1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011-2015 LSI Corp. 34 * Copyright (c) 2013-2015 Avago Technologies 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 59 * 60 * $FreeBSD$ 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_compat.h" 67 68 /* TODO Move headers to mpsvar */ 69 #include <sys/types.h> 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/selinfo.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/conf.h> 77 #include <sys/bio.h> 78 #include <sys/malloc.h> 79 #include <sys/uio.h> 80 #include <sys/sysctl.h> 81 #include <sys/ioccom.h> 82 #include <sys/endian.h> 83 #include <sys/queue.h> 84 #include <sys/kthread.h> 85 #include <sys/taskqueue.h> 86 #include <sys/proc.h> 87 #include <sys/sysent.h> 88 89 #include <machine/bus.h> 90 #include <machine/resource.h> 91 #include <sys/rman.h> 92 93 #include <cam/cam.h> 94 #include <cam/cam_ccb.h> 95 #include <cam/scsi/scsi_all.h> 96 97 #include <dev/mps/mpi/mpi2_type.h> 98 #include <dev/mps/mpi/mpi2.h> 99 #include <dev/mps/mpi/mpi2_ioc.h> 100 #include <dev/mps/mpi/mpi2_cnfg.h> 101 #include <dev/mps/mpi/mpi2_init.h> 102 #include <dev/mps/mpi/mpi2_tool.h> 103 #include <dev/mps/mps_ioctl.h> 104 #include <dev/mps/mpsvar.h> 105 #include <dev/mps/mps_table.h> 106 #include <dev/mps/mps_sas.h> 107 #include <dev/pci/pcivar.h> 108 #include <dev/pci/pcireg.h> 109 110 static d_open_t mps_open; 111 static d_close_t mps_close; 112 static d_ioctl_t mps_ioctl_devsw; 113 114 static struct cdevsw mps_cdevsw = { 115 .d_version = D_VERSION, 116 .d_flags = 0, 117 .d_open = mps_open, 118 .d_close = mps_close, 119 .d_ioctl = mps_ioctl_devsw, 120 .d_name = "mps", 121 }; 122 123 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *); 124 static mps_user_f mpi_pre_ioc_facts; 125 static mps_user_f mpi_pre_port_facts; 126 static mps_user_f mpi_pre_fw_download; 127 static mps_user_f mpi_pre_fw_upload; 128 static mps_user_f mpi_pre_sata_passthrough; 129 static mps_user_f mpi_pre_smp_passthrough; 130 static mps_user_f mpi_pre_config; 131 static mps_user_f mpi_pre_sas_io_unit_control; 132 133 static int mps_user_read_cfg_header(struct mps_softc *, 134 struct mps_cfg_page_req *); 135 static int mps_user_read_cfg_page(struct mps_softc *, 136 struct mps_cfg_page_req *, void *); 137 static int mps_user_read_extcfg_header(struct mps_softc *, 138 struct mps_ext_cfg_page_req *); 139 static int mps_user_read_extcfg_page(struct mps_softc *, 140 struct mps_ext_cfg_page_req *, void *); 141 static int mps_user_write_cfg_page(struct mps_softc *, 142 struct mps_cfg_page_req *, void *); 143 static int mps_user_setup_request(struct mps_command *, 144 struct mps_usr_command *); 145 static int mps_user_command(struct mps_softc *, struct mps_usr_command *); 146 147 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data); 148 static void mps_user_get_adapter_data(struct mps_softc *sc, 149 mps_adapter_data_t *data); 150 static void mps_user_read_pci_info(struct mps_softc *sc, 151 mps_pci_info_t *data); 152 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc, 153 uint32_t unique_id); 154 static int mps_post_fw_diag_buffer(struct mps_softc *sc, 155 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 156 static int mps_release_fw_diag_buffer(struct mps_softc *sc, 157 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 158 uint32_t diag_type); 159 static int mps_diag_register(struct mps_softc *sc, 160 mps_fw_diag_register_t *diag_register, uint32_t *return_code); 161 static int mps_diag_unregister(struct mps_softc *sc, 162 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 163 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 164 uint32_t *return_code); 165 static int mps_diag_read_buffer(struct mps_softc *sc, 166 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 167 uint32_t *return_code); 168 static int mps_diag_release(struct mps_softc *sc, 169 mps_fw_diag_release_t *diag_release, uint32_t *return_code); 170 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action, 171 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 172 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data); 173 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data); 174 static void mps_user_event_enable(struct mps_softc *sc, 175 mps_event_enable_t *data); 176 static int mps_user_event_report(struct mps_softc *sc, 177 mps_event_report_t *data); 178 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data); 179 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data); 180 181 static MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls"); 182 183 /* Macros from compat/freebsd32/freebsd32.h */ 184 #define PTRIN(v) (void *)(uintptr_t)(v) 185 #define PTROUT(v) (uint32_t)(uintptr_t)(v) 186 187 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0) 188 #define PTRIN_CP(src,dst,fld) \ 189 do { (dst).fld = PTRIN((src).fld); } while (0) 190 #define PTROUT_CP(src,dst,fld) \ 191 do { (dst).fld = PTROUT((src).fld); } while (0) 192 193 int 194 mps_attach_user(struct mps_softc *sc) 195 { 196 int unit; 197 198 unit = device_get_unit(sc->mps_dev); 199 sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 200 "mps%d", unit); 201 if (sc->mps_cdev == NULL) { 202 return (ENOMEM); 203 } 204 sc->mps_cdev->si_drv1 = sc; 205 return (0); 206 } 207 208 void 209 mps_detach_user(struct mps_softc *sc) 210 { 211 212 /* XXX: do a purge of pending requests? */ 213 if (sc->mps_cdev != NULL) 214 destroy_dev(sc->mps_cdev); 215 } 216 217 static int 218 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td) 219 { 220 221 return (0); 222 } 223 224 static int 225 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td) 226 { 227 228 return (0); 229 } 230 231 static int 232 mps_user_read_cfg_header(struct mps_softc *sc, 233 struct mps_cfg_page_req *page_req) 234 { 235 MPI2_CONFIG_PAGE_HEADER *hdr; 236 struct mps_config_params params; 237 int error; 238 239 hdr = ¶ms.hdr.Struct; 240 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 241 params.page_address = le32toh(page_req->page_address); 242 hdr->PageVersion = 0; 243 hdr->PageLength = 0; 244 hdr->PageNumber = page_req->header.PageNumber; 245 hdr->PageType = page_req->header.PageType; 246 params.buffer = NULL; 247 params.length = 0; 248 params.callback = NULL; 249 250 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 251 /* 252 * Leave the request. Without resetting the chip, it's 253 * still owned by it and we'll just get into trouble 254 * freeing it now. Mark it as abandoned so that if it 255 * shows up later it can be freed. 256 */ 257 mps_printf(sc, "read_cfg_header timed out\n"); 258 return (ETIMEDOUT); 259 } 260 261 page_req->ioc_status = htole16(params.status); 262 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 263 MPI2_IOCSTATUS_SUCCESS) { 264 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 265 } 266 267 return (0); 268 } 269 270 static int 271 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req, 272 void *buf) 273 { 274 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 275 struct mps_config_params params; 276 int error; 277 278 reqhdr = buf; 279 hdr = ¶ms.hdr.Struct; 280 hdr->PageVersion = reqhdr->PageVersion; 281 hdr->PageLength = reqhdr->PageLength; 282 hdr->PageNumber = reqhdr->PageNumber; 283 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 284 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 285 params.page_address = le32toh(page_req->page_address); 286 params.buffer = buf; 287 params.length = le32toh(page_req->len); 288 params.callback = NULL; 289 290 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 291 mps_printf(sc, "mps_user_read_cfg_page timed out\n"); 292 return (ETIMEDOUT); 293 } 294 295 page_req->ioc_status = htole16(params.status); 296 return (0); 297 } 298 299 static int 300 mps_user_read_extcfg_header(struct mps_softc *sc, 301 struct mps_ext_cfg_page_req *ext_page_req) 302 { 303 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 304 struct mps_config_params params; 305 int error; 306 307 hdr = ¶ms.hdr.Ext; 308 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 309 hdr->PageVersion = ext_page_req->header.PageVersion; 310 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 311 hdr->ExtPageLength = 0; 312 hdr->PageNumber = ext_page_req->header.PageNumber; 313 hdr->ExtPageType = ext_page_req->header.ExtPageType; 314 params.page_address = le32toh(ext_page_req->page_address); 315 params.buffer = NULL; 316 params.length = 0; 317 params.callback = NULL; 318 319 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 320 /* 321 * Leave the request. Without resetting the chip, it's 322 * still owned by it and we'll just get into trouble 323 * freeing it now. Mark it as abandoned so that if it 324 * shows up later it can be freed. 