprint(sc, MPS_USER, "%s: req %p %d rpl %p %d\n", __func__, 662 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 663 664 if (cmd->req_len > sc->reqframesz) { 665 err = EINVAL; 666 goto RetFreeUnlocked; 667 } 668 err = copyin(cmd->req, hdr, cmd->req_len); 669 if (err != 0) 670 goto RetFreeUnlocked; 671 672 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 673 hdr->Function, hdr->MsgFlags); 674 675 if (cmd->len > 0) { 676 buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO); 677 cm->cm_data = buf; 678 cm->cm_length = cmd->len; 679 } else { 680 cm->cm_data = NULL; 681 cm->cm_length = 0; 682 } 683 684 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE; 685 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 686 687 err = mps_user_setup_request(cm, cmd); 688 if (err == EINVAL) { 689 mps_printf(sc, "%s: unsupported parameter or unsupported " 690 "function in request (function = 0x%X)\n", __func__, 691 hdr->Function); 692 } 693 if (err != 0) 694 goto RetFreeUnlocked; 695 696 mps_lock(sc); 697 err = mps_wait_command(sc, &cm, 60, CAN_SLEEP); 698 699 if (err || (cm == NULL)) { 700 mps_printf(sc, "%s: invalid request: error %d\n", 701 __func__, err); 702 goto RetFree; 703 } 704 705 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 706 if (rpl != NULL) 707 sz = rpl->MsgLength * 4; 708 else 709 sz = 0; 710 711 if (sz > cmd->rpl_len) { 712 mps_printf(sc, "%s: user reply buffer (%d) smaller than " 713 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 714 sz = cmd->rpl_len; 715 } 716 717 mps_unlock(sc); 718 err = copyout(rpl, cmd->rpl, sz); 719 if (buf != NULL && err == 0) 720 err = copyout(buf, cmd->buf, cmd->len); 721 mps_dprint(sc, MPS_USER, "%s: reply size %d\n", __func__, sz); 722 723 RetFreeUnlocked: 724 mps_lock(sc); 725 RetFree: 726 if (cm != NULL) 727 mps_free_command(sc, cm); 728 mps_unlock(sc); 729 if (buf != NULL) 730 free(buf, M_MPSUSER); 731 return (err); 732 } 733 734 static int 735 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data) 736 { 737 MPI2_REQUEST_HEADER *hdr, *tmphdr; 738 MPI2_DEFAULT_REPLY *rpl = NULL; 739 struct mps_command *cm = NULL; 740 void *req = NULL; 741 int err = 0, dir = 0, sz; 742 uint8_t function = 0; 743 u_int sense_len; 744 struct mpssas_target *targ = NULL; 745 746 /* 747 * Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY 748 * bit to denote that a passthru is being processed. 749 */ 750 mps_lock(sc); 751 if (sc->mps_flags & MPS_FLAGS_BUSY) { 752 mps_dprint(sc, MPS_USER, "%s: Only one passthru command " 753 "allowed at a single time.", __func__); 754 mps_unlock(sc); 755 return (EBUSY); 756 } 757 sc->mps_flags |= MPS_FLAGS_BUSY; 758 mps_unlock(sc); 759 760 /* 761 * Do some validation on data direction. Valid cases are: 762 * 1) DataSize is 0 and direction is NONE 763 * 2) DataSize is non-zero and one of: 764 * a) direction is READ or 765 * b) direction is WRITE or 766 * c) direction is BOTH and DataOutSize is non-zero 767 * If valid and the direction is BOTH, change the direction to READ. 768 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 769 */ 770 if (((data->DataSize == 0) && 771 (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) || 772 ((data->DataSize != 0) && 773 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) || 774 (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) || 775 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) && 776 (data->DataOutSize != 0))))) { 777 if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) 778 data->DataDirection = MPS_PASS_THRU_DIRECTION_READ; 779 else 780 data->DataOutSize = 0; 781 } else { 782 err = EINVAL; 783 goto RetFreeUnlocked; 784 } 785 786 mps_dprint(sc, MPS_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 787 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 788 data->PtrRequest, data->RequestSize, data->PtrReply, 789 data->ReplySize, data->PtrData, data->DataSize, 790 data->PtrDataOut, data->DataOutSize, data->DataDirection); 791 792 if (data->RequestSize > sc->reqframesz) { 793 err = EINVAL; 794 goto RetFreeUnlocked; 795 } 796 797 req = malloc(data->RequestSize, M_MPSUSER, M_WAITOK | M_ZERO); 798 tmphdr = (MPI2_REQUEST_HEADER *)req; 799 800 err = copyin(PTRIN(data->PtrRequest), req, data->RequestSize); 801 if (err != 0) 802 goto RetFreeUnlocked; 803 804 function = tmphdr->Function; 805 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 806 function, tmphdr->MsgFlags); 807 808 /* 809 * Handle a passthru TM request. 810 */ 811 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 812 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 813 814 mps_lock(sc); 815 cm = mpssas_alloc_tm(sc); 816 if (cm == NULL) { 817 err = EINVAL; 818 goto Ret; 819 } 820 821 /* Copy the header in. Only a small fixup is needed. */ 822 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 823 memcpy(task, req, data->RequestSize); 824 task->TaskMID = cm->cm_desc.Default.SMID; 825 826 cm->cm_data = NULL; 827 cm->cm_complete = NULL; 828 cm->cm_complete_data = NULL; 829 830 targ = mpssas_find_target_by_handle(sc->sassc, 0, 831 task->DevHandle); 832 if (targ == NULL) { 833 mps_dprint(sc, MPS_INFO, 834 "%s %d : invalid handle for requested TM 0x%x \n", 835 __func__, __LINE__, task->DevHandle); 836 err = 1; 837 } else { 838 mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 839 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 840 } 841 842 if (err != 0) { 843 err = EIO; 844 mps_dprint(sc, MPS_FAULT, "%s: task management failed", 845 __func__); 846 } 847 /* 848 * Copy the reply data and sense data to user space. 849 */ 850 if (err == 0 && cm != NULL && cm->cm_reply != NULL) { 851 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 852 sz = rpl->MsgLength * 4; 853 854 if (bootverbose && sz > data->ReplySize) { 855 mps_printf(sc, "%s: user reply buffer (%d) " 856 "smaller than returned buffer (%d)\n", 857 __func__, data->ReplySize, sz); 858 } 859 mps_unlock(sc); 860 err = copyout(cm->cm_reply, PTRIN(data->PtrReply), 861 MIN(sz, data->ReplySize)); 862 if (err != 0) 863 mps_dprint(sc, MPS_FAULT, 864 "%s: copyout failed\n", __func__); 865 mps_lock(sc); 866 } 867 mpssas_free_tm(sc, cm); 868 goto Ret; 869 } 870 871 mps_lock(sc); 872 cm = mps_alloc_command(sc); 873 if (cm == NULL) { 874 mps_printf(sc, "%s: no mps requests\n", __func__); 875 err = ENOMEM; 876 goto Ret; 877 } 878 mps_unlock(sc); 879 880 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 881 memcpy(hdr, req, data->RequestSize); 882 883 /* 884 * Do some checking to make sure the IOCTL request contains a valid 885 * request. Then set the SGL info. 886 */ 887 mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 888 889 /* 890 * Set up for read, write or both. From check above, DataOutSize will 891 * be 0 if direction is READ or WRITE, but it will have some non-zero 892 * value if the direction is BOTH. So, just use the biggest size to get 893 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 