325 */ 326 mps_printf(sc, "mps_user_read_extcfg_header timed out\n"); 327 return (ETIMEDOUT); 328 } 329 330 ext_page_req->ioc_status = htole16(params.status); 331 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 332 MPI2_IOCSTATUS_SUCCESS) { 333 ext_page_req->header.PageVersion = hdr->PageVersion; 334 ext_page_req->header.PageNumber = hdr->PageNumber; 335 ext_page_req->header.PageType = hdr->PageType; 336 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 337 ext_page_req->header.ExtPageType = hdr->ExtPageType; 338 } 339 340 return (0); 341 } 342 343 static int 344 mps_user_read_extcfg_page(struct mps_softc *sc, 345 struct mps_ext_cfg_page_req *ext_page_req, void *buf) 346 { 347 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 348 struct mps_config_params params; 349 int error; 350 351 reqhdr = buf; 352 hdr = ¶ms.hdr.Ext; 353 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 354 params.page_address = le32toh(ext_page_req->page_address); 355 hdr->PageVersion = reqhdr->PageVersion; 356 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 357 hdr->PageNumber = reqhdr->PageNumber; 358 hdr->ExtPageType = reqhdr->ExtPageType; 359 hdr->ExtPageLength = reqhdr->ExtPageLength; 360 params.buffer = buf; 361 params.length = le32toh(ext_page_req->len); 362 params.callback = NULL; 363 364 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 365 mps_printf(sc, "mps_user_read_extcfg_page timed out\n"); 366 return (ETIMEDOUT); 367 } 368 369 ext_page_req->ioc_status = htole16(params.status); 370 return (0); 371 } 372 373 static int 374 mps_user_write_cfg_page(struct mps_softc *sc, 375 struct mps_cfg_page_req *page_req, void *buf) 376 { 377 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 378 struct mps_config_params params; 379 u_int hdr_attr; 380 int error; 381 382 reqhdr = buf; 383 hdr = ¶ms.hdr.Struct; 384 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 385 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 386 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 387 mps_printf(sc, "page type 0x%x not changeable\n", 388 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 389 return (EINVAL); 390 } 391 392 /* 393 * There isn't any point in restoring stripped out attributes 394 * if you then mask them going down to issue the request. 395 */ 396 397 hdr->PageVersion = reqhdr->PageVersion; 398 hdr->PageLength = reqhdr->PageLength; 399 hdr->PageNumber = reqhdr->PageNumber; 400 hdr->PageType = reqhdr->PageType; 401 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 402 params.page_address = le32toh(page_req->page_address); 403 params.buffer = buf; 404 params.length = le32toh(page_req->len); 405 params.callback = NULL; 406 407 if ((error = mps_write_config_page(sc, ¶ms)) != 0) { 408 mps_printf(sc, "mps_write_cfg_page timed out\n"); 409 return (ETIMEDOUT); 410 } 411 412 page_req->ioc_status = htole16(params.status); 413 return (0); 414 } 415 416 void 417 mpi_init_sge(struct mps_command *cm, void *req, void *sge) 418 { 419 int off, space; 420 421 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4; 422 off = (uintptr_t)sge - (uintptr_t)req; 423 424 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 425 req, sge, off, space)); 426 427 cm->cm_sge = sge; 428 cm->cm_sglsize = space - off; 429 } 430 431 /* 432 * Prepare the mps_command for an IOC_FACTS request. 433 */ 434 static int 435 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd) 436 { 437 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 438 MPI2_IOC_FACTS_REPLY *rpl; 439 440 if (cmd->req_len != sizeof *req) 441 return (EINVAL); 442 if (cmd->rpl_len != sizeof *rpl) 443 return (EINVAL); 444 445 cm->cm_sge = NULL; 446 cm->cm_sglsize = 0; 447 return (0); 448 } 449 450 /* 451 * Prepare the mps_command for a PORT_FACTS request. 452 */ 453 static int 454 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd) 455 { 456 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 457 MPI2_PORT_FACTS_REPLY *rpl; 458 459 if (cmd->req_len != sizeof *req) 460 return (EINVAL); 461 if (cmd->rpl_len != sizeof *rpl) 462 return (EINVAL); 463 464 cm->cm_sge = NULL; 465 cm->cm_sglsize = 0; 466 return (0); 467 } 468 469 /* 470 * Prepare the mps_command for a FW_DOWNLOAD request. 471 */ 472 static int 473 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd) 474 { 475 MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 476 MPI2_FW_DOWNLOAD_REPLY *rpl; 477 MPI2_FW_DOWNLOAD_TCSGE tc; 478 int error; 479 480 /* 481 * This code assumes there is room in the request's SGL for 482 * the TransactionContext plus at least a SGL chain element. 483 */ 484 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 485 486 if (cmd->req_len != sizeof *req) 487 return (EINVAL); 488 if (cmd->rpl_len != sizeof *rpl) 489 return (EINVAL); 490 491 if (cmd->len == 0) 492 return (EINVAL); 493 494 error = copyin(cmd->buf, cm->cm_data, cmd->len); 495 if (error != 0) 496 return (error); 497 498 mpi_init_sge(cm, req, &req->SGL); 499 bzero(&tc, sizeof tc); 500 501 /* 502 * For now, the F/W image must be provided in a single request. 503 */ 504 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 505 return (EINVAL); 506 if (req->TotalImageSize != cmd->len) 507 return (EINVAL); 508 509 /* 510 * The value of the first two elements is specified in the 511 * Fusion-MPT Message Passing Interface document. 512 */ 513 tc.ContextSize = 0; 514 tc.DetailsLength = 12; 515 tc.ImageOffset = 0; 516 tc.ImageSize = cmd->len; 517 518 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 519 520 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 521 } 522 523 /* 524 * Prepare the mps_command for a FW_UPLOAD request. 525 */ 526 static int 527 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd) 528 { 529 MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 530 MPI2_FW_UPLOAD_REPLY *rpl; 531 MPI2_FW_UPLOAD_TCSGE tc; 532 533 /* 534 * This code assumes there is room in the request's SGL for 535 * the TransactionContext plus at least a SGL chain element. 536 */ 537 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 538 539 if (cmd->req_len != sizeof *req) 540 return (EINVAL); 541 if (cmd->rpl_len != sizeof *rpl) 542 return (EINVAL); 543 544 mpi_init_sge(cm, req, &req->SGL); 545 bzero(&tc, sizeof tc); 546 547 /* 548 * The value of the first two elements is specified in the 549 * Fusion-MPT Message Passing Interface document. 550 */ 551 tc.ContextSize = 0; 552 tc.DetailsLength = 12; 553 /* 554 * XXX Is there any reason to fetch a partial image? I.e. to 555 * set ImageOffset to something other than 0? 556 */ 557 tc.ImageOffset = 0; 558 tc.ImageSize = cmd->len; 559 560 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 561 562 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 563 } 564 565 /* 566 * Prepare the mps_command for a SATA_PASSTHROUGH request. 567 */ 568 static int 569 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 570 { 571 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 572 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 573 574 if (cmd->req_len != sizeof *req) 575 return (EINVAL); 576 if (cmd->rpl_len != sizeof *rpl) 577 return (EINVAL); 578 579 mpi_init_sge(cm, req, &req->SGL); 580 return (0); 581 } 582 583 /* 584 * Prepare the mps_command for a SMP_PASSTHROUGH request. 585 */ 586 static int 587 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 588 { 589 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 590 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 591 592 if (cmd->req_len != sizeof *req) 593 return (EINVAL); 594 if (cmd->rpl_len != sizeof *rpl) 595 return (EINVAL); 596 597 mpi_init_sge(cm, req, &req->SGL); 598 return (0); 599 } 600 601 /* 602 * Prepare the mps_command for a CONFIG request. 603 */ 604 static int 605 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd) 606 { 607 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 608 MPI2_CONFIG_REPLY *rpl; 609 610 if (cmd->req_len != sizeof *req) 611 return (EINVAL); 612 if (cmd->rpl_len != sizeof *rpl) 613 return (EINVAL); 614 615 mpi_init_sge(cm, req, &req->PageBufferSGE); 616 return (0); 617 } 618 619 /* 620 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 621 */ 622 static int 623 mpi_pre_sas_io_unit_control(struct mps_command *cm, 624 struct mps_usr_command *cmd) 625 { 626 627 cm->cm_sge = NULL; 628 cm->cm_sglsize = 0; 629 return (0); 630 } 631 632 /* 633 * A set of functions to prepare an mps_command for the various 634 * supported requests. 635 */ 636 struct mps_user_func { 637 U8 Function; 638 mps_user_f *f_pre; 639 } mps_user_func_list[] = { 640 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 641 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 642 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 643 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 644 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 645 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 646 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 647 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 648 { 0xFF, NULL } /* list end */ 649 }; 650 651 static int 652 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd) 653 { 654 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 655 struct mps_user_func *f; 656 657 for (f = mps_user_func_list; f->f_pre != NULL; f++) { 658 if (hdr->Function == f->Function) 659 return (f->f_pre(cm, cmd)); 660 } 661 return (EINVAL); 662 } 663 664 static int 665 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd) 666 { 667 MPI2_REQUEST_HEADER *hdr; 668 MPI2_DEFAULT_REPLY *rpl; 669 void *buf = NULL; 670 struct mps_command *cm = NULL; 671 int err = 0; 672 int sz; 673 674 mps_lock(sc); 675 cm = mps_alloc_command(sc); 676 677 if (cm == NULL) { 678 mps_printf(sc, "%s: no mps requests\n", __func__); 679 err = ENOMEM; 680 goto Ret; 681 } 682 mps_unlock(sc); 683 684 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 685 686 mps_dprint(sc, MPS_USER, "%s: req %p %d rpl %p %d\n", __func__, 687 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 688 689 if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) { 690 err = EINVAL; 691 goto RetFreeUnlocked; 692 } 693 err = copyin(cmd->req, hdr, cmd->req_len); 694 if (err != 0) 695 goto RetFreeUnlocked; 696 697 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 698 hdr->Function, hdr->MsgFlags); 699 700 if (cmd->len > 0) { 701 buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO); 702 cm->cm_data = buf; 703 cm->cm_length = cmd->len; 704 } else { 705 cm->cm_data = NULL; 706 cm->cm_length = 0; 707 } 708 709 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE; 710 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 711 712 err = mps_user_setup_request(cm, cmd); 713 if (err == EINVAL) { 714 mps_printf(sc, "%s: unsupported parameter or unsupported " 715 "function in request (function = 0x%X)\n", __func__, 716 hdr->Function); 717 } 718 if (err != 0) 719 goto RetFreeUnlocked; 720 721 mps_lock(sc); 722 err = mps_wait_command(sc, cm, 60, CAN_SLEEP); 723 724 if (err) { 725 mps_printf(sc, "%s: invalid request: error %d\n", 726 __func__, err); 727 goto Ret; 728 } 729 730 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 731 if (rpl != NULL) 732 sz = rpl->MsgLength * 4; 733 else 734 sz = 0; 735 736 if (sz > cmd->rpl_len) { 737 mps_printf(sc, "%s: user reply buffer (%d) smaller than " 738 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 739 sz = cmd->rpl_len; 740 } 741 742 mps_unlock(sc); 743 copyout(rpl, cmd->rpl, sz); 744 if (buf != NULL) 745 copyout(buf, cmd->buf, cmd->len); 746 mps_dprint(sc, MPS_USER, "%s: reply size %d\n", __func__, sz); 747 748 RetFreeUnlocked: 749 mps_lock(sc); 750 if (cm != NULL) 751 mps_free_command(sc, cm); 752 Ret: 753 mps_unlock(sc); 754 if (buf != NULL) 755 free(buf, M_MPSUSER); 756 return (err); 757 } 758 759 static int 760 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data) 761 { 762 MPI2_REQUEST_HEADER *hdr, tmphdr; 763 MPI2_DEFAULT_REPLY *rpl; 764 struct mps_command *cm = NULL; 765 int err = 0, dir = 0, sz; 766 uint8_t function = 0; 767 u_int sense_len; 768 struct mpssas_target *targ = NULL; 769 770 /* 771 * Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY 772 * bit to denote that a passthru is being processed. 773 */ 774 mps_lock(sc); 775 if (sc->mps_flags & MPS_FLAGS_BUSY) { 776 mps_dprint(sc, MPS_USER, "%s: Only one passthru command " 777 "allowed at a single time.", __func__); 778 mps_unlock(sc); 779 return (EBUSY); 780 } 781 sc->mps_flags |= MPS_FLAGS_BUSY; 782 mps_unlock(sc); 783 784 /* 785 * Do some validation on data direction. Valid cases are: 786 * 1) DataSize is 0 and direction is NONE 787 * 2) DataSize is non-zero and one of: 788 * a) direction is READ or 789 * b) direction is WRITE or 790 * c) direction is BOTH and DataOutSize is non-zero 791 * If valid and the direction is BOTH, change the direction to READ. 792 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 793 */ 794 if (((data->DataSize == 0) && 795 (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) || 796 ((data->DataSize != 0) && 797 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) || 798 (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) || 799 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) && 800 (data->DataOutSize != 0))))) { 801 if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) 802 data->DataDirection = MPS_PASS_THRU_DIRECTION_READ; 803 else 804 data->DataOutSize = 0; 805 } else 806 return (EINVAL); 807 808 mps_dprint(sc, MPS_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 809 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 810 data->PtrRequest, data->RequestSize, data->PtrReply, 811 data->ReplySize, data->PtrData, data->DataSize, 812 data->PtrDataOut, data->DataOutSize, data->DataDirection); 813 814 /* 815 * copy in the header so we know what we're dealing with before we 816 * commit to allocating a command for it. 817 */ 818 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 819 if (err != 0) 820 goto RetFreeUnlocked; 821 822 if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) { 823 err = EINVAL; 824 goto RetFreeUnlocked; 825 } 826 827 function = tmphdr.Function; 828 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 829 function, tmphdr.MsgFlags); 830 831 /* 832 * Handle a passthru TM request. 833 */ 834 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 835 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 836 837 mps_lock(sc); 838 cm = mpssas_alloc_tm(sc); 839 if (cm == NULL) { 840 err = EINVAL; 841 goto Ret; 842 } 843 844 /* Copy the header in. Only a small fixup is needed. */ 845 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 846 bcopy(&tmphdr, task, data->RequestSize); 847 task->TaskMID = cm->cm_desc.Default.SMID; 848 849 cm->cm_data = NULL; 850 cm->cm_desc.HighPriority.RequestFlags = 851 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 852 cm->cm_complete = NULL; 853 cm->cm_complete_data = NULL; 854 855 targ = mpssas_find_target_by_handle(sc->sassc, 0, 856 task->DevHandle); 857 if (targ == NULL) { 858 mps_dprint(sc, MPS_INFO, 859 "%s %d : invalid handle for requested TM 0x%x \n", 860 __func__, __LINE__, task->DevHandle); 861 err = 1; 862 } else { 863 mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 864 err = mps_wait_command(sc, cm, 30, CAN_SLEEP); 865 } 866 867 if (err != 0) { 868 err = EIO; 869 mps_dprint(sc, MPS_FAULT, "%s: task management failed", 870 __func__); 871 } 872 /* 873 * Copy the reply data and sense data to user space. 874 */ 875 if (cm->cm_reply != NULL) { 876 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 877 sz = rpl->MsgLength * 4; 878 879 if (sz > data->ReplySize) { 880 mps_printf(sc, "%s: user reply buffer (%d) " 881 "smaller than returned buffer (%d)\n", 882 __func__, data->ReplySize, sz); 883 } 884 mps_unlock(sc); 885 copyout(cm->cm_reply, PTRIN(data->PtrReply), 886 data->ReplySize); 887 mps_lock(sc); 888 } 889 mpssas_free_tm(sc, cm); 890 goto Ret; 891 } 892 893 mps_lock(sc); 894 cm = mps_alloc_command(sc); 895 896 if (cm == NULL) { 897 mps_printf(sc, "%s: no mps requests\n", __func__); 898 err = ENOMEM; 899 goto Ret; 900 } 901 mps_unlock(sc); 902 903 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 904 bcopy(&tmphdr, hdr, data->RequestSize); 905 906 /* 907 * Do some checking to make sure the IOCTL request contains a valid 908 * request. Then set the SGL info. 909 */ 910 mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 911 912 /* 913 * Set up for read, write or both. From check above, DataOutSize will 914 * be 0 if direction is READ or WRITE, but it will have some non-zero 915 * value if the direction is BOTH. So, just use the biggest size to get 916 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 917 * up; the first is for the request and the second will contain the 918 * response data. cm_out_len needs to be set here and this will be used 919 * when the SGLs are set up. 920 */ 921 cm->cm_data = NULL; 922 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 923 cm->cm_out_len = data->DataOutSize; 924 cm->cm_flags = 0; 925 if (cm->cm_length != 0) { 926 cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK | 927 M_ZERO); 928 cm->cm_flags = MPS_CM_FLAGS_DATAIN; 929 if (data->DataOutSize) { 930 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 931 err = copyin(PTRIN(data->PtrDataOut), 932 cm->cm_data, data->DataOutSize); 933 } else if (data->DataDirection == 934 MPS_PASS_THRU_DIRECTION_WRITE) { 935 cm->cm_flags = MPS_CM_FLAGS_DATAOUT; 936 err = copyin(PTRIN(data->PtrData), 937 cm->cm_data, data->DataSize); 938 } 939 if (err != 0) 940 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 941 "IOCTL data from user space\n", __func__); 942 } 943 cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE; 944 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 945 946 /* 947 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 948 * uses SCSI IO descriptor. 