894 * up; the first is for the request and the second will contain the 895 * response data. cm_out_len needs to be set here and this will be used 896 * when the SGLs are set up. 897 */ 898 cm->cm_data = NULL; 899 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 900 cm->cm_out_len = data->DataOutSize; 901 cm->cm_flags = 0; 902 if (cm->cm_length != 0) { 903 cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK | 904 M_ZERO); 905 cm->cm_flags = MPS_CM_FLAGS_DATAIN; 906 if (data->DataOutSize) { 907 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 908 err = copyin(PTRIN(data->PtrDataOut), 909 cm->cm_data, data->DataOutSize); 910 } else if (data->DataDirection == 911 MPS_PASS_THRU_DIRECTION_WRITE) { 912 cm->cm_flags = MPS_CM_FLAGS_DATAOUT; 913 err = copyin(PTRIN(data->PtrData), 914 cm->cm_data, data->DataSize); 915 } 916 if (err != 0) 917 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 918 "IOCTL data from user space\n", __func__); 919 } 920 cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE; 921 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 922 923 /* 924 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 925 * uses SCSI IO descriptor. 926 */ 927 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 928 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 929 MPI2_SCSI_IO_REQUEST *scsi_io_req; 930 931 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 932 /* 933 * Put SGE for data and data_out buffer at the end of 934 * scsi_io_request message header (64 bytes in total). 935 * Following above SGEs, the residual space will be used by 936 * sense data. 937 */ 938 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 939 64); 940 scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 941 942 /* 943 * Set SGLOffset0 value. This is the number of dwords that SGL 944 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 945 */ 946 scsi_io_req->SGLOffset0 = 24; 947 948 /* 949 * Setup descriptor info. RAID passthrough must use the 950 * default request descriptor which is already set, so if this 951 * is a SCSI IO request, change the descriptor to SCSI IO. 952 * Also, if this is a SCSI IO request, handle the reply in the 953 * mpssas_scsio_complete function. 954 */ 955 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 956 cm->cm_desc.SCSIIO.RequestFlags = 957 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 958 cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle; 959 960 /* 961 * Make sure the DevHandle is not 0 because this is a 962 * likely error. 963 */ 964 if (scsi_io_req->DevHandle == 0) { 965 err = EINVAL; 966 goto RetFreeUnlocked; 967 } 968 } 969 } 970 971 mps_lock(sc); 972 973 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 974 975 if (err || (cm == NULL)) { 976 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 977 err); 978 mps_unlock(sc); 979 goto RetFreeUnlocked; 980 } 981 982 /* 983 * Sync the DMA data, if any. Then copy the data to user space. 984 */ 985 if (cm->cm_data != NULL) { 986 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 987 dir = BUS_DMASYNC_POSTREAD; 988 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 989 dir = BUS_DMASYNC_POSTWRITE; 990 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 991 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 992 993 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 994 mps_unlock(sc); 995 err = copyout(cm->cm_data, 996 PTRIN(data->PtrData), data->DataSize); 997 mps_lock(sc); 998 if (err != 0) 999 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 1000 "IOCTL data to user space\n", __func__); 1001 } 1002 } 1003 1004 /* 1005 * Copy the reply data and sense data to user space. 1006 */ 1007 if (err == 0 && cm->cm_reply != NULL) { 1008 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1009 sz = rpl->MsgLength * 4; 1010 1011 if (bootverbose && sz > data->ReplySize) { 1012 mps_printf(sc, "%s: user reply buffer (%d) smaller " 1013 "than returned buffer (%d)\n", __func__, 1014 data->ReplySize, sz); 1015 } 1016 mps_unlock(sc); 1017 err = copyout(cm->cm_reply, PTRIN(data->PtrReply), 1018 MIN(sz, data->ReplySize)); 1019 mps_lock(sc); 1020 if (err != 0) 1021 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 1022 "IOCTL data to user space\n", __func__); 1023 1024 if (err == 0 && 1025 (function == MPI2_FUNCTION_SCSI_IO_REQUEST || 1026 function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1027 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1028 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1029 sense_len = 1030 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1031 SenseCount)), sizeof(struct 1032 scsi_sense_data)); 1033 mps_unlock(sc); 1034 err = copyout(cm->cm_sense, (PTRIN(data->PtrReply + 1035 sizeof(MPI2_SCSI_IO_REPLY))), sense_len); 1036 mps_lock(sc); 1037 if (err != 0) 1038 mps_dprint(sc, MPS_FAULT, 1039 "%s: failed to copy IOCTL data to " 1040 "user space\n", __func__); 1041 } 1042 } 1043 } 1044 mps_unlock(sc); 1045 1046 RetFreeUnlocked: 1047 mps_lock(sc); 1048 1049 if (cm != NULL) { 1050 if (cm->cm_data) 1051 free(cm->cm_data, M_MPSUSER); 1052 mps_free_command(sc, cm); 1053 } 1054 Ret: 1055 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1056 mps_unlock(sc); 1057 free(req, M_MPSUSER); 1058 1059 return (err); 1060 } 1061 1062 static void 1063 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data) 1064 { 1065 Mpi2ConfigReply_t mpi_reply; 1066 Mpi2BiosPage3_t config_page; 1067 1068 /* 1069 * Use the PCI interface functions to get the Bus, Device, and Function 1070 * information. 1071 */ 1072 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev); 1073 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev); 1074 data->PciInformation.u.bits.FunctionNumber = 1075 pci_get_function(sc->mps_dev); 1076 1077 /* 1078 * Get the FW version that should already be saved in IOC Facts. 1079 */ 1080 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1081 1082 /* 1083 * General device info. 1084 */ 1085 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2; 1086 if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE) 1087 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200; 1088 data->PCIDeviceHwId = pci_get_device(sc->mps_dev); 1089 data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1); 1090 data->SubSystemId = pci_get_subdevice(sc->mps_dev); 1091 data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev); 1092 1093 /* 1094 * Get the driver version. 1095 */ 1096 strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION); 1097 1098 /* 1099 * Need to get BIOS Config Page 3 for the BIOS Version. 1100 */ 1101 data->BiosVersion = 0; 1102 mps_lock(sc); 1103 if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1104 printf("%s: Error while retrieving BIOS Version\n", __func__); 1105 else 1106 data->BiosVersion = config_page.BiosVersion; 1107 mps_unlock(sc); 1108 } 1109 1110 static void 1111 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data) 1112 { 1113 int i; 1114 1115 /* 1116 * Use the PCI interface functions to get the Bus, Device, and Function 1117 * information. 