949 */ 950 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 951 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 952 MPI2_SCSI_IO_REQUEST *scsi_io_req; 953 954 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 955 /* 956 * Put SGE for data and data_out buffer at the end of 957 * scsi_io_request message header (64 bytes in total). 958 * Following above SGEs, the residual space will be used by 959 * sense data. 960 */ 961 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 962 64); 963 scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 964 965 /* 966 * Set SGLOffset0 value. This is the number of dwords that SGL 967 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 968 */ 969 scsi_io_req->SGLOffset0 = 24; 970 971 /* 972 * Setup descriptor info. RAID passthrough must use the 973 * default request descriptor which is already set, so if this 974 * is a SCSI IO request, change the descriptor to SCSI IO. 975 * Also, if this is a SCSI IO request, handle the reply in the 976 * mpssas_scsio_complete function. 977 */ 978 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 979 cm->cm_desc.SCSIIO.RequestFlags = 980 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 981 cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle; 982 983 /* 984 * Make sure the DevHandle is not 0 because this is a 985 * likely error. 986 */ 987 if (scsi_io_req->DevHandle == 0) { 988 err = EINVAL; 989 goto RetFreeUnlocked; 990 } 991 } 992 } 993 994 mps_lock(sc); 995 996 err = mps_wait_command(sc, cm, 30, CAN_SLEEP); 997 998 if (err) { 999 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1000 err); 1001 mps_unlock(sc); 1002 goto RetFreeUnlocked; 1003 } 1004 1005 /* 1006 * Sync the DMA data, if any. Then copy the data to user space. 1007 */ 1008 if (cm->cm_data != NULL) { 1009 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 1010 dir = BUS_DMASYNC_POSTREAD; 1011 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 1012 dir = BUS_DMASYNC_POSTWRITE; 1013 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1014 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1015 1016 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 1017 mps_unlock(sc); 1018 err = copyout(cm->cm_data, 1019 PTRIN(data->PtrData), data->DataSize); 1020 mps_lock(sc); 1021 if (err != 0) 1022 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 1023 "IOCTL data to user space\n", __func__); 1024 } 1025 } 1026 1027 /* 1028 * Copy the reply data and sense data to user space. 1029 */ 1030 if (cm->cm_reply != NULL) { 1031 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1032 sz = rpl->MsgLength * 4; 1033 1034 if (sz > data->ReplySize) { 1035 mps_printf(sc, "%s: user reply buffer (%d) smaller " 1036 "than returned buffer (%d)\n", __func__, 1037 data->ReplySize, sz); 1038 } 1039 mps_unlock(sc); 1040 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1041 mps_lock(sc); 1042 1043 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1044 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1045 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1046 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1047 sense_len = 1048 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->SenseCount)), 1049 sizeof(struct scsi_sense_data)); 1050 mps_unlock(sc); 1051 copyout(cm->cm_sense, cm->cm_req + 64, sense_len); 1052 mps_lock(sc); 1053 } 1054 } 1055 } 1056 mps_unlock(sc); 1057 1058 RetFreeUnlocked: 1059 mps_lock(sc); 1060 1061 if (cm != NULL) { 1062 if (cm->cm_data) 1063 free(cm->cm_data, M_MPSUSER); 1064 mps_free_command(sc, cm); 1065 } 1066 Ret: 1067 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1068 mps_unlock(sc); 1069 1070 return (err); 1071 } 1072 1073 static void 1074 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data) 1075 { 1076 Mpi2ConfigReply_t mpi_reply; 1077 Mpi2BiosPage3_t config_page; 1078 1079 /* 1080 * Use the PCI interface functions to get the Bus, Device, and Function 1081 * information. 1082 */ 1083 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev); 1084 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev); 1085 data->PciInformation.u.bits.FunctionNumber = 1086 pci_get_function(sc->mps_dev); 1087 1088 /* 1089 * Get the FW version that should already be saved in IOC Facts. 1090 */ 1091 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1092 1093 /* 1094 * General device info. 1095 */ 1096 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2; 1097 if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE) 1098 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200; 1099 data->PCIDeviceHwId = pci_get_device(sc->mps_dev); 1100 data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1); 1101 data->SubSystemId = pci_get_subdevice(sc->mps_dev); 1102 data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev); 1103 1104 /* 1105 * Get the driver version. 1106 */ 1107 strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION); 1108 1109 /* 1110 * Need to get BIOS Config Page 3 for the BIOS Version. 1111 */ 1112 data->BiosVersion = 0; 1113 mps_lock(sc); 1114 if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1115 printf("%s: Error while retrieving BIOS Version\n", __func__); 1116 else 1117 data->BiosVersion = config_page.BiosVersion; 1118 mps_unlock(sc); 1119 } 1120 1121 static void 1122 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data) 1123 { 1124 int i; 1125 1126 /* 1127 * Use the PCI interface functions to get the Bus, Device, and Function 1128 * information. 1129 */ 1130 data->BusNumber = pci_get_bus(sc->mps_dev); 1131 data->DeviceNumber = pci_get_slot(sc->mps_dev); 1132 data->FunctionNumber = pci_get_function(sc->mps_dev); 1133 1134 /* 1135 * Now get the interrupt vector and the pci header. The vector can 1136 * only be 0 right now. The header is the first 256 bytes of config 1137 * space. 1138 */ 1139 data->InterruptVector = 0; 1140 for (i = 0; i < sizeof (data->PciHeader); i++) { 1141 data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1); 1142 } 1143 } 1144 1145 static uint8_t 1146 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id) 1147 { 1148 uint8_t index; 1149 1150 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1151 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1152 return (index); 1153 } 1154 } 1155 1156 return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND); 1157 } 1158 1159 static int 1160 mps_post_fw_diag_buffer(struct mps_softc *sc, 1161 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1162 { 1163 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1164 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1165 struct mps_command *cm = NULL; 1166 int i, status; 1167 1168 /* 1169 * If buffer is not enabled, just leave. 1170 */ 1171 *return_code = MPS_FW_DIAG_ERROR_POST_FAILED; 1172 if (!pBuffer->enabled) { 1173 return (MPS_DIAG_FAILURE); 1174 } 1175 1176 /* 1177 * Clear some flags initially. 1178 */ 1179 pBuffer->force_release = FALSE; 1180 pBuffer->valid_data = FALSE; 1181 pBuffer->owned_by_firmware = FALSE; 1182 1183 /* 1184 * Get a command. 1185 */ 1186 cm = mps_alloc_command(sc); 1187 if (cm == NULL) { 1188 mps_printf(sc, "%s: no mps requests\n", __func__); 1189 return (MPS_DIAG_FAILURE); 1190 } 1191 1192 /* 1193 * Build the request for releasing the FW Diag Buffer and send it. 1194 */ 1195 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1196 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1197 req->BufferType = pBuffer->buffer_type; 1198 req->ExtendedType = pBuffer->extended_type; 1199 req->BufferLength = pBuffer->size; 1200 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1201 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1202 mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1203 cm->cm_data = NULL; 1204 cm->cm_length = 0; 1205 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1206 cm->cm_complete_data = NULL; 1207 1208 /* 1209 * Send command synchronously. 1210 */ 1211 status = mps_wait_command(sc, cm, 30, CAN_SLEEP); 1212 if (status) { 1213 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1214 status); 1215 status = MPS_DIAG_FAILURE; 1216 goto done; 1217 } 1218 1219 /* 1220 * Process POST reply. 1221 */ 1222 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1223 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1224 MPI2_IOCSTATUS_SUCCESS) { 1225 status = MPS_DIAG_FAILURE; 1226 mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed " 1227 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1228 "TransferLength = 0x%x\n", __func__, 1229 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1230 le32toh(reply->TransferLength)); 1231 goto done; 1232 } 1233 1234 /* 1235 * Post was successful. 