1118 */ 1119 data->BusNumber = pci_get_bus(sc->mps_dev); 1120 data->DeviceNumber = pci_get_slot(sc->mps_dev); 1121 data->FunctionNumber = pci_get_function(sc->mps_dev); 1122 1123 /* 1124 * Now get the interrupt vector and the pci header. The vector can 1125 * only be 0 right now. The header is the first 256 bytes of config 1126 * space. 1127 */ 1128 data->InterruptVector = 0; 1129 for (i = 0; i < sizeof (data->PciHeader); i++) { 1130 data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1); 1131 } 1132 } 1133 1134 static uint8_t 1135 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id) 1136 { 1137 uint8_t index; 1138 1139 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1140 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1141 return (index); 1142 } 1143 } 1144 1145 return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND); 1146 } 1147 1148 static int 1149 mps_post_fw_diag_buffer(struct mps_softc *sc, 1150 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1151 { 1152 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1153 MPI2_DIAG_BUFFER_POST_REPLY *reply = NULL; 1154 struct mps_command *cm = NULL; 1155 int i, status; 1156 1157 /* 1158 * If buffer is not enabled, just leave. 1159 */ 1160 *return_code = MPS_FW_DIAG_ERROR_POST_FAILED; 1161 if (!pBuffer->enabled) { 1162 return (MPS_DIAG_FAILURE); 1163 } 1164 1165 /* 1166 * Clear some flags initially. 1167 */ 1168 pBuffer->force_release = FALSE; 1169 pBuffer->valid_data = FALSE; 1170 pBuffer->owned_by_firmware = FALSE; 1171 1172 /* 1173 * Get a command. 1174 */ 1175 cm = mps_alloc_command(sc); 1176 if (cm == NULL) { 1177 mps_printf(sc, "%s: no mps requests\n", __func__); 1178 return (MPS_DIAG_FAILURE); 1179 } 1180 1181 /* 1182 * Build the request for releasing the FW Diag Buffer and send it. 1183 */ 1184 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1185 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1186 req->BufferType = pBuffer->buffer_type; 1187 req->ExtendedType = pBuffer->extended_type; 1188 req->BufferLength = pBuffer->size; 1189 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1190 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1191 mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1192 cm->cm_data = NULL; 1193 cm->cm_length = 0; 1194 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1195 cm->cm_complete_data = NULL; 1196 1197 /* 1198 * Send command synchronously. 1199 */ 1200 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1201 if (status || (cm == NULL)) { 1202 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1203 status); 1204 status = MPS_DIAG_FAILURE; 1205 goto done; 1206 } 1207 1208 /* 1209 * Process POST reply. 1210 */ 1211 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1212 if (reply == NULL) { 1213 mps_printf(sc, "%s: reply is NULL, probably due to " 1214 "reinitialization\n", __func__); 1215 status = MPS_DIAG_FAILURE; 1216 goto done; 1217 } 1218 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1219 MPI2_IOCSTATUS_SUCCESS) { 1220 status = MPS_DIAG_FAILURE; 1221 mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed " 1222 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1223 "TransferLength = 0x%x\n", __func__, 1224 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1225 le32toh(reply->TransferLength)); 1226 goto done; 1227 } 1228 1229 /* 1230 * Post was successful. 1231 */ 1232 pBuffer->valid_data = TRUE; 1233 pBuffer->owned_by_firmware = TRUE; 1234 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1235 status = MPS_DIAG_SUCCESS; 1236 1237 done: 1238 if (cm != NULL) 1239 mps_free_command(sc, cm); 1240 return (status); 1241 } 1242 1243 static int 1244 mps_release_fw_diag_buffer(struct mps_softc *sc, 1245 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1246 uint32_t diag_type) 1247 { 1248 MPI2_DIAG_RELEASE_REQUEST *req; 1249 MPI2_DIAG_RELEASE_REPLY *reply = NULL; 1250 struct mps_command *cm = NULL; 1251 int status; 1252 1253 /* 1254 * If buffer is not enabled, just leave. 1255 */ 1256 *return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED; 1257 if (!pBuffer->enabled) { 1258 mps_dprint(sc, MPS_USER, "%s: This buffer type is not " 1259 "supported by the IOC", __func__); 1260 return (MPS_DIAG_FAILURE); 1261 } 1262 1263 /* 1264 * Clear some flags initially. 1265 */ 1266 pBuffer->force_release = FALSE; 1267 pBuffer->valid_data = FALSE; 1268 pBuffer->owned_by_firmware = FALSE; 1269 1270 /* 1271 * Get a command. 1272 */ 1273 cm = mps_alloc_command(sc); 1274 if (cm == NULL) { 1275 mps_printf(sc, "%s: no mps requests\n", __func__); 1276 return (MPS_DIAG_FAILURE); 1277 } 1278 1279 /* 1280 * Build the request for releasing the FW Diag Buffer and send it. 1281 */ 1282 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1283 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1284 req->BufferType = pBuffer->buffer_type; 1285 cm->cm_data = NULL; 1286 cm->cm_length = 0; 1287 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1288 cm->cm_complete_data = NULL; 1289 1290 /* 1291 * Send command synchronously. 1292 */ 1293 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1294 if (status || (cm == NULL)) { 1295 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1296 status); 1297 status = MPS_DIAG_FAILURE; 1298 goto done; 1299 } 1300 1301 /* 1302 * Process RELEASE reply. 1303 */ 1304 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1305 if (reply == NULL) { 1306 mps_printf(sc, "%s: reply is NULL, probably due to " 1307 "reinitialization\n", __func__); 1308 status = MPS_DIAG_FAILURE; 1309 goto done; 1310 } 1311 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1312 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1313 status = MPS_DIAG_FAILURE; 1314 mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer " 1315 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1316 __func__, le16toh(reply->IOCStatus), 1317 le32toh(reply->IOCLogInfo)); 1318 goto done; 1319 } 1320 1321 /* 1322 * Release was successful. 