1236 */ 1237 pBuffer->valid_data = TRUE; 1238 pBuffer->owned_by_firmware = TRUE; 1239 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1240 status = MPS_DIAG_SUCCESS; 1241 1242 done: 1243 mps_free_command(sc, cm); 1244 return (status); 1245 } 1246 1247 static int 1248 mps_release_fw_diag_buffer(struct mps_softc *sc, 1249 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1250 uint32_t diag_type) 1251 { 1252 MPI2_DIAG_RELEASE_REQUEST *req; 1253 MPI2_DIAG_RELEASE_REPLY *reply; 1254 struct mps_command *cm = NULL; 1255 int status; 1256 1257 /* 1258 * If buffer is not enabled, just leave. 1259 */ 1260 *return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED; 1261 if (!pBuffer->enabled) { 1262 mps_dprint(sc, MPS_USER, "%s: This buffer type is not " 1263 "supported by the IOC", __func__); 1264 return (MPS_DIAG_FAILURE); 1265 } 1266 1267 /* 1268 * Clear some flags initially. 1269 */ 1270 pBuffer->force_release = FALSE; 1271 pBuffer->valid_data = FALSE; 1272 pBuffer->owned_by_firmware = FALSE; 1273 1274 /* 1275 * Get a command. 1276 */ 1277 cm = mps_alloc_command(sc); 1278 if (cm == NULL) { 1279 mps_printf(sc, "%s: no mps requests\n", __func__); 1280 return (MPS_DIAG_FAILURE); 1281 } 1282 1283 /* 1284 * Build the request for releasing the FW Diag Buffer and send it. 1285 */ 1286 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1287 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1288 req->BufferType = pBuffer->buffer_type; 1289 cm->cm_data = NULL; 1290 cm->cm_length = 0; 1291 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1292 cm->cm_complete_data = NULL; 1293 1294 /* 1295 * Send command synchronously. 1296 */ 1297 status = mps_wait_command(sc, cm, 30, CAN_SLEEP); 1298 if (status) { 1299 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1300 status); 1301 status = MPS_DIAG_FAILURE; 1302 goto done; 1303 } 1304 1305 /* 1306 * Process RELEASE reply. 1307 */ 1308 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1309 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1310 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1311 status = MPS_DIAG_FAILURE; 1312 mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer " 1313 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1314 __func__, le16toh(reply->IOCStatus), 1315 le32toh(reply->IOCLogInfo)); 1316 goto done; 1317 } 1318 1319 /* 1320 * Release was successful. 1321 */ 1322 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1323 status = MPS_DIAG_SUCCESS; 1324 1325 /* 1326 * If this was for an UNREGISTER diag type command, clear the unique ID. 1327 */ 1328 if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) { 1329 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1330 } 1331 1332 done: 1333 return (status); 1334 } 1335 1336 static int 1337 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register, 1338 uint32_t *return_code) 1339 { 1340 mps_fw_diagnostic_buffer_t *pBuffer; 1341 uint8_t extended_type, buffer_type, i; 1342 uint32_t buffer_size; 1343 uint32_t unique_id; 1344 int status; 1345 1346 extended_type = diag_register->ExtendedType; 1347 buffer_type = diag_register->BufferType; 1348 buffer_size = diag_register->RequestedBufferSize; 1349 unique_id = diag_register->UniqueId; 1350 1351 /* 1352 * Check for valid buffer type 1353 */ 1354 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1355 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1356 return (MPS_DIAG_FAILURE); 1357 } 1358 1359 /* 1360 * Get the current buffer and look up the unique ID. The unique ID 1361 * should not be found. If it is, the ID is already in use. 1362 */ 1363 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1364 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1365 if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1366 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1367 return (MPS_DIAG_FAILURE); 1368 } 1369 1370 /* 1371 * The buffer's unique ID should not be registered yet, and the given 1372 * unique ID cannot be 0. 1373 */ 1374 if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) || 1375 (unique_id == MPS_FW_DIAG_INVALID_UID)) { 1376 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1377 return (MPS_DIAG_FAILURE); 1378 } 1379 1380 /* 1381 * If this buffer is already posted as immediate, just change owner. 1382 */ 1383 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1384 (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) { 1385 pBuffer->immediate = FALSE; 1386 pBuffer->unique_id = unique_id; 1387 return (MPS_DIAG_SUCCESS); 1388 } 1389 1390 /* 1391 * Post a new buffer after checking if it's enabled. The DMA buffer 1392 * that is allocated will be contiguous (nsegments = 1). 1393 */ 1394 if (!pBuffer->enabled) { 1395 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1396 return (MPS_DIAG_FAILURE); 1397 } 1398 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1399 1, 0, /* algnmnt, boundary */ 1400 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1401 BUS_SPACE_MAXADDR, /* highaddr */ 1402 NULL, NULL, /* filter, filterarg */ 1403 buffer_size, /* maxsize */ 1404 1, /* nsegments */ 1405 buffer_size, /* maxsegsize */ 1406 0, /* flags */ 1407 NULL, NULL, /* lockfunc, lockarg */ 1408 &sc->fw_diag_dmat)) { 1409 device_printf(sc->mps_dev, "Cannot allocate FW diag buffer DMA " 1410 "tag\n"); 1411 return (ENOMEM); 1412 } 1413 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1414 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1415 device_printf(sc->mps_dev, "Cannot allocate FW diag buffer " 1416 "memory\n"); 1417 return (ENOMEM); 1418 } 1419 bzero(sc->fw_diag_buffer, buffer_size); 1420 bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer, 1421 buffer_size, mps_memaddr_cb, &sc->fw_diag_busaddr, 0); 1422 pBuffer->size = buffer_size; 1423 1424 /* 1425 * Copy the given info to the diag buffer and post the buffer. 1426 */ 1427 pBuffer->buffer_type = buffer_type; 1428 pBuffer->immediate = FALSE; 1429 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1430 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1431 i++) { 1432 pBuffer->product_specific[i] = 1433 diag_register->ProductSpecific[i]; 1434 } 1435 } 1436 pBuffer->extended_type = extended_type; 1437 pBuffer->unique_id = unique_id; 1438 status = mps_post_fw_diag_buffer(sc, pBuffer, return_code); 1439 1440 /* 1441 * In case there was a failure, free the DMA buffer. 1442 */ 1443 if (status == MPS_DIAG_FAILURE) { 1444 if (sc->fw_diag_busaddr != 0) 1445 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1446 if (sc->fw_diag_buffer != NULL) 1447 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1448 sc->fw_diag_map); 1449 if (sc->fw_diag_dmat != NULL) 1450 bus_dma_tag_destroy(sc->fw_diag_dmat); 1451 } 1452 1453 return (status); 1454 } 1455 1456 static int 1457 mps_diag_unregister(struct mps_softc *sc, 1458 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1459 { 1460 mps_fw_diagnostic_buffer_t *pBuffer; 1461 uint8_t i; 1462 uint32_t unique_id; 1463 int status; 1464 1465 unique_id = diag_unregister->UniqueId; 1466 1467 /* 1468 * Get the current buffer and look up the unique ID. The unique ID 1469 * should be there. 1470 */ 1471 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1472 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1473 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1474 return (MPS_DIAG_FAILURE); 1475 } 1476 1477 pBuffer = &sc->fw_diag_buffer_list[i]; 1478 1479 /* 1480 * Try to release the buffer from FW before freeing it. If release 1481 * fails, don't free the DMA buffer in case FW tries to access it 1482 * later. If buffer is not owned by firmware, can't release it. 1483 */ 1484 if (!pBuffer->owned_by_firmware) { 1485 status = MPS_DIAG_SUCCESS; 1486 } else { 1487 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1488 MPS_FW_DIAG_TYPE_UNREGISTER); 1489 } 1490 1491 /* 1492 * At this point, return the current status no matter what happens with 1493 * the DMA buffer. 