1323 */ 1324 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1325 status = MPS_DIAG_SUCCESS; 1326 1327 /* 1328 * If this was for an UNREGISTER diag type command, clear the unique ID. 1329 */ 1330 if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) { 1331 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1332 } 1333 1334 done: 1335 if (cm != NULL) 1336 mps_free_command(sc, cm); 1337 1338 return (status); 1339 } 1340 1341 static int 1342 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register, 1343 uint32_t *return_code) 1344 { 1345 bus_dma_template_t t; 1346 mps_fw_diagnostic_buffer_t *pBuffer; 1347 struct mps_busdma_context *ctx; 1348 uint8_t extended_type, buffer_type, i; 1349 uint32_t buffer_size; 1350 uint32_t unique_id; 1351 int status; 1352 int error; 1353 1354 extended_type = diag_register->ExtendedType; 1355 buffer_type = diag_register->BufferType; 1356 buffer_size = diag_register->RequestedBufferSize; 1357 unique_id = diag_register->UniqueId; 1358 ctx = NULL; 1359 error = 0; 1360 1361 /* 1362 * Check for valid buffer type 1363 */ 1364 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1365 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1366 return (MPS_DIAG_FAILURE); 1367 } 1368 1369 /* 1370 * Get the current buffer and look up the unique ID. The unique ID 1371 * should not be found. If it is, the ID is already in use. 1372 */ 1373 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1374 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1375 if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1376 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1377 return (MPS_DIAG_FAILURE); 1378 } 1379 1380 /* 1381 * The buffer's unique ID should not be registered yet, and the given 1382 * unique ID cannot be 0. 1383 */ 1384 if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) || 1385 (unique_id == MPS_FW_DIAG_INVALID_UID)) { 1386 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1387 return (MPS_DIAG_FAILURE); 1388 } 1389 1390 /* 1391 * If this buffer is already posted as immediate, just change owner. 1392 */ 1393 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1394 (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) { 1395 pBuffer->immediate = FALSE; 1396 pBuffer->unique_id = unique_id; 1397 return (MPS_DIAG_SUCCESS); 1398 } 1399 1400 /* 1401 * Post a new buffer after checking if it's enabled. The DMA buffer 1402 * that is allocated will be contiguous (nsegments = 1). 1403 */ 1404 if (!pBuffer->enabled) { 1405 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1406 return (MPS_DIAG_FAILURE); 1407 } 1408 bus_dma_template_init(&t, sc->mps_parent_dmat); 1409 BUS_DMA_TEMPLATE_FILL(&t, BD_NSEGMENTS(1), BD_MAXSIZE(buffer_size), 1410 BD_MAXSEGSIZE(buffer_size), BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1411 if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) { 1412 mps_dprint(sc, MPS_ERROR, 1413 "Cannot allocate FW diag buffer DMA tag\n"); 1414 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1415 status = MPS_DIAG_FAILURE; 1416 goto bailout; 1417 } 1418 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1419 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1420 mps_dprint(sc, MPS_ERROR, 1421 "Cannot allocate FW diag buffer memory\n"); 1422 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1423 status = MPS_DIAG_FAILURE; 1424 goto bailout; 1425 } 1426 bzero(sc->fw_diag_buffer, buffer_size); 1427 1428 ctx = malloc(sizeof(*ctx), M_MPSUSER, M_WAITOK | M_ZERO); 1429 ctx->addr = &sc->fw_diag_busaddr; 1430 ctx->buffer_dmat = sc->fw_diag_dmat; 1431 ctx->buffer_dmamap = sc->fw_diag_map; 1432 ctx->softc = sc; 1433 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1434 sc->fw_diag_buffer, buffer_size, mps_memaddr_wait_cb, 1435 ctx, 0); 1436 1437 if (error == EINPROGRESS) { 1438 /* XXX KDM */ 1439 device_printf(sc->mps_dev, "%s: Deferred bus_dmamap_load\n", 1440 __func__); 1441 /* 1442 * Wait for the load to complete. If we're interrupted, 1443 * bail out. 1444 */ 1445 mps_lock(sc); 1446 if (ctx->completed == 0) { 1447 error = msleep(ctx, &sc->mps_mtx, PCATCH, "mpswait", 0); 1448 if (error != 0) { 1449 /* 1450 * We got an error from msleep(9). This is 1451 * most likely due to a signal. Tell 1452 * mpr_memaddr_wait_cb() that we've abandoned 1453 * the context, so it needs to clean up when 1454 * it is called. 1455 */ 1456 ctx->abandoned = 1; 1457 1458 /* The callback will free this memory */ 1459 ctx = NULL; 1460 mps_unlock(sc); 1461 1462 device_printf(sc->mps_dev, "Cannot " 1463 "bus_dmamap_load FW diag buffer, error = " 1464 "%d returned from msleep\n", error); 1465 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1466 status = MPS_DIAG_FAILURE; 1467 goto bailout; 1468 } 1469 } 1470 mps_unlock(sc); 1471 } 1472 1473 if ((error != 0) || (ctx->error != 0)) { 1474 device_printf(sc->mps_dev, "Cannot bus_dmamap_load FW diag " 1475 "buffer, %serror = %d\n", error ? "" : "callback ", 1476 error ? error : ctx->error); 1477 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1478 status = MPS_DIAG_FAILURE; 1479 goto bailout; 1480 } 1481 1482 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1483 1484 pBuffer->size = buffer_size; 1485 1486 /* 1487 * Copy the given info to the diag buffer and post the buffer. 1488 */ 1489 pBuffer->buffer_type = buffer_type; 1490 pBuffer->immediate = FALSE; 1491 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1492 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1493 i++) { 1494 pBuffer->product_specific[i] = 1495 diag_register->ProductSpecific[i]; 1496 } 1497 } 1498 pBuffer->extended_type = extended_type; 1499 pBuffer->unique_id = unique_id; 1500 status = mps_post_fw_diag_buffer(sc, pBuffer, return_code); 1501 1502 bailout: 1503 /* 1504 * In case there was a failure, free the DMA buffer. 1505 */ 1506 if (status == MPS_DIAG_FAILURE) { 1507 if (sc->fw_diag_busaddr != 0) { 1508 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1509 sc->fw_diag_busaddr = 0; 1510 } 1511 if (sc->fw_diag_buffer != NULL) { 1512 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1513 sc->fw_diag_map); 1514 sc->fw_diag_buffer = NULL; 1515 } 1516 if (sc->fw_diag_dmat != NULL) { 1517 bus_dma_tag_destroy(sc->fw_diag_dmat); 1518 sc->fw_diag_dmat = NULL; 1519 } 1520 } 1521 1522 if (ctx != NULL) 1523 free(ctx, M_MPSUSER); 1524 1525 return (status); 1526 } 1527 1528 static int 1529 mps_diag_unregister(struct mps_softc *sc, 1530 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1531 { 1532 mps_fw_diagnostic_buffer_t *pBuffer; 1533 uint8_t i; 1534 uint32_t unique_id; 1535 int status; 1536 1537 unique_id = diag_unregister->UniqueId; 1538 1539 /* 1540 * Get the current buffer and look up the unique ID. The unique ID 1541 * should be there. 1542 */ 1543 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1544 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1545 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1546 return (MPS_DIAG_FAILURE); 1547 } 1548 1549 pBuffer = &sc->fw_diag_buffer_list[i]; 1550 1551 /* 1552 * Try to release the buffer from FW before freeing it. If release 1553 * fails, don't free the DMA buffer in case FW tries to access it 1554 * later. If buffer is not owned by firmware, can't release it. 1555 */ 1556 if (!pBuffer->owned_by_firmware) { 1557 status = MPS_DIAG_SUCCESS; 1558 } else { 1559 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1560 MPS_FW_DIAG_TYPE_UNREGISTER); 1561 } 1562 1563 /* 1564 * At this point, return the current status no matter what happens with 1565 * the DMA buffer. 1566 */ 1567 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1568 if (status == MPS_DIAG_SUCCESS) { 1569 if (sc->fw_diag_busaddr != 0) { 1570 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1571 sc->fw_diag_busaddr = 0; 1572 } 1573 if (sc->fw_diag_buffer != NULL) { 1574 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1575 sc->fw_diag_map); 1576 sc->fw_diag_buffer = NULL; 1577 } 1578 if (sc->fw_diag_dmat != NULL) { 1579 bus_dma_tag_destroy(sc->fw_diag_dmat); 1580 sc->fw_diag_dmat = NULL; 1581 } 1582 } 1583 1584 return (status); 1585 } 1586 1587 static int 1588 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 1589 uint32_t *return_code) 1590 { 1591 mps_fw_diagnostic_buffer_t *pBuffer; 1592 uint8_t i; 1593 uint32_t unique_id; 1594 1595 unique_id = diag_query->UniqueId; 1596 1597 /* 1598 * If ID is valid, query on ID. 1599 * If ID is invalid, query on buffer type. 1600 */ 1601 if (unique_id == MPS_FW_DIAG_INVALID_UID) { 1602 i = diag_query->BufferType; 1603 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1604 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1605 return (MPS_DIAG_FAILURE); 1606 } 1607 } else { 1608 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1609 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1610 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1611 return (MPS_DIAG_FAILURE); 1612 } 1613 } 1614 1615 /* 1616 * Fill query structure with the diag buffer info. 1617 */ 1618 pBuffer = &sc->fw_diag_buffer_list[i]; 1619 diag_query->BufferType = pBuffer->buffer_type; 1620 diag_query->ExtendedType = pBuffer->extended_type; 1621 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1622 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1623 i++) { 1624 diag_query->ProductSpecific[i] = 1625 pBuffer->product_specific[i]; 1626 } 1627 } 1628 diag_query->TotalBufferSize = pBuffer->size; 1629 diag_query->DriverAddedBufferSize = 0; 1630 diag_query->UniqueId = pBuffer->unique_id; 1631 diag_query->ApplicationFlags = 0; 1632 diag_query->DiagnosticFlags = 0; 1633 1634 /* 1635 * Set/Clear application flags 1636 */ 1637 if (pBuffer->immediate) { 1638 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED; 1639 } else { 1640 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED; 1641 } 1642 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1643 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID; 1644 } else { 1645 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID; 1646 } 1647 if (pBuffer->owned_by_firmware) { 1648 diag_query->ApplicationFlags |= 1649 MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1650 } else { 1651 diag_query->ApplicationFlags &= 1652 ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1653 } 1654 1655 return (MPS_DIAG_SUCCESS); 1656 } 1657 1658 static int 1659 mps_diag_read_buffer(struct mps_softc *sc, 1660 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1661 uint32_t *return_code) 1662 { 1663 mps_fw_diagnostic_buffer_t *pBuffer; 1664 uint8_t i, *pData; 1665 uint32_t unique_id; 1666 int status; 1667 1668 unique_id = diag_read_buffer->UniqueId; 1669 1670 /* 1671 * Get the current buffer and look up the unique ID. The unique ID 1672 * should be there. 1673 */ 1674 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1675 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1676 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1677 return (MPS_DIAG_FAILURE); 1678 } 1679 1680 pBuffer = &sc->fw_diag_buffer_list[i]; 1681 1682 /* 1683 * Make sure requested read is within limits 1684 */ 1685 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1686 pBuffer->size) { 1687 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1688 return (MPS_DIAG_FAILURE); 1689 } 1690 1691 /* Sync the DMA map before we copy to userland. */ 1692 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1693 BUS_DMASYNC_POSTREAD); 1694 1695 /* 1696 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1697 * buffer that was allocated is one contiguous buffer. 1698 */ 1699 pData = (uint8_t *)(sc->fw_diag_buffer + 1700 diag_read_buffer->StartingOffset); 1701 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1702 return (MPS_DIAG_FAILURE); 1703 diag_read_buffer->Status = 0; 1704 1705 /* 1706 * Set or clear the Force Release flag. 1707 */ 1708 if (pBuffer->force_release) { 1709 diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1710 } else { 1711 diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1712 } 1713 1714 /* 1715 * If buffer is to be reregistered, make sure it's not already owned by 1716 * firmware first. 1717 */ 1718 status = MPS_DIAG_SUCCESS; 1719 if (!pBuffer->owned_by_firmware) { 1720 if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) { 1721 status = mps_post_fw_diag_buffer(sc, pBuffer, 1722 return_code); 1723 } 1724 } 1725 1726 return (status); 1727 } 1728 1729 static int 1730 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release, 1731 uint32_t *return_code) 1732 { 1733 mps_fw_diagnostic_buffer_t *pBuffer; 1734 uint8_t i; 1735 uint32_t unique_id; 1736 int status; 1737 1738 unique_id = diag_release->UniqueId; 1739 1740 /* 1741 * Get the current buffer and look up the unique ID. The unique ID 1742 * should be there. 1743 */ 1744 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1745 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1746 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1747 return (MPS_DIAG_FAILURE); 1748 } 1749 1750 pBuffer = &sc->fw_diag_buffer_list[i]; 1751 1752 /* 1753 * If buffer is not owned by firmware, it's already been released. 1754 */ 1755 if (!pBuffer->owned_by_firmware) { 1756 *return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED; 1757 return (MPS_DIAG_FAILURE); 1758 } 1759 1760 /* 1761 * Release the buffer. 1762 */ 1763 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1764 MPS_FW_DIAG_TYPE_RELEASE); 1765 return (status); 1766 } 1767 1768 static int 1769 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action, 1770 uint32_t length, uint32_t *return_code) 1771 { 1772 mps_fw_diag_register_t diag_register; 1773 mps_fw_diag_unregister_t diag_unregister; 1774 mps_fw_diag_query_t diag_query; 1775 mps_diag_read_buffer_t diag_read_buffer; 1776 mps_fw_diag_release_t diag_release; 1777 int status = MPS_DIAG_SUCCESS; 1778 uint32_t original_return_code; 1779 1780 original_return_code = *return_code; 1781 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1782 1783 switch (action) { 1784 case MPS_FW_DIAG_TYPE_REGISTER: 1785 if (!length) { 1786 *return_code = 1787 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1788 status = MPS_DIAG_FAILURE; 1789 break; 1790 } 1791 if (copyin(diag_action, &diag_register, 1792 sizeof(diag_register)) != 0) 1793 return (MPS_DIAG_FAILURE); 1794 status = mps_diag_register(sc, &diag_register, 1795 return_code); 1796 break; 1797 1798 case MPS_FW_DIAG_TYPE_UNREGISTER: 1799 if (length < sizeof(diag_unregister)) { 1800 *return_code = 1801 