1494 */ 1495 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1496 if (status == MPS_DIAG_SUCCESS) { 1497 if (sc->fw_diag_busaddr != 0) 1498 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1499 if (sc->fw_diag_buffer != NULL) 1500 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1501 sc->fw_diag_map); 1502 if (sc->fw_diag_dmat != NULL) 1503 bus_dma_tag_destroy(sc->fw_diag_dmat); 1504 } 1505 1506 return (status); 1507 } 1508 1509 static int 1510 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 1511 uint32_t *return_code) 1512 { 1513 mps_fw_diagnostic_buffer_t *pBuffer; 1514 uint8_t i; 1515 uint32_t unique_id; 1516 1517 unique_id = diag_query->UniqueId; 1518 1519 /* 1520 * If ID is valid, query on ID. 1521 * If ID is invalid, query on buffer type. 1522 */ 1523 if (unique_id == MPS_FW_DIAG_INVALID_UID) { 1524 i = diag_query->BufferType; 1525 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1526 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1527 return (MPS_DIAG_FAILURE); 1528 } 1529 } else { 1530 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1531 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1532 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1533 return (MPS_DIAG_FAILURE); 1534 } 1535 } 1536 1537 /* 1538 * Fill query structure with the diag buffer info. 1539 */ 1540 pBuffer = &sc->fw_diag_buffer_list[i]; 1541 diag_query->BufferType = pBuffer->buffer_type; 1542 diag_query->ExtendedType = pBuffer->extended_type; 1543 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1544 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1545 i++) { 1546 diag_query->ProductSpecific[i] = 1547 pBuffer->product_specific[i]; 1548 } 1549 } 1550 diag_query->TotalBufferSize = pBuffer->size; 1551 diag_query->DriverAddedBufferSize = 0; 1552 diag_query->UniqueId = pBuffer->unique_id; 1553 diag_query->ApplicationFlags = 0; 1554 diag_query->DiagnosticFlags = 0; 1555 1556 /* 1557 * Set/Clear application flags 1558 */ 1559 if (pBuffer->immediate) { 1560 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED; 1561 } else { 1562 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED; 1563 } 1564 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1565 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID; 1566 } else { 1567 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID; 1568 } 1569 if (pBuffer->owned_by_firmware) { 1570 diag_query->ApplicationFlags |= 1571 MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1572 } else { 1573 diag_query->ApplicationFlags &= 1574 ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1575 } 1576 1577 return (MPS_DIAG_SUCCESS); 1578 } 1579 1580 static int 1581 mps_diag_read_buffer(struct mps_softc *sc, 1582 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1583 uint32_t *return_code) 1584 { 1585 mps_fw_diagnostic_buffer_t *pBuffer; 1586 uint8_t i, *pData; 1587 uint32_t unique_id; 1588 int status; 1589 1590 unique_id = diag_read_buffer->UniqueId; 1591 1592 /* 1593 * Get the current buffer and look up the unique ID. The unique ID 1594 * should be there. 1595 */ 1596 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1597 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1598 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1599 return (MPS_DIAG_FAILURE); 1600 } 1601 1602 pBuffer = &sc->fw_diag_buffer_list[i]; 1603 1604 /* 1605 * Make sure requested read is within limits 1606 */ 1607 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1608 pBuffer->size) { 1609 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1610 return (MPS_DIAG_FAILURE); 1611 } 1612 1613 /* 1614 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1615 * buffer that was allocated is one contiguous buffer. 1616 */ 1617 pData = (uint8_t *)(sc->fw_diag_buffer + 1618 diag_read_buffer->StartingOffset); 1619 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1620 return (MPS_DIAG_FAILURE); 1621 diag_read_buffer->Status = 0; 1622 1623 /* 1624 * Set or clear the Force Release flag. 1625 */ 1626 if (pBuffer->force_release) { 1627 diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1628 } else { 1629 diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1630 } 1631 1632 /* 1633 * If buffer is to be reregistered, make sure it's not already owned by 1634 * firmware first. 1635 */ 1636 status = MPS_DIAG_SUCCESS; 1637 if (!pBuffer->owned_by_firmware) { 1638 if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) { 1639 status = mps_post_fw_diag_buffer(sc, pBuffer, 1640 return_code); 1641 } 1642 } 1643 1644 return (status); 1645 } 1646 1647 static int 1648 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release, 1649 uint32_t *return_code) 1650 { 1651 mps_fw_diagnostic_buffer_t *pBuffer; 1652 uint8_t i; 1653 uint32_t unique_id; 1654 int status; 1655 1656 unique_id = diag_release->UniqueId; 1657 1658 /* 1659 * Get the current buffer and look up the unique ID. The unique ID 1660 * should be there. 1661 */ 1662 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1663 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1664 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1665 return (MPS_DIAG_FAILURE); 1666 } 1667 1668 pBuffer = &sc->fw_diag_buffer_list[i]; 1669 1670 /* 1671 * If buffer is not owned by firmware, it's already been released. 1672 */ 1673 if (!pBuffer->owned_by_firmware) { 1674 *return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED; 1675 return (MPS_DIAG_FAILURE); 1676 } 1677 1678 /* 1679 * Release the buffer. 1680 */ 1681 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1682 MPS_FW_DIAG_TYPE_RELEASE); 1683 return (status); 1684 } 1685 1686 static int 1687 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action, 1688 uint32_t length, uint32_t *return_code) 1689 { 1690 mps_fw_diag_register_t diag_register; 1691 mps_fw_diag_unregister_t diag_unregister; 1692 mps_fw_diag_query_t diag_query; 1693 mps_diag_read_buffer_t diag_read_buffer; 1694 mps_fw_diag_release_t diag_release; 1695 int status = MPS_DIAG_SUCCESS; 1696 uint32_t original_return_code; 1697 1698 original_return_code = *return_code; 1699 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1700 1701 switch (action) { 1702 case MPS_FW_DIAG_TYPE_REGISTER: 1703 if (!length) { 1704 *return_code = 1705 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1706 status = MPS_DIAG_FAILURE; 1707 break; 1708 } 1709 if (copyin(diag_action, &diag_register, 1710 sizeof(diag_register)) != 0) 1711 return (MPS_DIAG_FAILURE); 1712 status = mps_diag_register(sc, &diag_register, 1713 return_code); 1714 break; 1715 1716 case MPS_FW_DIAG_TYPE_UNREGISTER: 1717 if (length < sizeof(diag_unregister)) { 1718 *return_code = 1719 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1720 status = MPS_DIAG_FAILURE; 1721 break; 1722 } 1723 if (copyin(diag_action, &diag_unregister, 1724 sizeof(diag_unregister)) != 0) 1725 return (MPS_DIAG_FAILURE); 1726 status = mps_diag_unregister(sc, &diag_unregister, 1727 return_code); 1728 break; 1729 1730 case MPS_FW_DIAG_TYPE_QUERY: 1731 if (length < sizeof (diag_query)) { 1732 *return_code = 1733 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1734 status = MPS_DIAG_FAILURE; 1735 break; 1736 } 1737 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1738 != 0) 1739 return (MPS_DIAG_FAILURE); 1740 status = mps_diag_query(sc, &diag_query, return_code); 1741 if (status == MPS_DIAG_SUCCESS) 1742 if (copyout(&diag_query, diag_action, 1743 sizeof (diag_query)) != 0) 1744 return (MPS_DIAG_FAILURE); 1745 break; 1746 1747 case MPS_FW_DIAG_TYPE_READ_BUFFER: 1748 if (copyin(diag_action, &diag_read_buffer, 1749 sizeof(diag_read_buffer)) != 0) 1750 return (MPS_DIAG_FAILURE); 1751 if (length < diag_read_buffer.BytesToRead) { 1752 *return_code = 1753 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1754 status = MPS_DIAG_FAILURE; 1755 break; 1756 } 1757 status = mps_diag_read_buffer(sc, &diag_read_buffer, 1758 PTRIN(diag_read_buffer.PtrDataBuffer), 1759 return_code); 1760 if (status == MPS_DIAG_SUCCESS) { 1761 if (copyout(&diag_read_buffer, diag_action, 1762 sizeof(diag_read_buffer) - 1763 sizeof(diag_read_buffer.PtrDataBuffer)) != 1764 0) 1765 return (MPS_DIAG_FAILURE); 1766 } 1767 break; 1768 1769 case MPS_FW_DIAG_TYPE_RELEASE: 1770 if (length < sizeof(diag_release)) { 1771 *return_code = 1772 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1773 status = MPS_DIAG_FAILURE; 1774 break; 1775 } 1776 if (copyin(diag_action, &diag_release, 1777 sizeof(diag_release)) != 0) 1778 return (MPS_DIAG_FAILURE); 1779 status = mps_diag_release(sc, &diag_release, 1780 return_code); 1781 break; 1782 1783 default: 1784 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1785 status = MPS_DIAG_FAILURE; 1786 break; 1787 } 1788 1789 if ((status == MPS_DIAG_FAILURE) && 1790 (original_return_code == MPS_FW_DIAG_NEW) && 1791 (*return_code != MPS_FW_DIAG_ERROR_SUCCESS)) 1792 status = MPS_DIAG_SUCCESS; 1793 1794 return (status); 1795 } 1796 1797 static int 1798 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data) 1799 { 1800 int status; 1801 1802 /* 1803 * Only allow one diag action at one time. 1804 */ 1805 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1806 mps_dprint(sc, MPS_USER, "%s: Only one FW diag command " 1807 "allowed at a single time.", __func__); 1808 return (EBUSY); 1809 } 1810 sc->mps_flags |= MPS_FLAGS_BUSY; 1811 1812 /* 1813 * Send diag action request 1814 */ 1815 if (data->Action == MPS_FW_DIAG_TYPE_REGISTER || 1816 data->Action == MPS_FW_DIAG_TYPE_UNREGISTER || 1817 data->Action == MPS_FW_DIAG_TYPE_QUERY || 1818 data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER || 1819 data->Action == MPS_FW_DIAG_TYPE_RELEASE) { 1820 status = mps_do_diag_action(sc, data->Action, 1821 PTRIN(data->PtrDiagAction), data->Length, 1822 &data->ReturnCode); 1823 } else 1824 status = EINVAL; 1825 1826 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1827 return (status); 1828 } 1829 1830 /* 1831 * Copy the event recording mask and the event queue size out. For 1832 * clarification, the event recording mask (events_to_record) is not the same 1833 * thing as the event mask (event_mask). events_to_record has a bit set for 1834 * every event type that is to be recorded by the driver, and event_mask has a 1835 * bit cleared for every event that is allowed into the driver from the IOC. 1836 * They really have nothing to do with each other. 