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1802 status = MPS_DIAG_FAILURE; 1803 break; 1804 } 1805 if (copyin(diag_action, &diag_unregister, 1806 sizeof(diag_unregister)) != 0) 1807 return (MPS_DIAG_FAILURE); 1808 status = mps_diag_unregister(sc, &diag_unregister, 1809 return_code); 1810 break; 1811 1812 case MPS_FW_DIAG_TYPE_QUERY: 1813 if (length < sizeof (diag_query)) { 1814 *return_code = 1815 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1816 status = MPS_DIAG_FAILURE; 1817 break; 1818 } 1819 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1820 != 0) 1821 return (MPS_DIAG_FAILURE); 1822 status = mps_diag_query(sc, &diag_query, return_code); 1823 if (status == MPS_DIAG_SUCCESS) 1824 if (copyout(&diag_query, diag_action, 1825 sizeof (diag_query)) != 0) 1826 return (MPS_DIAG_FAILURE); 1827 break; 1828 1829 case MPS_FW_DIAG_TYPE_READ_BUFFER: 1830 if (copyin(diag_action, &diag_read_buffer, 1831 sizeof(diag_read_buffer)) != 0) 1832 return (MPS_DIAG_FAILURE); 1833 if (length < diag_read_buffer.BytesToRead) { 1834 *return_code = 1835 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1836 status = MPS_DIAG_FAILURE; 1837 break; 1838 } 1839 status = mps_diag_read_buffer(sc, &diag_read_buffer, 1840 PTRIN(diag_read_buffer.PtrDataBuffer), 1841 return_code); 1842 if (status == MPS_DIAG_SUCCESS) { 1843 if (copyout(&diag_read_buffer, diag_action, 1844 sizeof(diag_read_buffer) - 1845 sizeof(diag_read_buffer.PtrDataBuffer)) != 1846 0) 1847 return (MPS_DIAG_FAILURE); 1848 } 1849 break; 1850 1851 case MPS_FW_DIAG_TYPE_RELEASE: 1852 if (length < sizeof(diag_release)) { 1853 *return_code = 1854 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1855 status = MPS_DIAG_FAILURE; 1856 break; 1857 } 1858 if (copyin(diag_action, &diag_release, 1859 sizeof(diag_release)) != 0) 1860 return (MPS_DIAG_FAILURE); 1861 status = mps_diag_release(sc, &diag_release, 1862 return_code); 1863 break; 1864 1865 default: 1866 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1867 status = MPS_DIAG_FAILURE; 1868 break; 1869 } 1870 1871 if ((status == MPS_DIAG_FAILURE) && 1872 (original_return_code == MPS_FW_DIAG_NEW) && 1873 (*return_code != MPS_FW_DIAG_ERROR_SUCCESS)) 1874 status = MPS_DIAG_SUCCESS; 1875 1876 return (status); 1877 } 1878 1879 static int 1880 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data) 1881 { 1882 int status; 1883 1884 /* 1885 * Only allow one diag action at one time. 1886 */ 1887 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1888 mps_dprint(sc, MPS_USER, "%s: Only one FW diag command " 1889 "allowed at a single time.", __func__); 1890 return (EBUSY); 1891 } 1892 sc->mps_flags |= MPS_FLAGS_BUSY; 1893 1894 /* 1895 * Send diag action request 1896 */ 1897 if (data->Action == MPS_FW_DIAG_TYPE_REGISTER || 1898 data->Action == MPS_FW_DIAG_TYPE_UNREGISTER || 1899 data->Action == MPS_FW_DIAG_TYPE_QUERY || 1900 data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER || 1901 data->Action == MPS_FW_DIAG_TYPE_RELEASE) { 1902 status = mps_do_diag_action(sc, data->Action, 1903 PTRIN(data->PtrDiagAction), data->Length, 1904 &data->ReturnCode); 1905 } else 1906 status = EINVAL; 1907 1908 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1909 return (status); 1910 } 1911 1912 /* 1913 * Copy the event recording mask and the event queue size out. For 1914 * clarification, the event recording mask (events_to_record) is not the same 1915 * thing as the event mask (event_mask). events_to_record has a bit set for 1916 * every event type that is to be recorded by the driver, and event_mask has a 1917 * bit cleared for every event that is allowed into the driver from the IOC. 1918 * They really have nothing to do with each other. 1919 */ 1920 static void 1921 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data) 1922 { 1923 uint8_t i; 1924 1925 mps_lock(sc); 1926 data->Entries = MPS_EVENT_QUEUE_SIZE; 1927 1928 for (i = 0; i < 4; i++) { 1929 data->Types[i] = sc->events_to_record[i]; 1930 } 1931 mps_unlock(sc); 1932 } 1933 1934 /* 1935 * Set the driver's event mask according to what's been given. See 1936 * mps_user_event_query for explanation of the event recording mask and the IOC 1937 * event mask. It's the app's responsibility to enable event logging by setting 1938 * the bits in events_to_record. Initially, no events will be logged. 1939 */ 1940 static void 1941 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data) 1942 { 1943 uint8_t i; 1944 1945 mps_lock(sc); 1946 for (i = 0; i < 4; i++) { 1947 sc->events_to_record[i] = data->Types[i]; 1948 } 1949 mps_unlock(sc); 1950 } 1951 1952 /* 1953 * Copy out the events that have been recorded, up to the max events allowed. 1954 */ 1955 static int 1956 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data) 1957 { 1958 int status = 0; 1959 uint32_t size; 1960 1961 mps_lock(sc); 1962 size = data->Size; 1963 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1964 mps_unlock(sc); 1965 if (copyout((void *)sc->recorded_events, 1966 PTRIN(data->PtrEvents), sizeof(sc->recorded_events)) != 0) 1967 status = EFAULT; 1968 mps_lock(sc); 1969 } else { 1970 /* 1971 * data->Size value is not large enough to copy event data. 1972 */ 1973 status = EFAULT; 1974 } 1975 1976 /* 1977 * Change size value to match the number of bytes that were copied. 1978 */ 1979 if (status == 0) 1980 data->Size = sizeof(sc->recorded_events); 1981 mps_unlock(sc); 1982 1983 return (status); 1984 } 1985 1986 /* 1987 * Record events into the driver from the IOC if they are not masked. 1988 */ 1989 void 1990 mpssas_record_event(struct mps_softc *sc, 1991 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 1992 { 1993 uint32_t event; 1994 int i, j; 1995 uint16_t event_data_len; 1996 boolean_t sendAEN = FALSE; 1997 1998 event = event_reply->Event; 1999 2000 /* 2001 * Generate a system event to let anyone who cares know that a 2002 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2003 * event mask is set to. 2004 */ 2005 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2006 sendAEN = TRUE; 2007 } 2008 2009 /* 2010 * Record the event only if its corresponding bit is set in 2011 * events_to_record. event_index is the index into recorded_events and 2012 * event_number is the overall number of an event being recorded since 2013 * start-of-day. event_index will roll over; event_number will never 2014 * roll over. 2015 */ 2016 i = (uint8_t)(event / 32); 2017 j = (uint8_t)(event % 32); 2018 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2019 i = sc->event_index; 2020 sc->recorded_events[i].Type = event; 2021 sc->recorded_events[i].Number = ++sc->event_number; 2022 bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH * 2023 4); 2024 event_data_len = event_reply->EventDataLength; 2025 2026 if (event_data_len > 0) { 2027 /* 2028 * Limit data to size in m_event entry 2029 */ 2030 if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) { 2031 event_data_len = MPS_MAX_EVENT_DATA_LENGTH; 2032 } 2033 for (j = 0; j < event_data_len; j++) { 2034 sc->recorded_events[i].Data[j] = 2035 event_reply->EventData[j]; 2036 } 2037 2038 /* 2039 * check for index wrap-around 2040 */ 2041 if (++i == MPS_EVENT_QUEUE_SIZE) { 2042 i = 0; 2043 } 2044 sc->event_index = (uint8_t)i; 2045 2046 /* 2047 * Set flag to send the event. 