1837 */ 1838 static void 1839 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data) 1840 { 1841 uint8_t i; 1842 1843 mps_lock(sc); 1844 data->Entries = MPS_EVENT_QUEUE_SIZE; 1845 1846 for (i = 0; i < 4; i++) { 1847 data->Types[i] = sc->events_to_record[i]; 1848 } 1849 mps_unlock(sc); 1850 } 1851 1852 /* 1853 * Set the driver's event mask according to what's been given. See 1854 * mps_user_event_query for explanation of the event recording mask and the IOC 1855 * event mask. It's the app's responsibility to enable event logging by setting 1856 * the bits in events_to_record. Initially, no events will be logged. 1857 */ 1858 static void 1859 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data) 1860 { 1861 uint8_t i; 1862 1863 mps_lock(sc); 1864 for (i = 0; i < 4; i++) { 1865 sc->events_to_record[i] = data->Types[i]; 1866 } 1867 mps_unlock(sc); 1868 } 1869 1870 /* 1871 * Copy out the events that have been recorded, up to the max events allowed. 1872 */ 1873 static int 1874 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data) 1875 { 1876 int status = 0; 1877 uint32_t size; 1878 1879 mps_lock(sc); 1880 size = data->Size; 1881 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1882 mps_unlock(sc); 1883 if (copyout((void *)sc->recorded_events, 1884 PTRIN(data->PtrEvents), size) != 0) 1885 status = EFAULT; 1886 mps_lock(sc); 1887 } else { 1888 /* 1889 * data->Size value is not large enough to copy event data. 1890 */ 1891 status = EFAULT; 1892 } 1893 1894 /* 1895 * Change size value to match the number of bytes that were copied. 1896 */ 1897 if (status == 0) 1898 data->Size = sizeof(sc->recorded_events); 1899 mps_unlock(sc); 1900 1901 return (status); 1902 } 1903 1904 /* 1905 * Record events into the driver from the IOC if they are not masked. 1906 */ 1907 void 1908 mpssas_record_event(struct mps_softc *sc, 1909 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 1910 { 1911 uint32_t event; 1912 int i, j; 1913 uint16_t event_data_len; 1914 boolean_t sendAEN = FALSE; 1915 1916 event = event_reply->Event; 1917 1918 /* 1919 * Generate a system event to let anyone who cares know that a 1920 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 1921 * event mask is set to. 1922 */ 1923 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 1924 sendAEN = TRUE; 1925 } 1926 1927 /* 1928 * Record the event only if its corresponding bit is set in 1929 * events_to_record. event_index is the index into recorded_events and 1930 * event_number is the overall number of an event being recorded since 1931 * start-of-day. event_index will roll over; event_number will never 1932 * roll over. 1933 */ 1934 i = (uint8_t)(event / 32); 1935 j = (uint8_t)(event % 32); 1936 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 1937 i = sc->event_index; 1938 sc->recorded_events[i].Type = event; 1939 sc->recorded_events[i].Number = ++sc->event_number; 1940 bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH * 1941 4); 1942 event_data_len = event_reply->EventDataLength; 1943 1944 if (event_data_len > 0) { 1945 /* 1946 * Limit data to size in m_event entry 1947 */ 1948 if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) { 1949 event_data_len = MPS_MAX_EVENT_DATA_LENGTH; 1950 } 1951 for (j = 0; j < event_data_len; j++) { 1952 sc->recorded_events[i].Data[j] = 1953 event_reply->EventData[j]; 1954 } 1955 1956 /* 1957 * check for index wrap-around 1958 */ 1959 if (++i == MPS_EVENT_QUEUE_SIZE) { 1960 i = 0; 1961 } 1962 sc->event_index = (uint8_t)i; 1963 1964 /* 1965 * Set flag to send the event. 1966 */ 1967 sendAEN = TRUE; 1968 } 1969 } 1970 1971 /* 1972 * Generate a system event if flag is set to let anyone who cares know 1973 * that an event has occurred. 1974 */ 1975 if (sendAEN) { 1976 //SLM-how to send a system event (see kqueue, kevent) 1977 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 1978 // "SAS", NULL, NULL, DDI_NOSLEEP); 1979 } 1980 } 1981 1982 static int 1983 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data) 1984 { 1985 int status = 0; 1986 1987 switch (data->Command) { 1988 /* 1989 * IO access is not supported. 1990 */ 1991 case REG_IO_READ: 1992 case REG_IO_WRITE: 1993 mps_dprint(sc, MPS_USER, "IO access is not supported. " 1994 "Use memory access."); 1995 status = EINVAL; 1996 break; 1997 1998 case REG_MEM_READ: 1999 data->RegData = mps_regread(sc, data->RegOffset); 2000 break; 2001 2002 case REG_MEM_WRITE: 2003 mps_regwrite(sc, data->RegOffset, data->RegData); 2004 break; 2005 2006 default: 2007 status = EINVAL; 2008 break; 2009 } 2010 2011 return (status); 2012 } 2013 2014 static int 2015 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data) 2016 { 2017 uint8_t bt2dh = FALSE; 2018 uint8_t dh2bt = FALSE; 2019 uint16_t dev_handle, bus, target; 2020 2021 bus = data->Bus; 2022 target = data->TargetID; 2023 dev_handle = data->DevHandle; 2024 2025 /* 2026 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2027 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2028 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2029 * invalid. 2030 */ 2031 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2032 dh2bt = TRUE; 2033 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2034 bt2dh = TRUE; 2035 if (!dh2bt && !bt2dh) 2036 return (EINVAL); 2037 2038 /* 2039 * Only handle bus of 0. Make sure target is within range. 2040 */ 2041 if (bt2dh) { 2042 if (bus != 0) 2043 return (EINVAL); 2044 2045 if (target > sc->max_devices) { 2046 mps_dprint(sc, MPS_FAULT, "Target ID is out of range " 2047 "for Bus/Target to DevHandle mapping."); 2048 return (EINVAL); 2049 } 2050 dev_handle = sc->mapping_table[target].dev_handle; 2051 if (dev_handle) 2052 data->DevHandle = dev_handle; 2053 } else { 2054 bus = 0; 2055 target = mps_mapping_get_sas_id_from_handle(sc, dev_handle); 2056 data->Bus = bus; 2057 data->TargetID = target; 2058 } 2059 2060 return (0); 2061 } 2062 2063 static int 2064 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2065 struct thread *td) 2066 { 2067 struct mps_softc *sc; 2068 struct mps_cfg_page_req *page_req; 2069 struct mps_ext_cfg_page_req *ext_page_req; 2070 void *mps_page; 2071 int error, msleep_ret; 2072 2073 mps_page = NULL; 2074 sc = dev->si_drv1; 2075 page_req = (void *)arg; 2076 ext_page_req = (void *)arg; 2077 2078 switch (cmd) { 2079 case MPSIO_READ_CFG_HEADER: 2080 mps_lock(sc); 2081 error = mps_user_read_cfg_header(sc, page_req); 2082 mps_unlock(sc); 2083 break; 2084 case MPSIO_READ_CFG_PAGE: 2085 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO); 2086 error = copyin(page_req->buf, mps_page, 2087 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2088 if (error) 2089 break; 2090 mps_lock(sc); 2091 error = mps_user_read_cfg_page(sc, page_req, mps_page); 2092 mps_unlock(sc); 2093 if (error) 2094 break; 2095 error = copyout(mps_page, page_req->buf, page_req->len); 2096 break; 2097 case MPSIO_READ_EXT_CFG_HEADER: 2098 mps_lock(sc); 2099 error = mps_user_read_extcfg_header(sc, ext_page_req); 2100 mps_unlock(sc); 2101 break; 2102 case MPSIO_READ_EXT_CFG_PAGE: 2103 mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2104 error = copyin(ext_page_req->buf, mps_page, 2105 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2106 if (error) 2107 break; 2108 mps_lock(sc); 2109 error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page); 2110 mps_unlock(sc); 2111 if (error) 2112 break; 2113 error = copyout(mps_page, ext_page_req->buf, ext_page_req->len); 2114 break; 2115 case MPSIO_WRITE_CFG_PAGE: 2116 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2117 error = copyin(page_req->buf, mps_page, page_req->len); 2118 if (error) 2119 break; 2120 mps_lock(sc); 2121 error = mps_user_write_cfg_page(sc, page_req, mps_page); 2122 mps_unlock(sc); 2123 break; 2124 case MPSIO_MPS_COMMAND: 2125 error = mps_user_command(sc, (struct mps_usr_command *)arg); 2126 break; 2127 case MPTIOCTL_PASS_THRU: 2128 /* 2129 * The user has requested to pass through a command to be 2130 * executed by the MPT firmware. Call our routine which does 2131 * this. Only allow one passthru IOCTL at one time. 2132 */ 2133 error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg); 2134 break; 2135 case MPTIOCTL_GET_ADAPTER_DATA: 2136 /* 2137 * The user has requested to read adapter data. Call our 2138 * routine which does this. 2139 */ 2140 error = 0; 2141 mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg); 2142 break; 2143 case MPTIOCTL_GET_PCI_INFO: 2144 /* 2145 * The user has requested to read pci info. Call 2146 * our routine which does this. 2147 */ 2148 mps_lock(sc); 2149 error = 0; 2150 mps_user_read_pci_info(sc, (mps_pci_info_t *)arg); 2151 mps_unlock(sc); 2152 break; 2153 case MPTIOCTL_RESET_ADAPTER: 2154 mps_lock(sc); 2155 sc->port_enable_complete = 0; 2156 uint32_t reinit_start = time_uptime; 2157 error = mps_reinit(sc); 2158 /* Sleep for 300 second. */ 2159 msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO, 2160 "mps_porten", 300 * hz); 2161 mps_unlock(sc); 2162 if (msleep_ret) 2163 printf("Port Enable did not complete after Diag " 2164 "Reset msleep error %d.\n", msleep_ret); 2165 else 2166 mps_dprint(sc, MPS_USER, 2167 "Hard Reset with Port Enable completed in %d seconds.\n", 2168 (uint32_t) (time_uptime - reinit_start)); 2169 break; 2170 case MPTIOCTL_DIAG_ACTION: 2171 /* 2172 * The user has done a diag buffer action. Call our routine 2173 * which does this. Only allow one diag action at one time. 2174 */ 2175 mps_lock(sc); 2176 error = mps_user_diag_action(sc, (mps_diag_action_t *)arg); 2177 mps_unlock(sc); 2178 break; 2179 case MPTIOCTL_EVENT_QUERY: 2180 /* 2181 * The user has done an event query. Call our routine which does 2182 * this. 2183 */ 2184 error = 0; 2185 mps_user_event_query(sc, (mps_event_query_t *)arg); 2186 break; 2187 case MPTIOCTL_EVENT_ENABLE: 2188 /* 2189 * The user has done an event enable. Call our routine which 2190 * does this. 2191 */ 2192 error = 0; 2193 mps_user_event_enable(sc, (mps_event_enable_t *)arg); 2194 break; 2195 case MPTIOCTL_EVENT_REPORT: 2196 /* 2197 * The user has done an event report. Call our routine which 2198 * does this. 2199 */ 2200 error = mps_user_event_report(sc, (mps_event_report_t *)arg); 2201 break; 2202 case MPTIOCTL_REG_ACCESS: 2203 /* 2204 * The user has requested register access. Call our routine 2205 * which does this. 2206 */ 2207 mps_lock(sc); 2208 error = mps_user_reg_access(sc, (mps_reg_access_t *)arg); 2209 mps_unlock(sc); 2210 break; 2211 case MPTIOCTL_BTDH_MAPPING: 2212 /* 2213 * The user has requested to translate a bus/target to a 2214 * DevHandle or a DevHandle to a bus/target. Call our routine 2215 * which does this. 2216 */ 2217 error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg); 2218 break; 2219 default: 2220 error = ENOIOCTL; 2221 break; 2222 } 2223 2224 if (mps_page != NULL) 2225 free(mps_page, M_MPSUSER); 2226 2227 return (error); 2228 } 2229 2230 #ifdef COMPAT_FREEBSD32 2231 2232 struct mps_cfg_page_req32 { 2233 MPI2_CONFIG_PAGE_HEADER header; 2234 uint32_t page_address; 2235 uint32_t buf; 2236 int len; 2237 uint16_t ioc_status; 2238 }; 2239 2240 struct mps_ext_cfg_page_req32 { 2241 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2242 uint32_t page_address; 2243 uint32_t buf; 2244 int len; 2245 uint16_t ioc_status; 2246 }; 2247 2248 struct mps_raid_action32 { 2249 uint8_t action; 2250 uint8_t volume_bus; 2251 uint8_t volume_id; 2252 uint8_t phys_disk_num; 2253 uint32_t action_data_word; 2254 uint32_t buf; 2255 int len; 2256 uint32_t volume_status; 2257 uint32_t action_data[4]; 2258 uint16_t action_status; 2259 uint16_t ioc_status; 2260 uint8_t write; 2261 }; 2262 2263 struct mps_usr_command32 { 2264 uint32_t req; 2265 uint32_t req_len; 2266 uint32_t rpl; 2267 uint32_t rpl_len; 2268 uint32_t buf; 2269 int len; 2270 uint32_t flags; 2271 }; 2272 2273 #define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32) 2274 #define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32) 2275 #define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32) 2276 #define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32) 2277 #define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32) 2278 #define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32) 2279 #define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32) 2280 2281 static int 2282 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2283 struct thread *td) 2284 { 2285 struct mps_cfg_page_req32 *page32 = _arg; 2286 struct mps_ext_cfg_page_req32 *ext32 = _arg; 2287 struct mps_raid_action32 *raid32 = _arg; 2288 struct mps_usr_command32 *user32 = _arg; 2289 union { 2290 struct mps_cfg_page_req page; 2291 struct mps_ext_cfg_page_req ext; 2292 struct mps_raid_action raid; 2293 struct mps_usr_command user; 2294 } arg; 2295 u_long cmd; 2296 int error; 2297 2298 switch (cmd32) { 2299 case MPSIO_READ_CFG_HEADER32: 2300 case MPSIO_READ_CFG_PAGE32: 2301 case MPSIO_WRITE_CFG_PAGE32: 2302 if (cmd32 == MPSIO_READ_CFG_HEADER32) 2303 cmd = MPSIO_READ_CFG_HEADER; 2304 else if (cmd32 == MPSIO_READ_CFG_PAGE32) 2305 cmd = MPSIO_READ_CFG_PAGE; 2306 else 2307 cmd = MPSIO_WRITE_CFG_PAGE; 2308 CP(*page32, arg.page, header); 2309 CP(*page32, arg.page, page_address); 2310 PTRIN_CP(*page32, arg.page, buf); 2311 CP(*page32, arg.page, len); 2312 CP(*page32, arg.page, ioc_status); 2313 break; 2314 2315 case MPSIO_READ_EXT_CFG_HEADER32: 2316 case MPSIO_READ_EXT_CFG_PAGE32: 2317 if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32) 2318 cmd = MPSIO_READ_EXT_CFG_HEADER; 2319 else 2320 cmd = MPSIO_READ_EXT_CFG_PAGE; 2321 CP(*ext32, arg.ext, header); 2322 CP(*ext32, arg.ext, page_address); 2323 PTRIN_CP(*ext32, arg.ext, buf); 2324 CP(*ext32, arg.ext, len); 2325 CP(*ext32, arg.ext, ioc_status); 2326 break; 2327 2328 case MPSIO_RAID_ACTION32: 2329 cmd = MPSIO_RAID_ACTION; 2330 CP(*raid32, arg.raid, action); 2331 CP(*raid32, arg.raid, volume_bus); 2332 CP(*raid32, arg.raid, volume_id); 2333 CP(*raid32, arg.raid, phys_disk_num); 2334 CP(*raid32, arg.raid, action_data_word); 2335 PTRIN_CP(*raid32, arg.raid, buf); 2336 CP(*raid32, arg.raid, len); 2337 CP(*raid32, arg.raid, volume_status); 2338 bcopy(raid32->action_data, arg.raid.action_data, 2339 sizeof arg.raid.action_data); 2340 CP(*raid32, arg.raid, ioc_status); 2341 CP(*raid32, arg.raid, write); 2342 break; 2343 2344 case MPSIO_MPS_COMMAND32: 2345 cmd = MPSIO_MPS_COMMAND; 2346 PTRIN_CP(*user32, arg.user, req); 2347 CP(*user32, arg.user, req_len); 2348 PTRIN_CP(*user32, arg.user, rpl); 2349 CP(*user32, arg.user, rpl_len); 2350 PTRIN_CP(*user32, arg.user, buf); 2351 CP(*user32, arg.user, len); 2352 CP(*user32, arg.user, flags); 2353 break; 2354 default: 2355 return (ENOIOCTL); 2356 } 2357 2358 error = mps_ioctl(dev, cmd, &arg, flag, td); 2359 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2360 switch (cmd32) { 2361 case MPSIO_READ_CFG_HEADER32: 2362 case MPSIO_READ_CFG_PAGE32: 2363 case MPSIO_WRITE_CFG_PAGE32: 2364 CP(arg.page, *page32, header); 2365 CP(arg.page, *page32, page_address); 2366 PTROUT_CP(arg.page, *page32, buf); 2367 CP(arg.page, *page32, len); 2368 CP(arg.page, *page32, ioc_status); 2369 break; 2370 2371 case MPSIO_READ_EXT_CFG_HEADER32: 2372 case MPSIO_READ_EXT_CFG_PAGE32: 2373 CP(arg.ext, *ext32, header); 2374 CP(arg.ext, *ext32, page_address); 2375 PTROUT_CP(arg.ext, *ext32, buf); 2376 CP(arg.ext, *ext32, len); 2377 CP(arg.ext, *ext32, ioc_status); 2378 break; 2379 2380 case MPSIO_RAID_ACTION32: 2381 CP(arg.raid, *raid32, action); 2382 CP(arg.raid, *raid32, volume_bus); 2383 CP(arg.raid, *raid32, volume_id); 2384 CP(arg.raid, *raid32, phys_disk_num); 2385 CP(arg.raid, *raid32, action_data_word); 2386 PTROUT_CP(arg.raid, *raid32, buf); 2387 CP(arg.raid, *raid32, len); 2388 CP(arg.raid, *raid32, volume_status); 2389 bcopy(arg.raid.action_data, raid32->action_data, 2390 sizeof arg.raid.action_data); 2391 CP(arg.raid, *raid32, ioc_status); 2392 CP(arg.raid, *raid32, write); 2393 break; 2394 2395 case MPSIO_MPS_COMMAND32: 2396 PTROUT_CP(arg.user, *user32, req); 2397 CP(arg.user, *user32, req_len); 2398 PTROUT_CP(arg.user, *user32, rpl); 2399 CP(arg.user, *user32, rpl_len); 2400 PTROUT_CP(arg.user, *user32, buf); 2401 CP(arg.user, *user32, len); 2402 CP(arg.user, *user32, flags); 2403 break; 2404 } 2405 } 2406 2407 return (error); 2408 } 2409 #endif /* COMPAT_FREEBSD32 */ 2410 2411 static int 2412 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2413 struct thread *td) 2414 { 2415 #ifdef COMPAT_FREEBSD32 2416 if (SV_CURPROC_FLAG(SV_ILP32)) 2417 return (mps_ioctl32(dev, com, arg, flag, td)); 2418 #endif 2419 return (mps_ioctl(dev, com, arg, flag, td)); 2420 } 2421