2048 */ 2049 sendAEN = TRUE; 2050 } 2051 } 2052 2053 /* 2054 * Generate a system event if flag is set to let anyone who cares know 2055 * that an event has occurred. 2056 */ 2057 if (sendAEN) { 2058 //SLM-how to send a system event (see kqueue, kevent) 2059 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2060 // "SAS", NULL, NULL, DDI_NOSLEEP); 2061 } 2062 } 2063 2064 static int 2065 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data) 2066 { 2067 int status = 0; 2068 2069 switch (data->Command) { 2070 /* 2071 * IO access is not supported. 2072 */ 2073 case REG_IO_READ: 2074 case REG_IO_WRITE: 2075 mps_dprint(sc, MPS_USER, "IO access is not supported. " 2076 "Use memory access."); 2077 status = EINVAL; 2078 break; 2079 2080 case REG_MEM_READ: 2081 data->RegData = mps_regread(sc, data->RegOffset); 2082 break; 2083 2084 case REG_MEM_WRITE: 2085 mps_regwrite(sc, data->RegOffset, data->RegData); 2086 break; 2087 2088 default: 2089 status = EINVAL; 2090 break; 2091 } 2092 2093 return (status); 2094 } 2095 2096 static int 2097 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data) 2098 { 2099 uint8_t bt2dh = FALSE; 2100 uint8_t dh2bt = FALSE; 2101 uint16_t dev_handle, bus, target; 2102 2103 bus = data->Bus; 2104 target = data->TargetID; 2105 dev_handle = data->DevHandle; 2106 2107 /* 2108 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2109 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2110 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2111 * invalid. 2112 */ 2113 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2114 dh2bt = TRUE; 2115 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2116 bt2dh = TRUE; 2117 if (!dh2bt && !bt2dh) 2118 return (EINVAL); 2119 2120 /* 2121 * Only handle bus of 0. Make sure target is within range. 2122 */ 2123 if (bt2dh) { 2124 if (bus != 0) 2125 return (EINVAL); 2126 2127 if (target >= sc->max_devices) { 2128 mps_dprint(sc, MPS_FAULT, "Target ID is out of range " 2129 "for Bus/Target to DevHandle mapping."); 2130 return (EINVAL); 2131 } 2132 dev_handle = sc->mapping_table[target].dev_handle; 2133 if (dev_handle) 2134 data->DevHandle = dev_handle; 2135 } else { 2136 bus = 0; 2137 target = mps_mapping_get_tid_from_handle(sc, dev_handle); 2138 data->Bus = bus; 2139 data->TargetID = target; 2140 } 2141 2142 return (0); 2143 } 2144 2145 static int 2146 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2147 struct thread *td) 2148 { 2149 struct mps_softc *sc; 2150 struct mps_cfg_page_req *page_req; 2151 struct mps_ext_cfg_page_req *ext_page_req; 2152 void *mps_page; 2153 int error, msleep_ret; 2154 2155 mps_page = NULL; 2156 sc = dev->si_drv1; 2157 page_req = (void *)arg; 2158 ext_page_req = (void *)arg; 2159 2160 switch (cmd) { 2161 case MPSIO_READ_CFG_HEADER: 2162 mps_lock(sc); 2163 error = mps_user_read_cfg_header(sc, page_req); 2164 mps_unlock(sc); 2165 break; 2166 case MPSIO_READ_CFG_PAGE: 2167 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2168 error = EINVAL; 2169 break; 2170 } 2171 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO); 2172 error = copyin(page_req->buf, mps_page, 2173 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2174 if (error) 2175 break; 2176 mps_lock(sc); 2177 error = mps_user_read_cfg_page(sc, page_req, mps_page); 2178 mps_unlock(sc); 2179 if (error) 2180 break; 2181 error = copyout(mps_page, page_req->buf, page_req->len); 2182 break; 2183 case MPSIO_READ_EXT_CFG_HEADER: 2184 mps_lock(sc); 2185 error = mps_user_read_extcfg_header(sc, ext_page_req); 2186 mps_unlock(sc); 2187 break; 2188 case MPSIO_READ_EXT_CFG_PAGE: 2189 if (ext_page_req->len < 2190 (int)sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)) { 2191 error = EINVAL; 2192 break; 2193 } 2194 mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2195 error = copyin(ext_page_req->buf, mps_page, 2196 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2197 if (error) 2198 break; 2199 mps_lock(sc); 2200 error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page); 2201 mps_unlock(sc); 2202 if (error) 2203 break; 2204 error = copyout(mps_page, ext_page_req->buf, ext_page_req->len); 2205 break; 2206 case MPSIO_WRITE_CFG_PAGE: 2207 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2208 error = EINVAL; 2209 break; 2210 } 2211 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2212 error = copyin(page_req->buf, mps_page, page_req->len); 2213 if (error) 2214 break; 2215 mps_lock(sc); 2216 error = mps_user_write_cfg_page(sc, page_req, mps_page); 2217 mps_unlock(sc); 2218 break; 2219 case MPSIO_MPS_COMMAND: 2220 error = mps_user_command(sc, (struct mps_usr_command *)arg); 2221 break; 2222 case MPTIOCTL_PASS_THRU: 2223 /* 2224 * The user has requested to pass through a command to be 2225 * executed by the MPT firmware. Call our routine which does 2226 * this. Only allow one passthru IOCTL at one time. 2227 */ 2228 error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg); 2229 break; 2230 case MPTIOCTL_GET_ADAPTER_DATA: 2231 /* 2232 * The user has requested to read adapter data. Call our 2233 * routine which does this. 2234 */ 2235 error = 0; 2236 mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg); 2237 break; 2238 case MPTIOCTL_GET_PCI_INFO: 2239 /* 2240 * The user has requested to read pci info. Call 2241 * our routine which does this. 2242 */ 2243 mps_lock(sc); 2244 error = 0; 2245 mps_user_read_pci_info(sc, (mps_pci_info_t *)arg); 2246 mps_unlock(sc); 2247 break; 2248 case MPTIOCTL_RESET_ADAPTER: 2249 mps_lock(sc); 2250 sc->port_enable_complete = 0; 2251 uint32_t reinit_start = time_uptime; 2252 error = mps_reinit(sc); 2253 /* Sleep for 300 second. */ 2254 msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO, 2255 "mps_porten", 300 * hz); 2256 mps_unlock(sc); 2257 if (msleep_ret) 2258 printf("Port Enable did not complete after Diag " 2259 "Reset msleep error %d.\n", msleep_ret); 2260 else 2261 mps_dprint(sc, MPS_USER, 2262 "Hard Reset with Port Enable completed in %d seconds.\n", 2263 (uint32_t) (time_uptime - reinit_start)); 2264 break; 2265 case MPTIOCTL_DIAG_ACTION: 2266 /* 2267 * The user has done a diag buffer action. Call our routine 2268 * which does this. Only allow one diag action at one time. 2269 */ 2270 mps_lock(sc); 2271 error = mps_user_diag_action(sc, (mps_diag_action_t *)arg); 2272 mps_unlock(sc); 2273 break; 2274 case MPTIOCTL_EVENT_QUERY: 2275 /* 2276 * The user has done an event query. Call our routine which does 2277 * this. 2278 */ 2279 error = 0; 2280 mps_user_event_query(sc, (mps_event_query_t *)arg); 2281 break; 2282 case MPTIOCTL_EVENT_ENABLE: 2283 /* 2284 * The user has done an event enable. Call our routine which 2285 * does this. 2286 */ 2287 error = 0; 2288 mps_user_event_enable(sc, (mps_event_enable_t *)arg); 2289 break; 2290 case MPTIOCTL_EVENT_REPORT: 2291 /* 2292 * The user has done an event report. Call our routine which 2293 * does this. 2294 */ 2295 error = mps_user_event_report(sc, (mps_event_report_t *)arg); 2296 break; 2297 case MPTIOCTL_REG_ACCESS: 2298 /* 2299 * The user has requested register access. Call our routine 2300 * which does this. 2301 */ 2302 mps_lock(sc); 2303 error = mps_user_reg_access(sc, (mps_reg_access_t *)arg); 2304 mps_unlock(sc); 2305 break; 2306 case MPTIOCTL_BTDH_MAPPING: 2307 /* 2308 * The user has requested to translate a bus/target to a 2309 * DevHandle or a DevHandle to a bus/target. Call our routine 2310 * which does this. 2311 */ 2312 error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg); 2313 break; 2314 default: 2315 error = ENOIOCTL; 2316 break; 2317 } 2318 2319 if (mps_page != NULL) 2320 free(mps_page, M_MPSUSER); 2321 2322 return (error); 2323 } 2324 2325 #ifdef COMPAT_FREEBSD32 2326 2327 struct mps_cfg_page_req32 { 2328 MPI2_CONFIG_PAGE_HEADER header; 2329 uint32_t page_address; 2330 uint32_t buf; 2331 int len; 2332 uint16_t ioc_status; 2333 }; 2334 2335 struct mps_ext_cfg_page_req32 { 2336 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2337 uint32_t page_address; 2338 uint32_t buf; 2339 int len; 2340 uint16_t ioc_status; 2341 }; 2342 2343 struct mps_raid_action32 { 2344 uint8_t action; 2345 uint8_t volume_bus; 2346 uint8_t volume_id; 2347 uint8_t phys_disk_num; 2348 uint32_t action_data_word; 2349 uint32_t buf; 2350 int len; 2351 uint32_t volume_status; 2352 uint32_t action_data[4]; 2353 uint16_t action_status; 2354 uint16_t ioc_status; 2355 uint8_t write; 2356 }; 2357 2358 struct mps_usr_command32 { 2359 uint32_t req; 2360 uint32_t req_len; 2361 uint32_t rpl; 2362 uint32_t rpl_len; 2363 uint32_t buf; 2364 int len; 2365 uint32_t flags; 2366 }; 2367 2368 #define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32) 2369 #define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32) 2370 #define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32) 2371 #define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32) 2372 #define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32) 2373 #define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32) 2374 #define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32) 2375 2376 static int 2377 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2378 struct thread *td) 2379 { 2380 struct mps_cfg_page_req32 *page32 = _arg; 2381 struct mps_ext_cfg_page_req32 *ext32 = _arg; 2382 struct mps_raid_action32 *raid32 = _arg; 2383 struct mps_usr_command32 *user32 = _arg; 2384 union { 2385 struct mps_cfg_page_req page; 2386 struct mps_ext_cfg_page_req ext; 2387 struct mps_raid_action raid; 2388 struct mps_usr_command user; 2389 } arg; 2390 u_long cmd; 2391 int error; 2392 2393 switch (cmd32) { 2394 case MPSIO_READ_CFG_HEADER32: 2395 case MPSIO_READ_CFG_PAGE32: 2396 case MPSIO_WRITE_CFG_PAGE32: 2397 if (cmd32 == MPSIO_READ_CFG_HEADER32) 2398 cmd = MPSIO_READ_CFG_HEADER; 2399 else if (cmd32 == MPSIO_READ_CFG_PAGE32) 2400 cmd = MPSIO_READ_CFG_PAGE; 2401 else 2402 cmd = MPSIO_WRITE_CFG_PAGE; 2403 CP(*page32, arg.page, header); 2404 CP(*page32, arg.page, page_address); 2405 PTRIN_CP(*page32, arg.page, buf); 2406 CP(*page32, arg.page, len); 2407 CP(*page32, arg.page, ioc_status); 2408 break; 2409 2410 case MPSIO_READ_EXT_CFG_HEADER32: 2411 case MPSIO_READ_EXT_CFG_PAGE32: 2412 if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32) 2413 cmd = MPSIO_READ_EXT_CFG_HEADER; 2414 else 2415 cmd = MPSIO_READ_EXT_CFG_PAGE; 2416 CP(*ext32, arg.ext, header); 2417 CP(*ext32, arg.ext, page_address); 2418 PTRIN_CP(*ext32, arg.ext, buf); 2419 CP(*ext32, arg.ext, len); 2420 CP(*ext32, arg.ext, ioc_status); 2421 break; 2422 2423 case MPSIO_RAID_ACTION32: 2424 cmd = MPSIO_RAID_ACTION; 2425 CP(*raid32, arg.raid, action); 2426 CP(*raid32, arg.raid, volume_bus); 2427 CP(*raid32, arg.raid, volume_id); 2428 CP(*raid32, arg.raid, phys_disk_num); 2429 CP(*raid32, arg.raid, action_data_word); 2430 PTRIN_CP(*raid32, arg.raid, buf); 2431 CP(*raid32, arg.raid, len); 2432 CP(*raid32, arg.raid, volume_status); 2433 bcopy(raid32->action_data, arg.raid.action_data, 2434 sizeof arg.raid.action_data); 2435 CP(*raid32, arg.raid, ioc_status); 2436 CP(*raid32, arg.raid, write); 2437 break; 2438 2439 case MPSIO_MPS_COMMAND32: 2440 cmd = MPSIO_MPS_COMMAND; 2441 PTRIN_CP(*user32, arg.user, req); 2442 CP(*user32, arg.user, req_len); 2443 PTRIN_CP(*user32, arg.user, rpl); 2444 CP(*user32, arg.user, rpl_len); 2445 PTRIN_CP(*user32, arg.user, buf); 2446 CP(*user32, arg.user, len); 2447 CP(*user32, arg.user, flags); 2448 break; 2449 default: 2450 return (ENOIOCTL); 2451 } 2452 2453 error = mps_ioctl(dev, cmd, &arg, flag, td); 2454 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2455 switch (cmd32) { 2456 case MPSIO_READ_CFG_HEADER32: 2457 case MPSIO_READ_CFG_PAGE32: 2458 case MPSIO_WRITE_CFG_PAGE32: 2459 CP(arg.page, *page32, header); 2460 CP(arg.page, *page32, page_address); 2461 PTROUT_CP(arg.page, *page32, buf); 2462 CP(arg.page, *page32, len); 2463 CP(arg.page, *page32, ioc_status); 2464 break; 2465 2466 case MPSIO_READ_EXT_CFG_HEADER32: 2467 case MPSIO_READ_EXT_CFG_PAGE32: 2468 CP(arg.ext, *ext32, header); 2469 CP(arg.ext, *ext32, page_address); 2470 PTROUT_CP(arg.ext, *ext32, buf); 2471 CP(arg.ext, *ext32, len); 2472 CP(arg.ext, *ext32, ioc_status); 2473 break; 2474 2475 case MPSIO_RAID_ACTION32: 2476 CP(arg.raid, *raid32, action); 2477 CP(arg.raid, *raid32, volume_bus); 2478 CP(arg.raid, *raid32, volume_id); 2479 CP(arg.raid, *raid32, phys_disk_num); 2480 CP(arg.raid, *raid32, action_data_word); 2481 PTROUT_CP(arg.raid, *raid32, buf); 2482 CP(arg.raid, *raid32, len); 2483 CP(arg.raid, *raid32, volume_status); 2484 bcopy(arg.raid.action_data, raid32->action_data, 2485 sizeof arg.raid.action_data); 2486 CP(arg.raid, *raid32, ioc_status); 2487 CP(arg.raid, *raid32, write); 2488 break; 2489 2490 case MPSIO_MPS_COMMAND32: 2491 PTROUT_CP(arg.user, *user32, req); 2492 CP(arg.user, *user32, req_len); 2493 PTROUT_CP(arg.user, *user32, rpl); 2494 CP(arg.user, *user32, rpl_len); 2495 PTROUT_CP(arg.user, *user32, buf); 2496 CP(arg.user, *user32, len); 2497 CP(arg.user, *user32, flags); 2498 break; 2499 } 2500 } 2501 2502 return (error); 2503 } 2504 #endif /* COMPAT_FREEBSD32 */ 2505 2506 static int 2507 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2508 struct thread *td) 2509 { 2510 #ifdef COMPAT_FREEBSD32 2511 if (SV_CURPROC_FLAG(SV_ILP32)) 2512 return (mps_ioctl32(dev, com, arg, flag, td)); 2513 #endif 2514 return (mps_ioctl(dev, com, arg, flag, td)); 2515 } 2516